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Thomas Struppeck, FCAS, MAAA 

Abstract 

Actuaries frequently are called upon to estimate sums of random variables. 
Such sums arise in a variety of  contexts, as aggregate loss distributions, as 
losses including loss adjustment expense, as losses to a particular layer in 
stop loss reinsurance. If the quantities being summed were independent, 
things would be easy, however this is seldom the case. Generally, there will 
be some amount of"correlation" between the summands. 

This paper examines the Pearson product moment correlation coefficient's 
strengths and weaknesses and discusses two non-parametric alternatives: the 
Spearman rank correlation coefficient and Kendall's tau statistic. 
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Correlation 

Cor-re-la-tion n. 
1. A causal, complementary, parallel, or reciprocal 

relationship, especially a structural, functional, or qualitative 
correspondence between two comparable entities. 

2. Statistics. The simultaneous change in value of two 
numerically valued random variables. 1 

What is correlation? As can be seen from the above dictionary 
definition, correlation is a difficult concept to precisely define. 
Complicating the matter is the fact that the word "correlation" has a 
common usage (definition l) and a technical usage. Upon hearing the word 
"correlation", actuaries may think of the (Pearson product moment) 
correlation coefficient, this preconceived notion can lead to further 
confusion. 

In this paper, we will consider several notions of correlation and 
examine their relative strengths and weaknesses. After this brief 
introductory section, we will develop the Pearson product moment 
correlation coefficient and see why it specifically is central to the problem of 
estimating aggregate loss distributions. In the third section, we examine two 
other poss~le measures of correlation, Spearman rank correlation and 
Kendall's tan. These measures are in some ways more natural than product 
moment correlation, and they have appeared at various places in the 
actuarial literature. 

In the fourth section, we examine some ways of estimating correlation 
coefficients. As we shall see, this can be a very tricky business. Sometimes 
pairs of quantities that at first glance would appear to be highly correlated, 
turn out not to be. We will see an example in which two independent 
random variables appear to be correlated! 

Oftentimes the goal of studying some correlated random variables is 
to obtain an aggregate distribution. A common method for estimating the 
aggregate distribution is to use Monte Carlo methods. Our fifth section is 
devoted to examining different ways of simulating correlated random 
variables along with some cautions for the various methods. 

t The American Heritage® Dictionary of the English Language, Fourth Edition, 2000, 
Houghton Mifflin Company. 
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Finally, before the Conclusions section, we consider a hypothetical 
aggregate stop loss and examine how our choice of correlation model can 
vastly change the estimated value of the different layers. 

Independence and Correlation 

In the normal course of business insurers commonly extend vastly 
more in total limit outstanding than they have in total assets. Consider a 
homeowners writer that insures 10,000 houses in each of fifty states for 
$100,000 each. The total sum insured is $50 billion. Assuming a premium 
of $1,000 per house, total annual premiums would be $500 million, so 
policyholder surplus might be $200 million. In this example, the total sum 
insured is 250 times the available surplus. How can such leverage work? 
The answer, of course, is that the insurer does not expect claims from all of 
its insureds at once. There is an assumption that losses occur somewhat 
independently from one another. This spreading of the risk is the essence of  
insurance. 

What is Correlation? 

First, let us review some probability. Suppose that X and Y are 
random variables with finite means, then: 

E(X+Y) = E(X) + E(Y). 

That is, the expected value of the sum is the sum of the expected 
values. Since expected value is the amount that the insurer will have to pay 
on average, it is naturally of considerable interest to insurers. 

Insurers are also concerned about the variation around this expected 
value. This variability is commonly measured by using the standard 
deviation or its square, the variance. The variance is the expected squared 
deviation from the mean, namely: 

VAR(X) = E((X - E(X)) 2) 

Or equivalently: 
VAR(X) = E(X 2) - E(X) 2 
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Unlike the rule for expected value, the variance of a sum is not sum of 
the variances, except under specific conditions. Instead there are other 
terms: 

VAR(X+Y) = E((X+Y) 2) - EfX+Y) 2 
E(X2+ 2 X Y  + y2) _ E(X)2 -2E(X)E(Y) -E(Y) 2 
E(X 2) - E(X) 2 + E(Y 2) - E(Y) 2 + 2E(XY) - 2E(X)E(Y) 

Denoting E(XY) - E(X)E(Y) by COV(X,Y), we obtain: 

VAR(X+Y) = VAR(X) + VAR(Y) + 2 COV(X,Y) 

As we see above, computing the variance of the sum of X and Y leads 
us to consider the expected value of the product of X and Y and the product 
of their expected values. This product term in turn motivates the definition 
of covariance. It is worth noting that the covariance of X with itself is the 
variance of X. 

Covariance is one step away from our goal, the correlation coefficient. 
If X is expressed in one unit of measure (say, meters) and Y is expressed in 
another unit (say, seconds), then the unit for the covafiance will be the 
product (in this case meter-seconds). It is possible to normalize the 
covariance (assuming finite, non-zero second moments for X and Y), by 
dividing by the product of the standard deviations of the two variables. In 
his delightful book [F], Feller 2 suggests that a physicist might call this 
quantity "dimensionless covariance"; this ratio is the Pearson product- 
moment correlation coefficient. Since we will be looking at several possible 
measures of correlation, we will henceforth refer to this measure as 
"dimensionless covariance". 

This quantity measures the extent to which X and Y are linearly 
related. It ranges between minus one and one. Being a measure of the linear 
relationship between two quantities might lead one to suspect that there is 
some connection between the correlation coefficient and linear regression. 
Indeed there is such a relationship, and it highlights a subtle point. Select a 
sample from the jointly distributed population (X, Y). From this sample, 
first compute the sample correlation coefficient. Then do two regressions: 
regress Y on X, and X on Y. In each of these regressions, X and Y have 
asymmetric roles: X is the independent variable and Y is the dependent 

2 Every actuary should read, at a minimum, section 1.5 of Volume Two, "The Persistence 
of Bad Luck". 
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variable in the first and vice versa for the second. From each of the two 
regression lines, a slope is obtained. The sample correlation coefficient is 
the geometric mean of these two slopes (see for example, [CS].) The sample 
correlation coefficient treats X and Y equally; neither is thought of as being 
a function of the other, they are simply related somehow. 

There are several ways that the correlation coefficient could be zero. 
The most important case is when the variables are independent. 
Independence, however, is a much stronger condition than correlation zero. 
Recall that two or more random variables are called independent if their 
joint density function factors into the product of their respective density 
functions. If two random variables are independent, knowledge about the 
value of one of them tells you nothing new about the value of the other one; 
i.e. the conditional distribution is with probability one the same as the 
unconditional distribution. On the other hand, if two random variables have 
a non-zero correlation, then knowing the value of one of them might give 
you information about the other one. 

Here is an example. Consider two lines of insurance, A ~nd B, which 
have losses jointly distributed as follows: 

1 2 

1/4 

So the losses for line A can be either 1 or 2 and the losses for line B 
can be 1, 2, or 3 with the probabilities for the 6 possible pairs of events 
given by the above table. This table is the joint distribution function and it 
contains all of the information about A and B. For example, by summing 
the columns we get the marginal distribution for A, namely 50% of the time 
it is 1 and 50% of the time it is 2. Similarly by summing the rows, we get 
the marginal distribution for B, which is also miform, this time on the three 
values 1, 2, and 3. 

If  A and B were independent, the probability of any given pairing 
would be 1/6. Evidently A and B are not independent. If we compute the 
Pearson correlation coefficient, we find that it is about 20.4%. It is 

3 More exactly, the probability that the conditional distribution is different than the 
unconditional distribution is positive. 
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interesting to note that the conditional distribution of A given that B=I is the 
same as the unconditional distribution of A; however, if we are given that 
B=2 instead, then we have a different conditional distribution for A. (A in 
this case has a 75% chance of being 1 and a 25% chance of being 2, as the 
reader may check.) 

Correlation and covariance are central concepts in modem portfolio 
theory. Consider a simple portfolio consisting of N securities, X,, each of 
which has a value that is randomly distributed with mean M and variance V. 
Further, suppose that each pair of security prices has covariance equal to C, 
then: 

N N 

E(~_,XO='~ E(XO= N. M 
i=l i=l 

and: 
N N 

VAR(~_XO= ~__VAR(X,)+ 2~_Cov(JLXj) 
i=1 i=1 j<i 

The first sum in the variance line has N terms, but the second sum has 
N(N-1)/2 terms. As N gets larger, the second term, which is quadratic in N, 
starts to dominate. What happens if we examine the average instead of the 
sum of the X, ? 

= 

N i=1 N i=l 

N.V+2N.(N-B.C. . V N 2 - N  
- - + - - C  N 2 N 2. 2 N N 2 

The first term goes to zero as N goes to infinity, but the second term is 
bounded away from zero by C, the pairwise covariance. This last term, 
called "non-diversifiable risk" (because it doesn't go away as N gets large), 
is a cornerstone of the capital asset pricing model (CAPM) and of other 
factor models such as arbitrage pricing theory (APT). 
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Knowing the correlation coefficient is not enough 

There are many ways that two random variables can co-vary. Even if 
we know the marginal distribution of X and Y and we know the correlation 
of X and Y, there generally will be many possible joint distribution 
functions, and hence, different ways that they might co-vary. A good way to 
visualize the relationship between two variables is to examine a scatterplot 
of  them. 

Consider the two data sets in Figures I and II. Both have standard 
normal marginal distributions, and the each pair of  variables has correlation 
coefficient p =80%. The pair of  normal random variables shown in Figure I 
is multivariate normal. We will use the term "binormar' for a pair of 
multivariate normal random variables. Each of the random variables shown 
in Figure n is normal, but their joint distribution function is not the 
multivariate normal. The pair in Figure II has been engineered so that the 
random variables exhibit extreme behavior simultaneously much more often 
than the pair in Figure I, yet the pairs in Figures I and II both have p =80%. 
Notice how the second and fourth quadrants have fewer observations in 
Figure II than in Figure I. These two quadrants represent pairs of random 
variables that have opposite signs. Similarly, the first and third quadrants 
appear to have more observations in Figure II than in Figure I, especially 
away from the origin. These points represent observations with both random 
variables being exceptionally far away from average. 4 This comparison 
illustrates a major problem with using any single number to attempt to 
describe how two things co-vary: one number cannot do the job. 

Remarkably, for continuous random variables, there is an object that 
does capture the exact way that two or more random variables co-vary. 
Furthermore, it captures only the interaction between the variables, being 
independent of their respective marginal distributions. This object is called 
a copula and is described briefly in a following section. The next section 
serves to give further motivation to the introduction of copulas. 

4 The probability of an observation being in quadrants one or three minus the probability 
of an observation being in quadrants two or four is one way to define Kendall's tan, 
which we will discuss later. 
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r h o = 8 0 % ; b i n o r m a l  

Figure I 

rho=80%; ta i l s  more  cor re la ted  

Figure II 
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Mango and Sandor's experiment 

In a recent paper [MS], Mango and Sandor report on an experiment 
they performed to test a simulation procedure for generating correlated 
excess losses. They were attempting to estimate how much capital a 
reinsurer needs to support its book. They began by generating a binormally 
distributed pair of random variables with mean 0, variance 1, and specified 
correlation. As is well-known, a multinormal random variable is uniquely 
defined by its covariance matrix and its vector of means. 

They take the pair (X, Y) of normal random variables and compute 
from it a pair (U, V) of lognormal random variables by setting U = exp(X) 
and V = exp(Y). They then censor these observations from below retaining 
only the pairs (U, V) where both exceed some threshold. At this point, they 
compute the correlation coefficient of the censored pair and observe that it is 
considerably smaller than the original correlation used when generating the 
pair (X, Y). Since the amount of correlation strongly influences how much 
capital is needed, they found this result to be alarming. 

It will be instructive to examine these steps again, inserting one 
intermediate step. 

Step 1: Generate a pair (X, Y) of normal random variables, binormally 
distributed with mean 0, variance 1, and specified dimensionless 
covariance. 

Step 2: Denote by FO the cumulative distribution function for a normal 
random variable with mean 0 and variance 1. Determine the point in 
the unit square given by F(X), F(Y). In other words, determine the 
joint cumulative distribution fimction for this pair. (This step we 
have inserted into Mango and Sandor's process.) 

Step 3: Compute U = exp(NORM(X)) and V = exp(NORM(Y)), where exp 
is the exponential function and NORM is the inverse of the 
cumulative distribution function that we introduced into the process 
in Step 2. 

Step 4: Censor the results from below deleting all observations that have 
either U or V less than some threshold. 

Step 1 is the generation of a pair random numbers and in this case the 
imposition of some sort of correlation structure on them. 
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Step 2 takes these random numbers and transforms them into a distribution 
function over the unit square. This particular choice of random number 
generation and transformation creates what is called a normal copula. The 
marginal distribution for each of the two coordinates is uniform on (0,1). 

Step 3 takes these uniform (0,1) marginals and converts them to specified (in 
this case lognormal) marginals. 

Step 4 takes the pair of lognormally distributed random variables and 
censors them from below. 

Mango and Sandor noticed that the dimensionless covariance 
dropped. In which steps did they lose it? Some was lost in step 2 and some 
more in step 3 (they combined these steps). Also, some was lost in Step 4. 

The loss in steps 2 and 3 comes about because dimensionless 
covariance is not preserved under non-linear transformations. A binormal 
pair of random variables is created in Step 1 and two nonlinear 
transformations are applied to it. There are measures which we will discuss 
later that are preserved under these transformations. 

The loss in step 4 is more fundamental. The process of censoring is 
not a transformation --- some observations are discarded. Paraphrasing 
Embrechts, et al [EMS], the normal copula exhibits independence in the 
tails. What this means is that as we focus our attention on the observations 
in the extreme upper right portion of the first quadrant the pairs of 
observations that we find there are distributed as though they were (nearly) 
independent. This happens even though if we look at all of the observations 
they will exhibit some correlation. 

Copulas 

Recently the notion of a copula has begun to become more widely 
known by North American actuaries. Venter's paper, Tails of Copulas, is a 
particularly nice source [V]. (Other good sources are [W], [EMS], and 
Nelson's book [N].) 

A copula is a dependence structure between two or more random 
variables. Let X and Y be (real-valued) random variables with joint 
distribution function F(x,y). That is: 

F(x,y) = Pr(X<=x and Y<=y) for all real x and y 
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If we just consider the variable X, we can ask about its distribution. It 
is given by the marginal distribution function, Fx(x). Similarly, the 
marginal distribution of Y is given by F~ (y). 

If we can fred a fi.mction C :  [ 0 , 1 ]  2 ") [0,1] with F(x,y) = C ( F x ( x ) , F r ( y ) )  , 

then we call that function a copula for X and Y. 

Copulas have many nice features. First, they always exist. Secondly, 
in the case when X and Y are continuous, they are unique. This feature 
follows from what is known as Sklar's Theorem. It would take us too far 
afield to discuss this important result further. (The interested reader should 
see, for example, [ELM] or [N].) 

One corollary of Sklar's Theorem is that, given a pair of continuous 
marginal distributions, every possible joint distribution with those marginals 
is given by a copula. The copula contains all of the information about the 
dependence structure of  the joint distribution function; the marginal 
distributions contain the information about the individual components. 

Considering the above, it seems that a good measure of the 
dependence of two (continuous) random variables would depend only on 
their copula since the copula captures all of the dependence information. 
Alas, dimensionless covariance is not a function of just the copula (in 
general it will depend of the marginals also), but there are measures that 
depend only on the copula. Since the copula captures all of the dependence 
information, this would suggest that these other measures are more natural. 
We discuss two of  these measures later, but first let us see some other 
problems with dimensionless covariance. 

Problems with dimensionless eovarianee 

As we have seen, dimensionless covariance has several nice 
properties. It is easy to compute an estimate of it from a sample. It is 
related to linear regression, a familiar topic. In the case of a standard 
multivariate normal, knowing the pairwise correlations (equivalently, the 
covariance matrix) completely determines the joint distribution. 

Ironically, these same properties highlight major weaknesses with it. 
The fact that it is easy to compute may lead practitioners to use it when it is 
not appropriate. The relationship to linear regression may make 
management feel that this is the right measure to consider, even if better 
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measures are offered. And finally, the fact that the covariance matrix 
contains all of the pertinent information in the multivariate case has led 
many to believe that it is true in general, when in fact, this relationship is 
seldom true. 

The dimensionless covariance is invariant under positive affine 
transforms. I.e. if you multiply one of  the variables by a positive constant 
and add another constant, the transformed variables have the same 
correlation coefficient. However, it is not preserved under more general 
transforms even if  these transforms are monotone increasing. This 
noninvariance is a distinct weakness which seems to still not be fully 
understood by all practicing actuaries. Wang and Mango-Sandor touch on 
this issue. 

Another problem with dimensionless covariance was alluded to 
earlier, namely that it is a single number. There are other problems too. 
While the dimensionless covariance is always between minus one and one, it 
is not always possible to achieve those bounds. Wang [W] gives explicit 
bounds for some lognormal random variables and shows that the range of 
achievable correlations can be made arbitrarily small. Wang shows that the 
largest possible dimensionless covariance between a lognormal random 
variable with parameters g and 1 and another one with parameters ~z.(r and 
cr 2 is: 

e ° -1  

~ _ 1  e.Q-e-S_l 

As the reader may check, this quantity tends to zero as sigma tends to 
infinity. So, in particular it is possible to have a pair of comonotonlc 
lognormal random variables with dimensionless covariance arbitrarily close 
to zero. 

Here is another easy example. Let X and Y be Bernoulli random 
variables with success probabilities of 10% and 20%, respectively. To 
maximize the correlation coefficient, we make X and Y equal to one 
simultaneously as often as possible. To do this we select a uniform (0,1) 
random variable, U and define: 

X = 1, ifU<O.1 X = 0, otherwise 

Y = 1, if U<0.2 Y = O, otherwise 
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We now compute the covariance of X and Y. 

COV(X,Y) = E(XY) - E(X)E(Y) = 0.1 - 0.02 = 0.08 

The standard deviations of X and Y are 0.3 and 0.4, respectively, so 
their correlation coefficient is 2/3. These two variables move together as 
much as possible, but their correlation coefficient is not 1. The reader can 
check that the smallest possible correlation between such a pair of Bernoulli 
random variables is -1/6. 

In the case of multivariate normal random variables (or more 
generally elliptical distributions), the correlation matrix is the canonical 
measure, i.e. specifying the correlation matrix uniquely defines the 
distribution. Therefore, it may be surprising to some that the correlation 
lives near the center of the distribution. What I mean by that is that, in the 
tails, there is little correlation. As mentioned earlier, this is what Embrechts 
means when he says that the normal copula exhibits tail independence. 
Mango and Sandor observe this property in their study in which they 
consider lognormal random variables [MS]. 5 

It is easy to produce a spreadsheet that generates, say, 500 pairs of 
standard binormal random variables with p =60% and then computes the 
sample correlation when these are mmcated at 1 from below or censored at 1 
from below. If you make such a spreadsheet, you will observe that in both 
cases, the resulting population correlation is smaller than 60% and the 
observed sample correlation is usually smaller. These examples illustrate 
two potential missteps for modelers: 

Mistake 1: 

Mistake 2: 

Assuming that by modeling the ground-up losses and their 
correlations accurately, you will automatically get the excess 
loss correlations correct. 
Assuming that because you know that the excess layers do not 
exhibit significant correlation, the ground-up losses will also 
not exhibit any. 

Finally, correlation is very hard to measure. While the sample 
correlation is easily computed, the confidence intervals around it are quite 
wide, even under the assumption that the variables are binormally 
distributed. The author's spreadsheet exhibits considerable instability in the 

s Since the tail independence is a property of the copula, one expects that they would 
have observed something similar for any marginal distributions. 
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sample correlations --- even in the sample correlations of the binormal 
random variables themselves. Brehm [B] alludes to some of the problems of 
measuring correlations from data. 

Here is one suggestion: when analyzing data, looking at a scatterplot 
of the data is almost always a good idea. 

Consider this pair of jointly distributed random variables: 

Two subpopulat ions 

Figure III 

A computation of the correlation coefficient will show a significant 
correlation, however it is misleading. As we see from examining the plot, 
we really have two classes. Once the two classes are identified and split, the 
apparent correlation goes away. We will see a second example of this type 
when we look at simulating correlated random variables. The variables here 
could be profitability for two lines of business, perhaps auto and general 
liability. One cluster might be urban risks and the other cluster rural risks. 
Given that a risk is rural, the auto and general liability are independent, 
similarly, given that the risk is urban, the auto and general liability are 
independent. However, naively computing the correlation of these two lines 
without partitioning the data, we will be misled into thinking that the lines 
are highly correlated. 

Care should also be taken when adjusting data. Commonly, one 
adjusts for changing exposure bases over time by examining loss ratios. A 
danger with this is that loss ratios depend on premium and premium depends 
on the underwriting cycle. It is possible that apparent correlation between 

167 



losses from various lines is actually simply simultaneous fluctuations in 
premium adequacy caused by the underwriting cycle. If correlation between 
loss ratios is to be computed one should adjust for any premium redundancy 
or inadequacy first. 

Another computational danger arises from binning of data. Insurance 
data frequently has a large degree of"lumpiness". Sometimes data is binned 
(perhaps all values between 100 and 300 are coded as 200). In addition, 
policy limits, deductibles, and case reserving methodologies can cause 
observations to be clustered around certain values. These data quirks can 
play havoc with canned correlation calculating software. Even if a more 
detailed analysis is attempted, the loss of detail in the data may lead to 
spurious results. The non-parametric methods described in the next section 
are more robust in this regard. 

Since the computation of dimensionless covariance is essentially 
fitting a least squares line through the data, it is very sensitive to outliers. 
Observations that appear to be outliers should not just be ignored. Their 
existence should immediately call into question the assumption that the data 
is binormal (insurance data almost never is). There are non-parametric 
measures that are not as sensitive to the exact population distribution. We 
will examine two of these in the next section. 

So, in summary, there are several problems with dimensionless 
covariance as a measure of correlation: 

1) Confidence interval tests are usually predicated on the underlying data 
being binormal; 

2) Insurance data frequently is binned or dirty in some other way, when 
reviewing this type of data, computing correlation is especially 
dubious; 

3) Seldom can every possible value between -1 and 1 be achieved; 
4) It is not preserved under increasing transformations; and finally, 
5) It can be overly sensitive to outliers and to the distribution of the 

population which is almost never know. 

Other Measures 

As central to the study of aggregate losses as correlation and 
covariance are, as we shall see later, they really are not well behaved with 
respect to transformations of the data. There are other notions of correlation 
that are better behaved in that regard and are in some ways more intuitive 
than correlation. 
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The first of these measures is Spearman rank correlation. The idea 
behind rank correlation is very simple. Suppose that we have N pairs of 
observations of X and Y. (Remember that we are trying to understand how 
they are jointly distributed, so we must always think of the pair.) We look at 
the set of observed X values and the set of observed Y values (for the 
moment, assume no repeated values in either set). We take the N values of 
X and rank them from smallest (which gets assigned the number 1) up to 
largest (which gets assigned the number N). We similarly rank the Y values. 
We now look at the pairs of rankings, which we show sorted by X ranking: 

Pairs (X, Y) Pairs (Rankings) 
(2.1, 7.4) (1, 3) 
(4.9, 9.8) (2, 4) 
(7.7, 7.3) (3, 2) 
(8.0, 5.2) (4, 1) 

Notice that all of the information about X and Y is gone, all that is left 
is information about how they are paired together. I.e. it is a function of 
their copula. With all of the information about X and Y abstracted away, we 
have reduced the problem to one involving only finite sets. Once we know 
N and the pairs of rankings, we have extracted all of the information. 

Having sorted the pairs in order by their X rankings, we now count the 
number of "inversions" in the Y rankings, in this example we have: 3 
appears before 1 and 2, 4 appears before 1 and 2, and 2 appears before 1: a 
total of 5 inversions. 

The maximum possible number of inversions is N(N-1)/2 and the 
minimum possible is 0. The number of inversions is normalized to lie 
between -1 and 1 by subtracting N(N-1)/4 and dividing by N(N-1)/4. If 
N=4, as in this case, we get 2/3. 

The result is the Spearman rank correlation. Like the dimensionless 
covariance, it ranges from -1  to 1 with negative scores indicating random 
variables that move opposite one another while positive scores tend to 
indicate random variables that move together. 

An alternative way to define Spearman rank correlation is to compute 
the dimensionless covariance of the rankings, it turns out that this is 
equivalent to the above definition. 

Another closely related measure is the Kendall rank correlation 
coefficient tau ("Kendall's tau"). As before, we take pairs (X, Y) and rank 
them. Then we count the number of times that the first variable is greater 
than the second variable (in rank). This count yields a number between 0 
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and N which we subtract from N/2 and normalize by dividing by N/2 to 
produce a final result in the range of -1 to 1 as for the other two measures. 
The result is Kendall's tau. Using the example with four observations 
above, the only pair with the first coordinate's rank larger than the second's 
is the pair (3, 2), so we subtract 1 from 4/2 and divide by 4/2. This tells us 
that Kendall's tau for this data is 0.5. 

There is an equivalent way to think of Kendall's tau that gives it a 
nice intuitive interpretation. Select two pairs of observations (x,, Y~) and 

(x2, Y~ ) from the jointly distributed population. Call this pair concordant if 
either x~ < X 2 AND Y~ < Y2 or x, > x 2 AND Y~ > Y2; otherwise call the 
pair discordant (if ties are permitted this definition needs to be adjusted). 
Let P(C) and P(D) be the probabilities of concordant and discordant 
observations, respectively. Then Kendall's tau is P(C) - P(D). 

In a scatterplot, Kendall's tau can be thought of as the probability that 
an observation is in quadrants one or three (concordant) minus the 
probability that it is in quadrants two or four (discordant). 

So, Kendall's tau measures the likelihood that two random variables 
move in the same direction. It is a statement about probability; it does not 
try to relate the size of the changes, only their directions. I suspect that 
when people say that two things are correlated, they generally have 
something like this relationship in mind. 

A third non-parametric measure, which we mention in passing is the 
Gamma statistic. It is similar to Kendall's tan in that it also is a probability. 
It is useful when there are many ties (such as you might find in frequency 
data). It is the probability of concordance minus the probability of 
discordance divided by one minus the probability of ties. (See for example, 
Siegel & Castellan [SC]) 

All three of these non-parametric measures have the nice feature that 
they are equal to one in the case on concordance and minus one in the case 
of discordance. Also, they are invariant under increasing transformation, so 
they are actually properties of the copula. 

Kendall's tau (~) and Spearman's rank statistic (R) cannot differ by 
very much, as illustrated by the following inequality due to Daniels [see N]: 

- 1  < 3'r - 2 R  < 1 

What this inequality tells us is that if either Kendall's tau or the 
Spearman R is near 1 (or -1)  then the other must be also, and when one is 
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near 0 the other cannot be too far away. For example, if the Spearman 
coefficient is zero then Kendall's tau is at most 1/3 in absolute value. 

An alternative development of Kendall's tan, Spearman rank 
correlation, and dimensionless covariance can be found in Wang's paper on 
aggregation of risk portfolios [W]. 

Simulation 

One of the more common methods for estimating aggregate 
distributions is to run a Monte Carlo simulation. Reinsurance may have 
features such as drop-downs or shared retentions, or any number of other 
features that make analytic modeling practically impossible. In these cases, 
Monte Carlo simulation may be the only available tool. 

Determining how to incorporate correlation information into a 
simulation is an important problem. It is quite common to use the normal 
copula in these cases, as we have seen earlier there are some pitfalls 
associated with this. 

Some canned simulation packages can induce a given Spearman rank 
correlation. One possible method for simulating a given rank correlation 
structure is described below. 

Parameter uncertainty is commonly dealt with through use of a 
simulation. The incorporation of this uncertainty can produce some 
unexpected results. Let X and Y be two independent identically distributed 
random variables that are both normal with variance 1 and mean 0, where 0 
is either 1 or 2, but is not known which. Suppose that we run a simulation 
and assign 0 the value 1 half of the time and the value 2 the other half of the 
time, using the same value of 0 for both X and Y. We then compute the 
correlation of X and Y across the simulation. We will show a positive 
correlation even though X and Y are independent! The scatterplot of the 
result will look similar to plot number III. (The scatterplot of the two lines 
of insurance with an urban cluster and a rural cluster.) 

In the previous example, 0 was constant in each scenario. Frequently, 
parameter uncertainty arises from uncertainty about the parameter for each 
individual. This uncertainty can manifest also itself as observed correlation. 
Meyers [M] has written extensively about this topic. 

Even if it is believed that the correlation is known, it may be best to 
use Kendall's tau or rank correlation anyway. There are several reasons for 
this. In the case of binormal random variables, there is a formula for 
converting from dimensionless covariance to rank correlation and vice versa. 
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So, in at least one important case they are almost the same. 6 Secondly, the 
confidence intervals that arise in the calculation of dimensionless covariance 
from samples are generally very wide. If one uses rank correlation, it is 
possible to achieve the specified rank correlation when performing a Monte 
Carlo simulation, a goal which in general in unachievable in the case of 
dimensionless covariance as we have seen. 

One possible method to generate random variables with a given rank 
correlation in a simulation is to do the following: 

Assume that the variables are X and Y and that a method exists for 
generating instances of each of these variables. We will also assume that a 
simulation with N iterations is to be rim. 

Step 1: Generate N instances of X and Y. Sort each of these from smallest 
to largest. 

Step 2: Notice that paired this way (sorted) they are fully concordant so the 
rank correlation is one. 

Step 3: (Loop) While the rank correlation is larger than desired, interchange 
two of the Y's moving a smaller one up and a larger one down. 

The choice of pair to swap in step 3 can be tailored to make the 
process appear to have more or less tail dependence as the modeler desires. 

An Example of an Aggregate Stop Loss 

To illustrate some of these concepts, let us examine a simplified 
example of an aggregate stop loss. Our model consists of 100 risks, each of 
which has a 5% chance of suffering a loss of (exactly) 1. For simplicity, we 
will assume a zero percent discount rate. 

We will divide these losses into three layers: a primary layer that 
covers losses in aggregate from 0 up to 6, a "working layer" that covers 
losses from 7 up to 10 and a catastrophe (CAT) layer that covers losses from 
11 to 100. 

The expected loss to the entire program is 5 (since there are 100 risks 
each with a 5% chance of loss). Of course, this expectation does not mean 

6 This is the classic case for dimensionless covariance where everything works as 
expected. 
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that we expect no loss in the working layer. If  the losses were independent 
Bernoulli trials, the probability of 7 or more losses would be about 23.4% 
and the probability of 11 or more losses would be less than 0.5%. 

What happens if the losses are not independent? The answer is that 
things can be very different. How they are different depends on the joint 
distribution function of these 100 variables. We will look at three different 
models. 

First, is it possible for the pairwise correlation to be negative for each 
pair of  insureds? At first blush, ones intuition might lead one to think that 
you cannot have 100 things which are all pairwise negatively correlated. 
Positive correlation intuitively means that when one variable goes up the 
other tends to also, so negative correlation should mean that they move in 
opposite directions. If we have 100 such variables, then when one of them 
goes up we expect the other 99 go down ... that means that most of them are 
moving together! As compelling as this argument is, it is wrong. To see this 
fallacy, consider our example of 100 risks each with a 5% chance of loss 
where we are given that the total number of losses is exactly 5. Now, 
knowledge that one given risk had a loss decreases the probability that any 
other risk had a loss (from 5 in 100 to 4 in 99). Similarly, knowledge that a 
given risk did not have a loss increases every other risk's chance of loss 
(from 5 in 100 to 5 in 99). This information shows pairwise negative 
correlation. Of  course, in this case we could have done a simple calculation 
to explicitly compute it also (it is equal to -1/95). 

When we look at the effect of this particular correlation structure on 
our excess losses we see that it results in no excess losses at all! Since there 
are always exactly five losses, all of the loss occurs in the primary layer• In 
this example, negative correlation helps the excess layers and hurts the 
primary layers. Of course, this example is somewhat unrealistic. 

In the second model, we will set the pairwise correlation to a specified 
value using a normal copula. One way to achieve this pairwise correlation is 
to generate 101 independent standard normals. One of these variables, say 
the first one, we will call the "market factor". Each of our one hundred 
correlated normal random variables will be obtained by taking a multiple of 
the "market factor" and adding to it one of the other standard normals. The 
resulting variable will be normal (the sum of normals is normal), but it will 
require rescaling to be standard (variance 1). If the multipliers are selected 
appropriately, any specified non-negative correlation can be achieved in this 
manner. 

Here is a simple example. Suppose that we wish to achieve a pairwise 
correlation of 36%. We create standard normals which are correlated 60% 
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with the market factor (60% being the square root of 36%). If we call the 
market factor M, the independent normals x ,  and the correlated normals Y,, 
we would set: 

Y~ = 0 . 8 X  i + 0 . 6 M  

The g have mean 0 (because both y and M do) and variance 1 
(because 0.82 +0.62 = 12 ). An easy calculation left to the reader shows that the 
correlation between distinct Y, and ~ is indeed 36%. 

These normals are then used to create a copula (i.e. the inverse 
transformation is used to obtain I00 uniformly distributed (0,1) random 
variables) the components of which, in turn, are used to determine if the 
corresponding risk has a loss. If the uniform random variable is less than 
0.05, then there is a loss on that risk. 

The overall expected losses remain 5, however the sharing of these 
losses amongst the layers depends heavily on the correlation (however it is 
measured). The higher the correlation, the more expected loss there is above 
the primary layer. 

Strangely, beyond a certain point additional correlation stops hurting 
the working layer and actually begins to lower its expected losses. This 
reduction happens when the additional expected loss coming in from the 
primary layer is exceeded by the expected loss passed up to the CAT layer. 
Global reinsurers have observed similar phenomenon when dealing with 
currencies that have extreme inflation. 

In the third model, we will consider the following method for 
generating losses with a specified pairwise correlation that includes a 
catastrophe component. Select 101 standard independent normals as before 
and generate uniform random variables as in the prior example. Now 
generate one more independent standard normal. If it is smaller than some 
specified amount, set all of the one hundred risks equal to the first one. It is 
easy to do the parameter selection so that a given pairwise correlation is 
exactly achieved. 

This model has the exact same correlation as the prior model, but it is 
vastly more dangerous for the CAT layer and safer for the primary (again the 
working layer might either benefit or lose). Effectively, our 100 separate 
risks get replaced by one giant risk a certain percentage of the time. When 
this giant risk has a loss, the CAT layer is totally wiped out. This is a form 
of common shock model. 

Spectacularly large losses to the CAT layer will almost never be 
observed in the prior model because of the tail independence of the normal 
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copula, but they will be observed with this modification. Certain risks (in 
particular credit losses) may be better modeled by something with a very fat 
tail, such as a mixture of this last model with the prior one. 

Conclusions 

Determining how the correlation of risks changes the aggregate loss 
distribution is a very difficult problem. One number cannot describe the 
relationship between two jointly distributed random variables. It is possible 
to make two models with identical correlation coefficients that exhibit 
wildly different excess aggregate losses. The difference lies in the copula. 

The copula (which captures the structure of joint distribution) and the 
marginals (which capture the individual random variable) can be used to 
specify pairs (or more generally tuples) of jointly distributed random 
variables. Casualty actuaries are beginning to use these tools to understand 
the correlation structure of insurance loss random variables. This use will no 
doubt increase in the future. 

Because of its relationship to the second moment of the aggregate loss 
distribution, Pearson product moment correlation (which we have referred to 
as dimensionless covariance) is a fundamental quantity. However, it lacks 
some of the nice features of the non-parametric measures, Kendall's tau and 
Spearman rank correlation. 

The non-parametric measures may be somewhat more intuitive and 
may better capture what management is thinking when they say that two 
things are correlated. 
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