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Abstract 

Index-based hedging instruments such as industry loss warranties are increasingly 

recognized as effective hedging tools for insurance and reinsurance portfolios. However, 

wider adoption of these instruments is inhibited by basis risk, the difference between the 

index-based payoff and the buyer's actual loss. This study presents a systematic approach 

for potential buyers to analyze and manage basis risk in order to take full advantage of 

the benefits offered by these instruments. 

We examine two measures of basis risk: (i) hedging effectiveness and (ii) conditional 

payoff shortfall. Many existing measures such as hedge volatility and correlation are 

special cases of  the hedging effectiveness measure. Next, we study the tradeoffbetween 

basis risk and the cost of  hedging. Finally, we present a robust numerical algorithm 

designed to optimize an index-based hedging program consisting of multiple index-based 

contracts. 
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1. Introduction 

In recent years, we have observed growing interest in index-based hedging instruments, 

especially in the areas of catastrophe risk reinsurance and securitization. Examples 

include industry loss warranty (ILW) contracts and index-based cat bonds. In contrast to 

a traditional indemnity-based reinsurance contract, an index-based instrument has a 

payoff that is not completely determined by the loss incurred by the purchaser ~. Instead, it 

is determined by an index that is positively correlated with the purchaser's actual loss. 

The index can be the industry loss or certain meteorological or seismic parameters related 

to a natural disaster event. The most frequently used industry loss indices used in the US 

are based on incurred insurance losses surveyed and published by the Property Claims 

Service. 

The main advantage of index-based instruments is that they are practically free from 

moral hazard, a major hurdle that discourages capital market investors from participating 

in insurance risk securitization, even though the natural catastrophe risk is an extremely 

appealing asset class from a portfolio perspective (Litzenberger et. al., 1996). The 

absence of moral hazard also suggests that an index-based instrument should command a 

lower margin than a comparable indemnity-based reinsurance contract (Cummings, et. al., 

2003), making it an attractive alternative to traditional reinsurance. Moreover, it is shown 

in Doherty and Richter (2002) that combining indemnity contracts with index-based 

instruments can ideally lead to efficiency gains for purchasers. 

However, index-based instruments pose a new challenge to the purchasers in the form of 

basis risk - the difference between the actual loss experienced by the purchaser and the 

payoff of the index-based contract. The difference is one of the primary factors that have 

kept many potential purchasers away from these instruments. A systematic, credible, and 

practical way to quantify and manage basis risk must be made available to the potential 

i Currently, the purchasers of index-based instruments are almost exclusively insurance and reinsurance 
companies. However, end users of insurance (e.g., corporations) have started exploring the use of this type 
of instruments. 
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purchasers before index-based instruments can gain recognition as a main stream risk 

management tool and become widely adopted. 

The task of quantifying and managing basis risk can be divided into two problems: First, 

given an existing portfolio of liabilities to be hedged and an index-based hedging 

program consisting of one or more index-based contracts, how best to quantify the basis 

risk associated with this hedging strategy? Second, given an underlying portfolio and a 

set of constraints reflecting the buyer's risk appetite and return requirement, how can one 

construct an index-based hedging program to achieve an optimal balance between cost 

and hedging effectiveness? 

This study focuses on these two issues. In Section 2, we state the assumptions and 

notations used in this study. Next, we develop an analytical framework to quantify basis 

risk in an effort to unify commonly used measures of basis risk (Section 3). In Section 4, 

we introduce an approach to construct an index-based hedging program that optimally 

balances hedging effectiveness and cost while satisfying certain constraints. Section 5 

summarizes the study. 

2. Assumptions and notations 

We do not assume any specific form of parametric distribution for the random variables 

such as losses and underwriting profits. Instead, we represent the randomness of the 

"state of the world'' using a large number of scenarios. This is because our primary 

interest is in hedging catastrophe risk and the outputs of most catastrophe models, which 

serve as inputs to our analyses, are scenario-based. In addition, although the numerical 

examples presented in this paper are realistic, they are hypothetical and are not based on 

any specific catastrophe model or actual company data. 

Furthermore, we make three simplifications. First, it is assumed that only one loss event 

occurs in a year, although the analyses presented can be extended to include multiple 

events on an annual aggregate basis without difficulty using existing dynamic financial 

analysis (DFA) tools. However, not including DFA allows us to simplify the equations 

and focus on basis risk analysis. For the same reason, we also ignore premium 
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reinstatement provisions frequently observed in actual transactions. Second, we do not 

consider the potential basis risk arising from the counterparty credit risk (i.e. the risk that 

the seller of the hedging contract fails to fully perform its contractual obligation). This 

permits us to focus on the discrepancy caused by the general lack of a one-to-one 

relationship between the actual loss and the index value. Third, we use binary ILW 

contracts in all examples. Nevertheless, the methodology developed can be applied to 

other forms of index-based instrument without substantial modification. 

Lower and upper case letters are used to represent deterministic and random variables, 

respectively. Let L be the actual loss and X be the payoff of a hedging instrument. X is a 

function of an index I: 

X = g ( I )  (1) 

For a binary ILW, I is the predefined industry loss for a region and given peril(s), and the 

payoff is defined as 

f l ,  I>-i t 
XI  = gl (I) = L tO, I < i, 

where l is the limit of the ILW and it is known as the trigger of the contract. Another 

special case is an indemnity reinsurance policy, where I = L and the payoff is defined as 

l ' ,L > r + l' 
X R=gR(L)= j  O,L<r 

~ L - r , r < L < l '  

where r and l' are the retention and limit of the reinsurance policy, respectively. 

The net post-hedging loss L* is then. 

L ° = L - X = L - g ( I )  

(la) 

(lb) 

(2) 
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It is possible that X > L. However, from an accounting point of  view, this will not be 

allowed if the buyer wishes to treat the hedging instrument as reinsurance. Hence, 

Equation 2 frequently takes the following form 

L ° = max[O, L - X] = max[O, L - g(I) ]  (2a) 

which forbids the buyer from claiming more than the actual loss. Specifically, we use L*l 

and L*R to denote the net loss after an ILW and an indemnity reinsurance policy, 

respectively: 

L~ : max[O, L - g,  (I)] 
(2b) 

L~ : L - g .  (L) 

3. Definition and quantification of basis risk 

3.1. The cause of  basis risk - a qualitative view 

With an indemnity reinsurance policy, the amount of  payoff is always precisely 

predictable given an actual loss, even though the actual loss itself is random (e.g., 

Equation lb). However, this is generally not true for index-based instruments. We 

consider a hypothetical insurer (Company A), which has a geographically diversified 

exposure in the region where it sells property insurance and is considering using an ILW 

to hedge its catastrophe risk. As shown in Figure 1, at a given level of actual loss (e.g., 

along the dashed horizontal line), the industry loss index cannot be uniquely determined a 

priori. As a result, if Company A buys an ILW (Equation 1 a) with a trigger represented 

by the vertical dashed line in Figure 1, the ILW payoff.can be either zero or l, represented 

by the scenarios to the left and the right of the vertical line, respectively. This 

randomness makes it impossible for a buyer to precisely predict the payoff as a function 

of the actual loss. Next, we attempt to quantify such randomness, which is known as the 

"basis risk". 
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F i g u r e  1. The loss to Company  A vs. the industry loss. Each point in the plot represents a loss scenario. 
The dashed horizontal  and vertical lines represent g iven levels o f  company and industry losses, respectively. 

3.2. Benchmarks for comparison 

Although basis risk is caused by the random difference between the index-based payoff 

(X1) and actual loss (L), it is not sensible to directly compare XI and L because rarely does 

a buyer expect the actual loss to be fully hedged. In the context of hedging catastrophe 

risk, the focus of the buyer is on reducing the severity of large losses. Hence, it is more 

meaningful to compare XI to the payoff of a benchmark indemnity reinsurance policy (Xn) 

or, equivalently, compare the net losses associated with the index-based instruments and 

the benchmark, i.e. L*I vs. L*R (Cummings, et. al., 2003). 

The choice of the benchmark is usually based on the risk management objective of the 

buyer. For example, Company A currently has an annual probability of  defauIt 2 of 1%; a 

2 For  il lustration purpose  here, the company is considered in default i f  the loss exceeds its surplus.  
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change in business environment requires this probability to be reduced to 0.4%. The 

traditional reinsurance approach to accomplish this is to purchase an indemnity 

reinsurance policy with the retention r = vo and the limit I '  = vl-vo, where Vl and vo are the 

99 th and 99.6 th percentile value at risk (VaR) of the underlying portfolio. Hence, its 

payoff (XR) and net loss after this reinsurance (L'R) can serve as the respective 

benchmarks for the payoff (XI) and net loss after an ILW (L*~). The cumulative 

distribution function of the toss of the underlying portfolio is shown in Panel I of Figure 2. 

Next, we attempt to use an ILW to accomplish the same objective stated above. We 

choose the 99 th percentile of the industry loss as the trigger and vl-vo as the limit, denoted 

it and l, respectively (Equation la). The basis risk of the ILW can then be defined based 

on the difference between L'~ and L*n. 

3.3. Definition and quantification of basis risk 

The cumulative distribution functions (CDF) of L*R and L*I are shown in Panels II and III 

of Figure 2. Since L*R and L'~ are random, we can compare their respective statistical 

summaries or evaluate the statistical summaries of their difference (L*R - L*I ). These 

comparisons lead to the definitions of two types of basis risk. 

Basis Risk Related to Hedging Effectiveness (Type I): In general, the purpose of 

purchasing a hedging instrument (reinsurance or ILW) is to reduce the risk of the 

underlying portfolio. The hedging effectiveness of the instrument can be measured by the 

amount of risk reduced. Let hr and hi denote the hedging effectiveness of the benchmark 

and the ILW. They can be defined as 

h r - ~ 1 - Y r / Y g  
(3a) 

h i - ~ l - y ~ / Y z  

where yg, yr, and Yl are the statistical measures of the risk of the underlying portfolios 

before any hedging, net of the benchmark, and net of the ILW, respectively. Frequently 

used risk measures include standard deviation, value at risk (VaR), tail value at risk 

(TVaR), and probability of default (POD). The choice of the proper risk measure has 
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been extensively discussed in the actuarial literature (e.g., Artzner et. al., 1999) and is not 

repeated here. 

The Type I basis risk (referred to as b~ hereafter) measures the hedging effectiveness of 

an index-based instrument relative to that of the benchmark. Hence, it can be defined as 

ba =-1-h~/h~ (3b) 

where we assume the benchmark hedging always reduces risk, i.e. hr > 0. 

Equation (3b) is obviously not the only valid definition. In fact, any bj that increases with 

decreasing hl/hr is a valid quantification of basis risk. Partially due to this reason, basis 

risk is not uniquely defined in previous studies. For example, Major (1999) uses volatility 

of hedging to represent basis risk, whereas Harrington and Niehaus (1999) and Meyers 

(1996) measure basis risk based on the linear correlation coefficient between the actual 

loss and index-based payoff. 

For Company A, the selected risk measure is the probability of default (POD), as 

reducing POD is its objective of hedging. Since the ILW does not reduce POD to the 

desired benchmark level, a substantial amount of basis risk exists (Table 1). 

Table l. Numerical values of hedging effectiveness and basis risk related to the ILW structure defined in 

Section 3 for Company A 

Underlying Net of indemnity Net of ILW 
portfolio reinsurance 

Probability of default (risk 1.00% 0.40% 0,60% 
measure) 

Hedging effectiveness 60.0% 40.0% 

b] 33.3% 
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Figure 2. The cumulative distribution functions (CDF) of the gross and net losses of the underlying 
portfolio of Company A: (1) without hedge; (1I) the thick curve: net of the benchmark; (111) the thick curve: 
net of the ILW defined in Section 3.2; (IV) the thick curve: net of the optimal ILW defined in Section 4.2. 
The thin curves in each of the panels (11), (IlI) and (IV) are the same curves as those in the previous panels 
for comparison purposes. The two horizontal dashed lines represent the 99% and 99.6% quantiles of the 
CDF. 

Basis Risk of Payoff Shortfall (Type II): In general, two hedging instruments that 

accomplish the same hedging effectiveness do not guarantee the same payoff. Hence, 

even if b/for an index-based hedging instrument is zero, it is still possible that the index- 

based payoffis less than the benchmark. To account for such discrepancy, we define the 

payoff differential (AL*) as: 

~* ~x, -xR =L~ -L~ (4) 
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where 2(1, XR, L'R, and L**, defined in Section 2, are the index-based payoff, reinsurance 

payoff, net loss after the benchmark reinsurance, and net loss after the index-based 

product, respectively. A negative value of AL* indicates that the buyer of the index-based 

instrument would recover more if the benchmark indemnity instrument were used instead 

(i.e. there is a payoff shortfall for the index-based instrument). This is another important 

aspect of basis risk in addition to its impact on hedging effectiveness. Because the 

purchaser is generally interested in protection against large losses, we examine the 

conditional cumulative distribution function of  AL* given the occurrence of  a loss severe 

enough to trigger the payoff of  the benchmark (i.e. XR>0). The conditional CDF is simply 

denoted as fb(s): 

fb (S) -~ prob(AL" < s ] XR > 0) (5) 

whereprob(.) stands for the probability that " . "  occurs. Examples offb(s) are shown in 

Figure 3. Since we are primarily interested in measuring the downside risk of  index-based 

instruments, we define the Type 11Basis Risk (referred to as b: hereafter) as: 

max(-s  ~ ,0) 
b 2 - - - -  (6) 

l' 

where s '~ is the a ~ quantile offb(s). Under this definition, b2 is the quantile of  the index- 

based payoff shortfall normalized by the limit of the benchmark indemnity reinsurance 

policy (l'). For the ILW structure defined above for Company A, selected values of b2 are 

listed in Table 2. The last row in the table shows that, for example, given the occurrence 

of  a loss greater than the benchmark retention (r), there is a probability of  0.05 that the 

index-based payoff shortfall will exceed 19.9% of the limit of the benchmark hedging 

program. 

Table 2. Selected values ofbz for the initial ILW structure defined in Section 3.2 and the optimal ILW 
defined in Section 4.2 for Company A. 

a b2 b2 
(initial) (optimal) 

0.004 43.4% 19.3% 
0.01 41.1% 17.7% 
0.05 19.9% 1.8% 
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Figure 3. the conditional CDF of payoff differentials. Panels I and I1: for the ILW structure defined in 
Section 3; the negative tail of the curve in I is a shown in I1. Panels 111 and IV: for the ILW structure 
defined in Section 3.2 (thin lines) and for the optimal ILW defined in Section 4,2 (thick lines); the negative 
tail of the curve in III is a shown in IV. The horizontal dashed lines in Panels II and IV represent the 0.4% 
and 1% quantiles of the conditional CDF. 

In summary, bl measures the hedging effectiveness of an index-based instrument relative 

to a benchmark, which is usually an indemnity reinsurance policy. Because this is 

directly related to the risk/return profile of the net post-hedge portfolio, we believe b~ 

should be the focus of the buyer in evaluating the benefit of index-based strategies. 

However, b2 is also important in practical decision-making as it measures the "probability 

of regret" for choosing an index-based instrument over a more traditional indemnity 

reinsurance policy. In this context, b2 does not reflect or give any value to the fortuitous 
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gain 3 available from the index-based instrument, which must be taken into account for the 

purpose of  designing an optimal index-based hedging program (Section 4). 

4. Optimizing an index-based hedging p rogram 

4.1. An overview 

When the basis risk associated with an index-based instrument exceeds a tolerable 

threshold established by the purchaser, the contract terms must be modified such that the 

basis risk is reduced to the acceptable level. Given an underlying portfolio, there are 

primarily two ways to accomplish this: (a) changing the index or indices used by the 

contract and/or (b) modifying the parameters associated with each index (e.g., trigger and 

limit). It is possible that the cost of the contract will increase due to these changes. An 

optimal contract best balances the cost and benefit while satisfying the constraints 

imposed on the buyer. The process of arriving at such an optimal balance is illustrated 

using a simple example (Section 4.2). A robust method for optimizing complicated real 

world index-based contracts is introduced in Section 4.3. 

4.2. A simple example 

We revisit the example of Company A. We assume that the company wishes to reduce 

the basis risk associated with the initial ILW defined in Section 3.2 by changing the limit 

and trigger of  the ILW. Specifically, it wishes to accomplish the following two objectives: 

(a) Reduce b / to  zero (i.e. it requires that the ILW has the same level of hedging 

effectiveness as the benchmark). In this ease, the task is to reduce the POD net 

of the ILW from 0.6% to 0.4%. 

(b) Achieve Objective (a) with the lowest possible cost, allowing the underlying 

portfolio to retain the maximum possible net expected profit. 

3 the fortuitous gain is referred to as the excess recover from an index-based instrument relative to the 
benchmark (i.e. when AL* > 0). Under reinsurance accounting, it is impossible for the buyer to recover 
more than its gross pre-hedging loss. 
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Hence, the optimal ILW in this case is one that maximizes the net expected profit of the 

underlying portfolio while keeping POD from exceeding 0.4%. 

We first plot how POD varies as a function of the ILW trigger and limit (the thick 

contours in Figure 4). The POD is represented by the contours of equal POD values. A 

point on a contour labeled x represents the trigger/limit combination of  an ILW contract 

net of  which the underlying portfolio has a POD ofx. We call such a contour the equal 

POD curve o fx  (e.g., 0.4%). All points located to the upper-left of the curve correspond 

to POD less than x, and vice versa. 

The initial ILW is represented by the solid square, which is located on the equal POD 

curve of 0.6%. For the POD to be reduced to 0.4% or less, the limit and trigger 

combination must be adjusted such that it is located on or to the upper-left of the equal 

POD curve of  0.4%. In fact, an ILW represented by any point on the equal-POD line of 

0.4% can achieve the first objective. 

We next examine the costs associated with different ILW contracts in order to 

accomplish the second objective. It is assumed that the premium for the contract is equal 

to five times the expected payoff, representing a typical profit margin of  this type of  

contract in the market. With this assumption, the net expected profit 4 is calculated and 

visualized as the thin contours in Figure 4. A point on a contour labeled y represents the 

trigger/limit combination of  an ILW contract, net of which the underlying portfolio has 

an expected profit ofy. We simply call such a contour the equalprofit curve ofy. All 

points located to the upper-left of the curve correspond to net expected profits less than y, 

and vice versa. 

4 Defined as the premium of the underlying portfolio minus the sum of(i) the cost of the ILW, (ii) the 
expected value of the net loss, and (iii) other expenses. These quantities are formally defined in Section 4.3 
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Figure 4. The probability of default (thick contour) and the expected profit (thin contour, in $M) net of 
ILW as a function of the trigger and limit. The solid square represents the initial 1LW defined in Section 3.2, 
of which the index trigger is equal to the 100-year industry loss and the limit is equal to the difference 
between the buyer's 250-year loss and 100-year loss. The solid circle represents the ILW with the optimal 
trigger and limit arrived at in Section 4.2. 

The point where the equal POD curve of 0.4% is tangent to an equal net profit curve is 

represented by the solid circle in Figure 4. The equal net profit curve represents a net 

expected profit of $350M. The solid circle represents the optimal ILW that accomplishes 

both objectives of the company because 

(a) Since it is located on the equal POD curve of 0.4%, the first objective is 

achieved. 

(b) All other points along and to the upper-left of the equal POD curve of 0.4% 

are also to the upper-left of the equal net profit curve of $350M. Hence, the 

259  



net profits associated with these points are less than that associated with the 

solid circle. Thus, the solid circle represents the trigger/limit combination 

corresponding to the greatest net expected profit, i.e. the combination that 

accomplishes the second objective. 

By definition, b~ is reduced to zero. The loss distribution function of the underlying 

portfolio net of the optimal ILW is shown in panel IV of Figure 2. b2 is shown in panel 

IV of Figure 3 and in Table 2. 

This simple example shows that, in general, the task of optimizing an index-based 

hedging program is essentially a problem of optimally balancing basis risk and costs. 

Once the buyer determines the amount of acceptable basis risk and, if any, other 

constraints, an optimal hedging program should maximize an objective function specified 

by the user. In the example above, the objective function is the net expected profit. Other 

commonly used objective functions include risk-adjusted return on capital, Sharpe Ratio, 

etc. (e.g., Zeng, 2000). The optimization problem is formalized and generalized in the 

next subsection. 

4.3. A robust method for optimizing an index-based hedging program 

A robust method for optimizing an index-based hedging program is needed to handle real 

world tasks primarily because the underlying portfolio frequently consists of exposures in 

multiple lines of business and geographical regions. Thus, the number of  indices involved 

is usually significantly greater than one. This makes the exhaustive search method used 

above impractical. In addition, it is not feasible to vary the limit and trigger continuously 

to create an ideal contract because only ILWs available in the market can be purchased. 

In fact, we can control only the amount to purchase for each contract. 

For the/d h contract available in the market (k = 1, 2, ..., m), where m is the number of  

different contracts available, we define the following 

I, the underlying index (e.g. industry loss index for a specific region); 

zk the amount purchased; 
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rl~Ik) the unit payoff function. 

pk the unit premium (i.e. cost per zk). 

The payoffand cost of  contract k are zkrlk(lk,) and zkpk,, respectively. They are partitioned 

into the product of  the amount of  contract purchased and their respective unit values 

because the amount zk is a decision to be made by the optimization procedure whereas the 

unit values depends on the contract itself, regardless the amount purchased 5. For a simple 

binary ILW, pk and zk are simply the rate on line and the limit purchased, respectively. 

The payoff (Equation 1 a) can be rewritten as 

=~1, I  k ->i~ 
r/k(Ik) ~0,i  k <i, 

z k = l (7) 

gl (Ik) = zk r/k (I~) 

The total payoff(X) and total cost (Pt) of the hedging program are 

X=~zkv~(I~) 
k= l  

m 

P, = ~ z k P k  
k=l 

Hence, the loss net of  the hedging program (L*, defined in Equation 2b) can be 

specifically rewritten as 

(8) 

L* = max[0, L - ~ ,  z~ qk (Ik)] (9) 
k=I 

The expected profit prior to hedging (EP) and the expected profit net of hedging (EP*) 

can be expressed as 

EP =qo - E L  (10) 

EP* = qo - P, - EL* 

5 The unit premium actually depends on the amount purchased due to the supply-demand balance; however, 
this dependency is not considered in the analyses to simplify the formulas. 
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where qo is the inward premium of the underlying portfolio net of expense 6. E is the 

expected value operator on a random variable. 

The goal of the optimization procedure is to find the set ofz  = {zl, z2, ..., zm} such that a 

general objective function ~ is maximized and a series of  constraints are satisfied. Most 

frequently used (0 is the expected profit of  the underlying portfolio scaled by a risk 

measure. For the example, it can be defined as 

EP" ~ = - -  O1) 
Y~ 

where E P *  is the net expected net profit andyi is some measure of  the risk of the 

portfolio net of hedging. The latter can be the standard deviation, value at risk, tail value 

at risk and/or other statistics of  the net loss L*. The constraints can be expressed as 

N c ( E P ,  p , . y , b ~ , b 2 )  ~ 0 
(12) 

c = 1,2,.,., n c 

where nc is the number of constraints. The constraints usually reflect limitations on the 

overall risk of  the portfolio and/or the total cost of hedging. It is possible that a constraint 

can completely satisfy the risk control need of the hedger; consequently, the objective 

function does not need to be scaled by a risk measure, as illustrated in the simple 

examples in Section 4.2. In this example, there is one single constraint requiring that the 

probability of default net of hedging (denoted POD*)  do not exceed 0.4%. The objective 

is to maximize the net profit subject to this constraint. The objective and constraint for 

this example can be expressed as: 

~o = EP* 

g"t = b~ = POD* - 0.4% -< 0 
(13) 

In general, given concrete expressions of ~o, ~uc, and Yl, which are chosen by the buyer of 

the hedging program, all the independent variables in Equations 11 and 12 are functions 

6 IfL only contains catastrophe losses computed by a cat model, then the expected non-cat loss should also 
be excluded from qo. 
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ofz only. Therefore, the values o f¢  and ~/c are functions ofz only. Then, the optimization 

task becomes searching for z such that ¢=¢(z) is maximized, subject to ~c=~(z) _< 0, 

c=l,. . . ,  nc. 

If~p and ~c were linear or other smooth functions of z, this optimization task would be 

relatively easy to handle using traditional numerical algorithms such as the ones based on 

the steepest descent. However, because of the payoff function used in real-world 

transactions (e.g., Equation 7) are nonlinear and inherently not smooth, traditional 

optimization algorithms frequently fail to reach the global maximum. 

In this study, an optimization procedure based on the genetic algorithm (GA) is used. 

Genetic algorithms are computing algorithms that simulate the mechanics of natural 

selection and natural genetics to "evolve" toward the optimal solution to problems. They 

are frequently applied to optimization problems where traditional approaches fail because 

of nonlinear, non-smooth, or discrete objective functions and constraints. A thorough 

discussion of GA is beyond the scope of this paper; however, interested readers can refer 

to, e.g., Goldberg (1989). The application of GA on index-based hedging is also 

introduced in Cummings, et .al. (2003). In this paper, we describe only the principle of 

this approach in the context of  our task. 

At first, randomly selected initial values are assigned to z to form the original generation 

(denoted zo). Multiple individuals of  the first generation (zlt, z~2,.., zip) are created by 

randomly perturbing zo, where p is the number of individuals; these p individuals are 

known as the population for this generation. A score for zlj, based on the objective 

function and the constraint functions, is calculated to measure how "good" zlj is. If any of 

the constraints is not satisfied, the score will be a large negative value (e.g., -1036). If all 

constraints are satisfied, the score will be equal to ¢(zrA. The next generation population 

is created by combining two randomly selected individuals from the previous generation 

plus some random variations. The p individuals with the highest scores are retained (z21, 

zzz,.., zzp). This process is repeated until a stopping condition is reached. For example, 

the stopping condition can be that the highest score among all populations in the current 

generation is very close to that in the previous generation. Upon stopping, the optimal z is 
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the Zgj (i.e. t he f '  individual in the gth generation) with the highest score (hence the 

greatest value of the objective function) among all individuals. It is the random 

combination of individuals that allows the optimization procedure to "escape" from local 

maximums and have a much better chance to reach the global maximum. 

We illustrate this approach using the following example. Company B has an underlying 

portfolio with exposure in two regions. It uses the 99 th percentile VaR to measure risk (Yi); 

its goal is to reduce y~ to a target level while maximize the objective function defined by 

Equation 11. The objective and constraint are listed in Table 3. The ILW contracts 

available in the market are summarized in Table 4. 

Table 3. Objective and constraint of optimizing an index-based hedging progrmn 

Inward Expected Expected 99 tn percentile ,~ 
premium annual loss ($K) profit ($K) VaR ($K) 

($K) 
underlying 10,000 2,305 7,695 54,861 14% 
portfolio 
objective of less than maximize 
hedging 30,000 

Table 4. Price and availability of ILW contracts 

region trigger ($M) 

3,500 

rate-on-line (pk) 

10% 

A 10,000 6% 

B 7,000 10% 

B 20,000 6% 

Capacity 
available ($M) 

amount 
purchased (z) 

20 zl = ? 

30 z2 = ? 

25 z~ = ? 

50 z4 = ? 

The task is to find the set ofz = {zl, z2, z~, z4} such that, net of the hedging program, the 

objective stated above is accomplished. In addition, the market data above impose 

another constraint: the maximum value of {z~, z2, z3, z4} cannot exceed their respective 

available capacities (i.e. maximum limits). This example represents real world problems 

closely except a very small number of available contracts is used (m = 4), which allows 

us to verify the results using exhaustive search (i.e. testing all possible combinations ofz~, 

z:, z3, and z4). Nevertheless, the speed performance of this approach for larger m is shown 

to be acceptable. Table 5 outlines the compositions of the hedging program 

recommended by GA and exhaustive search. The risk and return statistics of the portfolio 

net of the hedging programs are summarized in Table 6. Although the objective function 
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considers only one risk measure (VaR), two additional commonly used risk measures 

(TVaR and standard deviation) are listed in the table for comparison. 

Table 5. Optimal hedging program recommended by GA and exhaustive search. All values are in SK. 

Z1 Z2 Z 3 Z4 

Genetic 231 17222 24625 29563 
algorithm 
Exhaustive 0 17000 24500 29500 
search 

Table 6. Risk and return statistics of portfolio net of optimal hedging programs designed based on GA and 
exhaustive search. All values are in $K except the ratio 

Underlying 
portfolio 
Net of 
optimal 
hedging - 
GA 
Net of 
optimal 
hedging - 
exhaustive 
search 

Expected 99 th 99 th 
Inward Cost of annual Expected percentile percentile Standard 
premium hedging loss profit VaR ~o TVaR deviation 

14.0% 10,000 2,305 7,695 54,861 151,513 19,872 

10,000 5,270 1,312 3,419 14,419 23.7% 106,899 15,924 

10,000 5,240 1,317 3,443 14,641 23.5% 107,093 15,937 

The GA-based results are very close to the benchmark solution produced by exhaustive 

search. In fact, it is better than the exhaustive search, in which the incremental value ofz  

is only $500K. Although it is impossible to directly verify the results of  the GA-based 

results using exhaustive search for larger m due to computational constraints, we believe 

that the GA-based algorithm remain accurate because it does not rely on any assumptions 

about m. 

It is well known that most financial optimization procedures are subject to parameter risk, 

which can adversely affect the robustness of any optimal solution. For example, i f  TVaR 

is substituted for VaR as the risk measure in the objective function for the example of 

Section 4.3, the composition of the optimal hedging program will  be different from that 

using VaR as the risk measure (Table 5). Generally, the solution can vary greatly 

depending on the choice of risk measure (e.g., VaR, TVaR or standard deviation), the 
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parameter associated with the measures (e.g. percentile), or the mechanics of  the 

underlying loss model (e.g., catastrophe model). For example, the optimal solution based 

on VaR would not necessarily be optimal if TVaR were used as the risk measure. Given 

the complex nature of this issue, using a coherent risk measure alone would not solve this 

problem. Although the parameter risk discussed above is not caused by or directly related 

to our optimization algorithm, the robustness of the outcome would be greatly improved 

if parameter risk could be handled more effectively, which remains a challenging 

problem for actuarial researchers and practitioners. 

5. Summary 

Index-based hedging instruments such as ILWs are increasingly recognized as effective 

hedging tools for insurance and reinsurance portfolios. However, wider adoption of these 

instruments is inhibited by basis risk, the random difference between the index-based 

payoffand the buyer's actual loss. This study presents a systematic approach for potential 

buyers to analyze and manage basis risk in order to take full advantage of the benefits 

offered by these instruments. 

We examine two measures of  basis risk: (i) hedging effectiveness and (ii) conditional 

payoff shortfall. Many existing measures such as the volatility of hedging (e.g., Major 

1996) and R 2 (e.g., Harrington and Niehaus, 1999) are special cases of  special cases of 

the hedging effectiveness measure, which quantifies the cost-adjusted benefit of the 

index-based hedging program relative to a benchmark. Next, we study the tradeoff 

between basis risk and the cost of  hedging. The conditional payoff shortfall measures the 

probability that the buyer recovers less from an index-based hedging program than from a 

benchmark, reflecting the likelihood of "regret" for using the non-traditional hedging 

approach. In this study, a traditional catastrophe excess reinsurance layer is used as the 

benchmark. However, a wider spectrum of risk management products (such as 

proportional reinsurance, per risk excess reinsurance) is available. The methodology 

proposed in this paper is equally applicable to analyze these different benchmarks 

assuming the loss distribution of the underlying portfolio net of  these products can be 

calculated. 
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Finally, we present a robust numerical algorithm designed to optimize an index-based 

hedging program consisting of multiple index-based contracts by analyzing the tradeoff 

between basis risk and cost of a hedging program. Compared to a benchmark 

optimization procedure based on exhaustive search, the GA-based approach is shown to 

work effectively to maximize the return on risk of a reinsurance portfolio subject to 

constraints. Nevertheless, like most financial optimization procedures, the outcome of 

this approach is not immune from parameter risk. Effectively address this issue remains a 

challenging but potentially rewarding future research direction. 
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