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A b s t r a c t  

We recently conducted a research project for a large North American automobile in- 
surer. This study was the most exhaustive ever undertaken by this particular insurer and 
lasted over an entire year. We analyzed the discriminating power of each variable used for 
ratemaking. We analyzed the performance of several models within five broad categories: 
linear regressions, generalized linear models, decision trees, neural networks and support 
vector machines. In this paper, we present the main results of this study. We qualitatively 
compare models and show how neural networks can represent high-order nonlinear depen- 
dencies with a small number of parameters, each of which is estimated on a large proportion 
of the data, thus yielding low variance. We thoroughly explain the purpose of the nonlinear 
sigmoidal transforms which are at the very heart of neural networks' performances. The 
main numerical result is a statistically significant reduction in the out-of-sample mean- 
squared error using the neural network model and our ability to substantially reduce the 
median premium by charging more to the highest risks. This in turn can translate into 
substantial savings and financial benefits for an insurer. We hope this paper goes a long 
way towards convincing actuaries to include neural networks within their set of modeling 
tools for ratemaking. 

1.  I n t r o d u c t i o n  

Ra t emak ing  is one of the main  ma themat i ca l  problems faced by actuaries.  They  must  first 
es t imate  how much each insurance contract  is expected to cost. This  conditionM expected 
c la im amount  is called the pure premium and it  is the basis of the gross premium charged to  
the  insured. Th is  expected value is condit ioned on information available about  the insured 
and about  the  contract ,  which we call the input profile. 

Automobi le  insurance r a t emak ing  is a complex task  for many  reasons. Fi rs t  of all, many  
factors are relevant.  Taking account  of each of them individually, i.e., making  independence 
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assumptions, can be hurtful (Bailey and Simon (1960)). Taking account of all interactions 
is intractable and is sometimes referred to as the curse of dimensionality (Bellman (1957)). 
In practice, actuarial judgment is used to discover the most relevant of these interactions 
and feed them explicitly to the model. Neural networks, on the other hand, are well- 
known for their ability to represent high-order nonlinear interactions with a small number 
of parameters, i.e., they can automatically detect those most relevant interactions between 
variables (Rumelhart et al. (1986)). We explain how and why in section 4. 

A second difficulty comes from the distribution of claims: asymmetric with fat tails 
with a large majority of zeros and a few unreliable and very large values, i.e., an asym- 
metric heavy tail extending out toward high positive values. Modeling data with such a 
distribution is essentially difficult because outliers, which are sampled from the tail of the 
distribution, have a strong influence on parameter estimation. When the distribution is 
symmetric around the mean, the problems caused by outliers can be reduced using robust 
estimation techniques (Huber (1982), Hampel et al. (1986), Rousseeuw and Leroy (1987)) 
which basically intend to ignore or down-weight outliers. Note that these techniques do not 
work for an asymmetric distribution: most outliers are on the same side of the mean, so 
down-weighting them introduces a strong bias on its estimation: the conditional expectation 
would be systematically underestimated. Recent developments for dealing with asymmetric 
heavy-tail distributions have been made (Takeuchi et al. (2002)). 

The third difficulty is due to the non-stationary nature of the relationship between 
explanatory variables and the expected claim amount. This has an important effect on the 
methodology to use, in particular with respect to the task of model selection. We describe 
our methodology in section 3. 

Fourth, from year to year, the general level of claims may fluctuate heavily, in particular 
in states and provinces where winter plays an important role in the frequency and severity 
of accidents. The growth of the economy and the price of gas can also affect these f~ures. 

Fifth, one needs sufficient computational power to develop models: we had access to a 
large database of ~ 8 x l0 s records, and the training effort and numerical stability of some 
algorithms can be burdensome for such a large number of training examples. In particular, 
neural networks are computationally very demanding. 

Sixth, the data may be of poor quality. In particular, there may be missing fields for 
many records. An actuary could systematically discard incomplete records but this leads 
to loss of information. Also, this strategy could induce a bias if the absence of a data is 
not random but rather correlated to some particular feature which affects the level of risk. 
Alternatively one could choose among known techniques for dealing with missing values 
(Dempster et ai. (1977), Ghahramani and Jordan (1994), Bengio and Gingras (1996)). 

Seventh, once the pure premiums have been established the actuary must properly 
allocate expenses and a reserve for profit among the different contracts in order to obtain 
the gross premium level that will be charged to the insureds. Finally, an actuary must 
account for competitive concerns: his company's strategic goals, other insurers' rate changes, 
projected renewal rates and market elasticity. 

In this paper, we address the task of setting an appropriate pure premium level for 
each contract, i.e., difficulties one through four as described above. Our goal is to compare 
different models with respect to their performance in that regard, i.e., how well they are 
able to forecast the claim level associated to each contract. We chose several models within 
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five broad categories: linear regressions, generalized linear models (McCullagh and Nelder 
(1989)), decision trees (Kass (1980)), neural networks and support vector machines (Vapnik 
(1998a)). 

The rest of the paper is organized as follows: we start by describing the mathematical 
criteria underlying insurance premium estimation (section 2). Our methodology is described 
in section 3, followed by a review of the statistical learning algorithms that we consider in this 
study, including our best-performing mixture of positive-output neural networks (section 4). 
We then highlight our most important experimental results (section 5), and in view of them 
conclude with an examination of the prospects for applying statistical learning algorithms 
to insurance modeling (section 7). 

2. M a t h e m a t i c a l  O b j e c t i v e s  

The first goM of insurance premium modeling is to estimate the expected claim amount for 
a given insurance contract for a future period (usually one year). Here we consider that 
the amount is 0 when no claim is filed. Let X E R n denote the customer and contract 
input profile, a vector representing all the information known about the customer and the 
proposed insurance policy before the beginning of the contract. Let A E t t  + denote the 
amount that the customer claims during the contract period; we shall assume that A is 
non-negative. Our objective is to estimate this claim amount, which is the pure premium 
Ppure of  a given contract x: 1 

pp~Te(x) = E[AI z = x]. (1) 

where E[.] denotes expectation, i.e. the average over an infinite population, and E[A[X = 
x] is a conditional expectation, i.e. the average over a subset of an infinite population, 
comprising only the cases satisfying the condition X = x. 

2.1 The  Precis ion  Cr i te r ion  

In practice, of course, we have no direct access to the quantity (1), which we must estimate. 
One possible criterion is to seek the most precise predictor, which minimizes the expected 
squared error (ESE) over the unknown distribution: 

E[(p(X) - A)2], (2) 

where p(X)  is a pure premium predictor and the expectation is taken over the random 
variables X (input profile) and A (total claim amount). Since the true joint distribution of 
A and X is unknown, we can unbiasedly  estimate the ESE performance of an estimator 
p(X)  on a data set Dtest = {(xi, ai)}N=l, as long as this data set is not used to choose p, 
using the mean - squa red  e r ro r  on that data set: 

1 ~ (p(x,;0) - a,) 2, (3) 
(xl,ai)EDtest 

1. The pure premium is distinguished from the premium actually charged to the customer, which must 
account for the underwriting costs (marketing, commissions, premium tax), administrative overhead, 
risk and profit loadings and other costs. 
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where 0 is the vector of parameters of the model used to compute the premiums. The vector 
x~ represents the i th input profile of dataset Dtest and a~ is the claim amount associated 
to that input profile. Thus, Dt~st is a set of N insurance policies. For each policy, Dust 
holds the input profile and associated incurred amount. We will call the data set Dust a 
tes t  set. It is used only to independently assess the performance of a predictor p. To 
choose p from a (usually infinite) set of possible predictors, one uses an estimator L, which 
obtains a predictor p from a given t ra in ing  set D. Such an estimator is really a s ta t is t ical  
learn ing  a lgo r i thm (Hastie et al. (2001)), yielding a predictor p = LD for a given data 
set D. What we call the squa red  bias of such an estimator is (E[AIX ] - E[LI)(X)]) 2, 
where E[LD(X)] is the average predictor obtained by considering all possible training sets 
D (sampled from P(A, X)).  It represents how far the average estimated predictor deviates 
from the ideal pure premium, E[A[X]. What we call the var iance of such an estimator is 
E[(LD(X) - E[LD(X)])2]. It represents how the particular predictor obtained with some 
data set D deviates from the average of predictors over all data sets, i.e. it represents 
the sensitivity of the estimator to the variations in the training data and is related to the 
classical measure of credibility. 

Is the mean-squared error (MSE) on a test set an appropriate criterion to evaluate the 
predictive power of a predictor p? First one should note that if Pl and P2 are two predictors 
of E[AIX], then the MSE criterion is a good indication of how close they are to E[AIX], 
since by, the law of iterated expectations, 

E[(pl(Z)  - A) 2] - E[(p~(X) - A) 2] = E[(pl(X) - E[AIX]) 2] 

-E[(p2(X) - E[AIX])2], 

and of course the expected MSE is minimized when p(X) = E[AIX ]. 
For the more mathematically-minded readers, we show that minimizing the expected 

squared error optimizes simultaneously both the precision (low bias) and the variance of 
the estimator. We denote ED the expectation over the training set D. The expected squared 
error of an estimator LD decomposes as follows: 

E[(A - LD(X))  2] = E[((A - E[A[X]) + (E[AIX ] - LD(X))) 2] 

= E[(A - E[A]X])2! + E[(E[A]X] - LD(X))  2] 

noise 

+2E[(A - E[A[X])(E[A]X] - LD(X)) 1 
zero 

= noise + E[((E[AtX ] - ED[LD(X)]) + (ED[LD(X)] - LD(X))) 2] 

= noise + E[(E[AIX ] - ED[LD(X)]) 2] + E[(ED[LD(X)] - LD(X)) 2] 

+2E[(E[A[X] - ED[LD(X)])(ED[LD(X)] - LD(X))  1 

zero 

= noise + E[(E[AIX ] - ED[LD(X)])21 + E[(ED[LD(X)] - LD(X))2!. 

bias 2 variance 

Thus, algorithms that try to minimize the expected squared error simultaneously reduce 
both the bias and the variance of the estimators, striking a tradeoff that minimizes the 
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sum of both (since the remainder is the noise, which cannot be reduced by the choice of 
predictor). On the other hand, with a rule such as minimum-bias used with table-based 
methods, cells are merged up to a point where each cell has sufficient credibility, i.e., where 
the variance is sufficiently low. Then, once the credibility (and variance) level is set fixed, 
the bias is minimized. On the contrary, by targeting minimization of the expected squared 
error one avoids this arbitrary setting of a credibility level. 

In comparison to parametric approaches, this approach avoids distributional assump- 
tions. Furthermore, it looks for an optimal trade-off between bias and variance, whereas 
parametric approaches typically focus on the unbiased estimators (within a class that  is 
associated with a certain variance). Because of the above trade-off possibility, it is always 
possible (with a finite data  set) to improve an unbiased estimator by trading a bit of bias 
increase for a lot of variance reduction (Hastie et al. (2001)). 

2.2 T h e  F a i rne s s  C r i t e r i o n  

In insurance policy pricing, the precision criterion is not the sole part of the picture; just as 
important is that  the estimated premiums do not systematically discriminate against specific 
segments of the population. We call this objective the fairness criterion, sometimes referred 
to as actuarial fairness. We define the bias of the premium b(P) to be the difference between 
the average pure premium and the average incurred amount, in a given sub-population P 
of dataset D: 

1 
b(P) = "~1 ~ p(x , ) -a , ,  (4) 

(:c~,al)EP 

where IPI denotes the cardinality of the sub-population P,  and p(.) is some premium esti- 
mation function. The vector xi represents the i th input profile of sub-population P and ai 
is the claim amount associated to that  input profile. A possible fairness criterion would be 
based on minimizing the sum, over a certain set of critical sub-populations (Pk} of dataset 
D, of the square of the biases: 

b2(Pk) (51 
k,PkED 

In the particular case where one considers all sub-populations, then both the fairness 
and precision criterions lead to the same optimal solution, i.e., they are minimized when 
p(x~) = E[Ailxi], Vi, i.e., for every insurance policy, the premium is equal to the conditional 
expectation of the claim amount.  The proof is given in appendix A. 

In order to measure the fairness criterion, we used the following methodology: after 
training a model to minimize the MSE criterion (3), we define a finite number of disjoint 
subsets (sub-populations) of test set D: Pk C D, Pk A Pj#k = 0, and verify that  the absolute 
bias is not significantly different from zero. The subsets Pk can be chosen at convenience; in 
our experiments, we considered 10 subsets of equal size delimited by the deciles of the test 
set premium distribution. In this way, we verify that,  for example, for the group of contracts 
with a premium between the 5th and the 6th decile, the average premium matches, within 
statistical significance, the average claim amount. 
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2.3 Penal ized Training Criterion and Bias-Variance 'IYadeoff 

Although our objective is to minimize the expected out-of-sample squared error (ESE), it 
does not mean that  we should minimize the in-sample (training set) mean-squared error 
(MSE): 

1 

(xt,at)EDtrain 

in order to achieve that  goal. The reason for that  apparent discrepancy has to do with the 
bias-variance trade-off in generalization error (Geman et al. (1992)), and the fundamental 
principles of statistical learning theory (Vapnik (1998b)). To illustrate these ideas, let 
us consider the simple case of linear regression, which becomes ridge regression when the 
training criterion is penalized. Consider a class of linear predictive functions of the input x, 

n 

i = 1  

Instead of minimizing the training set mean-squared error (MSE), consider the following 
penalized criterion: 

1 ~ (p(~,;o)-~,) ~ + ~ ?  
(xt,at)EDt~aln i 

with A > 0 and a minimum achieved at ~x. Thus/}0 is the Ordinary Least Squares estimator. 
This minimum is always achieved with s h r i n k e d  solutions, i.e. I1~11 < I1~011 for ~ > 0. 
Note that  this solution is generally b iased ,  unlike ~0, in the sense that  if the data  is 
generated from a multivariate normal distribution, the expected value o f / ~  is smaller than  
the true value/3 from the underlying distribution. Note that  the set of functions effectively 
allowed for a solution is smaller when A is larger. 

In the case where linear regression is the proper model (normally distributed data, with 
output  variance a2), and the amount of data I is finite, it is easy to prove that  the optimal 
fixed value of A (in expectation over different training sets) is 

(72 

z I1~112" 

Note therefore that  t h e  o p t i m a l  m o d e l  is b i a sed  (optimal in the sense of minimizing 
out-of-sample error). 

This example illustrates the more general principle of bias-variance trade-off in general- 
ization error, well discussed by Geman et al. (1992). Increasing A corresponds to "smoothing 
more" in non-parametric statistics (choosing a simpler function) or to the choice of a smaller 
capacity ("smaller" class of functions) in Vapnik's VC-theory (Vapnik (1998b)). A too large 
value of A corresponds to u n d e r f i t t i n g  (too simple model, too much bias), whereas a too 
small value corresponds to over f l t t ing)  (too complex model, too much variance). Which 
value of ), should be chosen? It should be the one that  strikes the optimal balance between 
bias and variance. This is the question that  m o d e l  se lec t ion  algorithms address. For- 
tunately, the expected out-of-sample error has a unique minimum as a function of A (or 
more generally of the capacity, or complexity of the class of functions). Concerning the 
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above formula, note that unfortunately the data is generally not normal, and o -2 and j3 are 
both unknown, so the above formula can't be used directly to choose A. However, using a 
separate held-out data set (also called a validation set, here), and taking advantage of that 
unique minimum property (which is true for any data distribution), we can quickly select 
a good value of A (essentially by searching), which approximately minimizes the estimated 
out-of-sample error on that validation set. 

Note that we arrive at the conclusion that a biased model is preferable because we set 
as our goal to minimize out-of-sample error. If our goal was to discover the underlying 
"truth", and if we could make very strong assumptions about the true nature of the data 
distribution, then the more classical statistical approach based on minimum variance unbi- 
ased estimators would be more appropriate. However, in the context of practical insurance 
premium estimation, we don't really know the form of the true data distribution, and we 
really care about how the model is going to perform in the future (at least for ratemaking). 

3. M e t h o d o l o g y  

A delicate problem to guard against when applying statistical learning algorithms is that of 
overfitting. It has precisely to do with striking the right trade-off between bias and variance 
(as introduced in the previous section), and is known in technical terms as capacity control. 
Figure 1 illustrates the problem: the two plots show empirical data points (black dots) that 
we are trying to approximate with a function (solid red curve). All points are sampled from 
the same underlying function (dashed blue curve), but are corrupted with noise; the dashed 
curve may be seen as the "true" function we are seeking to estimate. 

The left plot shows the result of fitting a very flexible function, i.e. a high-order poly- 
nomial in this case, to the available data points. We see that the function fits the data 
points perfectly: there is zero error (distance) between the red curve and each of the black 
dots. However, the function oscillates wildly between those points; it has not captured any 
of the fundamental features of the underlying function. What is happening here is that the 
function has mostly captured the noise in the data: it overfits. 

The right plot, on the other hand, shows the fitting of a less flexible function, i.e. a 2nd- 
order polynomial, which exhibits a small error with respect to each data point. However, 
by not fitting the noise (because it does not have the necessary degrees of freedom), the 
fitted function far better conveys the structural essence of the matter. 

Capacity control lies at the heart of a sound methodology for data mining and statistical 
learning algorithms. The goal is simple: to choose a function class flexible enough (with 
enough capacity) to express a desired solution, but constrained enough that it does not fit 
the noise in the data points. In other words, we want to avoid overfitting and  underfitting. 

Figure 2 illustrates the basic steps that are commonly taken to resolve this issue: these 
are not the only means to prevent overfitting, but are the simplest to understand and use. 

1. The full data set is randomly split into three disjoint subsets, respectively called the 
training, validation, and test sets. 

2. The training set is used to fit a model with a chosen initial capacity. 

3. The validation set is used to evaluate the performance of that fitted function, on 
different da t a  po in ts  than used for the fitting. The key here is that a function 
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overfitting the training set will exhibit a low performance on the validation set, if it 
does not capture the underlying structure of the problem. 

4. Depending on the validation set performance, the capacity of the model is adjusted 
(increased or reduced), and a new training phase (step 2) is attempted. This training- 
validation cycle is repeated multiple times and the capacity that  provides the best 
validation performance is chosen. 

5. Finally, the performance of the "ultimate" function (that coming out of the validation 
phase) is evaluated on data  points never used previously--those in the test se t - - to  
give a completely unbiased measure of the performance that  can be expected when 
the system is deployed in the field. This is called gene ra l i za t i on  p e r f o r m a n c e .  

4. M o d e l s  

In this section, we describe various models that  have been implemented and used for the 
purpose of ratemaking. We begin with the simplest model: charging a flat premium to 
every insured. Then, we gradually move on towards more complex models. 

4.1 C o n s t a n t  M o d e l  

For benchmark evaluation purposes, we implemented the constant model. This consists of 
simply charging every single insurance policy a fiat premium, regardless of the associated 
variable values. The premium is the mean of all incurred amounts as it is the constant value 
that  minimizes the mean-squared error. 

p(x) = ~0, (6) 

where ~0 is the mean and the premium p(x) is independent of the input profile x. In figure 
3, the constant model is viewed as a flat line when the premium value is plotted against one 
of the input variables. 

4.2 Linear M o d e l  

We implemented a linear model which consists of a set of coefficients, one for each variable 
plus an intercept value, that  minimize the mean-squared error, 

n 

p(x) = ~0 + ~ ~x,.  (7) 
i = 1  

Figure 4 illustrates a linear model where the resulting premiums form a line, given one 
input variable Value. With a two dimensional input variable space, a plane would be drawn. 
In higher dimension, the corresponding geometrical form is referred to as a hyper-plane. 

There are two main ways to control the capacity of linear models when in presence of 
noisy data: 

�9 using a subset of input variables; this directly reduces the number of coefficients 
(but choosing the best subset introduces another level of choice which is sometimes 
detrimental). 
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�9 penalizing the norm of the parameters (in general, intercept parameter/3o is excluded 
from the penalty term); this is called ridge regression in statistics, and weight decay in 
the neural networks community. This was the main method used to control capacity 
of the linear model in our experiments (see above subsection 2.3). 

It should be noted that  the premium computed with the linear model can be negative 
(and negative values are indeed sometimes obtained with the trained linear models). This 
may happen even if there are no negative amounts in the data, simply because the model has 
no built-in positivity constraint (unlike the GLM and the softplus neural network described 
below). 

4.3 T a b l e - b a s e d  m e t h o d s  

These more traditional ratemaking methods rely mainly on a classification system, base 
rates and relativities. The target function is approximated by constants over regular (fi- 
nite) intervals. As shown on the figure, this gives rise to a typical staircase-like function, 
where each level of the staircase is given by the value in the corresponding cell in the table. 
A common refinement in one dimension is to perform a linear interpolation between neigh- 
boring cells, to smooth the resulting function somewhat. The table is not limited to two 
variables; however, when adding a new variable (dimension), the number of cells increases 
by a factor equal to the number of discretization steps in the new variable. 

In order to use table-based methods to estimate a pure premium, find a certain number 
of variables deemed useful for the prediction, and discretize those variables if they are 
continuous. To fill out the table, compute over a number of years (using historical data) 
the total incurred claim amount for all customers whose profiles fall within a given cell of 
the table, and average the total within that  cell. This gives the pure premium associated 
with each cell of the table. 

Assuming that  the i th variable of profile x belongs to the j t h  category, we obtain, 

p(~) = ~0 r [  ~ j  + &~, (s) 
i=l i=m+l 

where/~i,j is the relativity for the j t h  category of the i th variable and ~30 is the standard 
premium. We consider the case where the first m factors are multiplicative and the last 
n - m factors are additive. 

The formula above assumes that  all variables have been analyzed individually and in- 
dependently. A great deal of effort is often put in trying to capture dependencies (or 
interactions) between some variables and to encode them into the premium model. 

An extension of the above is to multiplicatively combine multiple tables associated to 
different subsets of variables. This is in effect a particular form of generalized linear model 
(see below), where each table represents the interdependence effects between some variables. 

4.4 G r e e d y  M u l t i p l i c a t i v e  M o d e l  

Greedy learning algorithms "grow" a model by gradually adding one "piece" at a time to the 
model, but  keeping the already chosen pieces fixed. At each step, the "piece" that is most 
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helpful to minimize the training criterion is "added" to the model. This is how decision 
trees are typically built. Using the validation set performance we can decide when to stop 
adding pieces (when the estimated out-of-sample performance starts degrading). 

The GLM described in the next section is a multiplicative model because the final 
premium function can be seen as a product of coefficients associated with each input variable. 
The basic idea of the Greedy Multiplicative Model is to add one of these multiplicative 
coefficients at a time. At each step, we have to choose one among the input variables. We 
choose the variable which would reduce most the training MSE. The coefficient for that 
component is easily obtained analytically by minimizing the MSE when all the previously 
obtained coefficients are kept fixed. 

In the tables we use the short-hand name "CondMean" for this model because it estimates 
and combines many conditional means. Note that like the GLM, this model provides positive 
premiums. 

4.5 G e n e r a l i z e d  Linear M o d e l  

Bailey and Simon (1960) introduced generalized linear models (GLM) to the actuarial com- 
munity four decades ago. More recently, Brown (1988), Holler et al. (1999), Murphy et al. 
(2000) conducted experiments using such models. GLMs, at their roots, are simple lin- 
ear models that are composed with a fixed nonlinearity (the so-called link function); a 
commonly-used link function is simply the exponential function e x. GLMs (with the ex- 
ponential link) are sometimes used in actuarial modeling since they naturally represent 
multiplicative effects, for example risk factors whose effects should combine multiplicatively 
rather than additively. They are attractive since they incorporate problem-specific knowl- 
edge directly into the model. These models can be used to obtain a pure premium, yielding 
such a formula, 

p ( ~ )  = e x p  + x~ , (9)  
i = 1  / 

where, the exponentiation ensures that the resulting premiums are all positive. In figure 5, 
we can see that the model generates an exponential function in terms of the input variable. 

In their favor, GLMs are quite easy to estimate 2, have interpretable parameters, can 
be associated to parametric noise models, and are not so affected when the number of 
explanatory variables increases, as long as the number of observations used in the estimation 
remains sufficient. Unfortunately, they are fairly restricted in the shape of the functions 
they can estimate. 

The capacity of a GLM model can be controlled using the same techniques as those 
mentionned above (4.2) in the context of linear models. Again, note that the GLM always 
provides a positive premium. 

4.6 C H A I D  decision t rees  

Decision trees split the variable space in smaller subspaces. Any input profile x fits into one 
and only one of those subspaces called leaves. To each leaf is associated a different premium 

2. We have estimated the parameters to minimize the mean-squared error, but other training criteria have 
also been proposed in the GLM literature and this could be the subject of further studies. 
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level, 

nl 

p(x) = ~ I ~ , ~ , ,  (10) 
i=1  

where I{zet~) is an indicator function equal to 1 if and only if x belongs to the i th leaf. In 
that case, I{~et~} = 1 and p(x)  = ~ .  Otherwise, I{~ez~} is equal to zero, meaning x belongs 
to another leaf. The number of leaves is nt. The premium level ~i is set equal to the average 
incurred amount of the policies for which the profile x belongs to the ith leaf. In figure 
6, the decision tree is viewed as generating a piecewise constant function. The task of the 
decision tree is to choose the "best" possible partition of the input variable space. 

The basic way in which capacity is controlled is through several hyper-parameters: min- 
imum population in each leaf, minimum population to consider splitting a node, maximum 
height of the decision tree and, in the case of CHAID decision trees (Kass (1980)), Chi- 
square statistic threshold value. 

4.7 C o m b i n a t i o n  o f  C H A I D  and Linear  M o d e l  

This model is similar to the previous one except that, in each leaf, we have replaced the 
associated constant premium value with a linear regression. Each leaf has its own set of 
regression coefficients. There are thus nz different linear regressions of n + 1 coefficients 
each. 

p(x)  = ~-~I{xet, t fli,0+ fli,jxj . (11) 
i=1  

Each linear regression was fit to minimize the mean-squared error on the training cases 
that belong to its leaf. For reasons that are clear in the light of learning theory, a tree 
used in such a combination should have less leaves than an ordinary CHAID tree. In our 
experiments we have chosen the size of the tree based on the validation set MSE. 

In these models, capacity is controlled with the same hyper-parameters as CHAID, and 
there is also the question of finding the right weight decay for the linear regression. Again, 
the validation set is used for this purpose. 

4.8 O r d i n a r y  N e u r a l  N e t w o r k  

Ordinary neural networks consist of the clever combination and simultaneous training of a 
group of units or neurons that are individually quite simple. Figure 8 illustrates a typical 
multi-layer feedforward architecture such as the ones that were used for the current project. 

We describe here the steps that lead to the computation of the final output of the neural 
network. First, we compute a series of linear combinations of the input variables: 

n 

vi = c~i,o + ~ c~i,jxj, (12) 
j = l  
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where xj is the j t h  out of n variables, ai,0 and ~i,j are the slope intercept and the weights 

of the i th linear combination. The result of the linear combination, vi, is often referred to 
as the level of activation in analogy to the neurons in the brain. 

Then, a non-linear transform (called a transfer function) is applied to each of the linear 
combinations in order to obtain what are called the hidden units. We used the hyperbolic 
tangent function: 

hi = tanh(vi) 

eVi _ e - V l  
- -  ( 1 3 )  

eVi -~- e - V l  , 

where h~ is the i th hidden unit. The use of such a transfer function with infinite expansion in 
its terms has an important role in helping the neural network capture nonlinear interactions 
and this is the subject of subsection 4.9. 

Finally, the hidden units are linearly combined in order to compute the final output  of 
the neural network: 

n h  

p(x) = ~0 + ~ Z, hi, (14) 
i = 1  

where p(x) is the premium computed by the neural network, nh is the number of hidden 
units and ~0 and ~i are the slope intercept and the weights of the final linear combination. 

Put  all together in a single equation, we obtain: 

p(x) = f l o + E / ~ i  tanh cli,o+ ~i,jxj �9 (15) 
i = 1  

Figure 9 depicts a smooth non-linear function which could be generated by a neural 
network. 

The number of hidden units (nh above) plays a crucial role in our desire to control the 
capacity of the neural network. If we choose a too large value for nh, then the number of 
parameters of the model increases and it becomes possible, during the parameter optimiza- 
tion phase, for the neural network to model noise or spurious relationships present in the 
data used for optimzation but that  do not necessarily exist in other datasets. Conversely, 
if nh is set to a low value, the number of parameters could be too small and the neural 
network would not capture all of the relevant interactions in order to properly compute the 
premiums. Choosing the optimal number of hidden units is an important part of modelling 
with neural networks. Another technique for controlling the  capacity of a neural network is 
to use weight decay, i.e., a penalized training criterion as described in subsection 2.3 that  
limits the size of the parameters of the neural network. 

Choosing the optimal values for the parameters is a complex task and out of the scope 
of this paper. Many different optimization algorithms and refinements have been suggested 
(Bishop (1995), Orr and Mfiller (1998)) but  in practice, the simple stochastic gradient 
descent algorithm is still very popular and usually gives good performance. 

Note that  like the linear regression, this model can potentially yield negative premiums 
in some cases. We have observed much fewer such cases than with the linear regression. 
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4.9 How can Neural  Networks  Represent  Nonlinear Interactions? 

For the more mathematically-minded readers, we present a simple explanation of why neural 
networks are able to represent nonlinear interactions between the input variables. 
To simplify, suppose that we have only two input variables, Xl and x2. In classical linear 
regression, a common trick is to include fixed nonlinear combinations among the regressors, 
such as x 2, x~, XlX2, x ~ x 2 , . . .  However, it is obvious that this approach adds exponentially 
many terms to the regression, as one seeks higher powers of the input variables. 

In contrast, consider a single hidden unit of a neural network, connected to two inputs. 
The adjustable network parameters are named, for simplicity, so, ~1 and c~2. A typical 
function computed by this unit is given by 

tanh(c~o + ~axa + a2x2). 

Here comes the central part of the argument: performing a Taylor series expansion of 
tanh(y + so) in powers of y, and letting c~lx I + ot2x 2 stand for y, we obtain (where/3 - 
tanh so), 

tanh(~o + c~lXl + ~2x2) = 
+ (1 -/32)(alxl + ~x2)  + (-/3 + Za)(~lXl + ~2x2)2+ 

- + + + O/ xx, + ~2X2) 5. 

In fact the number of terms is infinite: the nonlinear function computed by this single 
hidden unit includes all powers  of the input variables, but they cannot all be inde- 
pendently controlled. The terms that will ultimately stand out depend on the coefficients 
s0, al ,  and ~2. Adding more hidden units increases the flexibility of the overall function 
computed by the network: each unit is connected to the input variables with its own set 
of coefficients, thereby allowing the network to capture as many (nonlinear) relationships 
between the variables as the number of units allows. 

The coeffients linking the input variables to the hidden units can also be interpreted in 
terms of pro jec t ions  of the input variables. Each set of coefficients for one unit represents 
a direction of interest in input space. The values of the coefficients are found during the 
network training phase using iterative nonlinear optimization algorithms. 

4.10 Softplus  Neural Network 

This new type of model was introduced precisely to make sure that positive premiums are 
obtained. The softplus function was recently introduced in Dugas et al. (2001) as a means 
to model a convex relationship between an output and one of its inputs. We modified 
the neural network architecture and included a softplus unit as a final transfer function. 
Figure 10 illustrates this new architecture we have introduced for the purpose of computing 
insurance premiums. The corresponding formula is as such: 

p(x)  = F + i tanh ~i.0+ o~i,jxj , (16) 
\ ~=~ / 

192 



where F(-) is the softplus function which is actually simply the primitive (integral) function 
of the "sigmoid" function. Thus 

F(y) = log ( l+eU) .  (17) 

The softplus function is convex and monotone increasing w.r.t, to its input and always 
strictly positive. Thus, as can be seen in Figure 11, this proposed architecture leads to 
strictly positive premiums. 

In preliminary experiments we have also tried to use the exponential function (rather 
than the softplus function) as the final transfer function, However we obtained poor results 
due to difficulties in the optimization (probably due to the very large gradients obtained 
when the argument of the exponential is large). 

The capacity of the softplus neural network is tuned just like that of an ordinary neural 
network. Note that this kind of neural network architecture is not available in commercial 
neural network packages. 

4.11 Regress ion  S u p p o r t  Vec tor  Mach ine  

Support Vector Machines (SVM) have recently been introduced as a very powerful set 
of non-parametric statistical learning algorithms (see Vapnik (1998a) and SchSlkopf et al. 
(1998)). They have been very successful in classification tasks, but the framework has also 
been extended to perform regression. Like other kernel methods the class of functions has 
the following form: 

p(x) = ~-~ oqK(x,x,)  (18) 
i 

where xi is the input profile associated with one of the training records, and ai is a scalar 
coefficient that is learned by the algorithm and K is a kernel function that satisfies the 
Mercer condition (Cristianini and Shawe-Taylor (2000)): 

fcK(x,u)g(~)9(u)d~dy >_ 0 (19) 

for any square integrable function g(x) and compact subset C of R n. This Mercer condition 
ensures that the kernel function can be represented as a simple dot product: 

K(x , y )  = r162  (20) 

where r  is a function that projects the input profile vector into a (usually very) high- 
dimensional "feature" space, usually in a nonlinear fashion. This leads us, to a simple 
expression for the premium function: 

p(~) = ~ r 1 6 2  
i 

= ~ .  r ( 2 1 )  
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Thus, in order to compute the premium, one needs to project input profile x in its feature 
space and compute a dot product with vector w. This vector w depends only on a certain 
number of input profiles from the training dataset and their associated coefficients. These 
input profiles are referred to as the support vectors and have been selected, along with their 
associated coefficients by the optimization algorithm. 

SVMs have several very attractive theoretical properties, including the fact that an exact 
solution to the optimization problem of minimizing the training criterion can be found, and 
the capacity of the model is automatically determined from the training data. In many 
applications, we also find that most of the c~i coefficients are zero. 

However, in the case of insurance data, an important characteristic of regression SVMs 
is that they are NOT trained to minimize the training MSE. Instead they minimize the 
following criterion: 

J = �89 2 + ~ Y~ la, - p(xdl, (22) 
i 

where lelr = m a x ( 0 ,  lel - e ) ,  A and e trade-off accuracy with complexity, as is the observed 
incurred claim amount for record i, xi is the input profile for record i, and the vector w is 
defined in terms of the ai coefficients above. It can therefore be seen that this algorithm 
minimizes something close to the absolute value of the error rather than the squared error. 
As a consequence, the SVM tends to find a solution that is close to the conditional median 
rather than the conditional expectation, the latter being what we want to evaluate in order 
to set the proper value for a premium. Furthermore, note that the insurance data display 
a highly asymmetric distribution, so the median and the mean are very different. In fact, 
the conditional median is often exactly zero. Capacity is controlled through the e and ,X 
coefficients. 

4.12 M i x t u r e  M o d e l s  

The mixture of experts has been proposed Jacobs et al. (1991) in the statistical learning 
litterature in order to decompose the learning problem, and it can be applied to regression 
as well as classification. The conditional expectation is expressed as a linear combination of 
the predictions of expe r t  models,  with weights determined by a ga te r  model.  The experts 
are specialized predictors that each estimate the pure premium for insureds that belong to 
a certain class. The gater attempts to predict to which class each insured belongs, with an 
estimator of the conditional probability of the class given the insured's input profile. For a 
mixture model, the premium can be expressed as 

p(x) = ~ p ( c l x ) p c ( x  ) (23) 
c 

where p(c[x) is the probability that an insured with input profile x belongs to class c. This 
value is determined by the gater model. Also, pc(x) is the premium, as computed by the 
expert model of class c, associated to input profile x. 

A trivial case occurs when the class c is deterministically found for any particular input 
profile x. In that case, we simply split the training database and train each expert model on 
a subset of the data. The gater then simply assigns a value of pc(x) = 1 if c is the appropriate 
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Model Train MSE Valid MSE Test MSE 
Constant 56.1108 56.5744 67.1192 
Linear 56.0780 56.5463 67.0909 
GLM 56.0762 56.5498 67.0926 
NN 56.0706 56.5468 67.0903 
Softplns NN 56.0704 56.5480 67.0918 
CHAID 56.0917 56.5657 67.1078 
CondMean 56.0827 56.5508 67.0964 
Mixture 56.0743 56.541{} 67.0851 

Table I: Comparison between the main models, with MSE on the training set, validation 
set, and test sets. The MSE is with respect to claim amounts and premiums 
expressed in thousand of dollars. 

class for input profile x and zero otherwise. This is in fact fundamentally equivalent to other 
techniques such as decision trees or table-based methods. A more general and powerful 
approach is to have the learning algorithm discover a relevant decomposition of the data 
into different regions of the input space which then become the classes and are encoded in 
the gater model. In that case, both the gater and the experts are trained together. 

In this study both the experts and the gater are softplus neural networks, but any other 
model can be used. In Figure 12, we schematically illustrate a mixture model as the one 
that was used in the framework of this project. 

5. E x p e r i m e n t a l  R e s u l t s  

5.1 Mean-Squared Error Comparisons 

Table 1 summarizes the main results concerning the comparison between different types of 
statistical machine learning algorithms. All the models have been trained using the same 
input profile variables. For each insurance policy, a total of 33 input variables were used 
and the total claims for an accident came from five main coverages: bodily injury, accident 
benefit, property damage, collision and comprehensive. Two other minor coverages were 
also included: death benefit and loss of use. In the table, N N  stands for neural network, 
GLM for generalized linear model, and CondMean for the Greedy Multiplicative Model. 
The MSE on the training set, validation set and test set are shown for all models. The 
MSE is with respect to claim amounts and premiums expressed in t h o u s a n d  of  dollars. 
The model with the lowest MSE is the "Mixture model", and it is the model that has 
been selected for the comparisons with the insurer's current rules for determining insurance 
premiums to which we shall refer as the Rule-Based Model. 

One may wonder from the previous table why the MSE values are so similar across 
various models for each dataset and much different across the datasets. In particular, all 
models perform much worse on the testset (in terms of their MSE). There is a very simple 
explanation. The maximum incurred amount on the test set and on the validation set is 
around 3 million dollars. If there was one more such large claim in the test set than in 
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Model #1  Model # 2  Mean Standard Error Z p-value 
Constant Mixture 3.40709e-02 3.32724e-03 10.240000 0 
Linear Mixture 5.82350e-03 1.32211e-03 4.404700 5.29653e-06 
GLM Mixture 7.54013e-03 1.15020e-03 6.555500 2 . 7 7 2 7 8 e - l l  
NN Mixture 5.23885e-03 1.41112e-03 3.712540 1.02596e-04 
Softplus NN Mixture 6.71066e-03 1.09351e-03 6.136810 4.20977e-10 
CHAID Mixture 2.35891e-02 2.57762e-03 9.151520 0 

Table 2: Statistical Comparison Between Different Learning Models and the Mixture Model. 
The p-value is for the null hypothesis of no difference between Model #1  and the 
best mixture model. Note that  ALL differences are statistically significant. 

the validation set, one would expect the test MSE (calculated for premiums and amounts 
in thousand of dollars) to be larger by about 7 (these are in units of squared thousand 
dollars). Thus a difference of 11 can easily be explained by a couple of large claims. This 
is a reflection of the very thick right-hand tail of the incurred amount distribution (whose 
standard deviation is only of about 8 thousand dollars). Conversely, this also explains why 
all MSE are very similar across models for one particular dataset. The MSE values are 
all mainly driven by very large claims which no model could reliably forecast (no model 
could lead the insurer to charge one million dollars to a particular insured!) Consequently, 
truly significant differences between model performances are shadowed by the effect of very 
large claims on the MSE values. Although the differences between model performance are 
relatively small, we shall see next that  careful statistical analysis allows us to discover that  
some of them are significant. 

Figure 13 illustrates graphically the results of the table, with the models ordered accord- 
ing to the validation set MSE. One should note that  within each class of models the capacity 
is tuned according to the performance on the validation set. On the test and validation sets, 
the Mixture model dominates all the others. Then come the ordinary neural network, linear 
model, and softplus neural network. Only slightly worse are the GLM and CondMean (the 
Greedy Multiplicative model). CHAID fared poorly on this dataset. Note that  the CHAID 
+ linear model described in section 4.7 performed worse than ordinary CHAID. Finally, the 
constant model is shown as a baseline (since it corresponds to assigning the same premium 
to every 1-year policy). It is also interesting to note from the figure that  the model with 
the lowest training MSE is not necessarily the best out-of-sample (on the validation or test 
sets). The SVM performance was appalling and is not shown here; it did much worse than 
the constant model, because it is aiming for the conditional median rather the conditional 
expectation, which are very different for this kind of data. 

Table 2 shows a statistical analysis to determine whether the differences in MSE between 
the Mixture model and each of the other models are significant. The Mean column shows 
the difference in MSE with the  Mixture model. The next column shows the Standard Error 
of that  mean. Dividing the mean by the standard error gives Z in the next column. The 
last column gives the p-value of the null hypothesis according to which the true expected 
squared errors for both models are the same. Conventionally, a value below 5% or 1% 
is interpreted as indicating a significant difference between the two models. The p-values 
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Model #1  Model # 2  Mean Standard Error Z p-value 
Constant CHAID 1.04818e-02 2.62416e-03 3.994350 3.24368e-05 
CHAID GLM 1.60490e-02 2.15109e-03 7.460850 4.29823e-14 
GLM Softplus NN 8.29468e-04 8.94764e-04 0.927025 1.76957e-01 
Softplus NN Linear 8.87159e-04 1.08802e-03 0.815392 2.07424e-01 
Linear NN 5.84651e-04 1.33283e-03 0.438653 3.30457e-01 
NN Mixture 5.23885e-03 1.41112e-03 3.712540 1.02590e-04 

Table 3: Statistical Comparison Between Pairs of Learning Models. Models are ordered 
from worst to best. The test is for comparing the sum of MSEs. The p-value is 
for the null hypothesis of no difference between Model #1  and Model #2.  

and Z corresponding to significant differences are highlighted. Therefore the differences in 
performance between the mixture and the other models are all statistically significant. As 
mentionned above, the MSE values are very much affected by large claims. Does such a 
sensitivity to very large claims make statistical comparisons between models incorrect? No. 
Fortunately all the comparisons are performed on pa i r ed  d a t a  (the squared error for each 
individual policy), which cancel out the effect of these very large claims (since, for these 
special cases, the squared error will be huge for all models and of very close magnitude) 

Table 3 has similar columns, but it provides a comparison of pairs of models, where 
the paim are consecutive models in the order of validation set MSE. What  can be seen is 
that  the ordinary neural network (NN) is significantly better than  the linear model, but  the 
latter, the softplus neural network and CLM are not statistically distinguishable. Finally 
GLM is significantly better than CHAID, which is significantly better than the constant 
model. Note that  although the softplus neural network alone is not doing very well here, it 
is doing very well within the Mixture model (it is the most successful one as a component 
of the mixture). The reason may be that  within the mixture, the parameter estimation 
for model of the low incurred amounts is not polluted by the very large incurred amounts 
(which are learned in a separate model). 

5.2 E v a l u a t i n g  M o d e l  F a i rne s s  

Although measuring the predictive accuracy--as done with the MSE in the previous section-- 
is a useful first step in comparing models, it tells only part of the story. A given model 
could appear significantly better than its competitors when averaging over all customers, 
and yet perform miserably when restricting attention to a subset of customers. 

We consider a model to be fair if different cross-sections of the population are not 
significantly biased against, compared with the overall population. Model fairness implies 
that  the average premiums within each sub-group should be statistically close to the average 
incurred amount within that  sub-group. 

Obviously, it is nearly impossible to correct for any imaginable bias since there are 
many different criteria to choose from in order to  divide the population into subgroups; for 
instance, we could split according to any single variable (e.g. premium charged, gender, rate 
group, territory) but  also combinations of variables (e.g. all combinations of gender and 
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Model Rule-Based Model 
High Low High 

Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 

Mixture 
Low 

1 50.81 
2 166.24 
3 214.10 
4 259.74 
5 306.27 
6 357.18 
7 415.93 
8 490.35 
9 597.14 
10 783.90 

166.24 139.27 245.0145 
214.10 245.01 297.0435 
259.74 297.04 336.7524 
306.26 336.75 378.4123 
357.18 378.41 417.5794 
415.93 417.58 460.2658 
490.34 460.26 507.0753 
597.14 507.07 554.2909 
783.90 554.29 617.1175 

4296.78 617.14 3095.7861 

Table 4: Subgroups used for evaluating model fairness, for the Mixture and Rule-Based 
Models. The lowest and highest premiums in the subgroups are given. Each 
subgroup contains the same number of observations, ~ 28,000. 

territory, "etc.). Ultimately, by combining enough variables, we end up identifying individual 
customers, and give up any hope of statistical reliability. 

As a first step towards validating models and ensuring fairness, we choose the subgroups 
corresponding to the location of the deciles of the premium distribution. The i-th decile 
of a distribution is the point immediately above 10i% of the individuals of the population. 
For example, the 9-th decile is the point such that  90% of the population come below it. In 
other words, the first subgroup contains the 10% of the customers who are given the lowest 
premiums by the model, the second subgroup contains the range 10%-20%, and so on. 

The subgroups corresponding to the Mixture Model (the proposed model) differ slightly 
from those in the Rule-Based Model (the insurer's current rules for determining insurance 
premiums). Since the premium distribution for both models is not the same. The subgroups 
used for evaluating each model are given in Table 4. Since they correspond to the deciles 
of a distribution, all the subgroups contain approximately the same number of observations 
(~  28,000 on the 1998 test set). 

The bias within each subgroup appears in Figure 14. It shows the average difference 
between the premiums and the incurred amounts, within each subgroup (recall that  the 
subgroups are divided according to the premiums charged by each model, as per Table 4). 
A positive difference implies that  the average premium within a subgroup is higher than 
the average incurred amount  within the same subgroup. 95% confidence intervals on the 
mean difference are also given, to assess the statistical significance of the results. 

Since subgroups for the two models do not exactly represent the same customers, we 
shall refrain from directly comparing the two models on a given subgroup. We note the 
following points: 

* For most subgroups, the two models are being fair: the bias is usually not statistically 
significantly different from zero. 
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�9 More rarely, the bias is significantly positive (the models overcharge), but  never sig- 
nificantly negative (models undercharge). 

�9 The only subgroup for which both models undercharge is that  of the highest-paying 
customers, the 10-th subgroup. This can be understood, as these customers represent 
the highest risk; a high degree of uncertainty is associated with them. This uncertainty 
is reflected in the huge confidence intervals on the mean difference, wide enough not 
to make the bias significantly different from zero in both cases. (The bias for the 
Rule-Based Model is nearly significant.) 

From these results, we conclude that  both models are usually fair to customers in all 
premium subgroups. A different type of analysis could also be pursued, asking a different 
question: "In which cases do the Mixture and the Rule-Based Models differ the most?" We 
address this issue in next section. 

5.3 Comparison with Current Premiums 

For this comparison, we used the best (on the validation set) Mixture model and compare 
it on the test data  of 1998 against the insurer's Rule-Based Model. Note that  for legislative 
reasons, the Rule-Based Model did not use the same variables as the proposed Mixture 
Model. 

Histograms comparing the distribution of the premiums between the Rule-Based and 
the Mixture models appear in Figure 15. We observe that  the premiums from the Mixture 
model is smoother and exhibits fatter tails (more probability mass in the right-hand side of 
the distribution, far from the mean). The Mixture model is better able to recognize risky 
customers and impose an appropriately-priced premium. 

This observation is confirmed by looking at the distribution of the premium difference 
between the Rule-Based and Mixture models, as shown in Figure 16. 

We note that  this distribution is extremely skewed to the left. This means that  for some 
customers, the Rule-Based model considerably under-charges with respect to the Mixture 
model. Yet, the median of the distribution is above zero, meaning that  the typical customer 
pays more under the Rule-Based model than under the Mixture model. At the same time, the 
Mixture model achieves better prediction accuracy, as measured by the Mean-Squared Error 
(MSE) of the respective models, all the while remaining fair to customers in all categories. 

Our overriding conclusion can be stated plainly: the Mixture model correctly charges 
less for typical customers, and correctly charges more for the "risky" ones. This may be due 
in part to the use of more variables, and in part to the use of a statistical learning algorithm 
which is better suited to capturing the dependencies between many variables. 

6. T a k i n g  A d v a n t a g e  o f  I n c r e a s e d  D i s c r i m i n a n t  P o w e r  

Neural networks have been known to perform well in tasks where discrimination is an impor- 
tant  aspect of the task at hand and this has lead to many commercially successful application 
of these modelling tools (Keller (1997)). We have shown that,  when applied properly while 
taking into account the particulars of insurance data, that  ability to discriminate is also re- 
vealed with insurance data. When applied to automobile insurance ratemaking, they allow 
us to identify more precisely the true risk associated to each insured. 
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6.1 Application to Underwrit ing 

Completely changing the rate structure of an insurer can be a costly enterprise, in particular 
when it involves significant changes in the computer systems handling transactions, or the 
relations with brokers. There are other applications of systems which improve the estimation 
of pure premium. In the States of Massachusetts, New Hampshire, North Carolina and the 
provinces of Quebec and Ontario, improved discrimination can be used for the purpose of 
choosing the risks to be ceeded to the risk-sharing pools (actual terminology varies from 
one jurisdiction to another). According to these pool plans, an insurer can choose to ceed 
a portion of its book of business (5%-10%) to the pool by paying a portion of the gross 
premium that was charged to the insured. Then, in case an accident occurs, the pool 
assumes all claim payments. The losses in the pool are then shared between the insurers. 
Thus, for an insurer, the goal is to identify the risks that have been underpriced the most 
(i.e. those for which the difference between the true risk and the current premium is largest). 
There are a few reasons why such inadequately rated risks can be identified: 

�9 legislation related to ratemaking could be more restrictive than the one that pertains 
to the risk-sharing pool, 

�9 strategic marketing concerns may have forced the insurer to underprice a certain part 
of its book of business and, 

�9 other concerns may not allow the insurer to use highly discriminative models for the 
purpose of ratemaking. 

Better discrimination of risks can be used to identify, with higher confidence, the worst 
risks in a population and therefore improve the performance of an insurance company's 
underwriting team. 

6.2 Application to Ratemaking and Marketing 

The greatest benefit from an improved estimation of pure premium derives by considering 
its application to ratemaking. The main reason for these benefits is that a more discriminant 
predictor will identify a group of insureds that are significantly undercharged and a (much 
larger) group that is significantly overcharged. Identifying the undercharged will yield in- 
creased profits: increasing their premiums will either directly increase revenues (if they 
stay) or reduce underwriting losses (if they switch to another insurer). The advantage of 
identifying the insured profiles which correspond to overcharged premiums can be coupled 
with a marketing strategy in order attract new customers and increase marke t  share,  
a very powerful engine for increased profitability of the insurer (because of the fixed costs 
being shared by a larger number of insureds). 

To decide on the appropriate change in premium, one also needs to consider market 
effects. An elasticity model can be independently developped in order to characterize the 
relation between premium change and the probability of losing current customers or acquir- 
ing new customers. A pure premium model such as the one described in this paper can then 
be combined with the elasticity model, as well as pricing constraints (e.g. to prevent too 
much rate dislocation in premiums, or to satisfy some jurisdiction's regulations), in order to 
obtain a function that "optimally" chooses for each insured profile an appropriate change in 
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gross premium, in order to maximize a financial criterion. We have successfully tested such 
an idea and the detailed analysis of these results wiU be the  subject of a further paper. 

7. C o n c l u s i o n  

In this paper, we have argued in favor of the use of statistical learning algorithms such as 
neural networks for automobile insurance ratemaking. We have described various candidate 
models and compared them qualitatively and numerically. We have found that  the selected 
model has significantly outperformed all other models, including the current premium struc- 
ture. We believe that  their superior performance is mainly due to their ability to capture 
high-order dependencies between variables and to cope with the fat tall distribution of the 
claims. Other industries have adopted statistical learning algorithms in the last decade and 
we have shown them to be suited for the automobile insurance industry as well. 

A p p e n d i x  A .  P r o o f  o f  t h e  e q u i v a l e n c e  o f  t h e  f a i r n e s s  a n d  p r e c i s i o n  
cr i ter ions  

In this section, we show that,  when all subpopulations are considered to evaluate fairness, 
the precision criterion and the fairness criterion, as they were defined in section 2, both lead 
to the same premium function. 

T h e o r e m  1 The premium .function which maximizes precision (in the sense of equation 2) 
also maximizes fairness (in the sense of equation 5, when all subpopulations are considered), 
and it is the only one that does maximize it. 

Proof: 
Let P be a subset of the domain of input profiles. Let q be a premium predictor function. 

The bias in P is defined by 

1 
bq(P) = - ~  E (q(xi) - a~). 

Let Fq = -E[~_, e bq(P) 2] be the expected "fairness" criterion using premium function q, to 
be maximized (by choosing q appropriately). 

Let p(x) = E[a[x] be the optimal solution to the precision criterion, i.e. the minimizer 
of 

Ei(p(X) - A)2]. 
Consider a particular population P.  Let q(P) denote the average premium for that  

population using the premium function q(x), 

1 
q(P) = "("~]. E q(x,) 

(xl,al)eP 

and similarly, define a(P) the average claim amount for that  population, 

1 
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Then the expected squared bias for that  population, using the premium function q, is 

E[bq(P) 2] = E[(q(P) - a(P))  2] 

which is minimized for any q such that  q(P) = E[a(P)]. 
Note in particular that  the optimal ESE solution, p, is such a minimizer of Fq, since 

,a~)e 1 ,~0 e (~ ai]=E[a(P)] 
1 E[ailxi] = E[-~[ P(P) = T~(~,  p , , ,  p 

We know therefore that  q = p is a minimizer of Fq, i.e. Vq, Fp < Fq. 
Are there other minimizers? Consider a function q r p, that  is a minimizer for a 

particular population/:'1. Since q # p, 3x s.t. q(x) # p(x). Consider the particular singleton 
population Px = {x}. On singleton populations, the expected squared bias is the same as 
the expected squared error. In fact, there is a component of F which contains only the 
squared biases for the singleton populuations, and it is equal to the expected squared error. 
Therefore on that  population (and any other singleton population for which q ~ p) there is 
only one minimizer of the expected squared bias, and it is the conditional expectation p(x). 
So E[(q(x)-A)2IX = x] > E[(p(x)-A)2[X = x] and therefore E[bq(Pz)] > E[bp(P.~)]. Since 
p is a maximiser of fairness for all populations, it is enough to prove that  q is sub-optimal 
on orie population to prove that  the overall fairness of q is less than that of p, which is the 
main statement of our theorem: 

V q # p ,  Fq>Fp.  
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Figure 1: Illustration of overf i t t ing.  The solid left curve fits the noise in the data points 
(black dots) and has not learned the underlying structure (dashed). The right 
curve, with less flexibility, does not overfit. 

Overfitting Good Fit 

Figure 2: Methodology to prevent overfitting. Model capacity is controlled via a validation 
set, disjoint from the training set. The generalization performance estimator is 
obtained by final testing on the test set, disjoint from the first two. 
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Figure 3: The constant model fits the best horizontal line through the training data. 
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p(x) Figure 4: The linear model fits a straight line through the training data. 
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Figure 5: The generalized linear model fits an exponential of a linear transformation of the 
variables. 
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Figure 6: The CHAID model fits constants to partitions of the variables. The dashed lines 
in the figure delimit the partitions, and are found automatically by the CHAID 
algorithm. 
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Figure 7: The CHAID+Linear model fits astraight line within each of the CHAID partitions 
of the variable space. 
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Figure 8: Topology of a one-hidden-layer neural network. In each unit of the hidden layer, 

Input  
Variable I 

Input 
Variable 2 

Input  
Variable n 

the variables are linearly combined. The network then applies a non-linear trans- 
formation on those linear combinations. Finally, the resulting values of the hidden 
units are linearly combined in the output layer. 

Figure 9: The neural network model learns a smooth non-linear function of the variables. 
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Figure 10: Topology of a one-hidden-layer softplus neural network. The hidden layer applies 
a non-hnear transformation of the variables, whose results are linearly combined 
by the output  layer. The softplus output  function forces the function to be 
positive. To avoid cluttering, some weights linking the variables to the hidden 
layer are omitted on the figure. 

Figure 11: The softplus neural network model learns a smooth non-linear pos i t ive  function 
of the variables. This positivity is desirable for estimating insurance premiums. 
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Figure 12: Schematic representation of the mixture model. The first-stage models each 
make an independent decision, which are linearly combined by a second-stage 
gater .  
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Figure 13: MSE results (from table I) for eight models . Models have been sorted in as- 
cending order of test results. The training, validation and test curves have been 
shifted closer together for visualization purposes. The out-of-sample test per- 
formance of the mixture model is significantly better than any of the other. 
Validation based model selection is confirmed on test results. 
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Figure 14: Average difference between premiums and incurred amounts (on the sum over 
all coverage groups), for the Mixture and Rule-Based models, for each deeile of 
the models' respective premium distribution. We observe that both models are 
being fair to most customers, except those in the last deeile, the highest-risk 
customers, where they appear to under-charge. The error bars represent 95% 
confidence intervals. (Each decile contains ~ 28,000 observations.) 
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Figure 15: Comparison of the premium distribution for the current Rule-Based model and 
the Mixture model. The distributions are normalized to the same mean. T h e  
Mixture model distribution has fatter tails and is much smoother. 

Figure 16: Distribution of the premium difference between the Rule-Based and Mixture 
models, for the sum of the first three coverage groups. The distribution is nega- 
tively skewed: the Rule-Based model severely under-charges for some customem. 
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