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Abs t rac t  

This paper begins with a description of how to calculate the aggregate loss distribution for an 
insurer. The model underlying this calculation reflects dependencies between the various lines 
of insurance. We include most of the standard insurance exposures as well as property 
catastrophe exposure. Next we show how this aggregate loss distribution can be used to allocate 
the cost of capital and evaluate various reinsurance strategies. We demonstrate the use of this 
methodology on two illustrative insurers. We believe this methodology can be used in practice 
by most insurers. 
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1. Introduction 

This paper has three objectives: 

1. Demonstrate a practical method to determine the distribution of  an insurer's aggregate 

loss payments. This includes not only losses from the contracts it currently is insuring, 

but also contracts that have expired but still have outstanding claims. This distribution 

will depend on the variation of  each contract's claim frequency and severity. It will also 

reflect dependencies among the various hazards insured. 

2. Using the results o f  Objective #1, demonstrate how to determine the amount of  capital 

needed for an insurance company based on its risk of  loss. 

3. Using the results o f  Objective #2 demonstrate how to allocate the cost o f  capital to lines 

of  insurance and evaluate given reinsurance strategies. 

We Will illustrate the use of  our model and methodology on two illustrative insurance 

companies. The parameters for the loss models were obtained from analyses by Insurance 

Services Office (ISO) and AIR Worldwide Corporation (AIR). 

We treat the time value of  money by assuming a fixed risk-free interest rate. While the assets o f  

an insurer are not always risk-free, a full treatment of  asset risk is beyond the scope of  this paper. 

Thus, we should expect insurers to have more capital than that indicated by the methodology 

described in this paper because they have asset risk. 

We begin with a description of  possible ways to model an insurer's distribution o f  underwriting 

losses. This description will include ways to model dependencies among the various insurance 

lines of  insurance. It will also discuss how to parameterize these models. 

Next we will describe how we calculate the required capital. This description will include a 

short survey of  the issues involved in making such a calculation. It turns out that there is no 

strong consensus on_ how to do this; but, if  we are to get a final answer, we must and do pick one 

method. 

We then move on to developing a methodology for allocating the cost o f  capital to each line o f  

insurance. As we do in our section on calculating the required capital, we will include a short 

17 



survey of the issues involved in doing this. Again we note that there is no strong consensus on 

how to do this but, as before, we do pick one method. 

While we recognize that others may differ in their methodology for solving these problems, we 

do feel that our methodology for calculating both the required capital and allocating the cost of 

capital to lines of insurance is reasonable. We note that the underwriting risk model that we have 

built to solve these problems could be used for other methodologies. 

2. Models of Insurer Losses 

This section begins with a description of the classic collective risk model, and it then enhances it 

with correlations or, more precisely, dependencies generated by parameter uncertainty. 

Next we introduce catastrophe models, in which the dependencies are caused by geographic 

proximity. We describe catastrophes generated by hurricanes and earthquakes. 

2.1 The Collective Risk Model 

The collective risk model (CRM) describes the total insured loss in terms of the underlying claim 

count and claim severity distributions for each line of insurance. We describe this model by the 

following simulation algorithm. 

Step 

1. 

Simulation Algorithm #1 

For each line of insurance, h, with uncertain claim payments, do the following: 

• Select random claim count Kh from a distribution with mean 2h, where 2h is the expected 

claim count for line of insurance h. 

• For each h, select random claim sizes, Zhk, for k = 1 ..... Kh. 

Set X h = ~Zhk = LOSS for line of insurance h. 
k=l 

Set X = ~-]X h = Loss for the insurer. 
h 
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This formulation of  the CRM assumes that the losses for each class are independent. We now 

introduce a dependency structure into the CRM with the following algorithm. 

Simulation Algorithm #2 

Step 

1. For each line of  insurance h with uncertain claim payments, do the following: 

• Select a random claim count Kh from a distribution with mean 2h, where 2h is the 

expected claim count for line of  insurance h. 

• For each h select a random claim size, Zhk, for k = 1 .....  Kh. 

~ I L  K 

2. Set X h = )-~Zhk = LOSS for line of  insurance h. 
k=l  

3. Select a random fl  from a distribution with E[fl] = 1 and Var[fl] = b. 

4. Set X = f t .  ~-"X h --= Loss for the insurer. 
h 

The extra step of  multiplying all the losses by a random fl adds variability in a way that losses for 

each line of  insurance will tend to be higher, or lower, together at the same time. This induces 

one kind o f  dependency, or correlation, among the losses of  different lines o f  insurance. One can 

think o f  b as a parameter that quantifies the uncertainty in the economic environment affecting 

multiple lines o f  insurance. 

Figures 1-4 provide a graphic illustration of  how Simulation Algorithm #2 generates dependency 

and correlation. In these figures, we randomly selected XI and )(2. Next we randomly selected ft. 

We then plotted 13X1 against f iX2.  If  we do not change the distributions )(1 and )(2, a higher b 

will lead to a higher coefficient o f  correlation. But, as illustrated in Figures 3 and 4, the 

coefficient o f  correlation also depends on coefficients o f  variation (CV) o f  Xi and )(2. 
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Figure 1 

X1 and X2 are independently drawn 
random variables with CV=0.1. 

[3 was drawn from a distribution with 
b=Var[fl] = 0. Thus p = 0.00. 
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Figure 2 

Xl and X2 are independently drawn 
random variables with CV=0.1 

13 was drawn from a distribution with 
b=Var[fl] = 0.005. Thus p = 0.33. 
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Figure 3 

Xt and X2 are independently drawn 
random variables with CV=0.1 

!3 was drawn from a distribution with 

b=Var[fl] = 0.020. Thus p = 0.66. 

! . s o...~.;.~ "~ . .  • 
. L  

. ,#  ~ . "  .,,~. • 
. : . . o  • 

° o  • 

i . . . . . .  

Figure 4 

Xl and )(2 are independently drawn 
random variables with CV=0.2 

13 was drawn from a distribution with 

b=Var[fl] = 0.020. Thus p = 0.33. 
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Having described one method to introduce dependencies into the collective risk model, we now 

apply this method to a model of the underwriting losses for an insurer. Here is a summary of the 

main features of this model. 

It is necessary to hold capital for uncertain losses in expired insurance contracts. Thus 

the model treats unpaid losses from both new and expired insurance contracts from prior 

accident years 

We use separate parameter uncertainty multipliers for both claim frequency and claim 

severity. For line of insurance h, a random claim frequency multiplier, ah, is applied to 

the expected claim count parameter, 2h. Each Cth has a mean of one and a variance ofgh. 

We call gh the covariance generator for line of insurance h. 

Each line of insurance is assigned to a distinct "covariance group" according to the line 

of insurance that it covers. Within a given covariance group, the random claim 

frequency multipliers, ah, are identical within line of business, not necessarily identical 

to other lines of insurance in the same covariance group, but they increase and decrease 

together. 

• The random claim severity multiplier, r ,  is applied uniformly across lines of insurance. 

One can informally classify the sources of risk in this model into process risk and 

parameter  risk. Process risk is the risk attributable to random claim counts and claim 

sizes, and parameter risk is the risk attributable to the randomness of the claim frequency 

multipliers and the claim severity multiplier. 

• When parameter risk operates on several lines of insurance simultaneously, we say that 

there is correlation generated by parameter risk. 
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These features are described in the following algorithm. 

Simulation Algorithm #3 

Step 

1. Select a random fl from a distribution with E[fl] --- 1 and Var[,fl] = b. 

2. For each covariance group i, select random percentilepi. 

3. For each covariance group i, line of  insurance h in the covariance group (denoted by Gi), and 

accident year y with uncertain claim payments, do the following: 

• Select ahy =pi  th percentile o f  a distribution with E[Othy] = 1 and Var[cthy] = ghy 

• Select random claim count Khy from a distribution with mean Cthy.2,hy, where 2,by is the 

expected claim count for line o f  insurance h and accident yeary in covariance group i. 

1. For each h a n d y ,  select random claim size Zhy k for k = 1 .....  Khy. 

K,,j 
4. Set X i = E ~ ~ Zh~k = Loss for covariance group i. 

heG i y k=l 

5. Set X = ,g. ~ X i = Total loss for the insurer. 
i 

We now describe our parameterization of  this model. 

• For the non-catastrophe lines of  insurance, we use claim severity distributions derived by 

ISO. We use a piecewise linear approximation to the ISO models. 

Smaller claims tend to settle quickly. In fitting the models for the distribution of  future 

payments for expired insurance contracts, we removed those claims that are already 

settled. 

We use the negative binomial distribution to model claim counts. The expected claim 

count will depend on the insurer's limits and exposure. A second parameter of  the 

negative binomial distribution, called the contagion parameter must be provided. We use 

estimates o f  the contagion parameters obtained in an analysis performed by ISO. This 

analysis is described in the appendix. 
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• The same analysis in the appendix also provides estimates of the covariance generators, 

gh. A noteworthy feature is that these estimates use data from several insurers. This 

estimation necessarily assumes that each gh is the same for all insurers writing that 

particular line of insurance. While we agree in principle that each gh could differ by 

insurer, it is unlikely that any single insurer will have enough observations to get reliable 

estimates of the gh's. 

• The main idea behind the estimation of the parameters, described in the appendix, is that 

expected values of various statistics that we can calculate from the data are functions of 

the negative binomial parameters and the covariance generators. We calculated these 

statistics for a large number of insurance companies and we found parameter values that 

best fit the statistics we calculated. As we show in the appendix, reliable estimates of 

these parameters cannot be obtained with data from a single insurer. It is only by 

combining the data of several insurers that we can obtain reliable estimates of these 

parameters. 

Finally, we describe how we calculate an insurer's distribution of underwriting losses. Since we 

describe the loss model in terms of a computer simulation, one could actually do the simulations. 

In practice, many do. We calculate the distribution of underwriting losses with Fourier 

transforms using the method described by Heckman and Meyers [1983]. The extension of this 

method to address dependencies is described by Meyers [ 1999a and 1999b]. 

Both simulation and Fourier transforms are valid ways to calculate the distribution of 

underwriting losses. The advantage of Fourier transforms is that one can calculate the 

distribution of underwriting losses in seconds, where a simulation could take minutes or even 

hours to do the same task. A disadvantage of Fourier transforms is that it can take a long time to 

do the initial set-up whereas the set-up time for a simulation is relatively short. 
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2.2 Catastrophic Perils 

Natural catastrophes such as earthquakes, hurricanes, tornadoes, and floods have an impact on 

many insureds; and the accumulation of losses to an insurer can jeopardize the financial well- 

being of an otherwise stable, profitable company. Hurricane Andrew, in addition to causing 

more than $16 billion in insured damage, left at least 11 companies insolvent in 1992. The 1994 

Northridge earthquake caused more than $12 billion in insured damage in less than 60 seconds. 

Fortunately, such events are infrequent. But it is exactly their infrequency that makes the 

estimation of losses from future catastrophes so difficult. The scarcity of historical loss data 

makes standard actuarial techniques of loss estimation inappropriate for quantifying catastrophe 

losses. Furthermore, the usefulness of the loss data that does exist is limited because of the 

constantly changing landscape of insured properties. Property values change, building codes 

change over time, along with the costs of repair and replacement. Building materials and designs 

change, and new structures may be more or less vulnerable to catastrophic events than were the 

old ones. New properties continue to be built in areas of high hazard. Therefore, the limited loss 

information that is available is not sufficient for directly estimating future losses. 

The modeling of catastrophes is based on sophisticated stochastic simulation procedures and 

powerful computer models of how natural catastrophes behave and act upon the man-made 

environment. The modeling is broken into four components. The first two components, event 

generation and local intensity calculation, define the hazard. The interaction of the local 

intensity of an event with specific exposures is developed through engineering-based 

vulnerability functions in the damage estimation component. In the final component, insured 

loss calculation, policy conditions are applied to generate the insured loss. 

Figure 5 below illustrates the component parts of the AIR state-of-the-art catastrophe models. It 

is important to recognize that each component, or module, represents both the analytical work of 

the research scientists and engineers who are responsible for its design and the complex 

computer programs that run the simulations. 
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Figure 5: Catastrophe Model Components (in gray) 
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2.2a Event Generation Module 

The event generation module determines the frequency, magnitude, and other characteristics of 

potential catastrophe events by geographic location. This requires, among other things, a 

thorough analysis of the characteristics of historical events. 

After rigorous data analysis, researchers develop probability distributions for each of the 

variables, testing them for goodness-of-fit and robustness. The selection and subsequent 

refinement of these distributions are based not only on the expert application of statistical 

techniques, but also on well-established scientific principles and an understanding of how 

catastrophic events behave. 

These probability distributions are then used to produce a large catalog of simulated events. By 

sampling from these distributions, the model generates simulated "years" of event activity. 

Many thousands of these scenario years are generated to produce the complete and stable range 

of potential annual experience of catastrophe event activity and to ensure full coverage of 

extreme (or "tail") events, as well as full spatial coverage. 

2.2.b LocalIntensity Module 

Once the model probabilistically generates the characteristics of a simulated event, it propagates 

the event across the affected area. For each location within the affected area, local intensity is 

estimated. This requires, among other things, a thorough knowledge of the geological and/or 

topographical features of a region and an understanding of how these features are likely to react 

to the impact of a catastrophic event. The intensity experienced at each site is a function of the 
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magnitude of the event, distance from the source of the event, and a variety of local conditions. 

Researchers base their calculations of local intensity on empirical observation as well as on 

theoretical relationships between the variables. 

2.2.e Damage Module 

Scientists and engineers have developed mathematical functions called damageability 

relationships, which describe the interaction between buildings (both their structural and 

nonstructural components, as well as their contents) and the local intensity to which they are 

exposed. Damageability functions have also been developed for estimating time element losses. 

These functions relate the mean damage level as well as the variability of damage to the measure 

of intensity at each location. Because different structural types will experience different degrees 

of damage, the damageability relationships vary according to construction materials and 

occupancy. The model estimates a complete distribution around the mean level of damage for 

each local intensity and each structural type and, from there, constructs an entire family of 

probability distributions. Losses are calculated by applying the appropriate damage function to 

the replacement value of the insured property. 

The AIR damageability relationships incorporate the results of well-documented engineering 

studies, tests, and structural calculations. They also reflect the relative effectiveness and 

enforcement of local building codes. Engineers refine and validate these functions through the 

use of post-disaster field survey data and through an exhaustive analysis of detailed loss data 

from actual events. 

2.2.d Insured Loss Module 

In this last component of the catastrophe model, insured losses are calculated by applying the 

policy conditions to the total damage estimates. Policy conditions may include deductibles by 

coverage, site-specific or blanket deductibles, coverage limits and sublimits, loss triggers, 

coinsurance, attachment points and limits for single or multiple location policies, and risk- 

specific insurance terms. 
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2.2.e Model Output 

After all of the insured loss estimations have been completed, they can be analyzed in ways of 

interest to risk management professionals. For example, the model produces complete 

probability distributions of losses, also known as exceedance probability curves (see Figure 6). 

Output includes probability distributions of gross and net losses for both annual aggregate and 

annual occurrence losses. The probabilities can also be expressed as return periods. That is, the 

loss associated with a return period of 10 years is likely to be exceeded only 10 percent of the 

time or, on average, in one year out often. For example, the model may indicate that, for a given 

regional book of business, $70 million or more in insured losses would be expected to result 

once in 50 years, on average, in a defined geographical area, and that losses of $175 million or 

more would be expected, on average, once every 250 years. 

Output may be customized to any desired degree of geographical resolution down to location 

level, as well as by line of insurance and, within line of insurance, by construction class, 

coverage, etc. The model also provides summary reports of exposures, comparisons of 

exposures and losses by geographical area, and detailed information on potential large losses 

caused by extreme "tail" events. 

Figure 6: Exceedance Probability Curve (Occurrence) 
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2.2.f Correlat ion 

An advantage o f  this modeling approach is the generation o f  a stochastic event set that can be 

used to analyze multiple exposure sets. In this study, individual companies '  exposures were 

analyzed using a common catalog o f  events. As mentioned earlier, details o f  insurance programs 

were also applied, resulting in both net and gross distributions o f  potential catastrophe losses. 

By analyzing various sets o f  exposure against the same set o f  events we are able to ascertain 

correlation among the exposure sets. 

3. Calcula t ing  the  Requ i red  Capi ta l  

This paper is focused on the underwriting risk generated by uncertain loss payments. We assume 

that all assets are invested at a risk-free rate o f  return and thus make the simplifying assumption 

that the capital required by an insurer depends solely on its aggregate loss distribution. 

Let X b e  the random variable for the insurer 's  total loss. Denote by p(X) the total assets that the 

insurer needs to support its business 1. Now some of  the insurer 's  assets come from the premium 

it charges for its business. At a minimum, this amount  should equal the expected value o f  X, 

E[X]. The remaining assets, which we call (economic) capital, must  come from investors. We 

define the capital needed by the insurer by the equation: 

Capital = p(X) - E[X] (1) 

Let a b e  a selected percentile o f  X. The tail value-at-risk forX, TVARa(X), is defined to be the 

average o f  all losses greater than or equal to the a th percentile o f  X. In this paper we use 

p(x): TVAR99~X). 

i If we were to allow assets, denoted by A, to be random, we would require A to satisfy o(X-A) = 0. With translation 
invariance, this says that p(X) = A when A is fixed. 
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The tail value-at-risk is a member o f  an important class o f  risk measures, called coherent 

measures of  risk. These measures are defined by the following set o f  axioms. 

1. Subadditivity - -  For all random losses X and Y, 

p(X+ Y)~p(X)+ p(Y). 

2. Monotonicity - -  For all random losses X and Y, if  X <  Y for all scenarios, then 

pQO< p(Y). 

3. Positive Homogeneity - -  For all 2 0 and random losses X, 

p (2)¢) = 2p  (X). 

4. Translation Invariance - -  For all random losses X and constant loss amounts at, 

p(X  +a)=p(X)+ a. 

These measures were originated by Artzner, et al. [1999]. See Meyers [2002] for an elementary 

description of  these measures as well as for other coherent measures of  risk. 

An insurer can reduce the amount of  capital it needs by buying reinsurance. When buying 

reinsurance, the insurer faces a transaction cost (that is, the reinsurance premium less the 

provision for expected loss) that replaces a portion of  the capital. Note that the insurer does not 

need to know the reinsurer's pricing assumptions. The insurer can, and perhaps should, use its 

own estimate of  the reinsurer's expected loss to back out the reinsurance transaction cost. 

Taxes play an important role in the transaction costs o f  reinsurance. The insurer deducts 

reinsurance costs from its taxable income. Capital, whether raised externally or from retained 

earnings, is subject to corporate income tax. Vaughan [1999] points out that the tendency for 

reinsurance to stabilize insurer income also provides tax advantages. That gives reinsurance an 

advantage as a provider of  insurer financing. 
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4. Allocating the Cost of  Capital  

As noted in the last section, an insurer needs to get capital from investors in order to attract 

business. The investors want to be compensated for providing this capital at an expected rate of  

return that is somewhat higher than they would obtain for not exposing their capital to insurance 

risk. This additional return, or cost o f  capital, must come from the sum of  the premiums charged 

by each line of  insurance. The portion of  the cost o f  capital for an individual insurance contract 

is often called a risk charge. 

Operationally, there are a number of  strategies an insurer may take to recover its cost o f  capital. 

We list two. 

1. 

2. 

Using actuarial formulas, allocate the cost o f  capital to individual insurance contracts. 

Allocate the cost o f  capital to the various lines of  insurance and give the line managers 

the responsibility to recover the cost o f  capital allocated to their line by whatever 

combination of  pricing and underwriting expertise they can muster. 

In this paper we will illustrate the second operating strategy, noting that the second does not 

necessarily preclude the first. We also note that insurers can purchase reinsurance to reduce their 

need for capital. In what follows, we will also address the use of  reinsurance as part o f  an 

underwriting strategy. 

Our operating strategy is to establish a target return on the marginal capital for each line of  

insurance. If  the market will not allow the insurer to obtain this target return in a given line of  

insurance, the insurer should consider tightening its underwriting standards and reducing its 

exposure in this line of  insurance. 

We now give our rationale for using this capital allocation formula. 

We take it as a given that a sound method of  allocating capital should lead to decisions that 

benefit the entire operation of  an insurer. 

This discussion will be somewhat informal. A more rigorous treatment o f  this subject is 

provided by Meyers [2003]. We shall quote a number of  results that are proved in that paper. 
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Proposition 1 

Including a line of insurance in an insurer's portfolio will increase the insurer's expected return 

on capital if and only if the line of insurance's expected return on marginal capital is greater than 

the insurer's current expected return on capital. 

Proposition 2 

Let the insurer's capital be determined by Equation (1), with p(X) being a subadditive measure of 

risk. Then the sum of the marginal capitals for each line of insurance is less than or equal to the 

insurer's total capital. 

As we shall see in the examples below, we expect strict inequality to be common. When this is 

the case, at least some of the lines of insurance will have an expected return on marginal capital 

that is greater than the insurer's overall return on capital. However there are conditions when we 

can prove that the sum of the marginal capitals will be equal to the total capital. 

Definition 1 

Suppose for line of insurance h, the random losses, Xh, are equal to a random number, Uh, times 

the exposure measure, eh, for all possible values ofeh. Then, following Mildenhall [2002], the 

distribution of Xh is said to be homogeneous with respect to the exposure measure, eh. 

Proposition 3 

Assume that the needed capital is a smooth (differentiable) function of the exposure. 

Let the random loss, Xh, for the h th line of insurance be a homogeneous random variable for each 

contract with respect to some exposure measure, eh. Let X = ~ X h . Let the insurer's capital be 
h 

determined by Equation (1), with p(X) being a measure of risk satisfying the positive 

homogeneity axiom. Then the sum of the marginal capitals for each line of insurance is equal to 

the insurer's total capital. 

An early version of Proposition 3, assuming each X/has a lognormal distribution and using a 

different formula for calculating the needed capital, was proved by Myers and Read [2001]. 

Mildenhall [2002] proved that the homogeneity assumption was both necessary and sufficient for 
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the Myers-Read result. The proof of Proposition 3 above is a direct consequence of Lemma 2 in 

Mildenhall's paper. 

Note that the definition of homogeneity bears a strong resemblance to the way we introduce 

parameter risk in Section 2 above. AS the exposure (in Section 2, quantified by the expected 

claim counts 2by) increases, the parameter risk becomes an increasingly large part of the total 

risk. But in the parameterization of our model, the parameter risk is rarely dominant enough to 

assume homogeneity. 

Proposition 4 

Assume that the needed capital is a smooth (differentiable) function of the exposure. If we can 

continuously adjust the exposures while holding the needed capital constant, the maximum 

expected return on capital occurs when the expected return on marginal capital is the same for all 

lines of insurance. 

Note that Proposition 4 does not require homogeneity with respect to some measure of exposure. 

If the loss random variables are not homogeneous, the equal expected returns on marginal capital 

under the optimality conditions of the proposition will be higher than the insurer's overall return 

on capital. 

Definition 2 

The heterogeneity multiplier, HM, for an insurer is its needed capital divided by the sum of the 

marginal capitals for each line of insurance. 

The motivation for this definition arises from the fact that most insurers will have a total capital 

that is higher than the sum of the marginal capitals for each line of insurance. In theory, a 

market could evolve with very large insurers where parameter risk dominates the process risk, 

and the homogeneity conditions required by Proposition 3 would be reasonable. In practice, the 

distribution of losses for lines of insurance are far from homogeneous, and the heterogeneity 

multiplier for a given insurer will be noticeably higher than the theoretical minimum of 1. 
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Our allocated capital will be equal to the marginal capital times the insurer's heterogeneity 

multiplier. To summarize, the rationale for this is based on: 

1. Proposition 4 - The expected return on marginal capital should be equal for all lines of  

insurance if  the insurer is to make the most efficient use o f  its capital. 

2. Propositions 2 and 3 - The sum of  the marginal capitals over all lines of  insurance is 

less than or equal to the total capital. The conditions that will force equality are not 

satisfied. 

Note that the rationale for our allocation formula charge depends on the individual insurance 

contracts being a small part o f  an insurer's portfolio, so that the smoothness criterion of  

Proposition 3 and 4 is a reasonable assumption. 

Finally, note that the insurer's pledge to pay losses can be a long-term commitment. As time goes 

on, the insurer pays some losses and the uncertainty in future loss payments declines. Therefore 

the insurer can release some of  the original capital allocated to a line of  insurance. 

In the current year, the insurer will have its capital supporting the outstanding losses from prior 

accident years. We can apply the logic described above and allocate capital to outstanding loss 

reserves. We calculate the reduction in needed capital when the outstanding losses are removed 

from the insurance company, and then allocate the capital in proportion to the marginal capital of  

each underwriting division and each loss reserve. Keep in mind that when establishing target 

rates of  return for the current year, we must consider how much capital the insurer will allocate 

to the outstanding losses in future years. To do that, the insurer needs a plan for its future 

business. 

5. The Cost of Financing Insurance 

As noted above, an insurer must be able to pay its cost o f  capital out o f  the premiums charged to 

the insureds. Now the cost o f  capital is also affected by reinsurance and the returns on invested 

assets. Informally, we call the net cost o f  capital, reinsurance and investment income, the cost of 

financing insurance. In this section, we show how to draw upon the considerations listed above 

to calculate this cost. 
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Investors provide the ca~tal to the insurer. In return, they expect to receive a cash flow 

reflecting: 

1. Premium income, 

2. Payments to reinsurers, 

3. Investment income, 

4. Loss and expense payments, and 

5. Income from the capital that is released as liabilities either expire or become certain. 

Premium income and payments to reinsurers contain provisions for losses and expenses. It will 

simplify matters to remove loss and expense payments from our immediate attention by taking 

expected values and allowing the actual losses in (4) to cancel out the expected loss provisions in 

(1) and (2). That simplification allows us to concentrate on the cash flow of insurer capital and 

the net cost of reinsurance; that is, the cost of financing insurance. 

After netting out the insurer's loss and expense payments, the investors receive a cash flow 

reflecting: 

1. Income from the profit provision in the premium, 

2. Payments of the net costs to reinsurers, 

3. Investment income from the capital held for uncertain liabilities, and 

4. Income from the capital that is released as liabilities either expire or become certain. 

Based on input from the its board of directors, the insurer establishes a target rate of return, r, on 

its capital. It makes its targeted return on capital if  the present value of that cash flow, evaluated 

at the targeted return on capital, is equal to the invested capital. If we allow that: 

1. The insurer collects the profit provision in the premium immediately. 

2. The insurer makes its reinsurance payments immediately. 

3. The insurer determines its necessary capital at the beginning of the year and holds that 

capital at the end of the year. The insurer then releases capital not needed for the next 

year. The insurer simultaneously releases investment income on the invested capital. 
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Then the profit provision necessary for the insurer to make its targeted return on equity is equal 

to: 

Capital + Reinsurance Transaction Costs - Present Value of  Released Capital 

To get the profit provision for each underwriting division we need to calculate the marginal cost 

o f  capital and the transaction costs for reinsurance for: (1) each underwriting division; and (2) 

each outstanding loss reserve. We now examine the calculations in some detail in the table 

below. 

Table 1 

Component for Accident Year y S y m b o l  
Capital investment for current calendar year y+t 

Note: The insurer needs the capital to cover claims from the 
current year as well as claims incurred in prior years. The 
capital also covers business projected for accident years, up to 
and including year y+t. 

Capital needed in calendar year y+t if  the insurer removes line of  
insurance h and accident yeary 

Marginal Capital for line of  insurance h in calendar year y+t 

Sum of  marginal capitals in calendar year y+t  

Heterogeneity Multiplier 

Capital allocated to line o f  insurance h for calendar year y+t 

rransaction costs for line of  insurance h's reinsurance (for current 
accident year only) 

Profit provision for line of  insurance h 

[nsurer's return on its investments 

[nsurer's target return on capital 

C(t) 

Ch(t) 

ACh(t) -=C(t) -Ch(t) 

SM(t) 

HM(t) = - C(t)/SM(t) 

Ah(t) =-- ACh(t)xHM(t) 

Rh(O) 

~h(o) 
i 
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The capital allocated to a given time period earns interest until the beginning of the next period. 

At that time, the insurer releases a portion of the capital either to pay for losses or to return to the 

investors. 

Then: 

Time 

Table 2 

Financial Support 
Allocated at Time t Amount Released at Time 

o Ah(O) + Rh(O) 0 
1 Ah(1) Relh(1) = Ah(O)(l+i) - Ah(1) 

t Ah(t) Relh(t) = An(t- 1)( 1 +i) - Ah(t) 

** Relh(t ) 
(0) = ,4~ (0) + R~ (0 ) -  ~ .  (2) 

,., (1 + r) 

Equation 2 gives the profit provision; i.e. the cost of financing insurance for line of insurance h. 

Rearranging the terms of Equation 2 in increasing order of t yields the following simplification. 

® A . .. ~ , H M ( t ) . A C h ( t  ) 
A P h ( 0 ) = ( r - i ) ' ~ "  h(t) + R ~ ( O ) = t r - ' ) ' 2 ~  , 7 . , ,  +R~(0). (3) 

,.';' (1 + r)' ,.~ (l + r) 

Insurers deduct the cost of reinsurance, including the reinsurer's expenses and profit, from 

taxable income. Given the expected loss ratio, ELR, for a reinsurance contract, the net cost of 

the reinsurance is then equal to: 

R, (O) = Expected Reinsuranee Recovery x ( E-E~-  l ) x  ( l -  Tax Rate) . (4) 
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6. Illustrative Examples 

We now illustrate the calculation of the cost of financing insurance with two sample insurance 

companies. We will examine a number of reinsurance strategies. 

The following table gives a summary description of each company. 

Table 3 

Expected Losses 
Insurer #1 Insurer #2 

Hurricane 10,000,000 1,000,000 
Earthquake 5,000,000 500,000 
CMP Property 150,000,000 15,000,000 
Homeowners 350,000,000 35,000,000 
PP Auto Liability 350,000,000 35,000,000 
PP Auto Phys Damage 250,000,000 25,000,000 
CMP Liability 100,000,000 10,000,000 
Total 1,215,000,000 121,500,000 

Insurer #1 is a medium sized insurer writing personal and small business coverages. It has some 

catastrophe exposure. Insurer #2 is similar to Insurer #1 except it has exactly one tenth of its 

exposure. 

In this illustration, we assume that there is no change in the insurers' business plan. 

We calculated aggregate loss distributions for each insurer using the ISO Underwriting Risk 

Model. This model calculates the aggregate loss distributions using the method of Fourier 

Inversion as described by Heckman and Meyers [1983] and Meyers [1999b]. The underlying 

claim severity and claim count distributions were derived from an analysis of data reported to 

ISO. 

The catastrophe lossdistributions were derived with AIR's CLASIC2 catastrophe model using 

exposures reported to ISO. We used a composite model based on the combined exposures often 

insurers and multiplied the loss amounts by the factor that yielded the expected losses we 

selected for these illustrations. 
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The aggregate loss distributions not only include the losses from the current accident year, but 

they also include unpaid losses from prior accident years. 

Exhibit 1 gives the aggregate loss distribution for each insurer when no reinsurance was 

purchased. The exhibit provides the value-at-risk and the tail value-at-risk for a variety of levels. 

We also calculated the capital implied by Equation 1 at each level. In subsequent calculations of 

the cost of capital, we will use the 99% level. It is worth noting that while the exposure 

underlying Insurer #1 is ten times the exposure underlying that of Insurer #2, the capital implied 

by TVaR99o/o is only 5.4 times as much. This is a reflection of the greater diversification obtained 

by larger insurers. 

The next step is to calculate the marginal capital for each line of insurance and accident year. 

Recall that prior accident years with unsettled claims contribute to the need for capital. The 

process proceeds by calculating the required capital with each line/accident year removed in turn, 

and then calculating the marginal cost of capital by subtracting the calculated capital from the 

original capital. We next calculate the heterogeneity multiplier by dividing the total capital by 

the sum of the marginal capitals. The allocated capital is then set equal to the marginal capital 

times the heterogeneity multiplier, with the result that the capital allocated to each line of 

insurance adds up to the capital required for each insurer. 

Next we calculate the cost of capital by line of insurance using Equation 3. In our example we 

chose the insurer's expected rate of return, r = 15%, and the return on investments, i = 6%. 

When there is no reinsurance, we can calculate the cost of capital directly from Exhibit 2. Let's 

work through CMP Property for Insurer #1 as a sample calculation. The capital allocated to 

CMP Property for the current year is $46,464,160. Since we are assuming no change in the 

insurer's business plan, next year we expect to allocate $16,306,206 to the loss reserve. By 

Equation 3, the cost of capital is equal to (15% - 6%)×(46,464,160/1.15+16,306,206/1.15^2) 

which is equal to $4,746,011. 

The remaining cost of capital calculations are on Exhibit 3 for Insurer #I, and on Exhibit 4 for 

insurer #2. 
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Finally, we consider the effect of reinsurance. For Insurer #1 we examine retentions of $50 

million and $25 million, with 5% participation in losses above the retention. For Insurer #2 we 

examine retentions of $5 million and $2.5 million, with 5% participation in catastrophe losses 

above the retention. We also consider full reinsurance on losses in excess of $1 million on the 

other lines. 

The cost of reinsurance is expressed in terms of the expected loss ratios and is given in Table 4. 

Table 4 

Reinsurance Expected Loss Ratios 

Reinsurance Expected 
Line of Insurance Loss Ratio 
Hurricane 70% 
Earthquake 70% 
CMP Property 80% 
Homeowners 80% 

PP Auto Liability 85% 
PP Auto Phys Damage 80% 
CMP Liability 90% 

The results of the calculations are given in Exhibits 3 and 4. The strategies with the lowest cost 

of financing insurance are highlighted on the exhibits. It is most efficient for Insurer #1 to 

purchase catastrophe reinsurance at the $50M retention, and to purchase no reinsurance for the 

other lines. Insurer #2 should purchase catastrophe insurance at the $5M retention, and also 

purchase the excess of loss reinsurance for the other lines. In general, it is more advantageous 

for small insurers to purchase reinsurance. 
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Exhibit 1 

Aggregate Loss Distributions with No Reinsurance 

Insurer #1 Insurer #2 
Aggregate Mean 2,214,538,724 Aggregate Mean 221,453,872 
Aggregate Std. Dev 150,248,026 Aggregate Std. Dev 22,055,783 

Probability Tail TVaRImplied Tail TVaRImplied 
Level Value at Risk Value ~ Risk Capital Value at RiskValue ~ Risk Capital 

0.00000 0 2,214,538,724 0 0 221,453,872 0 
0.50000 2,207,316,395 2,333,813,560 119,274,837 218,924,759 238,276,926 16,823,054 
0.55000 2,226,144,404 2,346,827,330 132,288,606 221,482,225 240,286,095 18,832,222 
0.60000 2,245,518,205 2,360,713,596 146,174,872 224,155,556 242,471,170 21,017,298 
0.65000 2,265,785,629 2,375,744,474 161,205,751 227,018,434 244,886,204 23,432,332 
0.70000 2,287,386,709 2,392,304,906 177,766,183 230,132,839 247,610,427 26,156,555 
0.75000 2,311,077,498 2,410,974,588 196,435,865 233,628,277 250,765,826 29,311,954 
0.80000 2,338,249,056 2,432,691,783 218,153,060 237,722,551 254,556,639 33,102,766 
0.85000 2,370,074,024 2,459,213,540 244,674,816 242,754,714 259,372,335 37,918,463 
0.90000 2,410,647,140 2,494,364,537 279,825,813 249,559,535 266,095,212 44,641,340 
0.92500 2,438,438,516 2,518,002,646 303,463,922 254,309,896 270,858,293 49,404,421 
0.95000 2,474,058,835 2,549,901,446 335,362,723 260,925,559 277,612,418 56,158,545 
0.95500 2,481,966,185 2,557,988,890 343,450,166 262,578,399 279,383,801 57,929,928 
0.96000 2,491,812,025 2,566,890,844 352,352,121 264,478,659 281,368,941 59,915,068 
0.96500 2,502,702,587 2,576,859,477 362,320,753 266,672,502 283,630,336 62,176,464 
0.97000 2,515,539,517 2,588,212,358 373,673,634 269,180,787 286,257,956 64,804,084 
0.97500 2,529,863,230 2,601,455,650 386,916,927 272,133,993 289,390,878 67,937,006 
0.98000 2,546,973,953 2,617,391,407 402,852,684 275,871,191 293,261,157 71,807,284 
0.98500 2,568,686,470 2,637,546,022 423,007,298 280,633,668 298,317,523 76,863,651 
0.99000 2,597,771,711 2,665,306,927 450,768,203 287,622,598 305,543,931 84,090,059 
0.99500 2,650,836,978 2,711,022,014 496,483,291 300,182,048 317,998,993 96,545,121 
0.99900 2,757,830,730 2,813,156,828 598,618,105 329,317,133 345,279,002 123,825,129 
0.99950 2,795,656,351 2,856,560,534 642,021,811 340,757,188 356,147,056 134,693,184 
0.99990 2,896,155,347 2,953,848,239 739,309,515 365,548,241 380,674,424 159,220,551 
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Exhibit 2 

Capital Allocation with No Reinsurance 

Insurer # 1 Insurer #2 
Marginal Allocated Marginal Allocated 

Line of Insurance Expected Loss Capital Capital Expected Loss Capi ta l  Capital 
Hurricanel 10,000,000 8,036,268 12,092,714 1,000,000 221,927 538,230 
Earthquakel 5,000,000 7,821,147 11,769,006 500,000 201,836 489,505 
CMP Propertyl 150,000,000 30,877,971 46,464,160 15,000,000 7,345,395 17,814,470 
CMP Property2 62,204,206 10,836,364 16,306,206 6,220,421 2,832,793 6,870,251 
Homeownersl 350,000,000 108,304,574 162,973,181 35,000,000 3,524,303 8,547,341 
Homeowners2 105,073,478 18,586,085 27,967,733 10,507,348 725,589 1,759,741 
Homeowners3 30,656,934 4,067,161 6,120,131 3 ,065,693 168,620 408,947 
Homeowners4 16,983,825 1,913,653 2,879,603 1,698,382 81,755 198,278 
Homeowners5 9,863,946 964,018 1,450,623 986,395 4 2 , 3 7 8  102,778 
PP Auto Liabilityl 350,000,000 23,947,855 36,035,950 35,000,000 1,204,153 2,920,380 
PP Auto Liability2 212,745,098 12,944,523 19,478,495 21,274,510 721,967 1,750,957 
PP Auto Liability3 105,927,476 5,754,783 8,659,609 10,592,748 344,588 835,714 
PP Auto Liability4 56,129,303 2,831,150 4,260,222 5 ,612,930 175,818 426,404 
PP Auto Liability5 28,308,824 1,360,604 2,047,392 2,830,882 89,366 216,737 
PP Auto Phys Dam1 250,000,000 15,568,762 23,427,364 25,000,000 653,326 1,584,484 
PP Auto Phys Dam2 19,455,630 973,945 1,465,560 1 ,945 ,563  4 2 , 2 3 6  102,433 
CMP Liabil i tyl  100,000,000 9,852,146 14,825,187 10,000,000 2,995,816 7,265,623 
CMP Liability2 92,040,513 8,867,464 13,343,470 9,204,051 2,813,484 6,823,422 
CMP Liability3 90,251,701 8,886,460 13,372,054 9,025,170 3,078,438 7,466,002 
CMP Liability4 67,617,504 6,652,022 10,009,745 6,761,750 2,574,079 6,242,803 
CMP Liability5 47,175,325 4,801,482 7,225,113 4,717,532 2,106,852 5,109,658 
CMP Liability6 32,891,244 3,414,440 5,137,938 3,289,124 1,607,077 3,897,575 
CMP Liability7 22,213,719 2,300,466 3,461,666 2,221,372 1,121,335 2,719,527 
Total 2,214,538,724 299,563,343 450,773,121 221,453,872 34,673,134 84,091,259 

Heterogeneity Multiplier 1.5048 2.4253 

Note: The numeric identifiers following the lines of insurance denote losses from different 
accident years. The identifier "1" denotes the current accident year, the identifier "2" denotes 
the first prior accident year, and so on. 
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Exhibit 3 

The Cost of Financing Insurance - Insurer #1 

Cost of Net Cost of Cost of Cost of 
Capital Reinsurance Financing Capital 

Net Cost of Cost of 
Reinsurance Financing 

No Reinsurance 
Total 32,763,664 
Hurricane 946,386 
Earthquake 921,053 
CMP Property 4,746,011 
Homeowners 15,232,964 
PP Auto Liability 4,969,052 
PP Auto Phys Damage 1,933,182 
CMP Liability 4,015,016 

Cat Re $50M Retention + Other Re 
0 32,763,664 29,211,706 6,342,331 35,554,037 
0 946 ,386  221 ,601  419,873 641,474 
0 921 ,053  132,903 379,400 512,303 
0 4,746,011 3,520,987 3,409,584 6,930,571 
0 15,232,964 17,052,018 153,875 17,205,893 
0 4,969,052 4,656,223 893,442 5,549,666 
0 1,933,182 1,905,098 0 1,905,098 
0 4,015,016 1,722,876 1,086,156 2,809,032 

Total 
Hurricane 
Earthquake 126,361 
CMP Property 4,782,691 
Homeowners 15,731,218 
PAL 4,953,994 
PAPHD 1,926,125 
CMP Liability 4,007,986 

Cat Re - $50M Retention Cat Re $25M Retention + Other Re 
31,741,208 799,273 32,540,481 29,071,528 7,015,066 36,086,594 

212,832 419,873 632,706 105,010  862,220 967,230 
379,400 505,761 56,234 609,789 666,023 

0 4,782,691 3,519,627 3,409,584 6,929,211 
0 15,731,218 17,125,589 153,875 17,279,464 
0 4,953,994 4,645,715 893,442 5,539,157 
0 1,926,125 1,900,753 0 1,900,753 
0 4,007,986 1,718,599 1,086,156 2,804,755 

Total 
Hurricane 
Earthquake 
CMP Property 
Homeowners 
PAL 
PAPHD 
CMP Liability 

Cat Re - $25M Retention Other Reinsurance Only 
31,613,327 1,472,009 33,085,335 30,419,819 5,543,057 35,962,877 

102,816 862,220 965,035 1,084,992 0 1,084,992 
54,528 609,789 664,316 1,069,829 0 1,069,829 

4,788,789 0 4,788,789 3,543,709 3,409,584 6,953,293 
15,781,597 0 15,781,597 16,278,011 153,875 16,431,886 
4,951,928 0 4,951,928 4,740,974 893,442 5,634,416 
1,925,236 0 1,925,236 1,941,039 0 1,941,039 
4,008,433 0 4,008,433 1,761,266 1,086,156 2,847,422 
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Exhibit  4 

Cost of  Financing Insurance  - Insurer  #2 

Cost of Net Cost of Cost of Cost of 
Capital Reinsurance Financing Capital 

Net Cost of Cost of 
Reinsurance Financing 

No Reinsurance 
Total 5,597,928 
Hurricane 42,122 
Earthquake 38,309 
CMP Property 1,861,717 
Homeowners 827,680 
PP Auto Liability 428,804 
PP Auto Phys Damage 130,974 
CMP Liability 2,268,323 

Cat Re $5MRetent ion  + Other  Re 

0 5,597,928 3,093,867 634,233 3,728,100 

0 42,122 21,919 4 1 , 9 8 7  63,906 
0 38,309 13,088 3 7 , 9 4 0  51,028 

0 1,861,717 398 ,989  340,958 739,947 
0 827,680 1,657,921 15,387 1,673,309 
0 428 ,804  5 5 1 , 3 0 9  8 9 , 3 4 4  640,653 
0 130,974 192,279 0 192,279 
0 2,268,323 258 ,363  108,616 366,979 

Total 
Hurricane 
Earthquake 
CMP Property 
Homeowners 
PAL 
PAPHD 
CMP Liability 

Cat Re $5MRetention 
5,567,574 

13,168 4 1 , 9 8 7  55,155 10,466 
7,560 3 7 , 9 4 0  45,500 5,586 

1,877,296 0 1,877,296 399,301 
827,843 0 827,843 1,664,076 
428,357 0 428 ,357  550,930 
130,788 0 130,788 192,106 

2,282,563 0 2,282,563 258,199 

Cat Re $2.5MRetention + Other Re 

79,927 5,647,502 3,080,666 701,507 3,782,173 
86,222 96,688 
60,979 66,565 

340,958 740,260 
15,387 1,679,464 
89,344 640,274 

0 192,106 
108,616 366,815 

Total 
Hurricane 
Earthquake 
CMP Property 
Homeowners 
PAL 
PAPHD 
CMP Liability 

C~ Re $2.5MRetention 
5,562,310 

6,691 
3,458 

1,880,484 
827,990 
428,257 
130,736 

2,284,694 

Other Reinsurance Only 
147,201 5,709,511 3,202,490 554,306 3,756,796 
86,222 9 2 , 9 1 3  101,108 0 101,108 
60,979 64,437 98,952 0 98,952 

0 1,880,484 397 ,533  340,958 738,491 
0 827,990 1,596,831 15,387 1,612,219 
0 428 ,257  5 5 4 , 1 8 3  8 9 , 3 4 4  643,527 
0 130,736 193,607 0 193,607 
0 2,284,694 260 ,276  108,616 368,892 
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7. The Effect of Correlation on the Cost of Capital 

We began this paper with a discussion of correlation. We now revisit the subject by illustrating 

the effect that correlation has on our final objective, calculating the cost of capital. To this end, 

we recalculated the aggregate loss distributions for Insurers #I and #2 by setting the parameters 

that govern correlation i.e., the "b" and "g" parameters in Simulation Algorithm 3 equal to zero. 

The results are in Exhibit 5 and can be compared directly with the results in Exhibit 1. Here are 

some highlights 

Table 5 

With Correlation Without Correlation 
Standard Deviation TVaR99% Capital Standard Deviation TVaR99 % Capital 

Insurer #1 150,248,026 450,768,203 109,495,017 332,288,089 
Insurer #2 22,055,783 84,090,059 19,502,398 79,579,900 

Notice that the effect of correlation is proportionally greater for the larger insurer. This 

reinforces the point made in Section 2 that parameter uncertainty across lines of insurance has a 

greater effect when the aggregate loss distribution is relatively less volatile. 

Correlation also has an effect on capital allocation. See the following calculations that were 

done for Insurer #1 in the no reinsurance case. 

Table 6 

With Correlation Without Correlation 
Cost of Cost of 
Capital % of Total Capital % of Total 

Total 32,763,664 24,341,371 
Hurricane 946,386 2.9% 2,220,791 9.1% 
Earthquake 921,053 2.8% 2,286,145 9.4% 
CMP Property 4,746,011 14.5% 1,864,473 7.7% 
Homeowners 15,232,964 46.5% 11,014,915 45.3% 
PP Auto Liability 4,969,052 15.2% 2,294,539 9.4% 
PP Auto Phys Damage 1,933,182 5.9% 722,513 3.0% 
CMP Liability 4,015,016 12.3% 3,937,996 16.2% 

Informally speaking, a line of insurance will need more capital if it has losses at the same time as 

other lines. In the terminology of Simulation Algorithm 3, CMP Property and Homeowners are 
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in the same covariance group, as are the auto coverages. As a result, they need proportionally 

more capital. 

Exhibit 5 

Aggregate Loss Distributions with No Reinsurance and No Correlation 

Insurer # 1 Insurer #2 
Aggregate Mean 2,214,538,724 Aggregate Mean 
Aggregate Std. Dev 109,495,017 Aggregate Std. Dev 

221,453,872 
19,502,398 

Probability Tail 
Level Value ~ Risk Value ~ Risk 

0.00000 0 2,214,538,724 
0.50000 2,209,849,751 2,301,281,062 
0.55000 2,223,502,039 2,310,685,540 
0.60000 2,237,531,835 2,320,717,665 
0.65000 2,252,191,744 2,331,575,801 
0.70000 2,267,811,994 2,343,540,542 
0.50000 2,284,846,585 2,357,036,573 
0.80000 2,304,030,883 2,372,764,514 
0.85000 2,327,886,038 2,391,985,903 
0.90000 2,357,616,057 2,417,591,532 
0.92500 2,376,043,715 2,434,949,584 
0.95000 2,401,438,345 2,458,514,932 
0.95500 2,408,119,240 2,464,506,538 
0.96000 2,415,016,654 2,471,149,110 
0.96500 2,423,124,841 2,478,613,585 
0.97000 2,432,195,486 2,487,167,040 
0.97500 2,442,666,620 2,497,197,640 
0.98000 2,455,285,281 2,509,372,666 
0.98500 2,471,124,344 2,524,954,344 
0.99000 2,493,190,477 2,546,826,813 
0.99500 2,535,366,820 2,584,230,512 
0.99900 2,619,031,638 2,675,338,872 
0.99950 2,661,125,339 2,716,408,761 
0.99990 2,761,594,097 2,810,454,586 

Implied 
Capital 

0 
86,742,339 
96,146,817 

106,178,941 
117,037,077 
129,001 818 
142,497 849 
158,225 790 
177,447 179 
203,052 809 
220,410 861 
243,976 208 
249,967 815 
256,610 386 
264,074 861 
272,628 316 
282,658,916 
294,833,942 
310,415,62l 
332,288,089 
369,691,788 
460,800,149 
501,870,038 
595,915,863 

T~I Implied 
Value ~ RiskValue ~ Risk Capital 

0 221,453,872 0 
218,717,052 236,019,123 14,565,251 
220,885,375 237,822,769 16,368,897 
223,171,073 239,799,816 18,345,943 
225,626,537 242,003,701 20,549,829 
228,354,056 244,512,123 23,058,250 
231,489,221 247,445,549 25,991,677 
235,150,766 251,009,254 29,555,382 
239,678,405 255,589,804 34,135,932 
246,281,467 262,052,040 40,598,167 
250,609,853 266,693,943 45,240,070 
257,006,225 273,298,133 51,844,260 
258,550,660 275,036,610 53,582,737 
260,402,469 276,986,558 55,532,686 
262,511,898 279,211,741 57,757,869 
264,945,701 281,801,454 60,347,582 
267,836,917 284,896,995 63,443,123 
271,530,701 288,735,067 67,281,195 
276,208,536 293,774,481 72,320,608 
283,063,246 301,033,772 79,579,900 
295,832,890 313,553,223 92,099,351 
324,763,855 339,490,154 118,036,282 
335,131,564 349,684,442128,230,570 
358,670,975 373,186,001151,732,128 

45 



8. Summary and Conclusions 

This paper started with three objectives: 

1. Demonstrate a practical method to determine the distribution of an insurer's aggregate 

loss payments. 

2. Using the results of Objective #1, demonstrate how to determine the amount of capital 

needed for an insurance company based on its risk of loss. 

3. Using the results of Objective #2 demonstrate how to allocate the cost of capital to lines 

of insurance and evaluate given reinsurance strategies. 

We demonstrated our methodology for accomplishing these objectives on two illustrative 

insurers. 

We used the ISO Underwriting Risk Model to determine the aggregate loss distribution. We 

used the claim count and claim severity distributions provided by the model. For hurricane and 

earthquake losses, we used the AIR catastrophe model with exposures reported to ISO as input. 

Dependencies among the various lines of insurance were reflected in the model by 

quantifications of parameter uncertainty in the standard lines of insurance and by geographic 

proximity for the catastrophe exposure. 

We believe we have demonstrated that this methodology can be implemented for most insurers. 
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Appendix: Estimation of Correlation 

Certainly one major driver of  actuarial interest in correlation is the perception that positive 

correlation among lines of  business, books of  business, etc. has the potential to increase required 

capital. As a consequence of  this observation, it seems to us that the program should be as 

follows: 

* Estimate expected losses or loss ratios, 

• measure deviations of  the actuals from these expectations, 

• and estimate correlations among these deviations as the correlations relevant to the 

required capital issue. 

In an effort to parameterize various ISO models, we have carried out this program. For the sake 

of  parsimony (to limit the required number o f  parameters to a relative few), we have imposed on 

correlation a model structure as documented in Meyers [1999a and 1999b]. We estimate 

correlations within company between lines of  business and between company both within and 

between lines of  business. These correlations among companies and among lines of  business 

then drive correlations among insurance contracts written on those companies and lines of  

business. 

Our dataset includes a fairly large number of  companies, and our models are parsimonious in the 

sense o f  assuming that the same correlation model parameter values apply across all companies 

within a line of  business. So our estimates are in effect pooled estimates. Even so, parameter 

estimates (contagions and covariance generators) were never more than two or three or four 

times their associated standard errors. Common statistical practice holds that an estimate is not 

statistically significant (at the approximately 95% level) unless the estimate in absolute value is 

at least twice its standard error. Had our dataset not included as many companies or had we 

attempted to estimate separate parameters by company (or at least by class of  company), 

standard errors would have been larger in relation to their estimates. So it is doubtful that we 

would have found many parameter estimates significant at the 95% level. The large number o f  

companies and the pooling are necessary to achieve significance. 
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The next section of this Appendix will address some philosophical issues of just precisely what 

correlation do we wish to measure anyway, and what are some of the adjustments we must make 

to observe this correlation. The following section will then discuss the correlation model of 

Meyers [1999a and 1999b] and an introduction to how we estimate the parameters appearing in 

the resulting formulae. The remaining sections will discuss the technical details of the 

estimation, with a few representative results presented at the end. We defer to the end of the 

model discussion a quick summary of the remainder of this Appendix, because even a quick 

summary of the technical details requires as background the topics we will discuss in the next 

two sections. 

Correlation of What? 

Suppose a realistic forecast, taking into account current rates and prices, estimates of trend, 

perceptions of current market conditions, etc., indicates that next year's losses will be higher 

than the long-term average. On the day the business is written, the insurance executive therefore 

al~'eady expects losses higher than average and makes some provision for that. Where the 

requirement for capital comes from, however, is the recognition that losses could emerge even 

higher than the already higher expected, and potentially higher than expected simultaneously for 

a number of lines of business, books of business, etc., due to positive correlation among those 

books. Thinking in this way clearly identifies the fallacy of measuring correlations of deviations 

about long-term averages, where some of the deviation from-long term average is due to 

predictable cycles, trends, etc. What matters, at least for correlation studies relevant to required 

capital, is not predictable deviation from long-term average but correlated, unpredictable 

deviation from expectations varying predictably from long-term averages. 

As an enlightening thought experiment, consider an optimistic insurance company that 

consistently forecasts losses lower than their true expected value. Considerably more often than 

not, deviations of actual from forecast will be positive, yielding apparently fairly significant 

positive correlations among the outcomes, probably more positive correlation than would result 

if we were to measure deviations about true expected values. This thought experiment warns us 

that, to some extent, the correlations we measure will be dependent upon the way we estimate 

expectations from which we measure deviations. 
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As a further enlightening thought experiment, we ask what algorithm would most likely produce 

correlation estimates most relevant to the required capital issue. This would be the algorithm 

that most closely mimics the actual emergence over time of information in the insurance 

industry. Suppose for a number of companies and lines of business that we had time series of 

annual ultimate loss results (or results to date developed to ultimate), as well as potential 

predictor time series, such as losses emerged at each point in time (not developed to ultimate), 

rate and price indices, trend estimates at various points in time (based only on information up 

through that time), indicators of market competitiveness at various points in time, etc. As an 

example, suppose we sit at the end of year 10 and forecast year 11 based only on what the 

industry would have known at the end of year 10. Then in year 11 we calculate deviations of 

ultimate losses from these forecasts. Then we roll the time series forward to the end of year 11 

and repeat the process, forecasting year 12, etc. Finally estimate correlations among these 

deviations. 

The problems with this algorithm are at least twofold: 1) We probably need time series with 

duration of at least a couple of decades--at least the first decade to calibrate the time series 

forecasting model, plus at least another decade of forecasts from the calibrated model, and their 

attendant deviations and correlations, so that correlation estimates are not driven too much by 

events in any one year. In fact, it would probably be useful to have at least a couple of decades 

of forecasts and deviations so that we could potentially test the stability of correlation estimates 

over time. 2) We would need to reconstruct time series of what the industry knew at past points 

in time, such as rate and price indices, past estimates of trend, market competitiveness indices, 

etc. We might not be able to construct such time series at reasonable cost. Also, we might not 

be able to reconstruct other time series of what the industry knew or could have known at past 

times with any reasonable accuracy. 

In light of these difficulties, we have constructed "forecasts" about which to measure deviations 

and correlations via an alternative algorithm. By line of business (LOB) and company, we have 

about a decade's worth of paid losses developed out to the oldest age in our available loss 

development triangles. We have not constructed time series of other potential predictors of those 

loss ratios. Instead, separately by LOB, we have developed generalized additive models for 

these loss ratios with main effects for company and a non-parametric, non-linear smoother term 
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for year. The year effect is a loess smoother (Not a typo. Loess is a form of localized 

regression.) of local second degree with smoothing window over years sufficiently wide that 

long-term trends and turning points are captured without responding much to the random ups and 

downs of individual years. We have chosen a smoother of local second degree rather than first 

degree to better respond to turning points in the data. 

The downside of this algorithm for correlation analysis is that the use of smoothers produces 

"forecasts" that, at any given point in time, depend on all of past, present, and future with respect 

to that point in time. Such "forecasts" may perform better than even the best of forecasts that 

must depend strictly on only the past, especially with respect to turning points and points of 

inflection. Therefore, some of what is captured in a smoother-based "forecast" (and therefore 

considered "predictable" with respect to that forecast) would be unpredictable and not captured 

by forecasts dependent strictly on the past and would instead be captured in the unpredictable 

deviations about those forecasts. Therefore, deviations about true forecasts dependent only on 

the past might tend to be somewhat larger and somewhat more correlated than deviations about 

smoother-based forecasts. As a consequence, our correlation estimates should be regarded as 

lower bounds. 

On the other hand, the performance of our smoother-based forecasts may not be vastly superior 

to forecasts based only on the past that take advantage of more information than just losses, such 

as rate, price, trend, market competitiveness, etc. We would therefore not expect our correlation 

estimates to be vastly understated. Furthermore, we would expect those correlation estimates to 

be considerably closer to the mark than estimates based on deviations about long-term averages 

to the extent that in many of the lines we have studied there has been considerable long-term 

trend over the last decade; and we would argue that much of this long-term trend was indeed 

predictable, at least on a rolling one-year-ahead forecast basis. 

A Correlation Model Based on Parameter Uncertainty 

The reader is referred to Meyers [ 1999a and 1999b] where one of us has developed a model with 

correlation driven by parameter uncertainty. The essence of this model is captured in Simulation 

Algorithm #3 in the main text of this paper. Losses are assumed conditionally independent; but 

correlation is imposed via severity multipliers assumed common across all lines of business and 
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via frequency multipliers assumed common across all losses within a line of  business and at least 

perfectly correlated, i f  not identical, across all lines within a so-called "covariance group." This 

model imposes a certain structure on correlations that depend upon parameters that can be 

estimated. 

Although the models published in Meyers [ 1999a and 1999b] include both severity and 

frequency multipliers, we have chosen to fit to a version of  the model with just  frequency 

multipliers and have estimated the additional contribution to correlation from severity effects not 

by fitting data but rather by appeal to our understanding of  severity-trend uncertainty. All losses 

across all lines are assumed multiplied by a common severity multiplier. This multiplier is a 

random variable with expectation 1 and variance b. I f  we assume our uncertainty regarding 

severity-trend translates to an uncertainty regarding severity on the order of  3%, then this 

translates to a b of  approximately (.03) 2 0.001. Although we fit to a model form excluding 

severity-parameter uncertainty, the data we fit probably includes a component of  correlation due 

to severity uncertainty, because we have certainly made no adjustments to the data to remove this 

particular uncertainty. Therefore, it is likely that the frequency uncertainty parameters of  the 

model have taken up some of  the slack and have responded to both frequency and severity 

uncertainty, at least to the extent that severity uncertainty can be captured by this model form. 

Then adding on top of  frequency parameters, which may already have captured a portion of  the 

severity effect, a b value estimated from first principles has the potential to overstate the total 

correlation. This is countervailing to the effect discussed in the previous section of  this 

Appendix, which would potentially cause an understatement of  correlation. 

We note lastly that we have not yet studied correlations across years. But, within year, we note 

that we have studied across company/across LOB, across company/within LOB, within 

company/across LOB, and within company/within LOB (this last would be just  variance, the 

usual process variance but augmented for the additional impact of  parameter uncertainty). 

Let Lqk be the annual aggregate ultimate loss for line of  business i, company j ,  and year k. 

Similarly for LiTk. The two companies j  and j"  could be the same or different, the two lines i and 

f the same or different. Assuming no severity parameter uncertainty, so b = 0, the covariance 

between L,jk and Li'fk is as given in Meyers [1999a]: 
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0 -2 

' g,)cie , +8co  ej,j,, Cov[Lo,,Li,j,,]=~,~.8~.{(-..~+/a,)Eo, +(l+ } , ,  . (A.1) 

flu" is 1 if  and only i f / =  i" (i.e., the first and second LOBs are the same) and 0 

otherwise. Likewise for ~/r. In other words, the first term is nonzero only when first 

and second LOBs match, first and second companies match, and first and second 

years match, in other words, only when calculating variances. 

faiGi' is 1 if  and only if  the first and second lines of  business are in the same 

covariance group, otherwise 0. To get 1, first and second companies don' t  have to 

match, nor do first and second lines of  business, but first and second lines of  business 

have to be at least in the same covariance group. 

• Pi and ai are the mean and standard deviation of the severity distribution associated 

with LOB i. 

2~t is the expected claim count associated with L~k and ci is the contagion for LOB i, 

so the variance of  claim count associated with Lqk is 2Uk + ci2ok 2. 

• E~k = E[L~k] = 20~i. 

gi is the covariance generator associated with LOB i. In other words, in this line of  

business, parameter uncertainty associated with frequency is captured by a common 

multiplier across all companies within this line of  business, the multiplier being a 

random variable with mean 1 and variance gi. The formula above reflects one 

departure from the referenced Meyers [1999a and 1999b] papers. Whereas those 

papers assumed the same multiplier across all lines of  business within covariance 

group, it is now assumed that across lines of  business within covariance group the 

frequency multipliers could be different, with different covariance generators, but 

they are still assumed perfectly correlated. This results in replacing some occurrences 

ofgi in the earlier formulae with the ~ appearing above. 
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Recall that, by definition: 

Cov[ Luk , Li,j, k ] : E[ ( Lu~ - E[ L~k ])(L~7, k - E[ Lcj, k ])]. 

Define the normalized deviation 

Los - E [ L o ~ ]  
Ao-k 

Then divide through equation A. 1 above by E~kEiy., to find: 

E[A,jk Ai;rk ] - +6ii ,6~. ( l+gi)e  i +6GiC; ~ . (A.2) 

So, i f / =  i" and j  = j ' ,  we are looking at a variance. Then that variance is a regression on l /E,  

with regression coefficient depending only on the parameters of  the underlying severity 

distribution and with intercept term equal to ci + g~ + c~g,. This term is approximately ci + gi 

because the product cigi can be expected to be much smaller than either ci or gi, both of  which are 

expected themselves to be small. If  first and second companies are different but first and second 

lines of  business are the same, then the expectation above is gi, the covariance generator for the 

single common line o f  business. Regardless of  whether first and second companies are the same 

or different, if  first and second lines of  business are different, then the expectation above 

becomes ~ ,  the geometric average of  the covariance generators of  the two lines of  business. 

If the two lines of  business are in different covariance groups, then the expectation above is zero. 

Suppose we estimate those expectations, and hence the parameters of  our correlation model, 

from (weighted) averages of  or regressions on pairwise products o f  normalized deviations of  our 

underlying data. We will discuss the appropriate weights later. Consider first all pairwise 

products o f  normalized deviations where the first and second LOBs are equal to a single selected 

LOB o f  interest, with first and second companies different. From equation A.2, we expect an 

appropriately weighted average (across all companies and years) o f  these pairwise products to 

approximate the expectation gi. We estimate gv for a second LOB i" the same way. Having 
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determined gi and gi', suppose now we consider all pairwise products where the first LOB is i 

and the second is i ", without constraint on first and second companies being the same or 

different. We expect that the appropriate weighted average of  those pairwise products will 

b e ~ .  If we find this indeed to be the case, then we conclude LOBs i and i" are in the same 

covariance group. But if we find the weighted average to be statistically insignificantly different 

from zero, we conclude that LOBs i and i" are in different covariance groups. Lastly, we 

consider pairwise products where the first and second company is the same and where the first 

and second LOB is the same and equal to a selected LOB of  interest. According to equation A.2, 

these products should display a lIE dependence. Regress these products on 1/E and identify the 

intercept estimate with ci + gi. Note that c never appears naked in these expressions, always in 

conjunction with g, but, having already inferred g, we can back out g to infer c. 

For the rest o f  this Appendix we will carry out the following program: 

1) In the next section, "Model for Expected Losses," we will discuss the estimation of  the 

E~k and calculation of  the normalized deviations Agk with an adjustment for degrees of  

freedom. The need for weights and the appropriate weights to use in modeling E~jk will 

be important issues. 

2) The following section, "Model for Loss Variances," will discuss the use of  squared 

normalized deviations A,jk 2 to fit the 1/E variance models mentioned above and estimate 

the sums of  contagions and covariance generators by LOB, c~ + gi. 

3) The following section, "Other Pairwise Products," wiU discuss the use of  other pairwise 

deviation products A,jkAo.k with at least one of  i i" o r j  j ' .  Products in which the first 

and second LOBs are the same, i = f ,  but companies are different,j  j ' ,y ie ld  estimators 

for the covariance generators g~. Products in which the first and second LOBs are 

different, i i', provide a test of  whether two LOBs are in the same covariance group or 

not. The issue of  weights will again be important. Also to be introduced at this point will 

be the use of  the bootstrap to quantify standard errors of  estimates. 

4) The last section, "Some Representative Results," will discuss for two lines o f  business 

some representative results for contagion ci, covariance generator g~, and whether or not 
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these two lines are in the same covariance group. Furthermore, for one of our 

representative lines, we will also perform the calculations measuring deviations relative 

to means not adjusted for long-term trends. We will indeed find much larger contagions 

and covariance generators. But, as we have already argued, these larger parameters are 

not appropriate for capital requirement calculations. 

Model for Expected Losses 

As already noted, we start with paid losses by LOB, by company (or company group), by year 

developed not to true "ultimate" but rather to the greatest age in loss development triangles 

available to us. We ratio these losses to premiums, build models for expected loss ratio, then 

multiply by premium to get back to estimates for expected loss. For each LOB, we actually test 

a number of denominators (premium, PPR, one or more exposure bases) in search of a 

denominator that produces a model for the ratio of loss to that denominator with a relatively high 

R 2. Presumably, for those denominators producing ratio models with lower R 2, the additional 

unexplained volatility is attributable to the denominator and interferes with good estimates for 

expected loss. High R 2 means the denominator is either stable or changes smoothly over time 

and is less likely to interfere with good estimates of expected loss. 

Graph A. 1.1 shows loss ratios by year, each line representing a separate company or company 

group. This is a package line with considerable property exposure, which may explain the 

apparent coordinated short-term up and down movement, which is evidence of correlation across 

company within LOB. The long-term apparent upward trend is probably just that, trend, was 

probably predictable, and, according to the discussion at the beginning of this Appendix, should 

not be considered evidence of correlation in the sense that we mean correlation. 

Graph A. 1.2 shows loss ratios by year for a liability line. Correlation is less readily apparent in 

this second graph. We should not be surprised if the correlation parameters we estimate for the 

second LOB are less than those for the first. 

The graphs for these two lines are reasonably representative of graphs for the other lines we 

studied as well. The reader should note an important feature of these graphs that motivates the 

subsequent model. The lines for some companies lie consistently above the lines for other 
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companies and appear to move in parallel to one another. Where correlation is visually 

significant (LOB 1), the parallel motion is evident even over short periods of  time. Where 

correlation is less visually significant (LOB 2), the parallel motion is less pronounced over short 

periods of  time but is still evident, on average, over the decade as a whole. This suggests a main- 

effects model with main effects for company and year. We assume no company/year 

interactions partly because such interactions are not apparent on the graphs and partly because 

we could argue that we lack sufficient data to estimate separate year effects by company anyway. 

We fit the year effect with a non-linear, non-parametric smoother to capture a wide range of  

possible behaviors across years - consistent trend, turning points, points o f  inflection, etc. This 

model produces fitted loss-ratio values that are parallel curves, a separate curve for each 

company. 

The fitting is performed by invoking a generalized additive model package, specifying normally 

distributed errors, an identity link function, main effects for company and year, and a loess 

smoother on year with wide smoothing window (large "span"), so as not to respond too much to 

random hits in any one year. Although one could argue that, technically, loss ratios cannot be 

normally distributed (shouldn't be negative and are likely positively skewed), we observed 

deviations from normality sufficiently mild for our data that the normal assumption was 

acceptable, which brought us that much closer to the classic linear model. Also, we saw no 

evidence that the loss ratios themselves were not additive in the explanatory variables (company 

and year), hence the identity link function, which again brings us that much closer to the classic 

linear model. In fact, the only reason for invoking the generalized additive model, rather than 

the classic linear model, was our desire to impose a non-linear, non-parametric smoother on the 

year effect. 

The generalized additive model was weighted. Over the years, it has been our experience fitting 

statistical models to insurance data that unweighted models are almost never appropriate. 

Weighted models are generally more appropriate, because insurance data points are almost never 

of  equal credibility or volatility; and, furthermore, the range o f  credibilities or volatilities is 

sufficiently great that unweighted models are inadvisable. The general statistical practice is that 

the weight associated with a data point varies as the reciprocal of  its variance. This practice 

produces minimum-variance fitted values. A general statistical rule of  thumb is that, so long as 
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the variances o f  the data points are sufficiently similar to one another (in other words, differ from 

one another by no more than a factor o f  two or three) and assuming the variances independent o f  

the explanatory variables in the model, then the differences in results between a weighted and an 

unweighted model can be expected to be sufficiently modest  that they are ignorable. Then an 

unweighted model is acceptable. The purpose o f  weighting is not to adjust for every last bit o f  

difference in variance but rather to correct for gross asymmetries in variance. But most  

insurance data presents a range of  variances considerably greater than a factor o f  two or three 

and so generally calls for the estimation of  weighted models. 

The classic actuarial assumption is that the variance o f  a loss ratio declines as one over some 

measure o f  volume, such as premium, which would suggest weighting on premium. But the 

formulas o f  the previous section o f  this Appendix would suggest that, in the presence o f  

parameter uncertainty, the variance depends on two terms, one o f  form 1/volume, the second a 

constant greater than zero. So the very smallest risks, for which the 1~volume term dwarfs the 

constant, do indeed see a variance declining as 1~volume. The very largest risks, for which the 

1/volume term has essentially died away to zero, see a variance essentially independent o f  size. 

If  all the data is essentially small risks, weighting on volume is appropriate. If all the data is 

essentially large risks, doing an unweighted analysis is reasonable. Generally, we are 

somewhere in the middle, with risks all the way from the small to the large. 

One possibility is to construct an iterated model. Select some weights. Fit a weighted model to 

find fitted means. Find the differences o f  actuals and fitted means,  square the differences, and fit 

these squared differences to the variance model 1~volume plus a constant. Invert the fitted 

variances to find a new set o f  weights and iterate a few times. This is admittedly a fair amount 

o f  work. A "quick and dirty" alternative that we have frequently found to work adequately for 

weighting, where adequate means  it removes gross asymmetries in variance without necessarily 

reducing all variances to exact equality, is to assume that variance dies away as 1 over some 

fractional power o f  volume; say, variance dies away as 1 / ~ - - h e n c e  use the square roots 

o f  volumes as weights. Over quite a robust range of  different models, we have found that this 

square root rule roughly captures the change in volatility from the small to the large. 
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As an example, Graph A.2 shows the same loss ratios as in Graph A.1.1 (LOB1), but plotted 

against premium rather than year. The smallest risks have premium as small as approximately 

$5 million. The largest premiums exceed $1 billion. So premium covers a range of two and a 

half orders of magnitude. As expected, loss ratio volatility appears to decline with increasing 

volume, but apparently not as fast as a 1~volume rule would imply. If the 1~volume rule held, as 

premium increased by more than a factor of 100, variances on the extreme right would be less 

than 1/100 of the variances on the extreme left, and standard deviations on the extreme right 

would be less than 1/10 of standard deviations on the extreme left. Standard deviations on the 

extreme left don't look 10 times as big as standard deviations on the extreme right--more like the 

three or four times as big that would be implied by variances that went as 1 / ~  ; hence 

standard deviations that went as 1 / ~ .  So, in building our models for loss ratio for LOB 

1, we have used weights of ~]premium. In other words, data points associated with the largest 

risks are assigned weights on the order of 10 times as large as data points associated with the 

smallest risks. 

Graph A.3 shows the year effect for this model on LOB 1. The dotted lines are the fitted year 

effect plus and minus two standard errors, corresponding to an approximately 95% confidence 

interval. The year effect has been translated to yield an average effect of 0. The absolute level 

of loss ratios is captured by the other main effect, the company effect. So we see loss ratios have 

been trending upwards throughout the decade, increasing by more than 20 loss ratio points from 

the beginning to the end of the decade, but the trend has not been uniform throughout. There is a 

point of inflection at mid decade. Throughout the first half-decade, trend was positive but 

decreasing, until it vanished altogether at mid-decade, only to resume its upward movement at 

decade end. Because this happened to all companies (at least our model assumes so, being a 

main-effects-only model, but, as noted before, there is no evidence of different year effects by 

company), and because the trend was essentially consistently upward and of significant 

magnitude, if we were to measure deviations about the decade mean, we would find most 

deviations early in the decade negative, most late in the decade positive. We would infer 

considerably larger correlations from these deviations than from deviations measured about the 

varying-year effect plotted in Graph A.3. For illustrative purposes only, we have actually done 

both calculations and will report the results later in this Appendix. 
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This year effect has a cubic appearance. This shows the importance of the non-parametric 

component of the smoother on year. Because the smoother was locally quadratic, in the absence 

of a non-parametric component, the global year effect would have been linear or quadratic and 

could not have captured the pattern evidenced in Graph A.3. At the same time, the smoother is 

not so responsive as to pick up the year-to-year ups and downs apparent in Graph A. 1.1. So 

long-term trends captured in the means, as driven by the year effect, therefore are removed from 

deviations about means, and don't impact correlation estimates. Short-term ups and downs are 

not captured in the year effect or the resulting means, so do flow through to deviations about 

those means and do carry through to correlations. This is the desired behavior. 

Having identified good models for ratio of loss to one of premium, PPR, or exposure, we 

multiply the fitted values resulting from these models by the denominators to yield estimates for 

mean losses. These mean losses are then used to calculate the normalized deviations of the 

previous section of this appendix. As noted in the previous section, the normalized deviations 

are the actual loss minus the expected loss, the difference then divided by expected loss. 

There is one additional, important adjustment to the normalized deviations not already discussed. 

These deviations are adjusted for degrees of freedom by multiplying by ~ - p ) ,  where n, p, 

and the justification for this particular multiplier willnow be described. Suppose the model for 

loss ratios for a particular LOB is based on n observed data points. The fitted model hasp 

effective parameters, where p is the number of companies, plus two (because of the locally 

quadratic nature of the year smoother), plus the additional effective number of degrees of 

freedom of the non-parametric component of the year smoother, which was generally in the 

neighborhood of 0.8. An unbiased estimator for variance involves taking differences of actual 

and fitted values, squaring the differences, summing up the n squared differences, and dividing 

the sum not by n but by n - p .  The way in which we subsequently use the normalized deviations 

to estimate correlation parameters amounts to taking averages, dividing sums ofn terms by n 

rather than by n p. By adjusting normalized deviations by the factor ~ p ) ,  we are 

adjusting squared deviations by n/(n -p), the n's cancel, yielding the right denominator, n - p ,  in 

the end. 
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The need for applying a multiplier greater than 1 to the unadjusted normalized deviations can 

also be seen from the following argument, although this argument doesn't also establish the 

magnitude of the multiplier. We start with n data points. To these data points we fit a model 

with p effective degrees of freedom. The fitted values are themselves random variables that 

approximate the "true" expected values to the extent that the model is the "true" model. But note 

that fitted values are pulled in the direction of the observed data and away from the true expected 

values by the fitting process (least squares, maximum likelihood, whatever). The magnitude of 

differences between actual and fitted values will therefore be smaller on average than the 

magnitude of differences between actual and true expected values. This shrinkage can be offset 

by multiplying the first differences by ~ ,  where the actual value of the multiplier is 

established by the requirement that sums of squares reproduce the right unbiased estimate for the 

variance. 

In the interests of wrapping up loose ends, we should note that, although we always started with 

• a model with main effects for company and for year, with a smoother for year, the finally 

accepted models were many different variants on this. We sometimes found that company was 

not statistically significant; in other words, there was no statistically significant evidence that 

loss ratio differed by company. We sometimes found that the non-parametric component of the 

year effect was not significant, so the year effect was globally quadratic. Sometimes the 

quadratic term was not significant, so the year effect was globally linear (long-term constant 

trend). And sometimes even the linear effect was not significant, so there was no statistically 

significant evidence of loss ratio varying across years at all. 

Model for Loss Variances 

So now we have normalized deviations, adjusted for degrees of freedom. We consider all 

manner of pairwise products of these deviations. We demand that the year associated with the 

first factor in the pair match the year associated with the second factor, because we have not yet 

studied correlations across year. If we consider just those pairwise products where the first and 

second company also match, and where first and second LOB also match and are equal to some 

specified LOB of interest, then we are looking at squared deviations. Equation A.2 suggests that, 

if we plot these squared deviations against expected loss E, we should see a 1/E dependence plus 
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a constant term, where the constant is the contagion plus the covariance generator for that LOB. 

See Graph A.4 for the graph just described for LOB 1. The circles represent the squared 

deviations from data. The triangles are the fitted values of the functional form 1/E plus constant. 

The fit was created by least squares regression. There is again an issue of weights. Squared 

deviations for small expected loss appear considerably more volatile than squared deviations for 

large expected loss, and so should receive less weight: Otherwise, there is a considerable risk 

that some noisy data at small E could have a considerable impact on the estimate of the constant 

term out at large E. What weights might be appropriate? If the deviation A were approximately 

normal with standard deviation a, then A2/o ~ would be distributed approximately chi-squared 

with one degree of freedom. This result would imply that A 2 has an expectation ofo ~ and a 

variance of 2a 4. In other words, the standard deviations of the squared-deviation random 

variables appear proportional to their expected values, which is not inconsistent with Graph A.4. 

This suggests the following algorithm. Fit the 1/E plus constant functional form to the squared 

deviations. Square the fitted values, take their reciprocals, and use these values as weights in 

another fit of the functional form to the squared deviations. Iterate a few times. 

Other Pairwise Products  

Consider next pairwise products where first and second year are the same, first and second LOB 

are the same and equal to some specified LOB of interest, but first and second company are 

different. These products measure correlation among companies within LOB, and their 

(weighted) average yields an estimator for the covariance generator for that LOB, per equation 

A.2. Consider first a plot of the second factor in each pair against the first factor in each pair. 

Can one visually see the correlation? Graph A.5.1 is such a plot for LOB 1. 

The most striking thing about this plot is that the data appears to array itself in rows and 

columns. Consider an example. Suppose for this LOB we have 10 years, 10 companies, hence 

100 independent observations from which we construct 100 normalized deviations. For each of 

the 100 deviations thought of as the first factor, there are nine deviations available as second 

factor (same year, each of the other nine companies), hence a total of 900 pairwise products 

relevant to this section of the Appendix (same year, different companies) and 900 plotted points 

on the plot of second factor vs. first factor of the form of Graph A.5.1. The points in this plot 
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array themselves in columns of nine points and rows of nine points. The columns of nine result 

because all nine share the same first factor (plotted on the x axis) while the second factor (plotted 

on the y axis) ranges over nine possible values. Rows of nine also result because all nine share 

the same second factor while the first factor ranges over nine possible values. The nine points in 

a column are not independent but highly interdependent through their shared first factor. 

Likewise, the nine points in a row are not independent but highly interdependent through their 

shared second factor. These interdependencies through shared first and second factors apply also 

to the 900 pairwise products. It would be very wrong to treat these 900 pairwise products as 900 

independent draws from some underlying process. This observation will be relevant to a later 

discussion of standard errors of parameter estimates, such as estimates of covariance generators. 

Returning to Graph A.5.1, note the slightly tilted horizontal line. This is an unweighted linear 

regression line on the plotted points. It is included as an aid to visualizing a possible tilt to the 

plot, which would be indicative of a correlation, but the degree of tilt of this regression line is not 

a good estimator of the correlation. First, points with either very low or very high first deviation 

may be highly leveraged and highly influential in estimating the unweighted regression line. Yet 

these extreme first deviations are likely to be the most volatile and the least deserving of 

receiving any significant weight. An unweighted regression gives them too much weight. 

Second, the regression line treats all the plotted points as independent of one another, and we 

have already argued that there is a great deal of interdependency among these points. So the 

plotted regression line should be treated as a visual aid only and not considered a good estimator. 

We have argued in a previous section of this Appendix that a weighted average of pairwise 

products, with judicious choice of weights, might be a good estimator of covariance generators. 

The deviations of Graph A.5.1 are those measured about expected losses taking into account the 

year effect of Graph A.3. As an additional aside on the potential distortion of estimating 

correlations from deviations about grand means, Graph A.5.2 shows a plot corresponding to 

Graph A.5.1 of deviations vs. deviations, measured about expectations not reflective of the year 

effect. The apparent correlation is much greater, the excess correlation being driven by the 

failure to remove long term predictable trend from the deviations. 
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We have concluded that, because of various technical difficulties, plots of deviations vs. 

deviations of the form of Graph A.5 are useful visual aids but not good estimators. As weighted 

averages of pairwise products of deviations can be used as estimators, what weights are 

appropriate? Previously, we presented a heuristic argument in terms of the ehi-squared 

distribution for squared deviations; in other words, for pairwise products where the first and 

second factors are identical. But we don't know what the sampling distribution might be for 

pairwise products of deviations where the first and second factors may be interdependent but not 

identical. Suppose we plot pairwise products against some measure of volume to see if there is 

any evidence of changing volatility with increasing volume. For each of the first and second 

factors of a pairwise product, there is a measure of volume, namely the expected loss associated 

with that deviation, but the two expected losses are unlikely to be equal. Suppose we define as a 

measure of volume for the pairwise product the geometric average of the expected losses for the 

first and second deviations in the product; in other words, the square root of the product of the 

two expected losses. Call it E. 

Graph A.6.1 shows a plot for LOB 1 of the pairwise deviation products, same year first and 

second factors, different companies, against this volume measure E. Pairwise products 

associated with larger volumes are clearly less volatile and so should receive more weight in any 

weighted average of these products. Suppose we imagine that the variance of the sampling 

distribution ofa  pairwise product declines as unity over some power of E. Dividing the observed 

pairwise products by the square root of the presumed variance law and plotting this against E 

should produce a graph more symmetrical left to right than Graph A.6.1. Suppose we guess the 

variance law to be 1/E. Then multiply pairwise products byx/-E. Graph A.6.2 shows this plot. 

We have gone from a graph that shows more volatility on the left to one that shows more 

volatility on the right. Clearly, a 1/E variance law overdoes it. Suppose we assume a variance 

law 1/x/E. Then multiply pairwise products by the fourth root of E. Graph A.6.3 shows the 

resulting plot is far more symmetric than either A.6.1 or A.6.2, supporting a variance law 

something like 1 / ~  and, therefore, a weighted average of pairwise deviation products with 

weights proportional to ~ as a reasonably best estimator from among this family of estimators 

of the covariance generator for this LOB. 
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Now that we have an estimate for the covariance generator, how precise is it? What is the 

standard error o f  that estimate? Generally, when an estimator is a weighted average o f  

independent observations, the standard error o f  the estimate is the standard deviation o f  one 

observation divided by the square root o f  the number  o f  observations, with some adjustment for 

the weighting. As we have already argued, these pairwise products are far from independent o f  

one another, ruling out the square root o f n  rule. We have chosen to estimate standard errors o f  

estimators via bootstrap. From the original data draw a data resample o f  the same size as the 

original data set, but with replacement, so that some data points might not appear at all in the 

resample and others might appear more than once. Re-estimate the statistic or parameter o f  

interest from this resample. Repeat this many times, building up a collection o f  estimates, from 

which collection one can estimate such quantities as the standard deviation and extreme 

percentiles o f  the estimator. Statistical rules o f  thumb suggest that, whereas one may  need 

hundreds o f  resamples to reasonably estimate extreme percentiles (such as the 95 th or 99 th) o f  the 

sampling distribution o f  the estimator o f  interest, as few as fifty resamples will yield a reasonable 

estimate o f  the standard error o f  the estimator. 

Furthermore, to preserve the two-way structure o f  the underlying problem on company and year, 

as well as to estimate the relative impact of  company and year on estimators, we bootstrap 

separately on company and year. Bootstrapping on company yields a standard error o f  the 

estimator due to the randomness o f  which companies are in or out o f  the database. In other 

words, if certain companies were dropped from the database, and certain others were added, how 

much could we expect the estimator to vary from its current value? Bootstrapping on year yields 

a standard error o f  the estimator due to the randomness o f  which years are in or out o f  the 

database. The total standard error o f  the estimator is the square root o f  the sum of  squared 

standard errors due to company and year separately. 

An example may again be useful. Suppose our previous example with an LOB with ten years 

and ten companies. This produces 100 normalized deviations, 100 squared deviations used to 

estimate the varianee model, and 900 pairwise deviation products, first and second years the 

same, first and second LOBs the same and equal to the LOB in question, but different first and 

second companies, from which an estimate for the LOB covariance generator is calculated. One 

way to bootstrap would be to draw from the 100 deviations with replacement, but it is likely that 
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this would produce a resampled dataset in which some years were represented by some 

companies but not all ten companies, and some companies were represented by some years but 

not all ten years. The resampled dataset would not preserve the two-way structure of the original 

on company and year. Also, from this resample it would be impossible to segregate the 

potentially interesting different impacts of company and year. 

We chose to resample on company and year separately. One resamples on company by drawing 

ten companies with replacement from the original list often. As an example, the resampled list 

might include eight of the original ten appearing once each, the ninth appearing twice, and the 

tenth not at all. Then one takes all ten years for each of the resampled companies. The result 

would be 100 deviations, the first 80 from the original 100 representing the first eight companies, 

then 81 through 90 from the original 100 representing the ninth company, then 91 through 100 

repeating 81 through 90, representing the ninth company showing up a second time in that 

particular resampling on company. So, although the resample includes 100 deviations, there are 

only 90 distinct values, because company 9 occurs twice in the resample. One uses these 

resampled 100 deviations to calculate the previously discussed variance model and covariance 

generator estimator. Resample 50 times to estimate standard errors for the estimators. 

Next resample on year by drawing ten years with replacement from the original list often. As an 

example, the resampled list might include six of the original ten appearing once each, the seventh 

and eighth appearing twice each, and the ninth and tenth appearing not at all. Then take all ten 

companies for each of the resampled years. The result would be 100 deviations but only 80 

distinct values, because years 7 and 8 occur twice in the resample. Use these resampled 100 

deviations to calculate the previously discussed variance model and covariance generator 

estimator. Resample 50 times to estimate standard errors for the estimators. 

The previous section of this Appendix, on the variance model, considered pairwise deviation 

products where the first and second factor years were the same, first and second LOBs the same, 

and first and second companies the same; in other words, the pairwise products were actually 

squared deviations. These lead to variance models and estimators for the sum of contagion and 

covariance generator for the LOB. In this section, we have considered pairwise products with 

first and second years the same, first and second LOBs the same, but first and second companies 
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different. These products lead to estimates of correlation among companies within LOB, to 

estimators for the LOB covariance generator. Other pairwise products not yet discussed but of 

potential interest would be those for which first and second years are the same, but first and 

second LOBs are different. Such products would lead to estimates of between-LOB-correlation, 

to estimators for the geometric average of the covariance generators for the two LOBs if they are 

in the same covariance group, or to a statistic not statistically different from zero if the LOBs are 

in different covariance groups. We will not discuss these products further other than to note that 

the weighting and bootstrap issues discussed above are the same for these products and were 

addressed in the same way. 

Some Representative Results 

Before discussing Exhibits A. 1 through A.3, which provide some representative results, we 

should note that we tested two other model issues that have not yet been discussed. 

1) Between company pairwise deviation products yield estimators for covariance generators. 

We asked whether there was any evidence that these covariance generators varied by size 

of company. We tested this by regressing the appropriate pairwise products against the 

base 10 logarithm of the size of the company, size measured as the expected loss for that 

LOB. A statistically significant regression coefficient for the log explanatory variable 

would have been evidence of a size dependency. A statistically significant positive 

coefficient would have been evidence of a covariance generator increasing with 

increasing company size, and vice versa for a statistically significant negative coefficient. 

We used log(size) as the explanatory variable on the assumption that the effect, if there 

was one, would be logarithmic in size, that the magnitude of the effect would be about 

the same when going from a company of size 1 to size 10 as when going from a company 

of size 10 to one size 100, etc. No statistically significant size effects for the covariance 

generators were detected. 

2) For certain property lines, we asked whether much of the apparent correlation arose 

through catastrophes. We eliminated the heavy catastrophe years of 1992 and 1994 and 

found that correlations did indeed go down but were still significant. 
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Turning now to Exhibit A. 1, this exhibit considers just pairwise deviation products where first 

and second LOB are LOB 1. Considered first are products where first and second companies are 

different ("Between companies"), hence the expectation is gl. Based on a weighted average of 

the relevant pairwise products from the data, the point estimate for gl is 0.0026. The square root 

of this, 0.051, is the standard deviation of the underlying frequency multiplier, which appears to 

indicate a frequency parameter uncertainty impacting LOB 1 industry wide of on the order of 

plus or minus 5%. Bootstrapping on years yields a range of estimates for g~ with a standard 

deviation of 0.0008. Bootstrapping on companies yields a standard error due to companies of 

0.0009. So uncertainty regarding this parameter due to years is comparable to the uncertainty 

arising through companies. The total standard error forg~ is a combination of standard errors 

due to years and companies and is 0.0012. The estimate forgt is more than twice its standard 

error, so is certainly statistically significant. 

The test for gt size dependence yields a regression coefficient for the log(size) explanatory 

variable of -0.00004, with a standard error estimated from bootstrap of 0.00344. The standard 

error is much larger than the parameter estimate. There is no statistically significant evidence 

that g~ depends upon size. 

Considering next pairwise products with first and second LOB equal to LOB 1 and with first and 

second companies equal ("within company"; in other words, the squared deviation products) 

yields an estimate for LOB 1 of contagion plus covafiance generator of 0.0226 with a standard 

error of 0.0092. This is certainly significant. The difference of the c + g estimate (0.0226) and 

the g estimate (0.0026) yields an estimate for the contagion c for LOB 1 of 0.0200, 

If, just for the sake of illustration, not that we argue this is the fight thing to do, we repeat these 

calculations for LOB 1 using deviations about grand means rather than about means adjusted for 

the year effects of Graph A.3, we find much larger correlation estimates. Forgb instead of the 

0.0026 with standard error 0.0012 discussed above, we find 0.0135 with standard error 0.0051. 

This latter value forgl implies a frequency parameter uncertainty of 11.6% vs. the 5% discussed 

above. Likewise, for cj + gx, instead of the 0.0226 with standard error 0.0092 discussed above, 

we find 0.0298 with standard error 0.0099. Failing to adjust deviations for long-term predictable 
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trends significantly inflates correlation estimates in ways not directly relevant to the required 

capital issue. 

Exhibit A.2 shows the same statistics for LOB 2, a g estimate of  0.0007 with standard error of  

0.0004 (hence just about significant at two standard errors, indicating a frequency parameter 

uncertainty of  plus or minus 2.6%), no significant size dependence of  this g estimate, and a 

significant estimate o f c  + g of  0.0090 with standard error of  0.0023. From comparing Graphs 

A.I.1 and A.1.2 we had suspected we would find more correlation in LOB 1 than in 2, and 

indeed we find g for LOB 1 larger than that for LOB 2. c + g measures large risk volatility (the 

limit as the 1/E term dies away). This is also larger for LOB 1 than for LOB 2. 

Turning lastly to Exhibit A.3, this considers pairwise products where the first LOB is LOB 1 and 

the second LOB is LOB 2, hence measures between LOB correlations. This yields an estimate 

of  ~ of  0.0005 with a standard error of  0.0006. Because this statistic is not statistically 

significantly different from 0, there is no evidence that LOBs 1 and 2 are in the same covariance 

groiap. Knowing what lines of  business LOB 1 and 2 are, we did not expect them to be in the 

same covariance group and are not surprised by this result. 
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Graph A. 1. l 

Loss Ratios by Company (LOB 1) 
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Graph A. 1.2 

Loss Ratios by Company (LOB 2) 
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Graph A.2 

Loss Ratio vs, Premium Volume (LOB 1) 
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Graph A.3 

Loss Ratio Year Effect (LOB 1) 
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Graph A.4 

Squared Deviation vs. Expected Loss (LOB 1) 
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Graph A.5.1 

Deviation vs. Deviation (LOB 1, Full Trend Model) 
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2 

Deviation vs. Deviation (LOB 1, No Trend Model) 
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Graph A.6.1 

Pairwise Deviation Products vs, E (LOB 1) 
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Graph A.6.2 

Pairwise Deviation Products vs. E (LOB 1) 
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Graph A.6.3 

Pairwise Deviation Products vs, E (LOB 1) 
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Exhibit A. 1 

Correlation Parameter Estimates 

LOB 1 

Between companies: g 

Estimate: 0.0026 

Standard error due to years: 0.0008 

Standard error due to companies: 0.0009 

Full standard error: 0.0012 

Between companies: lOgl0(size) coefficient 

Estimate: -4e-005 

Standard error due to years: 0.00235 

Standard error due to companies: 0.00251 

Full standard error: 0.00344 

Within company: c + g 

Estimate: 0.0226 

Standard error due to years: 0.0048 

Standard error due to companies: 0.0078 

Full standard error: 0.0092 
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Exhibit A.2 

Correlation Parameter Estimates 

LOB 2 

Between companies: g 

Estimate: 0.0007 

Standard error due to years: 0.0002 

Standard error due to companies: 0.0003 

Full standard error: 0.0004 

Between companies: lOgl0(size) coefficient 

Estimate: -0.00065 

Standard error due to years: 0.00050 

Standard error due to companies: 0.00065 

Full standard error: 0.00082 

Within company: c + g 

Estimate: 0.0090 

Standard error due to years: 0.0007 

Standard error due to companies: 0.0022 

Full standard error: 0.0023 
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Exhibit A.3 

Correlation Parameter Estimates 

LOB 1 vs. LOB 2 

Between and within companies: g 

Estimate: 0.0005 

Standard error due to years: 0.0005 

Standard error due to companies: 0.0003 

Full standard error: 0.0006 

Between and within companies: logl0(size) coefficient 

Estimate: -0.00086 

Standard error due to years: 0.00080 

Standard error due to companies: 0.00106 

Full standard error: 0.00133 
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