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Introduction 

Manual rating of specific risks begin with a base rate, which is then modified by 

appropriate relativity factors depending on characteristics of each risk. Classical methods 

of deriving indicated relativities, are described by McClenahan (1996) and Finger 

(1996). A number of different modeling procedures are described in Brown's (1988) 

"minimum bias" paper and Venter's (1990) review of Brown's paper. These methods 

generally rely on the "multiplicative" or "additive" assumptions, which may not be 

reasonable for all types of risk. In this paper an alternative method of calculating 

indicated relativities is described, and demonstrated using a commercial Business 

Owners' Product (BOP) data set. Accident year 1997 to 2000 data is used to describe the 

method. The results are then applied to claims with accident year 2001. The derived 2001 

relativities are compared with observed relativities, thereby demonstrating the extent of 

suitability of this method. It should be stressed that the intent here is entirely 

demonstration of a procedure. For actual practical implementation, modification would 

be required. 

First a few words about the ten-ninology and the data set. Relativities are based on 

grouping of risks with similar risk characteristics. This is essentially a classification 

problem. The purpose of any classification procedure is partitioning of objects - in our 

case risks - into demonstrably more homogeneous groups. For the BOP data we seek 

groups of risks with significantly differing claim frequencies, severities, pure premiums 

or loss ratios. Typically partitioning is based on a number of risk factors, which for BOP 

might be Coverage, Risk State, ISO territory, ISO coverage code, Property versus 

Liability, etc. 

Distinctions must be made between these rating factors, which are used to group risks 

together and variables such as frequency, severity, pure premium or loss ratio, which 
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must be estimated partially based on these risk factors. The former are independent or 

predictor variables while the latter are dependent variables. Both of these variables may 

be assumed to be either categorical or vary continuously in a given interval. The statistics 

used as the basis of classification depends on whether the dependent and/or the 

independent variables are categorical or interval scale. For risk classification the 

independent variables are typically categorical. For example the BOP data includes losses 

for three different coverages, in 51 different risk states, and with 178 different ISO 

territory codes, 6 different ISO construction codes, etc. It is customary to say that the 

classification variable - risk state - has 51 different levels. Similarly, there axe six levels 

of ISO construction code, etc. 

The BOP data set under consideration includes 27,854 claims with accident years 1997 

through 2000, and 9011 claims with accident year 2001. These are broken down by: 

Number of Levels 

Risk State 51 

Company 4 

ISO protection code 1014 

ISO territory code 178 

ISO construction code 6 

Property/Liability indicator 2 

Building/Content/Other indicator 3 

Coverage code 3 

ISO subline 2 

ISO coverage code 4, 

as well as a few other variables. 

The data includes paid and incurred loss and expense (combined), basic limit (300k) loss 

and expense, and excess as well as cat losses. 

255 



The customary and classical method of  splitting data for the purposes of  deriving 

relativities is to consider all possible combinations of  levels of  permissible classification 

factors. For auto coverage, for example, in some states a 2x2 table of  gender by 

rural/urban may be considered. Or in this case for any risk state, company and territory 

we may have a typical 2x3 table of  property versus liability by building versus content 

versus other. The biggest drawback of  such splits is that a specific rating factor may have 

a large impact on one level o f  another rating factor, but no impact at all on other levels. 

Or if  it does, the nature o f  the impact may be quite different. For example ISO 

construction code may influence losses in one way in one ISO territory and in no way or 

a completely different way in another territory. The methodology described here is 

intended to avoid this drawback without the necessity of  introducing numerous 

"interaction" parameters. 

Rather than splitting the data in all possible ways, the data can be sequentially and 

selectively split in mutually exclusive homogeneous groups. Splits would be made only if  

clearly indicated by data to be meaningful. Meaningful in the sense that, risks are indeed 

more homogeneous in whatever it is that we are measuring- typically frequency or 

severity. The term decision "tree" is derived from this sequential approach. That is, start 

with the whole data - appropriately split the data into branches by one "best" rating factor 

to begin with. Then concentrate on one branch by itself, disregarding the rest o f  the 

branches, and find the next "best" rating factor for it, thereby creating new branches for 

this branch. Then concentrate on the next branch and find the next "best" rating factor for 

it, which may be - and in fact often is - a different rating factor. New branches are then 

created for this second branch and so on. Details o f  how exactly this can be done in 

practice is given below, but first it should be stated that this method is based on principles 

underpinning a large number of  classification procedures - referred to as classification or 

decision tree procedures - which are amply reported in the statistical data mining 

literature. 

These procedures appear with a variety of  acronyms including: 

AID Automatic Interaction Detection 
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THAID 

CHAID 

Exhaustive CHAID 

C&RT / CART 

QUEST 

FACT 

FIRM 

C4.5 

ID3 

GUIDE 

CRUISE 

Etc. 

Theta AID 

Chi-Squared Automatic Interaction Detection 

Modified CHAID 

Classification And Regression Trees 

Quick, Unbiased, Efficient Statistical Tree 

Fast Algorithm for Classification Trees 

Formal Inference-based Recursive Modeling 

A set of computer programs that construct classification models 

The predecessor of C4.5 

Generalized Unbiased Interaction Detection and Estimation 

Classification Rule with Unbiased Interaction Selection and 

Estimation 

AID, THAID, CHAID and Exhaustive CHAID 

AID was first described by Morgan and Sonquist in1963 as a sequential procedure for 

analysis of survey data. It is intended to avoid the problem of interaction between 

variables used for classification. In the case of classifying risks, the problem of 

interaction translates into the possibility that type of coverage, for example, may have a 

different impact on rates for one territory as opposed to another territory. They propose 

bisecting the data sequentially, one factor at a time, based on maximizing the between 

levels sum of squared deviation. This is somewhat similar to the ordinary analysis of 

variance procedure, though in their 1963 paper they propose stopping the splits simply 

when the reduction in error sum of squares is less than a specified value. THAID, which 

was proposed by Messenger and Mandell in 1972, similarly bisects data, but based on a 

different statistic. This statistic, which they call THeta, is related to the proportional 

reduction in misclassification errors. CHAID was described by Kass in (1980). As the 

acronym indicates the predominant statistic used for splits in this procedure is the Chi- 

square statistic. Whereas for AID the dependent variable is interval scaled, here the 

dependent variable is nominal. As an example one would look at the overall proportion of 

policies that resulted in none, one, or 2 or more claims; that is three categories. And then 
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split policies in groups so that the proportion of policies in each category would differ 

significantly between groups. Independent variables also being categorical, typical two 

way contingency tables are constructed and Chi-square statistics are calculated which 

form the basis of the splits. This procedure is demonstrated by Gallager Monroe, and Fish 

(2001) for private passenger automobile experience. Exhaustive CHAID (spss.com) is 

based on Biggs, de ViUe, and Suen. (1991). It is a refinement and expansion of the 

method given by Kass. The significance level of the utilized Chi-square statistic is 

appropriately adjusted for the number of independent variables. 

CART, C&RT, QUEST, FACT,  GUIDE and CRUISE 

CART, (cart.corn) was introduced by Breiman, Friedman, Olshen, and Stone in (1984). It 

is similar to AID in that to achieve the final classification a series of binary splits are 

made. But it is far different from AID or CHAID in the splitting mechanism. Here at each 

step of the classification a series of queries is made regarding the value of each of the 

independent variables. For categorical independent variables such queries take the form 

of whether or not each case belongs to a given subset of levels of each independent 

variable. All possible subsets of all independent variables are considered. For interval 

scale independent variables the percentage of cases with values less than all observed 

values of this variable are considered. A misclassification cost is then calculated and the 

split is based on minimizing that misclassification cost. C&RT is another vendor's 

(spss.com) version of CART. QUEST is proposed by of Loh and Shih (1997). It is 

intended to reduce the bias in favor Of splits that are based on independent variables for 

which more branching is possible. Categorical independent variables with more levels 

and interval scale independent variables with more distinct values are more likely to be 

selected first in classification tree procedure. This bias is a frequently recurring criticism 

of these classification procedures and several efforts in minimizing the bias are reported 

in the literature. FACT is also proposed by Loh and Vanichsetakul, (1988). It is 

described as an algorithm combining CART and Linear Discriminant Analysis (LDA). 

Discriminant analysis is the classical method of predicting group membership based on 

predictive characteristics. Depending on the number of groups one or more discriminant 

functions are estimated from the data. These functions are linear combinations of 
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independent variables, and are in turn used to predict group membership. The values of 

these functions are, ideally, substantially different for each group. This would be the case 

if predictors have sufficient discriminating information. FACT differs from CART in that 

it uses a different misclassification cost based on these discriminant functions. GUIDE is 

proposed by Loh (2002). It is also intended to eliminate the variable selection bias. As 

mentioned for QUEST this bias refers to the fact that categorical independent variables 

with more levels as well as interval scale variables with more distinct observed values are 

more likely to be selected first in the tree structure. The bias is eliminated by an 

adjustment to the Chi-square p-value. CRUISE is the described by Kim and Loll (2001). 

It borrows ideas from FACT, QUEST, GUIDE, and CART, and is claimed to be faster 

and further reduce the variable selection bias. 

FIRM, C4.5 and 11)3 

FIRM is a collection of codes presented by Hawkins (1990) for implementation of 

CHAID. Two versions, CATFIRM and CONFIRM, are given respectively for categorical 

and interval scale dependent variable. Details of the procedure are given in Hawkins and 

Kass (1982). Here essentially the interval scale variables are converted to categorical 

variables by clustering adjacent values in one category. C4.5 and its predecessor ID3 are 

presented by Quinlan (1993). They are a collection of computer programs that construct 

classification trees. The construction method is based on what they refer to as "divide and 

conquer algorithm" which uses the "gain" criterion. They refer to the data as "training 

set" and for any split of the training set the gain is defined in terms of the information or 

entropy obtained thereby. 

Procedure Description 

Almost all of the above procedures are packaged, some more elegantly than others, and 

are available commercially. But none can be used without modifications with actuarial 

data since they are not specifically designed as such. Many of the splits automatically 

tested in these procedures are meaningless for actuarial data. CART would routinely test 

if a BOP policy belongs to all subsets of the rating variable ISO construction code. 

Clearly only subsets including only one element are meaningful for actuarial data. None 
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address the credibility issue. Furthermore routine 'black box' style use of these packages 

usually mask the statistics used as splitting criteria. It is therefore not clear whether the 

assumptions required, especially with regard to the distribution of such statistics are 

indeed valid for the data at hand. Therefore, with actuarial data the common underlying 

principles of these procedures should be grasped, modified appropriately and 

implemented directly. 

These underlying principles are the sequential consideration of the rating factors, splitting 

the data based on an appropriate metric and at each split combining the levels of each 

rating factor as long as they are not significantlydifferent. How this can be done in 

practice would now be demonstrated using the described BOP data. For this illustration 

the natural log of basic limit losses is considered the dependent variable, and the 

following factors are independent variables: 

Coverage code, Risk State, Company, ISO protection code, ISO territory code, ISO 

construction code, Property/Liability indicator, Building/Content/Other indicator, ISO 

Subline, ISO coverage code 

The selected metric is the F statistics (or equivalently its p-value) given by the ratio of 

between and within mean squares as described below. The choice of this statistic is 

justified by the fact that basic limit losses here very closely follow the lognormal 

distribution. It is essential to check thi s lognormai assumption which results in the F 

distribution for the mean square ratios when we use log of losses. 

Splits will not be made if the p-value of the F statistic is more than 0.01 or the resulting 

splits will have less than 200 claims. 

As stated earlier risk state, ISO protection code, and ISO territory code have, 51, 1014, 

and 178 levels respectively. Most of these levels have very few claims. Risk state '54' 

(Alaska) and '99' (miscellaneous) have 3 and 1 claims respectively. Therefore before any 

analysis, for each factor the number of levels is reduced by appropriate level 
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combinations and/or introduction of an 'all other' category. The exact number of levels 

to reduce to is not crucial at this stage of the analysis since groups will be reeombined 

objectively with the tree structure in the next steps. Simply inspecting the mean severity 

by level of each factor along with the standard errors of each mean (confidence interval) 

provides an adequate means of  combining levels. 

In this fashion the rating factor risk state was combined into nine distinct groups. 

Similarly the levels oflSO protection code, and ISO territory were regrouped into 9 and 8 

levels respectively. Exhibit 3 is a description of these reeodes along with the number of 

claims in each group. 

A standard multivariate split of this data would result in at most 

(9 Risk State)x(4 Company)x (9 ISO protection code)x(8 ISO territory eode)x 

(6 ISO construction code)x(2 Property/Liability indicator)x(3 Building/Content/Other 

indicator)x(3 Coverage code)x(2 ISO subline)x(4 ISO coverage code)=2,239,488 cells, 

The whole idea of this method is which of these 2,239,488 cells are indeed materially 

different from the rest, and must be evaluated individually. The tree structure is intended 

to isolate these significantly different cells from the total. As shown below for the BOP 

data only 21 tiers or nodes, need be considered separately. Obviously each risk would 

belong to one and only one of these 21 tiers. Here is how the procedure works. 

For the entire data, the so called node 0, the mean and standard deviation of log severity 

based on 27,845 claims is 7.5944 and 1.7692 respectively. At this stage the "best" 

predictor of  this log severity is risk state. The best predictor means the predictor 

producing the highest F ratio, which here is the selected metric of choice for splitting, or 

equivalently the lowest p-value for the F statistic. This factor would divide risks into five 

groups: 

Risk States log Severity 

9 8.1405 1736 

7,8 7.9598 2548 

5,6 7.6994 7056 

3,4 7.5127 11181 

1,2 7.2742 5324 

All 7.5944 27845 

Number of claims 
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The fol lowing graphs demonstrate the reasoning behind these combinations. 

Confidence Intervals for Mean log Severity 
8.4 

8.2 

8.0 

78 

, 2  ~ ! 
7.0 
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Groups of Risk States 

Confidence Intervals for Mean log Severity 
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8.2- I 

78-1 

7.6-I 

74 t 7.2 
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(p 

N, ~ 4  1.al ~ee 2 ~  17,~ 

1 2 3 4 5 

Groups  of  R isk  States 

From the first graph it is observed that there is no clear reason not to combine 1 and 2, 3 

and 4, 5 and 6, 7,8 and 9. But once 7 and 8 are combined, 9 would be significantly 

different from that combination. From the second graph it is clear that the five new 

groups have significantly different means. Graphical descriptions aside, the F statistic is 

the ratio o f  between mean square 

[1736(8.1405-7.5944) 2 +2548(7.9598-7.5944)  2 +7056(7.6994-7.5944)  2 + 

11181 (7.5127-7.5944) 2 +5324(7.2742-7.5944)2]/4 = 389.0511 

2 6 2  



and within (error) mean square 

(27844xl.76922-4x389.0511)/27840= 3.0746 

This ratio equals 126.5, which is of course highly significant leading to the necessity of 

the above split. 

Let us now concentrate on states 3 and 4, disregarding other states for now. For this 

branch the next best predictor is property/liability indicator, which again based on the F 

ratio of69.0divides risk into 2 branches: 

log Severity 

Property 7.2632 2533 

Liability 7.5858 8648 

All 7.5127 11181 

Number of claims 

Next, consider liability claims in states 3 and 4. These have to be broken down by ISO 

territory. The resulting F statistic is 28.5 based on 3 distinct groups of territories: 

Territory log Severity Number ofclaims 

2,6,7 7.6988 4357 

1,3,4,5 7.5001 3961 

8 7.1206 330 

All 7.5858 8648 

Next, consider liability claims in states 3 and 4 and ISO territories 1,3,4,5. These have to 

be broken down by ISO constuction code. The resulting F statistic is 16.35. 

Construction log Severity Number of claims 

3,4,5,6 7.6257 1632 

1,2 7.4121 2329 

All 7.5001 3961 
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Next, consider liability claims in states 3 and 4, ISO territories 1,3,4,5 and ISO 

construction code 1,2. These have to be broken down by building/content indicator. 

The resulting F statistic is 9.61. 

log Severity Number of claims 

Building 7.2992 1050 

Cotent 7.5049 1279 

All 7.4121 2329 

With the constraint of a p-value less than 0.01 and at least 200 claims, no further splits 

based on any other independent variable is implied by this procedure. 

In this manner a number of distinct tiers, or the so called terminal nodes can be identified. 

It is customary to depict these tiers with a tree structure as follows: 

�9 mm m 

m 
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There are corresponding structures containing tier standard deviations and sample sizes 

needed for credibility adjustments, which are given in Exhibits 1 and 2. 

The point is that while the overall mean is 7.594, 21 distinct tiers have in this manner 

been identified with means ranging from as low as 6.731 and as high as 8.452. 

The profiles of risks in each tier are listed below: 

Tier Profile 

Risk State 1 

Liability 

log Severity Number of Claims 

6.7313 317 

2 Risk State 5,6 6.8069 279 

ISO Territories 4,6,8 

ISO Subline 2 

3 Risk State 2 7.1072 898 

Liability 

4 Risk State 3,4 7.1206 330 

ISO Territories 8 

Property 

5 Risk State 1,2 7.1355 1708 

ISO Territories 2,5,6,8 

Property 

6 Risk States 3,4 7.1477 2039 

Liability 

Building, Other 
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10 

11 

12 

13 

Risk State 3,4 

ISO Territories 1,3,4,5 

Property 

ISO Construction 1,2 

Building, Other 

7.2992 

Risk State 3,4 

ISO Territories 1,3,4,5 

Property 

ISO Construction Code 1,2 

Content 

7.5049 

Risk State 1,2 

ISO Territories 1,3,4,7 

Property 

7.5071 

Risk State 5,6 

ISO Territory Code 1,2,3,5,7 

ISO Construction Code 1 

7.5107 

Risk State 3,4 

ISO Territory Code 2,6,7 

Property 

7.6988 

1050 

1279 

2401 

989 

4357 

Risk States 3,4 7,6257 1632 

ISO Territories 1,3,4,5 

Property 

ISO Construction Code 3,4,5,6 

Risk State 5,6 7.6359 518 

ISO Territories 4,6,8 

ISO Subline 1 
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14 7.7114 2359 Risk State 5,6 

ISO Territories 1,2,3,5,7 

ISO Construction Code 2,3,5 

15 Risk State 3,4 

Liability 

Content 

7.7398 494 

16 Risk State 9 

Building 

7.7726 407 

17 Risk State 5,6 

ISO Territories 1,2,3,5,7 

ISO Construction Code 4,6 

7.8505 2911 

18 Risk State 7,8 

Coverage 1,3 

7.8360 1769 

19 Risk State 7 

Coverage 2 

8.0208 381 

20 Risk State 9 

Content, Other 

8.2532 1329 

21 Risk State 8 

Coverage 2 

All 

8.4521 398 

7.5944 27,845 
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Based on this procedure, certain independent variables do not impact claim costs at most 

levels of other independent variables. Coverage for example is only relevant for risk state 

groups 7 and 8. 

Credibility Adjustments 

Consider tier 20 with mean and standard deviations equal to 8.2532 and 1.8208 

respectively. The estimated mean here is 

e 8'2532+~176 = 20,148 

which once compared with the overall mean of 

e 7.5~4-o.5,,1.7692^2 = 9,504 

results in relativity of  2.120. This figure is based on 1329 claims. So it is not fully 

credible. 

The standard of full credibility utilized here is to be within one percent of the estimated 

mean with a probability of 0.99. As stated before limited losses being very closely 

distributed as a lognormal random variable, for this class the full credibility standard 

would be at least 

(2.575xl.8208/0.01xS.2532) 2 = 3,227 

claims. Using the square root rule, the partial credibility of 2.120 is thus 

(1329/3227) ~ = 0.642. 

The complement of credibility is assigned here to the non-terminal node immediately 

preceding this tier, the so called parent node. I f  there are not sufficient claims in this 

parent node to attain full credibility one can first adjust this relativity with its own parent 

node before using it as a complement. In this ease the parent of tier 20 has log severity 

mean and standard deviation of 8.1405 and 1.8078 respectively, giving the severity mean 
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of 

e s.1405+0.Sxl.S07s^2 = 17,581 

and relativity of 1.850. But the number of claims here is only 1736 not reaching its own 

full credibility standard of  

(2.575xl.g078/0.01x8.1405) 2 = 3,270. 

The 1.850 estimate therefore has partial credibility of 0.729. The node immediately 

preceding this node has a relativity of 1, which has full credibility. Therefore the 

complement of credibility for tier 20 is attached to 

0.729xl.850 + 0.271xl -- 1.619 

Henco the credibility adjusted estimate of relativity for tier 20 is 

0.642x2.120 + 0.358x1'.619 = 1.941. 

The necessary calculations for all 21 tiers are given in Exhibits 4-9. 

C r o s s  V a l i d a t i o n  

As stated earlier the BOP data set includes 9011 claims with accident year 2001 which 

were not used for this classification scheme. These were deliberately let~ out for cross 

validation of the procedure. The accident year 2001 claims are grouped into 21 tiers 

based on the above scheme. For example coverage 2 claims in risk state 8 form tier 21, 

etc. Tier I includes 126 claims with the observed mean of $7,053. This value compared 

with the overall observed mean of $12,253 gives an observed relativity of 0.575. 

How does this compare with the estimated relativity based on 1997-2000 data? 

The unadjusted relativity in that tier computed as explained above and listed inExhibit 4, 

is 0.392 with a partial credibility of(317/4368) ~ = 0.269. The complement of this 

credibility is assigned to the adjusted relativity of the parent node, which is 
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0.509x0.664 + 0.491 x0.604 = 0.634. Thus the credibility adjusted estimated relativity of 

tier 1 is 0.269x0.392 + 0.731x0.634 = 0.569. 

This sort of  calculation and comparison of course has to be done for all tiers. Details are 

given in Exhibits 4-9 in the appendix. The resulting credibility adjusted relativities and 

the actual observed 2001 relativities are listed below. The extent of association between 

these values can be observed from the chart. 

~,ccident Year Credibility 

2001 Adjusted 

Observed Relativities Relativities 

0.575 0.569 

0.833 0.904 

0.994 0.700 

0.820 0.760 

0.602 0.492 

0.813 0.820 

0.510 0.602 

0.791 0.652 

0.717 0.658 

0.758 0.975 

0.781 0.92(3 

0.677 0.853 

0.655 0.982 

1.116 0.951 

1.217 1.14E 

1.107 1.431 

1.086 1.72~ 

0.870 1.40~ = 

1.021 2.651 

2.725 1.941 

1.384 2.65~ = 
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T ier  

Summary and Conclusions 

Classical methods of deriving rate relativities, are based on either a univariate or 

multivariate analysis of the data. The former requires the additive or multiplicative 

assumption and the latter may require estimation of numerous interaction parameters. An 

alternative method based on classification tree procedures is described in this paper. It is 

shown how risks with homogeneous loss severities can be grouped, based on appropriate 

combinations of levels of rating factors. Using accident year 1997-2000 data for a 

particular product, relativities are computed for 2001 accident year claims. With 

appropriate adjustment for credibility, these relativities axe then compared with actual 

observed relativities demonstrating the suitability of this method. Because of the 

particular description of risk tiers, results obtained by these procedures might be 

somewhat difficult to implement. However, as an additional underwriting guideline, 

especially when deviating from manual rates, these procedures can be quite useful. 
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Exhibit 1 
Node log Severity Standard Deviations 

m 

n 
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Exhibit 2 
Node Number of Claims 

ii!1 m m 
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Exhibit 3 
Recoded Levels of Risk Factors 

Risk State 

5,45,32,49,36,3,26,18 1 
10,37,35,22,28 2 
47,2,25,30,43,15 3 
29,17 4 
6,16,21,8,38,42 5 
12,19,41,27,46,23,24,1,39,44,33,54 6 
31 7 
9,20,4,7 8 
34,14,11,13,48,99,40 9 

Company 

BD 1 
BE 2 
BG 3 
Others 4 

ISO Protection Code 

1,10 
2 
3 
4 
5 
6 
7,11 
8,9 
Missing 

ISO Territory Code 

1 
2 
3 
4 
5 
6 
Missing 

276 



Others 7 

ISO Construction Code 

1 
2 
3 
4 
Missing 
Others 

ISO Coverage Code 

21 
22 
Missing 
Others 

Coverage 

81 
84 
Others 

ISO Subline 

915 
Missing 
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Exhibit 4 
Unadjusted Observed Relativities by Tier 
(a]) (bl) (GI) (dl) (el) 

Underlying Underlying 
Normal Number of Normal Mean Unadjusted 

Tier Mean Claims Std. Deviation Severity Relativity 
1 6.7313 317 1.7276 3,728 0.392 
2 6.8069 279 1.8531 5,034 0.53fl 
3 7.1072 898 1.9032 7,467 0.786 
4 7.1206 330 1.7528 5,749 0.605 
5 7.1355 1708 1.5776 4,359 0.45g 
6 7.1477 2039 1.8772 7,403 0.779 
7 7.2992 1050 1.6163 5,461 0.575 
8 7.5049 1279 1.5741 6,272 0.66G 
9 7.5071 2401 1.5785 6,329 0.666 

10 7.5107 989 1.6621 7,273 0.765 
11 7.6988 4357 1.6600 8,748 0.92C 
12 7.6257 1632 1.6927 8,590 0.90~ 
13 7.6359 518 1.6985 8,764 0.922 
14 7.7114 2359 1.6474 8,676 0.913 
15 7.7398 494 1.9485 15,339 1.614 
16 7.7726 407 1.7156 10,345 1.088 
17 7.8505 2911 1.9540 17,319 1.822 
18 7.8360 1769 1.7872 12,494 1.315 
19 8.0208 381 2.1538 30,953 3.257 
20 8.2532 1329 1.8208 20,148 2.12E 
21 8.4521 398 1.9216 29,684 3.122 

To~l 7.5944 27845 1.7692 9,504 1.00C 

(dl)= Exp[(al)+0.5X(Cl) 2] 
(el) = (dl)/[Total Entry of (dl)] 
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Exhibit 5 
Required Number of Claims for Full 

Credibility by Tier 
(a2) (b2) 

Number of 
Claims for full Partial 

rier Credibility Credibilit 

1 4,368 0.26 r . 
2 4,914 0.23~ 
3 4,755 0.43, = 
4 4,018 0.28; 
5 3,241 0.72(~ 
6 4,573 0.66~ 
7 3,251 0.568 
8 2,917 0 662 
9 2,932 0.90~ = 

10 3,247 0.55; 
11 3,083 1.00C 
12 3,267 0.707 
13 3,281 0.397 
14 3,026 0.88~ 
15 4,202 0.34" 
16 3,230 0.35~ = 
17 4,108 0.84; 
18 3,449 0.71E 
19 4,781 0.28; 
20 3,227 0.64; 
21 3,427 0.341 

(az)=[2.575X(Cl)/(.O1)X(al)] 2 
(b2)=[(bl)/(a2)] 05 
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Exhibit 6 
Parent Node Partial Credibility 

(a3) (b3) 

Tier 

Parent Node 

Normal 

Mean S~. Deviation 

1 7.0092 1.8656 

2 7.3457 1.7971 

3 7.0092 1.8656 

4 7.5858 1.6597 

5 7.3526 1.5885 

6 7.2632 1.9055 

7 7 .4121  1.5962 

8 7 .4121  1.5962 

9 7.3526 1.5885 

10 7.7444 1.8023 

11 7.5858 1.6597 

12 7 .5001  1.6398 

13 7.3457 1.7971 

14 7.7477 1.8023 

15 7.2632 1.9055 

16 8.1405 1.8078 

17 7.7444 1.8023 

18 7.9598 1.8798 

19 8.2409 2.0486 

20 8.1405 1.8078 

21 8.2409 2.0486 

Parent Node Number of claims 

Number of Mean Unadjusted for Partial 

Claims Severity Relativity Full Credibility Credibility 

1,215 6,307 0.664 4,697 0.50~ c 

797 7,789 0.819 3,969 0.44E 

1,215 6,307 0.664 4,697 0.50 c 

8,648 7,810 0.822 3,174 1.00C 

4,109 5,510 0.580 3,095 1.00C 

2,533 8,766 0.922 4,564 0.74~ = 

2,329 5,920 0.623 3,075 0.87C 

2,329 5,920 0.623 3,075 0.87C 

4,109 5,510 0.580 3,095 1.00C 

6,259 11,714 1.233 3,591 1.00C 

8,648 7,810 0.822 3,174 1.00C 

3,961 6,937 0.730 3,170 1.00C 

797 7,789 0.820 3,969 0.44E 

6,259 11,753 1.237 3,588 1.00C 

2,533 8,766 0.922 4,564 0.74~ = 

1,736 17,581 1.850 3,270 0.72 c 

6,259 11,714 1.233 3,591 1.00C 

2,548 16,758 1.763 3,698 0.83C 

779 30,924 3.254 4,098 0.43E 

1,736 17,581 1.850 3,270 0.72 c 

779 30,924 3.254 4,098 0.43E 

(a3) and (b3) are calculated as in Exhibit 4 
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Exhibit 7 
Parent of Parent Node Relativity 

(a4) 

tier 

Parent of 
Parent Node 
Mean Std. Deviation 

1 7 .2742 1.6619 

2 7 .6994 1.8060 
3 7.2742 1.6619 

4 
5 
6 7.5127 1.7237 
7 7.5001 1.6398 

8 7.5001 1.6398 
9 

10 
11 
12 
13 7.6994 1.8060 
14 7.6994 1.8060 
15 7.5127 1.7237 
16 7.5944 1.7692 

17 7.5127 1.7237 
18 7.5944 1.7692 
19 7.9598 1.8798 
20 7.5944 1.7692 

21 7.9598 1.8798 

Number of Mean 
Claims Severity Relativity" 

5,324 5,740 0.604 
7,056 11,274 1.186 
5,324 5,740 0.604 

11,181 8,089 0.851 
3,961 6,937 0.730 
3,961 6,937 0.730 

7,056 11,274 1.185 

7,056 11,274 1.188 
11,181 8,089 0.851 
27,845 9,504 1.00G 
11,181 8,089 0.851 
27,845 9,504 1.000 
2,548 16,758 1.763 

27,845 9,504 1.000 

2,546 16,758 1.763 

*) Same as Exhibit 3 and 4 
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Exhibit 8 
Observed Claims and Relativities for 

Accident Year 2001 

Observed 

Mean Number of Observed 
Tier Severity Claims Relativity 

1 7,053 126 0.575 

2 10,213 69 0.833 

3 12,179 339 0.994 

4 10,052 75 0.820 

5 7,380 344 0.602 

6 9,968 344 0.813 

7 6,250 216 0.510 

8 9,689 229 0.791 

9 8,788 775 0.717 

10 9,287 300 0.758 

11 9,578 1443 0.781 

12 8,297 456 0.677 

13 8,033 157 0.655 

14 13,679 691 1.116 

15 14,913 489 1.217 

16 13,574 131 1.107 

17 13,314 1072 1.086 

18 10,661 810 0.870 

19 12,518 234 1.021 

20 33,395 579 2.725 

21 16,964 132 1.384 
All 12,253 9011 1.00C 
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Exhibit 9 
Comparison of 2001 Observed and 

1997-2000 Credibility Adjusted 
Relativities 

(as) 
~,ccident Year Credibility 

2001 Adjusted 
3bserved Relativities RelativiUes 

0.575 0.569 

0.833 0.904 

0.994 0.700 

0.820 0.76( 

0.602 0.49; 

0.813 0.82( 

0.510 0.60; 

0.791 0.65; 

0.717 0.65E 

0.758 0.97, = 

0.781 0.92( 

0.677 0.85,~ 

0.655 0.98,~ 

1.116 0.951 

1.217 1.14E 

1.107 1.431 

1.086 1.72~ c 

0.870 1.40~ = 

1.021 2.651 

2.725 1.941 

1.384 2.655 

(as) = (el)(b2)+[ 1-('02)] [(a3)C03) + { l-(b3) } (a4)] 
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