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Abstract 

This paper begins with a description o f  how to calculate the aggregate loss 
distribution for a reinsurer. We include most of  the standard exposures as well as 
property catastrophe exposure. Next we show how this aggregate loss distribution 
can be used to determine the needed capital, and its cost, for a reinsurer. Finally 
we show how to calculate the capacity charges for individual reinsurance contracts 
that will allow the reinsurer to recover its cost of  capital. We demonstrate the use 
of  this methodology on some illustrative reinsurance contracts. We believe this 
methodology can be used in practice by most reinsurers. 
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1. Introduction 

This paper has three objectives: 

1. Demonstrate a practical method to determine the distribution ofa reinsurer's 

aggregate loss payments. This includes not only losses from the contracts it 

currently is reinsuring, but also contracts that have expired but still have 

outstanding claims. This distribution will depend on the variation of each 

contract's claim frequency and severity. It will also reflect dependencies 

among the various hazards reinsured. 

2. Using the results of Objective #1, demonstrate how to determine the amount 

of capital needed for a reinsurance company based on its risk of loss. 

3. Using the results of Objective #2 demonstrate how to determine the capacity 

charge for a new reinsurance contract. 

We will illustrate the use of our model and methodology on a portfolio of 

reinsurance contracts. The parameters for the loss models were obtained from 

analyses by Insurance Services Office (ISO) and AIR Worldwide Corporation 

(AIR). 

The exposures for these contracts were obtained from the annual statements for 

several primary insurers and from data reported to ISO. Using the descriptions of 

the reinsurance programs that were reported to A.M. Best Company, we modified 

the loss models accordingly. 

We treat the time value of money by assuming a fixed risk-free interest rate. 

While the assets of a reinsurer are not always risk-free, a full treatment of asset risk 

is beyond the scope of this paper. Thus, we should expect reinsurers to have more 

capital than that indicated by the methodology described in this paper because they 

have asset risk. 
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We begin with a description of  possible ways to model a reinsurer's distribution of  

underwriting losses. This description will include ways to model dependencies 

among the various reinsurance contracts. It will also discuss how to parameterize 

these models. 

Next we will describe how we calculate the required capital. This description will 

include a short survey of  the issues involved in making such a calculation. It turns 

out that there is no strong consensus on how to do this; but, if we are to get a final 

answer, we must and do pick one method. 

We then move on to developing a methodology for calculating a capacity charge. 

As we do in our section on calculating the required capital, we will include a short 

survey of  the issues involved in doing this. Again we note that there is no strong 

consensus on how to do this but, as before, we do pick one method. 

While we recognize that others may differ in their methodology for solving these 

problems, we do feel that our methodology for calculating both the required capital 

and the capacity charge is reasonable. We note that the underwriting risk model 

that we have built to solve these problems could be used for other methodologies. 

2. Models of  Reinsurer Losses 

This section begins with a description of  the classic collective risk model, and it 

then enhances it with correlations or, more precisely, dependencies generated by 

parameter uncertainty. 

Next we introduce catastrophe models, in which the dependencies are caused by 

geographic proximity. We describe catastrophes generated by hurricanes and 

earthquakes. 
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2.1 The Collective Risk Model 

The collective risk model (CRM) describes the total reinsured loss in terms of  the 

underlying claim count and claim severity distributions for each reinsured contract. 

We describe this model by the following simulation algorithm. 

Simulation Algorithm #1 

Step 

1. For each reinsurance contract, h, with uncertain claim payments, do the 

following: 

• Select random claim count Kh from a distribution with mean Xh where Xh is 

the expected claim count for contract h. 

• For each h, select random claim sizes, Zhk, for k = 1 .... , Kh. 

2. Set Xh = ~Zh~ = Loss for contract h. 
k=l 

3. Set X = ~Xh = Loss for the reinsurer. 
h 

This formulation of  the CRM assumes that the losses for each class are 

independent. We now introduce a dependency structure into the CRM with the 

following algorithm. 

Simulation Algorithm #2 

Step 

1. For each reinsurance contract h, with uncertain claim payments, do the 

following: 

• Select a random claim count Kh from a distribution with mean ~,h where )~h is 

the expected claim count for contract h. 
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• For each h select a random claim size, Zhk, for k = 1,...,Kh. 

Select a random [3 from a distribution with E[[3] = 1 and Var[[3] = b. 

K~ 

2. Set X h = ~Zhk = LOSS for contract h. 
k=l 

3. 

4. Set x = [~ . ~ x  h = Loss for the reinsurer. 
h 

The extra step of  multiplying all the losses by a random [3 adds variability in a way 

that losses for each reinsurance contract will tend to be higher, or lower, together at 

the same time. This induces one kind of  dependency, or correlation, among the 

losses o f  different reinsurance contracts. One can think o fb  as a parameter that 

quantifies the uncertainty in the economic environment affecting multiple lines of  

insurance. 

Figures 1-4 provide a graphic illustration of  how Simulation Algorithm #2 

generates dependency and correlation. In these figures we randomly selected XI 

and X2. Next we randomly selected [3. We then plotted [3 X1 against 13 X2. If  we do 

not change the distributions Xt and X2, a higher b will lead to a higher coefficient 

of  correlation. But, as illustrated in Figures 3 and 4, the coefficient of  correlation 

also depends on coefficients of  variation (CV) of  X1 and X2. 
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Figure 1 

XI and X2 are independently drawn 
random variables with CV=0.1. 

15 was drawn from a distribution with 
b=Var[13] = 0. Thus p = 0.00. 

pXI 

Figure 2 

X~ and X2 are independently drawn 
random variables with CV=0.1 

13 was drawn from a distribution with 
b=Var[15] = 0.005. Thus 9 = 0.33. 
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Figure 3 

Xl and X2 are independently drawn 
random variables with CV=0.1 

13 was drawn from a distribution with 
b=Var[[3] = 0.020. Thus p = 0.66. 
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Figure 4 

X1 and X2 are independently drawn 
random variables with CV=0.2 

15 was drawn from a distribution with 
b=Var[13] = 0.020. Thus p = 0.33. t 
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Having described one method to introduce dependencies into the collective risk 

model, we now apply this method to a model o f  the underwriting losses for a 

reinsurer. Here is a summary of  the main features o f  this model. 

It is necessary to hold capital for uncertain losses in expired reinsurance 

contracts. Thus the model treats unpaid losses from both new and expired 

reinsurance contracts from prior accident years 

We use separate parameter uncertainty multipliers for both claim frequency 

and claim severity. For reinsurance contract h, a random claim frequency 

multiplier, C~h, is applied to the expected claim count parameter, )~h. Each cch 

has a mean of  one and a variance ofgh. We call gh the covariance generator 

for contract h. 

Each reinsurance contract is assigned to a distinct "covariance group" 

according to the line of  business that it covers. (Granted, some reinsurance 

contracts cover multiple lines, but in this paper, we use a narrower 

definition of"contract.") Within a given covariance group, the random 

claim frequency multipliers, c% are identical within line of  business, not 

necessarily identical to other lines of  business in the same covariance group, 

but they increase and decrease together. 

• The random claim severity multiplier, 13, is applied uniformly across all 

contracts. 

One can informally classify the sources of  risk in this model into process 

risk and parameter risk. Process risk is the risk attributable to random 

claim counts and claim sizes, and parameter risk is the risk attributable to 
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the randomness of  the claim frequency multipliers and the claim severity 

multiplier. 

• When parameter risk operates on several contracts simultaneously, we say 

that there is correlation generated by parameter risk. 

These features are described in the following algorithm. 

Simulation Algorithm #3 

Step 

1. Select a random [3 from a distribution with El13] = 1 and Var[f3] = b. 

2. For each covariance group i, select random percentilepi.  

3. For each covariance group i, reinsurance contract h in the covariance group 

(denoted by G~), and accident year y with uncertain claim payments, do the 

following: 

• Select ahy =Pi  th percentile o f  a distribution with E[c~hy] = 1 and Var[ahy] = 

ghy 

• Select random claim count Khy from a distribution with mean O~hy'~hy, where 

)~hy is the expected claim count for reinsurance contract h and accident yea ry  

in covariance group i. 

• For each h a n d y ,  select random claim size Zhyk for k = 1 .... ,Khy. 

4. Set X~ = ~-~, ~ZZhyk = Loss for covariance group i. 
h~G i y k=l 

5. Set x = [3 . ~ X  i = Total loss for the reinsurer. 
i 

We now describe our parameterization of  this model. 
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For the non-catastrophe reinsurance contracts, we use claim severity 

distributions derived by ISO. We use a piecewise linear approximation to 

the ISO models. 

Smaller claims tend to settle quickly. In fitting the models for the 

distribution of future payments for expired reinsurance contracts, we 

removed those claims that are already settled. 

Reinsurers often write multiple contracts, covering different layers, with a 

single insurer. For example, one reinsurance contract will cover 50% of a 

lower layer, and another contract will cover 80% of a higher layer. We treat 

such arrangements as a single contract and adjust the claim severity 

distribution accordingly. 

We use the negative binomial distribution to model claim counts. The 

expected claim count will depend on the reinsurer's limits and exposure. A 

second parameter of the negative binomial distribution, called the contagion 

parameter must be provided. We use estimates of the contagion parameters 

obtained in an analysis performed by ISO. This analysis is described in the 

appendix. 

The same analysis in the appendix also provides estimates of the covariance 

generators, gh. A noteworthy feature is that these estimates use data from 

several insurers. This estimation necessarily assumes that each gh is the 

same for all insurers writing that particular line of insurance. While we 

agree in principle that each gh could differ by insurer, it is unlikely that any 

single insurer will have enough observations to get reliable estimates of the 

gh's. 
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• The main idea behind the estimation of  the parameters, described in the 

appendix, is that expected values of  various statistics that we can calculate 

from the data are functions of  the negative binomial parameters and the 

covariance generators. We calculated these statistics for a large number of  

insurance companies and we found parameter values that best fit the 

statistics we calculated. As we show in the appendix, reliable estimates of  

these parameters cannot be obtained with data from a single insurer. It is 

only by combining the data of  several insurers that we can obtain reliable 

estimates of  these parameters. 

Finally, we describe how we calculate a reinsurer's distribution of  underwriting 

losses. Since we describe the loss model in terms of  a computer simulation, one 

could actually do the simulations. In practice, many do. We calculate the 

distribution of  underwriting losses with Fourier transforms using the method 

described by Heckman and Meyers [ 1983 ]. The extension of  this method to 

address dependencies is described by Meyers [1999a and 1999b]. 

Both simulation and Fourier transforms are valid ways to calculate the distribution 

of  underwriting losses. The advantage of  Fourier transforms is that one can 

calculate the distribution of  underwriting losses in seconds, where a simulation 

could take hours to do the same task. A disadvantage o f  Fourier transforms is that 

it can take a long time to do the initial set-up whereas the set-up time for a 

simulation is relatively short. 

2.2 Catastrophic Perils 

Natural catastrophes such as earthquakes, hurricanes, tornadoes, and floods have 

an impact on many insureds; and the accumulation o f  losses to an insurer or 

reinsurer can jeopardize the financial well-being of  an otherwise stable, profitable 
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company. Hurricane Andrew, in addition to causing more than $16 billion in 

insured damage, left at least 11 companies insolvent in 1992. The 1994 Northridge 

earthquake caused more than $12 billion in insured damage in less than 60 

seconds. 

Fortunately, such events are infrequent. But it is exactly their infrequency that 

makes the estimation of losses from future catastrophes so difficult. The scarcity 

of historical loss data makes standard actuarial techniques of loss estimation 

inappropriate for quantifying catastrophe losses. Furthermore, the usefulness of 

the loss data that does exist is limited because of the constantly changing landscape 

of insured properties. Property values change, building codes are change over 

time, along with the costs of repair and replacement. Building materials and 

designs change, and new structures may be more or less vulnerable to catastrophic 

events than were the old ones. New properties continue to be built in areas of high 

hazard. Therefore, the limited loss information that is available is not sufficient for 

directly estimating future losses. 

The modeling of catastrophes is based on sophisticated stochastic simulation 

procedures and powerful computer models of how natural catastrophes behave and 

act upon the man-made environment. The modeling is broken into four 

components. The first two components, event generation and local intensity 

calculation, define the hazard. The interaction of the local intensity of an event 

with specific exposures is developed through engineering based vulnerability 

functions in the damage estimation component. In the final component, insured 

loss calculation, policy conditions are applied to generate the insured loss. 

Figure 5 below illustrates the component parts of the AIR state-of-the-art 

catastrophe models. It is important to recognize that each component, or module, 
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represents both the analytical work of the research scientists and engineers who are 

responsible for its design and the complex computer programs that run the 

simulations. 

Figure 5: Catastrophe Model Components (in gray) 

2.2a Event Generation Module 

The event generation module determines the frequency, magnitude, and other 

characteristics of potential catastrophe events by geographic location. This 

requires, among other things, a thorough analysis of the characteristics of historical 

events. 

After rigorous data analysis, researchers develop probability distributions for each 

of the variables, testing them for goodness-of-fit and robustness. The selection and 

subsequent refinement of these distributions are based not only on the expert 

application of statistical techniques, but also on well-established scientific 

principles and an understanding of how catastrophic events behave. 

These probability distributions are then used to produce a large catalog of 

simulated events. By sampling from these distributions, the model generates 

simulated "years" of event activity. Many thousands of these scenario years are 

generated to produce the complete and stable range of potential annual experience 
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of catastrophe event activity and to ensure full coverage of extreme (or "tail") 

events, as well as full spatial coverage. 

2.2.b Local Intensity Module 

Once the model probabilistically generates the characteristics of a simulated event, 

it propagates the event across the affected area. For each location within the 

affected area, local intensity is estimated. This requires, among other things, a 

thorough knowledge of the geological and/or topographical features of a region 

and an understanding of how these features are likely to influence the behavior of a 

catastrophic event. The intensity experienced at each site is a function of the 

magnitude of the event, distance from the source of the event, and a variety of local 

conditions. Researchers base their calculations of local intensity on empirical 

observation as well as on theoretical relationships between the variables. 

2.2.c Damage Module 

Scientists and engineers have developed mathematical fimctions called 

damageability relationships, which describe the interaction between buildings 

(both their structural and nonstructural components as well as their contents) and 

the local intensity to which they are exposed. Damageability functions have also 

been developed for estimating time element losses. These functions relate the 

mean damage level as well as the variability of damage to the measure of intensity 

at each location. Because different structural types will experience different 

degrees of damage, the damageability relationships vary according to construction 

materials and occupancy. The model estimates a complete distribution around the 

mean level of  damage for each local intensity and each structural type and, from 

there, constructs an entire family of probability distributions. Losses are calculated 
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by applying the appropriate damage function to the replacement value of the 

insured property. 

The AIR damageability relationships incorporate the results of well-documented 

engineering studies, tests, and structural calculations. They also reflect the relative 

effectiveness and enforcement of local building codes. Engineers refine and 

validate these functions through the use of post-disaster field survey data and 

through an exhaustive analysis of detailed loss data from actual events. 

2.2.d Insured Loss Module 

In this last component of the catastrophe model, insured losses are calculated by 

applying the policy conditions to the total damage estimates. Policy conditions 

may include deductibles by coverage, site-specific or blanket deductibles, coverage 

limits and sublirnits, loss triggers, coinsurance, attachment points and limits for 

single or multiple location policies, and risk-specific reinsurance terms. 

2.2.e Model Output 

After all of the insured loss estimations have been completed, they can be analyzed 

in ways of interest to risk management professionals. For example, the model 

produces complete probability distributions of losses, also known as exceedance 

probability curves (see Figure 6). Output includes probability distributions of 

gross and net losses for both annual aggregate and annual occurrence losses. The 

probabilities can also be expressed as return periods. That is, the loss associated 

with a return period of 10 years is likely to be exceeded only 10 percent of the time 

or, on average, in one year out often. For example, the model may indicate that, 

for a given regional book of business, $70 million or more in insured losses would 

be expected to result once in 50 years, on average, in a defined geographical area, 
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and that losses of  $175 million or more would be expected, on average, once every 

250 years. 

Output may be customized to any desired degree of geographical resolution down 

to location level, as well as by line of business and, within line of  business, by 

construction class, coverage, etc. The model also provides summary reports of  

exposures, comparisons of exposures and losses by geographical area, and detailed 

information on potential large losses caused by extreme "tail" events. 

Figure 6: Exceedance Probability Curve (Occurrence) 
r ___ 

0 50 100 150 200 250 300 350 400 

Loss  A m o u n t  ($  m i l l i ons )  

2.2.f Correlation 

An advantage of this modeling approach is the generation of a stochastic event set 

that can be used to analyze multiple exposure sets. In this study, individual 

companies' exposures were analyzed using a common catalog of events. As 

mentioned earlier, details of reinsurance programs were also applied, resulting in 

both net and gross distributions of  potential catastrophe losses. By analyzing 

various sets of  exposure against the same set of  events we are able to ascertain 

correlation amongst the exposure sets. 
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3. Calculating the Required Capital 

This paper is focused on the underwriting risk generated by uncertain loss 

payments. We assume that all assets are invested at a risk-free rate of  return and 

thus make the simplifying assumption that the capital required by a reinsurer 

depends solely on its aggregate loss distribution. 

A reinsurer is exposed to underwriting risk not only from future claims on new 

business, but also from unsettled claims on past business. One must consider the 

underwriting risk from both sources when calculating the required capital. Larger 

claims tend to take longer to settle, and the underwriting loss model should reflect 

this. 

Let Xbe  the random variable for the reinsurer's total loss. Denote by p(X) the total 

assets that the reinsurer needs to support its business ~. Now some of  the 

reinsurer's assets come from the premium it charges for its business. At a 

minimum, this amount should equal the expected value of  X, E[X]. The remaining 

assets, which we call (economic) capital, must come from investors. We define the 

capital needed by the reinsurer by the equation: 

Capital = o(X) - E[X] (1) 

Let c~ be a selected percentile of  X. The tail value-at-risk for X, TVAR~(X), is 

defined to be the average of  all losses greater than or equal to the c( h percentile of  

X. In this paper we use o(X) = TVAR99%(X). 

i I f  we were to allow assets, denoted by A, to be random, we would require A to satisfy 9(X-A) = 0. With translation 
invariance, this says that p(X) = A when A is fixed. 
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The tail value-at-risk is a member of  an important class of  risk measures, called 

coherent measures of  risk. These measures are defined by the following set of  

axioms. 

1. Subadditivity - -  For all random losses Xand Y, 

p ( x +  r) <__ p (x) + p (r). 

2. Monotonicity - -  For all random losses Xand Y, if X <  Y for all scenarios, then 

p (X)< p (Y). 

3. Positive Homogeneity - -  For all ~, > 0 and random losses X, 

p (ZX) = kp (X). 

4. Translation Invariance - -  For all random losses Xand  constant loss amounts ct, 

p (Y+c0 = p (Y) + c~. 

These measures were originated by Artzner, et al. [1999]. See Meyers [2002] for 

an elementary description of  these measures as well as for other coherent measures 

of  risk. 

4. Calculating the Capacity Charge 

As noted in the last section, a reinsurer needs to get capital from investors in order 

to attract business. The investors expect to be compensated in return for providing 

this capital at an expected rate of  return that is somewhat higher than they would 

obtain for not exposing their capital to reinsurance risk. This additional return 

must come from the sum of  the premiums charged to each individual reinsurance 

contract. The portion of  this additional return for an individual reinsurance 

contract is called the capacity charge. In this section we give our formula for 

calculating the capacity charge. 
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Our formula is based on the underwriting strategy of establishing a target return on 

the additional capital needed to write this contract. We view the capacity charge as 

input into the underwriting decision. If  the market will not allow the reinsurer to 

obtain this target return, the reinsurer should consider not writing the proposed 

contract. 

We divide this section into two subsections. The first subsection gives our 

rationale for using this formula in terms of our chosen underwriting strategy. The 

second subsection gives our capacity charge formula. 

4.1 A General Discussion of Capacity Charge Formulas 

We take it as a given that a sound method of calculating capacity charges should 

lead to decisions that benefit the entire operation of a reinsurer. 

This discussion will be somewhat informal. A more rigorous treatment of this 

subject is provided by Meyers [2003]. We shall quote a number of results that are 

proved in that paper. 

Proposition 1 

Adding a reinsurance contract to a reinsurer's portfolio will increase the reinsurer's 

expected return on capital if and only if the contract's expected re~rn on marginal 

capital (i.e., the contract's capacity charge divided by the additional capital needed 

to write the contract) is greater than the reinsurer's current expected return on 

capital. 

This proposition provides a minimum standard on the capacity charge for n e w  

contracts. It says nothing about the capacity charge on existing contracts. 
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Proposition 2 

Let the reinsurer's capital be determined by Equation (1), with o(X) being a 

subadditive measure of  risk. Then the sum of  the marginal capitals for each 

reinsurance contract is less than or equal to the reinsurer's total capital. 

As we shall see in the examples below, we expect strict inequality to be common. 

When this is the case, at least some of  the contracts will have an expected return on 

marginal capital that is greater than the reinsurer's overall return on capital. 

However there are conditions when we can prove that the sum of  the marginal 

capitals will be equal to the total capital. 

Definition 1 

Suppose for a reinsurance contract i, the random losses, X,, for the contract are 

equal to a random number, Ui, times the exposure measure, ei, for all possible 

values ofe~. Then, following Mildenhall [2002], the distribution of  X~ is said to be 

homogeneous with respect to the exposure measure, ei. 

Proposition 3 

Assume that the needed capital is a smooth (differentiable) function of  the 

exposure. 

Let the random loss, Xi, for the ith reinsurance contract be a homogeneous random 

variable for each contract with respect to some exposure measure, ei. 

LetX = ~-~x i . Let the reinsurer's capital be determined by Equation (1), with p(X) 
i 

being a measure of  risk satisfying the positive homogeneity axiom. Then the sum 

of the marginal capitals for each reinsurance contract is equal to the reinsurer's 

total capital. 
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An early version of Proposition 3, assuming each X~ has a lognormal distribution 

and using a different formula for calculating the needed capital, was proved by 

Myers and Read [2001]. Mildenhall [2002] proved that the homogeneity 

assumption was both necessary and sufficient for the Myers-Read result. The 

proof of  Proposition 3 above is a direct consequence ofLemma 2 in Mildenhall's 

paper. 

Note that the definition of homogeneity bears a strong resemblance to the way we 

introduce parameter risk in Section 2 above. As the exposure (in Section 2, 

quantified by the expected claim counts khy) increases, the parameter risk becomes 

an increasingly large part of the total risk. But in the parameterization of our 

model, the parameter risk is rarely dominant enough to assume homogeneity. 

Proposition 4 

Assume that the needed capital is a smooth (differentiable) function of the 

exposure. I f  we can continuously adjust the exposures while holding the needed 

capital constant, the maximum expected retum on capital occurs when the 

expected return on marginal capital is the same for all contracts. 

Note that Proposition 4 does not require homogeneity with respect to some 

measure of exposure. If  the loss random variables are not homogeneous, the equal 

expected retums on marginal capital under the optimality conditions of  the 

proposition will be higher than the reinsurer's overall return on capital. 

Definition 2 

The heterogeneity multiplier, HM, for a reinsurer is its needed capital divided by 

the sum of the marginal capitals for each contract in its reinsurance portfolio. 
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The motivation for this definition arises from the fact that most reinsurers will have 

a total capital that is higher than the sum of  the marginal capitals for each 

reinsurance contract. In theory, a market could evolve with bigger contracts where 

parameter risk dominates the process risk, and the homogeneity conditions 

required by Proposition 3 would be reasonable. In practice, the distribution of  

losses of  reinsurance contracts are far from homogeneous, and the heterogeneity 

multiplier for a given reinsurer will be noticeably higher than the theoretical 

minimum of  1. 

Our target capacity charge will be determined by a target return on marginal capital 

times the reinsurer's heterogeneity multiplier. To summarize, the rationale for this 

is based on: 

1. Proposition 4 - The expected return on marginal capital should be equal for 

all contracts to if the reinsurer is to make the most efficient use of  its 

capital. 

2. Propositions 2 and 3 - The sum of the marginal capitals over all 

reinsurance contracts is less than or equal to the total capital. The 

conditions that will force equality are not satisfied. 

Note that the rationale underlying this charge depends on the individual 

reinsurance contracts being a small part o f a  reinsurer's portfolio, so that the 

smoothness criterion of  Proposition 3 and 4 is a reasonable assumption. 

4.2 The Capacity Charge Formula 

If  the underwriting result of  all reinsurance contracts could be known within a 

year, we expect to release the capital at the end of  the year, earning investment 

income on the capital. We would calculate the capacity charge as follows. 
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1. Establish a reference portfolio, FI, of  existing contracts. Ideally this portfolio is 

updated as each new contract is accepted. But the year-end rush to book 

January 1 renewals makes this difficult to do in practice, so the portfolio will be 

set up according to a business plan. 

2. Calculate the marginal capital for each contract in the reference portfolio. This 

is done by first calculating the capital needed for the reference portfolio 

according to Equation 1. Next we calculate the capital needed when a given 

contract is removed from the portfolio. The marginal capital for the given 

contract is the difference between the two capital calculations. 

3. Calculate the heterogeneity multiplier, HM, by the formula: 

HM = Total capital for l-I (2) 
Sum of the marginal capitals of each contract in FI ' 

4. For a prospective reinsurance contract, calculate the marginal capital, AC, 

needed when the contract is added to the reference portfolio. 

5. Let r be the rate of  return needed to attract the needed capital. Let i be the rate 

of  return on invested assets. We expect r > i. The capacity charge, AP, for the 

prospective reinsurance contract is given by2: 

AP- (r-i).HM .AC (3) 
(l+r) 

Because of  the way we defined the HM, the sum of  the capacity charges will 

yield the reinsurer's desired return on its capital. 

z This formula is special case of  Equation 5, which is derived below. 
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As discussed above, the underwriting result of some reinsurance contracts can be 

uncertain for a period of severai years. In this case the reinsurer must hold capital 

over this period to support these potential liabilities. This affects the calculation of 

the capacity charge in the following ways. 

• The reference portfolio must contain the contracts that have expired but still 

have uncertain losses. The required capital for the reference portfolio must 

reflect the uncertainty in the ultimate losses from these unexpired contracts. 

• When calculating the capacity charge, the reinsurer has to consider the fact 

that it has to hold additional capital in future years to support the contracts it 

is writing now. The cost of  holding this capital over this extended period of 

time must be included in the capacity charge. 

With these considerations in mind, we calculate the capacity charge as follows. 

1. Establish a reference portfolio of existing contracts for this year, and for as 

many years in the future that the reinsurer expects uncertainty in its ultimate 

losses for contract written in this and prior years. Denote the portfolio for the 

current year by II0, the portfolio for next year by FI1, and so on. These 

reference portfolios will contain current and expired and planned future 

reinsurance contracts. 

2. Calculate the marginal capital for each reinsurance contract (current and 

expired) in each of  portfolios, H0, l-Ira .... 

3. For each portfolio, I-In, calculate the heterogeneity multiplier, HM,, by the 

formula. 
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H M .  - Total  capital  for 1-I . ( 4 )  

Sum o f  the marginal  capitals o f  each contract in  F l  

4. For a prospective reinsurance contract, calculate the marginal capital, AC,, 

needed when the contract is added to the n th reference portfolio. Note that the 

contract is considered to be new in Fi0, but expired in Fin, for n > 0. 

5. Let r be the rate of  return needed to attract the needed capital. Let i be the rate 

of  return on invested assets. The capacity charge, AP, for the prospective 

reinsurance contract is given by: 

(r - i). H M . .  AC. 
AP 

.=o ( l + r )  "+' ' ( 5 )  

Note that the capacity charge is applied to the new contracts only. The time to 

collect the capacity charge on the expired contracts was when the contract was 

written. In defining the capacity charge in this way, the reinsurer is making its 

desired rate of  return on its allocated cost of  capital 3. 

We finish this section with the derivation of  Equation 5. 

• The reinsurer puts up an initial investment o f  HMo'ACo at time t = 0. It 

commits to holding PRM1.AC1 at time t = 1, HMz'AC2 at time t = 2, and 

SO on .  

• While the reinsurer is holding the capital, it is earning interest at rate i. 

At time t = 1, it expects to receive HMo'ACo'(1 + i) - HMI.AC~. At time 

t = 2, it expects to receive HMI"AC~'(1 + i) - HMz'AC2, and so on. 

• The capacity charge is cqual to the initial investment less the present 

value (at interest rate r) of  the expected amount received. That is: 

3 One possible enhancement of Equation 5 would be to vary the rate of return by the length of time it is invested. 
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£ HM,,. AC,. (1 + i) - HM.+,. AC~+, 
AP HM o • ACo ,:o (l+r) "+' (6) 

• Equation 5 is derived from Equation 6 by rearranging and grouping the 

terms in increasing order of n. 

5. Examples 

We now illustrate the use of our model and methodology on a number of sample 

reinsurance contracts. We constructed a reference portfolio of reinsurance 

contracts from real insurance companies, based on publicly available data. The 

lines of business in the reference portfolio included general liability, commercial 

auto, workers' compensation, professional liability, commercial multi-peril, fire, 

allied lines, earthquake and some personal lines. We treated the hurricane and 

earthquake exposures as separate contracts that took a 25% share of  the underlying 

catastrophe reinsurance contract. 

What follows is a description of the steps we took to construct this reference 

portfolio. 

1. We first estimated the expected direct losses, by annual statement line of 

business, for the insurers included in the reference portfolio. For the most 

recent accident year, we estimated the expected losses by multiplying the 

reported premiums by our estimated loss ratio for the industry. For prior 

accident years, we used the insurers' reported loss reserves. 

2. Using details of each insurer's reinsurance program reported to the A.M. 

Best Company, and the loss distributions underlying the ISO Underwriting 

Risk Model and the AIR catastrophe model for hurricanes and earthquakes, 

we partitioned the insurer's expected direct losses into two segments by 
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annual statement line of business - the expected net losses and the expected 

reinsured losses. 

3. In order to project the expected release of the marginal capital over the next 

several years using Equation 5, we need to know the marginal capital 

attributed to current contracts in future accident years. This will depend on 

the reinsurer's business plan. We assumed that the reinsurer would continue 

its current business plan but, going forward, we estimated the expected 

unpaid losses using an ISO industry loss reserve study. 

For the reference portfolio, the total expected loss for all lines in the current year is 

$739,998,127. The expected payout for losses from prior accident years is 

$1,813,101,644. In constructing this reference portfolio, we did not have all the 

detailed contract level information that is potentially available to a reinsurer. The 

reference portfolio had a few hundred contracts covering a variety of limits. The 

insurers in the reference portfolio tended to be larger than average and thus we 

expect the size and the retentions of the contracts to be a bit higher than normal. 

We now describe how we calculated the necessary capital for the reference 

portfolio, with and without the proposed contracts. 

1. In evaluating the non-catastrophe exposure we used the expected loss estimates 

and the limits for each contract. Using claim severity distributions in the ISO 

Underwriting Risk Model, we obtained the expected claim count by dividing 

the expected loss by the expected claim severity. The claim count distribution 

requires a second parameter that ISO obtained from analyses similar to that 

described in the appendix. 

2. Using exposures that primary insurers reported to ISO, we ran the AIR 

catastrophe model to produce 10,000 simulated years of hurricane and 
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earthquake losses for each primary insurer in the reference portfolio. The 

catastrophe losses were adjusted to reflect the reinsurance provisions and the 

25% share of the catastrophe contracts taken by the reference portfolio. The 

losses for all the catastrophe contracts in the reference portfolio were summed 

by year to produce a combined catastrophe size of loss distribution. 

3. The distributional information above was used to derive the reference and 

marginal aggregate loss distributions by a procedure mathematically equivalent 

to Simulation Algorithm 3 above. Table 1 describes the aggregate loss 

distribution for the reference portfolio. 

4. Following Equation 1, we set the needed capital for the reference portfolio 

equal to TVaR99%(X) - E[X] = $670,997,012. 

The next step was to calculate the heterogeneity multiplier, HM,, for each year. 

This is done by finding the marginal capital for each reinsurance contract in the 

reference portfolio and applying Equation 2. While the heterogeneity multipliers 

varied slightly by year, they were all close to 1.64, well above the theoretical 

minimum of 1.00. Since we were assuming a stable business plan, we selected 

HM~ = 1.64 for all n. 

Now we are ready to calculate the capacity charges for prospective reinsurance 

contracts using Equation 5. 

The first set of examples consists of some standard property and casualty 

reinsurance contracts. We first calculate the marginal capital for the prospective 

contract for the current year and up to the following six years, which we assumed 

will have uncertainty in the ultimate paid losses. In this example, we are ignoring 

all uncertainty in ultimate losses after two years for Fire, after five years for 
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Commercial Auto, and after seven years for General Liability. In Table 2 we 

provide an illustrative aggregate loss distribution when a General Liability 

reinsurance contract are added to the reference portfolio. Table 3 gives the result 

of  marginal capital calculations for the remaining contracts in this set of  examples. 

We used HM,, = 1.64, r = 18% and i = 6%. The capacity charges calculated using 

Equation 5 for this set of  examples are in Table 4. 
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Table 1 

Aggregate Loss Distribution 
Produced by 

ISO Underwriting Risk Model 
Reference Portfolio - Year 1 

Aggregate Mean 2,553,099,771 
Aggregate Std. Dev 226,983,918 

Aggregate Cumulative Tail Implied 
Loss Probability Value at Risk Capital 

2,544,328,941 0.50000 2,733,373,669 180,273,898 
2,572,708,866 0.55000 2,752,806,019 199,706,248 
2,601,822,082 0.60000 2,773,508,440 220,408,669 
2,632,192,534 0.65000 2,795,884,342 242,784,571 
2,664,579,556 0.70000 2,820,498,110 267,398,339 
2,699,943,781 0.75000 2,848,200,965 295,101,194 
2,739,710,696 0.80000 2,880,411,932 327,312,161 
2,787,036,572 0.85000 2,919,645,004 366,545,233 
2,847,436,074 0.90000 2,971,590,416 418,490,645 
2,887,426,613 0.92500 3,006,495,925 453,396,154 
2,940,100,948 0.95000 3,053,590,102 500,490,331 
2,953,219,034 0.95500 3,065,480,084 512,380,313 
2,967,653,154 0.96000 3,078,622,916 525,523,146 
2,983,799,371 0.96500 3,093,339,811 540,240,040 
3,002,061,116 0.97000 3,110,102,957 557,003,187 
3,023,031,771 0.97500 3,129,649,532 576,549,761 
3,048,079,271 0.98000 3,153,220,036 600,120,266 
3,080,209,479 0.98500 3,183,009,313 629,909,542 
3,123,377,033 0.99000 3,224,096,783 670,997,012 
3,195,198,671 0.99500 3,292,456,190 739,356,419 
3,350,378,069 0.99900 3,446,040,482 892,940,711 
3,416,123,232 0.99950 3,512,255,729 959,155,958 
3,567,277,277 0.99990 3,670,239,1901,1 t7,139,419 
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Table 2 

Aggregate Loss Distribution 
Produced by 

ISO Underwriting Risk Model 
Reference Portfolio + General Liability Treaty B - Year 1 
Aggregate Mean 2,554,099,777 
Aggregate Std. Dev 227,010,259 

Aggregate Cumulative Tail 
Loss Probability Value at Risk 

2,545,328,752 0.50000 
2,573,712,090 0.55000 
2,602,827,651 0.60000 
2,633,202,873 0.65000 
2,665,594,329 0.70000 
2,700,955,923 0.75000 
2,740,735,861 0.80000 
2,788,066,006 0.85000 
2,848,476,835 0.90000 
2,888,468,111 0.92500 
2,941,144,453 0.95000 
2,954,263,865 0.95500 
2,968,702,964 0.96000 
2,984,851,364 0.96500 
3,003,106,105 0.97000 
3,024,076,687 0.97500 
3,049,146,274 0.98000 
3,081,283,973 0.98500 
3,124,409,548 0.99000 
3,196,271,436 0.99500 
3,351,471,608 0.99900 
3,417,154,542 0.99950 
3,568,402,012 0.99990 

Implied 
Capital 

2,734,394,860 180,295,083 
2,753,829,391 199,729,614 
2,774,534,227 220,434,450 
2,796,912,584 242,812,807 
2,821,528,848 267,429,071 
2,849,235,353 295,135,576 
2,881,449,351 327,349,574 
2,920,686,432 366,586,655 
2,972,637,184 418,537,407 
3,007,545,936 453,446,159 
3,054,644,769 500,544,992 
3,066,535,955 512,436,178 
3,079,679,982 525,580,205 
3,094,397,423 540,297,646 
3,111,162,780 557,063,003 
3,130,710,903 576,611,126 
3,154,284,003 600,184,226 
3,184,073,593 629,973,816 
3,225,162,418 671,062,641 
3,293,544,811 739,445,034 
3,447,105,396 893,005,619 
3,513,336,592 959,236,815 
3,671,307,9581,117,208,181 
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Reinsurance 
Contract 

Fire A 
Fire B 
Fire C 

Tab~3 

Mar~n~ Capit~ Needed ~ Be~rmingofYear 
Year0 Year 1 Year2 Ye~3 Year4 Year5 Year6 

52,488 11,869 
54,694 12,428 
66,358 15,383 

Comm Auto Liab A 34,962 28,845 18,913 16,435 7,944 
Comm Auto Liab B 37,350 30,810 18,045 15,255 7,533 
Comm Auto Liab C 52,799 44,260 27,308 19,896 9,560 
Comm Auto Liab D 40,810 33,850 21,319 16,976 8,064 
General Liability A 63,628 53,837 44,341 38,707 22,441 15,493 12,034 
General Liability B 65,629 55,336 45,939 39,968 24,076 17,144 13,550 
General Liability C 77,826 65,733 55,518 49,518 33,768 25,682 20,273 
General LiabilityD 67,488 56,882 47,205 41,727 25,945 18,759 14,742 

First Contract 
Contract Retention Limit Retention Limit 
Fire A 500,000 500,000 - - 
Fire B 1,000,000 1,000,000 - - 
Fire C 1,000,000 5,000,000 - - 
Comm Auto Liab A 500,000 500,000 - 
Comm Auto Liab B 1,000,000 1,000,000 - 
Comm Auto Liab C 1,000,000 5,000,000 - 

Table 4 

Second Contract Expected Capacity Cap Chg as 
Loss Charge % Exp Loss 

1,000,000 10,432 1.04% 
1,000,000 10,878 1.09% 
1,000,000 13,241 1.32% 
1,000,000 14;525 1.45% 
1,000,000 14,942 1.49% 
1,000,000 21,174 2.12% 

Comm Auto Liab D 500,000 500,000 2,000,000 2,000,000 1,000,000 16,561 1.66% 
General Liability A 500,000 500,000 - - 1,000,000 31,265 3.13% 
General Liability B 1,000,000 1,000,000 - - 1,000,000 32,484 3.25% 
General Liability C 1,000,000 5,000,000 - - 1,000,000 39,976 4.00% 
General Liability D 500,000 500,000 2,000,000 2,000,000 1,000,000 33,695 3.37% 

When you examine-Tables 3 and 4, we hope you would agree that the capacity 

charges follow a logical progression in terms of  relative risk and the length of  time 

that capital must be held to support that risk. 
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Next we consider a set of examples consisting of catastrophe treaties. As we did in 

constructing the reference portfolio, using exposures that primary insurers reported 

to ISO, we ran the AIR catastrophe model to produce 10,000 simulated years of 

hurricane and earthquake losses for a number of primary insurers. The catastrophe 

losses were adjusted to reflect the reinsurance provisions, and we continued with 

the 25% quota share provision that was taken by the reference portfolio. For each 

contract, the losses were added to the losses of the catastrophe contracts in the 

reference portfolio by year to produce a combined catastrophe size of loss 

distribution. We assumed that there was no uncertainty in the catastrophe losses 

after one year. 

Table 5 gives an illustrative aggregate loss distribution when a catastrophe contract 

is added to the reference portfolio. Table 6 gives the results of the marginal capital 

calculations and resulting capacity charges for each of the catastrophe contracts. 

102 



Table 5 

Aggregate Loss Distribution 
Produced by 

ISO Underwriting Risk Model 
Reference Portfolio + Earthquake C 

Aggregate Mean 2,559,254,438 
Aggregate Std. Dev 230,864,879 

Aggregate Cumulative Tail Implied 
Loss Probability Value at Risk Capital 

2,549,206,753 0.50000 2,742,159,379 182,904,941 
2,577,918,536 0.55000 2,762,007,818 202,753,380 
2,607,399,694 0.60000 2,783,186,946 223,932,508 
2,638,206,921 0.65000 2,806,117,885 246,863,447 
2,671,104,813 0.70000 2,831,392,904 272,138,466 
2,707,046,998 0.75000 2,859,915,077 300,660,639 
2,747,671,983 0.80000 2,893,170,794 333,916,356 
2,796,075,394 0.85000 2,933,840,121 374,585,683 
2,858,223,270 0.90000 2,987,982,052 428,727,614 
2,899,467,753 0.92500 3,024,575,910 465,321,472 
2,954,132,749 0.95000 3,074,238,226 514,983,788 
2,967,817,054 0.95500 3,086,832,661 527,578,223 
2,982,939,047 0.96000 3,100,778,128 541,523,689 
2,999,816,143 0.96500 3,116,425,597 557,171,159 
3,018,878,770 0.97000 3,134,301,652 575,047,214 
3,040,922,350 0.97500 3,155,211,119 595,956,681 
3,067,778,750 0.98000 3,180,494,563 621,240,125 
3,101,546,799 0.98500 3,212,599,452 653,345,014 
3,146,195,429 0.99000 3,257,314,564 698,060,126 
3,224,424,972 0.99500 3,331,993,080 772,738,642 
3,396,310,134 0.99900 3,503,462,403 944,207,965 
3,468,506,073 0.99950 3,578,282,216 1,019,027,778 
3,642,049,455 0.99990 3,762,498,626 1,203,244,188 
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Table 6 

Reinsurance Marginal  Expected Capacity Cap Chg as 
Contract Capital Loss Charge % Exp Loss 

Earthquake A 14,736 5,287 2,458 46.48% 
Earthquake B 7,538,096 4,939,820 1,257,201 25.45% 
Earthquake C 27,063,114 6,154,667 4,513,577 73.34% 
Earthquake D 1,483,536 1,273,219 247,424 19.43% 
Earthquake E 1,862,063 303,947 310,554 102.17% 
Earthquake F 3,174,465 593,735 529,436 89.17% 
Earthquake G 5,513,907 2,760,151 919,608 33.32% 
Earthquake H 2,102,509 371,200 350,656 94.47% 
Hurricane A 2,092,047 123,008 348,911 283.65% 
Hurricane B 95,297 75,723 15 ,894  20.99% 
Hurricane C 3,532,354 640,824 589,125 91.93% 
Hurricane D 1,838,135 462,064 306,564 66.35% 
Hurricane E 1,716,522 266,411 286,281 107.46% 
Hurricane F 4,063,674 226,776 677,738 298.86% 
Hurricane G 2,871,555 577,426 478,917 82.94% 
Hurricane H 33,428,704 7,840,572 5,575,228 71.11% 
Hurricane ! 22,259,834 2,197,780 3,712,488 168.92% 
Hurricane J 8,167,187 2,695,188 1,362,121 50.54% 

A noteworthy feature of this last set of examples is the wide range of capacity 

charges. Earthquake Contracts E and G provide one of the nicer illustrations of 

what drives these differences. Table 7 gives some key statistics. 

Table 7 

Earthquake Coefficient of Correlation with 
Contract Variation Reference 

Portfolio 

E 36.3 0.76 

G 27.5 0.16 
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Earthquake Contract E is more volatile than Earthquake G, but the main difference 

is the correlation between the contracts and the reference portfolio. Figure 7 

provides scatter plots of  the contracts and the reference portfolio. 

F i g u r e  7 

Note: The vertical and horizontal dotted lines represent the respective 99 th percentile 
of the reference portfolio and the indicated reinsurance contract for earthquake 
reinsurance. 
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7. Summary and Conclusions 

This paper started with three objectives: 

1. Demonstrate a practical method to determine the distribution of a reinsurer's 

aggregate loss payments. 

2. Using the results of Objective #1, demonstrate how to determine the amount 

of capital needed for a reinsurance company based on its risk of loss. 

3. Using the results of Objective #2 demonstrate how to determine the capacity 

charge for a new reinsurance contract. 

We demonstrated our methodology for accomplishing these objectives on an 

illustrative reinsurer with hundreds of reinsurance contracts. 

We used the ISO Underwriting Risk Model to determine the aggregate loss 

distribution. As input, the model took the limits and quota share percentages for 

each reinsurance contract for the "standard lines" of insurance. We used the claim 

count and claim severity distributions provided by the model. For hurricane and 

earthquake losses, we used the AIR catastrophe model with exposures reported to 

ISO as input. 

Dependencies among the various lines of insurance were reflected in the model by 

quantifications of  parameter uncertainty in the standard lines of insurance and by 

geographic proximity for the catastrophe exposure. 

Next we determined the capital needed for the reinsurer by calculating the Tail 

Value-at-Risk from the aggregate loss distribution. 

Finally we calculated capacity charges for a variety of reinsurance contracts. The 

rationale underlying these calculations was that the total capacity charge over all 
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reinsurance contracts should provide the reinsurer with a competitive expected 

return on capital. 

The underwriting strategy used to get this expected return assumed that the 

reinsurer will write those contracts that provide the greatest return on marginal 

capital. Now it can take several years for some reinsurance contracts to be settled. 

The reinsurer must hold capital as long as there is uncertainty in the final 

settlement of  its claims, and the capacity charge reflects how long capital must be 

held because it reinsures a given contract. 

We believe we have demonstrated that this methodology can be implemented for 

most reinsurers. 

8. Additional Comment 

There is recent actuarial literature on "correlation in the tails" such as that of  

Venter [2002]. The analysis documented in the appendix of  this paper estimates an 

overall level o f  correlation not attributed to particular region of  the loss 

distribution. We doubt that we have sufficient data to make such an attribution. 

Furthermore, to the extent that correlation in the tails is driven by large natural 

catastrophes, we argue that, when we couple a collective risk model parameterized 

by the parameters estimated in the appendix with simulation runs from a 

catastrophe model, as documented above, we do indeed capture at least some 

"correlation in the tails." 

Should a reinsurer want to use a copula, or some other dependency model, our 

methodology for determining the needed capital and capacity charges can 

accommodate it. At the very least, one can generate a large number of  stochastic 

scenarios and incorporate that into the collective risk model in exactly the same 
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way that we did for the catastrophe model. 
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Appendix: Estimation of Correlation 

Certainly one major driver of  actuarial interest in correlation is the perception that 

positive correlation among lines of  business, books of  business, etc. has the 

potential to increase required capital. As a consequence of  this observation, it 

seems to us that the program should be as follows: 

• Estimate expected losses or loss ratios, 

• measure deviations of  the actuals from these expectations, 

• and estimate correlations among these deviations as the correlations relevant 

to the required capital issue. 

In an effort to parameterize various ISO models, we have carried out this program. 

For the sake of  parsimony (to limit the required number of  parameters to a relative 

few), we have imposed on correlation a model structure as documented in Meyers 

[ 1999a and 1999b]. We estimate correlations within company between lines of  

business and between company both within and between lines of  business. These 

correlations among companies and among lines o f  business then drive correlations 

among reinsurance contracts written on those companies and lines of  business. 

Our dataset includes a fairly large number of  companies, and our models are 

parsimonious in the sense of  assuming that the same correlation model parameter 

values apply across all companies within a line of  business. So our estimates are in 

effect pooled estimates. Even so, parameter estimates (contagions and covariance 

generators) were never more than two or three or four times their associated 

standard errors. Common statistical practice holds that an estimate is not 

statistically significant (at the approximately 95% level) unless the estimate in 

absolute value is at least twice its standard error. Had our dataset not included as 

many companies or had we attempted to estimate separate parameters by company 
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(or at least by class of company), standard errors would have been larger in relation 

to their estimates. So it is doubtful that we would have found many parameter 

estimates significant at the 95% level. The large number of companies and the 

pooling are necessary to achieve significance. 

The next section of this Appendix will address some philosophical issues of just 

precisely what correlation do we wish to measure anyway, and what are some of 

the adjustments we must make to observe this correlation. The following section 

will then discuss the correlation model of Meyers [1999a and 1999b] and an 

introduction to how we estimate the parameters appearing in the resulting 

formulae. The remaining sections will discuss the technical details of the 

estimation, with a few representative results presented at the end. We defer to the 

end of the model discussion a quick summary of the remainder of  this Appendix, 

because even a quick summary of the technical details requires as background the 

topics we will discuss in the next two sections. 

Correlation of What? 

Suppose a realistic forecast, taking into account current rates and prices, estimates 

of trend, perceptions of  current market conditions, etc., indicates that next year's 

losses will be higher than the long-term average. On the day the business is 

written, the insurance executive therefore already expects losses higher than 

average and makes some provision for that. Where the requirement for capital 

comes from, however, is the recognition that losses could emerge even higher than 

the already higher expected, and potentially higher than expected simultaneously 

for a number of  lines of business, books of business, etc., due to positive 

correlation among those books. Thinking in this way clearly identifies the fallacy 

of measuring correlations of deviations about long-term averages, where some of 
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the deviation from-long term average is due to predictable cycles, trends, etc. 

What matters, at least for correlation studies relevant to required capital, is not 

predictable deviation from long-term average but correlated, unpredictable 

deviation from expectations varying predictably from long-term averages. 

As an enlightening thought experiment, consider an optimistic insurance company 

that consistently forecasts losses lower than their true expected value. 

Considerably more often than not, deviations of actual from forecast will be 

positive, yielding apparently fairly significant positive correlations among the 

outcomes, probably more positive correlation than would result if we were to 

measure deviations about true expected values. This thought experiment warns us 

that, to some extent, the correlations we measure will be dependent upon the way 

we estimate expectations from which we measure deviations. 

As a further enlightening thought experiment, we ask what algorithm would most 

likely produce correlation estimates most relevant to the required capital issue. 

This would be the algorithm that most closely mimics the actual emergence over 

time of information in the insurance industry. Suppose for a number of companies 

and lines of business that we had time series of annual ultimate loss results (or 

results to date developed to ultimate), as well as potential predictor time series, 

such as losses emerged at each point in time (not developed to ultimate), rate and 

price indices, trend estimates at various points in time (based only on information 

up through that time), indicators of market competitiveness at various points in 

time, etc. As an example, suppose we sit at the end of year 10 and forecast year 11 

based only on what the industry would have known at the end of year 10. Then in 

year 11 we calculate deviations of ultimate losses from these forecasts. Then we 

roll the time series forward to the end of year 11 and repeat the process, forecasting 

year 12, etc. Finally estimate correlations among these deviations. 
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The problems with this algorithm are at least twofold: 1) We probably need time 

series with duration of at least a couple of decades--at least the first decade to 

calibrate the time series forecasting model, plus at least another decade of forecasts 

from the calibrated model, and their attendant deviations and correlations, so that 

correlation estimates are not driven too much by events in any one year. In fact, it 

would probably be useful to have at least a couple of decades of forecasts and 

deviations so that we could potentially test the stability of correlation estimates 

over time. 2) We would need to reconstruct time series of what the industry knew 

at past points in time, such as rate and price indices, past estimates of trend, market 

competitiveness indices, etc. We might not be able to construct such time series at 

reasonable cost. Also, we might not be able to reconstruct other time series of 

what the industry knew or could have known at past times with any reasonable 

accuracy. 

In light of these difficulties, we have constructed "forecasts" about which to 

measure deviations and correlations via an alternative algorithm. By line of 

business (LOB) and company, we have about a decade's worth of paid losses 

developed out to the oldest age in our available loss development triangles. We 

have not constructed time series of other potential predictors of those loss ratios. 

Instead, separately by LOB, we have developed generalized additive models for 

these loss ratios with main effects for company and a non-parametric, non-linear 

smoother term for year. The year effect is a loess smoother (Not a typo. Loess is a 

form of localized regression.) of local second degree with smoothing window over 

years sufficiently wide that long-term trends and turning points are captured 

without respondingmuch to the random ups and downs of individual years. We 

have chosen a smoother of local second degree rather than first degree to better 

respond to turning points in the data. 
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The downside of this algorithm for correlation analysis is that the use of smoothers 

produces "forecasts" that, at any given point in time, depend on all of past, present, 

and future with respect to that point in time. Such "forecasts" may perform better 

than even the best of forecasts that must depend strictly on only the past, especially 

with respect to turning points and points of  inflection. Therefore, some of what is 

captured in a smoother-based "forecast" (and therefore considered "predictable" 

with respect to that forecast) would be unpredictable and not captured by forecasts 

dependent strictly on the past and would instead be captured in the unpredictable 

deviations about those forecasts. Therefore, deviations about true forecasts 

dependent only on the past might tend to be somewhat larger and somewhat more 

correlated than deviations about smoother-based forecasts. As a consequence, our 

correlation estimates should be regarded as lower bounds. 

On the other hand, the performance of our smoother-based forecasts may not be 

vastly superior to forecasts based only on the past that take advantage of more 

information than just losses, such as rate, price, trend, market competitiveness, etc. 

We would therefore not expect our correlation estimates to be vastly understated. 

Furthermore, we would expect those correlation estimates to be considerably closer 

to the mark than estimates based on deviations about long-term averages to the 

extent that in many of the lines we have studied there has been considerable long- 

term trend over the last decade; and we would argue that much of this long-term 

trend was indeed predictable, at least on a rolling one-year-ahead forecast basis. 

A Correlation Model Based on Parameter Uncertainty 

The reader is referred to Meyers [1999a and 1999b] where one of us has developed 

a model with correlation driven by parameter uncertainty. The essence of this 

model is captured in Simulation Algorithm #3 in the main text of  this paper. 
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Losses are assumed conditionally independent; but correlation is imposed via 

severity multipliers assumed common across all lines of  business and via 

frequency multipliers assumed common across all losses within a line of  business 

and at least perfectly correlated, i f  not identical, across all lines within a so-called 

"covariance group." This model imposes a certain structure on correlations that 

depend upon parameters that can be estimated. 

Although the models published in Meyers [ 1999a and 1999b] include both severity 

and frequency multipliers, we have chosen to fit to a version of  the model with just 

frequency multipliers and have estimated the additional contribution to correlation 

from severity effects not by fitting data but rather by appeal to our understanding 

of  severity-trend uncertainty. All losses across all lines are assumed multiplied by 

a common severity multiplier. This multiplier is a random variable with 

expectation 1 and variance b. I f  we assume our uncertainty regarding severity- 

trend translates to an uncertainty regarding severity on the order of  3%, then this 

translates to a b of  approximately (.03) 2 = 0.001. Although we fit to a model form 

excluding severity-parameter uncertainty, the data we fit probably includes a 

component of  correlation due to severity uncertainty, because we have certainly 

made no adjustments to the data to remove this particular uncertainty. Therefore, it 

is likely that the frequency uncertainty parameters of  the model have taken up 

some of  the slack and have responded to both frequency and severity uncertainty, 

at least to the extent that severity uncertainty can be captured by this model form. 

Then adding on top of frequency parameters, which may already have captured a 

portion of the severity effect, a b value estimated from first principles has the 

potential to overstate the total correlation. This is countervailing to the effect 

discussed in the previous section of  this Appendix, which would potentially cause 

an understatement of  correlation. 
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We note lastly that we have not yet studied correlations across years. But, within 

year, we note that we have studied across company/across LOB, across 

company/within LOB, within company/across LOB, and within company/within 

LOB (this last would be just variance, the usual process variance but augmented 

for the additional impact of  parameter uncertainty). 

Let Luk be the annual aggregate ultimate loss for line of business i, company j,  and 

year k. Similarly for L;)..k. The two companiesj and j" could be the same or 

different, the two lines i and i" the same or different. Assuming no severity 

parameter uncertainty, so b = 0, the covariance between Luk and LiT'~ is as given in 

Meyers [1999a]: 

~2 
Cov[L~,LiT.k]=6ir6.u, IIvi + la, lEi)k +(1+ gl,ciE~ I+~Ga ~ E o ,  E~7,1,. (A.1) 

L t,/x, j j ' "  

• 6u. is 1 if  and only i f / =  i" (i.e., the first and second LOBs are the same) 

and 0 otherwise. Likewise for 6).. In other words, the first term is 

nonzero only when first and second LOBs match, first and second 

companies match, and first and second years match, in other words, only 

when calculating variances. 

• (~GiGi" is 1 if  and only if the first and second lines of  business are in the 

same covariance group, otherwise 0. To get 1, first and second 

companies don't have to match, nor do first and second lines of  business, 

but first and second lines of business have to be at least in the same 

covariance group. 

• ~ and ai are the mean and standard deviation of the severity distribution 

associated with LOB i. 
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Auk is the expected claim count associated with Luk and c~ is the contagion 

for LOB i, so the variance of  claim count associated with Lgk is 2gk + 

• E~j~ = E[L~jk] = 2U~u,. 

gi is the covariance generator associated with LOB i. In other words, in 

this line of  business, parameter uncertainty associated with frequency is 

captured by a common multiplier across all companies within this line of  

business, the multiplier being a random variable with mean 1 and 

variance g~. The formula above reflects one departure from the 

referenced Meyers [ 1999a and 1999b] papers. Whereas those papers 

assumed the same multiplier across all lines of  business within 

covariance group, it is now assumed that across lines of  business within 

covariance group the frequency multipliers could be different, with 

different covariance generators, but they are still assumed perfectly 

correlated. This results in replacing some occurrences ofgi  in the earlier 

formulae with the ~ appearing above. 

Recall that, by definition: 

COV[L~k,L,yk] = e[(L~ -- e[Z.,j,])(L,.S, -- e[ZO. ~])]. 

Define the normalized deviation 

Zu, - E[Zo, ] 
Ao. k = 

Then divide through equation A. 1 above by EukEiy. k to find: 
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(°2 / 
E[Aij,~Ai,,.,}] 'Hi 'us 4-4r6ji.(l + gi)e i +6aia,. ~ . (A.2) 

Sok 

So, i f / - -  i" andj  = j ' ,  we are looking at a variance. Then that variance is a 

regression on I /E ,  with regression coefficient depending only on the parameters of  

the underlying severity distribution and with intercept term equal to ci + gi + cgi .  

This term is approximately ci + gi because the product cg~ can be expected to be 

much smaller than either ci or gt, both of  which are expected themselves to be 

small. I f  first and second companies are different but first and second lines of  

business are the same, then the expectation above is gi, the covariance generator for 

the single common line of  business. Regardless of  whether first and second 

companies are the same or different, if  first and second lines of  business are 

different, then the expectation above becomes ~ ,  the geometric average of  the 

covariance generators o f  the two lines of  business. If  the two lines of  business are 

in different covariance groups, then the expectation above is zero. 

Suppose we estimate those expectations, and hence the parameters of  our 

correlation model, from (weighted) averages of  or regressions on pairwise products 

of  normalized deviations of  our underlying data. We will discuss the appropriate 

weights later. Consider first all pairwise products of  normalized deviations where 

the first and second LOBs are equal to a single selected LOB of  interest, with first 

and second companies different. From equation A.2, we expect an appropriately 

weighted average (across all companies and years) o f  these pairwise products to 

approximate the expectation gi. We estimate gr  for a second LOB i" the same way. 

Having determined gs and g~., suppose now we consider all pairwise products 

where the first LOB is i and the second is i', without constraint on first and second 

companies being the same or different. We expect that the appropriate weighted 
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average of those pairwise products will b e ~ .  I f  we find this indeed to be the 

case, then we conclude LOBs i and i" are in the same covariance group. But if  we 

find the weighted average to be statistically insignificantly different from zero, we 

conclude that LOBs i and i" are in different covatiance groups. Lastly, we consider 

pairwise products where the first and second company is the same and where the 

first and second LOB is the same and equal to a selected LOB of interest. 

According to equation A.2, these products should display a 1/E dependence. 

Regress these products on 1/E and identify the intercept estimate with ci + gi. Note 

that c never appears naked in these expressions, always in conjunction with g, but, 

having already inferred g, we can back out g to infer c. 

For the rest of this Appendix we will carry out the following program: 

1) In the next section, "Model for Expected Losses," we will discuss the 

estimation of the Eok and calculation of the normalized deviations Auk with 

an adjustment for degrees of freedom. The need for weights and the 

appropriate weights to u.se in modeling E/jk will be important issues. 

2) The following section, "Model for Loss Variances," will discuss the use of 

squared normalized deviations AUk 2 to fit the 1/E variance models mentioned 

above and estimate the sums of contagions and covariance generators by 

LOB, c~ + gi. 

3) The following section, "Other Pairwise Products," will discuss the use of 

other pairwise deviation products AokA~).k with at least one o f / ~  i" or j  ~ j ' .  

Products in which the first and second LOBs are the same, i = i', but 

companies are different,j Cj ' ,  yield estimators for the covariance generators 

g~. Products in which the first and second LOBs are different, i # i', provide 
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a test of whether two LOBs are in the same covariance group or not. The 

issue of weights will again be important. Also to be introduced at this point 

will be the use of the bootstrap to quantify standard errors of estimates. 

4) The last section, "Some Representative Results," will discuss for two lines 

of business some representative results for contagion ci, covariance 

generator gi, and whether or not these two lines are in the same covariance 

group. Furthermore, for one of our representative lines, we will also 

perform the calculations measuring deviations relative to means not adjusted 

for long-term trends. We will indeed find much larger contagions and 

covariance generators. But, as we have already argued, these larger 

parameters are not appropriate for capital requirement calculations. 

Model for Expected Losses 

As already noted, we start with paid losses by LOB, by company (or company 

group), by year developed not to true "ultimate" but rather to the greatest age in 

loss development triangles available to us. We ratio.these losses to premiums, 

build models for expected loss ratio, then multiply by premium to get back to 

estimates for expected loss. For each LOB, we actually test a number of 

denominators (premium, PPR, one or more exposure bases) in search of a 

denominator that produces a model for the ratio of loss to that denominator with a 

relatively high R 2. Presumably, for those denominators producing ratio models 

with lower R 2, the additional unexplained volatility is attributable to the 

denominator and interferes with good estimates for expected loss. High R 2 means 

the denominator is either stable or changes smoothly over time and is less likely to 

interfere with good estimates of expected loss. 
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Graph A. 1.1 shows loss ratios by year, each line representing a separate company 

or company group. This is a package line with considerable property exposure, 

which may explain the apparent coordinated short-term up and down movement, 

which is evidence of  correlation across company within LOB. The long-term 

apparent upward trend is probably just that, trend, was probably predictable, and, 

according to the discussion at the beginning of  this Appendix, should not be 

considered evidence of  correlation in the sense that we mean correlation. 

Graph A. 1.2 shows loss ratios by year for a liability line. Correlation is less 

readily apparent in this second graph. We should not be surprised if the correlation 

parameters we estimate for the second LOB are less than those for the first. 

The graphs for these two lines are reasonably representative of  graphs for the other 

lines we studied as well. The reader should note an important feature of  these 

graphs that motivates the subsequent model. The lines for some companies lie 

consistently above the lines for other companies and appear to move in parallel to 

one another. Where correlation is visually significant (LOB 1), the parallel motion 

is evident even over short periods of  time. Where correlation is less visually 

significant (LOB 2), the parallel motion is less pronounced over short periods of  

time but is still evident, on average, over the decade as a whole. This suggests a 

main-effects model with main effects for company and year. We assume no 

company/year interactions partly because such interactions are not apparent on the 

graphs and partly because we could argue that we lack sufficient data to estimate 

separate year effects by company anyway. We fit the year effect with a non-linear, 

non-parametric smoother to capture a wide range of  possible behaviors across 

years - consistent trend, turning points, points of  inflection, etc. This model 

produces fitted loss-ratio values that are parallel curves, a separate curve for each 

company. 
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The fitting is performed by invoking a generalized additive model package, 

specifying normally distributed errors, an identity link function, main effects for 

company and year, and a loess smoother on year with wide smoothing window 

(large "span"), so as not to respond too much to random hits in any one year. 

Although one could argue that, technically, loss ratios cannot be normally 

distributed (shouldn't be negative and are likely positively skewed), we observed 

deviations from normality sufficiently mild for our data that the normal assumption 

was acceptable, which brought us that much closer to the classic linear model. 

Also, we saw no evidence that the loss ratios themselves were not additive in the 

explanatory variables (company and year), hence the identity link function, which 

again brings us that much closer to the classic linear model. In fact, the only 

reason for invoking the generalized additive model, rather than the classic linear 

model, was our desire to impose a non-linear, non-parametric smoother on the year 

effect. 

The generalized additive model was weighted. Over the years, it has been our 

experience fitting statistical models to insurance data that unweighted models are 

almost never appropriate. Weighted models are generally more appropriate, 

because insurance data points are almost never of  equal credibility or volatility; 

and, furthermore, the range of  credibilities or volatilities is sufficiently great that 

unweighted models are inadvisable. The general statistical practice is that the 

weight associated with a data point varies as the reciprocal of  its variance. This 

practice produces minimum-variance fitted values. A general statistical rule o f  

thumb is that, so long as the variances of  the data points are sufficiently similar to 

one another (in other words, differ from one another by no more than a factor of  

two or three) and assuming the variances independent of  the explanatory variables 

in the model, then the differences in results between a weighted and an unweighted 
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model can be expected to be sufficiently modest that they are ignorable. Then an 

unweighted model is acceptable. The purpose of  weighting is not to adjust for 

every last bit of  difference in variance but rather to correct for gross asymmetries 

in variance. But most insurance data presents a range of  variances considerably 

greater than a factor of  two or three and so generally calls for the estimation of  

weighted models. 

The classic actuarial assumption is that the variance of  a loss ratio declines as one 

over some measure of  volume, such as premium, which would suggest weighting 

on premium. But the formulas of  the previous section of  this Appendix would 

suggest that, in the presence of  parameter uncertainty, the variance depends on two 

terms, one of  form 1~volume, the second a constant greater than zero. So the very 

smallest risks, for which the 1~volume term dwarfs the constant, do indeed see a 

variance declining as 1~volume. The very largest risks, for which the 1~volume 

term has essentially died away to zero, see a variance essentially independent of  

size. If  all the data is essentially small risks, weighting on volume is appropriate. 

I f  all the data is essentially large risks, doing an unweighted analysis is reasonable. 

Generally, we are somewhere in the middle, with risks all the way from the small 

to the large. 

One possibility is to construct an iterated model. Select some weights. Fit a 

weighted model to find fitted means. Find the differences of  actuals and fitted 

means, square the differences, and fit these squared differences to the variance 

model 1~volume plus a constant. Invert the fitted variances to find a new set of  

weights and iterate a few times. This is admittedly a fair amount of  work. A 

"quick and dirty" alternative that we have frequently found to work adequately for 

weighting, where adequate means it removes gross asymmetries in variance 

without necessarily reducing all variances to exact equality, is to assume that 
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variance dies away as 1 over some fractional power of volume; say, variance dies 

away as 1 / ~ - - h e n c e  use the square roots of volumes as weights, Over quite 

a robust range of different models, we have found that this square root rule roughly 

captures the change in volatility from the small to the large. 

As an example, Graph A.2 shows the same loss ratios as in Graph A.I.1 (LOB1), 

but plotted against premium rather than year. The smallest risks have premium as 

small as approximately $5 million. The largest premiums exceed $1 billion. So 

premium covers a range of two and a half orders of magnitude. As expected, loss 

ratio volatility appears to decline with increasing volume, but apparently not as fast 

as a 1~volume rule would imply. If  the 1~volume rule held, as premium increased 

by more than a factor of 100, variances on the extreme right would be less than 

1/100 of the variances on the extreme left, and standard deviations on the extreme 

right would be less than 1/10 of standard deviations on the extreme left. Standard 

deviations on the extreme left don't look 10 times as big as standard deviations on 

the extreme right--more like the three or four times as big that would be implied by 

variances that went as 1 / ~ ;  hence standard deviations that went as 

1 / ~ .  So, in building our models for loss ratio for LOB 1, we have used 

weights of ~/premium. In other words, data points associated with the largest risks 

are assigned weights on the order of 10 times as large as data points associated 

with the smallest risks. 

Graph A.3 shows the year effect for this model on LOB 1. The dotted lines are the 

fitted year effect plus and minus two standard errors, corresponding to an 

approximately 95% confidence interval. The year effect has been translated to 

yield an average effect of 0. The absolute level of loss ratios is captured by the 

other main effect, the company effect. So we see loss ratios have been trending 
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upwards throughout the decade, increasing by more than 20 loss ratio points from 

the beginning tothe end of the decade, but the trend has not been uniform 

throughout. There is a point of inflection at mid decade. Throughout the first half- 

decade, trend was positive but decreasing, until it vanished altogether at mid- 

decade, only to resume its upward movement at decade end. Because this 

happened to all companies (at least our model assumes so, being a main-effects- 

only model, but, as noted before, there is no evidence of different year effects by 

company), and because the trend was essentially consistently upward and of 

significant magnitude, if we were to measure deviations about the decade mean, 

we would find most deviations early in the decade negative, most late in the decade 

positive. We would infer considerably larger correlations from these deviations 

than from deviations measured about the varying-year effect plotted in Graph A.3. 

For illustrative purposes only, we have actually done both calculations and will 

report the results later in this Appendix. 

This year effect has a cubic appearance. This shows the importance of the non- 

parametric component of the smoother on year. Because the smoother was locally 

quadratic, in the absence of a non-parametric component, the global year effect 

would have been linear or quadratic and could not have captured the pattern 

evidenced in Graph A.3. At the same time, the smoother is not so responsive as to 

pick up the year-to-year ups and downs apparent in Graph A. 1.1. So long-term 

trends captured in the means, as driven by the year effect, therefore are removed 

from deviations about means, and don't impact correlation estimates. Short-term 

ups and downs are not captured in the year effect or the resulting means, so do 

flow through to deviations about those means and do cant  through to correlations. 

This is the desired behavior. 
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Having identified good models for ratio of loss to one of premium, PPR, or 

exposure, we multiply the fitted values resulting from these models by the 

denominators to yield estimates for mean losses. These mean losses are then used 

to calculate the normalized deviations of the previous section of this appendix. As 

noted in the previous section, the normalized deviations are the actual loss minus 

the expected loss, the difference then divided by expected loss. 

There is one additional, important adjustment to the normalized deviations not 

already discussed. These deviations are adjusted for degrees of freedom by 

multiplying by ~ ,  where n, p, and the justification for this particular 

multiplier will now be described. Suppose the model for loss ratios for a particular 

LOB is based on n observed data points. The fitted model hasp effective 

parameters, where p is the number of companies, plus two (because of the locally 

quadratic nature of the year smoother ) , plus the additional effective number of 

degrees of freedom of the non-parametric component of the year smoother, which 

was generally in the neighborhood of 0.8. An unbiased estimator for variance 

involves taking differences of actual and fitted values, squaring the differences, 

summing up the n squared differences, and dividing the sum not by n but by n - p .  

The way in which we subsequently use the normalized deviations to estimate 

correlation parameters amounts to taking averages, dividing sums ofn  terms by n 

rather than by n - p .  By adjusting normalized deviations by the factor ~ ,  

we are adjusting squared deviations by n/(n -p), the n's cancel, yielding the right 

denominator, n - p ,  in the end. 

The need for applying a multiplier greater than 1 to the unadjusted normalized 

deviations can also be seen from the following argument, although this argument 

doesn't also establish the magnitude of the multiplier. We start with n data points. 
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To these data points we fit a model with p effective degrees of freedom. The fitted 

values are themselves random variables that approximate the "true" expected 

values to the extent that the model is the "true" model. But note that fitted values 

are pulled in the direction of the observed data and away from the true expected 

values by the fitting process (least squares, maximum likelihood, whatever). The 

magnitude of differences between actual and fitted values will therefore be smaller 

on average than the magnitude of differences between actual and true expected 

values. This shrinkage can be offset by multiplying the first differences 

b y e ,  where the actual value of the multiplier is established by the 

requirement that sums of squares reproduce the right unbiased estimate for the 

variance. 

In the interests of  wrapping up loose ends, we should note that, although we 

always started with a model with main effects for company and for year, with a 

smoother for year, the finally accepted models were many different variants on 

this. We sometimes found that company was not statistically significant; in other 

words, there was no statistically significant evidence that loss ratio differed by 

company. We sometimes found that the non-parametric component of  the year 

effect was not significant, so the year effect was globally quadratic. Sometimes the 

quadratic term was not significant, so the year effect was globally linear (long-term 

constant trend). And sometimes even the linear effect was not significant, so there 

was no statistically significant evidence of loss ratio varying across years at all. 

Model for Loss Variances 

So now we have normalized deviations, adjusted for degrees of freedom. We 

consider all manner ofpairwise products of these deviations. We demand that the 

year associated with the first factor in the pair match the year associated with the 

127 



second factor, because we have not yet studied correlations across year. I f  we 

consider just those pairwise products where the first and second company also 

match, and where first and second LOB also match and are equal to some specified 

LOB of interest, then we are looking at squared deviations. Equation A.2 suggests 

that, if we plot these squared deviations against expected loss E, we should see a 

1/E dependence plus a constant term, where the constant is the contagion plus the 

covariance generator for that LOB. See Graph A.4 for the graph just described for 

LOB 1. The circles represent the squared deviations from data. The triangles are 

the fitted values of the functional form lIE plus constant. 

The fit was created by least squares regression. There is again an issue of weights. 

Squared deviations for small expected loss appear considerably more volatile than 

squared deviations for large expected loss, and so should receive less weight. 

Otherwise, there is a considerable risk that some noisy data at small E could have a 

considerable impact on the estimate of the constant term out at large E. What 

weights might be appropriate? I f  the deviation A were approximately normal with 

standard deviation a, then A2/~ would be distributed approximately chi-squared 

with one degree of freedom. This result would imply that A z has an expectation of 

2 and a variance of 2a 4. In other words, the standard deviations of  the squared- 

deviation random variables appear proportional to their expected values, which is 

not inconsistent with Graph A.4. This suggests the following algorithm. Fit the 

1/E plus constant functional form to the squared deviations. Square the fitted 

values, take their reciprocals, and use these values as weights in another fit of the 

functional form to the squared deviations. Iterate a few times. 
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Other Pairwise Products 

Consider next pairwise products where first and second year are the same, first and 

second LOB are the same and equal to some specified LOB of  interest, but first 

and second company are different. These products measure correlation among 

companies within LOB, and their (weighted) average yields an estimator for the 

covariance generator for that LOB, per equation A.2. Consider first a plot of  the 

second factor in each pair against the first factor in each pair. Can one visually see 

the correlation? Graph A.5.1 is such a plot for LOB 1. 

The most striking thing about this plot is that the data appears to array itself in 

rows and columns. Consider an example. Suppose for this LOB we have 10 years, 

10 companies, hence 100 independent observations from which we construct 100 

normalized deviations. For each of  the 100 deviations thought of  as the first factor, 

there are nine deviations available as second factor (same year, each of  the other 

nine companies), hence a total of  900 pairwise products relevant to this section of  

the Appendix (same year, different companies) and 900 plotted points on the plot 

of  second factor vs. first factor of  the form of  Graph A.5.1, The points in this plot 

array themselves in columns of  nine points and rows of  nine points. The columns 

of  nine result because all nine share the same first factor (plotted on the x axis) 

while the second factor (plotted on the y axis) ranges over nine possible values. 

Rows of  nine also result because alt nine share the same second factor while the 

first factor ranges over nine possible values. The nine points in a colunm are not 

independent but highly interdependent through their shared first factor. Likewise, 

the nine points in a row are not independent but highly interdependent through 

their shared second factor. These interdependencies through shared first and 

second factors apply also to the 900 pairwise products. It would be very wrong to 

129 



treat these 900 pairwise products as 900 independent draws from some underlying 

process. This observation will be relevant to a later discussion of standard errors 

of parameter estimates, such as estimates of covariance generators. 

Returning to Graph A.5.1, note the slightly tilted horizontal line. This is an 

unweighted linear regression line on the plotted points. It is included as an aid to 

visualizing a possible tilt to the plot, which would be indicative of a correlation, 

but the degree of tilt of  this regression line is not a good estimator of the 

correlation. First, points with either very low or very high first deviation may be 

highly leveraged and highly influential in estimating the unweighted regression 

line. Yet these extreme first deviations are likely to be the most volatile and the 

least deserving of receiving any significant weight. An unweighted regression 

gives them too much weight. Second, the regression line treats all the plotted 

points as independent of one another, and we have already argued that there is a 

great deal of interdependency among these points. So the plotted regression line 

should be treated as a visual aid only and not considered a good estimator. We 

have argued in a previous section of this Appendix that a weighted average of 

pairwise products, with judicious choice of weights, might be a good estimator of 

covariance generators. 

The deviations of Graph A.5.1 are those measured about expected losses taking 

into account the year effect of Graph A.3. As an additional aside on the potential 

distortion of estimating correlations from deviations about grand means, Graph 

A.5.2 shows a plot corresponding to Graph A.5.1 of deviations vs. deviations, 

measured about expectations not reflective of the year effect. The apparent 

correlation is much greater, the excess correlation being driven by the failure to 

remove long term predictable trend from the deviations. 
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We have concluded that, because of various technical difficulties, plots of 

deviations vs. deviations of the form of Graph A.5 are useful visual aids but not 

good estimators. As weighted averages ofpairwise products of deviations can be 

used as estimators, what weights are appropriate? Previously, we presented a 

heuristic argument in terms of the chi-squared distribution for squared deviations; 

in other words, for pairwise products where the first and second factors are 

identical. But we don't know what the sampling distribution might be for pairwise 

products of deviations where the first and second factors may be interdependent 

but not identical. Suppose we plot pairwise products against some measure of 

volume to see if there is any evidence of changing volatility with increasing 

volume. For each of the first and second factors of a pairwise product, there is a 

measure of volume, namely the expected loss associated with that deviation, but 

the two expected losses are unlikely to be equal. Suppose we define as a measure 

of volume for the pairwise product the geometric average of the expected losses for 

the first and second deviations in the product; in other words, the square root of the 

product of the two expected losses. Call it E. 

Graph A.6.1 shows a plot for LOB 1 of the pairwise deviation products, same year 

first and second factors, different companies, against this volume measure E. 

Pairwise products associated with larger volumes are clearly less volatile and so 

should receive more weight in any weighted average of these products. Suppose 

we imagine that the variance of the sampling distribution of a pairwise product 

declines as unity over some power orE. Dividing the observed pairwise products 

by the square root of the presumed variance law and plotting this against E should 

produce a graph more symmetrical left to right than Graph A.6.1. Suppose we 

guess the variance law to be 1/E. Then multiply pairwise products by-rE. Graph 

A.6.2 shows this plot. We have gone from a graph that shows more volatility on 
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the left to one that shows more volatility on the right. Clearly, a 1/E variance law 

overdoes it. Suppose we assume a variance law 1 / ~ .  Then multiply pairwise 

products by the fourth root of E. Graph A.6.3 shows the resulting plot is far more 

symmetric than either A.6.1 or A.6.2, supporting a variance law something like 

1/x/E and, therefore, a weighted average of pairwise deviation products with 

weights proportional to x/E as a reasonably best estimator from among this family 

of  estimators of  the covariance generator for this LOB. 

Now that we have an estimate for the covariance generator, how precise is it? 

What is the standard error of that estimate? Generally, when an estimator is a 

weighted average of independent observations, the standard error of the estimate is 

the standard deviation of one observation divided by the square root of  the number 

of observations, with some adjustment for the weighting. As we have already 

argued, these pairwise products are far from independent of  one another, ruling out 

the square root ofn rule. We have chosen to estimate standard errors of  estimators 

via bootstrap. From the original data draw a data resample of  the same size as the 

original data set, but with replacement, so that some data points might not appear 

at all in the resample and others might appear more than once. Re-estimate the 

statistic or parameter of interest from this resample. Repeat this many times, 

building up a collection of estimates, from which collection one can estimate such 

quantities as the standard deviation and extreme percentiles of the estimator. 

Statistical rules of thumb suggest that, whereas one may need hundreds of 

resamples to reasonably estimate extreme percentiles (such as the 95 th or 99 th) of 

the sampling distribution of the estimator of interest, as few as fifty resamples will 

yield a reasonable estimate of the standard error of  the estimator. 

Furthermore, to preserve the two-way structure of  the underlying problem on 

company and year, as well as to estimate the relative impact of  company and year 
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on estimators, we bootstrap separately on company and year. Bootstrapping on 

company yields a standard error of  the estimator due to the randomness of which 

companies are in or out of  the database. In other words, if  certain companies were 

dropped from the database, and certain others were added, how much could we 

expect the estimator to vary from its current value? Bootstrapping on year yields a 

standard error of the estimator due to the randomness of  which years are in or out 

of the database. The total standard error of the estimator is the square root of the 

sum of squared standard errors due to company and year separately. 

An example may again be useful. Suppose our previous example with an LOB 

with ten years and ten companies. This produces 100 normalized deviations, 100 

squared deviations used to estimate the variance model, and 900 pairwise deviation 

products, first and second years the same, first and second LOBs the same and 

equal to the LOB in question, but different first and second companies, from which 

an estimate for the LOB covariance generator is calculated. One way to bootstrap 

would be to draw from the 100 deviations with replacement, but it is likely that this 

would produce a resampled dataset in which some years were represented by some 

companies but not all ten companies, and some companies were represented by 

some years but not all ten years. The resampled dataset would not preserve the 

two-way structure of the original on company and year. Also, from this resample 

it would be impossible to segregate the potentially interesting different impacts of 

company and year. 

We chose to resample on company and year separately. One resamples on 

company by drawing ten companies with replacement from the original list often. 

As an example, the resampled list might include eight of the original ten appearing 

once each, the ninth appearing twice, and the tenth not at all. Then one takes all 

ten years for each of the resampled companies. The result would be 100 
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deviations, the first 80 from the original 100 representing the first eight companies, 

then 81 through 90 from the original 100 representing the ninth company, then 91 

through 100 repeating 81 through 90, representing the ninth company showing up a 

second time in that particular resampling on company. So, although the resample 

includes 100 deviations, there are only 90 distinct values, because company 9 

occurs twice in the resample. One uses these resampled 100 deviations to calculate 

the previously discussed variance model and covariance generator estimator. 

Resample 50 times to estimate standard errors for the estimators. 

Next resample on year by drawing ten years with replacement from the original list 

often. As an example, the resampled list might include six of the original ten 

appearing once each, the seventh and eighth appearing twice each, and the ninth 

and tenth appearing not at all. Then take all ten companies for each of the 

resampled years. The result would be 100 deviations but only 80 distinct values, 

because years 7 and 8 occur twice in the resample. Use these resampled 100 

deviations to calculate the previously discussed variance model and covariance 

generator estimator. Resample 50 times to estimate standard errors for the 

estimators. 

The previous section of this Appendix, on the variance model, considered pairwise 

deviation products where the first and second factor years were the same, first and 

second LOBs the same, and first and second companies the same; in other words, 

the pairwise products were actually squared deviations. These lead to variance 

models and estimators for the sum of contagion and covariance generator for the 

LOB. In this section, we have considered pairwise products with first and second 

years the same, first and second LOBs the same, but first and second companies 

different. These products lead to estimates of correlation among companies within 

LOB, to estimators for the LOB covariance generator. Other pairwise products not 
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yet discussed but of  potential interest would be those for which first and second 

years are the same, but first and second LOBs are different. Such products would 

lead to estimates of between-LOB-correlation, to estimators for the geometric 

average of the covariance generators for the two LOBs if they are in the same 

covariance group, or to a statistic not statistically different from zero if the LOBs 

are in different covariance groups. We will not discuss these products further other 

than to note that the weighting and bootstrap issues discussed above are the same 

for these products and were addressed in the same way. 

Some Representative Results 

Before discussing Exhibits A. 1 through A.3, which provide some representative 

results, we should note that we tested two other model issues that have not yet been 

discussed. 

l) Between company pairwise deviation products yield estimators for 

covariance generators. We asked whether there was any evidence that these 

covariance generators varied by size of company. We tested this by 

regressing the appropriate pairwise products against the base 10 logarithm of 

the size of  the company, size measured as the expected loss for that LOB. A 

statistically significant regression coefficient for the log explanatory variable 

would have been evidence of a size dependency. A statistically significant 

positive coefficient would have been evidence of a covariance generator 

increasing with increasing company size, and vice versa for a statistically 

significant negative coefficient. We used log(size) as the explanatory 

variable on the assumption that the effect, if there was one, would be 

logarithmic in size, that the magnitude of the effect would be about the same 

when going from a company of size 1 to size 10 as when going from a 
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company of size 10 to one size 100, etc. No statistically significant size 

effects for the covariance generators were detected. 

2) For certain property lines, we asked whether much of the apparent 

correlation arose through catastrophes. We eliminated the heavy catastrophe 

years of 1992 and 1994 and found that correlations did indeed go down but 

were still significant. 

Turning now to Exhibit A. 1, this exhibit considers just pairwise deviation products 

where first and second LOB are LOB 1. Considered first are products where first 

and second companies are different ("Between companies"), hence the expectation 

is g~. Based on a weighted average of the relevant pairwise products from the data, 

the point estimate for g~ is 0.0026. The square root of this, 0.051, is the standard 

deviation of the underlying frequency multiplier, which appears to indicate a 

frequency parameter uncertainty impacting LOB 1 industry wide of on the order of 

plus or minus 5%. Bootstrapping on years yields a range of estimates for g~ with a 

standard deviation of 0.0008. Bootstrapping on companies yields a standard error 

due to companies of 0.0009. So uncertainty regarding this parameter due to years 

is comparable to the uncertainty arising through companies. The total standard 

error forgl is a combination of standard errors due to years and companies and is 

0.0012. The estimate for g~ is more than twice its standard error, so is certainly 

statistically significant. 

The test for g~ size dependence yields a regression coefficient for the log(size) 

explanatory variable of-0.00004, with a standard error estimated from bootstrap of 

0.00344. The standard error is much larger than the parameter estimate. There is 

no statistically significant evidence that g~ depends upon size. 
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Considering next pairwise products with first and second LOB equal to LOB 1 and 

with first and second companies equal ("within company"; in other words, the 

squared deviation products) yields an estimate for LOB 1 of  contagion plus 

covariance generator o f  0.0226 with a standard error of  0.0092. This is certainly 

significant. The difference of  the c + g estimate (0.0226) and the g estimate 

(0.0026) yields an estimate for the contagion c for LOB 1 of  0.0200. 

If, just for the sake of  illustration, not that we argue this is the right thing to do, we 

repeat these calculations for LOB 1 using deviations about grand means rather than 

about means adjusted for the year effects of  Graph A.3, we find much larger 

correlation estimates. For gl, instead of  the 0.0026 with standard error 0.0012 

discussed above, we find 0.0135 with standard error 0.0051. This latter value for 

gl implies a frequency parameter uncertainty of  11.6% vs. the 5% discussed above. 

Likewise, for cl + gl, instead of  the 0.0226 with standard error 0.0092 discussed 

above, we find 0.0298 with standard error 0.0099. Failing to adjust deviations for 

long-term predictable trends significantly inflates correlation estimates in ways not 

directly relevant to the required capital issue. 

Exhibit A.2 shows the same statistics for LOB 2, a g estimate of  0.0007 with 

standard error of  0.0004 (hence just about significant at two standard errors, 

indicating a frequency parameter uncertainty of  plus or minus 2.6%), no significant 

size dependence o f  this g estimate, and a significant estimate of  c + g of  0.0090 

with standard error of  0.0023. From comparing Graphs A. 1.1 and A. 1.2 we had 

suspected we would find more correlation in LOB 1 than in 2, and indeed we find 

g for LOB 1 larger than that for LOB 2. c + g measures large risk volatility (the 

limit as the 1/E term dies away). This is also larger for LOB 1 than for LOB 2. 
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Turning lastly to Exhibit A.3, this considers pairwise products where the first LOB 

is LOB 1 and the second LOB is LOB 2, hence measures between LOB 

correlations. This yields an estimate of  ~ of  0.0005 with a standard error o f  

0.0006. Because this statistic is not statistically significantly different from 0, 

there is no evidence that LOBs 1 and 2 are in the same covariance group. 

Knowing what lines of  business LOB 1 and 2 are, we did not expect them to be in 

the same covariance group and are not surprised by this result. 
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Exhibit A. 1 

Correlation Parameter Estimates 

LOB 1 

Between companies: g 

Estimate: 0.0026 

Standard error due to years: 0.0008 

Standard error due to companies: 0.0009 

Full standard error: 0.0012 

Between companies: logl0(size) coefficient 

Estimate: -4e-005 

Standard error due to years: 0.00235 

Standard error due to companies: 0.00251 

Full standard error: 0.00344 

Within company: c + g 

Estimate: 0.0226 

Standard error due to years: 0.0048 

Standard error due to companies: 0.0078 

Full standard error: 0.0092 
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Exhibit A.2 

Correlation Parameter Estimates 

LOB 2 

Between companies: g 

Estimate: 0.0007 

Standard error due to years: 0.0002 

Standard error due to companies: 0.0003 

Full standard error: 0.0004 

Between companies: logl0(size) coefficient 

Estimate: -0.00065 

Standard error due to years: 0.00050 

Standard error due to companies: 0.00065 

Full standard error: 0.00082 

Within company: c + g 

Estimate: 0.0090 

Standard error due to years: 0.0007 

Standard error due to companies: 0.0022 

Full standard error: 0.0023 
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Exhibit A.3 

Correlation Parameter Estimates 

LOB 1 vs. LOB 2 

Between and within companies: g 

Estimate: 0.0005 

Standard error due to years: 0.0005 

Standard error due to companies: 0.0003 

Full standard error: 0.0006 

Between and within companies: lOgl0(size) coefficient 

Estimate: -0.00086 

Standard error due to years: 0.00080 

Standard error due to companies: 0.00106 

Full standard error: 0.00133 
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