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Abstract 

Actuaries and others have long been trying to quantify the uncertainty in reserve 
estimates. Attempts to address this question have led to the development of stochastic 
reserving methods as well as the framing of some traditional reserving methods in a 
stochastic setting. Stochastic methods give insight into the volatility of the forecasts or 
parameters for a single model and do not necessarily provide an estimate of the 
distribution of reserves. This paper looks at various sources of uncertainty in projections 
and tries to give the reader a framework in which to view different attempts to measure 
the distribution of reserves. Finally the author presents an approach that attempts to at 
least recognize the issue of model uncertainty and to see its influence on the 
measurement of reserve uncertainty. 
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MEASUREMENT OF RESERVE VARIABILITY 

1. Introduction 

Traditional actuarial methodologies, though not necessarily stochastically based are robust and 

when used as intended tend to be a holistic approach to estimating reserves. In the end the 

actuary using such approaches may develop a "gut feel" for the uncertainty in his or her 

estimates, but may not necessarily be able to quantify that "gut feel." 

Conversely, more modem stochastic methods bring with them quantification of the volatility of 

their forecasts, but usually conditioned on a specific set of assumptions and often based on a 

single set of data (for example the paid loss triangle). 

In this paper we will review various aspects of uncertainty. We will finish by presenting an 

approach that combines holistic aspects of the traditional approach with estimates of uncertainty 

in those estimates. 

2. Reserves Are Uncertain? 

If you reference an insurer's financial statement you will find a single number identified as 

liability for losses and another for loss adjustment expenses. There is nothing uncertain about 

that, it is a number printed in a financial statement. So why should we be talking about 

uncertainty in reserves at all? 

The reason is that the number booked is an estimate of the actual liabilities. Accounting 

guidance tells us it must be "management's best estimate" of the amount that will be paid in the 

future on covered claims. We note that the guidance does not say that the reserve is an 

estimate of the expected or average value, it does not say that the reserve is an estimate of the 
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mode (most likely) value, nor does it say that the reserve is an estimate of the median or middle 

value. The guidance only states that the reserve is management's best estimate of the amount 

that eventually will be paid. 

The accounting guidance does not provide us with a quantitative or statistical framework to 

assist in setting the reserves. Actuarial guidance is similarly vague. Our statement of principles 

talks of actuarially sound reserves as "a provision, based on estimates derived from reasonable 

assumptions and appropriate actuarial methods, for the unpaid amount required to settle all 

claims, whether reported or not, for which liability exists. ''1 That statement further comments 

that "[t]he uncertainty inherent in the estimation of required provision for unpaid toss or loss 

adjustment expenses implies that a range of reserves can be actuarially sound, ''2 and "[t]he 

most appropriate reserve within a range of actuaria,y sound estimates depends on both the 

relative likelihood of estimates within the range and the financial reporting context in which the 

reserve will be presented. "3 

The message that these references seem to give is that if there is greater uncertainty involved 

in estimating future payments, then there is likely the need for some sort of margin recognizing 

that uncertainty when setting the reserves. Of course, there is no mention as to the number to 

which the "margin" should be added. 

At this point, a cynic may say that this brief discussion alone proves that the definition of 

reserves is itself uncertain, but we will leave that discussion to another day and another forqm. 

A reader interested in this discussion is strongly encouraged to read Rodney Kreps' excellent 

paper 4 addressing this topic. In addition to a most lucid and informative review of these 

concepts Kreps advances a reasoned and logical answer to the question "if reserves are 
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uncertain what is the correct amount to book in a financial statement?" Briefly he suggests 

minimizing the penalty of getting the reserves wrong over the entire distribution of reserves. 

We hope, however, that we have made the point that there is little formal guidance as to the 

statistical quantity to be booked as reserves. Nevertheless, to talk in terms of statistical notions, 

we must know the distribution of reserves and how to estimate that distribution. That is the topic 

of this paper. 

3. A Look at Traditional Methods 

Traditional actuarial methods are generally ad-hoc, and are not originally based on specific 

statistical models. Probably the oldest of these traditional methods is the development factor or 

link ratio method. It is fairly easy to explain and has been the subject of much literature. It was 

not originally grounded in mathematical or statistical theory; though there is some recent work to 

set it into a statistical framework. In addition, it is known to be quite volatile, particularly for less 

mature exposure periods. 

Another traditional approach is the Bornhuetter-Ferguson ~ method. Rather than being 

multiplicative and leveraged for less mature exposure periods, this method is additive and tends 

to be more stable. However, the method needs both an estimate of the loss emergence or 

development (as does the development factor method) but as well as an a-priori estimate of 

ultimate losses for each exposure year. This latter requirement can be overcome using a 

variant approach sometimes called the Stanard-BOhlmann or Cape Cod method. In this variant, 

one estimates the initial "seed" by using an approach equivalent to the development factor 

projection method. As with the development factor method, this method was largely developed 

on an ad-hoc basis. 
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Conceptually similar to the Bornhuetter-Ferguson method is the Frequency/Severity method 

presented by Berquist and Sherman. 8 Again, the method is ad-hoc and is not based on a 

specific statistical model. Here the focus is on incremental average cost per claim with separate 

selections for claim counts and trends in the incremental averages. It exhibits some of the 

stability of the Bornhuetter-Ferguson method for less mature exposure periods, and does not 

require an ~-priori estimate of ultimate losses. It does exhibit some volatility due to the 

forecasts of ultimate claim counts, and in the selection of trends for both current leveling and 

forecasting into the future. 

We see a common thread in these and other traditional reserving methods. The methods are 

generally ad-hoc, and were originally constructed without reference to an underlying statistical 

model; thus there is no direct way to quantify the uncertainty in their projections. 

This shortcoming has been recognized by most practitioners using the traditional approaches. 

Rather than relying on an underlying statistical assumption to gauge the uncertainty in 

forecasts, practitioners using traditional techniques usually consider a range of different 

methods applied to different groupings of data. If the various methods tend to give reasonably 

consistent results, then the practitioner might get a sense of comfort with the forecasts. 

If however, the estimates from the methods diverge then the practitioner might want to dig more 

deeply into the underlying data and situation to see whether the assumptions underlying one or 

another method are violated, in the end, by use of several different methods and looking into 

the operations underlying the data, even without specific quantification, the practitioner of 

traditional methods can develop a qualitative "feel" for the uncertainty. This is a significant 

benefit of traditional approaches that seems to be lacking from more recent statistically based 

methods. 
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This traditional approach has stood the test of time. Although not statistically sophisticated, it is 

a very powerful and robust approach. The variety of traditional methods has the added 

advantage of taking several different data elements into account including paid losses, incurred 

losses, open claim counts, closed claim counts, etc. By intentionally using a variety of methods 

the actuary has the ability to test a variety of hypotheses that may affect the final outcome of his 

or her projections. 

4. Moving on From the Traditional 

The traditional qualitative "feel" just described is often what is meant by the degree of reserve 

uncertainty. Though it is quite valuable to the actuary estimating reserves, it is at best 

subjective and difficult (impossible?) to quantify, if we wish to put numbers around this 

uncertainty, we probably should first specify what we are trying to measure. In this case, the 

author believes that the holy grail of reserve uncertainty is the distribution of the amount and 

timing of future payments for a particular book of policies. If we knew that distribution, we could 

then speak intelligently about its mean, variance, skewness, and any other characteristic we 

could think of. We could specifically calculate particular probability levels (amounts not to be 

exceeded a specific proportion of the time), as well as estimate the least painful amount to be 

booked given Rodney Kreps' approach. 

We cannot overemphasize the importance of understanding what we seek. In particular, this 

holy grail can be thought of as answering the fundamental question: 

Given current knowledge, what is the distribution of possible future payments (possible 

reserve numbers)? 

Whenever we are presented with an attempt of assigning probabilities to reserves, we should 

ask ourselves to what extent those probability estimates answer this fundamental question. To 
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better frame this discussion, we will consider the basic sources of uncertainty in most statistical 

estimates. 

5. Sources of Uncertainty 

We can identify at least three sources of uncertainty that may arise in estimating the distribution 

of reserves: 

1. Process uncertainty, the fundamental uncertainty due to the presence of randomness 

even when all other aspects of the distribution are known, 

2. Parameter uncertainty, the uncertainty that arises due to unknown parameters of 

statistical models for the distribution, even if the selection of those models is perfectly 

correct, and 

3. Model or specification uncertainty, the uncertainty that arises if the specified distributions 

or underlying models are unknown. 

Some authors separate model and specification uncertainty; having the former relate to 

whether the model selected is actually the correct one for the process under review, and the 

latter dealing with whether the actual distributions selected in the model are correct. For 

example, is a gamma or Iognormal the right distribution to use? For ease of discussion, we 

combine both here. 

At this point, a brief discussion of each of these sources of uncertainty may help in 

understanding them and their import in the question of estimating the distribution of reserves. 

Suppose we throw a fair six-sided die. In this statement of the problem, the entire process 

generating uncertainty is known. We know that we can only observe one of six outcomes, each 
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with equal likelihood. Even with this perfect knowledge, we do not know the outcome of the 

next roll of the die for certain. This is an example of process uncertainty. 

The very existence of insurance depends on process uncertainty and the risk averse individual's 

reaction to that uncertainty. The law of large numbers implies that process uncertainty 

regarding the average cost per insured can be reduced to a negligible level if there are a 

sufficiently large number of independent insureds. A risk averse individual will pay more than 

his or her own expected costs if the payment amount is certain, the consequences are uncertain 

and there is a significant potential financial impact. 

In the case of the die if it is thrown a large number of times and the result from each throw is 

recorded, then the sum of all throws will be rather close to 3.5 times the number of throws. 

Otherwise said, the average from a large number of throws will be close to the expected value 

of 3.5. 

Alternatively, if we now do not assume that the die is fair, then there will be added uncertainty 

regarding the final outcome. In this case, the underlying model is the same as in the first 

example, the generation of numbers between one and six depends on which side lands up. 

However, we now lack the luxury of knowing the probability of each of the six outcomes. The 

model and the distributions are known with certainty, but we are uncertain about the parameters 

of the distribution; hence, an example of parameter uncertainty. 

An example of the third "source of uncertainty (model uncertainty) would arise if we try to model 

a series of numbers between one and six by assuming they came from the throw of a single die 

that may or may not be fair. If we have a more complex process, this may not be sufficient. For 

example, we could be observing the throw of one of many dice, each with different probabilities 
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attached to each number. The particular die selected for a particular throw could be chosen as 

a function of prior throws. Here, no simple, single weighted die would be the correct model. 

When evaluating methods that claim to measure uncertainty in reserves, the reader should ask 

which of these sources are considered, and in what way. Given the complexity of property and 

casualty insurance processes it is unlikely that all will or even can be completely addressed. 

6. A Relatively Simple Example 

Thomas Mack 7 has addressed uncertainty in development factor (chain ladder) forecasts, and 

has developed some fairly simple formulae based on some fairly broad, and possibly 

reasonable assumptions. In particular, if we are willing to assume that the development factor 

method is actually correct (assuming away the third source of uncertainty) and that there is a 

certain structure to the variance of payments at each age then Mack derives fairly simple 

formulae for the standard error of reserves, both by exposure year and in total. The reader is 

referred to the full paper, but we will attempt to provide a brief summary here. 

Let C# denote cumulative payments for exposure year i at age j with / accident years and I 

stages of development. Mack makes the following assumptions: 

1. There are age-to-age development factors f~ such that E(C,j÷4 Ci~, C~2 . . . . .  C~)=~C#,I < i < 

I, 1<j<1-1 

2. {Cm Ci2 ..... C,}, {C m Cj2 ..... Cjl} independent for i ~j, and 

3. There are constants ok such that Var(Cik+llCm Cj2 ..... Cik) = C~k ok 2, 1 < k < I-1 
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Under the first two assumptions Mack shows that the following are unbiased estimators of the 

development factors fk: 

These are simply the volume-weighted averages of the development factors in a particular 

column. More importantly however, is the estimate of the variance or the reserve forecasts from 

the development factor method. For this set 

(5.2) 

l - k  ^ 2 

[ ,<_,<_,-2 

a, I Lmin(~2_2/O= ,min(~7_=,o~_,)),k=l_ 1 

"= = ~ l - k - 1  i=, ~. C~ ) ' 

Mack shows that the ~-~ values are unbiased estimators for 1 < k </-2. He faced the practical 

problem of having only one development factor from the I -  1 't age to the f" age and relied on a 

general pattern for the variances for that factor. This problem does not exist if one is willing to 

assume that the data presented are fully mature, thus leading one to conclude no variance in 

the last factor or so. 

Now taking estimates of future payments from the development factor model, that is 

(5.3) 
=~c,,,_/,,_,...~ ,,k >1+1- i  6,, 

I LC,÷I j,k = I + 1 - i 

Mack shows that the mean squared error of the reserve forecast for one exposure year can be 

estimated by 
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(5.4) 
t J , , J~ .4.2[ 
r#se(#,)=6,~ ~ ~ l  1 I 

He further shows that the total reserve for all exposure years combined can be estimated by 

(5.5) 
2 f ' . ~ ' '  2"2,"f, 2] 

[mJse(R): s.e.(,~,)) +C,,] ~, C,,| 2 ~ t  
k/=i+l  J k : l * l  i ~'~(-~. | 

/ , - - a k  

n= l  

Although these formulae are a bit complicated, they are in closed form and do provide estimates 

of the error of development factor forecasts. One may be tempted to say that our job is done, 

but before we jump to that conclusion we will look at a relatively simple example. 

Consider the data set shown in Exhibit 1. These hypothetical data are based on personal 

automobile bodily injury coverage, net of reinsurance for a rather homogeneous database. The 

data have been disguised, though they retain the salient features of the actual experience. The 

accident dates shown are real, so more than ten years later we now virtually know the ultimate 

losses by accident year. 

Applying this approach to the paid and incurred triangles separately, and recalling that the 

difference between the ultimate projections and the amounts to date ("reserve" in Mack's 

analysis) based on an incurred triangle is actually combined provisions for incurred but not 

reported claims, for additional development on known claims, and claims in transit, we obtain 

the estimates in Table 1 : 
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Table 1 
Standard Error of Reserve Estimates 

Paid Method Incurred Method 
Case Reserve $96,917 
Estimated Future $358,453 90 580 
Total Reserve $358,453 $187,497 
s,e,(Estimate) $41,639 $13,524 

To assist in comparing these results, Exhibit 2 shows two normal distributions with means and 

standard deviations equal to the expected total reserve and standard error estimates 

respectively. As can be seen, the two distributions actually have little in common. 

Obviously something is happening. The two data sets, paid and incurred development 

triangles, though from the same data source are telling two very different stories. What then 

does this tell us about the distribution of reserves? 

It is likely that one or both of the paid and incurred development triangles do not satisfy Mack's 

hypotheses; thus, the differences are most likely due to model or specification uncertainty. This 

simple example highlights the importance of the third area of uncertainty. Moreover it highlights 

the likelihood that model or specification uncertainty can overwhelm both parameter and 

process uncertainty when trying to measure uncertainty in reserves rather than uncertainty in 

the projections of one particular model. In this case, and in many actual reserving applications, 

model or specification uncertainty is probably the largest single source of variability in reserve 

estimates, and often the source most difficult, or even impossible to quantify. 

This is a key point to remember when reviewing statistically based methods applied to actuarial 

problems. Most statistically based methods we have seen to date deal with a single statistical 

model, and in most cases consider only one data set (for example a paid loss development 
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triangle). Therefore their results would apply to the projections of a particular method and not 

necessari ly to the final distribution of reserves. 

The actuary should also be aware of what statistical element is being considered by a particular 

stochastic method. For example, does the distribution apply to expected forecasts for a method 

or to the forecasts themselves? 

7. An Alternative 

Rather than approaching the problem of estimating the distribution of reserves from the view of 

one model, we could consider the reserve distribution from a micro level. In its most simple 

formulation, we can assume that there is a number N of open and IBNR claims, all of  which are 

statistically independent, and have the same probability distribution, say with mean p and 

variance 0 -2 . Then the distribution of reserves will have mean and variance: 

(6.1) 
E ( R )  = N/~ 

V a r ( R )  = N(7 2 

If the distribution for the claims Xj is known then the resulting reserve distribution will only exhibit 

process uncertainty. For some distributions of claim sizes, the distribution of reserves will be 

known and have a closed form. One simple example, though unrealistic for property and 

casualty reserves occurs when the claims all are drawn from the same normal distribution. In 

this case reserves will be normally distributed with known mean and variance. 

There are few situations in property and casualty reserve applications when the number of 

claims is known with certainty. If the number of claims N is also random, is independent from 

the claim size distribution, and has mean A and variance ~, then the reserves will have the 

following mean and variance 
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(6.2) 
Var (R)  = 20 -2 +,u2r 2 

Often in collective risk applications, the random variable N is assumed to have a Poisson 

distribution, in which case T 2 = A, and we have 

(6.3) Var (R)  = 2 ( ~  2 +/~2) 

With a Poisson claim count distribution, we see that the variance of the average reserve is: 

(6.4) 
Var/  / 

0.2 + ~2 

2,!, 

This variance approaches zero as 2 becomes arbitrarily large. Otherwise said, in the case that 

claim counts have a Poisson distribution, process uncertainty inherent in the average reserve 

will effectively disappear as the expected number of claims gets large. 

A benefit of this model for estimating the distribution of reserves is that it allows us to specifically 

incorporate both parameter and process uncertainty and allows us to quantify the effects of 

each. As with most other models, estimating model or specification uncertainty is more difficult, 

and may not be able to be done in general reserving situations. 

Heckman and Meyers 8 outline an approach that can be used to incorporate parameter 

uncertainty into this classical collective risk model. 
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The work by Heckman and Meyers referenced here presented a fundamental advance in the 

use of the collective risk model, essentially solving the problem of calculating aggregate 

distributions for collective risk models with quite weak restrictions on the claim size distribution. 

The solution is sufficiently straight-forward to be able to be easily programmed, in fact a copy of 

such a program is included as an exhibit to the paper. Their solution applies to a generalized 

collective risk model that includes the potential for "contagion" (the possibility that an external 

event could affect the frequency of claims across lines of insurance or years of coverage) and 

for "mixing" (the possibility of an external event could affect the size of all claims). 

We will adopt their notation here. To this end, we assume that X and ,8 are two random 

variables with 

(6.5) 
E(Z) = I, Var (Z) = c 

E ( l /p )  = I, Var (1/,6') = b 

We will use X and ,8 to incorporate uncertainty into our collective risk model. We then consider 

the algorithm for generating one observation of aggregate reserves: 

1. Randomly select a value for X, 

2. Randomly select the number of claims N from a Poisson distribution with expected value 

xA, 

3. Randomly select a value for,8, 

4. Randomly select N claims from the claim size distribution, and 

5. Add the values of the N claims and divide the result by ,8. 
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Heckman and Meyers call the c parameter the "contagion" parameter and the b the "mixing" 

parameter. Under the assumptions that the claim count and claim size distributions are 

independent, and that the claim selections in step 4 are independent of each other and of the 

random variables X and /3, then we can calculate the expected value and variance of the 

aggregate reserves. These values are: 

(6.6) 
E(R) = 2/J 

Var (R) = 2 (,u = + a=)(1 + b) + 2=p = (b + c + bc) 

We see that in this formulation of the problem, the variance of the average expected reserve 

does not approach 0 with a large number of expected claims unless b = c = 0 (or in the trivial 

case the expected losses are zero). In the case that b = c = 0, the formula reduces to the case 

without parameter uncertainty. 

The alternative approach to estimating the distribution of reserves we present here uses 

traditional methods in an attempt to estimate the parameters c and b. 

The algorithm presented by Heckman and Meyers actually allows for the combination of 

aggregate loss distributions for several lines of insurance, each with its own contagion 

parameter c but with a global mixing parameter b. In the approach we present here, we will 

take advantage of this feature and have different contagion parameters for each accident year, 

as well as a single global mixing parameter reflecting uncertainty that affects the reserves for all 

accident years at once. Examples of this global uncertainty would be estimated future inflation, 

court decisions, and so forth. 

We will first take a traditional approach to estimating reserves by accident year for the data 

contained in Exhibit 1. A detailed review of the data would lead the actuary to conclude that 
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there are many changes occurring in the historical data. There appears to have been changes 

in the rates at which claims are being closed. There also appear to be changes in relative 

reserve adequacy over time. As with traditional approaches we applied a variety of different 

methods to both the actual data and to data adjusted for the estimated effects of changing rates 

of claim closure and of relative reserve adequacy. For this we used methods outlined in the 

paper by Berquist and Sherman. 9 

Exhibit 3 shows the reserve estimates by accident year for each method used. The 

development methods simply apply the usual development method to the indicated data set. By 

"Adjusted Incurred" we mean historical incurred losses adjusted to reflect current relative 

reserve adequacy. By "Severity" we mean the incremental average cost projection method 

described in Berquist and Sherman. The "Hindsight" method is an iterative approach that 

makes use of historical average future costs per open and IBNR claim to derive estimates of 

ultimate losses. 

The bottom portion of Exhibit 3 shows the weights we assigned to each of the methods. These 

weights reflect our subjective view of the applicability of the particular method for a particular 

accident year. We will use the variation in estimates from the various methods to gauge the 

uncertainty of reserve estimates by accident year. In fact we will use the standard deviations in 

the last column of Exhibit 3 to estimate the contagion parameters for each accident year. For 

this we consider formula (6.6) and set b = 0. This then gives us the following variance estimate 

for reserves for accident year i: 

(6.7) 2 2 _+_ 2 2 Var(R,) = 4, (,u, + ¢, ) c,,L,/z, 

158 



Hera, At denotes the expected number of open and IBNR claims for accident year/whi le pj and 

G~ are the mean and variance, respectively, of the reserves for a single claim for accident year i. 

We note that the two terms in this sum can be interpreted as the variance without parameter 

uncertainty and the contribution of parameter uncertainty to the total variance. 

We note that though the derivation does not make sense, the formulae developed by Heckman 

and Meyers allow the contagion parameter c to be negative. In that case, the claim counts will 

have a binomial distribution with mean greater than its variance. In the case of a positive c 

value, the claims will have a negative binomial distribution with variance greater than the mean. 

As we have seen above, in the case of c = 0 claims will have a Poisson distribution. 

Our analysis of the Exhibit 1 data provided us with estimates of the number of open and IBNR 

claims, and hence estimates of the values for p~. For sake of illustration we assumed that the 

open claims for each accident year will each have Iognormal distributions with the same 

coefficient of variation. More sophisticated analysis of open and IBNR claims for older accident 

years may provide more accurate estimates of these distributions. In any case, the standard 

deviations for individual claims based on these distributions are also shown in Exhibit 4. 

The column titled "Aggregate Process Standard Deviation" is the standard deviation implied by 

a collective risk model with no parameter uncertainty and a Poisson claim count distribution as 

described above. We can then solve equation (6.7) for cj to obtain estimates of the contagion 

parameters by accident year implied by our analysis, and claim count and size distributions. 

That is what was done in the last column of Exhibit 4. 

We now turn our attention to the mixing parameter b. In the modeling, the ,B random variable 

uniformly affects all claims in a particular iteration. In our model here we will use it as an 

overlay to reflect global uncertainty in the forecasts. To measure this uncertainty, we compare 
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estimated ultimate severities against an expected smooth transition from one year to the next. 

Since there is volatility in the percentage of paid claims, we elected to measure this global 

uncertainty by reviewing the severity per ultimate claim as opposed to the average ultimate 

claim with payment (selected in the reserve analysis due to the fact that there is 0 probability of 

a Iognormal claim having 0 payment). 

Exhibit 5 shows our estimation of the mixing parameter b. Here, we compare the selected 

severities (per ultimate reported claim) to averages based on an exponential fit through all data 

points. We assume that observations of 1//3 are ratios of the actual severity over the fitted 

severity. The estimate for the mixing parameter b is then the variance of the observed 1//3 

values. 

We now have sufficient information to derive an estimate of the distribution of reserves for this 

sample problem. We used the algorithm discussed in Heckman and Meyers to estimate the 

distribution of aggregate reserves, both with parameter uncertainty (non-zero values for the c~ 

and b parameters) and without such parameter uncertainty. Exhibit 6 graphically compares 

these two distributions. As can be seen, parameter uncertainty is substantial in this case. 

One striking observation from this analysis is the dispersion of the reserve distribution in this 

case. The distribution has a standard deviation of $39 million on total reserves of $202 million, 

for a coefficient of variation of more than 19%. The 90 t" and 95 th percentiles for this aggregate 

distribution are $250 million and about $278 million, respectively, or 24% and 38% above t,he 

expected amount. This is a far cry from the "plus or minus 10%" that is sometimes cited in 

ranges for reserves. These results simply reflect the substantial uncertainty inherent in the 

reserve forecasts, in this case, due largely to the changes that have been occurring in the 

historical experience. 
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It is also likely that we have missed sources of uncertainty in the above analysis. We have 

identified methods we believed to be appropriate, and gave them subjective weights based on 

their relative strengths and weaknesses and the situations occurring in the experience. These 

weightings are subjective and potentially volatile, adding to the model or specification 

uncertainty, and probably not directly accounted for in the analysis. 

In addition, we assumed that all random quantities are independent from one another. We 

attempted to take some potential correlation into account by the use of the contagion and mixing 

parameters. This is a crude approach at best. There has been some recent work in calculating 

aggregate distributions where there is some form of correlation among some of the distributions. 

Examples of this can be found in Wang 1° and Dhaene, et.al 1~'~2 The inclusion of correlation 

between years, should such correlation exist, would be an obvious refinement to the approach 

we have outlined here. 

As noted above, the accident years are real for the data. As such, all accident years are now 

virtually completely closed. The current data would imply a December 31, 1991 reserve of 

approximately $170 million, outside of the "plus or minus 10%" range and at an approximate 

19% probability level given the analysis discussed above. Although in hindsight our 

methodology was not as accurate as we would like the answer does not appear to be 

unreasonable given the volatility of the estimates. 

8. Conclusion 

We recognize this approach is far from perfect. The traditional approaches are very robust and 

provide the actuary with a substantial amount of valuable information, which may not be present 

in the application of a single statistically based approach. There is obviously more work to be 

done to make that information rigorous and quantifiable. 
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Work by Mack and others have gone a long way to putting the chain ladder or development 

factor approaches on statistical footing. Other traditional methods can probably also benefit 

from such a rigorous approach. For example, one might think of a simplified version of the 

incremental severity method, presented by Berquist and Sherman to be formulated by a 

statistical model with parameters representing an inherent trend and on-level averages for each 

age of development. Nonlinear statistical approaches may be helpful in gaining statistical 

insight to the properties of that traditional technique. A similar approach may also prove 

beneficial in gaining additional understanding into the Stanard-BOhlman or Bornhuetter- 

Ferguson approaches. 

If we work with a variety of forecast methods, which is a fundamental characteristic of the 

traditional approach to estimating reserves, then we should also understand the correlation of 

results among the various methods. This understanding would also help us to better estimate 

the distribution of reserves. 

There obviously remains much yet to be done. 
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Accident 

EXAMPLE PRIVATE PASSENGER AUTO BODILY INJURY LIABILITY DATA 

Cumulative Paid Losses 

Months of Development 
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Page 1 of 3 

Year 12 24 36 48 60 72 ~ 96 108 120 132 144 156 168 180 192 204 216 
1974 $267 $1,975 $4 .587 $7.375 $10,661 $15,232 $17,888 $18,541 $18.937 $19.130 $19.189 $19.209 $19,234 $19,234 $19,246 $19,246 $19,246 $19.246 
1976 310 2,809 5.686 9,386 14.884 20,654 22.017 22,529 22.772 22.821 23.042 23.060 23.127 23.127 23.127 23,127 23,159 
1976 370 2.744 7,281 13 .287  19,773 23,888 25.174 25.819 26.049 26.180 26.268 26.364 26.371 26.379 26,397 26,397 
1977 577 3.877 9,612 16.962 23 ,764 26.712 28.393 29,656 29.839 29.944 29.997 29.999 29.999 30.049 30.049 
1978 509 4.518 12,067 21,218 27.194 29.617 30.854 31,240 31 ,598 31 ,889  32 .002  31.947 31.965 31.986 
1979 630 5.763 16,372 24,105 29,091 32 .531 33.878 34 .185 34 .290 34,420 34.479 34.498 34.524 
1980 1.078 8,066 17.518 26,091 31 ,807  33.883 34.820 35 .482 35 ,607 35.937 35,957 35,962 
1981 1.646 9,378 18,034 26.662 31 .253 33.376 34.287 34 .985 35 .122 35,161 35,172 
1982 1.754 11.256 20.624 27.857 31.360 33.331 34 .061 34 .227 34.317 34,378 
1983 1.997 10.628 21.015 29,014 33 .788 36.329 37,446 37.571 37,681 
1984 2,164 11.538 21.549 29,167 34 .440 36.528 36,950 37,099 
1985 1,922 10,939 21.357 28,488 32 .982 35.330 36,059 
1986 1,962 13,063 27.869 38,560 44.461 45.988 
1987 2,329 18,086 38.099 51,953 58.029 
1988 3,343 24,806 52,054 66,203 
1989 3,847 34,171 59,232 
1990 6,090 33.392 
1991 5,451 

Claims Closed with Payment 

Accident Months of Development 
Year 12 24 36 ~ 60 72 ~ 96 108 120 ~ 144 156 168 180 192 204 216 
1974 268 607 858 1,090 1.333 1,743 2,000 2,076 2.113 2,129 2,137 2,141 2,143 2.143 2,145 2,145 2,145 2.145 
1975 294 691 913 1,195 1,620 2,076 2,234 2,293 2,320 2.331 2.339 2.341 2.343 2,343 2,343 2,343 2,344 
1976 283 642 961 1,407 1.994 2.375 2,504 2,549 2.580 2,590 2.596 2.600 2.602 2.603 2,603 2,603 
1977 274 707 1,176 1,688 2.295 2.545 2,689 2,777 2.809 2,817 2,824 2.825 2.825 2,826 2,826 
1978 269 658 1,228 1,819 2.217 2.475 2.613 2,671 2,691 2.706 2,710 2.711 2,714 2,717 
1979 249 771 1,581 2,101 2,528 2.816 2,930 2,961 2.973 2.979 2,986 2,988 2,992 
1980 305 1,107 1,713 2.316 2,748 2.942 3,025 3,049 3,063 3,077 3,079 3,080 
1981 343 1,042 1.608 2,260 2,596 2,734 2.801 2,835 2,854 2.859 2,860 
1982 350 1,242 1,922 2,407 2.661 2.834 2,887 2,902 2.911 2,915 
1983 428 1,257 1,841 2,345 2.683 2.853 2.908 2,920 2,925 
1984 291 1,004 1,577 2.054 2,406 2.583 2.622 2,636 
1985 303 1,001 1,575 2,080 2,444 2,586 2,617 
1986 318 1.055 1.906 2,524 2,874 2.968 
1987 343 1,438 2,384 3,172 3,559 
1988 391 1.671 3,082 3,771 
1989 433 1.941 3,241 
1990 533 1,923 
1991 339 
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Accident 
Year 12 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
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EXAMPLE PRIVATE PASSENGER AUTO BODILY INJURY LIABILITY DATA 

Cumulative Reported Claims 

Months of Development 
24 36 48 ~ 72 84 96 108 120 132 144 156 168 180 192 204 216 

1,912 2,854 3,350 3,945 4,057 4,104 4,149 4,155 4,164 4,167 4,169 4,169 4,169 4,170 4,170 4,170 4,170 4,170 
2,219 3,302 3,915 4,462 4,618 4,673 4,696 4,704 4,708 4,711 4,712 4,716 4,716 4,716 4,716 4,716 4,717 
2,347 3,702 4,278 4,768 4,915 4,983 5,003 5,007 5,012 5,012 5,013 5,014 5,015 5,015 5,015 5,015 
2,983 4,346 5,055 5,696 5,818 5.861 5,884 5,892 5,896 5,897 5,900 5,900 5,900 5,900 5,900 
2,538 3,906 4,633 5,123 5,242 5,275 5,286 5,292 5,298 5,302 5,304 5.304 5,306 5,306 
3,548 5,190 5,779 6,206 6,313 6,329 6,339 6,343 6,347 6,347 6,348 6,348 6,348 
4,583 6,106 6,656 7,032 7,128 7,139 7,147 7,150 7,151 7,153 7,154 7,154 
4,430 5,967 6,510 6,775 6,854 6,873 6,883 6,889 6,892 6,894 6,895 
4,408 5,849 61264 6,526 6,571 6,589 6,594 6,596 6,600 6,602 
4,861 6,437 6,869 7,134 7,196 7,205 7,211 7,212 7,214 
4,229 5,645 6,053 6,419 6,506 6,523 6,529 6,531 
3,727 4,830 5,321 5,717 5,777 5,798 5,802 
3,501 5,045 5,656 6,040 6,096 6,111 
4,259 6,049 6,767 7,206 7,282 
4,424 6.700 7.548 8,105 
5,005 7,407 8,287 
4,889 7,314 
4,044 

Outstanding Claims 

Months of Development 
24 36 48 60 72 84 96 

1,381 1,336 1,462 1,660 1,406 772 406 191 
1,289 1,727 1,730 1,913 1,310 649 358 167 
1,605 1,977 1,947 1,709 1,006 540 268 166 
2,101 2,159 2,050 1,735 988 582 332 139 
1,955 1,943 1,817 1,384 830 460 193 93 
2,259 2,025 1,548 1,273 752 340 150 68 
2,815 1,991 1,558 1,107 540 228 88 55 
2,408 1,973 1,605 954 480 228 115 52 
2,388 1,835 1,280 819 354 163 67 44 
2,641 1,765 1,082 663 335 134 62 34 
2,417 1,654 896 677 284 90 42 15 
1,924 1,202 941 610 268 98 55 
1,810 1,591 956 648 202 94 
2,273 1,792 1,059 626 242 
2,403 1,966 1.166 693 
2,471 2,009 1,142 
2,642 2,007 
2,366 

108 ~ 132 _._I_.4444444~_ 156 168 180 192 204 216 
98 57 23 13 
73 30 9 6 
79 48 32 18 
66 38 27 21 
56 31 15 9 
36 24 18 13 
28 14 8 6 
27 15 11 
21 10 
18 

3 4 0 0 
4 2 2 1 

14 10 10 7 
21 8 3 

7 2 
4 

0 0 
1 
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EXAMPLE PRIVATE PASSENGER AUTO BODILY INJURY LIABILITY DATA 

Outstanding Losses 

Months of Development 
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O~ 

Year 12 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1963 
1984 
1985 
1966 
1987 
1988 
1989 
1990 
1991 

Accident Eamed 

1974 11,000 
1975 11,000 
1976 11,000 
1977 12,000 
1978 12,000 
1979 12,000 
1980 12,000 
1981 12,000 
1982 11,000 
1983 11,600 
1984 11,000 
1985 11,000 
1986 12,000 
1987 13,000 
1988 14,000 
1989 14,000 
1990 14,000 
1991 13,000 

24 36 48 60 72 84 96 108 120 
$5.275 $8,867 $12,476 $11,919 $8 ,966  $5,367 $3 ,281 $1,524 $667 $348 
6,6t7 11 ,306  13 ,773 14 ,386 16,593 4,234 2,116 1,651 436 353 
7,658 11 ,664 13 ,655 13,352 7,592 4,064 1,895 1,603 683 384 
8,735 14 ,318  14 ,897 12,978 7,741 4,355 2,132 916 498 323 
8,722 15 ,670 15 ,257  11,189 5,959 3,473 1,531 942 547 286 
9,349 16 ,470 14 ,320 10,574 6,561 2.664 1,328 784 424 212 

11,145 16,351 14 ,636 11,273 5,159 2,588 1,296 573 465 134 
10,933 15 ,012 14,728 9,067 5,107 2,456 1,400 584 269 120 
13,323 16 ,218  12,676 6,290 3,355 1,407 613 398 192 111 
13,899 16 ,958  12,414 7,760 4,112 1,637 576 426 331 
14,272 15 ,806  10,156 8,005 3,604 791 379 159 
13,901 15 ,384  12,539 7.911 3,809 1,404 827 
15,952 22,799 16,016 8,964 2,929 1,321 
22,772 24 ,146  18,397 8,376 3,373 
25,216 26 ,947  17,950 8,610 
24,981 36 ,574  19,621 
30,389 34,128 
26,194 

132 144 156 168 180 192 204 216 
$123 

93 
216 
176 
177 
146 
81 
93 

$82 
101 
102 
99 
61 

113 
54 

$18 
10 
93 

101 
67 
38 

$4O 
5 

57 
32 

7 

$0 
3 

33 

$0 
3 

$0 
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Exhibit 3 
EXAMPLE RESERVE FORECASTS 

Oo 

Reserve Estimates by Ultimate Forecast Method Wei~lhted 
Accident Incurred Paid Adjusted Paid Adjusted for Claim Closin 9 Changes Standard 

Year ~ ~ Sever i~ Pure Premium ~ incurred ~ S e v ~  Pure Premium Hindsig~ ~ e  Deviation 

Total 

1974 $0 $0 $0 $0 $0 $0 $0 $0 0 0 
1975 3 6 0 0 3 0 0 O 0 0 
1976 33 0 0 0 33 21 0 0 11 14 
1977 5 0 0 0 8 24 0 0 5 8 
1978 -15 t0  9 10 7 26 O O 6 11 
1979 -10 35 34 33 -35 28 0 0 11 24 
1980 -7 54 55 50 -29 61 33 31 31 30 
1981 -37 49 73 75 -20 77 47 49 39 41 
1982 -41 107 136 131 -58 100 79 75 66 70 
1983 114 275 297 297 -68 200 176 172 156 126 
1984 -161 416 394 446 - t35 352 318 351 181 258 
1985 403 761 713 812 130 692 702 779 567 248 
1986 744 2,143 1.760 1.909 $1.687 394 1,936 1,842 1,950 $675 1,357 637 
1987 2,335 6,847 5,583 5,128 5,128 2.348 6,060 5,790 5.220 2,301 4,260 1.620 
1988 8,371 19,768 16,246 13,451 14,428 10.391 17.352 16.433 
1989 25.787 44.631 36,887 
1990 60.211 83.760 73,987 
1991 83,093 130,907 95,283 

29.232 32,199 26.048 39,241 36,431 
61,846 62.974 65,734 79.667 70,246 
95.185 78.616 79,573 154,268 87.625 

Selected Weights 

13,399 8,001 12,866 3,525 
28,512 19.174 36.212 6,428 
57.192 43.286 62.516 10,198 
84.688 72.157 90,014 19.166 

1974 1 1 1 1 1 1 1 1 
1975 0 1 1 1 0 1 1 1 
1976 1 1 1 1 1 1 t 1 
1977 1 1 1 1 1 1 1 1 
1978 1 1 1 1 1 1 1 1 
1979 1 1 1 1 t 1 1 I 
1980 1 1 1 1 1 1 1 1 
1981 1 1 1 1 ! 1 I 1 
1982 1 1 1 1 1 1 1 1 
1983 3 t 2 2 3 1 2 2 
1984 3 1 2 2 3 1 2 2 
1985 3 1 2 2 3 1 2 2 
1986 3 1 2 2 2 3 1 2 2 2 
1987 3 1 2 2 2 3 I 2 2 2 
1988 3 1 2 2 2 3 1 2 2 2 
1989 3 1 2 2 2 3 1 2 2 2 
1990 3 1 2 2 2 3 1 2 2 2 
1991 3 1 2 2 2 3 1 2 2 2 

202,298 



Exhibit 4 
ESTIMATION OF CONTAGION PARAMETERS BY ACCIDENT YEAR 

Accident Estima~d 
Year 

1974 $0 2,145 2,145 
1975 0 2,344 2,344 
1976 11 2,604 2,603 
1977 5 2,827 2,826 
1978 6 2,718 2,717 
1979 11 2,994 2,992 
1980 31 3,083 3,080 
1981 39 2,865 2,860 
1982 66 2,922 2,915 
1983 156 2,938 2,925 
1984 181 2,658 2,636 
1985 567 2,661 2,617 
1986 1,357 3,064 2,958 
1987 4,260 3,889 3,559 
1988 12,866 4,697 3,771 
1989 30,212 5,135 3,241 
1990 62,516 5,270 1,923 
1991 90,014 4,410 339 

Single Aggregate Estimated 
Claim Process Total 

Paid Claim Count Estimates Average Standard Standard Standard Implied 
Reserve Ultimate Closed Open & IBNR Reserve Deviation Deviation Deviation c Value 

$0 
0 
1 $11,000 $16,251 $20 $14 -1.477 
1 5,000 7,387 9 8 -0.858 
1 6,000 8,864 11 11 0.092 
2 5,500 8,126 14 24 3.172 
3 10,333 15,266 32 30 -0.097 
5 7,800 11,523 31 41 0.473 
7 9,429 13,929 45 70 0.669 

13 12,000 17,728 77 126 0.405 
22 8,227 12,155 69 258 1.882 
44 12,886 19,038 152 248 0.120 

106 12,802 18,913 235 637 o.19o 
330 12,909 19,072 418 1,620 o.135 
926 13,894 20,527 754 3,525 0.072 

1,894 15 ,951  23,566 1,238 6,428 0.044 
3,347 18,678 27,595 1,928 10,198 0.026 
4,071 2 2 , 1 1 1  32,666 2,517 19,166 0.045 



Exhibit 5 
ESTIMATE OF MIXING PARAMETER 

Accident 
Yea.___£ 

1974 19,246 
1975 23,159 
1976 26,408 
1977 30,054 
1978 31,992 
t979 34,535 
1980 35,993 
1981 35,211 
1982 34,444 
1983 37,837 
1984 37,280 
1985 36,626 
1986 47,345 
1987 62,289 
1988 79,069 
1989 89,444 
1990 95,908 
1991 95,465 

Estimated Ultimate 
Reported Indicated Smoothed Estimate 

Losses Cla ims Severi~ Severi~ 
4,170 4,615 4,165 1.108 
4,717 4,910 4,388 1.119 
5,016 5,265 4,623 1.139 
5,901 5,093 4,870 1.046 
5,307 6,028 5,130 1.175 
6,349 5,439 5,404 1.007 
7,155 5,030 5,693 0.884 
6,897 5,105 5,997 0.851 
6,605 5,215 6,317 0.825 
7,219 5,241 6,655 0.788 
6,539 5,701 7,011 0.813 
5,812 6,302 7,385 0.853 
6,130 7,723 7,780 0.993 
7,327 8,501 8,196 1.037 
8,256 9,577 8,634 1.109 
9,017 9,919 9,095 1.091 
8,931 10,739 9,581 1.121 
7,829 12,194 10,093 1.208 

Variance (estimate of b ) 0.019 

170 
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