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Abstract 

This paper describes efforts to estimate the "portfolio effect" - -  the diversification benefit 
from assembling a portfolio - by simulating the implied portfolio-level capital safety 
standard for various contract-level capital safety standards. The results showed that 
apparently aggressive contract-level capital standards still implied conservative 
portfolio-level capital safety standards. Taken at face value, this would have had a 
dramatic impact on pricing decisions. 

However, the method used to generate the simulated contract outcomes - -  the Normal 
copula - -  was found to generate asymptotically independent tail samples, thus 
understating the tail of the portfolio outcome distribution. Tail-based risk measures 
were, therefore, understated as well. 

This provides compelling evidence why actuaries must utilize alternative 
dependence models beyond the Normal copula. 
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Dependence Models and the Portfolio Effect 
Donald Mango, FCAS and James Sandor, ACAS 

American Re-Insurance 

1. Introduction 

Many re-insurers assess the price of their business using some form of contract-level 
capital allocation - -  e.g., ruin threshold, marginal standard deviation, expected 
policyholder deficit ("EPD") [1], or tail conditional expectation ("TCE") [4]. Practical 
application of any of these capital measures in contract pricing requires (i) stochastically 
modeled contract outcome distributions, and (ii) a selected "safety standard" for that risk 
measure (e.g., 99 ~ percentJle for ruin threshold). The more stringent the safety 
standard, the more capital will be allocated. But what contract safety standard should a 
company use? And what portfolio safety standard does that contract-level standard 
imply? In other words, what is the "portfol io effect" - -  the diversification benefit of 
writing a contract as a part of a large portfolio rather than on its own? 

This paper presents results of a simulation study of the relationship between contract- 
level safety standards and the implied portfolio safety standard for the expected 
policyholder deficit and ruin threshold risk measures. The study uses a simulation model 
of a portfolio of reinsurance contracts programmed in the S-Plus language 1. 

Using a standard technique for generating a multivariate log-Normal sample with 
correlation - -  the "Normal copula" - -  across a reasonable range of inputs, apparently 
aggressive contract-level safety standards roll up to prudent portfolio-level safety 
standards. Similarly, more conservative contract-level safety standards roll up to 
extremely conservative portfolio safety standards. 

Taken at face value, these results challenge popular thinking about reinsurance pricing 
using capital allocation, as the portfolio effect is greater than anticipated. However, upon 
deeper analysis, it appears the effect may be overstated due to limitations in the 
dependence modeling implicit in the Normal copula. In other words, an accepted 
"standard" actuarial simulation technique understated the tail of the portfolio outcome 
distribution. Tail-based risk measures were, therefore, understated as well. 

This provides compelling evidence why actuaries must utilize alternative 
dependence models beyond the Normal copula. 

This paper proceeds through six additional sections. Section 2 presents an overview of 
the study. Section 3 provides details of the study, and Section 4 describes in depth all 
the calculations for a single example iteration of the study. Section 5 explains the results 

' The results of the study in Excel pivot tables, as well as the S-Plus script file (program), will be posted 
on the CAS website. 
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of the study. Section 6 addresses the concept of dependence modeling. Section 7 gives 
conclusions. 

2. Overview of the Study 

This study was prompted by efforts at American Re to calculate risk-based capital 
amounts for individual contracts. The methods tested were expected policyholder deficit 
("EPD") and ruin threshold. To calculate contract capital using a particular method, a 
contract-level safety standard is needed. An EPD standard based in part on A.M Best 
information was available at the portfolio level, and there were several popular 
anecdotal ruin thresholds (e.g., 99 th percentile). 

Clearly the portfolio-level standard would be too conservative to use at the contract 
level, due to diversification - -  the elusive portfolio effect. But how much should the 
standard be relaxed at the contract level? And is there any way to tie the selected 
contract standard to the portfolio standard? In order to make an informed decision, and 
to test the assumptions, we conducted the simulation study described below. 

The results were surprising and contrary to our expectations. Because of the 
widespread use of similar techniques in re-insurance (and some primary insurance), we 
felt it would be beneficial to put the details and results of the study into the public 
domain, tt is our hope that this study will prompt deeper discussion about choices of a 
dependence model with respect to diversification and capital allocation. 

3. Details of the Study 

The impact of these four variables was studied: 

A. Individual contract expected loss 
B. Aggregate portfolio standard deviation 
C. Inter-contract correlation measure 
D. Contract-level risk measure standard 

For each iteration of the simulation, we selected a value for each of these variables. 

A. Individual Contract Expected Loss 
We modeled the portfolio as comprised of identical contracts of various expected loss 
amounts. We tested seven different individual contract expected loss amounts: 

$5M, $10M, $15M, $25M, $50M, $75M, and $100M 

We assumed the entire portfolio of contracts had a total expected loss of $1 Bill ion. 
Given that amount, the choice of an average contract size determines how many 
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contracts of that size make up the portfolio. For example, there would be two hundred 
$5M contracts, one hundred $10M contracts, etc. 

B, Aggregate Portfolio Standard Deviation 
We tested aggregate portfolio coefficients of variation ("CV's") of 0.29, 0.32, and 0.36. 
We considered these to be reasonable values for the overall portfolio variability. Given 
the $1B total expected loss, these CV's determined the portfolio standard deviation. 

C. /nter-contract Correlation Measure 
We tested three different inter-contract correlation levels for input to the multivariate 
Normal copula: 15%, 20%, and 25%. Since the process involves generating Normal 
samples, then exponentiating these to derive log-Normal samples, these measures in 
fact represent the correlation between the log of the contract outcomes. We assumed 
this correlation was constant between all contracts. 

D. Contract-/evel Risk Measure Standard 
We tested the following levels for EPD and ruin threshold: 

EPD: 20%, 15%, 10%, 7.5%, and 5% 
Ruin: 15%, 12.5%, 10%, 7.5%, and 5% 

Contract Loss Distributions 
Given: 

A. Contract Expected Loss (hence number of contracts), 
B. Aggregate Portfolio Standard Deviation, and 
C. Inter-contract Correlation, 

individual contract variance is uniquely defined. Aggregate portfolio variance is the sum 
over the entire covariance matrix. The diagonal elements of the covariance matrix are 
the individual contract variance (assumed constant). Each off-diagonal element is the 
individual contract variance multiplied by the inter-contract correlation (assumed 
constant). Thus, for N contracts, 

Contract Variance = v 
Aggregate Portfolio Variance = V 
Inter-contract correlation = p 

V = N v  + p N ( N  - 1 ) v  = v [ N  + p N ( N  - 1)] 
v= V / [N+  pN(N- 1)] 

We assumed a log-Normal distribution for the individual contracts, because it is a 
skewed distribution that represents aggregate contract loss distributions reasonably 
well. It is also straightforward to generate correlated log-Normal samples using the 
multivariate Normal distribution. We determined the/J and a parameters for the log- 
Normal using moment matching. 
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Contract-level Capital 
For each iteration, we selected a Total Asset amount A for each contract, based on 
either EPD or ruin threshold. For example, a ruin threshold of 99% (1% ruin probability) 
for a log-Normal distribution with known parameters is simply the 99 th percentile of that 
distribution. This amount would be A. 

A is composed of premium and capital. For purposes of the study, we assumed the 
premium amount was the individual contract expected loss amount, implying contract 
capital C = A - ELL]. 

Implied Portfolio Caoita/ 
The implied portfolio capital is the sum of the calculated individual contract capital 
amounts. The portfolio expected loss is the sum of individual contract expected loss 
amounts. The sum of these two items gives the portfolio asset amount. In order to 
determine what risk measure standard this total asset amount corresponds to, we 
needed to determine an aggregate portfolio loss distribution. We did this using 
simulation. 

Using the/.t and a parameters and the selected inter-contract correlation, we generated 
5,000 samples from a multivariate Normal distribution with the number of variables 
equal to the implied number of contracts. Log-Normal samples were then created by 
exponentiating the generated Normal samples. For each iteration, the sum of these log- 
Normal sampled loss amounts is the simulated portfolio total loss. 

The 5,000 iterations produce an empirical portfolio aggregate loss distribution. We could 
then calculate the risk measures using this distribution. Portfolio ruin probability is 
estimated as the number of iterations where portfolio loss exceeded the total portfolio 
assets divided by the total number of iterations. Portfolio EPD is the expected value of 
the amount by which portfolio loss exceeded the total assets. 

4. Detailed Explanation of an Example iteration 

This section provides details of a single example iteration of the study. As stated above, 
for each set of simulations we selected a different scenario from each of four variables: 

A. Contract Expected Loss (7 possibilities) 
B. Aggregate portfolio standard deviation (3) 
C. Inter-contract correlation (3) 
D. Contract-level risk measure standard (5) 

In the actual study, the simulation was repeated 315 times (7 x 3 x 3 x 5). For this 
example, we will select one value from each of the above variables. 
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A. Contract Expected Loss 
In this case, we will use $10M as our individual contract expected loss. Since we are 
keeping our aggregate expected loss fixed ($1B), this individual contract expected loss 
implies 100 contracts. 

B. Aclclreqate portfolio standard deviation 
We used different CV scenarios to come up with our implied aggregate portfolio 
standard deviation. Here we will use a 0.32 CV, which implies an overall portfolio 
standard deviation of $320M. 

C.. Inter-contract correlation 
For this example we will use 0.20. We already have the first moment of our individual 
contract loss distribution by assumption ($10M). Our selection of inter-contract 
correlation, combined with our assumption with respect to aggregate portfolio standard 
deviation, implies a unique second moment for our individual contract loss distribution. 

Contract Variance = v 
Aggregate Portfolio Variance = V= (320M) = 
Inter-contract correlation = p = 0.20 
Number of Contracts = N = 100 

V =  N v  + p N ( N -  1)v = v[N + pN(N  - 1)] 
(320M)= = v[ (100)  + (0 .20) (100) (99) ]  
v = ( 320M)  = I (2080)  
v = (7 .016M)  z 

An intuitive way to visualize this is to picture our 100 x 100 covariance matrix, which 
represents our entire portfolio of contracts. By assumption, the sum of this matrix must 
add up to (320M) 2. In the case of independence, only the diagonal of our covariance 
matrix would be populated and our individual contract variance would simply be equal to 
Vl N. As we increase the correlation, the variance along the diagonal becomes diluted 
as we spread more and more of the total variance to the off-diagonal cells in our matrix. 
The pN(N- 1) term in the above expression represents the strength of this dilution. 

D. Contract Loss Distributions 
Our individual contracts have an expected loss of $10M with a variance of (7.016M) =. 
This implies a contract coefficient of variation of 0.7016. Since we are assuming a log- 
Normal distribution for individual contracts, we can solve for the a parameter by using 
the following relationship. 

CV =~e  ~ - I  

cr = x / I n ( C V  2 + l )  
(1) 

where CV is the coefficient of variation. 
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The o" parameter for our contracts is the square root of In[(0,7016) 2 + 1] which is equal 
to 0.6327. Similarly, we can solve for the/~ parameter using the following relationship. 

(: /  
E [ L ]  = e "+Y 

0. 2 

I t  = l n ( E [ L ] )  - - -  

2 

(2) 

where E[L] is the expected loss. 

For our example, we know the expected loss is $10M and we know ~ris equal to 
0.6327. This implies 

p = In($10M)-(0.5)(0.6327) 2 = 15.918. 

Contract-level risk measure and safety standard 
We'll examine the above individual contract at a 10% expected policyholder deficit. A 
similar exercise can be performed for probability of ruin. We will take this result for the 
individual contract, and multiply it by the number of contracts in our portfolio to get total 
implied capital for our portfolio. 

The deficit (D) for a given contract with a certain amount of assets (A) allocated to it, 
and an uncertain loss amount (X) can be defined as: 

X o A  X > A 
D= X<_A 

If f(x) is the density function for the loss variable X, then the expectation of the deficit, D, 
is: 

0o 

E(D)= fD. f(x)doc 

A 

= + I(x- 
Q A 

= S(x - A)f(xldx 
A 

go 

A A 
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A A 

o o A 

= e ( x ) -  E ( X  ^ A) 

where E(X^A) is the expected value of X, limited to A. 

Typically, the expected deficit is expressed as a percent of expected loss, E(X). This 
gives us: 

E P D %  - E ( X )  - E ( X  ^ A) 

F.(X) 

- I  E(X^A) 
E ( X )  

(4) 

For our specific example we have an EPD percent of 10% and the log-Normal 
parameters of our individual contract loss distribution/1 and a are 15.918 and 0.6327, 
respectively. We need to solve for A, individual contract assets. This can be determined 
either via simulation or through numerical methods. In our case, A is equal to 
approximately $16.2M. 

Implied Portfolio Capital and Safety standard 
Continuing our example, assuming we write 100 identical $10M contracts, the implied 
portfolio capital would be 100 x $16.2M or $1.62B. The final question is, "How 'safe' is 
the portfolio?" 

To create the distribution of losses for our portfolio, we simulated from a multivariate 
Normal distribution using our individual contract parameters and the selected correlation 
p, in this case 20%. In this example, since we have 100 contracts, each iteration of the 
simulation produces a vector of length 100. This vector is exponentiated, then summed. 
This procedure is repeated 5000 times to produce the loss distribution for our portfolio. 

Using this loss distribution for the portfolio, it is a simple exercise to solve for EPD% in 
the above expression using A = $1.62B. For our example, using the simulation results 
from the study, this was equal to 0.0067 or 0.67%. 
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5. Results o f  t h e  S t u d y  

Pivot Table of Results 
Given the number of dimensions in motion here (four), the best way to assess the 
results is with a pivot table. A Microsoft Excel 97 file with pivot tables of results for ruin 
threshold and EPD is posted on the CAS website (www.casact.orq). The pivot table 
allows the user to select aggregate portfolio CV and inter-contract correlation values. 
The tables then display contract expected loss down the column, and contract-level risk 
measure across the row. The table itself shows the resulting portfolio risk measure. 

Tables 1 - 6 show the EPD and ruin threshold results for selected aggregate portfolio 
CV's and inter-contract correlation values. 

S-Plus Script 
S-Plus is a statistical programming environment produced by Insightful Software 
(www.insi.qhfful.com). The S language was first developed by Bell Labs. S-Plus is used 
extensively in the statistical community. It is a vector-based language with substantial 
statistical and simulation capabilities. It handles large amounts of data well, and runs 
large-scale simulations quickly. The script file is also on the CAS website for others to 
use or modify and extend the analysis. 

Implications 
For a range of reasonable input assumptions, aggressive contract-level safety 
standards (e.g., 10% EPD) appear to roll up to prudent portfolio-level safety standards. 
Similarly, more conservative contract-level safety standards (e.g., 1% EPD) roll up to 
extremely conservative portfolio safety standards. 

For example, if the company wished to hold capital commensurate with an A rating 
(roughly corresponding to an EPD of 0.5%), they could use the study results to support 
contract safety standards anywhere from 5.0% to 10.0% Similar examples could be 
found using ruin threshold. The implications of implementing such contract safety 
standards in pricing are dramatic. These results were far from those expected by 
underwriters and pricing actuaries. They were also far from the standard in use at the 
time of the study (1% EPD). Implementing even the most conservative standard - -  5% 
EPD - -  would have represented a dramatic shift. 

Whenever indications deviate dramatically from current figures, both sets are called into 
question. The same phenomenon occurred here; the divergence of indications from 
current values led us to backtrack and analyze each component step in the simulation 
study. The range of input assumptions held up under further review. However, the 
seemingly innocuous choice of simulation method did not. 
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6. Dependence Modeling 

As described previously, our approach to generating multivariate log-Normal samples 
relied upon the Normal copula and linear correlation. This approach qualifies as de facto 
"standard practice" for many simulation exercises carried out by North Amedcan 
actuaries. We are familiar with the multivariate Normal distribution and linear correlation 
from our exam syllabus, and software products to generate samples from this 
distribution are widely available (e.g., Microsoft Excel with @Risk, S-Plus). That makes 
it familiar and convenient, but is it any good? Does it produce appropriate results? 

Risk and capital measures focus on the tails of distributions, so simulation techniques 
should reasonably model aggregation risk as reflected in the tail of the portfolio 
distribution. We relied on the Normal copula to model that risk. Our results were to a 
large extent a function of the mechanics of the Normal copula and its implicit 
dependence model. 

The concept of stochastic dependence measures is not on the North American actuarial 
syllabus yet. Correlation is, but correlation is only one measure from this broader and 
more general class. Quoting Embrechts et al [2]: 

"Some of the confusion [surrounding correlation] may arise from the literary use of the 
word to cover any notion of dependence. To a mathematician correlation is only one 
particular measure of stochastic dependence among many. It is the canonical measure 
in the world of multivariate normal distributions, and more generally for spherical and 
elliptical distributions. However, empirical research in finance and insurance shows that 
the distributions of the real world are seldom in this class." [2, p. 2] 

In other words, linear correlation completely describes the dependence relationship 
among the variables for the classes of elliptical and spherical distributions, of which the 
multivariate Normal is a member. However, most skewed distributions - including the 
log-Normal - are not members of these classes. So the dependence relationship 
between individual variables in a multivariate distribution from non-elliptical and non- 
spherical classes is not fully described by the linear correlation matrix. 

Asymptotic Tail Independence in the Normal Copula 
Of particular concern to actuaries performing simulation studies is the asymptotic tail 
independence of the Normal copula. Section 4.4 of Embrechts et al [2] discusses this at 
length. Summarizing their conclusions: 

"Thus the Gaussian [Normal] copula gives asymptotic independence, provided that p < 
1. Regardless of how high a correlation we choose, if we go far enough into the tail, 
extreme events appear to occur independently in each margin." [2, p.19] 

This is an alarming conclusion. Most actuarial risk measures focus on the tails. Any 
multivariate simulation exercise that systematically generates essentially independent 
tail samples will understate aggregate tail probabilities and, thus, understate the risk 
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measure• The very portion of the curve we are focusing on is not being modeled 
properly by this "familiar and convenient" method. 

A simple example will help reinforce this important concept. Figure 1 shows the plot of a 
5000 point sample generated from a bivariate Normal distribution with p = (12, 12), o = 
(0.5, 0.5), and correlation = 70%. 
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The sample correlation is 70.3%, showing the sample size is significant and the 
multivariate Normal generation algorithm is reasonably accurate. The correlation is also 
noticeable from the plot by the clustering of the points along the 45-degree line in an 
ellipsoid shape. 

Figure 2 shows the plot of the bivariate log-Normal sample generated from the Normal 
sample by exponentiating every point• What is immediately apparent visually is the 
divergence of the points away from the 45-degree line. The divergence appears to grow 
wider as the magnitude of the generated loss amounts increases. This demonstrates 
the asymptotic tail independence of the bivariate log-Normal distribution. 

Analytic measures of dependence fare no better. Apparently the simple act of 
exponentiating did not preserve the correlation, as the 70% sample correlation for the 
Normal sample drops to 64.3% for the log-Normal. Embrechts et al [2] explain why: 

"Linear correlation has the serious deficiency that it is not invariant under non-linear 
strictly increasing transformations." [2, Section 3.2] 

If we perform this demonstration using more variables, the impact of the tail 
independence would be even more pronounced. 

16 

x 10 6 
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Other Copulas 
Copulas are multivariate uniform-(0,1) distributions with a defined dependence 
relationship. Frees and Valdez [3] provide this definition: 

"To define a copula, begin as you might in a simulation study by considering p uniform 
(on the unit interval) random variables, ul, u2 ..... up. Here, p is the number of outcomes 
you wish to understand. Unlike many simulation applications, we do not assume that ul, 
u2 ..... up are independent; yet they may be related. This relationship is described 
through their joint distribution function 

C(u,.u, . . . . .  u,)=Pr(U, <u,,U2 <u 2 . . . . .  U. <u,). 

Here, we call the function C a copula." [3, p.2] 

If the multivariate distribution is continuous, the copula is unique. Per Embrechts et al 
[2], if it is unique, the copula can be interpreted as the dependence structure. Since the 
multivariate Normal is continuous, its copula is unique and, therefore, the dependence 
structure is unique and completely defined by the linear correlation. If we are using the 
Normal copula, there is no way to generate any more tail dependence than we have 
seen. The asymptotic tail independence is a fundamental characteristic of the Normal 
copula itself, and makes it a poor choice for many simulation studies. If actuaries want 
different dependence relationships, they must employ different copulas. 

Embrechts et al [2], Frees and Valdez [3] and Venter [5] discuss several promising 
alternative copulas. Many of the explanations are steeped in difficult statistical language 
that hampers the communication effort to broad actuarial audiences. To facilitate wider 
acceptance and use of these copulas in the North American actuadal community, 
actuaries need to become more familiar with alternative dependence measures. In 
addition, both algorithms and demonstration software need to be placed in the public 
domain. 

A/temafive Dependence Measures: other copulas require measures of dependence 
besides linear correlation: for example, rank correlation, Kendall's tau, and 
comonotonicity. See Embrechts et al [2] for an extensive discussion of these measures. 

North American actuaries need to understand these new measures, how they are 
calculated, how they might be estimated from insurance data, how they measure tail 
dependence in particular, and how they compare with correlation. Of perhaps primary 
importance is "plain English" translations of the often complex formulas, to help 
actuaries develop an intuitive comfort level. Also critical are techniques that evaluate the 
appropriateness of various copulas for the particular study. Venter [5] presents several 
measures focusing on tail dependence, which is relevant to risk and capital 
measurement. 

Algorithms and Software: Perhaps the Normal copula enjoys such widespread use in 
part because of its prevalence in so many software packages. Linear correlation can be 
calculated in a spreadsheet. Well-documented, widely available software 
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implementations of new dependence measures and copulas would substantially 
increase their use and facilitate further research. 

7. Conclusion 

This paper has presented compelling evidence for alternative dependence models to 
the Normal copula. Many of the listed references provide detailed explanations of these 
models, but often from a statistical perspective that is difficult for a broad audience to 
grasp. There is a need for publication of survey papers to translate these often difficult 
statistical concepts into terms accessible to a broader audience. Equally important is the 
need for public domain demonstration software, giving practical examples of the 
measurement and use of these methods. 
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Portfolio CV 
Correlation 

Average of Portfolio EPD 

Table 1 

EPD Summary 

29% Portfolio CV, 15% Correlation 

28.6% 
15.0*/0 

Contract EPD ] 
Contract Size (SOOO's) 
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15,000 
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Portfolio CV 
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Table 2 

EPD Summary 
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7.96% 3.73% 1,33% 0.51% O.l I% 
9.14% 4.37% 1.54% 0.75% 0.16% 

10.1 I% 5.15% 1.98% 0.85% 0.35% 

Portfolio CV 
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Average of Portfolio EPD 

Table 3 
EPD Summary 

3 6 %  Portfolio CV, 25% C o r r e l a t i o n  

35.7% 
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Contract Size {$O00's) 
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7.87% 3.67% I. 19% 0.56% O. 19% 
8,29% 3.99% I. 29% 0.68% 0. ] 0% 
8.83% 4.36% 1.72% O71% 0.27% 
9.57% 5.20% 2.14% I. 13% 0.29% 

10.48% 5.79% 2.34% 1.26% 0.33% 
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Contract Size 

Table 4 
Ruin Summary 
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4.86% 2.26% 1.32% 0 38% O. 10% 
4.58°/, 2.94% I. 52% 066% 0.12% 

Portfolio CV 
Correlation 

Table 5 
Ruin Summary 

32% Portfolio CV, 20% Correlation 

[ 32"1°/*[ 
20.o%l 

Average of Portfolio Ruin 
Contract Size 

5,00C 
10,00~ 
15,00~ 
25,00¢ 
SO,0~ 
75,00~ 

100,00~ 

Contract Ruin ] 
15.0% 12.5% 10.0% 7.5% 5.0% 
4.22% 2.60% 1.44% 030% 0 14% 
3.94% 2.46% I 20% 0.54% 0 12% 
4.200/~ 2.32% 120% 0.42% 0 10% 
4.68% 3,06% 1.22% 0.56% 0 12% 
5.00% 2,92% I. 82% 0.74% 0 18°A 
600% 3.22% 1,98% 0.98% 0.22% 
6.18% 402% 2.62% 0.94% 046°A 

Table 6 
Ruin Summary 

36% Portfolio CV, 25% Correlation 

IPort folio CV 35.7% 
Correlation [ 25.0% 

of Portfolio Ruin Contract Ruin [ Avera[~e 
Contract Size 15.0*/0 ! 2.5% 10.0% 7.5% 5.0% 

5,000 
IO,OeOi 
15,000 
2&O00 
50,000 
75,OO0 

,!oo, ooo 

5.00% 4.06% 1.86% 0.58% 026% 
5.34% 3.14% 2 32% 0~90% O. 24% 
598% 358% 216% 0.94% 032% 
6.40% 3.80% I 86% I 18% 0.22°/, 
5.94% 3.70% 2.20% I 02% 046% 
6.84% 4.74% 294% 168% 042~  
7.52% 5.04% 2.96% 1.76°/o 0 50% 
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