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Abstract :  This paper considers the task o f  modeling "pension" claims whose durations may 
vary, but whose payment pattern is uniform and flat. We derive the aggregate payout pattern 

from the duration density and discuss and provide examples to show how this idea can be applied 
to calculating tail development factors. 

It is apparent  that the c la im durat ion influences paid loss development .  In general  a faster 
(slower) claim closure rate will  make  paid  losses develop faster (slower).  While the 
direct  nature o f  that relat ionship is apparent ,  it is not  so apparent  how to quant i fy  it. This 
paper  quantifies it the case o f " p e n s i o n  c la ims"  with a constant  periodic payment  amount .  
More  precisely,  the paper  considers  cont inuous payment  at a rate that is constant  both 
over t ime and among  claims.  

Let  S(t  ) denote a survival  funct ion on the t ime interval (0, b).2 We regard  S ( t ) a s  a 

distr ibution o f  closure t imes and  let F(t )  = 1 -  S ( t )be  the cor responding  cumulat ive 

distribution function [CDF]. In effect, all claims are assumed to close on or before t ime b. 

We are interested in a related CDF,  which  we denote by ,~( t )  to emphasize  its relation 

with F ( t ) ,  which models  the paid  loss development  as a funct ion o f  time. More 

precisely,  F ( t )  is the propor t ion  o f  total loss paid  by time t, i.e. the propor t ion paid out 

dur ing (0,t)  (without any  discount  adjustment).  /~(t) is the reciprocal  o f  the paid to 

ul t imate loss development  factor  and  we will refer to /~(t) as the paid  loss development  

divisor [PLDD]. 3 

We are interested in claims whose  payment  schedule conforms to two very restrictive 
assumptions:  

• All payments  on all claims are o f  the same amount.  
• Payments  are made  per iodica l ly  at a common  uni form time interval immediate ly  

fol lowing a c o m m o n  t ime o f  loss, t = 0 ,  to claim closure. 

The author expresses his thanks to Greg Engl, also of NCCI, who reviewed several versions of this paper, 
pointed out some serious errors, and made many suggestions for improvements. 
2 We are most interested in the case b < co, although most of what we say applies to the case b = co. We 
are, however, rather cavalier about making whatever assumptions are needed to assure that all improper 
integrals exist and are finite. 
3 Gillam and Couret [2] consider the reciprocal of the loss development factor and call it the loss 
development divisor. 
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We refer to these two assumptions in combination as describing the "pension case". We 
use a continuous model to represent this, translating this into the assumption that for 
every claim of duration x, the model assumes a continuous and constant payment rate of 1 
over the interval (0,x), and 0 elsewhere. 

Consider the case when aggregate paid losses are followed over a series of N time units 
with N < b. The usual paid loss development pattems built from these N evaluations 
will not account for the "tail paid loss development" beyond the final evaluation at time 

t = N.  With this notation, observe that this tail factor is just 2 = F(N)  -t . 

Workers' Compensation [WC] provides a case in point, as some claims in that long-tail 
line remain open beyond the reporting window, even though that window has been 
expanding to near 20 years. It is reasonable to assume that payments beyond some 
valuation, say after 10 years, will be primarily made on pension like claims. 
Consequently, a model suited to such pension claims may be helpful in projecting the full 
payout pattern beyond 10 years. Indeed, suppose you have a collection of PLDD's that 
cover the portion of the loss "portfolio" that is expected to develop beyond 10 years. That 
is, for each type of claim you have a PLDD that is deemed appropriate, at least over the 
time frame beyond 10 years. The paper illustrates how to translate the mix of claims in 
the loss portfolio into a mixed distribution of those PLDD's (c.f. Corollary 1.3 below). 
That mixed distribution then provides an estimated tail factor. This approach to deriving 
a tail factor for WC losses is what motivated this paper. 

Notation and Setup 

dF 
With S, F , /~  and b as above, we also let f ( t )  = - -  be the probability density function 

dt 

[PDF], h(t) = f ( t )  the hazard rate function, CV = o- the coefficient of variation of 
s(t)  ~u 

claim duration, and T the random variable that gives the "time" of closure t and has the 
CDFF(t) .  We use those same letter symbols and "transparent" notation to specify the 

relationship between these functions. For example h'~ (t) denotes the hazard rate function 

of the PLDD F~ (t) that corresponds to the claim survival function S~ (t) and "~ the 

random variable with CDF F,, (t). 

For pension claims, as described here, the entire payment schedule of a claim is 
completely determined by the claim duration. But for now we consider a somewhat more 
general situation. We make the assumption that for any time t, 0<t<b, all claims with 
duration t have the same pre-determined and differentiable payment pattern. We can 
capture this mathematically by defining the function 

G(x,t)=amount paid through time t on a claim, conditional upon claim duration=x. 
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Then define g ( x , t ) = ~ t  = partial derivative of  G(x,t) with respect to t. We may interpret 

g(x,t) as the rate ofpayrnent at time t on any claim of duration x. Both G(x,t) and g(x,t) 
are defined for x,t in (O,b). Note that for t>x we have g(x,t) = 0 and G(x,x) = G(x,t) = 
G(x,b)= the ultimate incurred on any claim of duration x. It is convenient to define the 
claim severity function: 

r (x)  = G(x,x)  = G(x,b) x ~ (O,b). 

We consider the cumulative payment for such a claim distribution in which all claims 
occur at time t=O and conform to these assumptions (sort of an accident instant, as 
opposed to an accident year). The only "stochastic" ingredient in this model is claim 
duration, for which the distribution F(t) is specified. All payments are in effect 
determined by these assumptions and there is a well defined expected cumulative paid 
loss per claim P(t) at any time t, from t=O to ultimate paid at t=b. Indeed, we have: 

t b  b t b 

P(t)= I fg(x,y)f(x)dx+= ff(x)Ig(x,y)aydx= If(x)C(x,O~ 
o o  o o o 

t b 

= f f ( x ) G ( x , t ) d x  + f f ( x ) G ( x , t ) d x  
o t 

t b 

= I f ( x ) y ( x ) d x  + I f ( x ) G ( x , t ) d x  
o t 

since G(x,t) = y(x) for x<t. In particular, the expected ultimate loss per claim is just: 
b 

e(b) = If(x)r(x)cZr. 
o 

It is convenient to define yet another function of t: 
r 

rl(t  ) = I f ( x ) y ( x ) d x  

o 

The (expected) ultimate paid loss development factor from time t is: 

,t(t) = P(b) 
P(t)  

and the inverse provides the PLDD on (O,b) that is the focus of this study: 

F(t)  = P( t ) .  
P(b) 

For the PDF of the PLDD, we have, by the fundamental theorem of calculus: 

r l (b) f ( t  ) = P ( b ) f ( t )  = g ( x , y ) f ( x ) d x d y  = g ( x , t ) f ( x ) d x  = I g ( x , t ) f ( x ) d x  
t 

since g(x,t) = 0 for x<t. 

We have established most the following: 
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Propos i t ion  1: With the function G(x,t) defined as above, for  t ~ (0, b) : 
b 

q(t) + I f ( x )G(x , t ) dx  
i) . ~ ( t ) -  ' 

7(o) 
b 

I f  (x)g(x , t )dx  
iX) f ( t ) -  ' 

r/(b) 
b 

iii) S ( t ) -  ' 
u(b) 

Proof" All is clear except  perhaps (iii): 

b 

rl(b) - rl(t) - I f  (x)G(x, t)dx 
~(t)  : 1 - ~( t )  = ' - 

u(b) 
b t b 

~ f ( x ) r ( x l d x -  S f ( x l y ( x ) d x -  I f ( x )G(x , t ) dx  
0 0 t 

u(b) 
b b 

S f ( x ) r ( x ) d x -  I f ( x )G(x , t ) dx  
t t 

u(b) 
b 

~f (x ) ( r (x )  - G(x, t))dx 
_ t 

u(b) 

as required. 

In the WC work that motivated this, the focus was on tail development. This in turn led to 
the consideration of  pension cases. Since those cases take longer to resolve, it is natural 
to try and use that as a way to isolate them. This leads us to consider what happens when 
there is a delay period prior to closure, i.e. when f ( t )  = 0 for t ~ (O,a) whereO< a < b. 

In that event we have: 
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Corollary 1.2: Suppose f (t) = 0 for  t e (O,a) whereO <_ a < b, then 
b 

I f ( x ) G ( x , t ) d x  

F ( t )  = ° for  t ~ (O,a). 
~ (h )  

Proof" This is apparent from Proposition 1 (i), since by our assumption 
t 

= [f(x)y(x)dx=O for t ~ (0,a) ~t) 
0 

and the result follows. 

This setup is convenient when the distribution of claim durations can be expressed as a 
mixture of simpler "component" densities. The following Corollary is actually a special 
case of a more general relationship between mixtures of losses and mixtures of PLDDs 
that in this pension case is just a simple calculation using Proposition 1: 

Corollary 1.3: Suppose F = ~ w f ,, ~ w = 1 is a weighted sum of  CDF's on (O,b), 
I i=l 

then 

F : ~ " ~ i F , ,  where ~ i -  w'rli(b) I~i<_n. 
~=~ rl(b) ' 

Proof" This is a straightforward application of Proposition 1, noting that the same 
payment function G = G~ applies to all the claims and so applies to each CDF F .  More 

precisely: 

b n b n 

i = l  

and the result follows. 

Recall that /z denotes the mean duration. More generally, define the higher moments of 

the distributions F , F  as: 

498  



With the above notation, the following proposition documents some basic relationships 
between the duration density and the PLDD density: 

Proposition 2: In the pension case, for  t • (O,b) 

i) f ( t )  = S(t___)) 
/z 

ii) F ( t )  r l ( t ) + t S ( t )  _ rl(t) + t f ( t )  
lz ,u 

iii) r ( t )  = t 
t 

iv) r/(t) = Sxf(x)dx 
0 

v) ~(t)= s ( t )  
/ ~ ( t )  

vi) ~k) ~k+, = - -  for  k = 1,2,3 .... 
(k + 1)/z 

Proof." By the pension case assumptions, we have: 

= Ilo O<t<_x 
g(x,t) = ot I. x <t 

=~G(x,t)={t x O<t<_Xx<_t. 

We then find that: 
r(t)  = G(t,t) = t 

t t 

rl(t) = ~ r ( x ) f ( x ) d x  = ~xf(x)dx ~ ~7(b) = 
o o 

which establishes (iii) and (iv). Note that from Proposition l: 

b b 

rl(t)+ ~f (x)G(x , t )dx  r l ( t )+t~f (x)dx  rl(t)+tS(t) 
~ ( t )  = ' 

rl( b ) p /~ 
b b 

Sf (x )g(x , t )dx  S f (x)dx  
f ( O  , = - - _ ,  _ s ( t )  

rl ( b ) I a la 
proving (i) and (ii). For (v), observe that: 
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fi(t) = "~'--- = f ( t )  S(t )  

s(t) ~(t) 
and for (vi), integration by parts also gives: 

E (T  ~÷l ) = (~ + O f x ' S ( x ) ~  

and we have: 

~t,,)=~x,y(x)dx=~x,(S(x)~= k+l ~x'S(x)dx E(T'÷')- /'t''÷'' 
0 ~ g ( /~ ) (h+0/~0 ~ (h+l)~ (h+0~ 

This completes the proof of  Proposition 2. 

Now we clearly have that the PDF f ( t )  is decreasing, indeed d f = _ f ( t )  _< 0 and so the 
dt ,u 

mode of the PLDD if(t) is 0. From the following Corollary, we see how the shift 

fromF(t)  to/~(t) impacts the mean, in particular, we find that the shift increases the mean 
exactly when o- > ,u.  

Corollary 2.1: 2,~ =/.t  + •CV 

Proof" From Proposition 2 (vi): 

2,~ Ate2) 'u2 + ° 'z  
- - - ,u + ¢rCV.  

Corollary 2.2: Suppose f ( t )  = 0 f o r  t ~ (O,a) where 0 <_ a < b,  then 

F ( t )  = t f o r  t ~ (O,a) .  
/z 

Proof" Under these assumptions, Corollary 1.2 implies that for t<a: 

b b b b 

~f(x>G(x,t)dx ~f(x)tdx t~f(x)dx t~f(x)dx t 
F ( t )  = ~ = , = a m _ _  O -  

as claimed. 

Probably the most useful family of  distributions defined on a finite interval is the class of  
Beta densities on (0,1). Recall that the Beta distribution is a two-parameter, a ,  fl ,  
distribution that is usually defined in terms of  its PDF: 

f (ot ,  f l ;x)  x~-I(1-x)'°-I F(a+[J)  x~(O,1),a>O, fl>O 
B(a, fl) r (a)r ( f l )  

where B and F denote the usual Beta and Gamma functions (c.f.[1], [3]). The CDF of the Beta 
density is: 
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B(ct, f l ; t ) = ~ [ x ' ~ = ' ( 1 - x ) # - l d x  t ~(O,l),a > O, f l>O 
l t c t ) l t p ) . ,  

and we have: 

Coro l l a ry  2.3: For a > O, f l  > 0 let f ( t )  = f(ct ,  fl;t), F(t) = B(a ,  17;t) be the PDF and 
CDF o f  a beta density on (0,1), as just  defined, then: 

j..'i(t~ = ix + 17 ,(1 - B(a ,  17; t~.. = a + f l  ~-.r(B(B, a;1 - t~).. - B(fl ,  a;1 - t) 
a a u 

/ 

F( t )  = B(a, /7; t )  = B(a  + 1,/7;t) + (a + 17)t B(17,a;1 - t )  0 < t < 1. 
t2t 

Proof" The proof  is a straightforward application of  Proposition 2. For the PDF, note 
that: 

7t t~ = 1 - F ( t )  = 1-B(a,17;t)  1 - B ( a ,  fl;t) = ,  ~x.-. ._ . t c t + p B ~ t p ,  a ; l _ t )  _ B(fl, a ;1-  t) 
d k  I 

Note too that: 

¢ _ ( r ( a + 1 7 ) ~ ¢  o_,.. . , _ , ~  r](t) x f  ( x )d~ J~ - t ~ j j x ~  ~,-x, <: 

:¢ r~,,, + 17> ] r x<°+'>-',l--"-'-'- 
t r ( a ) r ( B ) )  a . ~,s 

:¢ F~<, + p> y~< ,  +,>r~p>]¢ ~<, +,+ 17> ] r x<O+,,-,,l- x>,-,<,x 
t r ( a ) r ( f l ) ) t . r ( a + l + 1 7 ) J t ,  r ( a + l ) r ( 1 7 ) ) ~  - " 

_ ( r ( a ÷ p )  " ~ ( r ( a + l ) ' ~ .  
- i < ~ 7 - 7 - ~ > ) t ~ J ' ~ " ~  +~'17;'> 

: {--~--,~17)~<<, +,,17;,> = ,,~<<,+,,17;,>. 

And so for the CDF: 
/ 

i f ( t )  = rl(t) + tS( t )  = B ( a  + 1,17;t)  + t a  +/ .S) t lz l ( / J ,a ;1  t)  

/x at 

as claimed. 

We next consider some more specific examples: 

Example 1: Consider the case when S~ (t) = b - t b < b ' 0% is a DeMoivre survival curve. 

In this case: 
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F ~ ( b ; t ) = F ~ ( t ) = b  f t ( t ) = l  

Note that 

l t 

.,<,,: jx~<x,~x: ~ !x~x: '-r; l' = '~ b L 2 Jo ~ / ' t l  =r/l(b)=2- 

from which we find: 

.~(t)=S'(t---))=¢b-t~(2~ 2 ( b - t )  
/~, L--D--Jtb) = - - -g r -  

and so the density of  this PLDD decreases linearly with time. Whence: 

~, (t) 

and finally: 

~, (t) + iS, (t) 

Example 2: It is easy to generalize the first example, for~p > 0 let the claim closure have 
the CDF: 

F 2 (b;t) = F 2 (t) = t _< b 

t>b 

then we have: 

[~pt ~-~ 

f2 ( t )=  t b~ t>_bt<-b 

~! =~Ix~7 '- ~,.+ 
q2(t) = oSxf2(x)dx= x~ax b" L~+lj0 (~o+0b ~ 
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In particular, we have: 

¢p+l 

,u2 

~'~ - #  ¢0+1-  ~ . 

Example 3." Consider the case when fewer claims close over time according to a linear 
pattern (like the PLDD of  Example 1): 

fZ(b-,) ,_<b 
i , (b; t)  : i , ( t ) :  l bO= b <_ t. 

By Example 1, f3 (t) is indeed a PDF on [0, b] and we have: 

, 2 ,  1' 2 ( b t  z t3"~ b 
'73 (t) = [ xf3 (x)dx = 7T [ x(b - x)dx 

o b o b=L 2 3 J o = 7 ~ T - T J = m = ~  ' 

But then from Example 1: 

= ~, (,) = s~ ~,) = 3 (, _ # 

,u 3 o 

< (') = IY, (x)dx = 
t 

(V)' ~ g ( b ; t ) = & ( t ) = l -  

In the WC work that motivated this, we seek to find a 19 th to ultimate paid loss 
development factor. One idea that we considered is to use a weighted sum (mixture) of  

PLDDs of  the form w F  3 (b~ ; t) + (1 - w)ff  3 (b 2 ; t) (c.f. Corollary 1.3, extend to a common 

interval by setting the density of  the shorter interval to vanish outside it 's natural 
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domain). This means that we are assuming all claims close after Mtzr(b,, b: ) years and 

one part of  the loss "portfolio" close by time t = b~ and the complement by b e . 

Empirical  loss development factor data is used to fit a non-linear model in which the 
mixing weight  variable w is a "parameter". When these simple functions are used with 

b, ,b 2 as selected constants, it is straightforward to set up the calculation so as to assure a 

closed form solution for the value of  w that gives the best fit to the data. 

Our experience to date of comparing this approach to alternative methods, suggests that 
the use of  linear survival models for the claim duration distribution, while pedagogical ly 
and theoretically helpful, may be too simplistic for practical application. Although 
payment duration is effectively l imited by the beneficiary's  life-span, there may be no 
applicable l imit  to the incurred toss, especial ly when long term medical care may be 
covered. While we are primarily interested in the case of  finite support, it may be useful 
to consider a couple of  examples when b - oo. 

Example 4: Consider the case of  a single parameter Pareto (c.f. [3], p 584): 

F4(ct ,O;t  ) = F 4 ( t  ) = 1 f4(cz ,O; t )  = f4( l }  = T727 /or l > o. 

It is natural to extend the definition of  the PDF to assign f4(t) = 0 for t • (0,0]. Assume 

that a > 1. In this case we have: 

1 7 = ~ 7 ) [ 7 )  ' >-° 
l f f - I  

and we find that: 

l °/( / ,~4(t) = _<(x)dx :  ~o o fd~ ( 4o 1 ( e /  , ~ o 

F4 (,) : V4 (0 + '& (0 - RI L (Oy'aO ) , 

/;) 
1 - ~  t_>O 

Sa(t) _ S * ( t )  ~ for t>_0. 
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E x a m p l e  5." Consider the case when claim closures follow an exponential density, so here 
again b = m. In this case, we have: 

t 

Fs(O;t  ) = Fs( t  ) = 1 - e  o 

t 

e o 

f5 (0; t) = f5 (t) = - - .  
0 

Then from Proposition 2 we have: 

t 

f s (0 ; t )  = ~ ( t )  = S,(t____~) = e o _ f s ( t )  
/~5 0 

ff~ (t) = F~ (t) 

and we find that, in the pension case, an exponentially distributed duration has an 
exponentially distributed PLDD, with the same mean. This suggests that the use of  an 
exponential density, or a mixed exponential (c.f. Corollary 1.3), to fit the PLDD may be 
quite reasonable when analyzing tail behavior of  coverages for which the payments on 
long term claims become pension like. 

Example  6: It is tempting to generalize Example 5, so consider the case when claim 
closures follow a Weibull density, and so here again b = oo. In this case, we have: 

F6(O,r ; t  ) = F6(t  ) = l _ e q ,  af~'" 

/ 

fl6(0,~',t) =,£/6 = 0 . F ( I +  1 )  

Then from Proposition 2 we have: 

f~(O,r;t) = .,~6(t) S , ( t )  _ e -  f i l l  

and we find that, in the pension case, a Weibull distributed duration has a "transformed 
exponential" as PLDD. 
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E x a m p l e  7." Finally, suppose a PLDD /~7(t) took the form ofa  Weibull density: 

= l ( 2 '  

7 7 ( o , ~ - ; t )  : ? ~ ( t )  - 
t 

Then from Proposition 2 we would have: 
l r t ' 

! 

But then by L'H6pital: 

1 = L i m  $7  ( t )  = ,u v • r L i r a  ~ 
t~O t~O t 

¢-*0 I 

= ,u 7 . r L i r a  
t~o  1 

e ~) t 1-  t 0 ~'>1 
/ ~7  " toJ ~ t o ) )  z~ 

_ r L i m  - r = 1 
0 ,~o  1 

0 < r < l  

And it follows that the only Weibull density that can be a PLDD in the pension case is the 
exponential. 

Application to Tail Development 

We seek to fit Workers Compensation (WC) age-to-age paid LDFs to a PLDD 

distribution F(t).  With an eye on Corollary 1.3 and recognizing that pension claims 
represent a small minority among all WC losses, we decide to consider models of the 
form: 
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i f(t)  = wf f~( t )+(1-w)Fp(t ) ,  0 < w< 1. 

where /va  (t) and Fp( t )  are PLDD's  o f " k n o w n  type." Because we focus on the tail, we 

only look at development  beyond an 11-th report. Throughout this section, we consider 
as given a set o f  age-to-age paid loss development factors from an 11 th to a 19 th report: 

21 = 11 th to 12 th paid loss LDF 

22 = 12 th to 13 th paid loss LDF 

)/~ = 18 th to 19 th paid loss LDF. 

I f  we knew the true "tail  factor" = 19th to ultimate paid loss LDF, we could readily 

combine that information with the ).~ to determine several "actual" values of  ,~(t), 

namely for t=19, 18, ...,11. More precisely, let v -~ =ta i l  factor, then the "true" PLDD 
would equal: 

v at t = 1 9  

v28 -1 at t = 1 8  

8 1 

v I - [ 2  ~ at t = 1 0 + k  
i = k  

$ I 
vI - I2  i- at t = l l .  

i = l  

8 1 

So defining G(10 + k) = I - I  2i - , we want: 
i=k  

vG(k) ~..E(k) k = 11, 12 ... . .  19. 

More precisely, we seek values of  the "parameters" w and v, which minimize the 
weighted sum of  squared differences: 

19 ~ 2 19 

Z~(w, v~ = Z (k - ~ o V ( k )  - ~G(~)  = Z (k - l OXW~o (k~ + 0 - w ) ~  (k~ - vG(k~) ~. 
k=l  I k=l  l 

Since the focus is on the tail, we opt to weight  the sum heavier with increasing k. Setting 

the two partial derivatives 01) and 01) to 0 gives two equations in the two "unknowns" 
0w 0v 

w and v, which are readily solved: 
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0341 k = [ l 

k = l l  

19 2 

kffill 

k=l l  

= a o + a l w - - a 2 v  

where: 

19 

0 = 019 = Z 2(k - 10XF ~ (k) + w(F. (k) - Fp (k ) ) -  vG(k)~(- G(k)) 
k=ll  

19 

= 0 : Z ( k  -loXFp(k)G(k)) 
k=l l  

+ w~" (k-IoX.P = (k)- Y,(k))G(k) 
k=ll  

19 

- v Z (k - 10)G(k) 2 
k=l l  

= a 3 -~- a 2 w -  a 4 v  

k=l I 

19 ~ ~ 2 

al = Z (k - 10XF . (k) - F~ (k)) 
k=l t 

k=[I  

a3 = 
k=l  I 

19 

~ 4  = Z (  k - 1 0 ) G ( k )  2 

k=l l  

and which lead to the solution: 
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a o = - - a l w  + a 2 y  

- a 3 = O2W -- a 4 V  

2 
a o Q  2 ~ - o l a 2 w ~  a 2 v 

-- O l a  3 = a l a 2 W -  a la4  V 

aoa 2 - o l a  3 =(a2 ~ - a ,  a4)v 

aoa 2 - a la  3 
:::~ V = - -  2 

~2  -- a l a 4  

aoa 4 = - u l a 4 w  + a 2 u 4 v  

2 
-- a 2 a  3 : 02 W - -  a 2 0 4 v  

a o a  4 - ~ 2 a 3  : ( ~ 2 2  - a l ~ 4 ) w  

~ o a 4  - ~ 2 a 3  
:::~, w = - -  

a22  -- O l a  4 

If  this solution falls outside the square [0,1] x [0,1], it is necessary to inspect the edges and 

comers  to determine the optimal choice for w and v. 

In this application, we break down F( t )  = w,~,~ (t) + (1 - w)/~p (t) by selecting as one 

subset of  claims those claims that close prior to an eleventh report. So we have: 

/~  ( k ) =  l, k = 11,12 . . . . .  19. 

There remains the selection of  Fp. Numeric examples are given which illustrate 

forFp = F 3 and Fp = J~6, perhaps the two most  attractive from the examples defined 

above. In the numeric examples below, we use the following age-to-age LDFs: 

k=10 +i 

1.004808 11 
1.003861 12 
1.002915 13 
1.001947 14 
1.002930 15 
1.001957 16 
1.001961 17 
1.002950 18 

19 

G(~  

.9779 

.9817 

.9855 

.9883 

.9903 

.9932 

.9951 

.9971 
1 

Numeric Application 1: Since workers rarely start work much  younger than age 20 and 

(80-,/3 
live beyond age 100, we select Fp (t) =/~3 (80; t) = 1 - \ - - - - ~ j  . In the above notation, 
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the solution occurs at w = 0.9016 and v=0.9565. We suggest  that the tail  factor be 
] 

selected as -=------ = 1.046. Charting the points vG(k) together wi th  the graph ot~the 
F(19) 

function ff'(t), the picture is: 

0 5 10 15 20 
Report 

In the next example we  use an exponential. For that, i t  is convenient  to note that the WC 
financial calls include open and closed indemnity c la im counts. This provides the abil i ty 
to estimate the conditional probabil i ty Pk of  closure from report k to k+l ,  assuming a 

c la im is open at report k. So suppose we have  the eight probabili t ies P11,P12,...P18. We 

want  to use that information to estimate the parameter 0 of  if5 (0; t) .  For simplicity, 

suppose there were 100 claims open at  report 11, then we would expect  the fol lowing 
closure pattern: 

c I = 100pll would  close for some t e [ 11,12] 

c 2 = 100pl 2 (1 - P11) would  close for some t e [12,13] 

c 3 = 100pl 3 (1 - p11)(1 - P12) would  close for some t e [13,14] 

k-I 
c k = 100p~ l-I (I - p ,  ) would  close for some t e [k, k + 1 ] 

j=ll 

17 

c8 = 100p181-I (1 - p j )  would close for some t e [18,19] 
/=11 

18 18 
and d = 100 - ~ ej = 100 I-[ ( 1 -  p , )  would remain open at report 19. 

j=i i j=i 1 

It  is convenient to simplify this still  further and assume that the c k claims all close at the 

midpoint  o f  the time interval =t~ =k+10½. Then it  is easy to write out the maximum 
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likelihood function for 0 = t~ + 11. Indeed, we have c, observed "failures" at t = t, and d 

observations "censored" at t = 19 = s. 
8 

L(O)= e e = 0 ' "  e o 

and the log-likelihood function is: 
8 

~ei l  i + Ms 
LL(O) = log(L(0))= ( -  ~ eis ) log(0)  '=: 0 

Setting dLL = 0 to obtain the MLE estimator for 0. We obtain: 
dO 

8 

~cl t  ~ +ds 
0_i=~ 

8 

~,ci 
i=l  

which is a useful rule of  thumb for determining mean duration with such censored data- -  
take the ratio that defines the weighted mean duration except only include the weight of  
non-censored observations in the denominator. For our purposes, this provides a simple 

way to estimate 0 from the available WC data and so to specify Fp (t) =/~5 (0; t).  For a 

specific numeric example, suppose: 

k pk ck 
1 0.070 7 
2 0.075 7 
3 0.081 7 
4 0.076 6 
5 0.082 6 
6 0.075 5 
7 0.081 5 
8 0.070 4 

53 

tk Censored? 
11.5 No 
12.5 No 
13.5 No 
14.5 No 
15.5 No 
16.5 No 
17.5 No 
18.5 No 
19 Yes 

In this example 0 = 36 and t~ = 25. Then w=0.8895 and v=0.9485, _ 1 = 1.054 and 
F(19) 

the picture is: 
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0.98  

0.96 

0 .94  

0 .92  

0 .9  
0 5 10 

Report  
15 2 0  

We close with one more numeric application. The idea here is to use a model like F3 for 

ff~ but to match the mean duration as we did with the exponential ffs. Suppose, as 

before, we have used financial data to establish the mean duration ~ of  claim conditional 
upon the claim being open at an 11 th report. Unlike with an exponential, it is not so 

convenient to relate the conditional duration t~ for t>l 1 with the unconditional duration 
/z. Instead, we wit1 get around this by generalizing F 3 (b; t) to allow for a deferral period 

o f a = l  1 (c.f. Corollary 2.2). 

So first generalize F3(b;t ) to F3(a,b;t ) as follows: 

I;- 
fB(a,b;t)=f3(t)= ~2 t) a<t<-b 

b<_l 

t<a  

a<t<-b 

b<t. 

0 

F3(a,b;t ) = F3( t  ) = ,  I _ f -  b - t12- 
\ b - a )  

1 

We fred that for a<_t<_b: 

, 2 , 

_ 2 F~x2 x31' 2 ( ~  ,3-o3~ I 
(b-o) ~ LT-TJo = ~ k  2 --~--) 
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2(t-a)(b(t+a) t2 +~+a2 / 
7 

= ~ ( b ( t  +a)--~(t2 +at+a2 )) 
tb - a) \ J 

and so when t=-b: 

(b - aXb + 2a) (b + 2a) _ b - a - - - -  a - l -  

3 ( b  - a) 3 3 

which we could also have arrived at by recalling from the earlier example that the mean 
b - a  

for the one parameter F 3 (b - a; t) case is just  ,u 3 (b - a) = - -  and so: 
3 
b - a  

/~j = s~3(<,,b) = <, + u 3 ( b -  <,) = <,~ 
3 

In our numeric example we would calculate b via: 

2 5 = 0  b - a  b - l l  b = 7 5 + 1 1 = 8 6  
3 3 

which suggests using 86 as the maximum time duration, a selection that is at least 
consistent with earlier considerations. Finally, we have: 

~ ( a , b ; t )  - rl3(a'b;t) + tS3(a'b;t) - 
/ x  3 (a, b) b 3 2 a  (r/3 (a, b; t) + tS 3 (a, b; t)) 

- ,  3 ( ~ ( b ( t + a ) _ 2 ( t 2 + a t + a 2 ) l + t ( b - t l 2 1  
o+2aCtb-a ) t. 3 j t b - a )  j 

(b+2a~b_a)2(b(t2-a2)-~(13-a3)+t(t-b)2 3 
=3~(t2-a2)+t(t-b)2)-2(t3-a ') 

(b + 2aXb-a)2  
= 3(t 3- bt' + b2t-a'b)- 2(t 3 - a ' ) =  t 3- 3b(t l -bt)+ a2(2a - 3b) 

(b + 2aXb - a)  2 (b + 2aXb - a)  2 

When a=l  1, b=86 and 11 < t -< 86, we have the PLDD determined as the cubic 
polynomial: 

5 1 3  



*p~ (t) = *3 ~ (11,86; t3 - 258t2 + 22188t - 28556 
t )  

607500 

Applying this to the above example, the best fit is for w=0.99028 and v=0.9520, 
1 

)/~(~19~ = 1.051 and the picture is: 

1 

0.98 

0,96 

0.94 

0.92 

0.9 
0 5 10 15 20  

Report 
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