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Abstract 

As reserving actuaries focus more on reserve ranges and less on point estimates, the 
question of how to develop a reasonable reserve range in the aggregate becomes more 
and more relevant. When working with a single set of "best estimates", the answer is 
simple - assuming all the best estimates are the mean values for each block of business 
being analyzed, the best estimate for the total is equal to the sum of the parts. 
However, if the by line best estimates are other than the mean values, the sum of the 
parts is not the same as the best estimate for the aggregate. 

This paper presents two possible approaches to developing aggregate reserve 
indications when looking at results other than the mean value. The approaches both 
rely on a simulation model. One takes in the actuary's judgment as to the correlations 
between the different underlying blocks of business and the second uses bootstrapping 
to eliminate the need for the actuary to make judgment calls about the nature of the 
correlations. 

I. Introduction 

The bar continues to be raised for actuaries performing reserve analyses. For example, 
the approval of Actuarial Standard of Practice # 36 for United States actuaries clarifies 
and codifies the requirements for actuaries producing '~Nritten statements of actuarial 
opinion regarding property/casualty loss and loss adjustment expense reserves. "1 A 
second example in the United States is the National Association of Insurance 
Commissioners requirement that companies begin booking managementls best 
estimate of reserves by line and in the aggregate, effective January 2001. A third 
example, this one from Australia, is contained in the Australian Prudential Regulation 
Authority's (APRA) General Insurance Prudential Standards, applicable from July 2002 
onwards. In these regulations, APRA specifically states "the Approved Actuary must 
provide advice on the valuation of insurance liabilities at a given level of sufficiency - 
that level is 75%. "2 

1 Actuarial Standard of Practice # 36, page 1. 
2 Australia Prudential Regulation Authority, Prudential Standard GPS 210, =Liability Valuation for General 
Insurers", July 2002 p. 2. 
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in this environment, it is clear that actuaries are being asked to do more than ever 
before with regard to reserve analyses. One set of techniques that has been of 
substantial interest to the paper-writing community for quite some time is the use of 
stochastic analysis or simulation models to analyze reserves. Stochastic methods 3 are 
an appealing approach to answering the questions currently being asked of reserving 
actuaries. One might ask, "Why?. What makes stochastic methods more useful in this 
regard than the traditional reserving methods that rve been using for years?" 

The answer is not that the stochastic methods are better than the traditional methods. 4 
Rather the stochastic methods are more informative about more aspects of reserve 
indications than traditional methods. When all an actuary is looking for is a point 
estimate, then traditional methods are quite sufficient to the task. However, when an 
actuary begins developing reserve ranges for one or more lines of business, and trying 
to develop not only ranges on a by-line basis, but in the aggregate, the traditional 
methods quickly pale in comparison to the stochastic methods. The creation of reserve 
ranges from point estimate methods is often an ad-hoc one, such as looking at results 
using different selection factors or different types of data (paid, incurred, separate claim 
frequency and severity development, etc.) or judgmentally saying something like =my 
best estimate plus or minus ten percent." When trying to develop a range in the 
aggregate, the ad-hoc decisions become even more so, such as "1'11 take the sum of my 
individual ranges less X% because I know the aggregate is less risky than the sum of 
the parts." 

Stochastic methods, by contrast, provide actuaries with a structured, mathematically 
rigorous approach to quantifying the variability around a best estimate. This is not 
meant to imply that all judgment is eliminated when a stochastic method is used. There 
are still many areas of judgment that remain, such as the choice of stochastic method 
and / or the shape of the distributions underlying the method, and the number of years 
of data being used to fit factors. What stochastic methods do provide is (a) a consistent 
framework and a repeatable process in which the analysis is done and (b) a 
mathematically rigorous answer to questions about probabilities and percentiles. Now, 

3 In this paper we use the word stochastic to mean frameworks that are not deterministic, i.e. have a 
random component. This is typically done by creating a framework for the reserving technique where 
many previously fixed quantities are represented by random variables. Probability distributions may then 
be generated for claims reserves, either analytically or by Monte-Carlo simulation. 

4 When we talk about "traditional methods", we mean the time-honored tradition of analyzing a triangle of 
paid or incurred loss data by looking at different averages of age-to-age development factors, selecting 
one for each development age and projecting paid or incurred losses to =ultimate" using the selected 
factors. There are many variations on this basic approach that can be applied, including data 
adjustments (like Berquist-Sherman), factor modifications (like Bornheutter-Ferguson), trend removal, but 
at the end of the day, the traditional methods all produce one reserve indication with no information as to 
how reality might differ from that single indication. 
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when asked to set reserves equal to the 75 th percentile, as in Australia, the actuary has 
a mechanism for identifying the 75 t~ percentile. Moreover, when the actuary analyzes 
the same block of business a year later, the actuary will be in a position to discuss how 
the 75 th percentile has changed, knowing that the changes are driven by the underlying 
data and not the application of different judgmental factors (assuming the actuary does 
not alter the assumptions underlying the stochastic method being used). 

It cannot be stressed enough, though, that stochastic models are not crystal balls. 
Quite often the argument is raised that the promise of stochastic models is much 
greater than the benefit they provide. The arguments typically take on one or both of 
the following forms: 
1. Stochastic models do not work very well when data is sparse or highly erratic. Or, to 

put another way, stochastic models work well when there is a lot of data and it is 
faidy regular - exactly the situation in which it is easy to apply a traditional point- 
estimate approach. 

2. Stochastic models ovedook trends and patterns in the data that an actuary using 
traditional methods would be able to pick up and incorporate into the analysis. 

England and Verrall, in their 2002 paper, addressed this sort of argument with the 
response "It is sometimes rather na'lVely hoped that stochastic methods will provide 
solutions to problems when deterministic methods fail. Indeed, sometimes stochastic 
models are judged on whether they can help when simple deterministic models fail. 
This rather misses the point. The usefulness of stochastic models is that they can, in 
many circumstances, provide more information which ma=y be useful in the reserving 
process and in the overall management of the company. " °  This, in our opinion, is the 
essence of the value proposition for stochastic models. They are not intended to 
replace traditional techniques. There will always be a need and a place for actuarial 
judgment in reserve analysis that stochastic models will never supplant. Even so, as 
the bar is raised for actuaries performing reserve analyses, the additional information 
inherent in stochastic models makes the argument in favor of adding them to the 
standard actuarial repertoire that much more compelling. 

Having laid the foundation for why we believe actuaries ought to be incorporating 
stochastic models into their everyday toolkit, let us turn to the actual substance of this 
paper - using a stochastic model to develop an aggregate reserve range for several 
lines of business with varying degrees of correlation between the lines. 

II. Correlation - mathematically speaking and in lay terms 

Before jumping into the case study, we will take a small detour into the mathematical 
theory underlying correlation. 

5 England & Verrall (2002), pp. 2-3. 
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Correlations between observed sets of numbers are a way of measuring the "strength of 
relationship", between the sets of numbers. Broadly speaking, this "strength of 
relationship" measure is a way of looking at the tendency of two variables, X and Y, to 
move in the same (or opposite) direction. For example, if X and Y were positively 
correlated then if X gives a higher than average number, we would expect Y to give a 
higher than average number as well. 

It should be mentioned that there are many different ways to measure correlation, both 
parametric (for example, Pearson's R) and non-parametric (Spearman's Rank Order, or 
Kendalrs tau). It should also be mentioned that these statistics only give a simple view 
of the way two random variables behave together - to get more detailed picture, we 
would need to understand the joint probability density function (pdf) of the two variables. 

As an example of correlation between two random variables we will look at the results of 
flipping two coins, and look at the relationship between correlation coefficients and 
conditional probabilities. 

Example 1 
We have two coins, each with an identical chance of getting heads (50%) or tails (50%) 
with a flip. We will specify their joint distribution, and so determine the relationship 
between the outcomes of both coins. Note that in our notation, 0 signifies a Head, 1 a 
Tail. 

Case 1: 

Case 1 Joint Distribution Table 

Coin A 

Coin  B 

The joint distribution table shows the probability of all the outcomes when the two coins 
are tossed. In the case of two coin tosses there are 4 potential outcomes, hence, there 
are 4 cells in the joint distribution table. For example, the probability of Coin A being a 
head (0) and Coin B a tail (1) can be determined by looking at the 0 row for Coin A and 
the 1 column for Coin B, in this example 0.25. In this case, our coins are independent. 
The correlation coefficient is zero, where we calculate the correlation coefficient by: 

Correlat ion Coeff icient = Coy(A, B) / (Stdev(A) * Stdev(B)) 

and 

Cov(A, 13) = E[(A - mean(A)) * (B - mean(B))]  = E(AB) - E(A)E(B) 

(2.1) 

(2.2) 
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W e  can a l so  see  that  the  o u t c o m e s  o f  coin B are  not  l inked in a n y  w a y  to the o u t c o m e  
o f  coin A. For  e x a m p l e  

P(B = 1 I A = 1) = P(A = 1, B = 1) / P(A = 1) 
= 0 .25 / 0.5 
= 0 .50 
= P(B = 1) 

Case  2: 

Case 2 Joint Dist#bution Table 

Coin B 

C o i n  A 

F rom this d is t r ibut ion w e  ca lcu la te  the cor re la t ion  coef f ic ient  to  be  0 .25 s. 

By  look ing  at  the  cond i t iona l  d ist r ibut ions,  it is c lear  that  the re  is a l ink be tween  the 
o u t c o m e  o f  coin B and co in A : 

P(B = 1 I A = 1) = P(A = 1, S = 1) / P(A = 1) 
= 0 .3125  / 0.5 
= 0 .625 

P(B = 0 I A = 1) = 0 .375 

So  w e  can see  that  with the inc rease  in corre la t ion,  the re  is an  inc rease  in the  chance  o f  
get t ing h e a d s  on  coin B 'g iven  coin A s h o w s  heads .  

e Proof that the correlation coefficient for case 2 is 0.25: 
I ! 

E(A,B) = ____~-~i*J*P(~'BJ) = 0 + 0 + 0 + 1"1"0.3125 = 0.3125 
i - o  j , . o  

E(A) = 0.5 = E(B) 
Cov(A,B) = E(A,B) - E(A)E(B) = 0.3125 - 0.25 = 0.0625 

1 

Var(A) = ~ ( i - E ( A ) )  2 *P(A~) = 0.25 = Var(B) 
i=o 

StDev(A) = 0.5 = StDev(B) 
Correlation Coefficient = 0.0625 / (0.5 * 0.5) = 0.25 
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With this 2 coin example it turns out that if we want the marginal distributions of each 
coin to be the standard 50% heads, 50% tails then, given the correlation coefficient we 
want to produce, we can uniquely define the joint pdf for the coins. 

We find that, for a given correlation coefficient of p, 

P(A = 1, B = I)  = P(A = 0, B = 0) = (I + p ) /4  
p(A= 1, B =0)=  P(A = 0, B = I ) =  (1 - p ) / 4  

We can then recover the conditional probabilities : 

P(B = 1 I A =  1)=(1 + p ) / 2  
P(B = O IA  = 1) = (1 - p ) /2  

So for example, we can see that 

p = 0.50 gives P(B = 1 I A = 1) = 0.750. 
p = 0.75 gives P(B = 1 I A = 1) = 0.875. 
p = 1.00 gives P(B = 1 I A = 1) = 1.000. 

As expected, an increase in the correlation coefficient means the higher the chance of 
throwing heads on coin B, given coin A shows heads. 

In lay terms, then, we would repeat our description of correlation at the start of this 
section, that correlation, or the "strength of relationship" is a way of looking at the 
tendency of two variables, X and Y, to move in the same (or opposite) direction. As the 
coin example shows, the more positively correlated X and Y are, the greater our 
expectation that Y will be higher than average if X is higher than average. 

It should be noted, however, that the expected value of the sum of two correlated 
variables is exactly equal to the expected value of the sum of the two uncorrelated 
variables with the same means. 

III. Significance of the existence of correlations between lines of 
business 

Suppose we have two or more blocks of business for which we are trying to calculate 
reserve indications. If all we are trying to do is determine the expected value of the 
reserve run-off, we can calculate the expected value for each block separately and add 
all the expectations together. However, if we are trying to quantify a value other than 
the mean, such as the 75 th pementile, we cannot simply sum across the lines of 
business. If we do so, we will overstate the aggregate reserve need. The only time the 
sum of the 75 th percentiles would be appropriate for the aggregate reserve indication is 
when all the lines are fully correlated with each other - a highly unlikely situation! The 
degree to which the lines are correlated will influence the proper aggregate reserve 
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leve! and the aggregate reserve range. How significant an impact will there be? That 
primarily depends upon two factors -- how volatile the reserve ranges are for the 
underlying lines of business and how strongly correlated the lines are with each other. 
If there is not much volatility, then the strength of the correlation will not matter that 
much. If, however, there is considerable volatility, the strength of correlations will 
produce differences that could be material. This is demonstrated in the following 
example. 

Example 2: The impact on values at the 75 th percentile as correlation and 
volatility increase 

Table 1 shows some figures relating the magnitude of the impact of correlations on the 
aggregate distribution to the size of the correlation. In this example, we have modeled 
two lines of business (A and B) assuming they were Normally distributed with identical 
means and variances. The means were assumed to be 100 and the standard 
deviations were 25. We are examining the 75 th percentile value derived for the sum of 
A and B. The tables below show the change in the 75 th percentile value between the 
uncorrelated situation and varying levels of correlation between lines A and B. Reading 
down the column shows the impact of an increasing level of correlation between lines A 
and B, namely that the ratio of the correlated to the uncorrelated value at the 75  th 

percentile increases as correlation increases. 

Table 1: Compar ison of  values at the 75 th percent i le as correlation increases 

I~::~:..~i~Gprr~|ati6h !1;~ : Values at 75 percentde • Ratio of Values at 75~ percentde 
223.8 0.0% 

: : :  I 226 7 i 3% [ 
" -0:50 1 229.2 ', 2.4% I 

I 0175 I 23i .5 r 3.4% 
i 1.00 I 233.7 _ [ 4:4% , 

Now let's expand the analysis to see what happens as the volatility of the underlying 
distributions increase. Table 2 shows a comparison of the sum of lines A and B at the 
75 th percentile as correlation increases and as volatility increases. The ratios in each 
column are relative to the value for the zero correlation value at each standard deviation 
value For example, the 5 8% ratio for the rightmost column at the 25% correlation level 
means that the 75 th percentile value for lines A + B with 25% correlation is 5.8% higher 
than the 75 th percentile of N(100,200)A + N(100,200)B with no correlation. As can be 
seen from this table, the greater the volatility, the larger the differential between the 
uncorrelated and correlated results at the 75 th percentile. 

Table 2: Compar ison of  values at the 75 th percent i le as both correlation and volat i l i ty increase 
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Standard  Deviat ion Va lue  

- 25 5 0  ~ 0 0  ~ 2QO 

Z),25 1.3% 2.3% 3.8% . 5.8% 
~.50 " ~ _..__2. % ...... 4.3% 7.3% . 11.0% 

0.75 3.4% 6.2% 10.4% ~ 15.8% 
1.00 • 4.4% 8.0% 13.4% [ 20.2% 

This effect is magnif ied if we look at similar results but further out on the tails of the 
distribution, for example  looking at the 95 th percentiles, as is shown in Table 3. 
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Table 3: Comparison of values at the 95  th percentile as both correlation and volatility increases 

Standard Deviation Value 
25 5 0  100 200 

#alue for 0.00 correlation at the 75 t~ percentile I 258.1 316.3 432.6 665.2 
3orrelation Ratio of values at 75 th percentile 
 .25 2.7% i 4.3% !6.3% L 8.3% 

s.lO/o E __8:_aO/o i 12.1%1 15.7% 
).75 7.3% i 11.9% i17.4% ! 22.6% 
1.00 9.3% F 15.2% i22.3% i 29.0% 

Note that these results will also depend on the nature of the underlying distributions - 
we would expect different results for lines of business that were Lognormally distributed 
for example. 

IV. C a s e  S t u d y  

A. Background 

The data used in this case study is fictional. It describes three lines of business, two 
long tail and one short tail. All three produce approximately the same mean reserve 
indication, but with varying degrees of volatility around their respective means. By 
having the three lines of approximately equal size, we can are able to focus on the 
impact of correlations between lines without worrying about whether the results from 
one line is overwhelming the results from the other two lines. 

Appendix I contains the data triangles. 

The examination of the impact of correlation on the aggregated results will be done 
using two methods. The first assumes the person doing the analysis can provide a 
positive-definite correlation matrix (see section B below). The relationships described in 
the correlation matrix are used to convert the uncorrelated aggregate reserve range into 
a correlated aggregate range. The process does not affect the reserve ranges of the 
underlying lines of business. It just influences the aggregation of the reserve indications 
by line so that if two lines are positively correlated and the first line produces a reserve 
indication that is higher than the expected reserve indication for that line, it is more likely 
than not that the second line will also produce a reserve indication that is higher than its 
expected reserve indication. This is exactly what was demonstrated in the coin 
examples in Section II. 

The second method dispenses with what the person doing the analysis knows or thinks 
he or she knows. This method relies on the data alone to derive the relationships and 
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linkages between the different lines of business. More precisely, this method assumes 
that all we need to know about how related the different lines of business are to each 
other is contained in the historical claims development that we have already observed. 
This method uses a technique known as bootstrapping to extract the relationships from 
the observed claims history. The bootstrapped data is used to generate reserve 
indications that inherently contain the same correlations as existed in the original data. 
Therefore, the aggregate reserve range is reflective of the underlying relationships 
between the individual lines of business, without first requiring the potentially messy 
step of requiring the person doing the analysis to develop a correlation matrix. 

B. A note on the nature of the correlation matrix used in the analysis 

The entries in the correlation matrix used must fulfill certain requirements that cause the 
matrix to be what is known as positive definite. The mathematical description of a 
positive definite matrix is that, given a vector x and a matrix A, where 

X = IX l X 2 . "  Xn] and 

F a l l  a12  . . .  a l n ]  

... 
L a n l  a n 2  . . .  ann_]  

x T A x  = IX 1 X 2 . . .  I 
a l l  a12  . . .  
a , . ,  

Xn  21 a 2 2  
: : . . .  

L a n l  a n 2  . . .  a n n J k X n J  

= a11xl  2 + a12xIx2 + a21x2x1 + ,.. + annXn 2 

Matrix A is positive definite when xTAx > 0 
for all x other than xl = x2 = " = Xn = 0. 

(4.1) 

(4.2) 
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C. Correlation matrix methodology 

The methodology used in this approach is that of rank correlation. Rank correlation is 
a useful approach to dealing with two or more correlated variables when the joint 
distribution of the correlated variables is not normal. When using rank correlation, what 
matters is the ordering of the simulated outcomes from each of the individual 
distributions, or more properly, the re-ordering of the outcomes. 

Rank Correlation Example 

Suppose we have two random variables, A and B. A and B are both defined by uniform 
distributions ranging from 100 to 200. Suppose we draw five values at random from A 
and B. They might look as shown in Table 4: 

Table 4 

Index I A  IB r 
1 1!55 r154 I 
2_ 1138 j ~  
3 4164 100 ] 

_5 107 -- 1128 / 

Now suppose we are interested in the joint distribution of A + B. We will use rank 
correlation to learn about this joint distribution. We will use a bivariate normal 
distribution to determine which value from distribution B ought to be paired with a value 
from distribution A. The easiest cases are when B is perfectly correlated with A or 
perfectly inversely correlated with A. In the perfectly correlated case, we pair the lowest 
value from A with the lowest value from B, the second lowest value from A with the 
second lowest value from B, and so on and so forth to the highest values for A and B. 
In the case of perfect inverse correlation, we pair the lowest value from A with the 
highest value from B, etc, etc, etc. The results from these two cases are shown in 
Table 5. 
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Table 5 

Perfectly Correlated 
Rank to Use 
A B 
1 1 
2 2 
3 3 
4 4 
5 5 

Resulting Joint Distribution 
A B A+B 
107 100 207 
122 125 247 
138 128 266 
155 164 309 
164 198 362 

Range of Joint Distribution 
Low 207 
High 362 

Perfect Inverse Correlation 
Rank to Use 

B 
5 

2 4 
i3 3 
4 2 
5 1 

Resulting Joint Distribution 
A B 
107 198 
122 154 
138 128 
155 125 
164 100 

Range of Joint Distribution 
Low 
High 

A+B 
305 
276 
266 
280 
264 

264 
305 

When there is no correlation between A and B, the ordering of the values from 
distribution B that are to be paired with values from distribution A are wholly random. 
The original order of the values drawn from distributions A and B is one example of the 
no-correlation condition. When positive correlations exist between A and B, the 
orderings reflect the level of correlation and the range of the joint distribution will be 
somewhere between the wholly random situation and the perfectly correlated one. 

Application of Rank Correlation Methodology to Reserve Analysis 

The application of the rank correlation methodology to a stochastic reserve analysis is 
done through a two-step process. In the first step, a stochastic reserving technique is 
use to generate N possible reserve runoffs from each data triangle being analyzed. 
Examples of several different techniques, including bootstrapping (England 2001), 
application of the chain-ladder to logarithmically adjusted incremental paid data 
(Christofldes 1990) and application of the chain-ladder to logarithmically adjusted 
cumulative paid data (Feldblum 1999) can be found in articles listed in the bibliography 
to this paper. In this case study, 5,000 different reserve runoffs were produced using 
the bootstrapping technique described in England (2001). This is the end of step one. 
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In step two, the user must specify a correlation matrix. We do not propose to cover how 
one may estimate such a correlation matrix in this paper, as we feel this is an important 
topic in its own right, the details of which would merit a separate paper. One such 
paper for readers who are looking for guidance in this area is "Correlation and the 
Aggregation of Unpaid Loss Distributions" by Paul Brehm, due to be published as part 
of the CAS 2002 Reserving Call Papers. In this paper, we will simply assume that the 
user has such a matrix, either calculated analytically, or estimated using some other 
approach, such as a judgmental estimation of correlation. 

We generate 5,000 samples for each line of business from a multivariate normal 
distribution, with the correlation matrix specified by the user. We then sort the samples 
from the reserving method into the same rank order as the normally distributed 
samples. This ensures that the rank order correlations between the three lines of 
business are the same as the rank order correlations between the three normal 
distributions. The aggregate reserve distribution is calculated from the sum of the 
individual line reserve distributions. This resulting aggregate reserve range will be 
composed of 5,000 different values from which statistics such as the 75 th percentile can 
be drawn. The range of aggregated reserve indications is reflective of the correlations 
entered into the correlation matrix at the start of the analysis. 

For example, the ranked results from the multivariate normal process might be as 
follows: 

Line 1, Rank 
528 

Line 2, Rank 
533 

Line3~Rank : : i 
4OO 

495 607 404 
995 710 904 
233 325 831 
733 912 551 
825 33 801 
325 107 331 
630 210 571 
653 986 51 
983 730 301 
130 900 782 

The first of the 5,000 values in the aggregate reserve distribution will be composed of 
the 52@ largest reserve indication for line 1 + the 533 rd largest reserve indication for 
line 2 + the 400 th largest reserve indication for line 3. The second of the thousand 
values will be composed of the 495 th largest reserve indication for line 1 + the 607 th 
largest reserve indication for line 2 + the 404 th largest reserve indication for line 3. 
Through this process, the higher the positive correlation between lines, the more likely it 
is that a value below the mean for one line will be combined with a value below the 
mean for a second line. At the same time, the mean of the overall distribution remains 
unchanged and the distributions of the individual lines remains unchanged. 
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D. Rank correlation results 

To show the impact of the correlations between the lines on the aggregate distribution, 
we ran the model five times, each time with a different correlation value: zero 
correlation, 25% correlation, 50% correlation, 75% correlation, and 100% correlation. 
The correlations were chosen to highlight the range of outcomes that result for different 
levels of correlation, not because the data necessarily implied the existence of 
correlations such as these. The results are shown both numerically in Table 6 and 
graphically in Figure 1 and Figure 2. 

Table 6: Case study results - aggregated reserve indication at different levels of correlation 
between underlying lines of business (all values are in thousands) 

0% corr 2 5 %  corr 50% corr 75% c o r r  100%;C0rt.t~ 
4,330,767 4,330,767 4,330,767 4,330,767 4,330,767 

Deviation 1,510,033 1,596,840 1,705,469 1,829,748 1,998,140 

50% l i e  : 
60% ile 
70% ile 
BO% lie 
90% ile 

2,587,213 2,293,224 2,084,841 2,086,531 1,930,725 
72.366.202 72,771,841 73,474,899 75,564,417 81,277,681 

2.995.943 2,861,958 2,695,429 2,510,514 2,408,319 
3.247,847 3,087,062 2,956,837 2,867,115 2,762,663 
3.384.401 3,241,518 3,143,080 3,033,779 2,987,948 
3,588,011 3,500,438 3,424,399 3,358,196 3,277,806 
3.782.986 3,681,105 3,615,534 3,574,383 3,522,031 
3.942.032 3,897,816 3,820,380 3,790,977 3,745,674 
4,113,146 4,078,681 4,071,349 4,027,615 3,973,908 
4,278,521 4,279,869 4,292,852 4,267,561 4,232,721 
4.493.139 4,518,971 4,547,255 4,558,175 4,560,471 
4.786.940 4,876,233 4,931,662 5,031,358 5,111,862 
5,378,096 5,475,577 5,604,519 5,679,109 5,842,125 
6,008,476 6,230,885 6,371,310 6,436,050 6,836,095 
8,286,504 8,687,785 9,310,024 10,075,891 10,322,456 
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Figure 1: Graph of case study results - aggregated reserve indication at different levels of 
correlation between underlying lines of business 
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As expected, the higher the positive correlation, the wider the aggregated reserve 
range. With increasingly higher positive correlations, it is less likely that a better than 
expected result in one line will be offset by a worse than expected result in another line. 
This causes the higher positive correlated situations to have lower aggregate values for 
percentiles below the mean and higher aggregate values for percentiles above the 
mean. The results of the table and graph show just this situation. For information 
purposes, the difference between the zero correlation situation and the perfectly 
correlated situation have been displayed on the graph in Figure 2. 

E. Bootstrap methodology 

Bootstrapping is a sampling technique that is an alternative to traditional statistical 
methodologies. In traditional statistical approaches, one might look at a sample of data 
and postulate the underlying distribution that gave rise to the observed outcomes. 
Then, when analyzing the range of possible outcomes, new samples are drawn from the 
postulated distribution. Bootstrapping, by comparison, does not concern itself with the 
underlying distribution. The bootstrap says that all the information needed to create 
new samples lies within the variability that exists in the already observed historical data. 
When it comes time to create the new samples, different observed variability factors are 
combined with the observed data to create "pseudo-data" from which the new samples 
are generated. A step-by-step description of the application of the bootstrap 
methodology to claims reserving is contained in Appendix I1. 

So what is bootstrapping, then, as it is applied to reserve analysis? Bootstrapping is a 
resampling method that is used to estimate in a structured manner, the variability of a 
parameter. In reserve analysis, the parameter is the difference between observed and 
expected paid amounts for any given accident year / development year combination. 
During each iteration of the bootstrapping simulation, random draws are made from all 
the available variability parameters. One random draw is made for each accident year / 
development year combination. The variability parameter is combined with the actual 
observation to develop a "pseudo-history" paid loss triangle A reserve indication is then 
produced from the pseudo-history data triangle by applying the traditional cumulative 
chain-ladder technique to "square the triangle". A step-by-step walkthrough of the 
bootstrap process is included in Appendix I1. 

Note that this example is using paid amounts. The bootstrap approach can equally be 
applied to incurred data, to generate "pseudo-history" incurred loss triangles, which may 
be developed to ultimate in the same manner as the paid data. Also, the methodology 
is not limited to working with just positive values. This is an important capability when 
using incurred data, as negative incrementals will be much more common when working 
with incurred data. 
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This approach is extended to multiple lines in the following manner. Instead of making 
random draws of the variability parameters independently for each line of business, the 
same draws are used across all lines of business. The variability parameters will differ 
from line to line, but the choice of which variability parameter to pick is the same across 
lines. 

The example of Table 7 - Table 9 should clarify the difference between the uncorrelated 
and correlated cases. The example shows two lines of business, Line A and Line B. 
Both are 4x4 triangles. Table 7 shows the variability parameters calculated from the 
original data. We start by labeling each parameter with the accident year, development 
year and triangle from which the parameters are derived. 

Table 8 shows one possible way the variability parameters might be reshuffled to create 
an uncorrelated bootstrap. For each Accident / Development year in each triangle A 
and B, we select a variability parameter from Table 7 at random. For example Triangle 
A, Accident Year 1, Development Year 1 has been assigned (randomly) the variability 
parameter from the original data in Table, Accident Year 2, Development Year 1. Note 
that each triangle uses the variability parameters calculated from that triangle's data, i.e. 
none of the variability parameters from Triangle A are used to create the pseudo-history 
in Triangle B. Also note that the choice of variability parameters for each Accident Year 
/ Development Year in Triangle A is independent of the choice of variability parameter 
for the corresponding Accident Year / Development Year in Triangle B. 

For the correlated bootstrap shown in Table 8, the choice of variability parameter for 
each Accident Year / Development Year in Triangle A is not independent of the choice 
of variability parameter for the corresponding Accident Year / Development Year in 
Triangle B. We ensure that the variability parameter selected from Triangle B comes 
from the same Accident Year / Development Year used to select a variability parameter 
from Triangle A. 

The process shown in Table 9 implicitly captures and uses whatever correlations 
existed in the historical data when producing the pseudo-histories from which the 
reserve indications will be developed. The resulting aggregated reserve indications will 
reflect the correlations that existed in the actual data, without requiring the analyst to 
first postulate what those correlations might be. This method also does not require the 
second stage reordering process that the correlation matrix methodology required. The 
correlated aggregate reserve indication can be derived in one step. 
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Table 7 

Variability Parameters Calculated from Original Data 

Triangle A Triangle B 

t (1A,1A) (1A,2A} (1A,3A) (1A,4A) 
2 (2A,1A) (2A,2A) (2A,3A) 
3 (3A,1A) (3A,2,,,) 

4 (4A,1A) T 

I 
I L 

I 
1 

(2A,2A) 
-~ (3A,I A) 
4 (1A,1A) 

Table 8 

(1B,1B) (18,2B) (1B,3B) (1B,4B) 
(2e,lB) (28,28) (2B,3B) 
(3B,1~) (3B,2B) 

4 (4B,1B) 

-Calculated Variability Parameters I 

Uncorrelated Bootstrapping - Reshuffling of variability parameters in Triangle B 
is independent of the reshuffling in Triangle A 

Development Year I I Devel°pment Year : ~~1 
2 3 4 1 2 : "' ~ 4 3 : 

(3A,2A) (1 ~,3~,) (3A,1 A) [-'--] 1 (2B,2~) (3~,2~) (1B,3B) (2B,2B) 
(2A'3A) (1~"2A) E ~ (3B'IB) (2B'3B) (2B'2B) 
(1A,1A) (1B,3B) (1B,1B) 

4 (1B,28) 

L [Randomly Selected Variability Parameters to be Used~ 
[ in the creation of one possible pseudo-history | 

Table 9 

J Development Year : J 
1 2 3 4 

[ ~  1 (2A,1A) (3A,2A) (1A,3A) (3A,1A) 
2 (2A,2A) (1A,2~,) (2A,3A) 
3 (3A,1A) (1A,1A) 
4 (1A,1A) 

A i 
[Randomi~/-Selected Variabiiity Parameters to be used i 
L_in_ the cre.ation of one possib!e pse3do-hLsto ~ j 

Correlated Bootstrapping - Reshuffling of variability parameters in Triangle B 
is identical to the reshuffling in Triangle A 

t,: ..... DevelopmentYear : ; ~ 
1 ..... 2 '  3 ~ ' ; 4  

[ ~  1 (2B,1B) (3B,2B) (le,3B) (3B,1B) 
2 (28,2B) ( lm2B) (2B,3B) 
3 (3B,1B) (1B,15) 
4 (1B,ln) 
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F. Bootstrap results 

The model was run one final time using the bootstrap methodology to develop an 
aggregated reserve range. The bootstrap results have been added to the results shown 
in Table 6, Figure 1 and Figure 2. The revised results are shown in Table 10, Figure 3, 
and Figure 4 where we can compare the aggregate reserve distributions generated from 
the two different approaches. 

Table 10 (all values are in thousands)  

I 0% corr 
Mean 4.330.767 

IStandard 

p eviation 1.510.033 

25% corr  50% corr 75% corr 100% corr 
4.330.767 4,330,767 4,330,767 4,330,767 

1.596.840 1,705,469 1,829,748 1,998,140 

I 
M!n!mum 2.587.213 2.293.224 
MaximUm 72.366.202 72.771.841 

1%ile 2.995,943 2.861,958 
15%'iie 3.24.7.847 3.087.062 
10% lie 3.384.401 3.241,518 
20% ile 3.588.01 " 3.500.438 
30% ile 3.782.986 3.681,105 
40% ile 3.942.032 3.897.816 
50%ile 4.113.146 4.078.681 
80% ile 4.278.521 4.279.869 
70%ile 4.493.139 4.518.971 
BO% lie 4.786.940 4.876.233 
90% ile 5.378.096 5.475.577 
95% ile 6.008.476 6.230.885 
99% ile 8 286.504 8.687.785 

E~timated 
75~ %ile 4,640,039 4,697,602 

2,084,841 2,086,531 1,930,725 
73,474,899 75,564,417 81,277,681 

2,695,429 2,510,514 2,408,319 
2,956,837 2,867,115 2,762,663 
3,143,080 3,033,779 2,987,948 
3,424,399 3,358,196 3,277,806 
3,615,534 3,574,383 3,522,031 
3,820,380 3,790,977 3,745,674 
4,071,349 4,027,615 3,973,908 
4,292,852 4,267,561 4,232,721 
4,547,255 4,558,175 4,560,471 
4,931,662 5,031,358 5,111,862 
5,604,519 5,679,109 5,842,125 
6,371,310 6,436,050 6,836,095 
9,310,024 10,075,891 10,322,456 

4,739,459 4,794,767 4,836,166 

Bootstrap 
4,335,587 

1,601,469 

2,250,401 
67,405,104 

2,708,420 
3,014,557 
3,194,731 
3,443,479 
3,653,888 
3849,489 
4,043,971 
4,271,588 
4,554,548 
4,957,356 
5,691,814 
6,471,699 
9,116,338 

4,755,952 
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F i g u r e  3: G r a p h  o f  c a s e  s t u d y  r e s u l t s  - a d d i n g  b o o t s t r a p p e d  c o r r e l a t i o n  t o  a g g r e g a t e d  r e s e r v e  
i n d i c a t i o n  a t  d i f f e r e n t  l e v e l s  o f  c o r r e l a t i o n  b e t w e e n  u n d e r l y i n g  l i n e s  o f  b u s i n e s s  
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'1= 
8,000,000 

E 
0 7 , ~ . 0 0 0  
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o 

n 
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4,000,01~ 

3,000.000 

2.000,000 
1% 5% 10"/, 20% 30% 40% 50% 60% 70% 80% 90% 95% 99% 
fie fie ile lie ile ile ile ile ile ile ile fie fie 

• --e--- 0% con" 

D 25% con" 
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0 75% corr 

100% COlT 

~ B o o t s t r a p  

Figure 4: Graph of case study results - adding bootstrapped correlation to aggregated reserve 
Indications at different levels of correlation between underlying lines of business - blowing up 
area around 75 tb percentile 
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The results shown in the preceding figures and tables provide us with the following 
information: 

1. If we wanted to hold reserves at the 75 th percentile, the smallest reserve that 
ought to be held is $4.640 billion and the largest ought to be $4.836 billion. 

2. The maximum impact on the 75 ~h percentile of indicated reserves due to 
correlation is 4.5% of the mean indication ($196 million / $4.331 billion). 

3. There does appear to be correlation between at least two of the lines. The 
observed level of correlation is similar to what would be displayed, were there to 
be a 50% correlation between each of the lines. It could be that two of the lines 
exhibit a stronger than 50% correlation with each other and a weaker than 50% 
correlation with the third line so that the overall results produce values similar to 
what would exist at the 50% correlation level. 

4. The proper reserve to book, assuming the 50% correlation is correct, is $4.75 
billion. 

Some level of correlation between at least two of the lines is indicated by the 
bootstrapped results. This is valuable information to know, even beyond the range of 
reserves indicated by the bootstrap methodology. With this information, company 
management can assess prospective underwriting strategies that recognize the 
interrelated nature of these lines of business, such as how much additional capital might 
be required to protect against adverse deviation. If the lines were uncorrelated, future 
adverse deviation in one line would not necessarily be reflected in the other lines. With 
the information at hand, it would be inappropriate to assume that adverse deviation in 
one line will not be mirrored by adverse deviation in one or both of the other lines. 
Continuing with this thought, the bootstrapped results would have been valuable even if 
they had shown there to be little or no correlation between the lines - because then 
company management could comfortably assume independence between the lines of 
business and make their strategic decisions accordingly. 

V. Summary and conclusions 

Let us move beyond the numbers of the case study to summarize what we feel to be the 
important general conclusions that can be drawn. To begin, calculating an aggregate 
reserve distribution for several lines of business requires not only a model for the 
distribution of reserves for each individual line of business, but also an understanding of 
the dependency of the reserve amounts between each of the lines of business. To get 
a feel for the impact of these dependencies on the aggregate distribution, we have 
proposed two different methods. One can use a rank correlation approach with 
correlation parameters estimated externally. However, this approach requires either 
calculating correlations using a method such as has been proposed by Brehm (2002) or 
by judgmentally developing a correlation matrix. Alternatively, one can use a bootstrap 
method that relies on the existing dependencies in the historic data triangles. This 
requires no external calibration, but may be less transparent in providing an 
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understanding of the data. It also limits the calculations to reflecting only those 
relationships that have existed in the past in the projection of reserve indications. 

Furthermore, it would appear that the correlation issue is not important for lines of 
business with non-volatile reserve ranges. However for volatile reserves, the impact of 
correlations between could be significant, particularly as one moves towards more 
extreme ends of the reserve range. If so, either correlation approach can provide 
actuaries with a way of quantifying the effect of correlations on the aggregate reserve 
range. Overall, the use of stochastic techniques adds value as such techniques can not 
only assess the volatility of reserves, but can also identify the significance of 
correlations between lines of business in a more rigorous manner than is possible with 
traditional techniques. 

To conclude, we believe that stochastic quantification of reserve ranges, with or without 
an analysis of correlations between lines of business, is a valuable extension of current 
actuarial practice. Regulations such as those recently promulgated by APRA will 
accelerate the general usage of stochastic techniques in reserve analysis. An 
accompanying benefit to the use of stochastic reserving techniques is the ability to 
quantify the effects of correlations between lines of business on overall reserve ranges. 
This will help actuaries and company management to better understand how variable 
reserve development might be, both by line and in the aggregate, allowing companies to 
make better-informed decisions on the booking of reserves and the amount of capital 
that must be deployed to protect the company against adverse reserve development. 
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A p p e n d i x  I: D a t a  s e t s  

The data used in this case study is fictional. It describes three lines of business, two 
long tail and one short tail. All three produce approximately the same mean reserve 
indication, but with varying degrees of volatility around their respective means. The 
data triangles are shown in Table 11 to Table 13 below. The data is all in the format of 
incremental paid losses, with all dollar amounts in thousands 

Table 11 - Line 1 (derived from Commercial Automobile business) 

|~: 20.513 78.579 65.886 57.537 59.293 ~" 338 10815 7.81" ~ ~ 
2 13.847 39.035 39.375 29.884 32 754 10.298 6 276 6924 3.835 
3 !5.785 49.135 42.672 27 920 36.399 27.828 9 596 6.781 0 
4 20.784 62.266 47,120 59.331 41 672 20 726 16 790 E 0 

108.531 "'5.103 187 886 90.515 1496~6 86.813 0 0 
I i-* 26,097 59 195 t,786 19.780 22 835 [ ? E ) 
~ i~!~,: 64,819 142,577 100,694 34 304 0 E 0 0 0 

~' 44,065 53,039 8 975 0 0 r 0 0 0 
20.022 39.276 

':~;~;~ ~;: 37 163 0 0 0 } (" } ( 0 

10 
11792 

When calculating ultimate indications from this data set, a tail extrapolation allowing for 
development up to thirty years was included in the calculations. 

Table 1 2 -  Line 2 (derived from Homeowners business) 

!;: 6 7 8 9 10 
6,280 8,400 11,900 9.070 10,140 2,010 80 
4,990 26,540 30,320 5,640 320 290 0 

!,077,950 331,980 53,160 44,020 23,170 15,420 8,990 5,780 0 0 
1,065,310 370,910 52,660 47,320 27,000 12,700 (800) 0 0 0 

5 ' :  1,055,040 372,020 62,250 5!,310 18,T10 16,970 0 0 0 0 
: 1,654,920 413,100 59,920 56,950 38,050 0 0 0 0 0 

~;~ 1,326,870 440,340 129 070 58,860 0 0 0 0 0 0 
"t-~! 
~ '  1,875,230 465,410 96,290 0 0 0 0 0 0 0 
~/~ 1,57z5!0 419,960 0 0 0 0 0 0 0 0 
! 0 [  1,~02,050 0 0 0 0 0 0 0 O 0 

When calculating ultimate indications from this data set, no tail extrapolation was used 
Development was assumed to end at ten years. 
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Table 13 - Line 3 (derived from Workers' Compensation business) 

:}6,212 115.053 140.789 115.705; 111,334. 26,366 20,877. 19,7.88 - _ 6,11[~ 16,618 
1-0,885 139.674 129.071 109.117~ 89.906 43,988 20.551 21.526 18,368 
~0 322 113.355 100.782 61 .491  64.420 40.803 20.580 25 214 O. 0 
38,013 69.213 56.892 75.435 49.984. 29.359 25 466 O. O' 0 
37,810 60.405 85.602 33 .211  53.347 35 643 0 0 0 0 
37,159 67.486 34.465 33 .121 41.478 0 0 0 0 0 
34,415 68,634 34.427 18.653 0 0 0 O. O_ 0 
37,786 40.462 24.049 0 0 0 0 0 0 0 
35,380 73,641 0 O! 0 O. 0 0 01 O 
39,866 0 0 0 0 0 0 0 0 

When calculating ultimate indications from this data set, a tail extrapolation allowing for 
development up to thirty years was included in the calculations. 

236 



Appendix I1: A step-by-step walkthrough of the bootstrap process 
used for reserve simulation 

Bootstrapping is a technique broadly accepted within the statistical community. It uses 
the noise within the historical data to make implications about both the noise in the 
future and about the parameter uncertainty. Since it uses the historical noise, it is not 
restricted to normal error structures, but rather uses the error structure implicit within the 
historical data. The method used is based upon the approach outlined by England and 
Verrall (1999) and expanded upon by England (2001). We encourage readers who 
want further explanation of the theory or other examples of the methodology to read 
both of these papers. 

The theoretical model to which this bootstrapping technique is compared is a model of 
incremental claims known as an "over-dispersed" Poisson distribution. This model is 
described by Renshaw and Verrall (1998). Using the notation from England (1999), 
incremental claims for origin year i in development yearj  are denoted C 0, we have: 

E[C~ = m~j and Var[C~ = ~E[C# = ~ m e (App2.1) 

Iog(m~ = r/0 (App2.2) 

r h" = c + ~+ #j (App2.3) 

These equations defined a generalized linear model in which the calculated value is 
modeled with a logarithmic link function and the vadance is proportional to the mean. 
The proportionality of the variance to the mean instead of the equality of the variance to 
the mean is the reason the model is described as an "over-dispersed" Poisson. The 
parameter <~ is an unknown scale parameter that is estimated as part of the fitting 
procedure. England (2001) notes that "with certain positivity constraints, predicted 
values and reserve estimates from this model are exactly the same as those from the 
chain ladder model. "7 

The steps undertaken to calculate runoff using the bootstrapping method are: 

1. Begin with a triangle of cumulative historical payments. We will use the data from 
Table 12 - Line 2 (derived from Homeowners business). This is shown in Triangle 
1. 

7 England (2001), p. 3. 
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Triangle 1: Cumulative historical data 

1 2 3 4 5 6 7 8 9 10 I 
1 761.590 1.089.510 1.142.800 £159.080 1.167.480 1.179.380 1.18&450 1.198.590 1.200.600 1.200.680i 

" 784 59() 1,093740 1,157 860~1 192850" 1 219390 1~249,710 1 255350:1 25567(? 1,255 960[ - 
i+i;3 :; 1,b77,950. 1,409,930, 1,463 090 1,507 110- 1,530280! 1,545 70011 554 690 1,560,470 

1-i365~3i0 (4.36-220 + i 4~8&880~1 536,200 1,563200+1,5i5 900 1 575100 . . . . .  ? 
: ~ ,  -1,i)55~64~ i,427,()60:117i89,3-10!1,540,6201 1,559.330 1,576,300 ' : 

6 1654,920 " 2,068,Q20+ 2~127,940 2,184 890 2 222 940 . . . .  
7 1,3.26,870 _, 1.767.210 1,896,280 1,955.140 
8 1,875,230 2340.640 2 . 4 3 6 . 9 3 0  . . . .  
9 1,572,510 1,992,460 
10 1,902,050 

2. Calculate factors based upon historical payments.  The factors calculated are based 
on the cumulat ive chain ladder  method.  The factors are we ighted averages.  

Development Factors 

I %  t 2 3 4 5 6 7 8 9 10 I 
] Av,, e n/a 1.3088 1.0452 1.0288 1.0156 1.0124 1.0041 1.0041 1.0009 1.0001 I 

3. Using the cumulat ive factors calculated in step 2, refit the original payments .  

Most recent  payment  per iod equals most  recent payment  period cumulated 
payments  in the actual data. 

Fitted payments  (accident  year r, ca lendar  year c) all other payment  per iods = 

F i t t e d P a y m e n t (  r , c + 1) ( A p p 2 . 4 )  

C h a i n L a d d e r F a c t o r ( r ,  c + 1) 

The results of  the refitt ing are shown in Tr iangle 2. 
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Triangle 2: Cumulative fitted values 

4. 

1 2 3 4 ,5 6 7 8 9 10 
,i 822 235i 1,076,160: 1,124,783:1 157 1421 1,175,14111 189 716i 1 194,6241 1,199 476 1,200,600i 1,200 680 

2" ' .860,149- i i;i~5,~.82i 'I,!76,64711,210;,~9~:-i122~),3.271 i,2,4435~,~[i,~9170~8 ! i;254,784 1,2_55,960 
!. 1,069,695! 1,400,040! 1,463,298i 1,505,3951 1,528,811!I,547,7721 1,554,158! 1,560,470 
i "4  1:084:109:i:,4i8906 i:483:6i~[1:525,689; i 6~,6442! ~,56&:628iiS-z5 i00 
5 1 089,4i3 !-i 4.~5 845! 1,490,½69[ ~1~5-3:3 i4.#i i~5~6 989 i g76~300 - i 

6 1,555,371 2z035,703 i 2,127,682 i 2,188,893i 2,222,940 
7 . . . . . . . . . . .  1389,272 1818310 t.900466 1,955,140 . . . . .  i - i i i  [ 
8 1,781,437 2,331,583 2,436,930: 
9 1,522,3311 1,992,4601 : i : 

1 0  , " ...... . . . .  - 1,902,050 i ~ i 

For example, the derivation of the row 8, column 2 value of 2,331,583 = the row 8, 
column 3 value of 2,436,930 from Triangle 2 divided by the column 3 average of 
1.0452. The derivation of the row 8, column 1 value of 1,781,437 equals the row 8, 
column 2 value of 2,331,583 from Triangle 2 divided by the column 2 average of 
1.3088. 

Calculate unsealed Pearson residuals. This is the residual definition chosen by 
England and Verrall (1999) as being suitable for a generalized linear model of the 
type described by formulas App2.1 through App2.3. The formula for the Pearson 
residual is given by formula App2.5. The calculated unsealed residuals are shown 
in Triangle 3. 

Pearson Residual(r,c) Actual Payment(r,c)- Fitted Payment(r,c) (App2.5) 
~/Fitted Payment(r, c) 

The values are unsealed in the sense that they do not include the scale parameter 
~). The scale parameter is not needed when performing the bootstrap calculations, 
but it will be needed to incorporate an estimate of process error in the final results. 
The scale parameter will be incorporated into the calculations beginning with Step 
11. 

Triangle 3: Unscaled Pearson Residuals 

1 2 3 4 5 6 7 8 9 
1 -66.88 146.84 21.16 -89.38 -71.55 -22.16 59.40 7592 26.42 
2 -81 47 84.43 58.77 6.19 5620 12207 7.05 -6675 -25.83 
3 7 98 2.84: -40.15 9.37 -1.61 -25.72 32.59 -6.7C 
4 -18 06 62.41 -45.22 22.54 21 22 -4701 -90.39 
5 -32 93 6135 -8.56 4075 -33 27 -16.84 
6 79.82 -9701 -10571 -17.22 21.69 
7 -52.94 1725 163.68 17.90 
8 70.27 -114.24 -27.90 
9 4O 67 -73.18 

10 0.00 

10 
0.00 
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5. 

For example, the derivation of the row 8, column 1 value is: 

1,875,230 - 1,781,437 
Pearson Residual(& 1) = 7 0 . 2 7  

~ , 7 8 1 , 4 3 7  

One adjustment must be made to the unscaled Pearson residuals before they can 
be used in the bootstrap algorithm. This is to adjust the residuals to account for the 
number of degrees of freedom in the original data triangle. This step is done so as 
to allow the estimation variances derived from the bootstrap model to be compared 
to the estimation variances that can be obtained from the over-dispersed Poisson 
generalized linear model. The degree of freedom adjustment is accomplished by 
multiplying each residual by an adjustment factor equal to: 

~ n (App2.6) 
n - p  

where n = number of data points (55 in a 10 x 10 triangle) and 
p = number of parameters being estimated = (2 * number of accident years)- 1 

~/ =!.236. The 
55 

The degrees of freedom adjustment for this data triangle = 55-19 

adjusted residuals are shown in Triangle 4. 

Triangle 4: Unsealed Pearson Residuals, adjusted for degrees of freedom in original data 
triangle 

~, ] ;~  -82.67 181.50 26.16 -I I0.48 -88,44 -27.38 73,42 93.83 32.66 

~:_ :~#;~ # : f i '  --i~.891T7718 (/2-6.23-i-- :58-:i~-~ 2:,~i:7~i-- -- [_ i -  _i~" 
-40.70', 75.83: _ . . . . . . . . . . .  -10.58'. 50.361 -41.12~ -20.821 I ' ', 

, .0,,, 2,.33,202 , 22 3: i i i ! 
;8 .86.86!_._-141..212 ~.;34.49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
:9: 50.271 -90.46 i 

0.00 

2 4 0  



6. Randomly select from the adjusted Pearson residuals, excluding the cells in the top 
right and bottom left, as these will always be 0. An example of one possible random 
selection of residuals is shown in Triangle 5. 

Triangle 5: One possible random selection of residuals 

i 50.27i -55.89i -119.91', -31.93i -1.99: -31.931 86.861 -49.62', -22.32 L 69.46 
: 5 8 ~ i ~  . . . . .  ~87 i  : l i ~91~ - -q -a i~1 ! - - -  :~-6:f6~ . . . .  -8.72~ --:82~5-~i . . . . .  -~:~f~ . . . . .  ff~T4~ . . . . . . . . . .  

4 -31.93: 21.33: 75.83~ 69.46: 21.33: -65.44: -130.65', ', L 

s . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  i -  T ....... ! .......... -111.73! 7.65[ 8.721 -31.931 -31.931 
7 32.66~ -41.12 -119.91t 150.89; '. ', I ; L 

2 2 . i ~ - - - . ~ 2 7 : 3 8 i  - 69.46i - - - i  . . . . . . . . .  i . . . . . . . .  ~ - ! . . . . . . . . . . .  T . . . . . . . . . . .  i . . . . .  
: 9 -100.70 75.83 ! ! ! '~ ', ] ~ L 

7. Calculate a "false history" based on the randomly selected residuals from step 6. 

False History(r, c) = Random Residual(r, c) * ~/ Fitted Payment(r, c) + Fitted Payment(r, c) 

Triangle 6: False history based on random residuals in Triangle 5 

(App2.7) 

'[ _ 867 ,818  275_,7_59~.._._22,!8_3L___?6_,6L5L__17,732!_ _!0,720'~___j_0_~9~, ..... !,395! . . . . .  3_7_6_[ ...... 79_1 
2 _ 806,259~__.270,717i..._2_3,8_2_3i__ 7 ,870 ,  _ 13,244 i _ !&323j~ ...... {7_7_8)~ . . . . .  8_,_657_i - 3,821i . . . . . . . . . . .  
:3 ! , 177 ,6~ . .  _332.,:366_ 5 . 5 t 2 2 6  33,746 i 18,138i___ 21z898 ! . . . . . .  5,_5_4C)_, -12,337~ . . . . . . . . . . . . . . . .  
4 1,050,861 ~ 347,137' 83,310L._ 57~0!24~ 27,0!_7i __ 1_0,145 k (4~039)~ . . . . . . . . . . .  ! . . . . . . . . . .  r . . . . .  
5 1,187,350 338,4731 110,4921 37,2031 22,213i 13,5961 , , 

1427768 402103 47787 899551 ', ', i ', 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . .  i . . . . .  ~ . . . . . . .  T . . . . . . . . . . .  r . . . . . . .  . 8 ,  1,810,969! 529,835[ 127,8921 
9 1,398,085] 522,125 i i ] I L 

An example of a false history is shown in Triangle 6, using the residuals shown in 
Triangle 5. For example, the derivation of the row 8, column 1 value is: 
False History(& 1) = 1,906, 677 = 93.83 * ~ ,  781,437 + 1,781,437 
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8. Recalculate the weighed average cumulative chain ladder factors using cumulated 
false history from Triangle 6. 

Development Factors from false history in Triangle 6 

• -  ? t: 3 5 6 7 8 9 10 
,~X~', n/a i 1.310 i 1.045 1•028 1.014 1.010 1•002 1.006 i 1.002 [ 1.001 

9. Use the projection ratios from Step 8 to square the triangle from Step 7 using the 
traditional cumulative chain ladder method, as is shown in Triangle 7. 

Triangle 7: Squaring the false history triangle 

4 5 6 7 8 9 10 
~1 " 867,818' 1,093,577 1,115,760 1,142,375 1.160•107 1•170.827 1181 821 1.183.2161183.592 1.184.293 
"2 "  806,25~ 1.076,97711,100,80011,!08,6701 1.121,9141 1,138.237~ 1 137,459 ' 1.146.116 ~ 1 . 1 4 9 . 9 3 8 ~  
~,~ . 1,177,634 1,510,000: 1,565,226' 1,598,972 1,617,110 1,639,008 1,644,548 1,656,885~ 1659 871 1 660 854 

~ 1,187,350', 1,525,824 1,636,315 1,673,518 1 , 6 9 5 , 7 3 2 ~  1 712 954 1 72,629~ 1.725.733 1 726 756 
~ '~} ;  -1.4i6.03~ 1.90-1,67()i 1,996,292' 2 , 0 4 9 , 6 0 2 ~  2 103 30': 2 115 181 2 118 992' 2120 248 
: i  ~7, ." 1.427,768 1.829,872:'-1,877'1659 1 . 9 6 7 , 6 1 4 ~  2 015 182 2 019.457' 2 030864 2 034523' 2,C35.728 

' a" :  1-,810,969" 2.340,804 '~ 2,468,6951 2.538 749 2 579,996 ~ 2 6oo 124 2.605 630 2 620,35/, 2,~25 0.9 2626 634 
' i-,398,085 1,920,20912.005844 2062763.2091.401'2112631 2!17112 2129,071 2132 907 2134,171 
.1(~ 2,003,312[2.624319 2,741354 2819144,2.858284 2887298 2.893423 2909766 2915009 2916737 

To the left of the heavy black line is the false history data from Triangle 6, to the right 
is the squaring of the false history data using the link ratios from Step 8. 

At this point, the bootstrapping methodology has quantified a measure of the estimation 
error, but not the process variance. In order to obtain the full prediction error, a 
measure of process variance must be included in the simulation process. To 
incorporate process variance in the calculations, England proposes the simulation of 
incremental payments from a series of Gamma distributions• Each projected 
incremental payment is assumed to have its own Gamma distribution with mean equal 
to the incremental projected payments that can be derived from Step 9. The variance is 
equal to the incremental projected payment multiplied by the scale parameter ¢ that was 
previously mentioned in Step 4. As a practical measure we have extended this method 
to allow negative incrementals by modeling the absolute incremental projected payment 
with the Gamma, and then applying the appropriate sign. 
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10. Calculate incremental projected payments from the squared triangle. The absolute 
values of these incremental projected payment amounts will be used as the mean 
values in each Gamma distribution. 

Triangle 8: Calculating incremental projected payments from the squared triangle 

' 1 "  2 3 5 6 7 8 "  9 1 ! 0  

. . . . . . . . . . . . . . . . .  i -  i ~ i ! ~ 
3 -  . . . . . . . .  : . . . . .  i~ : ~ ! ~ : 

i i i I 2,9861 98,2 

6 . . . .  I -~! 091 4 '452 i  1!,ff8!,,_ 3~8!].I __1.,2.5~ 
7 27,318i 20,250} 4,2751 11,4071 3,659! 1,20! 
" . . . . . . . . . . . . .  :: I 70 053 35,247i-26i28[  51515] i 4 1 7 i 8 [ - 4 , 7 2 2 [ - i  55i 

: I 8 5 , 6 3 4  d6:;i; 25,;;;i 2(~;0 4:45i - i l , ; ; 9 ~ ,  -3:S;e-i -G;4 
] ' i ; ~ 0  6210071117035 777901 391401 29014', 61251 16344i 52431 1727 

11. Calculate the scale parameter 4. The scale parameter is estimated as the Pearson 
chi-squared statistic divided by the degrees of freedom. The Pearson chi-squared 
statistic is equal to the sum of the squares of the unscaled Pearson residuals that 
were calculated in Step 4. The degrees of freedom equal n - p, where n and p were 
calculated in Step 5. The scale parameter is the same for all projected incremental 
payment periods. 

For the example shown here, the sum of the squares of the unscaled Pearson 
residuals from Triangle 3 equals 203,397, and the degrees of freedom equals (55 - 
19), or 36. The scale parameter ¢ = 5,650. 
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12. For each incremental future payment, draw a random sample from a Gamma 
distribution whose mean is equal to the absolute value of the incremental payment 
calculated in Step 10 and whose variance equals the product of ¢ (as calculated in 
Step 11) and the absolute value of the incremental payment calculated in Step 10. 
Set the sign of the random sample so as to be the same as the original incremental 
payment calculated in Step 10. 

Triangle 9: One possible example of random draws from Gamma distributions to simulate 
payments that include process error as well as parameter error 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

I 2 3 4 

I 
55.382 34.696 

I 98 708 77.614 34.395 

624.837 136.808 80,000 63.599 

5 6 7 8 9 10 

] _ 95 2.3 
I 5,961: ~s3 i 837 

I 3,853 3,621 2,558 59c 
I "" 919 2,636 38 5 9 4  2,461 9E 

32.75( 6.270 10,,'.}71 17,807 3 , 4 7 2  
19754 3,525 12,698[ 1,055 1,674 
20 533 4.794 190 1,214 

30.370 217 20,878 1,773! 9,11 

In this example, the value for row 9, column 3 was drawn from a Gamma distribution 
with a mean of 85,634 and a variance equal to 5,650 * 85,634. The value for row 
10, column 3 was drawn from a Gamma distribution with a mean of 117,035 and a 
variance equal to 5,650 * 117,035. 

13. Sum the incremental future payments calculated in Step 12 to arrive at the final 
reserve estimate for this particular simulation. In the example shown in Triangle 9, 
this equals 1,478,376. 

14. Repeat steps 5 through 12 N times, producing a different simulated reserve 
indication each time. At the end of the N simulations, examine the resulting 
distribution of reserves to arrive at the overall reserve range and reserve indications 
at different percentiles. 
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Results from 5,000 simulations 

Mean 
Standard Deviation 

Minimum 
Maximum 

1% lie 
5% ile 
10% ile 
20% lie 
30% lie 
40% ile 
50% ile 
60% lie 
70% lie 
80% lie 
90% lie 
95% lie 
99% ile 

Indicated reserve, based on squaring the original data triangle 

1,425,665 
136,233 

970,631 
2,055,375 

1,125,108 
1,206,925 
1,253,563 
1,308,459 
1,353,153 
1,389,518 
1,424,384 
1,457,631 
1,492,174 
1,535,347 
1,596,733 
1,656,242 
1,760,099 

1,416,460 
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