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Abstract 

Actuaries are increasingly finding more applications for stochastic simulation in pricing, reserving, 

DFA, and other insurance and financial engineering problems. For instance, stochastic simulation has 

gained acceptance as a pricing tool for property catastrophe coverage in the insurance, reinsurance, 

broker, and investment communities. This has required primary companies to compile and provide 

information at a more detailed level than they did only a few years ago. Various commercial 

simulation products have emerged to help companies assess and price their property catastrophe 

exposures. Although there are many parallels between the catastrophe exposures of property and 

commercial aviation risks, the use of  simulation is not widespread in the assessment of commercial 

aviation catastrophic exposures. In this paper, we present the framework for a simulation model for 

commercial aviation catastrophes and we discuss various aspects of  designing such a model including 

the level and type of information needed. 
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Introduct ion  - The  need for a stochast ic  m o d e l  

The claims covered by a comprehensive commercial airline policy can be broken into two groups. The 

first group consists of  trivial claims such as lost luggage, "slip and fall" accidents, or minor damage to 

the hull of an aircraft while the second group comprises catastrophic claims arising out of airplane 

crashes resulting in serious injuries, fatalities, property damage, and major or total loss of an aircraft. 

Most of the pricing tools that are used to price airline's hull and liability exposures tend to rely on 

experience rating techniques. Under a basic experience rating method, the projected losses are based 

on an average of past losses adjusted for trend and development. An experience rating approach may 

work relatively well when only the non-catastrophic exposure of airlines is considered. However, 

traditional experience rating methods would tend to overstate the expected loss when one or more 

catastrophes are included in the experience period, and, conversely would tend to understate the 

expected loss when there are no catastrophes in the experience period. Under a more sophisticated 

experience rating approach, losses are separated into their catastrophic and non-catastrophic 

components. The catastrophe losses are then compiled and averaged over a very long period of time in 

order to come up with an "expected catastrophe loss amount" similar to what is used in property 

ratemaking. Even under the latter approach, the question needs to be asked as to whether past 

catastrophe experience is representative of future experience. First, the frequency of  catastrophic 

accidents may have changed over time due to such factors as improved aviation technology, better or 

worse safety regulation, or increased air traffic. Secondly, the costs of hull and liability coverage are 

indeed impacted by not only general inflationary trends which can be reflected within a traditional 

experience rating model, but also by changes in an airline's fleet, passenger load factors ~, destination 

and passenger profiles 2 which are harder to reflect in an experience rating exercise. Finally, as we look 

to the future, the introduction of  new aircraft models such as the Airbus 380 model - which could 

i Passenger load factor represents the average percentage of an airline's seating capacity that is filled. 

2 Destination profile for an airline refers to the coun~'ies to which the airline is flying. The liability 
damage award of accident victims may vary by country. For instance, a priori, an airline operating 
domestic flights solely in India would have a lower liability potential than one operating solely in the 
United States. Passenger profile refers to the age, occupation, income of passengers as these are all 
factors that can determine the level of compensatory damage of accident victims. A priori, an airline 
whose core clientele was made up of college freshmen going on vacation would have a lower liability 
potential than one whose core clientele consisted of well paid corporate managers going to business 
meetings. 
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accommodate up to 840 passengers in a single class configuration - to an airline's fleet, the addition of 

new set of routes and destinations, the continued evolution of contracts and laws establishing the 

compensation of victims of airline accidents will all make it less likely that traditional experience rating 

will remain an adequate forecasting tool. 

The stochastic model that we present avoids most, if  not all, of the pitfalls of traditional experience 

rating methods. While judiciously making use of historical data such as past accident rates, the model 

will rely on the most current information relating to an airline's fleet, passenger and destination 

profiles, number of departures (or miles flown), and passenger load factors. The model will also be 

flexible enough to allow the user to incorporate his/her views on the impact of legal changes on the cost 

of liability, hull or other related costs of accidents. This model will be especially well suited for 

analyzing contracts which carry a lot of bells and whistles. A simulation model that breaks down the 

loss process into its many components also forces the user to think about the different factors that 

impact on the costs of airline catastrophes. Perhaps, one drawback of such a model is that it requires a 

more detailed level of information than generally needed in performing an experience rating exercise. 

However, such information is generally available with a little bit of research. 

This paper is organized into eight sections. In section 1, we present a schematic of a stochastic 

simulation model for evaluating the cost of passenger liability coverage. In section 2, we define 

commercial airlines and airline catastrophes. In section 3, we delve into the area of frequency, 

including the choice of an appropriate measure of exposure. In that section, we also explore the issue 

of classification by relying on work presented in "Reinventing Risk Classification - A Set Theory 

Approach" [6]. We revisit a statistic introduced in that paper for the purpose of making inferences 

about Poisson distributed events. We use this statistic to comment on a Wall Street Journal article, 

which sought to discuss the relative safety of several aircrat~ models. We then tackle the issue of 

whether the rate of airline catastrophes has changed at all over time in the same section. In section 4, 

we look at the cost of catastrophes for different coverages, including more easily determined costs such 

as those for hull coverage to more challenging ones such as passenger liability, third party liability, and 

products liability. We also briefly touch on the issue of classification relating to passenger liability 

costs in that section. In section 5, we discuss how various results coming from the model can be 
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validated against actual historical data. In section 6, we offer some thoughts on how to incorporate the 

risks of terrorism or sabotage in the model. In section 7, we give an example of  the simulation model 

for a cover for a hypothetical group of airlines. In section 8, we provide final thoughts. 

1) Simulation Scheme 

Figure 1.1 below s~ows how we would generate passenger liability losses using a simulation model. 

This scheme would vary depending on the level of information available and the coverage of interest. 

2) Definitions 

Before we go too far into this discussion, let's try to agree on the topic of discussion itself by 

attempting to put some parameters around two of  the terms that are central to this paper: 

2.1) Commercial Airlines 

Insurance underwriters generally differentiate between commercial and general aviation. General 

aviation typically encompasses operation of smaller airplanes used for leisure, industrial and 

agricultural purposes, or simply in the private transportation of  individuals or employees. Helicopter 

and balloon operations are generally lumped into the general aviation category. Commercial aviation 

involves the transportation, for compensation or hire, of persons or cargo by aircraft. In the US, a 

commercial operator is one that has been certificated by the Federal Aviation Administration (FAA) 

under Code of Federal Regulation (CFR) part 121 (airlines) or CFR Part 135 (commuters) to provide 

air transport of passengers or cargo. So-called air taxis and commuters operate smaller aircrafts and 

carry few passengers per flight whereas airlines typically operate jet aircrafts that can carry large loads 

of  passengers per flight. More recently, the line between commuters and airlines has been blurred by 

acquisitions as well as the amendment of some of the FAA codes. This paper is concerned mostly 
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Figure 1.1 - A  simulation framework 
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with commercial airlines, as most of the statistics we will discuss will relate to airlines represented by 

US operators certificated under CFR Part 121 and operators in other countries with similar 

certification. 

2.2) Airline Catastrophes 

We have referred several times already to airline catastrophes as i f  the term was self-explanatory. In 

fact, one might take several views as to what constitutes a catastrophe. One perspective of catastrophes 

could be that of  an excess of loss reinsurer who would typically be impacted only by events above a 

certain threshold. For instance, a reinsurer could define a catastrophe as an accident, occurring 

between takeoff and landing, involving one or several aircrafts, and which results in major damage to 

or destruction of  an aircraft's hull. Under this definition, for instance, damage to an aircraft from a 

hailstorm or an earthquake while garaged would not be counted as a catastrophe, neither would 

fatalities or injuries occurring as a result of air turbulence, food poisoning, or falling luggage. A midair 

collision between two or more aircrafts would be counted as one catastrophe. Throughout this paper, 

we will use slightly different definitions of  catastrophe and different data sources to illustrate different 

aspects oftbe simulation model. The exact definition used is of no particular importance since we are 

not trying to promote any one definition but rather trying to present a method by which the cost of such 

catastrophes, however defined, can be evaluated. It is, however, important that the data collected for 

the purpose of constructing a model be consistent with the definitions used in the contracts and 

products that are being evaluated. 

3) Modeling the Frequency of Airline Catastrophes 

How do we best model the number of  airline catastrophes? Within the casualty and property actuarial 

practice, there are two distributions that are commonly used to represent the frequency distribution of 

accidents, namely the Poisson and the Negative Binomial distributions. We, a priori, will work with 

the Poisson distribution because of its simplicity end its intuitive appeal 3. A modeler is free to choose 

other distributions that might work better or as well. 

3 There are three postulates implied by a Poisson process: 
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The Poisson model is defined as foil . . . .  f(x) = (Ad)~ e-Caa) , 
x! 

where x is the number of catastrophic accidents, A, is the expected rate of accident per exposure unit, 

and d is the number of exposure units for the period under review. 

3.1) Picking anexposure base 

The exposure base as will be used here is the unit upon which frequency will be measured. Airlines 

usually report the number of departures, miles (or kilometers) flown, hours flown for annual, quarterly, 

and even monthly periods. Any of these measures could serve as an exposure base since they are 

almost perfectly correlated. The modeler's decision as to which of these potential units of exposure to 

use may be based on which is found to be more accessible, more accurate, measured and defined more 

consistently overtime. The modeler needs to be well aware of potantial distortions in the exposure data 

especially when using different sources to gather the data. We will use the number of departures as our 

unit of exposure because of some evidence showing that the risk of catastrophic occurrences is 

concentrated around takeoffs and landings. We, however, have not found any significant differences in 

our results when we used hours or miles flown as measures of exposure. 

3.2) Classification 

For the twanty-two year period from 1980 to 2001, commercial airlines catastrophes 4 occurred in the 

world at a frequency of 1.22 per million departures. Should we look at this frequency rate as being 

applicable to all commercial airlines and use it as the basis for the ,,~ in the Poisson model for all 

airlines? This approach could potentially result in the underestimation of the accident risk for some 

groups of airlines while resulting in the overestimation of that risk for some other groups. 

1 ) The numbers of occurrences in non-overlapping time intervals are independent. 
2) The number of occurrencas in a time interval has the same probability for all intervals. 
3) The probability of two or more events in a small time interval is zero. 

We believe that the occurrence of catastrophic airline accidents, excluding those caused by willful acts, 
satisfy all three postulates. 

4 Catastrophe here is defined as accidents resulting in total destruction of an aircraft. Data comes from 
a proprietary source and is based on Western-built aircrafts only. 
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Conversely, should we group airlines into cells ~ along certain risk characteristics 6 and proceed to 

calculate frequency rates for each cell based on the data within? Are we to then presume that airlines 

across these cells have fundamentally different rates of catastrophic accidents by virtue of our having 

devised the grouping scheme? Under this approach, we risk assigning different, perhaps even 

significantly different, frequency rates to cells of airlines that have essentially the same propensity for 

catastrophic accidents. Let's assume for a moment that airlines are grouped based on the subcontinent 

on which they are domiciled. In the twenty-two year period from 1980 to 2001, the average frequency 

of catastrophic accidents for North-Amcrican airlines has been around 0.5 per million of departures 

while that for Western-European airlines has been closer to 0.6 per million of  departures. Did the 

difference in the observed accident rates arise out of the random nature of catastrophic accidents or did 

it arise out of a fundamental difference in the propensity of accident for the two groups? The search for 

answers to these questions spun a classification methodology introduced in the paper titled 

"Reinventing Risk Classification - A Set Theory Approach" [6]. We will use the procedures from this 

paper to give an example of a classification scheme for airlines. Before we do, however, we want to 

^ 
reacquaint the reader with a statistic, Ro, introduced in the aforementioned paper and which was used 

to make inferences about Poisson distributed populations. 

^ 

3.2.1 ) A review of the R o statistic. 

Let )/,~ and ~a represent the expected frequency rates for two Poisson populations A and B, with 

^ ^ 
dAand dnunitsofexposure,  respectively. Also, let g, A and ~,s , represent the maximum likelihood 

estimates of A M and fiB, respectively. In [6, p. 105-114], we show that i f ) ,  A = .3,0, 

k o ~f-~-----~_ --). N(O,1) for large 7 d A a n d d e v a l  . . . .  

V dA de 

A cell is a set of  airlines with the same risk characteristics [6, p. 89]. 
6 Risk characteristic is an attribute that identifies a risk or group of risks [6, p. 88]. 

7 i.e. as d A a n d  d n ~ oo [6, p. 105-114]. 
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We then use Roto make inferences about the equality of the frequency rates underlying pairs of 

Poisson distributed populations. If we define the null hypothesis as ~.4 = ~B, then we will reject that 

hypothesis at the 10% significance level (90% confidence interval) if R0 falls outside the range of (- 

1.65, 1.65). We explain in [6, p 94] that/~0 can be thought of as the observed distance between the two 

populations' samples. If that distance is small, we tend to accept the hypothesis that the populations 

have the same expected frequency. If  it is large, we tend to reject the equality hypothesis. Observe that 

/~0 depends not only on the MLE estimates of the population frequencies but also on the number of 

exposure units of the respective populations. For instance, the absolute value of/~ 0 increases as the 

number of  exposure units increases (everything else being equal). 

A Wall Street Journal article [5] in which the author sought to demonstrate the poor safety record of the 

^ 
MD- 11 aircraft relative to other similar models provides a good example of how R o can be used to 

make inferences about Poisson populations. The article shows a graphic with accident rates by airplane 

types, which we summarize in table 3.1 below. 

If we assume that the number of accidents for each of the aircraft models is Poisson distributed, we can 

use Ro to make inferences about the relative safety of these models. The exposure units are the 

number of millions of departures, while the maximum likelihood estimates of the expected frequencies 

are represented by the frequency per miltion departures. For instance, to test the hypothesis that the 

^ 
underlying accident rates for the MD-11 and the A300-Early are the same, we calculate Ro, using an 
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algebraic equivalent s of the formula introduced in section 3.2.1, as 

follows: Ro = 6.54 - 1.29 = 1.771. 

~ 6 ' ~  42 1 ' 2 9 ~ +  7 

Table 3.1- Accident Rates by Airplane Type 9 

(1)=(2)/(3) 
~,ircraft Million of 
Wlodel  Departures 
3-7071720 17.6 
3C-8 12.2 
3-727 72.2 
3-737-1 & 2 50.4 
3C-9 58.1 
3AC 1-11 8.3 
=-28 8.1 
3747-Early 11.1 
)C-10 7.8 
~300-Early 5.4 
.-1011 5.2 
rID-80/90 23.3 
3-767 7.3 
3-757 8.7 
3ae146 5.1 
z,-310 2.9 
z,-300/600 2.2 
3-737-3, 4 & 5 30.8 
~,-320/319/321 7.3 
---100 3.8 
3747-400 2.0 
dD-11 0.8 

(3) 
(2) Frequency 

Hull per million 
.osses I~ Departures 

115 6.46 
71 5.84 
70 0.97 
62 1.23 
75 1.29 
22 2.64 
32 3.94 
21 1.90 
20 2.57 
7 1.29 
4 0.77 
10 0.43 
3 0.41 
4 0.46 
3 0.59 
4 1.40 
3 1.34 
12 0.39 
7 0.96 
3 0.80 
1 0.49 
5 6.54 

8 R0 = ~ = ~ where n A and n B represent the number of accidents for 

I/~A ,% I,',A . ~ B  - - + - -  - - + - -  

HA -- nB 
populations A and B, respectively, and "~A = dA-7- and ~a - ad--" 

9 The article lists Boeing as the source of the data. The exposure units (million of departures) were not 
p, rovided but calculated as the ratio of the number of accidents to the accident rate. 
10 The article defines hull losses as damage so severe the plane isn't repaired. 
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At a 10% significance level, we would reject the hypothesis that the two aircraft models have the same 

^ 
propensity for accident since R 0 falls outside the interval (-1.65, 1.65). However, we would not be 

able to reject the hypothesis at a 5% significance level since R0 fails in the interval (-1.96, 1.96). In 

table 3.2, we calculate the R0 values between the MD- 11 model and other aircraft models in table 3.1. 

Table 3.2 - 2~ 0 values between MD -11 and other models 

ModelAircraft Ro/MD - 11 

B-7071720 0.027 

DO-8 0.233 

B-727 1.903 

B-737-1 & 2 1.813 
DC-9 1.793 

BAC 1-11 1.309 
F-28 0.865 
B747-Early 1.571 
DC-10 1.332 
A300-Early 1.771 
L-1011 1.956 
MD-80/90 2.087 
B-767 2.089 
B-757 2.072 
BAe146 2.021 
A-310 1.709 
A-300/600 1.719 
B-737-3, 4 & 5 2.101 
A-320/319/321 1.893 
F-100 1.939 
B747-400 2.040 

Before drawing any conclusions from the above table however, one would need to look into other 

factors that may impact on the accident rates. For instance, i f  the MD-11 losses were coming 

disproportionately from a particular operator or group of operators, the issue might be more specific to 

the operator or group of operators rather than to the aircraft model itself. 
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3.2.2) A classification scheme for the frequency of airline catastrophic accidents 

A priori, one might expect airlines operating under similar jurisdictions and having similar types of 

operations, fleet, stafftraining, and safety procedures to display the same expected rate of  accidents. 

The jurisdictions - which could be tantamount to countries - help explain the degree of oversight to 

which airlines are subject, the adequacy and competence of air traffic control, the level of competition 

in the market, the resources available to regulators to enforce safety rules, the degree of  accountability 

of regulators and airlines to the public, and the public's attitude toward safety. Factors that may help 

delineate among jurisdictions include political system, economic standing, and judicial/tort system. 

Factors that may explain differences between airlines within the same jurisdictional group include size 

and years of operation. For instance, to the extent that there are economies of scale present in aircraft 

maintenance or stafftraining, larger airlines may exhibit a better safety record than smaller ones. For 

illustration purposes only, let's look at a two-dimensional classification scheme where jurisdiction and 

size of operations are the two classification variables. Then, we will define five jurisdictional groups 

and three sizes, which will result in fifteen cells for which the exposures and MLE estimates are shown 

in tables 3.3 and 3.4 below: 

Table 3.3 - Departures in millions 

Large 

Medium 

Small 

Judsdiction 1 JudsdicUon 2 Judsdiction 3 Judsdiction 

4.8 

4 Jurisdiction 5 

56.9 120.8 15.8 

33.5 8.9 7.4 12.5 15.5 

3.5 2.2 2.8 2.6 2.0 

Table 3.4 - Initial MLE Estimates (Accidents / Million Departures) 

Jurisdiction 1 Jurisdiction ; Jurisdiction : Jurisdiction 4 Jurisdiction 5 

Large 0.527 0.35E N/,~ 3.121 2.019 

Medium 0.507 1.67~ 4.305 2.800 2.710 

Small 1.443 2.73E 17.852 9.237 4.085 

A revised set of estimates is obtained in table 3.7 below based on a procedure introduced in "Risk 

Classification - A Set Theory Approach" [6] and at the presentation of  the paper at the winter 2002 

meeting. Basically, each cell 5 defines a class ~1 made up of the cell itself and possibly of other cells that 

~ Please refer to [6, p. 88 -90] for a definition of these terms. 
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are compatible n with it. Once the classes are defined, each cell within a class is given a credibility u 

weight and the revised estimate for each cell is the credibility weighted average of all the cells in its 

class. The classes defined by each cell and the credibility weights assigned to all the cells in each class 

are shown in tables 3.5 and 3.6 below, and again in exhibits 5 and 6 of Appendix A. The steps leading 

to table 3.5, 3.6, and 3.7 are detailed in Appendix A. 

Table 3.5 - Classes defined by each cell 

Cells Classes 
J1/L JIFL, JlfM, J1/S} 

J2/L {J2/L} 
J41L {J4/L, J4/M} 
JS/L {J5/L} 
JIlM {JI/M, J1/L, J1/S} 
J21M {J2/M, J2S} 
J3/M {J3/M} 
J4/M {J4/M, J4/L, J5M} 
J5/M {JS/M, J4/M, J5/S} 
JIlS {JI/S, JllL, J1/M} 
J2/S {J2/S, J2/M, J5/S} 
J31S {J3/S} 

=J41S {J4/S} 
J5/S {J5/S, J2/S, J5/M} 

Table 3.6 - Credibility weights 

Cells Classes 
[1/L JI/L.606, I1/M.357, J1/S .037} 

J21L {J2/L, 1.00} 
J41L {J4/L.278, J4/M .722} 
J51L {J5/L, 1.000} 
JIlM {JI/M .357, JI/L .606, J1/S .037 
J2/M {J2/M .803, J2S .197} 
J3/M {J3/M, 1.000} 
J41M {J4/M .381, J4/L .147, J5M .472} 
JSIM {J5/M .517, J41M .417, J5/S .065 
JIlS {JI/S .037, JI/L .606, JI/M .357 
J2/S {J21S .168, J2/M .683, J5/S .150 
J31S {J3]S, 1.000} 
J41S {J4/S, 1.000} 
J51S {J5/S .112, J2/S .112, J5/M .789 
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Table 3.5 - Revised MLE Estimates (Accidents / Million Departures) 

Large 
Medium 
Small 

Jurisdiction 1 Jurisdiction 2 Jurisdiction 3 Jurisdiction 4 Jurisdiction 5 
0.554 0.356 N/A 2.889 2.019 
0.554 1.887 4.305 2.804 2.837 
0.554 2.216 17.852 9.237 2.850 

Unlike schemas that rely on arithmetic functions, this scheme does not force certain relationships to 

hold across jurisdictions or across size categories. For instance, while the frequency of small airlines is 

nearly four times that ofmediurn size airlines in Jurisdiction 3, the difference is not nearly as 

pronounced in other jurisdictions. In fact, in jurisdiction 1, small, medium, and large airlines all have 

the same accident frequency. 

The current classification scheme is one of many that could have been devised using our classification 

procedure. It should be compared to others to decide which is the most efficient. The notion of 

efficiency is addressed in [6, p 98]. 

3.3) Trend 

Has the rate of accident changed overtime? If so, how has it changed? The answer to these questions 

has implications on how the accident rate is projected into the future. Other questions come up as well. 

Should we look at the change in the rate of accident over the entire cell universe or should we only be 

concerned with changes within individual ceils or within individual classes? Can we even examine the 

issue of trend independently of that of classification? Should we look at time as one more variable in 

the classification scheme or do we examine changes over time after the scheme itself has been 

established? Isn't it possible for some cells to show improvement in frequency overtime while others 

show deterioration or no change in their accident frequency? Isn't it also possible for the accident rates 

of two cells or two classes to converge or diverge over time? We do not pretend to have the answers to 

all these questions. For now, we will look at the question of trend as a one-dimensional problem, In 

order to measure a trend pattern over time, we first need to specify a model as to how the frequency 

rate is changing over time. Just as importantly, we have to be able to estimate the parameters of the 

model and specify the distribution of these parameters. 
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We now use data from the National Transportation Safety Board shown in table 3.7 below to illustrate 

how a trend can be estimated and how we can make inferences about the significance of such trend. 

We will look at a linear and an exponential decay models described, respectively, by equations 1 and 2 

below: 

,~, = f ~ ( y j )  = a + flyj ,  i = 1 ,2 , . . . , n  Equation 1 

2, =f2(y~)=ct '+f l 'e  z'r i=l ,2 , . . . ,n  w h e r e S ' - < 0 , a '  > 0 Equation 2 

Other than familiarity perhaps, there is not much rationale for choosing a linear model t2. We show it 

here only because its use is so pervasive in casualty actuarial practice. In fact, the NTSB data below 

will show the potential fallacy of using a linear trend model. The exponential decay model is used 

commonly in biology and the rationale for its use in biology is applicable in the context of accident 

frequencies. We can think of  the frequency as being made up of two components. The first one, 

represented by a " ,  is the fixed, intrinsic, or ultimate portion of the accident rate due to a type of error 

that cannot be eliminated over time whereas the second part f l ~ ' ~  is the variable portion of the 

accident rate due to the type of error that changes (decays) over time perhaps as a result of 

technological advaneas. 

^ 

We know that the "~l's do not have a constant variance ~3. Therefore, it would be inappropriate to 

estimate the parameters of equations 1 and 2 by using the ordinary least square function. Since the 

^ 
variance of each )'i is inversely proportional ~3 to the number of exposures d / ,  we instead minimize the 

n 
following weighted sum of square function: WSS = E d, (2i - f :  (Y , ) )2 ,  and we obtain the 

following weighted least square estimates for models 1 and 2: 

12 Even if a linear model is used, the parameters and their associated errors should not be estimated 
using simple linear regression. The assumptions of normality and of uniform variance that underlie 

the simple linear regression model do not hold for the "~i ~s. 

~3 Vat(2 ) = Var(X--~ ) = 1-~Var(x.) = 2.,d, = 2_L 
' a ,  d~ ' d 2 d~ 

394 



Model 1: & = 42.66and /J  = - . 0 2 1 2 .  

Model 2: t~' = 0 ,  ~ '  = .749 ,  ~ '  = - . 0 3 5  

Figure 3.5 shows the graph for the actual and least square estimates of models 1 and 2. Both models 

give similar results in the 1982 through 2000 period. However, the models diverge significantly 

beyond that period. Extrapolation from either model has to be done carefully and should not go out 

more than a couple of years. However, some situations may call on the modeler to extrapolate over a 

longer time horizon. For these situations, the exponential decay model may be more appropriate than 

the linear model. The indications from the linear model are counterintuitive in the long run as they 

indicate a negative frequency by the year 2018. For the NTSB data, the estimate of the ultimate 

frequency G '  is zero. The indications from the exponential decay model taper offmuch more slowly 

and never quite reach zero. Taken at face value, this would be encouraging news for the probability of 

major accidents in the future. 

In appendix B, we show the closed, form formula for the weighted least square estimates & and/~ for 

model 1 and we also show they are unbiased estimates of ~ and f l .  The weighted least square 

estimates ofmedel 2 are obtained through numerical methods and no closed form formulas are 

available. What is the distribution of these parameter estimates? Are there statistics that can help us 

make inferences about the significance of these estimates? What is the error associated with the 

forecast based on these estimates? We will have to research further for answers to these questions. 
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Table 3.7 - Major Accident by NTSB Classification for US Air Carriers Operating under CFR 121,4 

{Frequency 
Million of Major i per Million 

Year Depa~ures ~ccidents ~epa~ures 
1982 5.35 3 0.56 
1983 5.44 4 0.73 
1984 5.90 2 0.34 
1985 6.31 8 1.27 
1986 7.20 4 0.56 
1987 7.60 5 0.66 
1988 7.72 4 0.52 
1989 7.65 8 1.05 
1990 8.09 4 0.49 
1991 7.81 5 0.64 
1992 7.88 3 0.38 
1993 8.07 1 0.12 
1994 8.24 4 0.49 
1995 8.46 3 0.35 
199~ 8.23 6 0.73 

14Source: Departures www.ntsb.gov/aviation/Table5.htm; Major Accidents 
www.ntsb.gov/aviationfr able2.htm. 

The NTSB defines a major accident as one that meets any of the following three conditions: 
a Part 121 aircraft was destroyed, or 
there were multiple fatalities, or 
there was one fatality and a Part 121 aircraft was substantially damaged. 

The NTSB provides data through the 2001 year. However, starting in 1997, aircrafts with 10 or more 
seats used in scheduled passenger service began operating under 14 CFR 21. We did not want to 
analyze the data beyond 1996 as we were not sure whether the inclusion of this new category of 
aircrafts would distort the indicated trend. 
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Figure 3.4 - Accident per million departures 1982 - 1996 

Major Accident per million Departures 
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,3.4) Modeling the number of aircrafts involved in accidents 

Airline catastrophes may be the result of collisions involving several aircrafts. Most accidents involve 

the failure of a single aircraft. Accidents involving collision of multiple airplanes are relatively rare. 

However, these types of accidents have occurred and need to be reflected in the simulation model. It 

would be a mistake not to provide in the model for the possibility of  two, three, and perhaps more 

airplanes being involved in a single collision. We are not talking about collisions triggered by willful 

acts of sabotage, war, or terrorism. Accidents caused by willful acts will be discussed in section 6. 

Multiple aircrat~ collisions can put serious financial strains on the insurers and reinsurers who are 

responsible for indemnifying the airlines. In addition to the probability distribution of the number of 

accidents, the modeler needs to specify a conditional distribution for the number of  aircrafts involved 

once there has been an accident. The parameters of this distribution might need to be derived from a 

fair amount of judgment. A conditional probability distribution table for the number of aircraft 

involved in an accident is shown in table 3.8 below: 
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Table 3.8 - Conditional probability for the number of aircrafts involved in an accident 

Number of Aircrafts Probability 
1 .97 
2 .02 
3 .01 

4 or more .00 

If  an accident is the result of a collision of multiple aircrafts, one also needs to determine the airlines 

and aircrafts involved. The modeler essentially needs to build yet another conditional probability table 

laying out the probability of collision between different airlines and aircrafts. Airlines that use a lot of 

the same airports are more likely to be in a collision than those that use few common airports. Hence, 

intuitively, these probabilities should be proportional to the proximity of the operation of the airlines 

and to their relative exposures (say, number of departures). This may seem like a daunting task given 

the low probability of such events and especially given that the exact identity of the other airlines 

involved may not be of interest in many applications. However, such table can be greatly simplified by 

making some broad assumptions. For instance, looking at the probability of two-aircraft collisions for 

a given airline, one may simply endeavor to compute the conditional probability of collisions involving 

only aircrafts from that airline. The complement of that probability would be the probability of 

collisions involving an aircraft from the given airline with one from any other airline. 

4) Modeling the cost of catastrophes 

The financial costs of airline accidents can be staggering and wide-ranging, affecting individuals, small 

business entities, corporations, and indeed entire financial markets. The insured portion of these costs 

is in principle bounded by the parameters of the insurance contract. It is this portion only that we hope 

to forecast. Here we discuss how to estimate the costs associated with coverage for hull, passenger 

liability, third party liability, and products liability. However, this model could be used to forecast the 

costs of other types of coverage such as accident and health, workers compensation, and cargo, for 

instance, and virtually any financial product where payment is dependent on catastrophic airline 

accidents. 
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4.1) Hull Costs 

Once an accident has occurred, the hull costs are determined relatively quickly. The insured value of 

an airline's fleet is pre-determined by the insurance contract. The latter provides for a schedule of 

insured values for each aircraft in a fleet. The first four columns of table 4.1 below show a typical 

schedule of aircraft and insured values. This information often does not trickle down to reinsurers, 

retrocessionaires, or even to some of the smaller primary markets perhaps because it is not used in the 

rating process. Total fleet value, which is the aggregate of the insured values of individual aircrafts, is 

usually available but this information is mostly useless in the context of this type of  simulation model. 

In order to accurately forecast the hull cost, the modeler needs to have some idea of  the fleet and 

utilization profile ~5 of the airline involved as well as the pre-agreed insured values. It behooves the 

modeler to make sure this information is obtained. The fleet and utilization profile of  an airline is 

typically public information that can be obtained from the airline's website or from airline industry 

publications or regulatory agencies. However, insured values need to be obtained through insurance 

channels. As a substitute for actual insured values, one could estimate the hull cost using the price of a 

new similar aircraft (ballpark numbers are available from the manufacturers) and factor in a discount 

based on the aircraft age and configuration. This approach adds a layer of uncertainty in an area where 

there should be none. 

Once the fleet distribution and utilization profile for a given airline is known, the conditional 

probability of  a particular aircraft being involved in an accident can be determined. For instance, the 

conditional probabilities can simply be calculated as the ratio of each aircraft's projected number of 

departures to the total number of departures. One may want to factor in the age and model of aircraft in 

the determination of the conditional probabilities if  one believes that these impact the probability of 

accidents. However, we will work from the basic premise that, for a given airline, the conditional 

probability of accident for a given aircraft is proportional to its utilization. The fleet and distribution 

profile, the hull values for a hypothetical airline are shown in table 4.t below. The conditional 

probabilities are calculated as indicated above. 

t5 The utilization profile refers to the number of hours flown or the number of departures within a 
period of time for each aircraft within a fleet. 
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4.1 - Fleet, Utilization Profile, and Seating Capacity for a Hypothetical Airline 

Aircraft Number of 
Registration Seats excluding 

Make Number 
and Model Crew Members 
A-300-600 XXXXXX 298 
B-717 XXXXXX 106 
B-727 XXXXXX 149 

Total 

Insured 
Value 

118 
40 
60 

Projected Conditional 
Utilization Probability 
(# Departures) 
739 .74% 
1,219 1.22% 
2,147 2.15% 

100,000 100% 

4.2) Passenger Liability 

There are two important variables in determining the total cost of passenger liability in the event of an 

accident. The first is the number of passengers involved in an accident while the second is the award 

per passenger. 

4.2.1 ) Forecasting the number of passengers, survivors, and fatalities involved in an accident 

The number of passengers involved in an accident depends on the seating capacity of the aircraft model 

involved, and the percentage of capacity filled. The seating capacity of each aircraft in a fleet is 

available in the schedule of aircraft and insured values. If the seating capacity of a given aircraft is not 

available, one can use the average seating capacity for that specific aircraft model, which can be 

obtained from many different sources. The actual seating capacity for a given aircraft model may vary 

based on the specific configuration for that aircraft. The larger the business class and first class 

sections, the smaller the overall seating capacity. The other important factor in determining the number 

of passengers involved in an accident is the passenger load factor, which is available through various 

airline industry publications. The modeler - having determined the aircraft model and therefore the 

passenger capacity involved in an accident - may use either a fixed or a random passenger load factor 

to determine the number of passengers on board the aircraft. The modeler may create a simple 

distribution based on the published load factor and an upper bound of 100%. For instance, if the 

published load factor is 85%, one might use a uniform distribution with lower and upper bound of 70% 

and 100%, respectively. 
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One may also be interested in projecting the number of survivors/fatalities in a given accident. For 

that, one could look at the survivability statistics for the type of accidents one is investigating and 

derive a probability distribution for the percentage of survivorsdfatalities. That distribution will have a 

domain bounded by 0% and 100% and will likely be heavily weighted towards these two points. 

Survivability data can be obtained by reviewing fatality/survival ratios of individual accidents. In table 

7.3 below, we show survivability statistics based on data published by the National Transportation 

Safety Board. 

4.2.2) Cost per passenger 

The determination of  liability cost is more complicated and more involved than that of the number of 

passengers or injuries involved in an accident. I f  one ~ies to simulate the liability cost for each 

passenger, one has to know the jurisdiction in which compensation will be sought and information 

regarding the passenger including place of residence, age, marital status, current and projected net 

worth. Indeed, in the United States for instance, liability awards stemming from a given accident may 

vary significantly from one passenger to the next: This level of  passenger profile detail is not only 

difficult to obtain but might be unnecessary in most applications. This information will only be 

relevant if  the coverage depends on individual passenger payout such as a layer offering per passenger 

excess of loss protection, l fwe  focus rather on forecasting the average liability cost per passenger 

rather than the actual award per passenger, the overriding consideration is the jurisdiction and the 

applicable laws under which compensation is sought. Such laws are complex, numerous, and 

constantly evolving. Accidents involving international flights are especially challenging, as even the 

.jurisdiction in which compensation is sought is hard to determine. For instance, under what 

jurisdiction will compensation be sought in an accident occurring over Canadian land on a flight from 

New Delhi to New York with a stop in London? Passengers may have different recourses depending 

on their nationality, the place they purchased their ticket, their final destination on the ~'ip. The 

modeler has to make some simplifying assumption as to which jurisdiction will be involved in the 

event of an accident on an international flight. For instance, the modeler may decide that the country 

on the itinerary with the higher award potential is the country in which suit will be brought. This is 

especially important for airlines where the liability awards are much smaller in their country of  
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domicile than in some o f their other destinations. For these airlines, the liability potential on domestic 

flights will be significantly lower than the potential on international flights. For accidents involving 

US airlines wherever occurring, one may simply assume that all suits will be brought in an American 

court. The modeler needs to have an idea of a carrier's percentage of domestic versus international 

flights. For international flights, the modeler needs to know the destination profile by country or group 

of countries. In turn, this information will be used to simulate the itinerary of a flight involved in an 

accident. 

Does the modeler then need to know the distribution of the average liability award in every possible 

jurisdiction or country? This would be a daunting task even for the most industrious modeler. The 

modeler may instead look to group countries where the tort and compensation systems are similar. For 

instance, a group might be comprised of countries in the European Community, another of Mercosur 

countries 16. Also, instead of looking at the distribution of actual average award, the modeler may 

choose instead to look at the average award as a ratio to the median income or the income per capita in 

a country. Assuming that the modeler can come up with such groups, there remains the challenge of 

using the historical data to come up with the average award distribution. Since liability claims can take 

an inordinate amount of time to settle, an average award distribution will need to be built largely on 

case estimates, the accuracy of which won't be known for a long time. For those claims that have 

already been settled, inflation, changes in law, voluntary agreements, and statutes may render them less 

relevant for the purpose of projecting the cost of future claims. The upshot of all this is that an average 

liability award distribution will involve significant judgment on the part of both the modeler and others. 

Once groups of countries have been defined, the modeler may try to find a distribution that fits the 

actual data adjusted for inflation and for past and expected future changes. Similarly to the frequency 

portion of the model, should the modeler devise some statistical tests to help him decide whether the 

distribution of liability awards (as a percentage of, say, median income) for the various groups are 

indeed dissimilar? For instance, upon close analysis, it may turn out that the average award potential in 

the European Community is not dissimilar to that in the Mercosur countries. 
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4.3) Third Party Liability 

Third party liability costs are even more difficult to forecast. The range of scenarios for third party 

liability is obviously much wider than that for passenger liability. Also, relatively few commercial 

airline accidents result in injury or property damage to third parties. This is perhaps because the 

location of airports and the air mutes have tended to steer airplanes away from populated areas. 

However, these events have occurred and need to be considered in the simulation model. One 

approach might be to look at the passenger and third party liability together. So instead of looking at 

the distribution of  the average passenger liability per passenger as suggested in the preceding section, 

one would look at the average total liability per passenger. The tail of that distribution would be a lot 

more skewed than that of the average passenger liability award. Another approach is to estimate the 

number or percentage of accidents that will resua in third party damage and to estimate the cost of such 

liabilities separately. This approach is better at allowing the modeler to factor in extreme scenarios. 

For instance, the modeler might include a scenario where, as a result of a midair collision, two jumbo 

airplanes plow onto a crowded area destroying life and property. There, considerable judgment might 

be used to determine the likelihood of different scenarios. 

4.4) Products Liability 

Defendants in lawsuits stemming from aireraf~ accidents include not only the airlines but also aircraft 

and parts manufacturers as well as other parties involved in the operation of the airline. Also, the 

airlines themselves can try to recoup losses by suing other parties not necessarily named in a suit. For 

this reason, aircraft and parts manufacturers require products liability to shield them from such suits. 

To understand the products liability exposure in the context of this simulation model, information about 

manufacturers and suppliers of  engine, navigation equipment, electrical system and other components 

has to be collected for each insured aircraft. The identity of  the aircraft manufacturer itself should be 

obvious. In the event of  an accident, we would then have a list of potential defendants. We have 

I~ Mercosur countries, as of the time of this writing, are made up of Agrentina, Brazil, Uruguay, and 
Paraguay. 
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already shown how the total liability from a given accident can be estimated. We then need to allocate 

that liability between airline operators and the product manufacturers. The actual allocation of liability 

will depend very much on what is determined to be the cause of accident, and, furthermore, may vary 

from one jurisdiction to the next. This is a very difficult area in need of much research. Considerable 

judgment or simplification might be used to come up with an allocation. In order to figure out the 

product liability exposure of a given manufacturer, we would then accumulate its exposure over the 

entire universe of airline operators. 

5) Validation 

Before using any model to forecast, the modeler needs to make sure that the model's assumptions are 

reasonable. The particular model we have presented makes many assumptions, one nested inside 

another. To develop any sense of how well the model will forecast the future, one can look at how well 

the model would have predicted past experience. Let's say that data from 1980 through 2000 is 

available. The modeler may endeavor to see how well the simulation model would have projected 

1991 based on data through 1990, 1992 based on data through 1991, and so on, thus obtaining a 

comparison with actual data for ten years. The validation should be done in stages, starting with a look 

at the number of accidents, the number of passengers involved in accidents, the number of fatalities and 

injuries, and the insurance costs in that order. Doing the validation in stages allows one to identify 

where in the simulation process a bias may be occurring and to make the necessary adjustments. The 

results of the simulation will be a probability distribution for the projected variables similar to the one 

shown in table 7.5 of section 7 below. Focusing on the number of fatalities for instance, one would 

compare the actual number of fatalities in 1991, 1992 and subsequent years with the distribution 

predicted for each of these years by the simulation model. If, on one hand, the actual number of 

fatalities for the ten-year sample (1991 through 2000) looks like a random draw from each of the 

predicted distribution, this would tend to validate the simulation model. If, on the other hand, the 

actual number of fatalities for the ten-year sample tends to fall systematically either to the right of, say, 

the 95 th percentile or to the let~ of, say, the 5 th percentile of the predicted distributions, this would be a 

strong indication that the model's projections are biased. 
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6) Terrorism 

The audacity and severity of the events of September 11 ~ caught most insurance professionals off  

guard. Reportcdly, aviation underwriters had been "giving away" for free the coverage for terrorist 

acts. In light of the devastating potential of terrorist acts, actuaries and underwriters have since been 

scrambling to put a price on terrorism coverage. While some pundits will offer nothing more than their 

eloquent prose enlightening us with revelations such as "...the risk [of terrorism] is real", underwriters 

and actuaries are left with the unenviable task of putting a price on the risk of terrorism. Perhaps, in no 

other area will the actuary need to use all available sources of  information and rely on the expertise of 

others in order to try to quantify the risk of  terrorism. Many of the assumptions we have made in 

relation to accidental airline catastrophes certainly don't apply to crashes occurring as a result of willful 

acts. We know that terrorist acts are neither random nor are they uncorrelated. This contradicts the 

assumptions implicit in our use of the Poissun distribution. We also know that history is perhaps a 

poor guide for figuring out future acts. The risk of terrorism is highly fluid as our geopolitical 

landscape changes constantly, and as airlines and law enforcement authorities learn how to better 

protect the public from such acts. In our preceding discussion, we rely extensively on historical data to 

derive expected frequencies. We could not do the same with terrorism although a look at the history 

can be instructive. Table 6.2 shows the number of hijackings perpetrated against US and foreign 

airlines, respectively, from 1970 through 2000�9 The sharp drop in the number of hijackings against US 

airlines, with none recorded between 1992 and 2000, testifies perhaps to the success US airlines and 

authorities have had in deterring and preventing such acts. The events of September 11 th, 2001 serve as 

a staunch reminder that the probability of  such acts is never quite zero. Although, we have focused 

here on hijackings, they are by no means the only terrorist threat facing airlines. We should also keep 

in mind that not all bijackings have resulted in death, injury, or destruction of property as people have 

sought to hijack airplanes for a variety of  reasons. Hijackings need not be the result of some political 

conflicts. For instance, mentally deranged individuals with no apparent political motives have hijacked 

airplanes. 

Although individual airlines may have their own security procedures, the modeler can work from the 

assumption that the risk of  terrorist acts against an airline depends primarily on the level of security in 
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the airports and counties where the airline operates. Actuaries could work with security experts in 

developing a grouping system to rate airports' and countries' potential for terrorist acts. The level of 

conflict in a country and its surrounding regions as well as a country's will and ability to effectively 

fight terrorism need to be factored in such a grouping. Actuaries could then try to formulate a 

probability of an airline being hit by a terrorist for each category in a grouping. For instance, table 6.1 

below shows a hypothetical two-dimensional box which groups airports based on their level of security 

and the existence of a terrorist threat around them. The probability of an airline's being hit by a 

terrorist act would be calculated as the weighted average of  the probabilities of each airport where it 

has exposure. 

Table 6.1 - Probability (odds in 1 million) of a Terrorist Act in a 12 Month Period 

ity 

rot Threat",,,, 
Constant 
Potential 
Some 
None 

ImpeneWable Strict Adequate Lax Non-existent 

10 100 250 1,000 10,000 
4 50 200 800 9,500 
2 20 150 700 8,000 
1 5 10 500 6,000 

As we mentioned before, these probabilities ere dynamic and should change as conflicts evolve or new 

ones emerge, as new information comes to light, and as new acts of terrorism ere committed or 

attempted. This implies that the price for such coverage will. at least in theory, be dynamic, changing 

as the risk of terrorist acts is continuously reassessed. 
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Table6.2-H~ackings 

Year U.S. Foreign Year U.S. Foreign Year U.S. Foreign 
1970 25 4~ 1981 24 1992 C 12 
1971 25 3( 1982 23 1993 s 31 
1972 26 3( 1983 1~ 15 1994 C 23 
1973 2 2( 1984 21 1995 C 9 
1974 3 1; 1985 22 1996 C 14 
1975 6 15 1986 5 1997 C 10 
1976 2 1= 1987 5 1998 C 9 
1977 5 2( 1988 1C 1999 C 11 
1978 7 1( 1989 14 2000 C 20 
1979 11 15 1990 30 
1980 21 1~ 1991 23 

S ~ :  1970-1998 US. Department of T~apottadon, Federal Aviation Adn~nislrati~, Criminal Acts Against Civil Aviation - 1998, Chm't~ and Graph; 

1999-2tm0 http://~.f~gov/crimacts/doc/crim2000doc AppmdlcesA&B 

7) A simplified application of a simulation model 

A simulation model has many applications for assessing the costs of insurance coverages and other 

financial instruments affected by airline catastrophes. Here, we present an example where we look at 

the costs of a cover that pays for the full insured value of a destroyed or damaged aireraR as well as 

$50,000 per fatality and $100,000 per injured passenger for a hypothetical group of airlines for the 

2003 year. This coverage excludes acts of war and terrorism. The information and assumptions are set 

in the tables 7.1 through 7.4. The results of the simulation are presented in table 7.5. 
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Table 7.1 - Fleet, Utilization Profile, and Seating Capacity 

S, ircraft Type Count 

Mrbus lndustrie A300-600 79 298 

Airbus Industrie A300B2/B4 19 298 

Mrbus Industrie A310 44 249 

Mrbus Industrie A319 137 125 

Mrbus lndustrie A320 227 172 

Mrbus Industrie A380 6 60(3 

~.vro RJ Avroliner 36 7(3 

BAE SYSTEMS (HS) 146 18 94 

Boeing (McDonnell-Douglas) DC- 10 239 264 

Boeing (McDonnell-Douglas) DC-8 194 146 

Boeing (McDonnell-Douglas) DC-9 430 115 

Boeing (McDonnell-Douglas) MD-11 66 325 

Boeing (McDonnell-Douglas) MD-80 670 155 

Boeing (McDonnell-Douglas) MD-90 21 163 

Boeing 717 31 106 

Boeing 727 729 167 

Boeing 737 (CFMI) 779 149 

Boeing 737 (JTSD) 248 149 

Boeing 737 (NG) 303 149 

Boeing 747 Classic 138 472 

Boeing 747-400 73 544 

Boeing 757 589 214 

Boeing 767 328 251 

Boeing 777 98 373 

Bombardier (Canadair) CILI Regional Jet 273 5(3 

Embraer ERJ-135 53 36 

Embraer ERJ- 145 169 5C 

Fairehild/Dornier 328JET 22 3s 

Fokker 100 123 113 

Fokker F.28 22 85 

Lockheed L-1011 TriStar 81 28C 

total 6,245 1,108,002 

Insured # of  
Seats V a l u e ( M M )  Departures Prob 

11 ~ 58,39( 0.69~ 

11~ 6,16-' 0.07~ 

92 22,25" 0.26~ 

52 148 ,73~ 1.770A 

55 287,30] 3.42~ 

25( 4,72 c, 0.06% 

26 71,17] 0.85~ 

4C 47,42( 0.56~ 

IIC 123 ,74~ 1.47~ 

6C 92,46. c 1.10~ 

5s 684,70: 8.15~ 

15s 41,92" 0.50~ 

6C 1,056,05:12.57~ 

6C 34,38~ 0.41~ 

4s 37,77 r 0.45% 

6C 715,32( 8.51~ 

6C 1,672,50. ~ 19.90~ 

6C 518,65~ 6.17~ 

6C 372,02( 4.43~ 

215 66,09] 0.79~ 

211 37,83] 0.45~ 

85 728,72l 8.67~ 

11s 274,90] 3.27~ 

19( 60,62: 0.72~ 

25 543,57~ 6.47~ 

14 64,28] 0.76% 

2C 274,35.' 3.26~ 

13 20,83~ 0.25~ 

5s 234,759 2.79% 

4s 53,688 0.64~ 

l l (  48,412 0.58~ 

450,332 8,403,831 

Table 7.2 - Projected Exposures, Frequencies, and Passenger Loads 

Year 2003 

Projected Departures 8,918,213 

Projected Average Passenger Load 0.65 

Expected Frequency per million departures 0.45 
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Distribution of survival ratio based on B~a distribution fitted to data in table 7.3 below: 

Table 7,3 - Empirical Survival percentages from a sample of 27 accidents 

% of  
Passengers Survivors Fatalities Survivors 

31 0 31 0.0~ 

25 0 2, = O.O~ 
132 0 13" O.O~ 
68 0 6~ 0.0% 

110 0 11( 0.0~ 
230 0 23( 0.0% 
155 1 15~ O.6~ 
71 1 7( 1.4~ 

163 29 1341 17.8% 
57 20 3; 35.1~ 
51 24 2~ 47.1~ 

296 185 111 62.5~ 
82 54 2~ 65.9~ 
89 67 2,; 75.3~ 
44 36 81.8~ 

108 94 1,~ 87.0~ 
145 134 11 92.4~ 
33 32 97.0~ 

149 147 98.7% 
142 142 IO0.O~ 
39 39 100.0~ 
23 23 100.0~ 
40 40 100.0% 

102 102 100.0~ 
292 292 100.0~ 
62 62 01 100.0~ 

2,73g I 1,s241 1,2.1 ss.6~ 

S i n :  Nalicctal T m m ' i ~  Slf~y ~ "$mvivlbility of A~identl Involving Part 121 US. Air C~r Operations, 1983 Through 2000" Safety gepo~ 

NTSB/$R4)I/0l, table 4, p. 14. http:l/www.ntsbjiov/Publicm/A_Sm.htm 

Table 7.4 - Conditional Probability for the Number of Aircrafts Involved in an Accident 

Number of Aircrafts Probability 
1 .970 
2 .029 
3 .001 
4 or more .000 
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Additional Assumptions 

�9 Destroyed aircraft is immediately replaced with similar aircraft. 

�9 Projected departures, passenger loads and frequencies are fixed. More realistically, these 

should be allowed to vary. 

�9 Collision occurs between aircrafts within group. 

�9 Selections of parameters only loosely based on real data 

/arlables 
3est Case 

Nrst Case 

Expected 

Std Dev 

5% 

10% 
15% 

2O% 
25% 
3O% 

35% 
4O% 
45% 

5O% 
55% 

50% 
65% 

7O% 
75% 

B0% 
B5% 

9O% 
95% 

Table 7.5 - Simulation Results from 5000 iterations 

Total 
~ccident Aircraft Passger Injured Death lull Passger Cost 
:ount Count Count Count ~-ount .3ost (MM) Cost (MM) (MM) 

C 0 0 0 { C C 0 
13 14 1,790 1,015 1,01,~ 1,131 1,376 2,507 

3.59 3.69 375 197 179 233 286 519 
1.91 1.99 230 154 144 139 182 315 

1 58 0 50 42 95 

1 109 18 8 60 76 149 
,~ 2 144 43 30 95 105 204 

2 176 65 51 115 128 248 
,~ ,~ 204 81 70 120 150 283 
,~ 3 231 97 86 145 172 322 

3 259 114 103 170 194 363 
3 287 131 121 180 214 398 
3 317 148 135 195i 236 434 

4 347 167 150 216 258 474 
4 377 184 168 230 282 518 

4 407 209 190 252 305 559 
4 4 44C 230 212 270 333 604 
4 474 254 233 290 364 652 

5 50s 281 258 315 396 714 
5 554 314 287 345 430 772 
6 614 355 325 375 473 845 

6 681 407 371 415 531 932 

7 7 79~ 488 447 485 627 1,08~ 

The distribution presented in table 7.5 above shows the variability in the loss process but does not 

incorporate parameter error. We have assumed for instance that the claim process follows a Poisson 

distribution with an expected frequency per million departures of .45. In reality, we will never know 

the true expected frequency of such distribution or the exact form of the distribution for that matter. At 

best, we will have an estimate of the frequency with an error margin. The conditional probability 

distribution for the number of aircrafts involved in an accident, the distribution of the passenger load 
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factors and of the survival ratios are all subject to parameter error. One way to incorporate the 

parameter uncertainty into the results would be to allow the parameters to vary according to some 

distribution. A different but simpler approach might be to look at different combinations of  parameter 

estimates and to run the simulation for each combination. 

Applications for this type of simulation model extend much beyond the type of  examples we have just 

presented. We have only scratched the surface of the possibilities that a simulation approach offers. 

The CAS's literature is replete with articles on how simulation models could be used to structure and 

price reinsurance products. Please see [1], [2], and [4] for a sample of such articles. Obviously the 

more detailed information available to the modeler, the more accurate the projections will be and the 

more specific the applications will be for this type of model. Modelers have to weigh the trouble of 

gathering the additional data against the additional accuracy and flexibility that would be gained. 

8) Final Thoughts 

Compared to a traditional experience rating approach, a simulation approach promises much more in 

terms of accuracy and range of  applications. For instance, the pricing of reinsurance contracts that 

feature loss triggers, aggregate limits and deductibles, contingent profit will be more readily handled 

through simulation than through experience rating. The body of available actual experience would 

often not suffice to test the multitude of scenarios that can present themselves under such contracts. 

For the cover we introduced in the preceding section, assume we were interested in pricing an 

aggregate layer providing 1.0B in limit in excess o fa  1.0B retention. According to the aggregate loss 

distribution in table 7.5 above, there is about a 5% chance that actual aggregate losses would exceed 

the 1.0B retention in any one year. Looking at the actual experience, over a five to ten year period, 

may not reveal any losses in the layer. Even when there would be losses in the layer, they may not 

have much predictive value. 

Many of the benefits of  using a stochastic simulation approach in the evaluation of property catastrophe 

extend to catastrophic airline exposures as well. Rade T. Musulin, in an article titled "Issues in the 

Regulatory Acceptance of Computer Modeling for Property Insurance Ratemaking ~', [3, p 354] lists the 
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comprehensibility of prices, rational behavior, fair pricing, reduced information risk, and stable pricing 

as benefits of the improved estimates provided by a simulation model in evaluating property 

catastrophe exposures. It should be readily apparent how the use of a simulation approach in 

evaluating airline catastrophe would enhance the comprehensibility of  prices, reduce information risk, 

and promote stable pricing. 

Ultimately, whether simulation models gain acceptance in the commercial aviation realm will depend 

on whether the perceived benefits outweigh the additional effort required in implementing such models. 

In a sense, the widespread use and acceptance of property catastrophe modeling should have already 

paved the way for the use of  simulation models not only in commercial aviation but also in other lines 

such as surety, credit, and workers compensation. These days, insurers and reinsurers have the means 

necessary to keep large amount of information about their property exposures at a zip code, and 

sometimes, finer level. More importantly, this level of detailed information is accepted as a normal 

course of doing business in the property catastrophe lines. The task of gathering information on 

individual aircrafts is relatively small due to the limited number of commercial airlines servicing the 

world and also the limited number of aireral% they operate. For instance, the current fleet of US- 

domiciled airlines consists of less than 6,500 aircrafts of roughly 30 different models. Furthermore, 

two companies, Boeing and Airbus, manufacture 85% of these aircrafts. Once one goes through the 

trouble of tallying that information, subsequent updates should be relatively simple as airlines do not 

change their fleet drastically overnight. 

We have left open a number of issues including inferences about the parameters of the exponential 

decay trend model. We also think that a substantial amount of work has to be done to make realistic 

projections for third party liability exposures and in the allocation of liability between airline operators 

and manufacturers. Finally, we have barely broached the issue of terrorism. However, we are 

confident that there will be a wealth of papers addressing these issues in a much more comprehensive 

fashion, 
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Appendix A 

Risk Classification Procedure 

Following the procedure introduced in "Risk Classification - A Set Theory Approach"  and at the 

presentation o f  the paper at the winter 2002 meeting, we take the following steps: 

^ 

i. We calculate the R o values for all pairs o f  adjacent cellst as shown in exhibit 1. In figure A. 1 

below, we show the J~0 values between the cell Jurisdiction 1/Large (J1/L) and the ceils that are 

adjacent to it. 

^ 

Figure A.1 - R0between large airlines in jurisdiction 1 (J1/L) and those in adjacent ceils 

No Data 

(1.55)~ J2/L 

I (0.12) 

1.40 Jll M J2/M 

4.04 

-3.20 

4 : J4/L [ JS/L 

J31M J41M 

r - - - - - -  

i 
i JS/M 

r 

Those adjacent cells for which the J~o values fall within the interval (-1.65,1.65) are said to be 

compatible. All other pairs o f  cells are said to be incompatible. Exhibit 2 shows the compatibility 

relationship for all pair  of  cells. Below, in figure A.2, we answer the question of  compatibility for 

large airlines in jurisdiction 1. 

t Two ceils are said to be adjacent if  they have at least one common risk characteristic [6, p.89]. 
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Figure A.2 - Are cells compatible with J1/L (before validation)? 

No 

, No Data I 

r L ~ Y e s ~  J3/L 

Yi' 
JI lM 

^ 

The values of R 0 shown in exhibit 2 and in figure A.2 may have been the result of  a chance 

occurrence or some oddity in the data and may not reflect the true relationship between cells. 

^ ^ 
Rather than relying on just one drawing of R0,  we repeat the calculation of the R o values for 1,000 

randomly selected samples from each cell in order to validate the compatibility relationships. A 

sample consists of a random draw of between 50% and 85% of the exposures (or airlines) within a 

cell. If the number of times J~0 falls in the interval (-1.65, 1.65) for a given pair of cells is large 

(greater or equal to 875), then, compatibility is validated for that pair. Exhibits 3 and 4 show the 

^ 
number of times R o falls in the interval for all pairs of adjacent cells and whether these cells are 

deemed compatible, respectively. This information is shown for the cell Jurisdiction 1/Large in 

figures A.3 and A.4 below. 
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Figure A.3 - Number of times out of 1,000 trials k o falls in (-1.65, 1.65) interval 

L . . . .  1 
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Figure A.4 - Are cells compatible with J1/L (after validation)? 
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iii. Each cell def'mes a class made up of these cells that are compatible with it, including the cell itself. 

In tables A.I and A.2, respectively, we show the classes defined by each cell and the credibility 

weights assigned to each cell in a class. The class def'med by large airlines in jurisdiction 1 

consists of the following three cells: {Jurisdiction 1/Large, Jurisdiction I/Medium, and 

Jurisdiction l/Small} 

iv. The revised MLE estimates for each cell is the weighted average of the MLE estimates of the cells 

in its class where the credibility weights are the exposures in each cell relative to the total 

exposures for the class. 

Table A.1 - Calculation of Revised MLE Estimates for Jurisdiction 1/Large 

Jurisdiction 1 Jurisdiction 1 Jurisdiction 1 l"otal/Weighte�9 
Large Medium Small Average 

Initial MLE 0.527 .507 1.443 .55~1 

Departure., 56.93 33.50 3.46 214.74 

Weights 0.61 0.36 0.04 1 .OC 

Large 

Mediurr 

Small 

Table A.2 - Revised MLE Estimates 

Jurisdiction 1 Jurisdiction 2 Jurisdiction 3 Jurisdiction 4 Jurisdiction ~= 

0.554 0.356 N/A 2.88~ 2.01 c 

0.554 1.887 4.305 2.80,~ 2.837 

0.554 2.21! 17.852 9.23; 2.85C 
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Appendix B 

Derivation of  parameter estimates for a linear trend Model 

Let X i be a Poisson distributed random variable for year Yi, i = 1,2,..., n ,  with mean 

2ida, where d :epresen ts  the number of  exposures associated with yearyj .  

We posit the following linear relationship between the ).~'s : 

2j = a  +]~Vl, i = 1,2,...,n 

Let A~ = X,.  be the random variable representing the maximum likelihood estimate of  
d i 

e (A, )  = E ( ~ , '  ) = 4, = a + ~ ,  

Also, Var(Ai)  = -~- 
di 

^ X i 
We denote byx~and2  i = -7" the realizations of  the random variables X t and A i , 

ai 

respectively. 

We define the weighted least square error function: 
n n 

WLSe = ~ a,(~, - 4 , )  2 = ~  d,(~, - 6 -  py,)~ 
i - I  i f f i l  

Let tl a n d / ~  represent the values o f  a and fl that minimize the weighted least square 

function. ~ and ]~ are obtained as follows: 
n 

dWLSE = -2~-~di(,~ - a -  fly,) = 0 (1) 
d a  i=t 

d W L S E  
= - 2 ~ . J , y i ( A  i - a  - flYi) = 0 (2) 

d •  ill 

Solving these two equations simultaneously yields: 
n 

di (wY - Y, )'~, 
= ~" and &=~, i - I~wy,  where 

~'~ d i [ , y2  - w(y2)] 
ill 
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n n 

E di"~i ~ ' ~ d i y  , Z d ,  y ?  " ^ 

, _ J.t and  w 2 = ~.t ,-~.._3...~ .,y2 =(wy)2, w ( y 2 ) _  ,, , n 

y d, 
i=l 

w y =  n 

E,t, E,t, 
l-I i=| 

^ n ^ 
L e t  to i = d i ( w Y  - Y i )  w e  r e w r i t e  f l  = ~"o912  i 

" 

n 

/~ is the realization o f ~ e  random variable B = ~-" colA i 
i-I 

n n n n n 

E ( B )  = ~-]ahE(A;) = ~-'~ co,2, = ~'~co,E(a + fly,) = E(a )~ .co ,  + E ( f l ) ~ j a , y ,  = E(B) = B 

Therefore/1 is an unbiased estimate of f t .  
n n ,~ 

Also,  V a r ( B )  = ~ , o J ~ V a r ( A i )  ~,~co2 i = / ~  l - -  

1-1 i=l di 
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Exhibit 1 

Calculation of -~o between adjacent cells 

mm~~l l l l l la l l l l l l l i l l l t l / ta l l l l l l lJ[ l lE[ | l ]~r~mm m 
I r ~  r n ~  ~ r~L~ r~m l r~ i~ ,~ .  I,nl= =fin11= m/Hi#n= rat~lmT/x ~ m 
Irrr~ I w n  ~ l m  w w  E B ]  ~ =u#l= =11n1= , , ~  �9 =/////= = l n # = l ~ x l ~ = l ~ ] l ~  

IIr'/~ 17#~  LeJm Ir~7J i r / ~ j  F I ' ~  _ _ [~,]~,:,.. w ~ r ,  . .  q ~HH,- r/111r~ ir##/j i ,##/j  1~7~7J 
~'r1117~7J 177~ i m J  i r / m  L~r l  =~,~,. _ - -  = = . * p  r .~ , .~# . , - I rm~l~Sl~ l r#t~ l rm2 

m ~ l  w/#J  m J W ~ l g ~ l ~ l = ~ ; = l . = : . H . ~ - -  - ~ , , . - I r m m r / m l ~ = l ~ ]  

Exhibit 2 

Are cells compatible (before validation)? 

Jl lL J2/L J4/L J5/L JIlM J2/M J3/M J4/M J51M JI/S J2/S J3/S J41S J5/S 
J1/L Yes Yes No No Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  
J2/L Yes Yes No No / / / / / /  No / / / / / /  / / / / / /  / / / / / /  / / / / / /  No / / / / / /  / / / / / /  / / / / / /  
J4/L No No Yes Yes / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  No / / / / / /  
JS/L No No Yes Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes 
JIlM Yes / / / / / /  / / / / / /  / / / / / /  Yes No No No No Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  
J2/M / / / / / /  No / / / / / /  / / / / / /  No Yes No No No / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  
J3/M / / / / / /  / / / / / /  / / / / / /  / / / / / /  No No Yes No No / / / / / /  / / / / / /  No / / / / / /  / / / / / /  
iJ4/M / / / / / /  / / / / / /  Yes / / / / / /  No No No Yes Yes / / / / / /  / / / / / /  / / / / / /  No / / / / / /  
J51M / / / / / /  / / / / / /  / / / / / /  Yes No No No Yes lYes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes 

i 

JIlS Yes / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes Yes No No No 
J21S////// No / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  Yes Yes No No Yes 
J31S / / / / / /  / / / I / /  I / I / / /  / / / / / /  / / / / / /  / / / / / /  No / / / / / /  / / / / / /  No No Yes No No 
J4/S / / / / / /  / / / / / /  No / / / / / /  / / / / / /  / / / / / /  / / / / / /  No / / / / / /  No No No Yes No 
JS/S I I I I I I  I I I I I I  III/11 Yes I I I I I I  I I I I I I  I I I I I I  I I I I I I  Yes No Yes No No Yes 
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Jl lL 
Jl lL 
J2/L 451 
J4/L 18 
Jw 39 
JIlM 991 
J2/M /11/11 
J3/M l u l l /  
J4/M / / / / / /  
JS/M / / / / / /  
JIlS 904 
J2/S / / / / / /  
J3/S / / / / / /  
J4/S / / / / / /  
J5/S / / / / / /  

Jl lL 
JI/L Yes 
J2JL No 
J41L No 
JS/L No 
JIlM Yes 
J2/M I I / / / I  
J3/M I I I I I I  
J4/M I I I I I I  
J5/M I I I I I I  
JIlS Yes 
J21S I I I I I I  
J31S U/ l l l  
J4/S I I I I I I  
J5/S I I I I I I  

Exhibit 3 

Number of times Ro falls in (-1.65,1.65) interval 

J2/L J4/L J51L JIlM J21M J31M J4/M Jw 
451 18 39 991 I I I I I I  I I I I I I  I I I I I I  I I I I I I  

0 18 / / / / / /  38 / / / / / /  / / / / / /  / / / / / /  
0 824 / / / / I /  I / / / / /  / / / / / /  J 966 / / i l l /  
18 824 / / / / / /  / / / / / I  / / / I / /  l / i l l /  791 

/ I / / / I  / I / / / /  / / / / / /  189 1 4 10 
38 1/1111 I I I I I I  189 170 642 760 

I / I / / /  /111/I / I / / I /  1 170 r 583 449 
I I I I I I  966 I I I I I I  4 642 583 904 
I I I I I I  I I I I I I  791 10 760 449 904 
I I I I I I  I I I I I I  I I I I I I  905 ' I I I I I I  I I I I I I  U/ l l l  I I I I I I  
393 I I I I I I  I I I I I I  I I I I I I  999 I I I I I I  I I I I I I  I I I I I I  
/H i l l  I / f i l l  I / /HI I I I I I I  I I I I I I  10 I I I I I I  i / I / l l l  
I I I I I I  129 I I I I I I  I I I I I I  I I I I I I  I I I I I I  75 I I I I I I  
I I I I I I  I I I I I I  861 I I I I I I  I I I I I I  I I I I I I  I I I I I I  932 

JI/S J2/S J3/S J4/S JSIS 
9 0 4  I I I I I I  I I I I I I  I I I I I I  I I I I I I  
/ / / / / /  393 / / / / / /  / / / / / /  / / / / / /  
/ / / / / /  / / / / / /  / / / / / /  129 / / / / / /  
/ / / / / /  / / / / / /  / / / / / /  / / / / / /  861 
905 / / I / / /  /I/111 I//111 II/111 
/ / / / / /  999 / / I / / /  / / / / / /  I / / / / /  
I I I I I I  111111 10 I I I I I I  I I I I I1 
I I I I I I  I I I I I I  I I I I I I  75 I I I I I I  
I I I I I I  I I I I I I  I I I I I I  I I I I I I  932 

809 0 0 413 
809 1 127 976 
0 1 315 20 
0 127 315 455 

413 976 20 455 

Exhibit 4 

Are cells compatible (after validation)? 
Cut offpoint 875 

~ i E ~ i ~ l ' ~ i l l l l l i i l l l l l i i l l l l l i l l l l l l i W ~ l l l l l l a | l l l l l J l l l l l l J ~  
~I~P'JlI~PIIIIIIIAI~+t'~II/IIIIIIIIIIIIIIIIIIIIIII//IIPP'BIIIIIIIII/IIIII~ 
~~wm/xwm/xm'~lWm/Bml/,wmiJw////n+m= m 
~j~j~j~)~j~~p1~r~r~j~r~m~ 

~w////mwm/mm~rnz,vr~:~m ,~ rnzm~razm~razw////n'~lW////H/////J~ 
~wm/u//mmm~ram~raa,=.~'~m:~m~raaw////jwm/im~rnz|lm/j ~ 
jli~lrmll..+m.+~.-'em.=',.m,,,,,,,,m,,,..+m.lE 

~ m ~ l l l l l / J Z w / / / / / i l l l / l l l l / m / i z v + ~ l - , + r n m + r n z m + r n a ~  
~ l l l l l l l l l l l l l | l l l l l l i l ' ~ l l l l l l l l l l l l l l l l l l l l l l + ~ h ' ~ i + ~ l + ~  
~ l l l l l l l l l l l l l l l l l l l l l l l l l l / i l + ~ l l l l l l l l l l l l l l l + ~ i + ~ h ' ~ l + ~  
~L~mziwm/~w//mawm//xm~razw///i/xa=,mzm~mzi:mzz.~ ~ 
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Exhibit 5 

Classes defined by each cell 

!Cells Classes 
JIIL (JI/L, JI/M, J1/S} 
J2JL {J2/L} 
J4/L {J4/L, J4/M} 
J51L {J5/L} 
JI/M {J1/M, J1/L, J1/S} 
J2/M {J2/M, J2S} 
J31M {J3/M} 
J41M {J4/M, J4/L, J5M} 
J51M {J5/M, J4/M, J5/S} 
JIIS {JI/S, J1/L, J1/M} 
J2/S {J2/S, J2/M, J5/S} 
J315 {J3/S} 
J4/S {J41S} 
J51S {J5/S, J2/S, J5/M} 

Exhibit 6 

Credibility weights 

Cells Classes 
J1/L {JI/L .606, JI/M.357, Jl/S.037 
J2/L {J2/L, 1.00} 
J41L {J4/L .278, J4/M .722} 
JSIL {J5/L, 1.000} 
JIIM {JI/M .357, JI/L .606, JI/S .037} 
!J2/M {J2/M .803, J2S .197} 
J31M (J3/M, 1.000} 
J41M {J4/M .381, J4/L .147, J5 i  .472} 
J51M {J5/M .517, J4/M .417, J5/S .065} 
Jl/S {JI/S .037, J1/L .606, J1/M.357} 
.J2/S {J2/S .168, J2/M .683, J5/S .150} 
J31S {J3/S, 1.000} 
J4/$ {J4/S, 1.000} 
J5/S {J5/S .112, J2/S .112, J5/M .789} 
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