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Abstract: This note investigates ways to fit individual claim loss data to a
prior known “underlying severity level” by adjusting the relative
importance, or weight, assigned to each claim. Here, “underlying severity
level” is measured by the weighted mean cost per case. The paper also
generalizes the approach to accommodate fitting higher moments of the
loss distribution, especially the variance. It establishes the existence of an
optimal reweighting, but whose calculation may be too difficult for
practical application. To address this, the paper describes two easier
calculations, one designed to fit only the mean and another to fit both
mean and variance.

Section I: Setup and Notation

Let X be any finite set, by a weight on X we simply mean a non-negative
real-valued function @ : X —[0,). In this case will also refer tow as a
weight and refer to the pair (X ,w) is a weighted set. But we will often
abuse this formality and just refer to X as weighted by @ . For any finite
set X, we let | X|=number of elements in X. When Xis weighted by o,
we use the notation:

|4, = Y a(x), for any subset 4 C X.
=4

We note two simple properties that a weight @ on X may or may not
have:
@ is positive if and only if w(x) >0 foreveryxe X

 isa probability weight if and only if | X], =1.
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It is clear that the concept of a discrete probability density on X exactly
coincides with what we are here calling a probability weight.

Nowlet X < R be any finite set of real numbers and @ a weight on X .
By combining the weights of elements of X that are equal, we can without
any loss of generality write X = {x, < x, <...< x, } as a series of n distinct
numbers in ascending order. Think of the x, as representing the distinct
loss amounts from the claim sample X, arranged in increasing order to
facilitate a size of loss analysis. Now take any Z € Rwithx,<z<x,.
It is intuitively clear that there exits a weight v on X for which z is the
weighted mean:

_ zﬁxv(x)x _ mev(x)x _

= = = X).
DI e
If we define yet a third weight pon X by setting p=v|—X|ﬂ-. Then we

afx],

can think of p as a multiplicative adjustment factor to the weight @ that
reweights the weighted set X to give it the given mean z while holding
the total weight constant.

Section IT: Moments of Finite Claim Samples

This paper pursues the question of how to come up with an appropriate v.
For this purpose, we introduce the formal moments of X , relative to any
function V: X =R

k
My =#k(X,v)=;’T—;I—(fB—, 0<ks<n-1.

Observe that when v is a probability weight, this is just the usual first

n —1 moments of the claim sample X. It turns out that for any vector of
potential formal moments of X, say m =(1,m,,..m,_,), there is a uniquely
defined function ¥(m): X — R such that:

* m,=pu,(X,v), 0<k<n-1,
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To verify this, recall the n xn Van der Monde matrix:

11
vy 2 7%
xln-l Xz.-l e x”n-l

whose determinant:

Det(v)= [[(x,-x)>0

15 j<isn
provides a standard exercise in introductory linear algebra textbooks. The
verification is by inductionon n. Case n=1 holds vacuously and case
n=2 is clear. Regard the x, as constants and construct the n —1degree

polynomial:

1 1 1 1
p(») = Det X X2 K y
xlu-l xln-l s x._ln—l yn-l

Note that substituting y by any of x,,...,x,_, results in a matrix with two
identical columns. But then clearly p(y) has the distinct roots x,,...,x,_,,
and we may write p(y)=aH(y—x,),wheretheconstant ais the

Isi<n
coefficient of ™. But expanding the determinant along column 7 and
invoking the induction hypothesis:

1 1 1
x x e ox_
a=Det] ! L EI | (R}
: : : : 1€ jeiSn-1
n=2 n=2 n=2
* X2 Xge1

342



Whence:

Det(V) = P(x.) =al_[(xn _x.')= H(xi—xj)n(xu —X‘.)= H(x,‘ "xj)a,

1Si<n 1< j<isn-1 1Si<n 1Sj<isn
that completes the induction.

Now we can naturally identify any function © : X — R with the row
vector (V(x,), v(x,),...0(x,)) . With this notation, observe that (*) is just
the matrix equation: 0" =m" . Since the matrix ¥ is nonsingular, the
finction  : X — R can be calculated from ™ =¥ "'m”, establishing
both existence and uniqueness of v. In theory, this provides a way of
determining whether a weight v exists on X that rewgights the claims to
fit the given set of n moments, and even provides a way to calculate it. In
practice, however, the claim sample may be very large and this may not be
very practical.

More likely, we are only concerned with fitting the first few moments of
the claim sample X to a set of moment values derived from empirical data,
say m =(m, =1,m,,...m, ), k< n. The moments must be reasonable in
relation to X', for example we clearly must have:

xm <m,, <xm1<j<k

‘Which would be assured, say, if all the empirical claim costs fell within
the range of X .

When k =1it s clear that the set of “possible” moments over all
probability weights on X is just:

M(X)={1,m)|x, <m <x}

The case k =2, which corresponds to fitting both the mean and standard
deviation, is more complicated and so we consider sub-cases.
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Sub-case k =n =2, here the reader can easily verify that:
My(X)={(Lm,m) | % S m S x0 my = x,(m —5) +myx

Sub-case k =2, n=3, here we claim that

_ xsSmsx
Mz(X)'{(l’m""")‘Ma;(xz(m, = %) +mx, X (m = x;)+ mx,) Smy S x,(my -x.)+mlx.}

To verify this, consider the set of 2 simultaneous equations:
m = +ox, +{1-o o)
my = +0,3; +(1- 0 -, 15
which may be rewritten as:
x—m=a(x -x )+ oy, - x,)
- m, =a(] - )+ (] - 53
Considering @,, @, as unknowns, we know from the above that there is a

unique solution to these equations. In fact, we let the reader verify that the
solution is:

_m-x itk -mln+n) _x-m-(x-m)x +x)
2} » O

(x, "xlxxz "xl) (xs _xzxxz _xl)
Note too that

x5 —my —(x, —m)x, +x)
(x, —xz)(xs ‘xl)

o +a, =
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Considering @,, @, as weights, we see that they define a probability
density with moment vector (1,m,,m,) € M,(X) exactly when
@, 20,0, 20and @, +®, <1. Now the reader can easily check that:

Xm-x)+xx<m, & @+a=5l
x(m-x)+xpsm, & @20
m S x(m—-x)+mx & 0,20

from which our claim follows. There remains:

Sub-case k=2,n24,

My(X) ={m,my) % S my <x,,x,0m =3, + myx,_ Smy < x,(m — %)+ mx )
To prove this, let (1,m,m,)e M,(X) and let w(x,) = @) be the
corresponding probability weight. As before, we consider the set of two

simultaneous equations:

xn —’Il‘ :’Q(xn -xl )+w2(xn —x2)+“‘+wn-l(xn _xn-l)
xn-m, =a),(xf —xf)+wz(xf _x22)+"'+wn—l(x: -x

Eliminating the “unknown” @,_, gives:

53 m =y 4 S, =)= &2 -5 =, 5,0 )~ 0)
R ),

+ a)n-l (x: - x:—l - (xn + X Xxn X2 ))

This can be rewritten as
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m, =Jr,,(mI --Jr,,_|)+m,.7c,,~l +a),(x,,_, -x Xx,, -x )
+oyln, -5 )x, - x,)

+0,, (xn-l — Xz Xxu —X, —2)

Since the probability weights @, 20, this clearly implies that:

my2x, (ml “Xpa )"’ mx,

Observe too that
(‘x»—l - xx.. -X% )> (x -1 — X2 AXn _xz)>"'>(xn-1 —x.-zxx.-x.._z)>°-

It follows that m, is maximized by assigning as much weight as possible to
X, , i.e. by making @), as big as possible. Now, for fixed weighted mean
m, , the minimum x, gets maximum weight when it is required to offset
all by itself the maximum x,. Note that in that event:

-m,

m =dx, +(1-d ), =d =20

xn _xl
From this, we see that:

m, £, (ml —xn—l)+mlxn—| +0, (xn—-l —-X Xxn —% )

=xn(ml —xn—l)+mlxn-l +(x a4 =% Xxn "”l)

=x,,(m, =X, )+m|x,
And we have shown that
M0 c{m,my) | x S my < x,, %, (my— %)+ mx, | Smy < x,(m — %)+ m}
Conversely, let (1,m,,m,) belong to the right hand side and let

zZ =X <Zz =x,,_,<23=xn.
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Then we find that

z,(m — 2 Hmz=x, ,(m ~ % Frmx,
=x(m =%, rmx, ., < x,m = x, mx, =z,(m -z, }mz,
sm,
< x,(m = x Wmx=z, (m — z }mz,

It then follows from the case n =3 that (1,m,m,)e M,(X) whence:

{m,m) | x s m <x,, x,0m —%,)+ mx,_, Sm, <x,(m —x)+mx }C M,(X)

and the proof is complete for the sub-case k=2, n>4.

That argument readily extends to:
Case 3<k<n:
x<m<x,
MX)c{(lm,....m, o —(x, —m x/—x, <m <x—(x —m x/-x/Y2<j<k
" " ' xn_xn—l / " " xn_xl

To prove this, again let (1,m,,m,,...,m, )€ M,(X) and &(x,) =, be the
corresponding probability weight. We have a set of k simultaneous
equations:

xn—ml =(01 (‘xn - ‘xl )+w2 (xn -xZ )+ L +wn-l (xn - xn-l )

x:'mz =0, (x: -xf)+w2(xf -x§)+"'+wn-l(x: -xj—l)

x:_mk =0, (x: -x* )+(02(x: -x; )+"'+wn-l (x: -x:-l)

Now fix j, 1 < j < n and define the function
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)x’x

=X,

f®=x-2 —(x,-

Letting p=%—>l,weseethatforx, <X< X,

n-1

dr R

J
Zx_=_.]xl“ il B = & .:—jxi" +_x_’j'_'ip_1=(l+p+".+pf-l :

Xn = Xpy X p-l

And so f(x)is an increasing finction on (x;,x, ). Since f(x,_,)=0,we
see that

0<—f(%,2) <=f(%,3) <. <=f () <~ f ().

Eliminating the “unknown” @, , between the two equations involving m,
and m, gives:

x]—m;—(x, —m,) 2l —wa(x)
m; =x (x _ml ’j' H +Z(_f(x ))wz
This clearly implies that
x,{—-(x"—m,{%{i)Smj.

It follows, as before, that for any fixed m, , m, is maximized by assigning
as much weight as possible to x, , i.e. by making @, as big as possible.
And again, for fixed weighted mean m, , the minimum x, gets maximum

weight when it is required to offset all by itself the maximum x,. Recall
that:

. . N X, -m
m=dx +(1-@)x, =& =2—1

Xy =%

and from this, we see that:
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S,
o =l —a)lf(xl)
X —X

n n-1

j xl-x, (x,-m Y , ) —xi
R —m o1 =1 _| %n J_ s _ n n-1
=x; —(x, —m) % =5 =(x,—x)
Xp = Xpa xn —% Xp = Xp

- J _xJ
{22 o)t e (2

xn _xl

m; <x; =(x, —m;)

‘We have shown that
x<m<x,
MX)c (],nz,,...,mk)x,_(x -m x/—x) <m <x)—(x, -m, x-x/Y2<j<k
" " xn_'xn—l ! " " xn—xl

for 3 <k < n, as required.

The point of this discussion, as regards using weights on a set X to fit
pre-assigned moments, is that the number of elements of the set X limits
the number of moments and the minimum and maximum values of the set
X determines the allowable range of the moments. In particular, it may
be advisable to arrange for X to encompass outliers, even at the expense
of X being representative of claims experience, especially since it will be
reweighted anyway and by design such outliers do not “adversely” impact
the mean.

Section III: Finding the Weight

On the other hand, now suppose that (X',@) was built to be representative
of the kind of claims we are investigating and so we want to stay as “close
as possible” to weight @, in some sense.
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Define the subset

i=1

P= {(a),,wz,---,a),,)lo Swi,iwi =1}CR"

that corresponds to probability weight functions. Note that this subset is
closed, convex, and compact. Consider the (k + l)x n matrix (of
maximum rank):

Suppose we are given a vector m = (,m,,...71,) presumably derived from

empirical data, and we are assured (or we refer to a characterization of
covered moment vectors, as above, and augment the range of X if
necessary) that the solution set

S=PnpeR" |V =n"}
is not empty—in fact it is convex and compact. Since the norm function is
continuous, it then follows that there is some Uy € S such that

o - v,|= Min flo -v|jve s}

making Vo € S in some sense an optimal reweighting of X , inasmuch as
it fits the required moments while staying as close as possible to the
original weight @ . We have verified that there exists a well-defined “best”
solution, not necessarily unique, to the task of reweighting (X,@) to fita
given set of moments.

Even though the set S is convex and compact and fairly well described,
in general it is no picnic finding Uy € S that minimizes the distance to a
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point. We conclude this paper with two simpler approaches that, while
lacking in theoretical appeal, are simple to implement.

Approach 1: Suppose, as above, it remains a priority to use a weight as
near as practical with the original weightc but we are only concerned
with fitting the weighted mean to a given value m , which we assume
satisfies x, < m < x,. Consider the piecewise linear function:

f(A,f)=Max(024+1-2) AeRte[0,])

Notice the following limits:
0 re[0,0)
i A1) =
fim S (3.0 {M =1
0 te (01
lim f(l,t)={ o,
P R— + oo t=0

Consider the 1-parameter family of weights:

wl(x,)=/(/1,"" ~% }»(xi).
X, — X,

Note that @, =@. Define g(A)= g, (X,w,). The reader can verify that
g is a continuous, increasing function of A with:

Jlimg@=x  lim gA)=x,

1t follows that there is a unique number A, with g(4,) = m. We remark
that A, can be readily found in practice with the use of a binary search

algorithm. The weight v=2"'_IX_|‘”on X has the same total weight as the
Dig

original weight @ with 1,(X,0) = j,(X,0,) = g (ho) =,

Approach 2: Suppose, we are concemed with fitting both the weighted
mean and variance, but it is not a priority to use a weight near the original

weight @ . Suppose we are given a target mean 2 and variance §*. This
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approach exploits the Beta density, and we use the notation of [1]. We
letx,=0<x, and L=x,. Asin 1], the probability density function
g(z)of the two-parameter Beta density of mean 7 and variance 5° on the
interval (0, L) can be determined as:

R N a2 N
c== a=L—m—zcm>0 ﬁ:(l":m},>0
m Le m
(-
g(z)=g(a,ﬁ,2)=W z€(0,L)
Then define:
x;
u(x)= [g(2)dz 1<jsn.
i
We have:

], Zv(x,) ZJg(z)dz-Jg(z)dz =1

Jelayy

and so Vis a probability weight on X'. We also have:

e = (K ) = 2 DO l;(x) —ix fetre=3, ' ene

v x4t =z,
>2 J’ 2 g(z)dz = jz g(2)dz
J= ‘xH

‘Which indicates that while the weighted moments are greater, in most
cases they should reasonably well approximate their target.
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