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Abstract 
Significant progress has been made in the last decade in developing models to describe 
the distribution of  unpaid losses for a line of  insurance. Line-by-line distributions must 
be aggregated, however, in order to address company-wide issues such as enterprise 
risk, capital requirements, fair value, and more. 

Using U.S. industry commercial lines data, this paper uses Zehnwirth 's method to 
produce distributions o f  unpaid losses by line o f  insurance and Wang "s standard normal 
copula method of  aggregating correlated risk portfolios to create aggregate distributions 
o f  unpaid losses. In doing so, a methodology for direct estimation of  correlations 
between lines is proposed. 

1. M O D E L  OF UNPAID LOSSES 1 

Means. Actuarial loss reserving training is focused on getting a decent estimate of the 
mean of  the unl)aid loss and loss expense liability. Witness the CAS syllabus does not 
contain one reading concerning models for unpaid losses that reflect the stochastic nature 
of  unpaid losses, producing distributions, or confidence intervals. Perhaps that's fair: it 
is certainly necessary to get the mean right. It 's necessary, but not sufficient. 

ASOP 36 speaks of"materiality," "ranges of  reasonable estimates," "adverse deviations," 
and "risk margins." Statutory codification refers to "best estimates" and "risk based 
capital." The IASB speaks of"fair  value liabilities." All of these concepts have a 
common element: they require a view of  the higher moments of  an unpaid loss 
distribution. We are, after all, in the business of  risk, and to truly understand the risk 
associated with a portfolio of loss reserves the actuary must have a view about the 
distribution of  unpaid losses, not just the mean. 

Higher moments. A number of methodologies have been proposed to produce 
confidence intervals about a mean reserve estimate, or alternatively, produce an estimated 
distribution of  unpaid losses. In particular the 1994 call paper program on the variability 
of  loss reserves and subsequent papers published some truly landmark methodologies: 
Halliwell [9], Holmberg [10], Mack [12], Murphy [15], Verall [20], and Zehnwirth [24] 
just to name a few. While each model has its strengths and weaknesses, this paper 

Throughout this paper the term "loss" is used to refer to all loss and defense costs and adjusters fees (the 
old allocated loss adjustment expenses) for simplicity. 



applies Zehnwirth's model to industry Schedule P data to illustrate the estimation of a 
distribution of unpaid losses. 

Zehnwir th  example. The data used in the following example was taken from the U.S. 
total industry 2000 Schedule P as compiled by A.M. Best'. Commercial lines, excluding 
excess of loss reinsurance lines, were analyzed. Data was grouped into six lines 
(commercial auto, workers' compensation, commercial multi-peril, medical malpractice, 
all other liability, and all other 3) in an attempt to minimize detail. 

The industry (non-medical) liability triangle will be used to illustrate Zehnwirth's 
modeling framework. Graph 1.1 shows the cumulative development by accident year for 
these data~ 

oraoh 1.1 
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Zehnwirth's model can be characterized by the following algorithm. 

1. Start with a cumulative paid loss data triangle (illustrated above). 
2. Calculate an incremental paid triangle. 
3. Inflation adjust the incremental palds, if  desired. 
4. Preferably divide each incremental paid by exposure, or in the absence of 

exposure as with industry data, by earned premium. 
5. Calculate the natural logs of the incremental ratios in step #4. 

2 The 1990 accident year was included, too, at least through year-end 1999, from the 1999 report. Current 
reserves for the 1999 accident year were estimated by running offa portion of those carried at year-end 
1999. 
The 'all-other' - principally short tailed - triangle was created by subtracting each reported line triangle 

(including homeowners and private passenger auto liability) from the total, all-lines triangle. This does not 
yield a pure short tailed commercial lines triangle. The triangle will still include personal auto physical 
damage and inland marine floaters. This triangle was included anyway, for illustrative purposes. 



6. Model the log incremental paid ratios with a regression model, incorporating 
dummy variables for the accident year, development year, and calendar year 
dimensions of the triangle. 

Focus is on paid data because logs are used on the incremental ratios. Since the 
increments cannot be negative, downward development is problematic. In fact, even paid 
• data can present a problem in lines wbere negative incremental paids ate common (e.g., 
surety). 

Graph 1.2 shows the transformed triangle for the cumulative data in Graph I. I: the log of 
incremental paid losses to net earned premium. The data was not inflation adjusted, but 
could be without loss of generality. 

Graph 1.2 
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Zehnwitth's model describes the above data patterns with parameters for the accident 
year ("i") dimension ((zi, which are essentially the vertical leveling of the accident year), 
the development year ("j") dimension Q/j, which actuaries would call the incremental 
payout pattern), and the calendar year (i+j) dimension (tij, which would represent some 
sort of calendar period distortion not otherwise picked up by the parameters in the other 
two dimensions, e.g., a shiR in inflation or a change in the claims department). The 
parameterization is such that tail development is already calculated as part of the assumed 
exponential decay by the last fitted 7. The general formula, then, looks as follows. For 
the log incremental paid ratio for accident year i and development period j: 

Yij = (~i + ~Jk=lYk "1" ~i+Jt=lt t -I" £;ij I.I 



In essence, Zehnwirth's model describes the log of each incremental payment ratio by the 
combination of three vectors, one each for the accident year, the development period, and 
the calendar year. 

The regression model (1.1) assumes that the e will be normally distributed. Thus, each 
estimated incremental payment, when transformed back into dollars, will be distributed 
logormally. Since the distribution of the sum of lognormals is not a simple closed form 
distribution, the aggregate unpaid loss must be simulated in a conditional simulation 
using formula 1.1 above. 

Graph 1.3 shows the simulated CDF for the industry liability unpaid losses. A lognormal 
curve was fit to the simulated distribution using a simple method-of-moments fit. Despite 
the fact that the sum of lognormals theoretically isn't lognormal, a lognormal curve fits 
the data well. 

Graph 1,3 
Industry Commercial Liability Unpaid Loss CDF 
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Loss triangles for each commercial line were modeled as above. Distributions were 
estimated using conditional simulations with formula 1.1. As with the liability example, 
lognormal models were fit to each distribution with good results. Table 1.1 below 
summarizes the results. 



Commercial Auto [C] 
Work Comp. [D l 

CMP [~] 
M~ Mal [F] 

Liability [H,R l 
All Other 

Table 1.1 

U.S. Industry Commercial Llnes Reserves 1990-2000 
Model 
Unmid 

23,008 
66,535 
27,734 
26,098 
64,950 
26r254 

234,579 

Industry Reduodaney Logn~mal Perameters 
Carried /(Deficimcv) % tile tt 

18,911 (4,097) 0.0% 3.135 0.032 
60,597 (5,938) 15.8% 4.194 0.089 
24,753 (2,981) 0.0% 3.322 0.018 
19,478 (6,620) 0.0% 3.261 0.032 
50,148 (14,802) 0.0% 4.173 0.045 
24.578 (1~676) 27.0% 3.263 0.099 

198,465 (36,114) [ ' - " v - - q  I ? I ? I 

Table 1.1 highlights the central issue addressed in this paper. While estimating the 
distributions o f  unpaid losses by line is an important advance in actuarial science, the 
actuary is still ill equipped to estimate the distribution o f  unpaid losses for the entire 
portfolio. 

We could apply the Zehnwirth model to an industry total, all lines triangle and get both a 
mean  result and an associated distribution. As actuaries, we bristle at the thought: the 
lack o f  bomogeneity in such a triangle would surely distort our ability to get the mean 
unpaid loss estimate correct. So, we model unpaid losses in more homogenous, hopefully 
still credible, segments. Line-by-line we can calculate the mean unpaid loss and its 
distribution, but now we have lost the ability to calculate a simple closed form 
distribution for the aggregate unpaid loss reserve requirement. We cannot fill in the 
empty boxes in Table 1.1 without a methodology for aggregating correlated distributions. 
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2. A G G R E G A T E  D I S T R I B U T I O N S  

Corre la t ions .  Methods exist for aggregating distributions, but  the correlations between 
the distributions are always the critical component. Actuaries seem to appreciate the 
potentially profound impact correlations have on required economic capital, capital 
allocations or risk loads, reinsurance buying, etc., but very little is written about it 4. 

Polar cases o f  correlations are simple and illustrative. For example,  given marginal 
distributions o f  unpaid losses for two lines o f  business,  an aggregate distribution can be 
easily created i f  one assumes the correlation is -1 ,  0, or 1 between the lines. I f  
correlation is 0, one could simulate an amount  from each o f  the distributions and simply 
add the two numbers  together. If  the correlation is 1, amounts  are simulated for each 
distribution, sorted, and matched up from smallest to largest, and then added together (for 
-1  match opposite rank orders). Alternatively, an aggregate distribution can be 
computed in closed form with a simple varianc~-covariance matrix and an assumption 
regarding functional form. 

As  a basis, the marginal lognormal distributions shown in Table 1.1 were aggregated in 
just  such manners  for the polar cases o f  no correlation and perfect correlation. The 
results are shown in graph 2.1 below. 

Gmpll 2.1 
A g g m g m  Unpaid L o ~  D~Mbu l I o~  
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4 Wang [22] mentions a constant correlating factor for unpaid losses in an appendix. Myers [23] discussion 
of Wang illustrates the incorporation of correlation into the calculation of aggregate loss distributions in a 
collective risk theory framework. The conelation pamn~ter behaves much like the contagion parameter of 
the collective risk model. Frequency is the con'elating factor between lines. 

In conversations with Todd Banlt, he has hypothesized a model of correlation wherein correlation behaves 
as a scaling factor. His argument goes something like this: if you believe that everything is correlated to 
the whole, then the larger the line, the higher the correlation. Chris Gross has offered a s'nnilar model, one 
where there exists a correlation within a line of subsets of that line (e.g., a new account). While currently 
unpublished, I think these views have some merit and should be explored. 

The public access DFA model [5] addresses correlations in unpaid losses by essentially injecting them into 
future loss payments. Simple linear models are used to describe line of business loss cost inflation as a 
fimction of the CPI. Thus all lines are correlated with each other since they are based on the CPl. This 
correlating inflation is applied in the accident year dimension. 



Graph 2.1 clearly shows the importance o f  correlation assumptions in computing an 
aggregate distribution - not for the mean - but for the risk component. I f  the industry 
were required to hold capital to, say, the 99.9 th percentile over carried reserves, required 
economic capital would be roughly $60 billion for the uncorrelated case and over $80 
billion for the perfectly correlated case. 

Correlations are likely not zero or one. Nor are we typically dealing with only two lines. 
For correlations other than the polar values, or for more than two lines, mixing 
distributions is no longer so simple. 

Measur ing  correlations.  The single biggest source o f  risk in an unpaid loss portfolio is 
arguably the potential distortions that can affect all open accident years, i.e., changes in 
calendar year trends. Such a distortion could be a social inflation, say in court judgments, 
that affect all open claims (subsequent incremental payments) at once. In Zehnwirth 's  
model, this is saying that the future t0's turn out to be much different than predicted and 
reserved for. 

Our line-by-line distributions reflect the calendar year inflation risk, since tij is a 
statistical estimate and has an associated variability that is incorporated into the 
conditional simulations. But what happens i f a  calendar year distortion affects more than 
one triangle simultaneously?. This is the sort o f  thing that keeps chief  actuaries awake at 
nights: the fear that a systematic distortion will affect multiple lines, in the same (bad) 
direction all at once. 

Having modeled a number o f  lines o f  business, we have a vector o f  calendar period trend 
parameters, tij, for each line. By measuring the line-by-line correlations between these 
ldstoric parameters, we can estimate a correlation matrix for calendar period movements. 
The estimated calendar year parameters and associated correlation matrix from this 
exercise are shown below 5. 

s It's worth mentioning correlation measures that don't work for the purposes of unpaid loss distrt~entions. 
Correlations in future unpaid losses cannot be calculated by looking at time series of loss ratios. Historic 
loss ratios are typically highly correlated because ofcyclicai pricing impacts in the denominator of the loss 
ratio. For loss reserving purposes pricing induced correlations do not matter. Furthermore, con'elations in 
the numerator of a loss ratio, if measured at an ultimate value are suspect depending on methodology. If, 
for example, two lines are developed to ultimate using the Bornhuetter-Ferguson methodology with the 
same or similar seed loss ratios, correlation is actually injected into the "data." 
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Figure 2.1 
Calendar  Period Inflation Parameter Estimates (tu) 

Conunercial Work 
Auto Comp. CMP Mod Mal Liability 
[C] IV] IE] [F] [H, R] Other 

199%1992 9.18% 3 . 7 0 %  -5.96% 0.00% 0.00% 0.00% 
1992-1993 5.09% 3.70% 2.67% 0.00% 0.00% 0.00% 
1993-1994 5.09% 3.70% 2.67% 0.00% 0.00% 0.00% 
1994-1995 5.00% 3 .70% -3.29% 0.00% 0.00% 0.00% 
1995-1996 5.09% 3 .70% -3.29% 0.00% 0.00% 0.00% 
1996-1997 2.70% 3 . 7 0 %  -3 .29% -5.64% 0.00% 0.00% 
1997-1998 2.70% 10.24% -3.29% 6.06% -3.25% 0.00% 
1998-1999 5.74% 0 . 0 0 %  -3.29% 6.06% 5.34% 0.00% 
1999-2000 5.74% 15.05% -3.29% 6.06% 5.34% 5.01% 

Correlation in the historical calendar year inflation trends is evident by inspection of  the 
above table. While not uniformly true, it is apparent that inflation is low and remarkably 
stable through out the middle~90's. Inflation even inexplicably declines in some lines in 
or near 1996. Finally, there seems to be cvidance that inflation aecelorates some time in 
1998 or 1999. 

To compute the correlation matrix from the above table, simply calculate all pair-wise 
correlations between the lines of business. In Excel, for the correlation between auto and 
work comp for example, this would be the formula: =correl(AUTO, COMP). These 
calculations were made and are shown below in Figure 2.2. 

Figure 2.2 
Correlation Matrix 

Wod¢ 
A=o Coml~ CMP Med Mat Liability 

~ A ~ o [ q  ~ ~  o.~7 P._~!? I ? ' ~ 1  

Moda~t~ ! 0 ~ ~ 0 3 ~  O.44,. I o,z~ I 

The average correlation across all values is 0.16 (ignoring the diagonal of  the correlation 
matrix). While fairly small, it is obviously the result of offsetting negative and positive 
values. The above matrix was accepted as-is in further examples below, but could be 
judgmentally amended to cap correlations at a certain level, set small (statistically 
insignificant) correlations to zero, or to erase correlations that lack an intuitive reason for 
being. No consideration was given to statistical significance, but this may be a fruitful 
area for future research. 



This methodology providas a simple and practical method to measure correlations of 
unpaid losses between lines of  business given typical actuarial data arrays. It is 
dependent on a loss reserving model capable of  estimating calendar year trends, in this 
case the Zehnwirth model. 

The method proposed above is not without its shortcomings. 

Such a framework is that is inherently a slave to the data at hand. The decade of 
the 90's, used here for illustration, was a decade marked by low, stable inflation 
in a prosperous economy. Correlations measured in such an environment will 
reflect that environment and perhaps nothing more. Actuarial judgment should 
play a role in adjusting assumptions in changing or different environments. 

The calendar year inflation parameters are themselves estimates from a model. 
There is often no one 'true' model, and different model parameters will yield 
different correlation results. 

This model measures correlations in unpaid loss distributions by asserting that the 
principal correlating factor is severity. There is no consideration of frequency, 
i.e., correlations between lines in pure IBNR claims. 

There are undoubtedly additional critiques that could be raised. But, as my father used to 
say, "it 's way better than what comes in second place" - which, from a review of 
available literature, appears to be nothing. 

Between line correlations could be estimated directly if  we could model all lines 
simultaneously with regression model 1.1. By estimating parameters for all lines at once, 
the varience-covariance matrix from the regression would reflect the correlations between 
fines. But models and computing power aren't quite there yet. In the mean time the 
method proposed here serves as a proxy. 

Aggregation of Line Distributions - Model 1. Given distributions by line and a 
correlation matrix, an aggregate distribution can be created numerically using a standard 
normal copula 6. Shaun Wang [21] proposed this method in his paper, "Aggregation of 
Correlated Risk Portfolios: Models and Algorithms," PCAS LXXXV, 1998 (pp. 887- 
891) 7 . 

6 The standard normal copula has been criticized recently for producing uncorrelated tail values, which 
would clearly defeat the purpose at hand. Cf, Mango [14]. 
7 Wang's method is not the only such method. Nakada [16] uses a numerical integration routine that is 
mathematically similar and does not require simulation. 

l 0  



Wang's standard normal copula algorithm is as follows. 

1. Measure the correlation matrix ~ with elements pij (above). 

From E construct the lower triangular matrix B via the Cholesky 

decomposition such that ~ = BB'. Each element of B can be defined by: 
j - t  

P O - ~ , ~ = , b ~ b j ~  l < j ~ n  & ~ ° = O  
bij = .[ l  _ ~. , j- l  b2. 

V /.,,,,~.t = 1 j s  

3. Generate  a vec tor  Y = (Yl, ..., Yk)' of standard normals, where k=# of lines,. 
This is just the Excel function NORMINV(RAND()). 

4. D e f i n e  Z = BY.  Z ffi (zl . . . . .  zk)' has the appropriate joint pdfdefined by the 
correlation matrix. In Excel this is the array function MMULT(B,Y). 

5. Set  ui = O(~), where • denotes the standard normal cdf. In Excel, 
NORMDIST(zi,0,1,TRUE). 

6. Set xi = Fi "l(ui), where Fi is the marginal distribution function for the modeling 
line i. In our case the Fi's are the assumed lognormal distributions produced 
by ICRFS. However, there is no restriction on the marginals. In fact, F need 
not be parameterized. An empirical distribution can be used. If a loguormal 
is used, the Excel formula is LOGINV(ui,~ i,a i) 

7. Iterate steps 3-6 as many times as desired. 

Wang shows that the standard normal copula methodology has the nice properties of 
creating a distribution of values with the desired correlations and still retaining the 
original marginal distributions. Furthermore, the required calculations are easily 
accomplished in a spreadsheet. If  there is a drawback to this numerical methodology, it 
lies in the requirement to simulate to calculate the distribution. Inherent to all such 
methodologies, the subsequent calculations will not typically replicate the original 
estimated distribution. 

For the industry example, the empirical pdf, based on 3,000 simulations, of  the aggregate 
unpaid loss distribution looks as follows. 
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Graph 2.2 

Distribution of Unpaid Losses 
U.S. Commercial Unes Total 

The minimum value in the above distribution is $200 billion. The maximum value is 
$276 billion. (Recall that the mean is $234.5 billion.) The observed aggregate standard 
deviation is $10 billion. The industry carried reserves for commercial lines loss and 
allocated loss expense from 1990 to 2000, at $198.4 billion, are below the scale based on 
the above aggregate distribution. 

Aggregation of Line Distributions - Model 2. Model 2 is a quick-and-dirty alternative. 
The mean of the aggregate distribution is known. It is simply the sum of the line means. 
The variance of the aggregate distribution can be calculated from the estimated variance- 
eovariance matrix (VCM). The aggregate variance is the sum of the elements in the 
matrix. Given the aggregate mean and variance, a distribution earl be estimated by 
assuming an appropriate functional form, e.g., lognormal. Following are the 
eomputatious for the running example to compute a method of  moments lognormal from 
the observed data. 

Given the standard deviations calculated by line, create a matrix, o =diagonal (0-1, 0"2, 
.... 0"6). With the correlation matrix, E, the VCM will take the form: 

VCM = o 'Eo  

The VCM from the running example is this paper is shown below. 

12 
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Figure 2.3 
Variance-Covariance Matrix 
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The aggregate mean, M, is $234.5 billion. The aggregate standard deviation, S, is $9.8 
billion. The method of moments estimates for lognormal parameters ~t and o of a 
distribution defined by observed moments M and S are 12.364 and 0.043 respectively. 
This lognormal distribution from method 2 is graphed below along with the results fi'om 
the copula and the lognormal fit to the copula results. 

Gmptl 2.3 

-,g-- VCM 
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3. FUN WITH DISTRIBUTIONS 

Given distributions of  unpaid losses by line and in total, there are a number of interesting 
uses and implications. This section covers some topics where distributions are valuable 
in actuarial practice. 

CapRal requirements. Economic capital requirements line-by-line could be established 
using a ruin theory or value-at-risk construct. How much capital is needed to be sure that 
there are enough funds for claimants at some extreme probability? For example, at a 3 in 
10,000 ruin probability (the equivalent o fa  AA credit rating default value) the required 
risk based capital, by line is the difference between the carried reserve and the 99.97 th 
percentile (F't (0.9997)-reserve): 

Table 3.1 
Capital Requirements 

Carried Stand Alone Reserves-to 
Provision F'110.9997/ Capital Capital 

Commercial Auto [C] 18,911 25,694 6,783 2.79 
Work Comp. [D] 60,597 90,057 29,460 2.06 

CMP [E] 24,753 29,496 4,743 5.22 
Med Mal Claims made [F2] 19,478 29,107 9,629 2.02 

General Liability Occurrence [H1] 50,148 75,605 25,457 1.97 
Short Tailed Lines 24~578 36,745 12,167 2.02 

Sum Total 198,465 286,704 88,239 2.25 

[ Modeled Aggregate 198,465 271,161 72,696 2.73 I 

The stand alone and aggregate capital needs shown above include a provision to cover the 
reserve inadequacies. If booked reserves were increased, supporting capital would 
decline, and the reserves-to-capital ratios shown above would increase. 

The sum of the stand-alone capital amounts shown above, $88 billion, is a meaningless 
number: it is more economic capital than is required. To calculate the required economic 
capital to support the industry reserves, the total industry distribution must be used. This 
distribution reflected the portfolio aggregation and diversification effects for the industry. 
Required aggregate economic capital is shown in the table above. Its derivation is shown 
graphically below. 
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Graph 3.1 
CommDrclal Reserve Cumulative Dlstribu6on 
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Graph 3.1 implies a required economic capital of  roughly $73 billion. The sum of  the 
line-by-line, stand-alone capital was $88 bilfion. Thus, there is a $15 billion natural 
diversification effect s . 

This example highlights a flaw in standard rules o f  thumb, such as reserves-to-surplus or 
premium-to-surplus. Though widely accepted, they mismatch numerator (partial 
economic risk factor) and denominator (accounting based total surplus). 

Capi ta l  allocation. It was not the intent of  this paper to dive into the capital allocation 
debate. However, given an aggregate risk distribution as described in the previous 
section, and given the variance-covariance matrix that necessarily underlies it, the source 
information exists to allocate capital to an unpaid loss portfolio in a defensible fashion. 

A few years ago there was a terrific discussion thread in the CAS Proceedings, starting 
with Shalom Feldblum [7] and ending with Todd Bault [8] thrashing about whether one 
should allocate capital (risk load) in proportion to standard deviation or variance. Bault 
proved that the two (and actually others as well) were part o f  a broader, unified theory o f  
risk based on correlations. When correlation approaches zero, the allocation is in 

s This capital requirement is not the same as the total capital required for the c o ~ i a l  lines industry. 
The analysis would have to incorporate additional risks: volatility in new business (UPR), cats, invesUnent 
risk, operational risks, etc. This could be easily accomplished. We need only to measure risk dis~'butions 
for each risk type and use the same integration routine to get a total aggregate risk distribution (see [17]). 
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proportion to variance. When correlation approaches one, the allocation basis tends 
toward relative standard deviation. 

Bault's conclusions immediately present a plausible capital allocation mechanism, 
incorporating standard deviation/variance and all of the measured covariances. 
Zero and one are obviously just the polar cases. The more general result can be seen with 
a simple two-by-two VCM for risks 1 and 2: 

I O12 P120.1 0"2 1 
P120"1 0"2 022 

Given the above variance-covariance matrix, the capital allocation to a line is simply the 
sum of  a given row in the variance-covariance matrix divided by the sum of  the entire 
matrix. This generalized construct accounts for those cases where lines have perfect 
correlation, no correlation, or anything in between. And it is computationally tractable 
with any number of  lines. 

In the simplified VCM above for risk 1 and risk 2, the allocation formula for, say risk 1, 
would be 

(3"12 + P12GI (32 

O"12 + 0"22 + 2pl2Ol 02 

It is easy to see from this formula that, if p equals 0, the allocation basis is variance, and, 
if p equals 1, the allocation basis is standard deviation. 

In the industry example, the resulting capital allocation looks as follows. 

Commercial Auto [C] 
Work Comp. [D] 

CMP [E] 
Med Mal [F] 
Liability [H.R] 

Other 

Figure 3.2 
Capital Al location from the  V C M  

Commercial Work 
Auto Comp, CMP Med Mal Liability Capital 
[(3] [D] [E] [F] [H,R] Other Row Stan Allocation % 

o.e I (0.T, (0.1) 0.1 0.7 0.2 0.7 0.7% 
( 0 . 7 ) 1 3 5 . 5  1 ( 0 . 4 )  0.4 2.3 1.4 12.7 50.7 52.4% 

(0.1) (0.4:(0.1)11°"21 (°11) 107 (0.2) (0.21 (0.7) -0.7% 
0.1 2.3 1.0 1.0 4.9 5.1% 
0.7 1.4 (0.2) 1.0 [ 8.418.4 4.6 15.9 t6.4% 
0.2 12.7 10.2) 1.0 4 . 6 ,  6.8 25.1 26.0% 
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Our numerical example yields a negative capital allocation, which, while problematic, is 
not unique. Myers and Read [16] suffer the same problem. For the purposes of  this 
paper, the observation is noted and accepted, in the spirit of  presenting methodology first, 
an illustration second, and specific parameters a distant third. 

The allocated capital and associated reserves-to-capital ratio are shown below, along side 
the stand alone capital estimates. In this exhibit, the total required capital and the 
allocated amounts are predicated on reserves being booked at an adequate level according 
to the analysis presented in this paper. 

Auto [C] 
Comp. [D] 
CMP [E] 

Mud Mal [F] 
Liability [H, R] 

Short 

Required 
Reserves 

$23,008[ 
$66,535 I 
$27,734 I 
$25,098 I 
$64,950 I 
$26,254 I 

$234,579 

Figure 3.3 
Capital Allocations for Unpaid Losses 

Capital Stand 
Allocation Allocated Reserves-to. Alone Reservas-t~ 

% Capital Capital Capital Capital 
0.7%[ $286[ 80.55[ $2,686[ 8.57 

52.4% I $20,1461 3.30 I $23,5221 2.63 
-0.7% I -$261[ (105.22) I $1,7621 15.74 
6.1%[ $1,962[ 13.30 [ $3,0O9[ 8.67 

16.4%[ $6,314[ 10.29 $10,655 6.10 
26.0%[ $9,999[ 2.63 $10,491 2.50 

100.0% $38,446 6.10 $52,125 4.50 

Valuation methodology. When placing an intrinsic or actuarial value on a prospective 
acquisition target, actuaries look at pricing 1) the true economic value imbedded in the 
balance sheet, and 2) the present value of the ongoing business. The method essentially 
turns everything past, present, and future into tangible (but stochastic) cash flows, 
capitalizes them appropriately, and then calculates a present value 9. 

In light of  the diversification benefit observed in the industry example above, it is 
apparent that valuation methodologies cannot attempt to measure the 'true value' of  a 
target company in a vacuum, i.e., on a stand-alone basis. There exists a portfolio effect 
that will allow the merging companies to free up some amounts of capital for other 
investments or return to shareholders. 

This free capital flow should be accounted for in the valuation, presuming that the 
theoretical diversification effect can be harvested given regulatory restrictions. Or should 
it? There is an open and active debate on this very subject in actuaxial circles today. The 
opposing view would say that mergers between companies cannot create capital 
efficiencies that the market would not have already anticipated or that market instruments 
could not replicate. 

9 As an alternative, one can discount the cash flows at a risk-adjusted rate. As another, perhaps best, 
alternative, one can compute the risk adjusted distribution of cash and then discount at the risk free rate. 
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Fair Value Liabilities. The IASB has proposed that all liabilities, like assets, should be 
marked to market for financial reporting purposes. Lacking an active market of  unpaid 
loss liabilities, a "fair value" must be estimated based on cash flows and risk. In the 
absence of  an aggregate distribution as presented here, the total reserve portfolio risk 
cannot be quantified. Further, it should be apparent that it is insufficient to conduct a 
fair-value-ing exorcise on a line-by-line basis, as it misses the diversification effect. 

In the absence of  a liquid market, think of  fair value as the amount it would cost to pay a 
reinsurer to take the unpaid loss liability offyour balance sheet. Two calculations are 
shown below for the running liability example. For these calculations, it is assumed that 
the immunized, risk free discount rate is 4.25% and the weighted average life of the 
payments is 4.5 years. The implied risk free discount factor is 0.829; discounted reserves 
equal $54 billion. 

Fair value could be calculated using risk adjusted discount rates from Butsic [ 1 ]. Butsic 
shows that the appropriate risk adjusted rate, given the immunized risk free rate and the 
capital requirement is a liability analog to the CAPM formula. 

= capital (ROE-  r,~ 

$0, 

The above formula assumes a 20% pre-tax ROE target. Using the average life of  about 
• -4.5~ W 4.5 years, the risk adjusted discount factor is 0.935 (=1.015 ). Total value ould be 

$65*0.935 = $61 billion. The implied loading for risk is $7 billion (= $61 - $54). 

Alternatively, the value of  the unpaid loss liabilities could be assessed using risk neutral 
distributious via PH-transforms as discussed by Wang [21] and Butsic [2]. The simple 
lognormal assumptions applied through out this paper come in handy here. A 
transformed lognormal entails shifting only the location parameter. If  the underlying 
distribution has parameters i~ and o and the appropriate risk load is ~,%, the risk neutral 
distribution will be lognormal with parameters ~'  = ln(l+~,) +1~, a. A starting point for 
the risk load percentage could be the ratio of the risk charge, above, to required reserves 
shown in 3.3. Again using the industry liability data: 

= (7.0/65) = 0.108 

~'  = ln(l+~,) +~ = In(l+0.108) + 4.173 = 4.275 

a = 0.045 

18 



Transforming back to dollars, the expected value of the risk neutral distribution is 

/~'+l~r2 

E[X] = e 2 = $72 billion 

Allowing for time value, the risk neutral value is on the order of $60 billion (= 72*.829). 
The results from the risk adjusted discounting methodology and the PH-transform are 
very similar. 

One of the nice features of the PH-transform is the ability to use the risk neutral 
distribution to price layers of  the dis~bution by simply taking the difference of  the 
respective limited expected values. Perhaps this could facilitate a more active, liquid 
market in unpaid loss liabilities. Ironically, though, if  we had a liquid market, none of  the 
above calculations of  fair value would be necessary. 

Statutory risk based capital. The treatment of aggregate distributions also highlights 
some of the flaws with the mechanical formulas for statutory risk based capital: 

1. Supporting economic capital makes sense only in the aggregate and only then 
when correlations have been appropriately reflected. Correlations between lines of 
business are imperative and cannot be ignored. 

2. RBC, like economic capital, should be the difference between the aggregate value 
at risk (F'l(1-ruin)) and the carried provision for the unpaid loss liabilities. If  
reserves are strengthened, required supporting capital should decrease. RBC, 
however, inappropriately assumes companies are currently adequately, and only 
adequately, reserved, charging for any additions to reserves. This penalizes well- 
reserved companies and those wishing to become better reserved. 

3. Using techniques illustrated here, true economic capital requirements can be 
calculated with accepted actuarial techniques at an individual company level. 
Industry norms would have little use. 

The above remarks refer only to RBC charges for unpaid losses. Of course other risk 
factors need to be integrated into a total economic capital figure. But this is only a simple 
extension of  Wang's standard normal copula method shown above. Marginal risk 
distributions can be created for investment portfolios, catastrophe exposures, etc., and 
integrated into a total distribution for use in the calculation of required economic capital. 

Best estimates. Statutory accounting requires that we establish a best estimate reserve. 
Further, we must establish that reserve by line of business. Further still, if  management 
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has a number of  alternative estimates of unpaid loss, all equally likely, the best estimate 
is presumably the average of  all estimates. 

If  regulation was principally focused on solvency, all that matters is the aggregate 
distribution of  unpaid losses, the actual provision for unpaid losses, and the amount of 
capital available. In this construct, best estimates of line-by-line reserves are less 
relevant. 

Materiality. ASOP 36 places great emphasis on materiaiity but does not define the term. 
Materiality is best defined with a distribution like that shown in Graph 2.1 (pdf) as the 
basis. Whether or not an issue is material depends on the answer to questions such as, 
"where could this issue move my estimate of  unpaid losses in the a priori distribution of 
possible unpaid losses?" "Could it change the shape of the distribution?" In the end, i fa  
company is reserved at the 51 st percentile (the mean of  the industry aggregate distribution 
in our example), a material movement is one that would drop you to the N th percentile in 
the posterior distribution. 

Unfortunately, now the definition of'material' hinges on the definition of N. Having a 
definition of  N, however, yields an interesting implication. I fa  company is already just 
at or below the N th percentile of the distribution of unpaid losses, materiality disclosures 
are almost a moot point. Regulatory emphasis should be placed on reserve adequacy. 

Materiality is clearly a function of a company's size. A large company could 
conceivably have an issue looming that could move their best estimate of unpaid losses 
by millions of  dollars, but this might be the difference of being at the 51 st percentile and 
the 50 th. This should not be considered material. On the other hand there are clearly 
companies where materiality would be measured in the thousands of  dollars. 

Furthermore, portfolio diversification is again key. Any actuary can think of  a handful of 
nasty things that could cause adverse development in unpaid losses. Perhaps these nasty 
things could even be characterizad with a mean and distribution of possible results. If  we 
went further and thought in terms of the distributions of nasty things and the inter-nasty- 
things-correlations, we could aggregate using the same technology presented here. 
Would the aggregate distribution of  potentially 'material' things be material? Perhaps 
not. Why? Because it is precisely the highly skewed, generally independent distributions 
that get heavily diversified away. 
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4. CONCLUSIONS 

This paper used published and readily available data and techniques, along with a simple 
proposal for measuring correlations amongst unpaid losses, to produce a sample 
aggregate loss distribution for the U.S. commercial lines unpaid losses (1990-2000) as of 
year-end 2000. By the time the end of this paper mercifully came, the author had whined 
about a great many things. In eonclnsiun: 

1. Point estimates for unpaid loss and loss expense are insufficient. Methods to 
produce distributions exist and are reasonably approaehahle. 

2. Methods exist to aggregate risk distributions, given correlations. 
3. Correlations can be measured directly from the data normally employed for 

loss reserve analysis. 
4. Aggregate distributions of unpaid losses are useful analytical tools, with 

implications for required economic eapital, capital allocation, pricing and 
valuation, and various issues associated with accounting such as "best 
estimate," "materiality," and RBC. 
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