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Martian Chronicles: Is MARS better than Neural Networks? 

by Louise Francis, FCAS, MAAA 

Abstract: 
A recently developed data mining technique, Multivariate Adaptive Regression Splines 
(MARS) has been hailed by some as a viable competitor to neural networks that does not 
suffer from some of the limitations of neural networks. Like neural networks, it is 
effective when analyzing complex structures which are commonly found in data, such as 
nonlinearities and interactions. However, unlike neural networks, MARS is not a "black 
box", but produces models that are explainable to management. 

This paper will introduce MARS by showing its similarity to an already well-understood 
statistical technique: linear regression. It will illustrate MARS by applying it to insurance 
fraud data and will compare its performance to that of  neural networks. 
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Martian Chronicles: Is MARS better than Neural Networks? 

The discipline of  artificial intelligence has contributed a number of  promising techniques 
to the analyst's toolkit. The techniques have names such as "machine learning", "genetic 
algorithms" and "neural networks". These techniques are collectively known as data 
mining. Data mining uses computationally intensive techniques to fmd patterns in data. 
When data mining tools are applied to data containing complex relationships they can 
identify relationships not otherwise apparent. These complexities have been a challenge 
for traditional analytical procedures such as linear regression. 

The casualty actuarial literature contains only a few papers about data mining techniques. 
Speights et al. (Speights et aL, 1999) and Francis (Francis, 2001) introduced the neural 
network procedure for modeling complex insurance data. Hayward (Hayward, 2002) 
described the use of  data mining techniques in safety promotion and better matching of 
premium rates to risk. The methods discussed by Hayward included exploratory data 
analysis using pivot tables and stepwise regression. 

In this paper, a new technique, MARS, which has been proposed as an alternative to 
neural networks (Steinberg, 2001), will be introduced. The name MARS, coined for this 
technique by its developer, Freidman, (Hastie, et aL, 2001), is an acronym for 
Multivariate Adaptive Regression Splines. The technique is a regression based technique 
which allows the analyst to use automated procedures to fit models to large complex 
databases. Because the technique is regression based, its output is a linear function that is 
readily understood by analysts and can be used to explain the model to management. 
Thus, the technique does not suffer from the "black box" limitation of neural networks. 
However, the technique addresses many of the same data complexities addressed by 
neural networks. 

Neural networks are one of the more popular data mining approaches. These methods are 
among of the oldest data mining methods and are included in most data mining software 
packages. Neural networks have been shown to be particularly effective in handling 
some complexities commonly found in data. Neural networks are well known for their 
ability to model nonlinear functions. The research has shown that a neural network with a 
sufficient number of  parameters can model any continuous nonlinear function 
accurately. 1 Francis (Francis, 2001) also showed that neural networks are valuable in 
fitting models to data containing interactions. Neural networks are often the tools of  
choice when predictive accuracy is required. Berry and Linoff (Berry and Linoff, 1997) 
suggest that neural networks are popular because of their proven track record. 

Neural networks are not ideal for all data sets. Warner and Misra presented several 
examples where they compared neural networks to regression (Warner and Misra, 1996). 
Their research showed that regression outperformed neural networks when the functional 
relationship between independent and dependent variables was known. Francis (Francis, 

A more technical description of the property is that with a sufficient number of nodes in the neural 
network's hidden layer, the neural network can approximate any deterministic nonlinear continuous 
function. 
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2001) showed that when the relationship between independent and dependent variables 
was linear, classical techniques such as regression and factor analysis outperformed 
neural networks. 

Perhaps the greatest disadvantage of neural networks is the inability of users to 
understand or explain them. Because the neural network is a very complex function, 
there is no way to summarize the relationships between independent and dependent 
variables with functions that can be interpreted by data analysts or management. Berry 
and Linoff (Berry and Linoff, 1997) state that "Neural networks are best approached as 
black boxes with mysterious inner workings, as mysterious as the origins of our own 
consciousness". More conventional techniques such as linear regression result in simple 
mathematical functions where the relationship between predictor and target variables is 
clearly described and can be understood by audiences with modest mathematical 
expertise. The "black box" aspect of neural networks is a serious impediment to more 
widespread use. 

Francis (Francis, 2001) listed several complexities found in actual insurance data and 
then showed how neural networks were effective in dealing with these complexities. This 
paper will introduce MARS and will compare and contrast how MARS and neural 
networks deal with several common data challenges. Three challenges that will be 
addressed in this paper are: 

1) Nonlinearity: Traditional actuarial and statistical techniques often assume that 
the functional relationship between the independent variables and the 
dependent variable is linear or some transformation of the data exists that can 
be treated as linear. 

2) Interactions: The exact form of the relationship between a dependent and 
independent variable may depend on the value of one or more other variables. 

3) Missing data: Frequently data has not been recorded on many records of many 
of the variables that are of interest to the researcher. 

The Data 
This paper features the application of two data mining techniques, neural networks and 
MARS, to the fraud problem. The data for the application was suppIied by the 
Automobile Insurers Bureau of Massachusetts (AIB). The data consists of a random 
sample of 1400 closed claims that were collected from PIP (personal injury protection or 
no-fault coverage) claimants in Massachusetts in 1993. The database was assembled 
with the cooperation often large insurers. This data has been used by the AIB, the 
Insurance Fraud Bureau of Massachusetts (IFB) and other researchers to investigate 
fraudulent claims or probable fraudulent claims (Derrig et al., 1994, Weisberg and 
Derrig, 1995, Viaene et al., 2002). Whilethetypicaldataminingapplicationwoulduse 
a much larger database, the AIB PIP data is well suited to illustrating the use of data 
mining techniques in insurance. Viaene et al. used the AIB data to compare the 
performance of a number of data mining and conventional classification techniques 
(Viaene et al., 2002). 
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Two key fraud related dependent variables were collected in the study: an overall 
assessment (ASSESS) of the likelihood the claim is fraudulent or abusive and a suspicion 
score (SUSPICION). Each record in the data was assigned a value by an expert. The 
value indicates the expert's subjective assessment as to whether the claim was legitimate 
or whether fraud or abuse was suspected. Experts were asked to classify suspected fraud 
or abuse claims into the following categories: exaggerated damages, opportunistic fraud 
or planned fraud. As shown in Table 1, the assessment variable can take on 5 possible 
values. In addition, each claim was assigned a score from 0 (none) to 10 (very high) 
indicating the expert's degree of suspicion that the claim was abusive or fraudulent. 
Weisberg and Derrig (Weisberg and Derrig, 1993) found that more serious kinds of 
fraud, such as planned fraud were associated with higher suspicion scores than "softer" 
fraud such as exaggeration of damages. They suggest that the suspicion score was able to 
measure the range of "soft" versus "hard" fraud. 

The database contains detailed objective claim information on each claim in the study. 
This includes information about the policy inception date, the date the accident occurred, 
the date it was reported, the paid and incurred loss doUars, the injury type, payments to 
health care providers and the provider type. The database also contains "red flag" or 
fraud indicator variables. These variables are subjective assessments of characteristics of 
the claim that are believed to be related to the likelihood of fraud or abuse. More 
information on the variables in the model is supplied below in the discussion of specific 
models. 

Table 1 
Assessment Variable 

Value Assessment Percent of Data 
1 Probably legitimate 64% 
2 Excessive treatment only 20% 
3 Suspected opportunistic fraud, no injury 3% 
4 Suspected opportunistic fraud, exaggerated injury 12% 
5 Suspected planned fraud 1% 

We may use the more inclusive term "abuse" when referring to the softer kinds of 
fraudulent activity, as only a very small percentage of claims meet the strict standard of 
criminal fraud (Derrig, 2002). However, misrepresentation and exaggeration of the 
nature and extent of the damages, including padding of the medical bills so that the value 
of the claim exceeds the tort threshold, occur relatively frequently. While these activities 
are often thought of as fraud, they do not meet a legal definition of fraud. Therefore, they 
will be referred to as abuse. Overall, about one third of the claims were coded as 
probable abuse or fraud claims. 

Nonlinear Functions 
The relationships encountered in insurance data are ot~en nonlinear. Classical statistical 
modeling methods such as linear regression have had a tremendous impact on the 
analysis and modeling of data. However, traditional statistical procedures often assume 
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that the relationships between dependent and independent variables are linear. 
Traditional modeling also allows linear relationship that result from a transformation of 
dependent or independent variables, so some nonlinear relationships earl be 
approximated. In addition, there are techniques specifically developed for fitting 
nonlinear functions such as nonlinear regression. However, these techniques require that 
theory or experience specify the "true" form of the nonlinear relationships. Data mining 
techniques such as neural networks and MARS do not require that the relationships 
between predictor and dependent variables be linear (whether or not the variables are 
transformed). Both neural networks and MARS are also considered nonparametric 
because they require no assumptions about the form of the relationship between 
dependent and independent variables. 

For this illustration, a dependent variable that is not categorical (i.e. values have a 
meaningful order) was selected. The selected dependent variable was SUSPICION. 
Unlike the ASSESS variable, the values on the SUSPICION variable have a meaningful 
range, with higher values associated with suspicion of more serious fraud. 

To illustrate methods of fitting models to nonlinear curves, a variable was selected which 
1) had a significant correlation with the dependent variable, and 2) displayed a highly 
nonlinear relationship. Illustrating the techniques is the objective of this example. The 
data used may require significant time to collect and may therefore not be practical for an 
application where the objective is to predict abuse and fraud (which would require data 
that is available soon after the claim is reported). Later in the paper, models for 
prospectively predictin~g fraud will be presented. The variable selected was the first 
medical provider's bill. A medical provider may be a doctor, a clinic, a chiropractor or a 
physical therapist. Prior published research has indicated that abusive medical treatment 
patterns are often key drivers of fraud (Derrig et al., 1994, Weisberg and Derrig, 1995). 
Under no-fault laws, claimants will often deliberately run the medical bills up high 
enough to exceed tort thresholds. In this example the relationship between the first 
provider's medical bill and the value of the suspicion score will be investigated. The AIB 
fraud database contains the medical bills submitted from the top two health care 
providers. If  more costly medicine is delivered to suspicious claims than non-suspicious 
claims, the provider bills should be higher for the suspicious claims. 

Figure 1 presents a scatterplot of the relationship between SUSPICION and the provider 
bill. No relationship is evident from the graph. However, certain nonlinear relationships 
can be difficult to detect visually. 

2 Note that Massachusetts PIP covers only the first $8,000 of medical payments if the claimant has health 
insurance. Large bill amounts may represent data from claimants with no coverage. Bills may also exceed 
$8,000 even if payments are lirnited. However, the value of medical bills on some claims may be 
truncated because reimbursement is not expected. 
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Figure 1 

S c a t t e r p l o t  o f  S U S P I C I O N  v s  P r o v i d e r  B i l l  

10 ~ o ~  o o 

o o o  o ~ o  o 

8 t a o  o o ~  o o ~  o 

• ~ ® o D ~ , - , . . - - ~ o  o o  ~ o o  o o 

e |  o ~ o o o ~  ~ a o  o o®  
/ 

= = m m l o  ~ o 

o o o  o u r  o 

1000 3oo0 5o00 7ooo 

pr~aer  t~x 

Neural networks will first be used to fit a curve to the data. A detailed description of how 
neural networks analyze data is beyond the scope of this paper. Several sources on this 
topic are Francis, Lawrence and Smith (Francis, 2001, Lawrence, 1994, Smith, 1996). 
Although based upon how neurons function in the brain, the neural network technique 
essentially fits a complex non-parametric nonlinear regression. A task at which neural 
networks are particularly effective is fitting nonlinear functions. The graph below 
displays the resulting fimction when the dependent variable SUSPICION is fit to the 
provider bill by a neural network. This graph displays a function that increases quickly at 
lower bill amounts and then levels off. Although the curve is fiat over much of the range 
of medical bills, it should be noted that the majority of  bills are below $2,000 (in 1993 
dollars). 

Figure 2 
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One of the most common statistical procedures for curve fitting is linear regression. 
Linear regression assumes the relationship between the dependent and independent 
variables is linear. Figure 3 displays the graph of  a fitted regression line of SUSPICION 
on provider bill. The regression forces a linear fit to SUSPICION versus the payment 
amount. Thus, rather than a curve with a rapidly increasing trend line that levels off, a 
line with a constant slope is fitted. If the relationship is in fact nonlinear, this procedure 
is not as accurate as that of  the neural network. 

Figure 3 
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When the true relationship between a dependent and independent variable is nonlinear, 
various approaches are available when using traditional statistical procedures for fitting 
the curve. One approach is to apply a nonlinear transformation to the dependent or 
independent variable. A linear regression is then fit to the transformed variables. As an 
example, a log transform was applied to the provider bill variable in the AIB data. The 
regression fit was of the form: 

Y = B o + B 1 l n ( X )  

That is, the dependent variable, the suspicion score, is assumed to be a linear function of 
the natural log of the independent variable, provider bill Figure 4 displays the curve fit 
using the logarithmic transformation. 
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Figure 4 

Log Transform Fit of  SUSPIC ION v s  Provider Bill 

4 

t 0~  3000 5000 7000 

P~der Sill 

Another procedure which is used in classical linear regression to approximate nonlinear 
curves is polynomial regression. The curve is approximated by the function: 

Y = B  o +B1X+B2 X2 +. . .+BnX n 

Generally, low order polynomials are used in the approximation. A cubic polynomial 
(including terms up to provider bill raised to the third power) was used in the fit. Figure 
5 displays a graph of a fitted polynomial regression. 

Figure 5 
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The use of  polynomial regression to approximate functions is familiar to readers from its 
use in Taylor series expansions for this purpose. However, the Taylor series expansion 
is used to approximate a function near a point, rather than over a wide range. When 
evaluating a function over a range, the maximums and inflection points of the polynomial 
may not exactly match the curves &the  function being approximated. 

The neural network model had an R 2 (coefficient of  determination) of  0.37 versus 0.25 
for the linear model and 0.26 for the log transform. The R 2 of the polynomial model was 
comparable to that of  the neural network model. However, the fit was influenced 
strongly by a small number of  claims with large values. Though not shown in the graph, 
at high values for the independent variable the curve declines below zero and then 
increases again. This unusual behavior suggests that the fitted curve may not 
approximate the "true" relationship between provider bill and suspicion score well at the 
extremes of the data and may perform poorly on new claims with values outside the 
range of the data used for fitting. 

Table 2 below shows the values of  SUSPICION for ranges of the provider bill variable. 
The table indicates that SUSPICION increases rapidly at low bill amounts and then levels 
off at about $3,000. 

Table 2 
Suspicion Scores by Provider Bill 

Provider Bill Number of Claims Mean Suspicion Score 
$0 444 0.3 
1 - 1,000 376 1.1 
1,001 - 2,000 243 3.0 
2,001 - 3,000 227 4.2 
3,001 - 4,000 60 4.6 
4,001 - 5000 33 4.2 
5,001 - 6,000 5 5.8 
6,001 - 7,000 12 4.3 

The examples illustrate that traditional techniques which require specific parametric 
assumptions about the relationship between dependent and independent variables may 
lack the flexibility to model nonlinear relationships. It should be noted, however, that 
Francis (Francis, 2001) presented examples where traditional techniques performed as 
well as neural networks in fitting nonlinear functions. Also, when the true relationship 
between the dependent and independent variables is linear, classical statistical methods 
are likely to outperform neural networks. 

MARS and Nonlinear Functions 
The MARS approach to fitting nonlinear functions has similarities to polynomial 
regression. In its simplest form MARS fits piecewise linear regressions to the data. That 
is, MARS breaks the data into ranges and allows the slope of the line to be different for 
the different ranges. MARS requires the function fit to be continuous, thus there are no 
jump points between contiguous ranges. 
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To continue the previous example, a fimction was fit by MARS. The graph below 
displays the MARS fitted function. It can be seen that the curve is broken into a steeply 
sloping line, which then levels off much the way the neural network fitted function did. 

Figure 6 
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MARS uses an optimization procedure that fits the best piecewise regression. Simpler 
functions may adequately approximate the relationship between predictor and dependent 
variables and are favored over more complex functions. From the graph, it can be seen 
that the best MARS regression had two pieces: 

1) The curve has a steep slope between bill amounts of $0 and $2,185 
2) The curve levels offat bill amounts above $2,185 

The fitted regression model can be written as follows: 

BF1 = max(0, 2185 - X ) 
Y =4.29 - 0.002 * BF1 

where 

Y is the dependent variable (Suspicion score) 
X is the provider bill 

The points in the data range where the curves change slope are known as knots. The 
• impact of knots on the model is captured by basis functions. For instance BF1 is a basis 

function. Basis functions can be viewed as similar to dummy variables in linear 
regression. Dummy variables are generally used in regression analysis when the 
predictor variables are categorical. For instance, the Provider bill variable can be 
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converted into a categorical variable by using amount ranges for the categories. We 
could have the following categories: 

Range 1 $0- $2,185 Dummy Variable = 1 
Rankle 2 >$2,185 Dummy Variable = 0 

A dummy variable is a binary indicator variable. It will have a value of I when the bill 
fails within the specified interval for the dummy. Here if the bill is $1,000, D1 will be 1. 
When it is $5,000 D1 will be 0. 

A regression with dummy variables has the form: 

Y = B0 + BI*D1 +B2 * D2 + B3*D3+ ...+ B, *Dn 

Since in this simple example there is only one dummy variable, the model is: 

Y = B0 + B~*D1 

The constant B0 captures the effect of the first or base group (greater than $2185). The 
dummy variable D1 captures the effect of its bill group relative to the base group. The 
coefficients for the above model when fitted to the AIB data were: 

Y = 4.28 - 2.89"D1 

This regression function indicates that the mean suspicion score is 4.28 for bills greater 
than $2,185 and 1.39 for bills less than $2,185. However, the use of categorical dummy 
variables (as opposed to basis functions) creates jumps in the level of the dependent 
variable, rather than a linear curve, when the range changes. 

Basis Functions and Dummy Variables 
Each basis function is a combination of a dummy variable with a continuous variable. In 
the regression function between suspicion score and provider bill: 

BF1 = max(0, 2185 - X ) 

Y = 4.287 - 0.002 * BF1 

BF1 can be rewritten as: 

BF1 = D1"(2185 - X) 

where D1 is a dummy variable, which takes on the value of 0 if the provider bill is 
greater than or equal to $2,185 and 1 if it is less than that value. 
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Finding the Knots 
As mentioned above, a knot is the point in a range at which the slope of the curve 
changes. Both the number of knots and their placement are unknown at the beginning of 
the process. A stepwise procedure is used to find the best points to place the spline knots. 
In its most general form each value of the independent variable is tested as a possible 
point for placement of a knot. The model initially developed is overfit. A statistical 
criterion that tests for a significant impact on a goodness of fit measure is used to remove 
knots. Only those that have a significant impact on the regression are retained. The 
statistical criterion, generalized cross-validation, will be described later in the paper. 

Fitting Smooth Curves 
The above discussion describes spline functions which are piecewise linear regressions. 
For such regressions there is a break in the slope of the curve at each knot. A smooth 
curve could be created by allowing for higher order terms in the regression, i.e. quadratic 
or cubic terms could be included. Often, when fitting smoothing splines the curve is a 
cubic curve. For cubic splines, there is a requirement that the first and second derivatives 
are continuous at the knot points. For the remainder of this paper we will use piecewise 
linear splines. Although cubic splines produce smoother curves, they do not, in general, 
(Steinberg, 1999) significantly improve the fit of the model and are more difficult to 
parameterize. 

Functions with Interaction Terms 
The illustrations shown so far demonstrate MARS's capability for modeling nonlinear 
relationships. Another complication that occurs when working with insurance data is 
known as "interactions". The relationship between a predictor variable and the target 
variable may depend on the value of a second variable. For instance, the relationship 
between the medical provider bill and the suspicion score may depend on the injury type. 
This hypothesis is supported by the results of fitting a neural network model for 
SUSPICION to provider bill and injury type (shown in Figure 7). (For presentation 
purposes, only some of the injury types are shown). It can be seen that the curves for 
injury type 4 (neck sprain), and type 5 (back sprain) increase faster than those of the other 
injury types and ultimately plateau at higher levels. 
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Figure 7 
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A MARS curve was  fit to the fraud interaction data. The results of the fit are shown 
below: 

Figure 8 
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It can be seen that, as with the neural ne.twork, injury type 4 (neck sprain), and type 5 
(back sprain) increase faster and have higher scores than the other injury types. The 
MARS fitted function was: 
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BF1 = max(0, 2185 - X ) 
BF2 = ( INJTYPE = 4 OR INJTYPE = 5) 
BF3 = max(0, X - 159) * BF2 
Y = 2.815 - 0.001 * BF1 + 0.685 * BF2 + .360E-03 * BF3 

where 
X is the provider bill 
1NJTYPE is the injury type 

There are three basis functions in the model. Basis function BF1 splits the provider bill 
into the range $0 to $2,185 and greater than $2,185. It is like the first basis function in 
the previous model o f  SUSPICION and provider bill. Basis function BF2 is a categorical 
dummy variable, based on the value of  injury type. I f  the injury type is 4 or 5, it takes on 
a value of 1, otherwise it is 0. In the model, the coefficient of  BF2 is 0.685. Thus, the 
regression constant value is increased by 0.685 i f  the injury is a sprain. Basis function 
BF3 captures the interaction between injury type and provider bill and increases the slope 
of  the curve for sprains. 

To create the BF2 basis function, MARS searches all the categories of  injury type. By 
recursive partitioning, or sequential splitting of the categories into two distinct groups, it 
groups together those categories with a similar effect on the dependent variable into basis 
functions. When there is more than one categorical variable, the procedure is performed 
on each one. Only those basis functions with a significant effect on the target variable, as 
determined by the improvement in the R 2, are included in the final model. 

Similarly, an automated search procedure is used to create basis functions that specify 
interaction effects. Combinations of  predictors are tested two at a time for two-way 
interaction 3. New basis functions may be created to capture the interaction effect. Thus, 
a different combination of  the injury types than those in BF2 could be associated with the 
interaction of  injury type and provider bill. For this model the injury types were the same 
for BF2 and BF3. 

This example illustrates one advantage of  MARS over other data mining techniques such 
as neural networks. MARS groups together related categories of  nominal variables. 
Many insurance categorical variables have many different levels 4. For instance, while the 
injury type variable in the AIB data has only 15 levels, injury type data often has 
hundreds or even thousands of possible values. Increasingly, the insurance industry is 
shifting to the use ofICD95 codes for injuries. There are in excess of  15,000 possible 

s Higher order interactions, such as three way and four way interactions are permissible. However, high 
order interactions are unlikely to be statistically significant in a database of this size. 
4 Note that another data mining technique, Decision Trees (also know as CART) can also group together 
categories with similar impacts on the dependent variable. 
5 ICD9 codes are the codes used by medical providers and health insurers to classify injuries and illnesses. 
The definition of the classes is standardized and there is widespread use of these codes. 
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values for ICD9, many of which are related to similar illnesses or injuries. A procedure 
that can group together codes with a similar impact on the dependent variable is very 
handy when so many values are available. The neural network procedure turns each of 
the possible values of a categorical variable into a binary dummy variable when fitting a 
model. Many of these categories contain a tiny fraction of the data, thus the parameters 
fitted to the categories of the categorical variables may be very unstable. Collapsing the 
categories into a smaller number, with each group having a similar impact on the 
dependent variable (perhaps when interacting with another variable) significantly reduces 
the number of parameters in the model. 

Missing Data 
Missing data occurs frequently when working with large databases. The software 
commonly used for applying statistical models (including neural networks) typically 
applies very crude rules when data is missing. Such rules include elimination of records 
where any value on any variable is missing and substitution of the mean of a variable for 
the missing value on that variable. More sophisticated methods for addressing missing 
values, such as data imputation and the expectation maximization (EM) algorithm, have 
been developed. However, these methods are not widely available in the major statistical 
software packages. Two significant problems occur with missing data. 

1. Because many statistical packages eliminate any record with a missing value on 
any variable, a lot of the data can be lost to the analysis. 

2. In order for the analysis to be valid, the analyst must assume that value of both the 
dependent and predictor variables is independent of the presence of missing 
values. 

MARS handles missing data by creating a basis function for any variable with missing 
data. This variable has a value of one when the data is missing on a given variable and 
zero otherwise. The search procedure can then determine if an interaction between 
missing data basis functions and other variables in the data are significant in predicting 
the dependent variable. Thus, other variables can act as surrogates for the missing 
variable. 

Neural networks were not developed with the treatment of missing data in mind. Many 
neural network software products automatically eliminate from the model any record 
with a missing value for any variable in the model. Nevertheless there are procedures 
that can be used to deal with this challenge. One approach is to assign a constant value to 
data missing on a variable. This value is often the mean for that variable, but this need 
not be the case. Because neural networks fit nonlinear functions, a value not in the range 
of the remainder of the data might be assigned to the missing data on a variable, allowing 
a different relationship between independent and dependent variable for this value than 
for the remainder of the data. In addition, a dummy variable can be constructed for each 
of the variables with missing data, and this can be used in the neural network model. 
Unfortunately, the sot'cware available for fitting neural networks does not provide an 
automated approach to addressing the missing data issue so significant additional 
programming effort may be required. 
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To illustrate the handl ing  o f  missing data, suspicion score is modeled  as a function o f  
total provider  medical  bill and  health insurance.  The total provider  medical  bill is the 
sum o f  the bills fi'om all providers.  Heal th insurance is a categorical  variable with values 
o f  yes (claimant has health insurance),  no (claimant does not have health insurance) and 
u n k n o w n  (missing). The table be low shows the distribution o f  each o f  these values in the 
data.  The variables in this example were  selected because they provided a good 
illustration o f  the handl ing  o f  miss ing values. That  is, the health insurance variable had a 
significant number  o f  miss ing cases (see table below) and  the total medical  b i l l ' s  
influence on the dependent  variable is impacted by  the presence/absence o f  missing 
values on this variable. 

Table 3 
Health Insurance 

Value Frequency Percent Cumulative 
Percent 

No 457 32.5 32.5 
Missing 208 14.9 47.5 
Yes 735 52.5 100,0 
Total 1400 100.0 

The fol lowing MARS model  was  fit: 

BF1 = max(0,  MP BILL - 2885) 
BF2 = max(0,  2885 - MP_BILL ) 

BF3 = (HEALTHIN * MISSING) 

BF4 = (HEALTHIN = MISSING) 
BF5 = (HEALTHIN = N) 
BF7 = max(0,  MP BILL - 2262) * BF5 
BF8 = max(0,  2262 - MP_BILL ) * BF5 
BF9 = max(0,  MP_BILL - 98) * BF4 
BF10  = max(0,  98 - MP__BILL ) * BF4 
B F l l  = max(0,  MP_BILL - 710) * BF3 
BF13 = max(0,  MP_BILL - 35483) 
BF15 = BF3 * BF2 

Y = -0.754 - 0.002 * BF1 + 0.967 * BF3 + 1.389 * BF5 - .808E-04 * BF7 
- .624E-03 * BF8 + 0.001 * BF9 + 0.016 * BF10  
+ 0.001 * B F l l  + .114E-03 * BF13 + .376E-03 * BF15 

where:  
M P  BILL is the_total provider  medical  bill 
HE&LTHIN is the health insurance variable 
BF1 -BF15  are the basis functions 
Y is the dependent  variable,  suspicion score 
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Note that there is no BF6, BF12 or BF14. Variables BF6, BF12 and BF14 were created 
by MARS, but as they were not found to be significant, they were not included in the 
final model. 

The MARS model created two basis fimctions for the missing values, one for the 
presence of  missing value s and one for the absence. It can be seen that the shape and 
level of  the curve depends on both the value of  the health insurance variable and whether 
it is missing. Basis functions BF3 and BF4 are the dummy variables denoting 
missing/not-missing values on the health insurance variable. I f  the health insurance 
information is missing, BF4 is one. I f  the information is not missing, BF3 is one. The 
model  indicates that the overall score is raised by .967 i f  health insurance information is 
present. Basis fimctions BF9 and BF10 are the interactions of  a missing value on health 
insurance with provider bill. Basis functions BF11 and BF15 are the interaction of  health 
insurance not missing with total provider bill. Thus, when the provider bill is less than 
$98 and the health insurance information is missing, the curve's  slope is increased by 
0.016. This causes the suspicion score to spike at low provider bill values. BF 11 
indicates that the slope of  the curve increases by .001 for values above $710 and BF15 
indicates that the slope of  the curve increases by 0.00038 up to bill values of  $2,885, 
when health insurance information is present. 

Figure 9 displays the curve fit by MARS. 6 The top graph is curve for health insurance 
(i.e. equal to "yes"), the middle curve is the curve for health insurance unknown 
(missing) and the bottom graph is the curve for no health insurance. The figure shows 
that suspicion scores are on average highest when the claimant does not have health 
insurance and lowest when the information about health insurance is missing. The graphs 
show that suspicion scores for ali  categories decline after values of  about $3,000. 

6 In the graph, suspicion scores of less than one were censored to have a value of zero. 
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Figure 9 

MARS Fit to Provider Bill and Health Insurance 
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A neural network was fit to the data using the dummy variable approach described above. 
That is, a dummy variable was created for the presence or absence of a value on the 
health insurance variable. Figure 10 shows a comparison of the MARS and the neural 
network fitted values. The curves fit by the neural network did not vary much over the 
different values of the health insurance variable. Moreover, for health insurance missing 
and health insurance equal to 'Y' the neural network scores are above the MARS scores 
for provider bills greater than about $1,000. In addition, the MARS model suspicion 
scores decline at high bill amounts, but they do not for the neural network model. Table 4 
presents average suspicion scores by bill amount categories for each of the values on the 
health insurance variable. This table indicates that suspicion scores are higher for 
claimants with health insurance information, and are highest for claimants with no health 
insurance. The table also indicates that the suspicion score declines at higher bill 
amounts, but the decline in the data seems to occur later than the MARS model indicates. 

Figure 10 

MARS and Neural Network Fit vs Provider Bill and Health Insurance 

/ 

0 10c0 2ooo ~ 4000 5000 60ao 7000 8000 
P~ovider Bill 

287 



Table 4 
Suspicion Scores by Health 

Insurance Category 
Total Provider Bill Claim Count Y U N 
$0 65 0.3 2.1 0.7 
1 - 1,000 532 0.3 0.5 0.4 
1,001 - 2,000 140 1.2 3.1 1.9 
2,001 - 3,000 268 2.9 3.0 4.5 
3,001 - 4,000 149 3.1 2.9 4.2 
4,001 - 5000 85 3.4 4.8 
5,001 - 6,000 54 3.0 2.5 3.4 
6,001 - 7,000 25 4.4 5.1 
7.001 - 8,000 18 2.6 4.5 
8,001 - 9,000 12 2.8 4.0 
9,001 - 11,000 13 3.1 2.7 
> 11,000 39 1.0 2.5 

Total 1,400 1.6 1.5 2.8 

Both the MARS model and the neural network model had similar R 2 (around 0.37). The 
MARS software uses a statistical procedure to assess the significance of variables and 
rank them in order of importance. This procedure is described in a later section of this 
paper. The MARS procedure found the health insurance variable to be significant, but 
much less significant than the provider bill variable. By visual inspection, it appears that 
the neural network procedure found no meaningful difference in suspicion score by 
health insurance category. A more formal neural network procedure for assessing the 
importance of variables will be discussed in the next section of the paper. 

A simple procedure for comparing the accuracy of two models is to hold out a portion of 
the data for testing. Data is separated into training and test data. The model is fit using 
the training data and its accuracy is tested using the test data to determine how well the 
dependent variable was predicted on data not used for fitting. This test is relatively 
straightforward to perform. In the next section of the paper a more computationally 
intensive procedure will be presented. 

To compare the neural network and MARS models, two thirds of the data was used for 
fitting and one third was used for testing. The neural network had an R 2 of 0.30 
compared to 0.33 for the MARS model. The performance of the two models was also 
tested on subsets of the data containing only one value of the health insurance variable 
(i.e., health insurance missing, health insurance equal to yes and health insurance equal to 
no). MARS outperformed the neural network model on health insurance missing (R 2 = 
.26 versus R 2 = 0) and health insurance equal to no (R 2 = .31 versus R 2= .25). The neural 
network outperformed MARS on health insurance equal to yes (R 2= .43 versus R z = .32). 

This example suggests that MARS more accurately modeled the effect of the health 
insurance variable and the effect of a missing value for this variable on the dependent 
variable than did the neural network model. However, it would be desirable to assess the 
significance of the differences in the accuracy of the overall fit. 
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The square root ofR 2 is the correlation coefficient, which can be used in a test of 
significance. The distribution of a transform of the correlation coefficient can he 
approximated by a normal distributionT: 

Z = l l n  11+_-~- 

~z =Z~ 

1 
n - 3  

where r is the correlation coefficient and n is the sample size. 

The normal approximation was used to compute confidence intervals for each of the 
correlations. As shown in Table 5, the 95% confidence intervals around the Z statistic 
computed from the two correlations overlapped, suggesting that the difference between 
the fits of the two models is not statistically significant. 

Table  5 
Confidence Intervals for Correlation Coefficient 

Model R z r Z sd Lower 95% CI Upper 95% CI 
MARS 0.33 0.57 0.65 0.05 0.56 0.74 
Neural Network 0.30 0.55 0.62 0.05 0.52 0.71 

This example illustrates one of the great strengths of MARS: its automated procedures 
for handling missing data. While missing data was not a major issue with the AIB 
database, as most of the variables were fully populated, it is a common problem with 
most insurance databases. One possible use for MARS is to create basis functions for 
variables having missing values. These basis functions could then be used by other 
procedures such as neural networks. 

A More Complex Model  
The models presented thus far have been relatively simple one and two variable models. 
In this section of the paper, the results of a more complex model will be presented. The 
variables used in the model are described below. 

This section will present an example where MARS and neural networks are used for 
classification. The dependent variable for this model is ASSESS, the expert's assessment 
of the likelihood that the claim is a fraud or abuse claim. This variable was converted to 
a binary depefldent variable. The two categories were the value 1 (probably legitimate) 
versus 2 through 5 (the various kinds of suspected fraud or abuse). Thus, ifa claim is 
other than probably legitimate, it is treated as a suspected abuse claim. 

7 This formula is from Miller and Wichern (Miller and Wichem, 1977, pp. 213 - 214). 

289 



MARS can perform regressions on binary variables. When the dependent variable is 
binary, MARS is run in binary mode. In binary mode, the dependent variable is 
converted into a 0 (legitimate) or a 1 (suspected fraud or abuse). Ordinary least squares 
regression is then performed regressing the binary variable on the predictor variables. 
Logistic regression is a more common procedure when the dependent variable is binary. 
Suppose that the true target variable is the probability that a given claim is abusive, and 
this probability is denotedp(x) .  The model relatingp(x) to the a vector of independent 
variables x is: 

ln(l_~Pp ;x ) = B o + B j X  1 +... + B , X ,  

where the quantity ln(p(x)/(1-p(x))) is known as the logit function or log odds. Logistic 
regression can be used to produce scores that are between zero and one, consistent with 
viewing the score as a probability. Binary regressions can produce predicted values 
which can be less than zero and greater than one. One solution to this issue is to truncate 
the predicted values at zero and one. Another solution is to add the extra step of fitting a 
logistic regression to the data using the MARS predicted value as the independent 
variable and the binary assessment variable as the dependent variable. The fitted 
probabilities from the logistic regression can then be assigned as a score for the claim. 
The neural network model was also run in binary mode and also produced fitted values 
which were less than zero or greater than one. In this analysis, logistic regression was 
applied to the results of both the MARS and neural network fits to convert the predicted 
values into probabilities. 

Variables in the Model 
There are two categories of predictor variables that were incorporated into the models 
described in this section. The first category is red flag variables. These are primarily 
subjective variables that are intended to capture features of the accident, injury or 
claimant that are believed to be predictive of fraud or abuse. Many red flag variables 
represent accumulated industry wisdom about which indicators are likely to be associated 
with fraud or abuse. The information recorded in these variables represents an expert's 
subjective assessment of fraud indications, such as "the insured felt set up, denied fault". 
These variables are binary, that is, they are either true or false. Such red flag variables 
are often used to target certain claims for further investigation. The data for these red flag 
variables is not part of the claim file; it was collected as part of the special effort 
undertaken in assembling the AIB database for fraud research. 

The red flag variables were supplemented with claim file variables deemed to be 
available early in the life of a claim and therefore of practical value in predicting fraud 
and abuse. 

The variables selected for use in the full model are the same as those used by Viaene et 
al. (Viaene et. al., 2002) in their comparison of statistical and data mining methods. 
While a much larger number of predictor variables is available in the AIB data for 
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modeling fraud, the red flag and objective claim variables selected for incorporation into 
their models by Viaene e t  al. were chosen because of early availability. Therefore they 
are likely to be useful in predicting fraud and abuse soon enough in the claim's lifespan 
for effective mitigation efforts to lower the cost of the claim. Tables 6 and 7 present the 
red flag and claim file variables. 

Table 6 

Indicator 
Subject Variable 
Accident ACC01 

ACC04 
ACC09 
ACC10 
ACC11 
ACC14 
ACC15 
ACC16 
ACC19 

Claimant CLT02 
CLT04 
CLT07 

Injury IN J01 
IN J02 
IN J03 
IN J05 
IN J06 
IN J l l  

Insured INS01 
INS03 
INS06 
INS07 

Lost Wages LW01 
LW03 

Red Flag Variables 

Description 
No report by police officer at scene 
Single vehicle accident 
No plausible explanation for accident 
Claimant in old, low valued vehicle 
Rental vehicle involved in accident 
Property Damage was inconsistent with accident 
Very minor impact collision 
Claimant vehicle stopped short 
Insured felt set up, denied fault 
Had a history of previous claims 
Was an out of state accident 
Was one of three or more claimants in vehicle 
Injury consisted of strain or sprain only 
No objective evidence of injury 
Police report showed no injury or pain 
No emergency treatment was given 
Non-emergency treatment was delayed 
Unusual injury for auto accident 
Had history of previous claims 
Readily accepted fault for accident 
Was difficult to contact/uncooperative 
Accident occurred soon after effective date 
Claimant worked for self or a family member 
Claimant recently started employment 

Table 7 

Variable 
AGE 
POLLAG 
RPTLAG 
TREATLAG 
AMBUL 
PARTDIS 
TOTDIS 

Claim Variables Available Early in Life of Claim 
Description 
Age of claimant 
Lag from policy inception to date of accident s 
Lag from date of accident to date reported 
Lag from date of accident to eadiest treatment by service provider 
Ambulance charges 
The claimant partially disabled 
The claimant totally disabled 

LEGALREP The claimant represented by an attorney 

8 POLLAG, RPTLAG and TRTLAG are continuous variables. 
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One of the objectives of this research is to investigate which variables are likely to be of 
value in predicting fraud and abuse. To do this, procedures are needed for evaluating the 
importance of variables in predicting the target variable. Below, we present some 
methods that can be used to evaluate the importance of the variables. 

Evaluating Variable Importance 
A procedure that can be used to evaluate the quality of the fit when fitting complex 
models is generalized cross-validation (GCV). This procedure can be used to determine 
which variables to keep in the model, as they produce the best fit, and which to eliminate. 
Generalized cross-validation can be viewed as an approximation to cross-validation, a 
more computationally intensive goodness of fit test described later in this paper. 

l ~ryi -}(X/) l  2 
G C r  = -N iTl" 1 - k i N  " 

where N is the number of observations 
y is the dependent variable 
x is the independent variable(s) 
k is the effective number of parameters or degrees of freedom in the model. 

The effective degrees of freedom is the means by which the GCV error functions puts a 
penalty on adding variables to the model. The effective degrees of freedom is chosen by 
the modeler. Since MARS tests many possible variables and possible basis functions, the 
effective degrees of freedom used in parameterizing the model is much higher than the 
actual number of basis function in the final model. Steinberg states that research 
indicates that k should be two to five times the number of basis fimctions in the model, 
although some research suggests it should be even higher (Steinberg, 2000). 

The GCV can be used to rank the variables in importance. To rank the variables in 
importance, the GCV is computed with and without each variable in the model. 

For neural networks, a statistic known as the sensitivity can be used to assess the relative 
importance of variables. The sensitivity is a measure of how much the predicted value's 
error increases when the variables are excluded from the model one at a time. Ports 
(Potts, 2000) and Francis (Francis, 2001) described a procedure for computing this 
statistic. Many of the major data mining packages used for fitting neural networks supply 
this statistic or a ranking of variables based on the statistic. Statistical procedures for 
testing the significance of variables are not well developed for neural networks. One 
approach is to drop the least important variables from the model, one at a time and 
evaluate whether the fit deteriorates on a sample of claims that have been held out for 
testing. On a large database this approach can be time consuming and inefficient, but it is 
feasible on small databases such as the AIB database. 
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Table 8 displays the ranking of variable importance from the MARS model. Table 9 
displays the ranking of importance from the neural network model. The final model 
fitted by MARS uses only the top 12 variables in importance. These were the variables 
that were determined to have made a significant contribution to the final model. Only 
variables included in the model, i.e., found to be significant are included in the tables. 

Table 8 
MARS Ranking of Variables 

Rank Variable Description 
1 LEGALREP Legal Representation 
2 TRTMIS Treatment lag missing 
3 ACC04 Single vehicle accident 
4 INJ0t Injury consisted of strain or sprain only 
5 AGE Claimant age 
6 PARTDIS Claimant partially disabled 
7 ACC14 Property damage was inconsistent with accident 
8 CLTO2 Had a history of previous claims 
9 POLLAG Policy lag 
10 RPTLAG Report lag 
11 AMBUL Ambulance charges 
12 ACC15 Very minor impact collision 

The ranking of variables as determined by applying the sensitivity test to the neural 
network model is shown below. 

Table 9 

Neural Network Ranking of Variables 
Rank Variable Description 
1 LEGALREP Legal Representation 
2 TRTMIS Treatment lag missing 
3 AMBUL Ambulance charges 
4 AGE Claimant age 
5 PARTDIS Claimant partially disabled 
6 RPTLAG Report lag 
7 ACCO4 Single vehicle accident 
8 POLLAG Policy lag 
9 CLT02 Had a history of previous claims 
10 IN J01 Injury consisted of strain or sprain only 
11 ACC01 No report by police officer at scene 
12 ACC14 Property damage was inconsistent with accident 

Both the MARS and the neural network find the involvement of a lawyer to be the most 
important variable in predicting fraud and abuse. Both procedures also rank as second a 
missing value on treatment lag. The value on this variable is missing when the claimant 
has not been to an outpatient health care provider, although in over 95% of these cases, 
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the c la imant  has visited an  emergency  room. 9 Note that both medical  paid  and  total paid  
for  this g roup  is less than one third o f  the medical  paid and total paid for  c la imants  w h o  
visited a provider.  Thus  the TRTMIS (treatment lag missing) variable appears to be a 
surrogate  for  not  us ing an outpatient  provider.  The actual  lag in obtaining treatment  is not  
an  important  variable in either the M A R S  or neural  network models.  

Explaining the Model 
Below are the formulas for  the model  fit by  MARS.  Aga in  note that some basis funct ions 
created by  M A R S  were  found not  to be  signif icant  and are not  shown. To assist wi th  
interpretation, Table 10 displays a description o f  the values o f  some o f  the variables in 
the model.  

BFI = (LEGALREP = I) 

BF2 = (LEGALREP = 2) 

BF3 = ( TRTLAG = missing) 

BF4 = ( TRTLAG # missing) 

BF5 = ( INJ01 = I) * BF2 

BF7 = ( ACC04 = I) * BF4 

BF9 = ( ACCI4 = I) 

BFI1 = ( PARTDIS = I) * BF4 

BFI5 = max(0, AGE - 36) * BF4 

BFI6 = max(0, 36 - AGE) * BF4 

BFI8 = max(0, 55 - AMBUL ) * BFI5 

BF20 = max(0, I0 - RPTLAG ) * BF4 

BF21 = ( CLT02 = i) 

BF23 = POLLAG * BF21 

BF24 = ( ACCI5 = I) * BFI6 

Y = 0.580 - 0.174 * BFI - 0.414 * BF3 + 0.196 * BF5 - 0.234 * BF7 

+ 0.455 * BF9 + 0.131 * BFII - 0.011 * BFI5 - 0.006 * BFI6 + 

.135E-03 * BF18 - 0.013 * BF20 + .286E-03 * BF23 + 0.010 * BF24 

9 Because of the strong relationship between a missing value on treatment lag and the dependent variable, 
and the high percentage of claims in this category which had emergency room visits, an indicator variable 
for emergency room visits was tested as a surrogate. It was found not to be significant. 
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Table 10 

Variable 
LEGALREP 

IN J01 

ACC04 

ACC14 

PARTDIS 

CLT02 

ACC15 

Description of Categorical Variables 
Value Description 

I No legal representation 
2 Has legal representation 
1 Injury consisted of strain or sprain only 
2 . Injury did not consist of strain or sprain only 
1 Single vehicle accident 
2 Two or more vehicle accident 
1 Property damage was inconsistent with accident 
2 Property damage was consistent with accident 
1 Partially disabled 
2 Not partially disabled 
1 Had a history of previous claims 
2 No history of previous claims 
1 Was very minor impact collision 
2 Was not very minor impact collision 

The basis functions and regression produced by MARS assist the analyst in 
understanding the impact of the predictor variables on the dependent variable. From the 
formulae above, it can be concluded that 

1) when a lawyer is not involved (LEGALREP = 1), the probability of fraud or 
abuse declines by about 0.17 

2) when the claimant has legal representation and the injary is consistent with a 
sprain or strain only, the probability of fraud or abuse increases by 0.2 

3) when the claimant does not receive treatment from an outpatient health care 
provider (TRTLAG = missing), the probability of abuse declines by 0.41 

4) a single vehicle accident where the claimant receives treatment from an 
outpatient health care provider (treatment lag not missing) decreases the 
probability of fraud by 0.23 

5) if property damage is inconsistent with the accident, the probability of fraud or 
abuse increases by 0.46 

6) if the claimant is partially disabled and receives treatment from an outpatient 
health care provider the probably of fraud or abuse is increased by 0.13 

Of the red flag variables, small contributions were made by the claimant having a 
previous history of a claim l° and the accident being a minor impact collision. Of the 
objective continuous variables obtained from the claim file, variables such as claimant 
age, report lag and policy lag have a small impact on predicting fraud or abuse. 

Figures 11 and 12 display how MARS modeled the impact of selected continuous 
variables on the probability of fraud and abuse. For claims receiving outpatient health 

lo This variable only captures history of a prior claim if it was recorded by the insurance company. For 
some companies participating in the study, it was not recorded. 
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care, report lag has a positive impact on the probability of  abuse, but its impact reaches 
its maximum value at about 10 days. Note the interaction between claimant age and 
ambulance costs displayed in Figure 12. For low ambulance costs, the probability of  
abuse rises steeply with claimant age and maintains a relatively high probability except 
for the very young and very old claimants. As ambulance costs increase, the probability 
of  fraud or abuse decreases, and the decrease is more pronounced at lower and higher 
ages. Ambulance cost appears to be acting as a surrogate for injury severity. 

Figure 11 

Contribution of Report Lag to Predicted 
FC¢ Claims with TRTLAG missing 
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Figure 12 
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This section on explaining the model illustrates one of the very useful qualities of MARS 
as compared to neural networks: the output of the model is a formula which describes the 
relationships between predictor and dependent variables and which can be used to explain 
the model to management. To some extent, the sensitivity measure assists us in 
understanding the relationships fit by the neural network model, as it provides a way to 
assess the importance of each of the variables to the prediction. However, the actual 
functional relationships between independent and dependent variables are not typically 
available and the model can be difficult to explain to management.H 

Evaluating the Goodness of the Fit and Comparing the Accuracy 
One approach for testing the accuracy of models that is commonly used in data mining 
applications is to have separate training and testing samples. This approach was used in 
the previous example. Typically one half to one third of the data is held out for testing. 
However, when the database used for modeling is small, the analyst may not want to lose 
a large portion of the data to testing. Moreover, as the testing is performed on a relatively 
small sample, the goodness of fit results may be sensitive to random variation in the 
subsets selected for training and testing. An alternative procedure that allows more of the 
data to be used for fitting and testing is cross-validation. Cross-validation involves 
iteratively holding out part of the sample, fitting the model to the remainder of the sample 
and testing the goodness of the fitted model on the held out portion. For instance, the 
sample may be divided into 4 groups. Three of the groups are used to fit the model and 
one is used for testing. The process is repeated four times, and the goodness of fit 
statistics for the four test samples are averaged. As the AIB database is relatively small 
for a data mining application, this is the procedure used. Testing was performed using 
four fold cross-validation. 

Both a MARS model and a neural network model were fit to four samples of the data. 
Each time the fitted model was used to predict the probability of frand or abuse for one 
quarter of the data that was held out. The predictions from the four test samples were 
then combined to allow comparison of the MARS and neural network procedures. 

Table 11 presents some results of the analysis. This table presents the R 2 of the regression 
of ASSESS on the predicted value from the model. The table shows that the neural 
network R 2 was higher than that of MARS. The table also displays the percentage of 
observations whose values were correctly predicted by the model. The predictions are 
based only on the samples of test claims. The neural network model correctly predicted 
79% of the test claims, while MARS correctly predicted 77% of the test claims. 

Table 11 
Four Fold Cross-validaUon 

Percent 
Technique R 2 Correct 

MARS 0.35 0.77 
Neural Network 0.39 0.79 

u Plate (2000) and Francis (2001) present a method to visualize the relationships between independent and 
dependent variables, The technique is not usually available in data mining software. 
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Tables 12 and 13 display the accuracy of MARS and the neural network in classifying 
fraud and abuse claims. 12 A cutoff point of 50% was used for the classification. That is, 
if the model's predicted probability of a 1 on ASSESS exceeded 50%, the claim was 
deemed an abuse claim. Thus, those claims in cell Actual =1 and Predicted=l are the 
claims assessed by experts as probably abusive which were predicted to be abusive. 
Those claims in cell Actual=l, Predicted =0, are the claims assessed as probable abuse 
claims which were predicted by the model to be legitimate. 

Table 12 
MARS Predicted * Actual 

Predicted Actual 
0 1 Total 

0 738 160 896 
1 157 344 601 
Total 895 505 

Tab le  13 

Neural Network Predicted * Actual 
Predicted Actual 

0 1 Total 
0 746 127 873 
1 149 377 526 
Total 895 505 

Table 14 presents the sensitivity and specificity of each of the models. The sensitivity is 
the percentage of events (in this case suspected abuse claims) that were predicted to be 
events. The specificity is the percentage of nonevents (in this case claims believed to be 
legitimate) that were predicted to be nonevents. Both of these statistics should be high 
for a good model. The table indicates that both the MARS and neural network models 
were more accurate in predicting nonevent or legitimate claims. The neural network 
model had a higher sensitivity than the MARS model, but both were approximately equal 
in their specificities. The neural network's higher overall accuracy appears to be a result 
of its greater accuracy in predicting the suspected fraud and abuse claims. Note that the 
sensitivity and specificity measures are dependent on the choice of a cutoff value. Thus, 
if a cutoff lower than 50% were selected, more abuse claims would be accurately 
predicted and fewer legitimate claims would be accurately predicted. 

Table 14 

Model Sensitivity Specificity 

MARS 68.3 82.5 
Neural Network 74.8 83.4 

]2 These tables arc often referred to as confusion matrices 
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A common procedure for visualizing the accuracy of  models used for classification is the 
receiver operating characteristics (ROC) curve. This is a curve of  sensitivity versus 
specificity (or more accurately 1.0 minus the specificity) over a range of  cutoff points. 
When the cutoff point is very high (i.e. 1.0) all claims are classified as legitimate. The 
specificity is 100% (1.0 minus the specificity is 0), but the sensitivity is 0%. As the 
cutoff point is raised, the sensitivity increases, but so does 1.0 minus the specificity. 
Ultimately a point is reached where all claims are predicted to be events, and the 
specificity declines to zero. The baseline ROC curve (where no model is used) can be 
thought of  as a straight line from the origin with a 45-degree angle. I f  the model 's 
sensitivity increases faster than the specificity decreases, the curve "lifts" or rises above a 
45-degree line quickly. The higher the "lift", the more accurate the model. It can be seen 
from the graph of  the ROC curve that both the MARS and neural network models have 
significant "lift" but the neural network model has more "lift" than the MARS model. 

Figure 13 
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A statistic that summarizes the predictive accuracy of  a model as measured by an ROC 
curve is the area under the ROC curve (AUROC). A curve that rises quickly has more 
area under the ROC curve. Table 15 displays the AUROC for both models, along with 
their standard deviations and 95% confidence intervals. As the lower bound of  the 
confidence interval for the neural network is below the higher bound of  the confidence 
interval for MARS, it can be concluded that differences between the MARS model and 
the neural network model are not statistically significant. 
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Table 15 

Statistics for Area Under the ROC Curve 
Test Result Variables Area Std Asymptotic Sig Lower Upper 

Error 95% 95% 
Bound Bound 

MARS Probability 0.85 0.01 0.000 0.834 0.873 
Neural Probability 0.88 0.01 0.000 0.857 0.893 

Summary of Comparison 
The R O C  curve results suggest  that in this analysis the neural ne twork  enjoyed a modes t  
though not  statistically signif icant  advantage  over MARS in predictive accuracy.  It 
should be noted that the database used  for this study was quite small for a data mining 
applicat ion and  may  produce  results that do not generalize to larger  applications. 
Steinberg (Steinberg, 2001) reports  that  on other applications M A R S  equaled or exceeded 
the per formance  o f  neural  networks.  It should also be noted that some o f  the key 
compara t ive  strengths & M A R S  such as its ability to handle missing data were  not  a 
s ignif icant  factor in the analysis,  as all but  one o f  the variables were fully populated. 13 
In addition, M A R S ' s  capabil i ty  o f  clustering levels o f  categorical  variables together  was  
not  relevant to this analysis,  as no categorical  variable had  more  than two levels. 

A practical  advantage that M A R S  enjoys over neural networks  is the ease with which  
results can be explained to management .  Thus, one potential use for M A R S  is to fit a 
model  us ing neural  networks  and then apply MARS to the fitted values to understand the 
functional relationships fitted b y  the neural  network model.  The results o f  such an 
exercise are shown below: 

BF1 = (LEGALREP = 1) 
BF2 = (LEGALREP = 2) 
BF3 = ( T R T L A G  ~ missing) 
BF4 = ( T R T L A G  = missing)  
BF5 = ( INJ01 = 1) 
BF7 = ( ACC04  = 1) * BF3 
BF8 = ( ACC04  = 2) * BF3 
BF9 = ( PARTDIS = 1) * BF8 
BF11 = max(0,  A M B U L  - 182) * BF2 
BF12 = max(0,  182 - A M B U L  ) * BF2 
BF13 = ( ACC14  = 1) * BF3 
BF15 = ( CLT02 = 1) * BF3 
BF17 = max(0,  P O L L A G  - 21) * BF3 
BF19 = max(0,  A G E  - 41) * BF3 
BF20  = max(0,  41 - AGE)  * BF3 

13 One of the claims was missing data on the AGE variable, and this claim was eliminated from the neural 
network analysis and from comparisons of MARS the neural network model. Had more claims been 
missing the AGE variable, we would have modeled it in the neural network. 
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BF21 = ( INS06 = 1) 
BF23 = max(0, RPTLAG - 24) * BF8 
BF24 = max(0, 24 - RPTLAG ) * BF8 
BF25 = BF1 * BF4 
BF27 = ( ACC15 = 1) * BF8 
BF29 = ( INJ03 = 1) * BF2 

Y = 0.098 - 0.272 * BF1 + 0.334 * BF3 + 0.123 * BF5 - 0.205 * BF7 + 0.145 * 
BF9 - .623E-04 * BF11 + .455E-03 * BF12 + 0.258 * BF13 + 0.100 * BF15 + 
.364E-03 * BF17- 0.004 * BF19 - 0.001 * BF20 + 0.152 * BF21 + .945E-03 * 
BF23 - 0.002 * BF24 + 0.135 * BF25 + 0.076 * BF27 - 0.073 * BF29 

This model had an R 2 of  0.9. Thus, it was able to explain most o f  the variability in the 
neural network fitted model. Though the sensitivity test revealed that LEGALREP is the 
most  significant variable in the neural network model, its functional relationship to the 
probability of  fraud is unknown using standard neural network modeling techniques. As 
interpreted by MARS, the absence of  legal representation reduces the probability of  fraud 
by 0.272., even without interacting with other variables. LEGALREP also interacts with 
the ambulance cost variable, IN J03 (police report shows no injury) and no use of  a health 
care provider (treatment lag missing). The sensitivity measure indicated that the presence 
or absence of  a value for treatment lag was the second most important variable. As stated 
earlier, this variable can be viewed as a surrogate for use of  an outpatient health care 
provider. The use of  an outpatient health care provider (TRTLAG ¢ missing) adds 0.334 
to the probability of  fraud or abuse, but this variable also interacts with the policy lag, 
report lag, claimant age, partial disability, ACC04, (single vehicle accident), ACC14 
(property damage inconsistent with accident) and CLT02 (history of  prior claims). 

The MARS model helps the user understand not only the nonlinear relationships 
uncovered by the neural network model, but also describes the interactions which were fit 
by the neural network. 

A procedure frequently used by data mining practitioners when two or more approaches 
are considered appropriate for an application is to construct a hybrid model or average the 
results of the modeling procedures. This approach has been reported to reduce the 
variance of  the prediction (Salford Systems, 1999). Table 16 displays the AUROC 
statistics resulting from averaging the results of  the MARS and neural network models. 
The table indicates that the performance of  the hybrid model is about equal to the 
performance of the neural network. (The graph including the ROC curve for the 
combined model is not shown, as the curve is identical to Figure 13 because the neural 
network and combined curves cannot be distinguished.) Salford Systems (Salford 
Systems, 1999) reports that the accuracy of  hybrid models often exceeds that of  its 
components, but usually at least equals that o f  the best model. Thus, hybrid models that 
combine the results of  two techniques may be preferred to single technique models 
because uncertainty about the accuracy of  the predicted values on non-sample data is 
reduced. 
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Table 16 
Statistics for Area Under the ROC Curve 

Test Result Variables Area Std Asymptotic Lower Upper 
Error Sig 95% 95% 

Bound Bound 
MARS Probability 0.853 0.01 0,000 0.834 0.873 
Neural Probability 0.875 0.01 0.000 0,857 0.893 
Combined Probability 0.874 0,01 0.000 0.857 0,892 

Using Model Results 
The examples in this paper have been used to explain the MARS technique and compare 
it to neural networks. The final example in this paper has been a fraud and abuse 
application that used information about the PIP claim that would typically be available 
shortly after the claim is reported to predict the likelihood that the claim is abusive or 
fraudulent. The results suggest that a small number of variables, say about a dozen, are 
effective in predicting fraud and abuse. Among the key variables in importance for both 
the neural network model and MARS are use of legal representation, use of an outpatient 
health care provider (as proxied by TRTLAG missing) and involvement in a single 
vehicle accident. Due to the importance of legal representation, it would appear useful 
for insurance companies to record information about legal representation in computer 
systems, as not all companies have this data available. 

The results of both the MARS and neural network analysis suggest that both claim file 
variables (present in most claims databases) and red flag variables (common wisdom 
about which variables are associated with fraud) are useful predictors of fraud and abuse. 
However, this and other studies support the value of using analytical tools for identifying 
potentially abusive claims. As pointed out by Derrig (Derrig, 2002), fraud models can 
help insurers sort claims into categories related to the need for additional resources to 
settle the claim efficiently. For instance, claims assigned a low score by a fraud and 
abuse model, can be settled quickly with little investigative effort on the part of adjusters. 
Insurers may apply increasingly greater resources to claims with higher scores to acquire 
additional information about the claimant/policyholder/provider and mitigate the total 
cost of the claim. Thus, the use of a fraud model is not conceived as an all or nothing 
exercise that classifies a claim as fraudulent or legitimate, but a graduated effort of 
applying increasing resources to claims where there appears to be a higher likelihood of 
material f'mancial benefit from the expenditures. 

Conclusion 
This paper has introduced the MARS technique and compared it to neural networks. 
Each technique has advantages and disadvantages and the needs of a particular 
application will determine which technique is most appropriate. 

One of the strengths of neural networks is their ability to model highly nonlinear data. 
MARS was shown to produce results similar to neural networks in modeling a nonlinear 
function. MARS was also shown to be effective at modeling interactions, another 
strength of neural networks. 
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In dealing with nominal level variables, MARS is able to cluster together the categories 
of  the variables that have similar effects on the dependent variable. This is a capability 
not possessed by neural networks that is extremely useful when the data contain 
categorical variables with many levels such as ICD9 code. 

MARS has automated capabilities for handling missing data, a common feature of  large 
databases. Though missing data can be modeled with neural networks using indicator 
variables, automated procedures for creating such variables are not available in most 
standard commercial software for fitting neural networks. Moreover, since MARS can 
create interaction variables from missing variable basis functions and other variables, it 
can create surrogates for the missing variables. Thus, on applications using data with 
missing values on many variables, or data where the categorical variables have many 
values, one may want to at least preproeess the data with MARS to create basis functions 
for the missing data and categorical variables which can be used in other procedures. 

A significant disadvantage of neural networks is that they are a "black box". The 
functions fit by neural networks are difficult for the analyst to understand and difficult to 
explain to management. One of the very useful features of  MARS is that it produces a 
regression like function that can be used to understand and explain the model; therefore it 
may be preferred to neural networks when ease of explanation rather than predictive 
accuracy is required. MARS can also be used to understand the relationships fit by other 
models. In one example in this paper MARS was applied to the values fit by a neural 
network to uncover the important functional relationships modeled by the neural network. 

Neural networks are often selected for applications because of their predictive accuracy. 
In a fraud modeling application examined in this paper the neural network outperformed 
MARS, though the results were not statistically significant. The results were obtained on 
a relatively small database and may not generalize to other databases. In addition, the 
work of other researchers suggests that MARS performs well compared to neural 
networks. However, neural networks are highly regarded for their predictive capabilities. 
When predictive accuracy is a key concern, the analyst may choose neural networks 
rather than MARS when neural networks significantly outperform MARS. An alternative 
approach that has been shown to improve predictive accuracy is to combine the results of  
two techniques, such as MARS and neural networks, into a hybrid model. 

This analysis and those of other researchers supports the use of intelligent techniques for 
modeling fraud and abuse. The use of an analytical approach can improve the 
performance of fraud detection procedures that utilize red flag variables or subjective 
claim department rules by 1) determining which variables are really important in 
predicting fraud, 2) assigning an appropriate weight to the variables when using them to 
predict fraud or abuse, and 3) using the claim file and red flag variables in a consistent 
manner across adjusters and claims. 
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