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Abstract 

We consider the issue of modeling the so~called hidden severity exposure occurring through 
either incomplete data or an unobserved underlying risk factor, We use the celebrated EM 
algorithm as a convenient tool in detecting latent (unobserved) risks in finite mixture models 
of claim s'everity and in problems where data imputation is needed, We provide examples of 
applicability of the methodology based on real-life auto injury claim data and compare, when 
possible, the accuracy of our methods with that of standard techniques, 

1 Introduction 
Actuarial analysis can be viewed as the process of studying profitability and solvency of an insurance 
firm under a realistic and integrated model of key input random variables such as loss frequency 
and severity, expenses, reinsurance, interest and inflation rates, and asset defaults. In a modern 
analysis of financial models of property-casualty companies, these input variables typically can 
be classified into financial market variables and underwriting variables (cf. e.g., D'Arcy et al. 
1{)97). The financial variables generally refer to asset-side generated cash flows of the business, 
and the underwriting variables relate to the cash flows of the liabilities side. The process of 
developing any actuarial model begins with the creation of probability distributions of these input 
variables, including the establishment of the proper range of values of input parameters. The use of 
parameters is generally determined by the use of the parametric families of distributions, although 
the non-parametric techniques have a role to play as well (see, e.g., Derrig, et al, 2001). In this 
article we consider an issue of hidden or "lurking" risk factors or parameters and point out the 
possible use of the celebrated EM algorithm to uncover those factors. We begin by addressing 
the most basic questions concerning hidden loss distributions. To keep things in focus we will 
be concerned here only with two applications to modeling the severity of loss, but the methods 
discussed may be easily applied to other problems like loss frequencies, asset returns, asset defaults, 
and combining those into models of Risk Based Capital, Value at Risk, and general Dynamic 
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Financial Analysis, including Cash Flow Testing and Asset Adequacy Analysis. Our applications 
will illustrate the use of the EM algorithm (i) to impute missing values in an asset portfolio and 
(ii) to screen medical bills for possible fraud or abusive practices. 

1.1 Hidden Exposures in Loss Severity Distributions 

In many instances one would be interested in modeling hidden risk exposures as additional dimen- 
sion(s) of  the loss severity distribution. This in turn in many cases leads to considering mixtures 
of probability distributions as the model of choice for losses affected by hidden exposures; some 
parameters of the mixtures will be considered missing (i.e., unobservable in practice). During the 
last 20 years or so there has been a considerable advancement in statistical methodologies dealing 
with partially hidden or incomplete data models. Empirical data imputation has become more so- 
phisticated and the availability of ever faster computing power have made it increasingly possible 
to solve these problems via iterative algorithms. 

In our paper we shall illustrate a possible approach to two types of problems arising often in 
practical situations of modeling the severity of losses: (i) imputation of partially missing multivariate 
observations and (ii) identification of latent risks via fitting finite mixtures models. 

The common feature of both of these issues is, generally speaking, the unavailability of com- 
plete information on the variables or parameters of interest. The statistical methodology which is 
especially well-suited for this type of circumstances is the so-called EM algorithm. 

1.2 The EM Algorithm 

In their seminal paper Dempster, Laird and Rubin (1977) have proposed the methodology which 
they have called the Expectation-Maximization (EM) algorithm as an iterative way of finding 
maximum likelihood estimates. 1 They demonstrated that the method was especially appropriate 
for finding the parameters of an underlying distribution from a given data set where the data 
was incomplete or had missing values. At present there are two basic applications of the EM 
methodology considered in the statistical literature. The first occurs when the data indeed has 
missing values, clue to problems with or limitations of the data collection process. The second 
occurs when the original likelihood estimation problem is altered by assuming the existence of 
the hidden parameters or factors. It turns out that both these circumstances can be, at least 
initially, described in the following statistical setting. Let us consider a density function (possibly 
multivariate) p( . le )  that is indexed by the set of parameters e .  As a simple example we may take 
p to be a univariate Gaussian density and e = {(/z,~)l - oo < # < oo, a > 0}. Additionally, we 
have an observed data set X of size n, drawn from the distribution p. More precisely, we assume 
that the points of 2(' = ( x l , . . .  ,x~)  are the realizations of some independent random variables 
distributed according to p(.IO). We shall call 2(' the incomplete data. In addition to X, we also 

IA full explanation of the role of the EM algorithm in missing data problems can be found in Little and Rubin, 
(1987) or in a somewhat more mathematically advanced monograph by McLachlan and Krishnan (1997). 
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consider a complete data set Z = ( X , y )  and specify the joint density 

p(~.lO) = p(x, yl O) = p(ylx, O) p(xlO ). (1) 

As we can see from the last equality, this joint density p(zle) arises from considering the marginal 
density p ( x l e  ) and the specific assumptions on the relation between hidden (or missing) variables 
Y = (y l , . . .Yn )  and the observed incomplete data X.  Associated with the joint density is the 
joint likelihood function 

n 

s = L(e Iz ,  2) = 12[ p(x~, yde) 
i=l 

which is often called the complete likelihood. ]:or the sake of computational simplicity it is often 
more convenient to consider the logarithm of the complete likelihood 

n 

Kelz) = log z:(elX, y) = ~ logp(x, yde). (2) 
i=l 

Note that the function above may be thought of as a random variable since it depends on the 
unknown or missing information 3) which by assumption is governed by an underlying probability 
distribution. Note also that in accordance with the likelihood principle, we now regard X as 
constant. 

The EM algorithm as described in Dempster, Laird and Rubin (lg77) consists of two steps 
repeated iteratively. In its expectation step or the E-step, the algorithm first finds the expected 
value of the complete log-likelihood function ]ogp(X, ~10) with respect to the unknown data 
given the observed data ~" and the current parameter estimates. That is, instead of the complete 
log-likelihood (2) we consider the following 

Q(O, O (i-l)) = E [logp(X, ylO)}X, O(;'-t)] . (3) 

Note the presence of the second argument in the function Q(O, 0(i-1)). Here e (~-1) stands for 
the current value of the parameter e at the iteration (i - 1), that is, the value which is used to 
evaluate the conditional expectation. 

After the completion of the E-step, the second step of the algorithm is to maximize the 
expectation computed in the first step. This is called the maximization or the M-step, at which 
time the value of e is updated by taking 

O (i) = argmax Q(O, O (~'-1)) (4) 
e 

The steps are repeated until convergence. It Can be shown (via the relation (1) and Jensen's 

78 



inequality) that if (~* maximizes Q(E), O (i-1)) with respect to E) for fixed O (i-1) then 

t(~)*lZ) - l(~)(~-l){z) > Q(~)*, ~)(~-1)) - Q(~)(~-~), o (~-1)) >_ 0 

and each iteration of the procedure indeed increases the value of complete log-likelihood (2). Let 
us note that from the above argument it follows that a full maximization in the M-step is not 
necessary: it suffices to find any value of O (~) such that Q(E)(0,E)(i-1)) > Q(E)(i-]),E)(i-1)). 
Such procedures are called GEM (generalized EIV 0 algorithms. For a complete set of references 
see, for instance, the monograph by McLachlan and Krishnan (1907) where also the issues of 
convergence rates for the EM and GEM algorithms are thoroughly discussed. For some additional 
references and examples see also Wu (1983) or the monographs by Little and Rubin (1987) and 
Hastie,Tibshirani, and Friedman (2001). 

2 Modeling Hidden Risks via the EM Algorithm 

As indicated in the previous section the primary application of the EM a{gorithm is in fitting the 
maximum likelihood models. Since this is accomplished by the M-step of the algorithm, the role 
of the E-step is, therefore, secondary - it is needed to facilitate the performance of the M-step 
in the presence of the missing or incomplete data. However, as in this paper we shall focus on 
the usefulness of the EM procedure in modeling hidden risks or variables, in our setup we shall 
be in fact more interested in the E-step of the algorithm, as it will provide us with the way to 
estimate or impute missing data and uncover hidden factors and variables. In our examples below 
we shall consider two types of hidden (latent) variables. The first one will arise when, due to 
some problems with the data collection, parts of the observations are missing from the observed 
dataset. We consider this problem via the EM method in the particular context of multivariate 
(loss) models. 

2.1 Multivariate Severity Distributions. Data Imputation with EM 

Although insurance has been traditionally build on the assumption of independence and the law of 
large numbers has governed the determination of premiums, the increasing complexity of insurance 
and reinsurance products has lead over past decade to increased actuarial interest in the modeling 
of dependent risks (see, e.g., Wang 1998 or Embrechts et al. 2000). Multivariate loss and risk 
models (and especially those based on elliptically contoured distributions) have been hence of 
interest in such areas as Capital Asset Pricing Model and the Arbitrage Pricing Theory (cf. e.g., 
Campbell, Lo, and MacKinlay 1996). 

In some circumstances, however, parts of the observed multivariate data may be missing. Claim 
reporting systems depend heavily on the front-line adjusters to provide data elements beyond the 
simple payment amounts. In the absence of, or even in the presence of, system edits, daily work load 
pressures and the lack of interest in the coded data provide a deadly combination of disincentives 
for accurate and complete coding. Actuaries are quite familiar with missing data fields, which when 
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Table 1:10 fictitious observed gains and losses from two risk portfolios in thousands. 

0.914 2.088 2.644 0.477 -1.940 -0.245 0.362 1.147 ? ? 
3.855 4.025 2.092 3.400 1.520 2.626 ? ? 5.473 6.235 

essential to the analysis most often results in throwing the record out, thereby creating unknown 
'hidden' biases. Likewise, financial time series data may be interrupted, unavailable, or simply lost 
for securities or portfolios that are not widely tracked. 

As an illustration of an application of the EM algorithm in this setting let us consider a 
hypothetical example of 10 losses/gains from a two-dimensional vector of risk portfolios, which 
we have generated using a bivariate normal distribution. The data is presented in Table 1 (in 
thousands of dollars). As we can see parts of the last four observations are missing from the table. 
In fact, for the purpose of our example, they have been removed from the generated data. We 
shall illustrate the usefulness of the EM algorithm in estimating these missing values. 

If we denote by Pg the observed (incomplete) data listed in Table 1 then following our notation 
from previous section we have the complete data vector Z given by 

z = ( z l . . . - . , )  = ( x l . . . ,  ~ ,  (~1,7, y2,7) r ,  (~ ,8 ,  y2,~) ~,  (~1,~, =~,9) r , (~1,~0, =2,~o) T) 

where x j  = (Xld, x2d) T for j = 1 . . .  , 6 is the set of pairwise complete observations. The missing 
data (corresponding to ? marks in Table 1) is, therefore, 

Y = (y~,r, y2,8, Yl,9, yl,z0). 

Let us note that under our assumption of normality, the equation (2) now becomes 

(5) 

1 I 
n 

t ( O l Z )  = - n  l og (2~ )  - ~ log  I~1 - 
5=1 

where n = 10, ~ = (#1,#2) T is a vector of means and 

~ = (o'11 o'12"~ 
\ff12 •22} 

is covariance matrix. The vector of unknown parameters, therefore, can be represented as 

O = (#I, #2, ~11, a12, ~22). (6) 
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In order to describe the EM algorithm in thir setting we need to find the particular form of 
Q(O, O (i-1)) defined by (3). Due to the independence of the zi's this is equivalent, in effect, to 
evaluating 

Eo(,-~) (YIX) and EO(,-1 ) (Y21X) 
where Y is the underlying random variable for )), assumed to be normal. From the general formulae 
for conditional moments of a bivariate normal variable X = (X1, X2) with the set of parameters 
O as above, we have that 

E(X21X1 -- Xl) - - / t 2  + O12/Crll(Xl -- ~1) 

Y ~ , ' ( X 2 l X ~  = ~ )  = , ,2za  = ,~22(1 - p2)  (7) 

where p stands for the correlation coefficient. Interchanging the subscripts 1 and 2 in (7) gives the 
formulae for the conditional mean and variance of the distribution X I l X 2  = x2. Using the relations 
(7) and the usual formulae for ML estimators of the normal mean vector/~ and the covariance 
matrix ~, we may now state the EM algorithm for imputing missing data in Table 1 as follows, 

Algorithm 1 (EM version of Buck's algorithm) 

1. Define the initial value O (0) of the set of parameters (5). Typically, it can be obtained on 
the basis of  the set of complete pairs of observations (i.e., x l . . .  ,x6 in Table I). 

2. The E-step: given the value of e (1) calculate via (7) the vector .~(1) of the imputations of  
the missing data ~ given by (6). 

(~) 
y(~) - (~) -- a12 [ 

2k -- /'t2 -i- " ~  ~Xlk -- ~tl) ) 
fill  

(0 
y ~ - -  (O--ai2 [ x #~0) 

- -  t"l  "I- a(i)22 ~ 2k - -  

and Y~k (i) = ~U2k] (~ (i)~ 2 t-- 0"22.1(i) for k = 7, 8 

and Yl2k (i) [" (d)~2 j- ~(i) ~tJlk] i ~ l 1 2  f o rk=9 ,10  

3. The M-step: given the current value of the imputed complete data vector Z(i) = (X,  y( i ) )  
set Mk )"~=1 z(i~/n and Mkt n (i) (i) _ e( i+ l )  = = ) '~ j= lZk jZ , j / n  fork, l - 1,2, andcalculate as 

( (i+1) (i+l)~ = ( M 1  M2) t*l ~ P2 ] 

ak(it +1) =Mkt -- Mk Mt for k,l = 1,2 

4. Repeat steps 2 and 3 until the relative difference of the subsequent values of l(e(i+l) l :z( i)  ) 
is sufficiently small. 
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The above algorithm in its non-iterative version was first introduced by Buck (1960) who used 
the method of imputation via linear regression with subsequent covariance correction to estimate 
means and covariance matrices of p dimensional random vectors in case when some parts of  the 
vector components were missing. For more details about Buck's imputation procedure, we refer 
to his original paper (Buck 1960) or to Chapter 3 of Little and Rubin ( lg87) or Chapter 2 of 
McLachlan and Krishnan (lgg7). 

The numerical illustration of the algorithm is presented in Table 2. As we can see from the 

Table 2: Selected iterations of the EM algorithm for data in Table 1. 

Iteration #1 /~2 o11 0"12 0"22 Y2,7 Y2,8 Yl,9 Y1,10 - 2 0  
1 
5 
10 
20 
30 
35 
40 
45 

0.6764 3.5068 1.8170 0.3868 2.0671 3.4399 3.6069 1.0443 1.1867 
0.8770 3.6433 1.8618 0.8671 2.2030 3.4030 3.7685 1.5982 1.8978 
0.9279 3.6327 1.9463 0.9837 2.1724 3.3466 3.7433 1.7614 2.1061 
0.9426 3.6293 1.9757 1.0181 2.1639 3.3301 3.7345 1.8102 2.1683 
0.9435 3.6291 1.9775 1.0202 2.1634 3.3291 3.7339 1.8132 2.1722 
0.9436 3.6291 1.9776 1.0203 2.1633 3.3290 3.7339 1.8134 2.1724 
0.9436 3.6291 1.9777 1.0204 2.1633 3.3290 3.7339 1.8134 2.1724 
0.CJ436 3.6291 1.9777 1.0204 2.1633 3.3290 3.7339 1.8134 2.1725 

65.7704 
64.7568 
64.5587 
64.5079 
64.5048 
64.5047 
64.5046 
64.5046 

table with the accuracy of up to three significant digits, the algorithm seems to converge after 
about 30 steps or so and the estimated or imputed values of (5) are given by 

~(~r,) = (3.329, 3.734,1.813, 2.173). 

Let us note, for the sake of comparison, that i f  we were to employ the standard, "naive" linear or 
polynomial regression model based on 6 complete observations in order to fit the missing values in 
Table 1 we would have obtained in this case 

y(reg) = (2.834, 3.063, 2.700, 3.269). 

Both y(em) and yffeg) can be now compared with the actual values removed from Table 1 which 
were 

y = (3.362, 3.657,1.484, 3.410). 

As we can see, in our example the EM method did reasonably well in recovering the missing values. 
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2.2 Massachusetts Auto Bodily Injury Liability Data. Fraud and Build-up Screen- 
ing via Mixture Models 

By now it is fairly well known that fraud and build-up, exaggerated injuries and/or excessive 
treatment, are key components of the auto injury loss distributions (Derrig et al. 1994, Cummins 
and Tennyson 1996, Abrahamse and Carroll 199(3). Indeed, inJury loss distributions are prime 
candidates for mixture modeling, for at least the differing of payment patterns by injury type. Even 
within an injury type as predominant as.strain and sprain, 2 there can be substantial differences in 
subpopulations arising from fraud and build-up. One common method of identifying these claims 
has been to gather additional features of the claim, the so-called fraud indicators, and to build 
models to identify those bogus claims (Brockett, et al. 1998). The acquisition of reliable indicators 
some of which may be highly subjective, is costly, and may not be efficient in uncovering abusive 
patterns in injury claims (Crocker and Tennyson 1999). The use of more flexible methods such as 
the fuzzy logic (see more below) may overcome the lack of this precision in subjective features in 
an economically efficient manner by running a background algorithm on adJusters' electronic files 
(see, for example, Derrig and Ostaszewski 1995, lggg). 

Another approach to uncovering fraud and build up, perhaps grounded more in practical con- 
siderations, is to construct a filter, or screening algorithm, for medical provider bills (Derrig 2002). 
Routinely, excessive medical bills can be reduced to "reasonable and customary" levels by com- 
puter algorithms that compare incom!ng bills to right censored billing distributions with "excessive" 
being operationally defined to be above the censoring point. Less routine is the implementation 
of systematic analysis of the patterns of a provider's billing practices (Major and Riedinger 1992). 
Our second application of the EM algorithm is to build a first level screening device to uncover 
potential abusive billing practices and the appropriate set of claims to review. We perform the 
pattern analysis by uncovering abusive-like distributions within mixture models parametrized by 
the estimates obtained via the EM algorithm. An illustration of the method follows. 

In the table provided in Appendix B we present a set of outpatient medical provider's total 
billings on the set of 348 auto bodily injury liability claims closed in' Massachusetts during 2001. 
For illustration purposes, 76 claims with one "outlier" provider ( "A ' )  were chosen based on a 
pattern typical of abusive practice; namely, an empirical kurtosis more than five times the overall 
average. The "outlier" was then combined with medical bills in claims from a random sample 
of providers. The losses are recorded in thousands and are presented in column two. Column 4 
identifies each medical billing amount as provider "A" or "other". We will use the EM algorithm 
applied to a normal (log) mixture model attempting to uncover provider A. 

The relatively large volume of provider A's claims is clearly visible in the left panel of Figure 1, 
where it is presented as a portion of the overall claims 

Whereas the volume of claims by itself never constitutes a basis for the suspicion of fraud or 
build-up, it certainly might warrant a closer look at the data at hand, especially via some type of 

2Currently, Massachusetts insured bodily injury claims are upwards of 80 percent strain and sprain claims as the 
most costly part of the medical treatment. Of course, that may have a dependency on the $2,000 dollar threshold 
to file a tort claim. 
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Figure 1: Overall distribution of the 348 BI medical bill amounts from Appendix B compared with 
that submitted by provider A. Left panel: frequency histograms (provider A's histogram in filled 
bars). Right panel:density estimators (provider A's density in dashed line). 

.'~ '0 ~ ; 
L~(oml) 

homogeneity analysis, since the second panel in Figure 1 clearly indicates the difference between 
the overall claims distribution and that of the provider A. Hence in this problem we shall be looking 
for a hidden exposure which could manifest itself as a non-homogenous component of  the data, 
albeit we shall not be assuming that this component is necessarily due to provider A. In fact, as the 
initial inspection of the overall data distribution does not immediately indicate non-homogeneity we 
shall not make any prior assumptions about the nature or source of the possible non-homogeneity. 

Since the standard analysis of the data by fitting a kernel density estimator (see the solid curve 
in the right panel of  Figure 1) appears to give no definite indication of multimodality, it seems, that 
some more sophisticated methods are needed in order to identify any foreign components of the 
claims. Whereas many different approaches to this difficult problem are possible, we have chosen 
one that shall illustrate the applicability of the EM methodology in our setting. Namely, we shall 
attempt to fit a log-mixture-normal distribution to the data, that is, we shall model the logarithm 
of the claim outpatient medical billing distribution as a mixture of several normal variables. The 
use of normal distributions here is mostly due to convenience of the EM implementation and in 
more complicated real life problems can be inappropriate. However, the principle that we shall 
attempt to describe here is, ih general, applicable to any mixture of distributions, even including 
non-parametric ones. 3 

3The notion of fitting non-parametric distributions via likelihood methods, which at first may seem contradiction 
in terms, has become very popular in statistics over the last decade. This is due to intensive research into the so 
called empirical likelihood methods (see for instance a recent monograph by Owen 2001 and references therein). In 
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In order to describe our method in the context of the EM algorithm we shall again relate the 
problem at hand to our EM methodology introduced in Section 1. In our current setting we shall 
consider the set of logarithms of the BI claim medical bills as the incomplete data X.  According to 
our model assumption we identify the underlying random variable X,  of which X is a realization, 
as a mixture of several (say, m > 2) normal distributions 4 

X i ~  N(#j,aj)  for j =  l . . . . .  m 
m 

z = ~ ,  ~. x j ,  (s) 
j = l  

where Yj e (0,1) with P(Yj = 1) = r j  such that ~ ~rj = 1 and the joint distribution of the 
vector (Y1,--. ,Ym) is multinomial with one trial, ( i .e. , )~Yj  = 1). The right hand side of (8) is 
sometimes known as generative representation of a mixture. Indeed, if we generate a multinomial 
variable (Y1,... ,Ym) with probabilities of Yj = 1 equal to ~rj, and depending on the index j for 
which outcome is a unity, deliver X j ,  then it Can be shown that the density of X is 

~ p(xlej) (91 
j=l 

where p(.IO~) is a normal density with the parameter 

Oj = (#j, aj) for j = 1 ,2  . . . .  , m  

Hence X is indeed a mixture of the Xj 's. The density given by (9) is less helpful in our approach 
as it doesn't explicitly involve the variables Yj's. Moreover, fitting the set of parameters 5 

e = (0~ . . . . .  O , . ,~n  . . . . .  ~r,._~). ( lO) 

by considering log-likelihood of (9) is known to be numerically difficult as it involves evaluation of 
the sums under the logarithm. In contrast, the representation (8) provides for a simpler approach, 
which also suits better our purpose of illustrating the use of the EM methodology. In the spirit 
of the search for hidden exposure, we consider the (unobserved) realizations of random vector 
(YI , . . .  ,Ym) in (8) as the missing data y .  Let us note that unlike in the example discussed in 
Section 2 here we have in some sense artificially created the set y .  In this setting the complete set 
of  da t a  is now Z = ( X , y )  or z j  = (xj, yjk) for j = 1 , . . .  , n ,  and k = 1 . . .  , m .  Here n = 348 is 
the number of obervations, m is the number of components in the mixture, unspecified for now, x j  
is (logarithm of) the observed medical bill value, and Yjk E {0, 1) is the auxiliary indicator variable 

principle, with some modifications, the mixture approach discussed in this section and the associated EM algorithm 
can be applied to the empirical likelihood as well. 

4Note that in our notation a denotes the variance, not standard deviation. 
SNote that we only need to estimate m -- 1 proportions since ~ r ~  = 1, 
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indicating whether or not x j  arrives from the distribution of Xk. 
log-likelihood function (2) takes the form 

n m 

t(OlZ) = ~ ~ yjk logp(xjlOk), 
j = l  k= l  

and the conditional expectation (3) is given by 

In this setting the complete 

(11) 

Q(o, •(i-1)) (~jk logp(xjlOk), (12) 
j=l k=l 

where 

6jk=E(Yjk]O(i-1),Z)=P(Y3k=IlO(i-1),X) for j = l . . . , n ;  k=l,...,m. (13) 

As we can see from the above formulae, in this particular case Q(O, O(i-1)) is obtained from the 
complete data likelihood by substituting for the unknown yjk's their conditional expectations 6ja's 
calculated under the current value of the estimates of 0.  6 The quantity 6jk is often referred to as 
the responsibility of the component Xk for the observation j .  This terminology reflects the fact 
that we may think about final 6jk as the conditional (posterior) probability of  the j - th  observation 
arriving from the distribution of Xk. 

Once we have replaced the yjk's in (11) by the 6jk's, the maximization step of the EM algorithm 
is straightforward and applied to (12) gives the usual weighted ML estimates of the normal means, 
variances, and the mixing proportions (see below for the formulae). However, in order to proceed 
with the EM procedure we still need to construct the initial guesses for the set of parameters (10). 
A good way to do so (for a discussion, see, for instance, Chapter 8 of Hastie et al. 2001 or Xu and 
Jordan 1996) is to simply choose at random m of the observed claim values as the initial estimates 
of the means, and set all the estimates of the variances to the overall sample variance. The 
mixing proportion can be set uniformly over all components. This way of initiating the parameters 
ensures the relative robustness of the final estimates obtained via EM against any particular initial 
conditions. In fact, in our BI data example we have randomly selected several initial sets of values 
for the means and in all case have obtained convergence to the same set of estimates. Below we 
present the detailed EM algorithm we have used to analyze the Massachusetts auto BI data. In 
order to identify the number m of the mixture components in the model we have used the EM 
method to obtain the estimates of the complete log-likelihood function (as the final values of (12)) 
for m = 2, 3, 4 (we have had determined earlier that for m > 4 the BI mixture model becomes too 
cumbersome). The results are presented in Table 3. As can be seen from the last row of the table, 
m = 3 is the number of components minimizing the negative of the estimated log-likelihood (12). 
Henceforth we shall, therefore, take m = 3 for the BI mixture model. 

6It may happen that some of the values Y3k are in fact available. In such cases, we would take 51k = yjk. 
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Table 3: Comparison of the mixture fit for the different values of m for the BI data 

Parameter m = 2 m = 3 m = 4 

#1 

#3 
#4 ~/2 

al/2 

G~/2 

~ /2  

7rl 
~2 
~3 
~r4 

0.071 0.107 -0.01 
1.110 0.874 0.218 

1.248 0.911 
1.258 

1.265 1.271 1.201 

0.252 0.178 1.349 

0.146 0.214 

0.144 
0.470 0.481 0.250 
0.530 0.205 0.224 

0.314 0.247 
0.279 

-2Q 819.909 811.381 811.655 

Table 4: Selected iterations of the EM algorithm for the BI data with m = 3. 

Iteration 
1 
5 
6 
10 
20 
30 
40 
50 
60 
64 
65 

0.22g 0.785 0.885 1.172 0.89 0.843 0.35 0.320 0.321 
-0.129 0.946 1.054 1.374 0.525 0.356 0.337 0.301 0.361 
-0.131 0.953 1.083 1.357 0.49g 0.300 0.349 0.281 0.370 
-0.041 0.917 1.137 1.324 0.456 0.223 0.396 0.217 0.387 
0.042 0.875 1.166 1.302 0.364 0.207 0.438 0.177 0.385 
0.064 0.876 1.184 1,2g 0.301 0.200 0.453 0.176 0.372 
0.074 0.871 1.204 1.285 0.259 0.188 0.460 0.186 0.354 
0.084 0.868 1.226 1.281 0.222 0.17 0.467 0.197 0.336 
0.099 0.871 1.243 1.275 0.1g0 0.153 0.476 0.204 0.320 
0.105 0,873 1.247 1.272 0.180 0.147 0.48 0.205 0.315 
0.107 0.874 1.248 1.271 0.178 0.146 0.481 0.205 0.314 

-2q 
g73.115 
854.456 
839.384 
820.903 
817.363 
816.143 
814.957 
813.367 
811.838 
811.454 
811.381 

Algorithm 2 (The EM algorithm for fining m-component normal mixture) 

1. Define the initial estimate e (~ of the set of parameters (10) (see discussion above). 

2. The E-step: given the current value of O (~) compute the responsibilities 6j as 
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~J~ = m (i) (1) j = 1,. . .  ,n and 

3. Tile M-step: compute the ML estimators of (12) as 

n 

(~+1) ~':d=l~Jk for k = l , . . . , m - - 1 ,  7r  k ~ -  
n 

and 

k =  1 , . . . , m .  

~d=l  jk 

,~ ~ ( --,uC~+z)~ 2 
a('+Z)= ~'J=l ik x=J~ k ] for k = l  . . . . .  m. 

~d=z jk 

4. Repeat steps 2 and 3 until the relative difference of the subsequent values of (12) is suffi- 
ciently small. 

Figure 2: EM Fit. Left panel: mixture of normal distributions fitted via the EM algorithm to BI 
data�9 Right panel: Three normal components of the mixture. The values of all the parameters are 
given in the last row of Table 4. 
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In Figures 2 and 3 we present graphically the results of the analysis of the BI data via the 
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mixture model with nz = 3 using the EM algorithm as described above. Some selected iterations 
of the EM algorithm for the three component normal mixture are presented in Table 4. In the 
left panel of Figure 2 we show the fit of the normal mixture fitted to the data using Algorithm 2 
(with parameters values given by the last row of Table 4) . As we can see the fit looks reasonable 
and the fitted mixture distribution looks similar to the standard density estimator (solid curve in 
the right panel of Figure 1). The mixture components identified by the EM method are presented 
in the right panel of Figure 2 and clearly indicate non-homogeneity of the data which seems to 
consist of two (in fact, three) different types of claims. This is, obviously, related to a high volume 
of claims in the interval around 1.8-4.5 thousands (corresponding to the values .6-1.5 on the log 
scale). This feature of the data is modeled by the two tall and thin (i.e., with small dispersion) 
components of the mixture (corresponding in our notation to X2 and X3, marked as solid and 
dashed curves, respectively). Let us also note the very pronounced difference (over seven-fold) in 
the spread between the first and the two last components. 

Figure 3: Latent risk in BI data modeled by the EM algorithm with nz = 3. Left panel: set of the 
responsibilities 5j3. Right panel: the third component of the normal mixture compared with the 
distribution of provider A's claims ("A" claims density estimator is a solid curve). 

-~ ~ ~ ,15 2~ 
~j~m~ 

. ~_  .-C>,... y.j... , i 

Log~n~ 

In the left panel of Figure 3 we present the set of responsibilities (5j3) of the model (or 
component) X3 as calculated by the EM algorithm superimposed on the histogram of the BI data. 
The numerical values of the responsibilities for each data point are also listed in the last column of 
the table in Appendix B. The relationship between the set of responsibilities obtained via the EM 
procedure and the apparent lack of homogeneity of the data, demonstrated by Figure 2, is easy to 
see. The high responsibilities are clustered around the claim values within two standard deviations 
of the estimated mean (1.25) of the tallest distribution X3. Hence the plot of responsibilities 
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superimposed on the data distribution again uncovers the non-homogeneity or the risk factor 
which was initially hidden. As we can see from the right panel in Figure 3 the observed non- 
homogeneity may be attributed largely, as initially expected (and as the illustration intended), to 
the high kurtosis of "A" claims. Indeed, the superimposing of the distribution of "A" claims (solid 
curve) on the component X3 (dashed curve) in the right panel of  Figure 3 reveals a reasonably close 
match in the interval (.8, 1.7) or so. Outside this interval the normal approximation to the provider 
A's claims fails, mostly due to the fact that the normal mixture model employed is not sufficiently 
"fine tuned" in its tails to look for this particular type of distribution. The deficiency could be 
perhaps rectified in this particular case by incorporating some different (non-normal) components 
into the mixture model. However, our main task in this analysis was to merely uncover hidden 
factors (if any) and not necessarily to model them precisely, which should be done afterwards using 
some different, more sophisticated modeling approach depending on the type of problem at hand. 
See, for instance, Bilmes, (1998) who presents the extension of our Algorithm 2 to the so-called 
general hidden Markov model (HMM).  For a full review of some possible approaches to fitting the 
finite mixtures models and the use of the EM methodology in this context, readers are referred 
to the recent monograph by McLachlan and Peel (2000) which also contains some descriptions of 
the currently available software for fitting a variety of non-normal mixtures via the EM method. 

2.3 The EM Algorithm Output and Fuzzy Set Membership Function 

As we have seen above, each run of the EM algorithm estimating an n-mixture model will produce 
responsibilities for each claim and for each one of the ~T~ mixture distributions. As mentioned 
earlier, they can be interpreted as the (posterior) probability that the claim "arises" from each 
of the components of the mixing distributions. They also can be interpreted as the membership 
functions for the fuzzy sets of "arising from the ~-th mixture component". If for any claim the 
responsibility (membership) of a particular model component equals one, we say that the claim 
arises from that model component. When the responsibility is less than one, the claim arises 
partially from that component, and if the responsibility equals zero, we can say the claim does 
not arise from that component. In that context, every claim "belongs to" each of the mixing 
component with measurement value equal to the responsibility. Putting the EM algorithm within 
the fuzzy set context provides us with the well-known tools of fuzzy arithmetic to help interpret 
the EM output in a way that matches real-life actuarial choices (c.f., e.g., Derrig and Ostaszewski 
1999). 

Another advantage of portraying the responsibility probabilities as fuzzy sets relations is that the 
defuzzification operator known as the a-cut 7, can be used to illustrate the type I and II errors when 
the a-cut criterion is used to classify the claim as belonging to one of the mixture distributions. 
The a-cut classification table is presented in Table 5 below and shows the portions of "A" claims 
contained in each a-cut from 0.1 to 0.9 for each mixture component distribution. In particular, the 
a-cut analysis confirms our previous findings that "A" claims belong predominantly to the third 

7For c~ equal to a number between zero and one, the o~-cut of a fuzzy set consists of the (crisp) set of all elements 
that have a membership value greater than or equal to c~ (see, Derrig and Ostaszewski 1995). 
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mixing distribution (i.e., distribution of X3). Indeed, the a-cut at about 0.5 provides us with a good 
indication that "A" arises from the third mixing distribution (corresponding to the value 75% in the 
table) but not from the first one (corresponding to 8% value only). These findings are consistent 
with those illustrated by Figure 3. In contrast, the second mixing distribution (distribution of 
X2) does not allow us to classify correctly "A" and "other" in our three-mixture model. The 
low proportion of "A" claims assigned to the model X2 indicates that they are generally unlikely 
to arrive from X2 which may be an indication of some further non-homogeneity among claims, 
even after adjusting for the type "A". The X2 component could be, therefore, the manifestation 
of some additional hidden factors, which again confirms the findings summarized in the previous 
section, s 

Table 5: Fuzzy membership via responsibility probabilities 

a Resp. X1 Resp. X2 Resp. Xs 
A Other A Other A Other 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.05 0.42 
0.05 0.42 
0.07 0.45 
0.08 0.46 
0.08 0.48 
0.11 0.49 
0.16 0.54 
0.22 0.64 
O.g5 1.00 

0.00 0.00 
0.00 0,00 
0.09 0.11 
0.13 0.20 
0.13 0.24 
0.16 0.28 
0.21 0.30 
0,24 0.35 
0.33 0.41 

0.00 0.00 
0.54 0.13 
0.62 0.19 
0.70 0.22 
0.75 0.24 
0.78 0.26 
0.79 0.30 
0.79 0.34 
0.82 0.38 

2.4 Accuracy  Assessment  for the EM Output via Paramet r i c  Bootstrap 

In our analysis of  the BI data conducted in the previous sections we have used the numeric values 
of the estimated parameters (10) and the responsibilities (13). Since these values were estimated 
from the data via the EM algorithm, it is important to learn about their accuracy. In general, 
for the set of  parameters (10) the usual approach to assessing accuracy based on the asymptotic 
normality of the maximum likelihood estimators can be applied here, as soon as we calculate the 
information matrix for O. This is slightly more complicated for the set of  responsibilities (13) as 
they are the functions of O and hence require the appropriate transformation of the information 
matrix. However, a simpler method of obtaining, for instance, confidence intervals for the set 
of responsibilities and the model parameters can be also used, based on the so-called parametric 

SAn analysis of the mixture model applied only to 272 "other" claims shows that %2 has a more pronounced 
representation (high (~-cut proportions) of (i) chiropractic and physical therapy treatment, (ii) special investigations 
and independent medical examinations, and (iii) extended treatment delays. 
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bootstrap method outlined in Algorithm 3 below. The method can be shown to be asymptotically 
equivalent to the normal approximation approach and is known to be often more reliable for smaller 
sample sizes or for the heavily biased estimators (which will often be the case for the responsibilities 
(13)). The algorithm below describes how to obtain confidence intervals for the parameters given 
by (10) and (13) using bootstrap. For some more examples and further discussion see, for instance_, 
McLachlan and Peel (2000) or the forthcoming paper by Rempala and Szatzschneider (2002) where 
also the issue of the hypothesis testing for the number of mixture components via the parametric 
bootstrap method is discussed. 

AIsorithm 3 (Bootstrap confidence intervals) 

1 Using the values of the model parameters (10) obtained from the EM algorithm generate 
the set of pseudo-data 2#* (typically of the same length as the original data 2~). 

2 With 2#* at hand, use Algorithm 2 in order to obtain a set of pseudo-values e*.  

3 Using the set of the original data values �9 and @* from step 2 above, calculate the pseudo- 
responsibilities 6~k as in Algorithm 2 step 2. 

4 Repeat the steps I -3  a large number of times, say, B. 9 

5 Use the empirical quantiles of the distributions of pseudo-values O* and 6~k to obtain con- 
fidence bounds for e and 6jk. 

For illustration purpose we present the set of confidence intervals for the three-mixture-normal 
model parameters and the responsibilities (of X3) obtained via the above algorithm for the BI data 
in Tables 6 and 7 below. The term "bootstrap estimate" in the tables refers to the average value 
of the B bootstrap pseudo-values obtained in steps 2 or 3. 

3 Summary and Conclusion 

This paper has introduced the statistical methodology for inference in the presence of missing data, 
known as the EM algorithm, into the actuarial settings. We have shown that this methodology 
is particularly appropriate for those practical situations which require consideration of the missing 
or incomplete data, the "lurking" variables, or the hidden factors. We believe that due to its 
conceptual simplicity, the EM method could become a standard tool of actuarial analysis in the 
future. Herein we have given only some example of its usefulness in modeling loss severity. Specif- 
ically, in modeling claim severities, the EM algorithm was used to impute missing values in a more 
sophisticated and statistically less biased way than simple regression methods as well as to uncover 
(hidden) patterns in the claim severity data. Actual auto bodily injury liability claims closed in 
Massachusetts in 2001 were used to illustrate a first stage screen for abusive medical providers, and 

QIn our setting B needs to be fairly large, typically at least a thousand. For a discussion see, for instance, 
McLachlan and Peel (2001), 
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Table 6: Accuracy of the parameter estimates for the BI data with B=1000 

Parameter Value Bootstrap g5% CI 

~3 
o~/2 
o~/2 
o~/2 
Ir2 
7r3 

Estimate 
0.107 0.104 (-0.115, 0.298) 
0.874 0 . 8 7 1  (0.80g, 0.g24) 
1.248 1.249 (1.216, 1.284) 
1.271 1.269 (1.132, 1.389) 
0.178 0.175 (0.125, 0.222) 
0.146 0.144 (0.117, 0.174) 
0.205 0 . 2 0 7  (0.157, 0.253) 
0.314 0 . 3 1 7  (0.268, 0.375) 

Table 7: Accuracy of the selected responsibilities ~ij3 

No Log Claim ~j3 Bootstrap g5% CI 
( j )  Value Value Estimate 
100 0.380 0.000 0 . 0 0 0  (3.gOe-12, 2.04e-06) 
200 1.031 0.410 0.396 (0.243, 0.531) 
300 1.353 0.854 0.863 (0.802 0.912) 

their abusive claims, utilizing the EM algorithm. The usefulness of the EM output for classification 
purpose and its connections with fuzzy logic techniques were discussed. Namely, the EM algorithm 
output of posterior probabilities called responsibilities were reinterpreted as fuzzy set membership 
function in order to bring the machery of fuzzy logic to bear in the classification problem. The 
Monte-Carlo based method of assessing the accuracy of the model parameters fitted via the EM 
algorithm, known as the parametric bootstrap was also presented and the appropriate algorithm 
for its implementation was developed. The set of functions written in the statistical language 
R, implementing the EM algorithms discussed in the paper, have been included in Appendix A to 
allow readers to try different actuarial situations where missing data and hidden components might 
be found. A large variety of actuarial and financial applications of the presented methodology are 
possible, including its incorporation into models of Risk Based Capital, Value at Risk, and general 
Dynamic Financial Analysis. We hope that this paper shall promote enough interest in the EM 
methodology for further exploration of those opportunities. 

Acknowledgement. The authors wish to acknowledge Dr Krzysztof M. Ostaszewski, FSA for 
his encouragements and helpful comments at the initial stages of this project. 
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Appendix A. R Functions 

We present here the implementation of Algorithms 1 and 2 in statistical software R which is a 
freeware version of the award winning statistical software S+ and is available from http://www.r- 
project.org. The functions below were used in the numerical examples discussed in the text. 

#Algorithm1: EMversion of Buck's imputation procedure#################### 
#auxiliary fnnction 
inv<-function(m .... ) solve (m, diag (rep(1, lengCh(m [, i] ) )) .... ); 
#defining matrix inverse (for compatibility with older versions of R) 
#input parameters 
# d -dataframe of two columns containing complete observations 
# dl-list of observations with missing second coordinate 
# d2-1ist of observations with missing first coordinate 
# B-maximal number of iterations (default value 500) 
# eps- convergence criterion (default value .0001) 
###################################################################### 

em.buck <-function(d,dl,d2,B=500,eps=.0001) { 
n<-length(d[,l]); 
nl<-length(dl); 
n2<-length(d2); 
m<-apply(d,2,mean); 
R<-cov(d); 
rho<-cor(d)[1,2]; nLL.old<-eps; nLL.new<-100; 
w<-rbind(d,cbind(dl,rep(m[2] ,nl)),cbind(rep(m[1] ,n2),d2)); 
i<-I; #mainloop# 
while (abs(nLL.new-nLL.old)/nLL.old>eps && i<=B){ 
Tl<-sum(w[,l]); T2<-sum(w[,2]); T12<-sum(w[,l]*w[,2]); 
Tll<-sum(w[(n+nl+l):(n+nl+n2),l]~2 
+B[l,l]*(l-rho ̂  2))+sum(w[-((n+nl+l):(n+nl+n2)),l] ^ 2); 
T22<-sum(w[(n+l):(n+nl),2]" 2+R[2,2]*(1-rho" 2))+sum(w[-((n+l):(n+nl)),2] ^ 2); 
R<-array(c(Tll-Tl" 2/(n+n1+n2),T12-Tl*T2/(n+nl+n2),T12-T1*T2/(n+nl+n2), 
T22-T2" 2/(n+nl+n2))/(n+nl+n2), c(2,2)); 
m<-c(Tl/(n+nl+n2),T2/(n+nl+n2)); 
rho<-R[l,2]/sqrt(~[l,1]~R[2,2]); 
w[(n+l):(n+nl),2]<-m[2]+R[l,2]~(w[(n+l):(n+nl),l]-m[l])/R[1,1]; 
W[(n+nl+l):(n+nl+n2),l]<-m[l]+R[1,2]~(w[(n+nl+l):(n+nl+n2),2]-m[2])/R[2,2]; 
nLL.old<-nLL.new; 
s<-0; for (k in l:(n+nl+n2)) s<-(w[k,]-m)~inv(R)~(w[k,]-m)+s; 
nLL.new<-2~(n+nl+n2)~log(2~pi)+s+(n+nl+n2)~log(abs(det(R))); 
i<-i+l; }; #end mainloop# 
print(paste("n=", n, nl, n2, "Theta estimates=", m[1],m[2], R[I,1], 
R[1,2], R[2,2], "itsr=" ,i-I, "-2LL=" ,nLL.new,"rho=" ,rho)) 
return(list(re=m, R=R,iter=i-l,LL=nLL.new,w--w)) ; } 
#output parameters: list of objects (m,R,iter,LL,w) 
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# m -vector of estimated means 
# R -estimated eovariance matrix 
# iter -number of iterations until convergence 
# w-concatenated datafrume of d,dl,d2 along with imputed missing values 

# Algorithm2: EMfornormaimix tures ############################## 
#auxiliary function 
isum<-function(a,p.new,m,s){ k<-length(m); ss<-O; 
for (i in l:k) ss<-ss+p.new[[i]]*dnorm(a,m[[i]],s[[i]]); 
return(ss)} 
# facilitates calculation of LL in the main procedure below 

# input parameters: 
# a -any list of numeric data 
# pi -initial estimate of mixing proportions (default value: uniform over three components) 
# eps -desired convergence accuracy (default value .0001) 
# B -maximal number of iterations allowed (default value 100) 
# m -initial values of means estimates (default value: random selection from a) 
################################################################# 
em.multnorm<-function(a, pi=c(i/3,1/3,1/3),eps=.OOOI,B=lOO,m=sort(sample(a,3))) 
{n<-length(a); k<-length(m); s<-rep(sd(a),k); 
i<-1; p.new<-pi; 
mO<-m; 
logl.old<-l; 
logl.new<-sum(log(isum(a,p.new,m,s))); 
#mainloop# 
while (abs((logl.new-logl.old)/logl.old)>eps && i<=B) 
{g<-NULL; 
for (t in 1:k) g<-rbind(g, p.new[[t]]*dnorm(a,m[[t]],s[[t]])/isum(a,p.new,m,s)); 
m<-gX*Xa/gX*Xrep(1,n); 
s<-sqrt(g~*Xa'2/g%*~rep(l,n)-m~2); 
p.old<-p.new; p.new<-gX*Xrep(1,n)/n; i<-i*1; 
logl.old<-logl.new; 
logl.new<-sum(log(lsum(a,p.new,m,s))); 
}; 
#end mainloep# 
print(paste("Theta estimates",m,s,"pi=",p.new,"iter=",i-1,"-2LL=",-2~logl.new)); 
return(list(m--m,s=s~pi=p.new~iter=i-1,start--m~,~gl=-2*l~g~.new,res~=t(g),data=a)) } 

# output parameters: list of objects (m,s,pi,iter,logl,resp) 
# m - vector of estimated values of means 
# s - vector of estimated values of standard deviations 
# pi -vector of estimated value of mixing proportions 
# iter- number of iterations until convergence 
# legl- final value of -2Q 
# resp- matrix of responsibilities (columns correspond to mixture components) 
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Appendix B. Massachusetts Auto Insurance Bodily Injury Liability Data 

Below we present the set of  Auto Insurance Data discussed in the paper. Medical bill claim amounts 

are given in thousands. Responsibilities 6j3 are calculated according to Algorithm 2. 

No Claimed Log(Amt) Provider Resp, I No Claimed Log(Amt) Provider Resp, 
Amt 6j3 ] Amt 6j3 

1 0.045 -3.101 Other 0,00 
3 0.07 -2.659 Other 0.00 
5 0.077 -2.564 Other 0,00 
7 0.117 -2.146 Other 0.00 
9 0.14 -1.966 Other 0.00 
11 0 . 1 4 9  -1.904 Other 0.00 
13 0 . 1 6 7  -1,790 Other 0.00 
15 0.18 -1.715 Other 0.00 
17 0.199 -1.614 Other 0.00 
19 0,212 -1.551 Other 0.00 
21 0.23 -1.470 Other 0.00 
23 0 , 2 6 4  -1.332 Other 0,00 
25 0 . 2 8 5  -1.255 Other 0.00 
27 0 . 3 6 3  -1.013 Other 0,00 
29 0,4 -0.916 Other 0.00 
31 0 . 4 1 3  -0.884 Other 0.00 
33 0 . 4 1 6  -0.877 Other 0.00 
35 0 . 4 2 5  -0.856 Other 0.00 
37 0.43 -0.844 A 0.00 
39 0.45 -0.799 Other 0.00 
41 0 . 4 8 6  -0.722 Other 0.00 
43 0.5 -0.693 Other 0.00 
45 0 . 5 3 1  -0.633 Other 0.00 
47 0 . 5 5 6  -0.587 Other 0,00 
49 0,6 -0.511 Other 0.00 
51 0 . 6 0 5  -0.503 Other 0.00 
53 0,66 -0.416 Other 0.00 
55 0 . 6 8 5  -0.378 Other 0.00 
57 0 . 6 9 8  -0.360 Other 0.00 
59 0 . 7 0 5  -0.350 Other 0.00 
61 0.74 -0.301 Other 0.00 
63 0.78 -0.248 Other 0.00 
65 0 . 7 8 5  -0.242 Other 0.00 
67 0 . 8 2 5  -0,192 Other 0.00 
69 0.83 -0.186 Other 0.00 
71 0.87 -0.139 Other 0.00 
73 0 . 9 3 4  -0068 Other 0.00 
75 0 . 9 5 4  -0.047 Other 0.00 
77 0 . 9 6 2  -0.039 Other 0.00 
79 0 . 9 7 5  -0.025 Other 0.00 

2 0,047 -3.058 Other 0.00 
4 0.075 -2.590 Other 0.00 
6 0.092 -2.386 Other 0.00 
8 0.117 -2.146 Other 0.00 
10 0 . 1 4 5  -1.931 Other 0.00 
12 0 . 1 6 5  -1.802 Other 0.00 
14 0 . 1 6 9  -1.778 Other 0.00 
16 0.18 -1.715 Other 0,00 
18 0 . 2 0 2  -i,599 Other 0.00 
20 0.225 -1.492 Other 0.00 
22 0 . 2 4 2  -1,419 Other 0.00 
24 0 . 2 7 5  -1.291 Other 0.00 
26 0.29 -1.238 Other 0.00 
28 0 , 3 8 4  -0.957 Other 0.00 
30 0.4 -0.916 Other 0.00 
32 0 . 4 1 4  -0.882 Other 0.00 
34 0 , 4 2 5  -0.856 Other 0.00 
36 0.43 -0.844 Other 0.00 
38 0 , 4 3 1  -0.842 Other 0.00 
40 0.46 -0.777 Other 0.00 
42 0.5 -0,693 Other 0.00 
44 0 , 5 1 4  -0.666 A 0.00 
46 0.54 -0.616 Other 0.00 
48 0 . 5 6 4  -0.573 Other 0.00 
50 0 . 6 0 5  -0.503 Other 0.00 
52 0.65 -0.431 Other 000 
54 0.66 -0.416 Other 0.00 
56 0.69 -0.371 Other 0.00 
58 0.7 -0.357 Other 0.00 
60 0 , 7 2 5  -0.322 Other 0.00 
62 0.75 -0.288 Other 0,00 
64 0 . 7 8 5  -0.242 Other 0.00 
66 0 . 8 0 6  -0.216 Other 0.00 
68 0 . 8 2 5  -0.192 Other 0.00 
70 0 . 8 3 6  -0.179 A 0.00 
72 0.9 -0.105 Other 0.00 
74 0.95 -0.051 Other 0.00 
76 0 . 9 5 6  -0.045 Other 0.00 
78 0.97 -0.030 Other 0.00 
80 0 , 9 8 8  -0.012 Other 0.00 
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No Claimed Log(Amt) Provider Resp. I No Claimed Log(Amt) Provider Resp. 
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81 1.015 0.015 Other 0.00 
83 1.058 0.056 Other 0.00 
85 1.161 0.149 Other 0.00 
87 1.195 0.178 Other 0.00 
89 1.242 0.217 Other 0.00 
91 1,295 0.259 Other 0.00 
93 1.319 0.277 Other 0.00 
95 1.34 0.293 Other 0.00 
97 1.39 0.329 Other 0,00 
99 1.455 0.375 Other 0.00 
101 1.49 0,399 Other 0.00 
103 1.542 0.433 Other 0.00 
105 1.618 0.480 Other 0.00 
107 1.64 0.495 Other 0.00 
109 1.65 0.501 Other 0.00 
111 1.68 0.519 Other 0.00 
113 1.7 0,531 A 0.00 
115 1,750 0,565 Other 0.00 
117 1.898 0.640 Other 0.00 
110 1.923 0.654 Other 0,00 
121 1.98 0.673 Other 0.00 
123 1.99 0.688 Other 0.00 
125 2.018 0.702 Other 0,00 
127 2.02 0.703 Other 0.00 
12g 2.042 0.714 A 0.00 
131 2.063 0.724 Other 0.00 
133 2.087 0.738 Other 0.00 
135 2.1 0.742 Other 0.00 
137 2.12 0.751 Other 0.01 
139 2.159 0.770 Other 0.01 
141 2.184 0.781 A 0.01 
143 2.191 0.784 Other 0,01 
145 2.224 0,799 Other 0,02 
147 2.251 0.811 A 0.02 
149 2.288 0.828 Other 0.03 
151 2.318 0.841 Other 0.03 
153 2.325 0.844 A 0.03 
155 2,341 0.851 Other 004 
157 2.374 0.865 Other 0.05 
159 2.406 0.878 Other 0.06 
181 2,45 0.896 Other 0.08 
183 2.488 0.903 Other 0.09 
165 2.48 0.908 Other 0.10 
167 2.49 0.912 A 0.10 
169 2.5 0.916 Other 0.11 
171 2.5 0.916 A 0.11 
173 2.532 0.920 Other 0,13 

82 1,053 0.052 Other 0,00 
84 1,08 0.077 Other 0.00 
86 1.187 0.154 Other 0.00 
88 1.215 0,195 Other 0,00 
90 1.28 0,231 Other 0.00 
92 1.31 0.270 Other 0.00 
94 1,33 0,285 Other 0.00 
96 1,355 0304 Other 0.00 
98 1.444 0,367 Other 0.00 
100 1.463 0,380 Other 0.00 
102 1.5 0.405 Other 0.00 
104 1.598 0.469 Other 0.00 
106 1.623 0.484 Other 0,00 
108 1.645 0,498 A 0,00 
110 1.66 0.507 Other 0.00 
112 1.695 0.528 Other 0.00 
114 1.758 0.564 Other 0.00 
116 1.76 0.585 Other 0.00 
118 1.92 0.652 Other 0.00 
120 1.941 0.863 A 0.00 
122 1.972 0.679 Other 0.00 
124 2.005 0.696 Other 0,00 
126 2.02 0.703 Other 0.00 
128 2.03 0,708 Other 0,00 
130 2.062 0.724 Other 0,00 
132 2.08 0.732 Other 0.00 
134 2,089 0,737 Other 0.00 
136 2,115 0.749 Other 0.01 
138 2.155 0,788 Other 0.01 
140 2.161 0,771 Other 0,01 
142 2.188 0.783 Other 0.01 
144 2.196 0.787 Other 0.01 
148 2.237 0.805 Other 0,02 
148 2.253 0,812 Other 0,02 
150 2,295 0.831 Other 0.03 
152 2,325 0.844 Other 0.03 
154 2.335 0.848 Other 0.04 
156 2.35 0,854 Other 0.04 
158 2.39 0.871 Other 0.05 
160 2.434 0.890 Other 0.07 
162 2.453 0.897 A 0.08 
164 2.468 0.903 A 0.09 
168 2,48 0.908 A 0.10 
168 2.498 0.915 Other 0.11 
170 2.5 0.916 Other 0.11 
172 2.51 0.920 Other 0.11 
174 2.54 0.932 Other 0.14 
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175 2.543 0,933 Other 0.14 
177 2,572 0,945 Other 0.16 
179 2,601 0.956 Other 0.19 
181 2.619 0.963 Other 0,20 
183 2,635 0.969 Other 0.22 
185 2,653 0,976 Other 0,24 
187 2.675 0.984 Other 0.26 
189 2.697 0,992 Other 0.28 
191 2,73 1.004 Other 0.32 
193 2,755 1,013 Other 0,35 
195 2.773 1,020 Other 0,37 
197 2,78 1,022 Other 0,38 
199 2.795 1.028 Other 0.40 
201 2,805 1.031 Other 0.41 
203 2.88 1.058 Other 0.49 
205 2,881 1,058 A 0.50 
207 2,93 1.075 Other 0.55 
209 2.94 1.078 Other 0,56 
211 2.975 1.090 Other 0.59 
213 3 1.099 A 0.62 
215 3,058 1,118 Other 0.67 
217 3,085 1.127 Other 0,69 
219 3.1 1.131 Other 0,70 
221 3.106 1.133 Other 0.70 
223 3.17 1.154 Other 0.74 
225 3,192 1,161 A 0.75 
227 3.2 1.163 Other 0.76 
229 3.23 1.172 Other 0,77 
231 3.23 1.172 A 0,77 
233 3.235 1,174 Other 0.78 
235 3.248 1.178 A 0.78 
237 3.26 1.182 Other 0.79 
239 3.272 1.185 A 0.79 
241 3,295 1.192 Other 0.80 
243 3,332 1,204 A 0.81 
245 3.338 1.205 Other 0.81 
247 3,341 1,206 A 0,82 
249 3.349 1.209 A 0.82 
251 3,353 1.210 A 0.82 
253 3,378 1.217 A 0.83 
255 3.387 1,220 A 0.83 
257 3.429 1.232 A 0.84 
259 3.444 1.237 A 0.84 
261 3,473 1,245 A 0.85 
263 3.475 1,246 A 0.85 
265 3.505 1,254 Other 0.85 
267 3.518 1.258 Other 0.85 

176 2.559 0.g40 Other 0.15 
178 2.593 0.953 Other 0.18 
180 2.616 0.962 Other 0,20 
182 2.63 0,967 Other 0.21 
184 2,635 0,969 Other 0.22 
186 2.655 0.976 Other 0.24 
188 2,679 0.985 Other 0.26 
190 2.718 1,000 Other 0.31 
192 2,734 1,006 Other 0.32 
194 2.758 1.015 Other 0.35 
196 2.775 1.021 Other 0.37 
198 2,785 1,024 A 0.38 
200 2.805 1.031 Other 0.41 
202 2.808 1,032 A 0,41 
204 2.881 1.058 Other 0.50 
206 2.924 1.073 A 0.54 
208 2.934 1.076 A 0,55 
210 2,972 1.089 Other 0,59 
212 3 1.0gg Other 0.62 
214 3,025 1.107 Other 0,64 
216 3.082 1,126 A 0,68 
218 3.095 1.130 Other 0.6g 
220 3,102 1,132 A 0.70 
222 3.135 1.143 Other 0,72 
224 3,187 1,15g Other 0.75 
226 3.193 1.161 Other 0.75 
228 3,21 1,166 Other 0.76 
230 3,23 1.172 Other 0.77 
232 3,232 1.173 Other 0.77 
234 3.243 1.176 A 0,78 
236 3.249 1,178 Other 0,78 
238 3.261 1,182 Other 0,79 
240 3.29 1.191 Other 0.80 
242 3,304 1.195 Other 0.80 
244 3.333 1.204 Other 0.81 
246 3,34 1.206 Other 0,82 
248 3,349 1.209 A 0.82 
250 3,349 1.209 A 0,82 
252 3.36 1,212 Other 0,82 
254 3,385 1,219 A 0.83 
258 3.416 1.228 Other 0.84 
258 3.438 1.235 A 0.84 
260 3,469 1.244 A 0.85 
262 3,473 1.245 A 0.85 
264 3.477 1,246 A 0.85 
266 3.517 1,258 A 0,85 
268 3.527 1.260 A 0,85 
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269 3.535 1.263 A 
271 3.55 1.267 Other 
273 3.567 1.272 A 
275 3.575 1,274 Other 
277 3.583 1.276 A 
279 3.603 1.282 A 
281 3,623 1.287 A 
283 3.655 1.296 Other 
285 3.658 1.297 Other 
287 3.675 1.302 Other 
289 3,72 1.314 Other 
291 3.742 1.320 Other 
293 3.765 1.326 Other 
205 3,809 1.337 Other 
297 3.857 1350 A 
209 3.867 1.352 A 
301 3.883 1.357 Other 
303 3.905 1.362 A 
305 4 1.386 Other 
307 4,039 1,396 A 
309 4.095 1.410 Other 
311 4,147 1.422 Other 
313 4,17 1,428 Other 
315 4.2 1.435 Other 
317 4,257 1.449 A 
31cj 4.480 1.502 A 
321 4.595 1.525 Other 
323 4.653 1,538 Other 
325 4.731 1.554 Other 
327 4.75 1.558 Other 
329 4.81 1.571 Other 
331 5.161 1.641 Other 
333 5.64 1.730 Other 
335 6.166 1.819 Other 
337 6.725 1.906 Other 
339 8 2.079 Other 
341 10.295 2.332 Other 
343 12.688 2.541 Other 
345 18.847 2.936 Other 
347 20.827 3.036 Other 

0.86 270 3.547 1.266 
0.86 272 3.552 1.268 
0.86 274 3.57 1.273 
0,86 276 3.58 1,275 
0,86 278 3,59 1.278 
0,86 280 3,615 1.285 
0,86 282 3,647 1.294 
0.86 284 3.655 1.296 
0,87 286 3,675 1.302 
0.87 288 3.687 1,305 
0,87 290 3.72 1.314 
0,87 292 3.757 1,324 
0,87 294 3,8 1.335 
0.86 296 3.848 1.348 
0,86 208 3.867 1.352 
0.86 300 3.87 1.353 
0.86 302 3.89 1.358 
0,86 304 3.907 1,363 
0.85 306 4,011 1.389 
0,84 308 4.065 1.402 
0,83 310 4.134 1.419 
0.82 312 4.155 1.424 
0,81 314 4.179 1.430 
0,81 316 4.215 1,430 
0,79 318 4,3 1,459 
0,70 320 4,593 1,525 
0.64 322 4.63 1.533 
0.60 324 4.7 1.548 
0.55 326 4.741 1.556 
0.54 328 4,761 1.560 
0.50 330 5,072 1.624 
0,25 332 5,24 1,656 
0,06 334 5,779 1.754 
0,01 336 6.406 1.857 
0.00 338 7.717 2.043 
0,00 340 9,5 2,251 
0.00 342 12,533 2.528 
0.00 344 16.043 2.775 
0.00 346 10.5 2.970 
0.00 348 50 3.912 

A 0.86 
Other 0.86 
Other 0.86 
Other 0.86 
A 0.86 
A 0.86 
A 0.86 
A 0.86 
Other 0.87 
A 0.87 
Other 0.87 
A 0.87 
A 0.87 
A 0.86 
Other 0.86 
Other 0.86 
Other 0.86 
A 0.86 
Other 0.86 
A 0.84 
Other 0.82 
A 0.82 
A 0.81 
Other 0.80 
Other 0.78 
A 0.64 
A 0,62 
A 0,57 
A 0.55 
Other 0.53 
Other 0.31 
Other 0.20 
Other 0.03 
Other 0.00 
A 0.00 
Other" 0.00 
Other 0.00 
Other 0.00 
Other 0.00 
Other 0.00 
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