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ON THE PRACTICAL MULTILINE EXCESS OF LOSS PRICING
ABSTRACT

More and more ceding companies are asking for global protections of their portfolios. One
example is the protection by the reinsurer of two (or more) lines, e.g. fire and motor third
party liability. Clearly this allows the insurance company to optimally balance its portfolio
and to pay the lowest reinsurance premium. In this paper we analyse how to price an excess
of loss treaty covering multiple lines.
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1. INTRODUCTION

Insurance companies are corporations and. as such, they are willing te buy reinsurance for the
sae reasons that corporations buy insurance. ‘These reasons include the fact that entitics
are not able to diversify insurable risks. They will therefore demand some compensation for
their risk-averseness. This copensation may take different fors :

- higher wages for emplovees and managenrs
- lower rates for clients

- more allocated capital by the sharcholders
- buving sowe (relinsurance.

The latter is observed on the market and we will discuss in this paper the pricing of some
partienlar reinsurance treaties.

NMore and more insurance companies are trying to optimize their reinsurance structure. They
are looking for a global protection with their reinsurers. One of these global solutions is to
cover two lines simultaneously. Clearly this allows to take better advantage of the diversifi-
cation of an insurance portfolio. Thus a better reinsurance cover follows,

Let us take an exanple. Asstume a fire treaty existing of three Tavers

- Laver 1 {Firc) © 2500 xs 1000 with three reinstatenments at 1004,
- Layer 2 (Fire) @ 3000 xs 3000 with two reinstatements at 1004
- Laver 3 (Fire) © 1000 xs 6000 with one reinstatement ar 10
Assutne a MTPL (Motor Third Party Liability) treaty existing of three hyers -
- Laver 1 (MTPL) @ 3000 xs 2000 with unfimited free reinstatements.
- Laver 2 (AITPL) : 5000 xs 5000 with nulbnited free reinstatements,
- Layer 3 (MTPL) @ o x5 10000 with wnhmited free reinstarements.

North American readers may be surprised to see hvers with nnlimited free reinstatencnts,
as well as an unlimited laver. This is i tact conunon practice in Eunrope. aad in particular in
Belgiwm, at least for Motor Third Party Liability covers. Property covers are always limitod
and General Liability covers are usually Limited.

An alternative sohition might be to keep Layers 2 and 3 for Fire and MTPL and to create a
global treaty with alternative Layer 1bis (Fire) and Layer Ihis (MTPL)

- Layer 1bis {Fire) : 2500 xs 500 with unlimited free reiustarements,
- Layer 1bis (NPTL) : 4000 xs LO00 with nulunited free reinstatements,

with a global annual aggregate deductible of, say. 1000 (Ribeaud (2000} calls it @ mualtiline
aggregate deductible). So, for the working layer we combine Fire and MTPL aud, as it is a
working layer, we impose a large annual aggregate deductible in order to avoid a huge anount
of claims to be paid by the reiusurer and high premimmns 1o be paid by the insurer. Note that
Layer 1bis (Fire) and Layer 1bis (MTPL) are one treaty. One global premium is asked for
that cover. We now have three treaties :
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- Fire with two layers : 3000 xs 3000 and 4000 xs 6000.
- MTPL with two layers : 5000 xs 5000 and co xs 10000.

- Global, which is affected by claims hitting Layer 1bis (Fire) and Layer 1bis (MTPL)
with a global (multiline) annual aggregate deductible of 1000.

This global treaty is exactly the kind of treaty we want to price in this paper.

Throughout the paper we will use a numerical example in order to apply the models and
formulae that will be derived.

The rest of the paper is organized as follows. Section 2 presents the general model we will work
with as well as the particular distributions that will be used in the numerical example. Section
3 recalls the use of the Panjer’s algorithm as well as the use of lattice distributions. Section
4 presents the detailed model we will work with, i.e. reinsurance liabilities with potential
clauses. Section 5 shows how to mix both lines and obtains expected values required for the
cash flow model that is presented in section 6. Section 7 discusses the use of clauses making
the reinsurance premium random. Section 8 gives the conclusion.

2. GENERAL MODEL

From now on we will adopt the traditional convention that treaties are yearly based, which
is common practice.

We will work within the collective risk model. In this model, claims arise anonymously
from the portfolio. It is assumed that the losses are identically distributed and mutually
independent. It is also assumed that they are independent of the number of claims, which is
a random variable (typically a Poisson distribution).

Working with the collective risk model is not a limitation, as other models may be used, e.g.
the individual risk model. In this model it is assumed that each risk has a (known) chance
to produce at least one claim during the coverage period. It is also assumed that the loss
distribution, in case of a claim, is known for each risk.

Let us define

- X, as the i*" claim amount of type Fire,
- Y, as the i" claim amount of type MTPL.

It is assumed that the X,'s are independent and identically distributed as well as the Y's.
X,'s and Y's are assumed to be mutually independent. We also define

N as the nunber of claims of type Fire,
- M as the number of claims of type MTPL.

We assuwine that N and M are independent and that N and the X,'s on the one hand and M
and the ¥)'s on the other hand are also independent.
We are then able to build two collective risk models :
S = X1+ +Xu,
T = Y+ 4V,
where S denotes the aggregate fire claims and 7" denotes the aggregate MTPL claims.

Let us assume that the distributions of X, Y, N and M have been estimated, possibly based
on past data, as follows
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- the distribution of the fire claim amounts, X, is Pareto with parameters A = 400 and
a = 1.50. The distribution of the MTPL claim amounts, Y is Pareto with parameters
A = 700 and o = 2.50. Let us recall the cumulative density distribution of a Pareto
distribution (X ~ Pa(4,q)) :

Fx(z) 0 ifzx<A,

= 1—(%)—" ifz> A

[

- the distribution of the fire claim numbers, N is Poisson with parameter A = 2.5. The
distribution of the MTPL claim numbers, M is Poisson with parameter A = 5. Let us
recall the probability function of a Poisson distribution (N ~ Po(})) :

n

A
]P[N:n]:p(n):e"\m , n=0,1,...

3. PRACTICAL CALCULATIONS FOR THE REQUIRED DISTRIBUTIONS

In general, the actuary knows the behaviour of the claims losses. He has fitted, based on past
data, a continuous distribution for X and Y. Furthermore, he assumes that N and M are
Poisson distributed because he chose to work within the collective risk model.

First we have to obtain a discretization of the claims distributions. Indeed we will use Panjer’s
algorithm (see Panjer (1981)) that works with lattice distributions. For the distribution of S,
we have :

fs(0) = e -fxO)

i

fs(s) = Azzfx(i)fs(s-z‘) . s=12,...
i=1

where fx (resp. fs) denotes the probability density function of X (resp. S) and A is the
parameter of the distribution of N. We observe that the Panjer's algorithm needs a discrete
distribution. Therefore a continuous distribution may not be used as such and has to be
discretized. Moreover it will be most convenient to obtain a discrete version of the continuous
distribution which will be of lattice type, that is with non-negative masses on points of the
typex = kh, k=01, .. with h > 0. his called the span. When the span is different from 1,
a simple change of money (divide losses by k) allows to use the Panjer’s algorithm optimally
with respect ta computing-time.

We immediately observe that the smaller the span, the better the precision of the discretiza-
tion. However, the smaller the span, the longer the computing-time. The user should make a
choice regarding the step in order to obtain a good precision and a sufficiently low computing-
time. There are various methods for obtaining a lattice distribution from a general distribu-
tion. I choose to work with the easiest method : the rounding method (see Gerber and Jones
(1976)). Let us choose a span h. The rounding method simply accumulates the original mass
of a random variable X around the mass points of the lattice distribution (X 4,) as follows :

h

Fra ) = Fx(3-0),

h h
Sxalzh) = Fx(zh+ 5 -0) - Fx(zh-5-0) , «=12..
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For the particular case of a Pareto distribution (X ~ Pa(4, a)) we obtain
L (Ah2)
T )
A-zh/2\™" A+zh/2\™" N
(——~A ) —<———A , r=1,2,...

We choose to work with a lattice step h = 20.
The first masses points of the lattice distributions for our numerical example are

fxm. (4)

fxn (A +zh)

It

z 400 425 450 475 500 525
P[X =z} | 0.0451 0.0807 0.0699 0.0611 0.0537 0.0475

y 700 725 750 775 800 825
PlY =y| [0.0433 0.0790 0.0702 0.0626 0.0560 0.0503

Table 1: Lattice version of the original distributions

Using the Panjer’s algorithm we are able to obtain the aggregate claims distributions of .S
and T :

x 0 25 50 75 100 125
P[S =] | 0.0919 0.0185 0.0179 0.0174 0.0169 0.0164
@[T =] 0.0084 0.0033 0.0036 0.0039 0.0041 0.0044

Table 2: Aggregate claims distributions

Note that these distributions concern the ceding company whereas we are interested in the
pricing of reinsurance covers. This will be discussed in the next section.
4. DETAILED MODEL

1.1. ATTACHMENT POINTS AND COVERS
Let us now define the liability of an excess of loss reinsurer i.r.o. the claims. Let us denote

- Pgire = 500 as the deductible of the Fire claims,

- Pyrpr = 1000 as the deductible of the MTPL claims,

- Lpwe = 2500 as the cover of the Fire claims,

- Lprrei, = 4000 as the cover of the MTPL claims.
We obtain the reinsurer’s liability for the individual claims as follows :

Xt min(L gy, max(0, X; — Prire)),
YA = min(Lapr. max(0, X; — Parer)).

]

The aggregate liability of the reinsurer is :
sk = xfere+ Xf
7R = Tfe .y Tl
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The distribution of the reinsurer’s liability for the individual claims and for the aggregate
claims is

z 0 25 50 75 100 125
P[X =] [0.3105 0.0475 0.0423 0.0379 0.0340 0.0307
PlY =] [ 0.6026 0.0235 0.0216 0.0199 0.0183 0.0170
P[S =z]|0.1784 00212 00201 00192 0.0183 0.0175
P{T =«] [ 0.1371 0.0161 0.0158 0.0154 0.0151 0.0148

Table 3: Reinsurer's claims and aggregate claims distributions

4.2. LONG-TAILED BUSINESS AND INFLATION

We now have to introduce the fact that, in an insurance context, claims are not paid outright.
Especially in excess of loss reinsurance where large claims are involved, it may be very long
before a claim is finally settled. Thus, we have to introduce this notion and a companion
thereof : the future inflation. We will follow the presentation of Walhin et al. (2001).

We will assume that the payments of the claims occur at times tg,t3,...,¢, according to a
given claims payment pattern : crire(fo), ..., Crire{tn) of cprpr{to),. .., carpL(tn) where
t, is the time of final settlement. We will furthermore assume that the payments arise, on
average, in the middle of the year, ie. t; =5 +4+05,j=0,1,...,n.

The claims payment pattern is supposed to be estimated by using past data and adjusted for
potential changes in the future payment patterns, e.g. due to changes in legislation or in the
claims management.

Let us assume that the MTPL claims are completely settled in n = 7 years whereas the fire
claims are completely settled in two years. We use the following payment patterns :

t] 0 1 2 3 4 5 6 7]
crire | 50% 40% 0% 0% 0% 0% 0% 0%
CEire | 50% 90% 100% 100% 100% 100% 100% 100%

curpL| 5% 0% 10% 10% 25% 5% 10% 5%

5% 15% 2% 35% 60% 85% 95% 100%

MTPL

Table 4: Payment patterns

where ¢ denotes the cumulative claims pattern payment.
Moreover the future payments will undergo future inflation. Indeed the losses X, are assumed

not to include any future inflation. Let us define an inflation index : infpy(to), . . -, infrire(tn)
and infurpL(te),- .., infureL(ts). The future payments for a loss X, or Y; then read :
. i"wac(tJ) .
Xi(j+05) = ¢ )X ———= =0,1,...,n,
r(] ) Ftrc( ;) lianurc(tO) , 1=0, n
) infureL(t;)
Yi(j +05) = emrpr(t;)Vi—m—t =0,1,...,n.
' ) (] ‘infrrpL(to) ’
The future inflation will be modelled by a geometric growth and we furthermore assume the
future inflation index to be constant between two times t i=J.i=01...,n:
in f
_infreed) 3%.5=12....n,

infpied ~ 1)
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infrire(j +0.5)

infrire(d), 3=0,1,...,m,

infureL(s) .
— -1 = 35%,j=012,...,n,
infureL(j — 1) o

infurpr(j +0.5) = infurpc(i), j=0,1,...,n

Future claims payments then read

t 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

X.(¢) | 400 | 200.00 164.80 42.44
425 | 21250 175.10 45.09
450 | 225.00 18540 47.74
475 | 237.50 195.70 50.39

Scoooo o
SO0 o
[= IRl ]
Soo o
oo I e e R e

Y,(t) | 700 | 3500 7245 74.99 77.61 200.82 207.85 86.05 44.53
725 | 3625 75.04 77.66 80.38 207.99 215.27 89.12 46.12
750 | 3750 77.63 80.34 83.15 215.16 222.69 9219 47.71
775 | 38.75 80.21 83.02 85.93 222.33 230.11 95.27 49.30

Table 5: Future claims payments (inflation only)

As we are interested in large losses, it is commonly observed on the market that this category
of losses undergoes a higher inflation than usual. One speaks of the superimposed inflation.
For the future payments, it is then more adequate to use another index, including inflation

and superimposed inflation : supin frire(to),. . ., Supinfrire(tn) or
supin fagrec(to), . .-, supinfarpi(t,). The future payments for a loss X, or Y; then read :
supin fpire(t;) .
Xt = relt; ) Xj—— =4 =0,1,...,n,
I( ]) CFy c( ]) ‘Supinfp:*,rg(tn) 2
Yi{t;) = cmrer(t;)Y supinfureelt;) i=01,...,n
i P supinfyrer (to) B

Let us assume that the future inflation and superimposed inflation is modelled by a geometric
growth :

supinfrire(j)

-1 = 3%,57=12,....n,
supinfrie(s — 1) o "
supinfrie(j + 05) = supianxrc(j) ,7=0,1,2,...,n,
_swpinfureLld) L sy io12 o on,
supinfarpe(G — 1)
supinfarrpL{(j +0.5) = supinfarpr(3), 7=0,1,2,... .7,

that is we assume no superimposed inflation for the fire claims and 1.50% of superimposed
inflation for the MTPL claims.
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Future claims payments then read

t 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
Xi
Xi(t) | 400 | 200.00 164.80 42.44
425} 21250 175.10 45.09
450 { 225.00 18540 47.74
475 | 237.50 195.70 50.39
Y;
Yi(t)| 700 | 35.00 7550 77.18 81.03 212.71 22335 93.81 49.25
725 ] 36.25 76.13 79.93 83.93 220.31 231.33 97.16 51.01
750 1 37.50 78.75 8269 86.82 22791 239.30 100.51 52.77
775 | 38.75 81.38 85.44 89.72 235.50 247.28 103.86 54.53

QOO O
QO OoCo
(3w =l
occ oo
[ e B e ]

Table 6: Future claims payments (including superimposed inflation)

It is also interesting to define the cumulative payments for a loss X, or Y, as :

7
XE(G+05) = Zx.(mas) L i=01,.,n,
k=0

YE(G +05)

7
S Yik+05) , j=01,..n
k=0

The evolution of the cumulative payments for the reinsurer for a loss X; or Y; then reads :

XFR(3+05) = min(Lpiwe.max(0,XF(j +05) - Prye)) » 7=0,1,....n,
Y,ERE(J‘ +0.5) = min{Lprpr, max(0, Y.E(j +05) = Pyrpr)) o 2 =010
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Within our numerical example we have

t 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
Xi

XE(t) | 500]250.00 456.00 509.05 509.05 509.05 509.05 509.05 509.05
525 | 262.50 478.80 534.50 534.50 534.50 534.50 534.50 534.50
550 | 275.00 501.60 559.95 559.95 559.95 559.95 559.95 559.95
575 | 287.50 524.40 585.40 585.40 585.40 585.40 585.40 585.40

Y

YE(t) | 3000 | 150.00 465.00 795.75 1143.04 2054.67 3011.88 3413.91 3624.97
3025 j 151.25 468.88 802.38 1152.56 2071.79 3036.98 3442.36 3655.18
3050 | 152.50 472.75 809.01 1162.09 208891 3062.08 3470.81 3685.39
3075 | 153.75 476.63 815.64 1171.61 2106.03 3087.18 3499.25 3715.60

X;

XFRe(t) | 500 0 0 9.04 9.04 9.04 9.04 9.04 9.04
525 0 0 3450 34.50 34.50 34.50 34.50 34.50

550 0 1.60  59.95 59.95 59.95 59.95 59.95 59.95

0 2440 8540 85.40 85.40 85.40 85.40 85.40

575

Y

YERe (1) | 3000 0 O

0 143.04 1054.67 2011.88 2413.91 2624.97

3025 0 0 0 152.56 1071.79 2036.98 2442.26 2655.18
3050 0 0 0 162.09 1088.91 2062.08 2470.81 2685.39
0 0 171.61 1106.03 2087.18 2499.26 2715.60

3075 0

L -' |

Table 7: Cumulative insurer’s and reinsurer’s payments

We show the evolution of the figures from 500 for Fire claims and from 3000 for MTPL claims
in order to see figures different from 0 for the reinsurer’s payments.
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4.3. TECHNICAL RESERVES

In an ideal situation the claims manager is able to calculate exact reserves for a loss X; or ¥;:

RX,(j +0.5)
RYi(j +0.5)

XEn+05) - XE(G+05)
YE(n+05) - YE(G+035)

Within our numerical example, we have

j=01,...,n,
i=0,1,... ,n

t 0.5 1.5 2.5 3.5 4.5 5.5 65 7.5
Xl
RX;(t) | 500 259.05 53.05 0 0 0 0 0 0
525 | 272.00 55.70 0 0 0 0 0 0
550 | 284.95 58.35 0 0 0 0 0 0
575 | 297.90 61.00 0 0 0 0 0 0
V. - .
RY;(t) | 3000 | 3474.97 3159.97 2829.22 2481.93 1570.30 613.09 211.07 0
3025 | 3503.93 3186.31 2852.80 2502.62 1583.39 61820 21282 0
3050 | 3532.89 3212.64 2876.38 2523.30 159648 62331 21458 0
3075 | 3561.85 3238.97 2899.95 2543.98 1609.56 628.42 216.34 0

Table 8: Ideal reserves

However there may be systematic deviations from these exact reserves. Let us assume that
we have observed a pattern of deviation of the incurred loss (overstatement or understate-
ment) : drire(to),. .., drire(tn) o dyrpr(to),.. . . dmrpL(ta) where d(t;) = 100% if there is
no deviation of reservation at time t;. The incurred loss and the outstanding, for a loss X,

or Y;, may now be defined as follows :

IX(j +05)
RXi(j +0.5)
IY,(j + 0.5)
RY,(j +0.5)

i

dFIT!(j + 05)X,E {n+03) ,

IX;(j +0.5) - XE(j +0.5)

)

dyrpL(i +05)YE(n +05) |
IY,(j +0.5) - ¥E(; +05) |
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Let us assume that the overstatement pattern is given by

t 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
100% 100% 100% 100% 100% 100% 100% 100%
125% 125% 125% 105% 105% 100% 100%

dFire
durer | 125%

Table 9: Overstatement pattern

‘We then have the evolution of the outstanding and incurred losses :
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X
IX(t)| 500| 509.05 509.05 509.05 509.05 509.05 509.05 509.05 509.05
525 | 534.50 534.50 534.50 53450 53450 534.50 534.50 534.50
550 | 550.95 559.95 559.95 559.95 559.95 559.95 55995  559.95
575 | 585.40 58540 58540 58540 58540 58540 58540 585.40
RX;(t)] 500 | 259.05  53.05 0 0 0 0 0 0
525 | 27200  55.70 0 0 0 0 0 0
550 | 284.95  58.35 0 0 0 0 0 0
0 0 [ 0 0 0

5751 29790 61.00

TY,(t) | 3000 | 4531.22 4531.22 4531.22 4531.22 3806.22 3806.22 3624.97 3624.97
3025 | 4568.98 4568.98 4568.98 4568.98 3837.94 3837.94 3655.18 3655.18
3050 | 4606.74 4606.74 4606.74 4606.74 3869.66 3869.66 3685.39 3685.39
3075 | 4644.50 4644.50 4644.50 4644.50 390138 3901.38 371560 371560

RY(t) ] 3000 | 4381.22 4066.22 3735.47 3388.18 1751.55 794.34 211.07 a

3025 | 4417.73 4100.10 3766.59 341641 1766.15 80096 212.82 0

3050 | 4454.24 4133.99 3797.72 344465 1780.75 807.58 21458 0

3075 | 4490.75 4167.87 3828.85 3472.88 179534 814.20 21634 0
—

Table 10: Insurer’s reserves and incurred losses with overstatement

From the evolution of the incurred losses, it is now possible to derive the evolution of the
incurred losses for the excess of loss reinsurer :

i

IXRe(j +0.5) min(Lgire, max(0, IX; (G +0.5) = Prive)) . 7=0.1,....n.
IY,RC(] +0.5) = min(Lyrpr, max(0,IY;(j +0.5) — Pyrpr)) . j=0,1L.... n.

Within our numerical example we have
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t 0.5 1.5 2.5 35 4.5 5.5 6.5 7.5
X;
IxPey| 0| 904 904 904 904 904 904 904 904
25 34.50 34.50 34.50 34.50 34.50 34.50 34.50 34.50
50 59.95 59.95 59.95 59.95 59.95 59.95 59.95 59.95
75 85.40 85.40 85.40 85.40 85.40 85.40 85.40 85.40

Y,
IYRe(t) | 3000 | 353121 3531.25 3531.25 3531.25 2806.22 2806.22 2624.97 2624.97
3025 | 3568.97 3568.97 3568.97 3568.97 2837.94 2837.94 2655.18 2655.18

3050 { 3606.73 3606.73 3606.73 3606.73 2869.66 2869.66 2685.39 2685.39
3075 | 3644.50 3644.50 3644.50 3644.50 2901.38 2901.38 2715.60 2715.60

—

Table 11: Reinsurer’s incurred losses

Our aim is to obtain the distribution of the paid claims and the distribution of theloss reserves
at times j + 0.5, j = 0,1,...,n. This will allow us to obtain average values and so a cash
flow model will be built in order to find the net present value of the business. This will allow
us to determine if the business is worth the value or not. However before obtaining these
distributions, we first have to consider some clauses that may affect the claims individually
or in the aggregate.

It should be clear that the extension to multiple insurance lines is immediate. However, for
educational purposes, we will limit ourselves to the methodology for two lines only.

4.4. STABILITY CLAUSE

If the attachment point {P) of the treaty is fixed, the reinsurer will take all future inflation
during the development of the claim for his own account. Indeed once the loss is exceeds the
attachment point, all future increases (except the part of the loss exceeding the cover of the
treaty) due to inflation are borne by the reinsurer only. In order to protect themselves against
this kind of possible moral hasard, reinsurers have introduced the stability clause. With this
clause the reinsurer is willing to optimally share the future inflation between the ceding
company and himself. There are several variants of the stability clause (see e.g. Gerathewohl
(1980) for details). In this paper, and in particular in our numerical application, we will
work with the so-called "date of payment” stability clause. When this clause is applied, the
attachment point and/or the cover of the treaty are indexed each year with the following ratio

sum of actual payments
sum of adjusted payments’

ratio =

where adjusted payments means that each payment is discounted to the inception of the
treaty with use of a conventional index, let us say the inflation index. The interested reader
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is referred to Walhin et al. (2001) for further details.

We thus arrive at future attachment points and covers :

Prire(to), Prire(t1), - - -, PRire{tn), PureL{ti), Parpilta), ... PurpL(tn),

Lrie(to), Lrire(t1),- - Lrire(ts) and Lagppr(ti), Lurpr(t2), ..., Larpr(ty) instead of sin-

gles Prire, PuTpL. LFire and Lyrpy.

In accordance with the hypotheses on inflation, we will assume that Ppi.{(j +0.5) = Pr. (7).

(J;’MTPL(J'+0-5) = PyrpL(5): LFire(74+0.5) = Lrire(j) and Lagrpr(7+0.5) = Lyrpi(f) . j =
V1.0,

‘The evolution of the cumulative paid loss and incurred loss, for a loss X, or Y. for the reinsurer

now reads :

XERe(5405) = min(Lrire(j +0.5), max(0, XE(G +0.5) = Peue(j+05))) . 5= 01w
YER(j4+05) = min(Luree(f+0.5), max(0,Y,S(j + 0.5) — Pyrp (i +05)) . j=0.1.....m
IXB( 4+ 05) = min(Lrwe(§+0.5),max(0,1X,(j + 05) - Priy (53 +0.5))) . j=0.L. .n
IYR(j4+05) = min{Lyrpr(j+0.5),max(0,1Y,(j +0.5) — Purpc(j +05)) . j=0.1,...n

When the claim is finally settled, both situations lead to the same repartition of the loss
between the insurer and the reinsurer. The only difference is in the evolntion of the cash
flows.

Let us assume that the date of payment stability clause is applied to the attachment point
and to the limit of the MTPL claims with a margin of 10%, i.e. the payments will be adjusted
only if the claims index shows an evolution larger than the margin (see Walhin et al. (2001)
for formulae details or Gerathewoh! (1980) for further general details on the subject). The
selected index is the claims index. It is also assumed that the application of the stability
clause is based on incurred losses, that is, outstanding losses are used, and discounted as if
they were payments. The attachment point and limit for the Fire claims are fixed, which is
not illogical since Fire is not long-tail business. The evolution of the attachment point and
limit for the MTPL claims is the following :

] 05 15 25 35 45 55 65 75
Prrpr, | 1000 1000 1000 108658 110874 1124.33 112991 1131.09
Larpr [ 4000 4000 4000 434630 443196 4497.32 151975 4527.95

Table 12: Evolution of the MTPL laver with stability clause
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The payments and incurred losses of the reinsurer now read

t 05 15 25 35 15 55 6.5 75
Xi
Y;ERe (1) | 3000 0 0 0 5646 945.93 1887.55 2283.97 2492.98
3025 0 0 0 6599 963.05 1912.65 2312.42 2523.19
3050 0 0 0 7551 98017 1937.75 2340.87 2553.40
3075 0 0 0 8503 99720 1962.84 2369.32 2583.61
Xi

IY;Re(2) | 3000 | 3531.21 3531.25 3531.25 3444.64 2697.48 2681.80 2495.03 2492.95
3025 | 3568.97 3568.97 3568.97 348240 2729.20 2713.61 2525.24 2523.18
3050 | 3606.73 3606.73 3606.73 3520.16 2760.92 274533 255545 2553.40
3075 | 3644.50 3644.50 3644.50 3557.92 2792.64 2777.05 2585.66 2583.61

Table 13: Reinsurer's payments and incurred losses with stability clause (MTPL only)

4.5. INTERESTS SHARING CLAUSE / L0OSS ADJUSTMENT EXPENSES CLAUSE

When the claims development is long, it is expected that legal interests will have to be paid.
The longer the claims development is, the higher the legal interests are. Once again for
moral hazard reasons it may be tempting from the reinsurer’s point of view to share the
legal interests proportionnally between the cedent and the reinsurer. This is the aim of the
interests sharing clause which is common practice, e.g. in Belgium.

The interests sharing clause states that the legal interests have to be shared between the
ceding company and the reinsurer according to the pro rata liability of the reinsurer in the
total liability of the loss excluding the legal interests. This means that the legal interests
have to be excluded from the incurred loss before the application of the treaty. Afterwards
they are divided between the ceding company and the reinsurer in accordance with the pro
rata liability of both parties in the loss. Let us assume that on average a proportion 6 pire
or dprpyr of the incurred loss represents the interests. Note that it is reasonable to assume
that this proportion is a function of the loss. However, in practice, it is extremely difficult
to estimate the average proportion of the legal interests in such a way that it does not seem
necessary to assume a varying proportion. Nevertheless it is possible to work within an
extended model. The interested reader is referred to Walhin et al. (2001) for further details.
A common practice on North American markets is that loss adjustment expenses undergo
the same treatment as the legal interests in Belgium, i.e. they are also shared on a pro rata
basis between the insurer and the reinsurer. These expenses may thus be treated exactly as
are the legal interests, within the loss adjustment expenses clause.

We will assume an interests sharing clause only for the MTPL claims and we assume that the
portion of interests in the losses is § = 15%.
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The payments and incurred losses of the reinsurer now read

3075

t 0.5 1.5 2.5 3.5 45 5.5 6.5 7.5
p.€ 0 1 2 3 4 5 6 7
YR (1) | 3000 0 0 0 0 75027 1689.14 208457 2293.22
3025 0 0 0 0 76739 1714.24 2113.02 2323.43
3050 0 0 0 0 78451 1739.33 214147 2353.64
3075 0 0 0 0 801.63 176443 2169.92 23B83.85
X;
IYiR‘(t) 3000 | 3354.74 3354.74 3354.74 3252.89 2501.82 2483.48 2295.63 2293.22
3025 { 3392.50 3392.50 3392.50 3290.65 2533.54 251520 2325.84 2323.43
3050 | 3430.26 3430.26 3430.26 3328.41 2565.26 2546.92 2356.05 2353.64
3468.02 3468.02 3468.02 3366.17 2596.98 2578.63 2386.26 2383.85

Table 14: Reinsurer’s payments and incurred losses with interests sharing clause (MTPL only)

4.6. LATTICE DISTRIBUTIONS

Most probably the random variables derived above are not of lattice type. So it is necessary

to make a rearithmetization of them. This is done again with the rounding method.

With the lattice version of the payments and incurred losses, we will be able to apply Panjer's
algorithm in order to obtain the aggregate claims / incurred losses for each development year.
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As an example, here are some rearithmetized distributions :

t] 05 15 25 35 45 55 65 75
T
PIXFRe(t)=x] | 0(0.752 0.400 0.310 0.310 0310 0310 0310 0.310
25/0.017 0038 0.048 0.048 0.048 0.048 0.048 0.048
50 [0.015 0.034 0.042 0.042 0.042 0.042 0042 0.042
75{0.014 0.031 0.038 0.038 0.038 0038 0.038 0.038

PIX(t)=z]| 0]0310 0310 0.310 0.310 0310 0310 0.310 0.310
25(0.046 0.046 0.046 0.046 0046 0.046 0.046 0.046
50 [0.042 0.042 0.042 0.042 0042 0.042 0.042 0.042
75(0.038 0.038 0.038 0.038 0038 0.038 0.038 0.038

PYFRe(t) =z] [ 0]0.999 0.997 0.990 0981 0.919 0.802 0.733 0.686
2510.000 0.000 0.001 0.001 0.005 0.009 0.014 0.017
50 0.000 0.000 0.000 0.001 0002 0.008 0.000 0.016
75(0.000 0.000 0.000 0.001 0004 0.008 0.013 0.000

PlIYRe(t)=x]| 0[0255 0.255 0.255 0.407 0626 0.648 0.686 0.686
2510.056 0.056 0.056 0.000 0.022 0.000 0.017 0.017
50| 0.000 0.000 0.000 0.040 0.020 0.020 0.016 0.016
75[0.050 0.050 0.050 0.037 0.000 0.018 0.000 0.000

Table 15: Rearithmetized reinsurer’s payments and incurred losses distributions

4.7. CLAUSES LIMITING THE LIABILITY OF THE REINSURER

There are two clauses which may limit the liability of the reinsurer in an excess of loss treaty.
The annual aggregate limit (Aalfire or Aalprpr) on the one hand is the maximal aggregate
loss the reinsurer will pay. The annual aggregate deductible (Aadgy,. or AadyrpL) on the
other hand is a deductible on the aggregate loss of the reinsurer. Both annual clauses may
coexist. In such a case the aggregate loss of the reinsurer reads :

N
min(Aalpire, max(0, Y XFR(¢ +0.5) - Aadpire)) , j=0,1,...,n,

i=1

Sxecr.(j +0.5)

M
min(AalpyrpL, max(0, Zy.me(f +0.5) — Aadyrpr)) . F=0,1,...,n,

i=1

Syzer-(t +0.5)

i

N
Srxre(t+0.5) = mi“(AﬂlFire,maX(()'Zl'X.""(t +0.5) ~ Aedriee)) ., 7=0,1,...,n,

=1

M
min(AalMTPL:ma-x(ovZIYim(t +0.5) ~ Aadyrpr)) . F=0,1,...,n

i=1

Siyre(t +0.5)
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Let us assume that there is no annual aggregate deductible and no annual aggregate limit for

the separate treaties :

We have the following distributions

Aadpire =
AadyTpL =

Aalpire —

AalyeL

{

g g °

t

0.5

1.5

2.5

3.5

4.5

5.5

z
P(Sxre(t) =2} | 0
2
50
75

0.538
0.023
0.021
0.019

0.223
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

PSixn(t =] | 0
25
50
75

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

0.178
0.021
0.020
0.019

PSymt)=2]| O
25
50
75

0.999
0.000
0.000
0.000

0.987
0.001
0.001
0.001

0.953
0.002
0.002
0.002

0.908
0.005
0.003
0.004

0.667
0.017
0.008
0.015

0.371
0.017
0.016
0.015

0.263
0.018
0.001
0.017

0.208
0.018
0.017
0.001 |

P[Syn(t) =2]] O
2%
50
75

0.024
0.007
0.001
0.006

0.024
0.007
0.001
0.006

0.024
0.007
0.001
0.006

0.051
0.000
0.011
0.010

0.151
0.017
0.016
0.002

0.172
0.000
0.017
0.016

0.208
0.018
0.017
0.001

0.208
0.0138
0.017
0.001

Table 16: Reinsurer's aggregate payments and incurred losses

5. GLOBAL DISTRIBUTIONS AND GLOBAL EXPECTED VALUES

As we are interested in a global treaty combining Fire and MTPL claims. we have to obtain

the global distributions of :

5(X+Y)’3“'(j +0.5)

W

min(Aal, max(0, Sxer-(j + 0.5) + Syxu (j + 0.5) - Aad))

Siux+ivyre(i +0.5) = min(Aal. max(0,S;xnr (j +0.5) + Syyn(§ +0.5) = dady)

where Aal is a multiline annual aggregate limit and Aad is a multiline annual aggregate

deductible.

We will assume that there is an annual aggregate deductible on the global treaty (nndtiline

aggregate deductible) :

Aad
Aal

= 1000,

- 0C.
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Note that Ribeaud (2000) nsed the terminology “Multiline aggregate deductible™ /" Multiline
aggregate limit” .

These distributions are easily obtained by convolutions because for our model we assumed
uitnal independencies .

Note that in case of dependencies between the claim amounts or between the claim frequencies,
algorithing exist, giving the joint distributious of (S yza., Syrr.) or (S;ya.,Sjyr.). See eg.
Walhin and Paris (2000a) for the first case of dependency and Walhin and Paris (2000b) for
the second case of dependency. Having the joint distributions, it then becomes immediate to
obtain the distributions of Syvw + Syen or Syxr. + Spyne.

Within our numerical example we obtain

t 0.5 15 2.5 3.5 4.5 5.5 6.5 7.5

P[Syum (1) + Sysm (1) = ]| 010537 0221 0.170 0.162 0.119 0.066 0047 0.037
2510023 0021 0021 0020 0.017 0011 0.009 0.008
5010.021 0.020 0.019 0019 0015 0.011 0.006 0.008
75 0.019 0019 0019 0018 0016 0011 0.008 0.005
100 | 0.018 0.018 0.018 0.018 0014 0010 0.008 0.007
125 [ 0016 0.017 0.017 0.017 0.015 0.010 0.008 0.007

B[S, xvm (1) + Syyem () = 2] | 0]0.004 0.004 0004 0.009 0028 0031 0037 0.037
250002 0002 0002 0.001 0006 0004 0.008 0.008
50| 0.001 0001 0001 0.003 0.006 0.007 0.008 0.008
75(0002 0.002 0.002 0.003 0.004 0.006 0.005 0.005
100 | 0.002 0.002 0.002 0.002 0.006 0.007 0.007 0.007
125 [ 0.001 0.001 0.001 0.003 0.006 0.007 0.007 0.007

Table 17: Global payment and incurred losses distributions

As we will use a cash flow model that is introduced in section 6 (investment decision process)
we are interested in obtaining the expected values of the future payments and outstanding.
The incremental payments are

Paid(05) = Six.yer-(0.5),
Paid(j +0.5) = SixiyyEa(j +0.5) ~ Six y)mre(tjmas) ., 7=1,2,...,n,
and the loss reserves are
Reserve(j +0.5) = S xipyyne{i +0.5) — Six yyzae( +05) , j=0,1,...,n

This is the situation where the reinsurer follows the information given by the cedent. Another
situation might be that the reinsurer books the ultimate loss in such a way that he avoids
overstatement and / or understatement of the ceding company’s reserves. In this case the
loss reserves read :

Reserve(j + 0.5) = Six y)sre(n +0.5) — Sy yyzre (5 +0.5) . j=0,1,...,n
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We are now able to obtain the average aggregate payments and average aggregate reserves
for the reinsurer :

- paid losses :
PL(j +05) = —-EPaid(; +05) , j=0,1,...,n

- reserve
RES(j + 0.5) = EReserve(j +05) , 3=0,1,....n

Let us assume that the share of the reinsurer in the treaty is 20%. It is indeed common
practice that several reinsurers take a share in a given treaty. Unless the ceded risk is really
small, a cedent would not accept to work with only one reinsurer for solvency reasons.

The following table gives the expected aggregate payments and loss reserves of the reinsurer
(for a share of 20%). We assume that the reinsurer follows the reserves of the cedent. Fur-
thermore we will assume that all cash flows related to losses happen in the middle of the year.

4 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
-PL(t)| 27.19 59.78 21.70 578 3510 7638 49.29 30.04
RES(t) | 533.50 473.72 452.01 387.61 19203 110.69 30.41 0

Table 18: Expected aggregate payments and loss reserves of the reinsurer

Let us assume that the estimated premium income is 50000. This information is important
as the reinsurance premium is usually expressed as a percentage of the cedent’s premium
income. One traditionally speaks of a rate.
By adding up the payments we immediately arrive at the technical rate (T1) :

305.25

TR = 20% X 56000 — 3.05%.

This rate is not satisfactory because it does not take into account the investment income the
reinsurer can obtain on loss reserves. On the other hand neither does it take into account the
cost of reserving (in particular when there is overstatement). Finally, it does not take into
account the fact that the total payment is a sum of different cash flows. This is the reason
why we introduce the following cash flow model.
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G. THE CASH FLOW MODEL

This section is adapted from Walbin ot al. (2001).

When a reinsurer wants to write business he has to provide a solveney marging or some
allocated capital © C. Let us assmue that the return after tax which the sharcholders demand
from this capital is coe. We call coe the cost of capital. It can be derived e.g. via the CAPM
{Capital Asset Pricing Model, see e.g. Brealey and Myers (20000} where cor = yp < 3Pp. iy
is the risk-free rate and Py is the risk prembun of the warket. 3 imecasures the svstematic
risk, i.e. market sensitivity, associated to the investiment.

In the present paper we assuine the sane cost of capital wharever the tvpe of business is,
This is clearly a simplifving hypothesis. One may be tenpted to work within a more general
mudel where cach line of husiness has its own cost of capital. For example it is clear thar cat
business hardly correlated with the market. implving that the cost of capital for cat husiness
should be about the risk free rate. Independently the vequired capital for writing cat business
is large due to the high volatility of this kind of business and the risk of large deviations.

In our case we have two types of business to analyse @ Motor Third Parey Liabilits and Fire,
Even if we had two different costs of capital. it is reallv not clear how we could use them. As
we mix both types of husiness. we liave to wse one cost of capital. possibly some (weighted)
average of the above-mentioned costs of capital. The present nndtiline cover shows a Hsitation
of working with different costs of capital. There is clearly room for further rescarch at this
point.

Traditionally we say that the business is worth the value if the uet present value of adl future
cash Hows. inchiding, capital allocation and release, is positive. A nil value iiplies that the
requirements of the sharcholders are just fulfilled. A positive value implies some creation of
value for the sharcholders. In the latter case we have the following inequality

We will use the «

h How model in this wav and say that a treaty is aceeptable if the net
present value of all future cash Hows. including the variations in allocated capital. is positive.
Let us note that if the firm is not financed exclusively through equity capital but also through
some debt or hyvbrid eapital. coe heemues a weighted average cost of capital (see e.g. Brealey
and Myers (2000) for details). This however is obviously not very important for insurers and
reitsurers who are essentially financed through cquity eapital, We will assume the cost of
capttal 1o be coe = 119,

We have three types of cash Hows related to loss

- paid losses .

PL{ +05) = ~EPuid(j+05) . j=0.1....n.

- variation of the loss reserve : VR(j +0.5). y =01 .n:

RES(j +0.5) = EReseree(j+05) . j=0.1.....n
VR(15) = —RES(U.5).
VR(;+05) = RES(+15)-RES(+05) . j=1L12.. . n.
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- investment income on reserve : {R(j+0.5), 7 =0,1,..., n:

IR(05) = 0,
IR( +0.5) rRES(G -05) ., j=1....n

it

We logically assume that investment income on the reserves are paid with a one year
delay. We will assume that the interest rate obtained on the loss reserve is r = 5%. We
observe a limitation of our model. It is not possible to account for two different interest
rates on the loss reserves (note that it would be possible if there were no clauses on the
global distribution, which seldom is the case).

‘We can now define the aggregate cash flow at the middle of the year :

CF(j+0.5)=PL{7+05)+VR(3+05 +IR(;+05) , j5=0.1,...,n

We will assume that all the other cash flows occur at the beginning of the year : t; =
j,3=0.1,...,n+ 1. These cash flows are :

- commercial premium (CP(3)).

The premium may be thought to be incepted at time 0. This is not always the
case. Often there is a minimum deposit premium at time 0. The balance is paid at
time 1. We do not take into account {but it is not difficult to do so) the fact that
the minimum deposit premium is often paid in different instalments (one quarter
every three months or one half every six months). Moreover we will see in section
7 that premium adjustments may be necessary. Thus premium cash flows at times
other than 0 and 1 are not excluded. We will assume that there is a minimum
and deposit premium of 80% of the expected commercial reinsurance premium.
By deposit we mean that 80% of the premium is paid at time ¢ = § whereas the
balance is paid at time ¢ = 1. By minimum we mean that at least the reinsurance
rate times 80% of the premium income (estimated by the cedent) will be paid.
In case the actual premium income is lower than 80% of the estimated premium
income, the minimum and deposit premium is due. We assume that the estimated
premium income will be the actual one.

brokerage (B(j)).

Brokerage, if any, is traditionally a percentage of the commercial premium. 1t will
thus be deducted at times premiums are paid. We will assume that brokerage is
10%.

retrocession (R(j)).

Cost of retrocession, if any, is not the premium paid to the retrocessionnaire but
rather the expected value of this premium minus the aggregate loss paid by the
retrocessionnaire. A possible modelization is a percentage of the commercial pre-
mium minus a fraction of the paid losses. The first percentage is the traditional
rate demanded by the retrocessionnaire on commercial premiurns. The latter frac-
tion represents the share of the average claims the retrocessionnaire is expected to
pay. We will assume that retrocession costs {premiums) are 3% of the commercial
premium. We assume that on average 2% of the losses are paid by the retrocession
(this is assumed to be estimated with the developped model). In other words we
cede 2% of the losses to the retrocession and the preminm we are asked for that
risk is 3% of the commercial premium.

‘

)
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- administrative expenses (AE(3)).

Administrative expenses may be of two types : fixed expenses and proportional
expenses. The fixed expenses represent the fixed costs of the reinsurer (including
the fixed costs of the priced treaty) whereas the proportional costs represent the
costs directly associated with the management of the treaty. We assume that
these proportional expenses are based on the paid losses (note that this is just
an assumption that can be easily modified). It is not illogical to admit that the
expenses will be paid during the course of the treaty (think of the accounting and
claims management of the treaty). So there may be a cash flow of expenses for
all times j. We will assume that administrative expenses are 5 for the fixed part
and 4% of the paid losses each year (the proportional administrative expenses are
assumed to be paid at the end of the year).

variation in the allocated capital (VC(5)).

As announced in the previous section, some capital has to be allocated in order to
run the business. However, at last at the end of the development, this allocated
capital is released to the shareholders. In practice, the allocation rule may be such
that the allocated capital is given back after = years or in function of the evolution
of the loss reserves. So there will be variations in the allocated capital, exactly as
there are in the loss reserves, Within our numerical example the allocated capital,
C(7), 7 =0,1,...,n+ 1 is assumed to be 1.25 times the standard deviation of

the ultimate aggregate claims, i.e. \/Var(l = 7)8(x +y)cre (n + 0.5) where 7 is
the fraction of the claims paid by the retrocessionnaire. We assume e.g. that
the capital allocation is based on the standard deviation premium principle (see
Walhin et al. (2001) for further details). We make the hypothesis that capital has
to be allocated during three years. See Walhin et al. (2001) for further details on
capital allocation.

investment income on the allocated capital (IC(j)).

As allocated capital is mobilized, an auto-remuneration of this capital is possible.
Indeed the mobilized capital will be invested and will produce an investment in-
come. Moreover one might think that this auto-remuneration is higher than the
remuneration on the loss reserves because the latter are probably invested in risk-
free assets. So, while capital is allocated there is a cash flow of investment income
on it at a return rate | = 7%.

We are then able to define the cash flows at integer times :
CF(j) = CP(3) + B(j) + R(j) + AE(j) + VC(H) + IC(j) , i=01,...,n+1

The problem of taxes remains to be treated. In order to find the tax we first have to
define the taxable profit at times j and j + 0.5 :

TazProfit(j) = CP(3)+ B(j)+ R(j) + AE() + IC(G) , j=0,1,...,n+1,
TazProfit(j + 0.5) PL(; -05)+ VR(G —-05)+IR(; —05) , 3=01,...,n

The tax cash flows are then

Taz(j)
Taz(j + 0.5)

rTaxProfit(j) , ji=0,1,...,n+1,
tTazProfit(j +05) , j=0,1,...,n
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where 7 = 30% is an average tax rate. It assumes all cash flows, including financial
return, to be taxed at the same rate. This is obviously not always true and specific
corrections are easy to include in the model according to the tax regime of the reinsurer’s
domicile.
The treaty will be acceptable if

'i‘ CF(j) - Taz(j) | i CF(j +0.5) - Taz(j + 0.5)

> 0.
(1 + coc)? (1 + coc)ys+05

7=0 1=0

The following table gives the cash flow model with the technico-financial premium. This table
takes into account a reinsurer’s share of 20%.

t 0 05 15 25 35 45 55 65 75
TFP | 294.69 0 0 0 0 0 0 0 0
PL 0 -27.19 -59.78 -21.70 -578 -3510 -76.38 -4929 -3004
VR 0 -53350 5978 2170 6440 19559 8133 8028 3041
IR 0 0 2667 2369 260 1938 060 553 152
CF(j) ] 294.69
CF(j +0.5) 0 56069 2667 2369 8122 179.87 14.56 3653 189
Troays | 204.69 0 0 0 0 0 0 a 0
s 0 -532.18 2281 1825 5637 11246 820 1854  0.86
NPV 0

Table 19: Cash flow model for the technico-financial premium

The technico-financial premium (T FP) is 294.69.
The technico-financial rate is thus given by
294.69
TFR= —————— =2.95%.
50000 x 20% °
It may seem surprising that the technico-financial premium is so close to the technical pre-
mium. This is due to the fact that there is a lot of overstatement by the ceding company
and that overstatement is followed by the reinsurer. We will make some sensitivity analysis
on this aspect.
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We now obtain the commercial premium :

I ] 1 2 3 1 5 6 7 8

7+05 0 0.5 5 25 35 15 55 65 75

CP| 38422 9.05 0 0 0 0 0 0 0

AE -5 109 -239 -087 -0.23 -140 -306 -197 -120

B| -3842 -86! 0 0 0 0 0 i 0

R| -1153 -23¢ 120 043 012 070 153 099 060

PL 0 -27.19 -5978 -21.70 -578 -3510 -7638 -4929 -30.04

VR 0 -533.50 5978 2170 6440 19559 8133  80.28 304l

IR 0 0 2667 2369 2260 1938 960 553 152

VC | ~497.94 i 0 497.94 0 0 0 0 0

Ic 0 3486 3486 3486 0 0 0 0 0

CF(7) | 16867 11788 3366 532.36 —0.12 —070 —153 -099 -0.60

CF(j +05) 0 -56069 2667 2368 8122 179.87 1456 3653 189

TazPr(j) | 32927 11788 3366 3442 —012 -070 —153 —099 —0.60

TazPr(j +0.5) 0 —56069 2667 2369 81.22 17987 1456 3653 189

Taz(;) | 98.78 3536 1010 1033 —003 -021 —046 —030 -0.18

Taz(j +0.5) 0 -16821 800 711 2436 5396 437 1096 057

—26745 7434 1912 38171 —005 -029 -057 -033 -0.18

Rt s 0 -37253 1597 1277 3946 78.72 574 1298 0.61
NPV 0

Table 20: Cash flow model for the commercial premium

The total commercial premium is then

which produces a rate of

384.22 + 96.05 = 480.27,

480.27
50000 x 20%

Summarizing we have the following rates

TR

TFR

CR

3.05%
2.95%
4.80%

Table 21: Rates
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It is now easy to provide some sensitivity analyses. Let us compare the rates for different
multiline aggregate deductibles (MAD). We will also give the rate in the case where there is
no overstatement for the MTPL claims :

with overstatement | without overstatement
MAD | TR TFR CR TR TFR CR

1000 |[3.05% 2.95% 4.80% |3.05% 2.56% 4.35%
2000 |1.90% 1.89% 3.55% | 1.90% 1.58% 3.18%
l3000 |1.13% 1.13% 269% |1.13% 0.92% 2.40%

Table 22: Sensitivity analysis 1

We observe the effect of the overstatement on the technico-financial rate. The effect of the
multiline aggregate deductible is equally important. Note that it would be difficult to obtain
these rates without the comprehensive model we use.

Let us now assume that there is an annual aggregate deductible for the MTPL and Fire claims
of Aadrire = Aadprpr = 500. To compensate, the multiline aggregate deductible becomes
Aad = 500. We obtain :

Table 23: Sensitivity analysis 2

7. SPECIAL CLAUSES

It is often observed in excess of loss treaties that the reinsurance premium is a function of
the excess of loss amounts. In these situations, governed by typical clauses, the reinsurance
premium is a random variable :

Pre = Plnit + PRmxd‘

where P* denotes the initial premium, which is not random whereas P "4 denotes the
random part of the premium.
The clauses are

- Paid reinstatements
- Sliding scale premium
- Profit commission.

The practical pricing proceeds in two steps. The first one is easy : we merely calculate the
commercial premium necessary to cover the treaty if there is no "random” clause. We then
obtain the evolution of paid losses, loss reserves, investment income on loss reserves, allocated
capital, investment income on allocated capital and administrative expenses. There is no
reason to believe that these elements will be different in the cash flow model with "random
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clause”. We now move to the second step, i.e. the cash flow model with the "random”
clause. The previous elements are fixed. Other elements may vary : premiums, brokerage,
retrocession, and taxes. The process will be iterative. As a first guess we choose an initial
premium (or one limit of the scale in the case of a sliding scale). According to the evolution
of the incurred losses, this premium will be split in several premiums in the future, i.e.

- CP(0) = P™* (or, more exactly, the minimum and deposit premium, the balance
of it which will be paid in ¢t = 1) for a treaty with paid reinstatements. CP(j} =
future adjustments for reinstatements due to incurred losses hitting the layer for j =
1,2,...,n+ 1.

CP(0) = PI™ = P, (or, more exactly, the minimum deposit premium, the balance of
which will be paid in ¢t = 1) for a treaty with sliding scale. CP(j) = future adjustments
for j = m,m+1,...,n+1 where m is the first vear for which a premium adjustment
is contractually agreed.

CP(0) = PI™ (or, more exactly, the minimum deposit premium, the balance of which
will be in ¢ = 1) for a treaty with profit commission. CP(j) = future adjustments for
profit commission for j = m,m + I,...,n + 1 where m is the first year for which a
premium adjustment is contractually agreed.

‘

With this pattern of premium payments, we immediately obtain the pattern of brokerage,
retrocession and as a result the pattern of tax. We are then able to calculate the net present
value of the business. If it is positive we try a new premium lower than the previous one. If it
is negative we try a new premium higher than the previous one. The trial and error scheme
is continued until the net present value of the business is 0.

The interested reader will find more details in Walhin et al. (2001).

We now present the pricing for the case of a sliding scale. We always assume the same
conditions. The sliding scale has a minimum rate R,;,, = 3.75%, a loading f = % and we
look for the maximum rate R,,... We also assume that the first premium adjustement is
foreseen after three years. The solution is given by R,.. = 5.91%. The following table gives
the cash flows related to the commercial premium :

J 0 1T 2 3 4 5 6 7 8]
{CP[300.00 75.00 0 18028 —1008 -2961 -1.51 ~7.42 —0.10]

Table 24: Cash flow related to the commercial premium with a sliding scale

We observe the particular pattern of premium payment. At time t = 0, 80% of the minimum
premium is paid. At time t = 1, 20% of the minimal premium is paid. There are no
adjustments until time ¢t = 3. At that time a huge positive adjustment is needed after which
smaller negative adjustments follow. This shows an important fact for the sliding scale : a
fraction of the premium may be paid late and this must have an influence on the pricing.
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In the next table we give 1, in function of R, and the first time for premium adjustinents

(m):

{w']?,,,,,,/mf 1 2 3
LYY 5.04% 5.12%

L5029 5% 5.30%

5.HY 5.65%

5.61%  5.91%

Table 25: Sensitivity anal

This table confirms what was said above. We observe a dramatic effect of the variable first
vear of premiwmn adjustment. This aspect is however traditionally neglected by reinsurers
when pricing shding scale covers.

Many more sensitivity analyses are possible @ see Walhin et al. (2001) for more analyses in
the single branch pricing.

8. CONCLUSION

We have shown i this paper that a comprehensive methodology is of great help when pricing
excess of loss treaties, even multiline treaties.

All the elements of a pricing are combined in a unique tool © actuarial elements (the severities
XY .. the treguencies NUAML L the clawses. the vetrovession), financial clements {(the
financial advantage when claims are paid long after the premiun instalinent, the remuneration
of the shareholders at the cost of capital. the nse of a cash flow model). cconomic clenwents
(inflation. superinflation) and commercial elements (brokerage. wdministrative expenses).
The Panjer’s algorithui is a powerful tool we often wse (in fact as wany times as there are
periods between claims pavments in our model) in order to And the aggregate situation of one
line in the future. Obvionsly this has a computing cost which is really low nowadays. The
aggregate claitns distribution of the multiline is simply obtained by convolution.

The notion of cost of capital has bheen used in order to provide a fair price for the sharcholders,
A lot of parameters are necessary in order to run our model., Note that these paramneters would
also be necessary within a siimplified model. In case some parameters are difficult to estiniate,
our methodology provides a solution in the sense that it casily allows for scusitivity analyses.
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