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RATEMAKING FOR MAXIMUM PROFITABILITY 

Lee Bowron, ACAS, MAAA 
Don Manis, FCAS, MAAA 

Abstract 

The goal of ratemaking methodologies is to estimate the future expected costs for a 
book of business. Using past experience, including both internal and external data, 
the actuary attempts to quantify the required premium level to achieve an acceptable 
profit. 

However, if one looks at the rate activity in a market, it is apparent that company 
actions do not always follow the indications. Surprisingly, such decisions often lead 
to successful results. It seems that there must be something going on that is invisible 
to the naked eye? Do indications really mean so little? Or are there other factors, 
buffed in the actuarial judgment of the experienced actuary' but difficult to quantify? 

It is the premise of this paper that such factors do indeed exist. One such factor is the 
effect of the rate change on market behavior. In this paper, we will describe one 
method for quantifying some of this effect. The methodology described will require 
much research to determine reasonable assumptions before it can used in practice. It 
is our hope that it will stimulate further discussion, research, and a move toward 
acceptance of dynamic economic principles in ratemaking. 



RATEMAKING FOR MAXIMUM PROFITABILITY 

Lee Bowron, ACAS, MAAA 
Don Manis, FCAS, MAAA 

Introduction 

The goal of ratemaking methodologies is to estimate the future expected costs for a 
book of business. Using past experience, including both internal and external data, 
the actuary attempts to quantify the required premium level to achieve an acceptable 
profit. 

However, if one looks at the rate activity in a market, it is apparent that company 
actions do not always follow the indications. It is not uncommon for a company to 
leave rates relatively unchanged even with large indicated increases. To the purist, 
such action seems illogical. 

Even more surprising is the fact that such a decision often leads to successful results. 
It seems that there must be somethirig going on that is ifivisible to the naked eye? Do 
indications really mean so little? Or are there other factors, buried in the actuarial 
judgment of the experienced actuary but difficult to quantify? 

It is the premise of this paper that such factors do indeed exist. The great unknown in 
current actuarial methodologies is a function of the fact that the future book of 
business is not necessarily the same as the historical one. To the extent that the 
nature of the book changes, traditional methodologies are inadequate. They are using 
outdated data, based on policies that no longer figure in future costs. 

For very moderate rate changes, this distortion may be minimal. However, large 
revisions may cause significant changes in the nature of a company's book, This is 
logical, because a company does not operate in a vacuum. One company's actions 
can have an effect on the actions of its competitors, and (perhaps more importantly) 
will have an effect on the behavior of its own policyholders. Will current customers 
renew? Will new business levels be affected? 

Therefore, one major factor in future results is the effect of the rate change on market 
behavior. In this paper, we will describe one method for quantifying some of this 
effect. The methodology described will require much research to determine 
reasonable assumptions before it can be used in practice. It is our hope that it will 
stimulate further discussion, research, and a move toward acceptance of dynamic 
economic principles in ratemaking. 

Review of Current Methodology 

Every actuary knows the basic steps to developing rate indications. In a loss ratio 
method, premium is adjusted to current rate level, and trended if the exposure base is 
inflation-sensitive. Accident year losses are developed to ultimate, trended, and 



adjusted to reflect catastrophe risk. Credibility of the data is considered, and external 
data is used if necessary. Loss adjustment expenses are loaded by some method 
(often being treated the same as losses), and underwriting expenses are reflected. Of 
course, determination of the profit provision is an important, and otten controversial, 
step. The projected loss ratio is then compared to the target loss ratio to determine 
the indicated rate level change. 

Pure premiums methods use a similar procedure, except that projected indicated 
average premiums are compared to current average premiums to determine the 
indicated change. 

The traditional methodology contains a number of implicit assumptions. Among 
them are: 

The future book of business will have essentially the same characteristics as the 
current (or historical) one. 

Rate changes will have no effect on the actions of other companies in the market. 

The indicated rate level change (if taken) will be equal to the change in premium 
volume. 

Rate changes will have no effect on the company's retention or ability to write 
new business. 

The profit provision can be determined academically, rather than being dictated 
by the market. 

The assumption concerning profit provisions deserves further comment. The idea of 
setting a regulated ~rofit provision is a function of the insurance industry's history. 
For much of the 20 century, competition in the industry was limited. For roughly 
the first ¾ of the century, bureau rates were not uncommon. In this environment, the 
filed rate was the same for most (if not all of the market). Therefore, it was 
impossible for the market to gravitate to a profit level determined by competition. 
This led to a "public utility" attitude toward regulation. In that environment, a 
regulated profit provision is not unreasonable - the consumer needs more protection 
when market power is absent. However, in the current, increasingly competitive 
market, it makes sense for insurance markets to work like other private industries. 

There are many ways that one could attempt to reflect the inadequacies of traditional 
ratemaking assumptions. This paper will address the profit margin as a tool for 
reflecting the dynamic nature of the market. By using such statistics as price 
elasticity, we will quantify, to some extent, the way that economic forces operate on 
the profit margin. As you will see, such an approach would allow us to have 
indications that more reasonably reflect the probable future results. 



Price Elasticity 

Price elasticity is defined as the percentage decline in the units of  a good sold for 
every percentage increase in the price, l Let X = price elasticity then, 

0 > X > -1 (Price inelastic) 

X <= -1 (Price elastic) 

(Note that the case where X = -1 is defined as "unitary elastic") 2 

Price elasticity of property casualty insurance probably varies significantly by market 
(state) and line. For example, the sale of worker's compensation insurance with state 
mandated rates is much more inelastic than competitively rated reinsurance 
catastrophe covers. 

The  Rate  Indicat ion Revis i ted 

Traditional ratemaking models make 2 assumptions: 

• Rate changes will only impact average premium and not policy counts. 
• Profit provisions should be determined in advance. 

Thecommonformulais  (LR + FER) I = IRLC (1) 
(1 - VER - P) 

Where LR = Forecast Loss/LAE ratio 
FER = Fixed Expense Ratio 
VER = Variable Expense Ratio 
IRLC = Indicated Rate Level Change. 
P = Target Underwriting Profit 

In a highly elastic marketplace, this approach can fail for two reasons: 

Companies may be more concerned with maximizing profit and/or market share than 
profit margin. Note this is not always the case in insurance because it is so capital 
intensive. However, while additional volume may require additional capital, it also 
implies future profits (or losses) in the present value of the renewals. Therefore, an 
insurance company might reasonably seek to write 10 million at a 3% margin rather 
than 5 million at a 5% margin. Since traditional formulas determine the profit margin 
in advance, volume considerations are explicitly ignored. 

Andre Gabor, Pricing: Concepts and Methods for Effective Marketing. University Press, Cambridge, 
1977, p. 16 
2 Timothy M. Devinney. Issues in Pri~:~2. Lexington Books, 1988, p. 10 



Most ratemaking formulas were derived at a time when agency writing was very 
prevalent, with a large portion o f  the expenses being variable. However, the increase 
in direct writers means that fixed expenses are a larger percentage o f  expenses and 
must be considered carefully. 

The Internet is an even more interesting example. A policy sold through a company 
web site would have an even greater percentage o f  fixed expenses, with virtually all 
acquisition costs as fixed. 

With a high number of  fixed costs, firms could receive significant short-term benefits 
to the income statement by increasing volume and spreading fixed costs over 
additional premium. 

Of  course, not all fixed expenses are truly fixed. Ultimately, all expenses are variable 
expenses. This paper will not examine how best to classify expenses as "fixed" or 
"variable," except to note that this is an increasingly sensitive assumption in the 
indication process. 

The formula above assumes that the fixed expense ratio will vary with the magnitude 
o f  the rate change. Suppose an insurer has a forecast 100% loss/lae ratio, a 10% fixed 
expense ratio, and a 15% variable expense ratio, with a 3% underwriting profit target. 
The traditional indicated rate level change is +34.1%. 

This assumes that fixed expenses will fall to 7.5% o f  premium. However, such a 
large increase will not likely produce nearly a 34.1% increase in premium. It is very 
likely that actual premium volume will decline in such an environment. Therefore, 
the fixed expense ratio assumed by the formula will be far too low. The opposite case 
can be made with declining rate levels. 

Therefore, this formula assumes that price elasticity = 0. 

The pricing actuary must consider the elasticity of  her product in order to make 
reasonable estimates o f  the impact o f  fixed expenses. 

Another common formula used by actuaries is 

Where LR = Loss/LAE ratio 
FER = Fixed Expense Ratio 
VER = Variable Expense Ratio 
P = Predetermined profit margin 
IRLC = Indicated Rate Level Change 

(LR) 
(1 - F E R - V E R  - P )  

- 1  = 1 R L C  (2) 



This formula assumes that premium remains the same as before, since fixed expenses 
are the same percentage as premium. 

Therefore, Premium before the rate change = Premium after the rate change 

Premiam after the rate change = (1 + RateChange) x (Avg Premium) x (Policy count 
after rate change) 

Premium before the rate change = (AvgPremium) x (Policy Count before Rate 
Change) 

Since the two expressions above are equal, 

Policy count after rate change = Policy Count before Rate Change/(l  + RateChange) 

Therefore, percentage change in policies = 1/(1 + RateChange) - 1 

Elasticity = Percentage change in policies/Percentage change in Rates 

=[ 1/(1 + RateChange)- l ] /RateChange 

= -1/(1 + RateChange) 

Note that for any rate increase, -1 < Elasticity < 0, so this formula implies more 
elastic markets than (1). In the example provided, the elasticity is approximately -.7, 
as a 39% increase by formula (2) would cause a 28% drop in policy counts. 

This formula implies that elasticity can never be <= -1, which is not a reasonable 
conclusion if  the insurance market is elastic. 

Pricing Theory 

There is considerable debate in the economics profession whether any meaningful 
general theories of  pricing can be formulated. Few pricing managers in any business 
consult economic theory when setting prices. 3 However, it is well known that firms 
tend to pursue market share as well as profitability. 4 

Customers tend to infer the overall level of  price from those items most  frequently 
purchased. This explains why large super stores may tend to have very competitive 
prices ("loss leaders") for staples such as milk. 5 

3 Devinney, p. 337 
4 Devinney, p. 240 

G abor, p. 170 



For a multi-line insurer, that may mean pricing lines that are purchased more 
frequently (auto) differently than those items which are purchased less often (life 
insurance). 

For commodity products, firms tend to use market forces more than cost based 
pricing. Differentiated products are typically priced on a "cost plus" basis, which is 
analogous to traditional rate level indications. 

The Model 

In this section, we introduce an alternative model which can be used for pricing 
insurance. This type of model could also be used as a benchmark for existing pricing 
decisions. 

The model we will develop in this section is appropriate for a highly elastic book of 
business. Specifically, we are going to use non-standard auto as our example because 
this book is not only highly elastic, but also has very different characteristics for new 
and renewal business. 

New business tends to be highly elastic and highly unprofitable, while renewal 
business tends to be less elastic (but not necessarily inelastic) and highly profitable 
due to significant improvements in loss and expense ratios (note: this paper only 
considers improvements in loss ratios). 

The elasticity difference is due to the typical marketing distribution of non-standard 
auto. Typically, new business for non-standard auto is competitively rated against a 
large number of companies. Renewals may be rated again, depending on agent or 
consumer preference, but many will be renewed without an additional comparison of 
rates. 

Note that the elasticity of the different types of business leads to different profit 
assumptions in the marketplace. 

A company that followed traditional actuarial pricing models for new and renewal 
business would be uncompetitive on new business and very competitive on renewal 
business. While this would maximize profit margins on any particular risk, the 
overall portfolio of risks would not be as profitable as a price discriminating book. 
And as an economist would expect, the market is much less competitive for the less 
elastic part of the book. 

The process for building an "ad hoc" model to employ both competitive forces and 
the difference in new business and renewal profitability will be to calculate the 
profitability for each increment of proposed rate change. While the "profit 
maximizing" rate change could be calculated directly, we will maximize income by 
inspection because this will more easily allow for stochastic simulation. 



Inputs 

LR = Forecast Loss/LAE ratio 
VER = Variable Expense Ratio 
NB% = Current New Business Percentage 
RB% = Current Renewal Business Percentage (1 - NB%) 
FER = Fixed Expense Ratio (at current rates) 
RenBet = Renewal Betterment or the expected point differential in loss/lae ratios 
between new and renewal business  
NE = New Business  Elasticity (<=0) 
RE = Renewal Elasticity (<=0) 
CE = Competit ive Environment or the percentage change in business  given no rate 
change 
AP = Average Premium (at current rates) 
CP = Premium at current rates 
RC = Proposed rate change 

New Business and Renewal Mix 

Let 's  first calculate the revised New Business/Renewal  Business  mix.  

Let AdjPol = Policies adjusted for the competitive environment  (assuming no rate 
change) 

Then AdjPol = [CP x (I+CE)]/AP 

Let RCNB% = New Business (for a given rate change) 

Then RCNB% = ([RC x NE] + 1) x NB% 

Similarly, RCRB% = Renewal business (for a given rate change) 

and RCRB% = ([RC x RE] + 1) x RB% 

Since renewal and new business  mus t  combine to equal 100%, these mus t  be adjusted 
for the new distribution. Therefore, 

PropNB% = Proposed New Business  
PropRB% = Proposed Renewal Business 

PropNB% = (RCNB%)/(RCNB% + RCRB%) 
PropRB% = 1 - PropNB% 

New Business and Renewal Loss/LAE ratios 



One o f  the features o f  non-standard auto is a major difference in the loss costs between 
new and renewal business.  This can cause unexpected results for a large rate increase or 
decrease. A significant rate increase will decrease the ratio o f  new business  to renewals 
and lower the loss ratio more than the rate change would traditionally suggest.  Similarly, 
a rate decrease can cause the opposite effect. While unprofitable new business  may 
eventually season into a profitable renewal book, the short-term pressures on results can 
be significant. 

Let N B L R  = New Business Loss /LAE ratio after the proposed rate change 

Note that 

LR/( I+RC) = NB% x NBLR + (RB%) x (NBLR - RenBet) 

Which simplifies to 

NBLR = LR/( I+RC)  + (RenBet)(RB%) 

And RBLR = Renewal Business Loss/LAE ratio after the proposed rate change 

= NBLR - RenBet 

Proposed Income Statement  

In order to simplify, the analysis,  we will only examine underwriting income. In our 
example,  

Income = Premiums Earned - Incurred Losses/LAE - Fixed Expenses  - Variable 
Expenses 

Let Premiums Earned = EP, then 

EP = (RCNB% + RCRB%) x (AdjPol) x (AP) x ( I+RC) 

Incurred Losses /LAE (IL) can be defined as 

IL = EP x [(NBLR)(PropNB%) +(RBLR)(PropRB%)] 

Fixed Expenses  and Variable Expenses are defined simply as 

FE = (FER)(CP) 

VE = (VER)(EP) 

Maximiz ing  Income 

10 



Developing the expressions derived above as a function o f  rate changes, we find that 

Income = EP - IL - FE - VE 

This expression could be differentiated to show that a maximum income exists as a 
function of  the rate change, under the condition that the second derivative is less than 
zero. Differentiating this expression quickly becomes unwieldy, but we can demonstrate 
the relationship by a numerical approach. In this approach, we will simply substitute 
proposed rate changes at small intervals and inspecting the result for the maximum 
income. Here are three examples: 

Example  1 - A low forecast  loss ratio in a mature  state 

Assume the following inputs for the model: 

LR = 60% 
VER = 15% 
NB% = 50% 
RB% = 50% 
FER = 10% 
RenBet = 20% 
NE = -6 
R E = - 2  
CE = -10% 
AP = $1000 
CP = 20,000,000 

We will also examine "proposed market share" by simply comparing the proposed 
premium with the market. In this example, assume the company's  initial market share is 
5%. The traditional indication using (1) is -12.5% with a 5% profit target. Here is a 
graph of  profit and market share versus rate change: 

11 
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Rate Change 

The maximum profit occurs with a +1% rate change, and an underwriting profit of 2.5 
million. 

The earned premium, originally at 20,000,000, is projected to be at 18,000,000 for the 
revision with no rate change due to competitor actions. 

However, a 1% increase causes a 6% decrease in New Business counts and a 2% 
decrease in renewal counts. Since New Business and Renewals are each half of the book, 
the overall counts decrease by 3.5%. Average premium increases by 1%. Therefore, the 
proposed earned premium (000's) is: 

Current Premium 20,000 
Competitive Env -10% 
Premium if No Rate Change 18,000 
Policy Counts Change -4.00% 
Average Premium Change 1.00% 
Premium if +1% Change 17,453 

The forecast loss/alae ratio is 60%. Renewal business is projected to be 20 points better 
than new business. Using the formulas derived above, 
NBLR = .60/1.01 + (.20)(.50) = .6941 

12 



And RBLR = .6941 - .20 = .4941 

The slight increase will readjust the renewal and new business percentages. Using the 
formulas above, we get: 

PropNB% = .4896 
PropRB% = .5104 

This implies that IL = 10,331,640 

Since FE = (. 10)(20,000,000) = 2,000,000 and VE = (. 15)(17,452,800) = 2,617,920 

So Income = 17,452,800 - 10,331,640 - 2,000,000 - 2,617,920 = 2,503,240 

A firm may decide to trade short-term profits for additional market share and lower rates 
further. "Market share" can be considered a measure of long  term profitability. Inthe 
example above, initial market share was 5%. Assuming that the overall market is neither 
growing nor decreasing, the new market share will simply be the change in premium 
times the initial market share. In this example, premium changes by -12.7% which 
decreases market share to 4.4%. 

Example  2 - A high forecast  loss ratio in a new state wi th  high fixed expenses  

Assume the following inputs for the model: 

LR = 80% 
VER = 15% 
NB% = 80% 
RB% = 20% 
FER = 35% 
RenBet = 20% 
NE = -6 
R E = - 2  
CE = -10% 
AP = $1000 
CP = 3,000,000 

Initial Market Share = 1.0% 

Assume this is a new state which ls performing poorly. This has happened for two 
reasons: 

• The loss ratio is above expectations 

• The premium volume is well below expectations, which has caused the fixed expense 
ratio to be extremely high 

13 



In this case, "fixed expenses" are projected to remain high on an absolute basis over the 
next rate revision. This may be due to advertising contracts, leases, or other long-term 
commitments, but we  can assume that they will not be eliminated. 

The traditional formula would indicate an increase o f  +44%. However,  the profit 
maximizing increase is just 8.5%. Note that in this case the maximum profit is actually a 
loss o f  834K. However,  given the fixed expenses,  this is the best that can be projected. 
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Example  3 - A moderate  loss ratio in a mature  state with high fixed expenses  and 
low variable  expenses  

Assume the following inputs for the model: 

LR = 71% 
VER = 7.5% 
NB% = 50% 
RB% = 50% 
FER = 17.5% 
RenBet = 20% 
N E = - 6  
R E = - 2  
CE = 0% 
AP = $1000 
CP = 10,000,000 

14  



Initial Market Share = 7.0% 

In this example, the traditional model indicates an increase of+1.1%. This is not a 
dramatically different result than the +4.0% increase that the "profit maximizing" model 
produces. 

Example 3: Undemutting Profit and Market Share for a Given Rate Change 
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Using the traditional formula in this case would cause a decline in underwriting income 
of only (25K) and gain in premium of 1484K. Therefore, one should probably look 
closely at market share in such a situation. 

Introducing Simulation 

How does the "profit maximizing" model respond to differences in expectations from the 
traditional model? 

5000 simulations of results were run of Example 3, with distributions substituted for the 
loss ratio, new business elasticity, and renewal elasticity. 

The most sensitive variable in a rate indication is the forecast loss ratio. 
We replaced the loss ratio pick in the example above of 71% with a lognormal 
distribution with a mean of.71 and a standard deviation of.15. We also truncated the 
result to a minimum of 0. 

15 



The variance was selected judgmentally, but a review of the histogram of the results 
shows a reasonable approximation of results for a line not subject to significant 
catastrophe losses: 

Example 3 - L o u  ra t io  o f  &000 simulations (Mean • .71, Std.  Dev.  : .15) 

Lmm Rat io  

Ideally, empirical studies would determine the elasticity of the product. Also, the 
elasticity would be expected to change somewhat over the range of rate increases. For 
example, the elasticity of a 10% rate increase would probably be different than a 1% 
increase. However, we have not changed our elasticities in this example. 

Not surprisingly, "traditional indications" correlate closely with the loss ratio, since 
elasticities do not impact the result of this formula: 

16 



Exlmpls  3 - T rad i t i ona l  ~ Indication under ~ simulations 

? 

TrldlCioflal Ra~ Indicdltion 

The "profit maximizing" indications, shown below, provide an interesting contrast to the 
traditional indications: 
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Note that the shape of the distribution is remarkably different from the traditional 
indication. The standard deviation of the results from the traditional indication is.  171 
versus .092 from the "profit maximizing" model. 

Conclusion 

There are many assumptions in our examples that can be refined and improved. For 
example, price elasticity is not constant for all indications - as a result our results would 
be less accurate for extreme rate indications. The emphasis of the paper is on a method 
of thinking about rate indications in a dynamic market. As we have shown, traditional 
methodologies do not adequately account for the effect rate changes have on retention 
and other economic factors. 

We hope that our paper will lead to further research. For the model to be usable in the 
real world, empirical studies will need to develop reasonable assumptions for price 
elasticity functions, distributions of new versus renewal business, and other model inputs. 
There are also several simplifying assumptions which would need to be refined. 

This proposed approach is only a first step, but we are convinced that it is a step in the 
right direction. Companies that are able to reflect market forces in their rate analysis can 
gain a competitive advantage. A ratemaking approach that considers price elasticity to 
maximize profit would be a useful tool by itself, but could be even more valuable as a 
component of dynamic financial analysis. 
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As stated in our introduction, these types o f  concerns are reflected indirectly every time 
an actuary chooses not to propose the indicated rate level. With this approach, an 
insurance company has a better chance of  measuring the effect o f  such decisions, creating 
a rate structure that balances profit and market concems. 
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Abstract  

The application of loss trends has long been a fundamental part of the 

ratemaking process. Despite this, the actuarial literature is somewhat lacking in 

the description of methods by which one can estimate the proper loss trend from 

empirical data. Linear or exponential least squares regression is widely used in 

this regard. However, there are problems with the use of least squares 

regression when applied to insurance loss data. 

In this paper, some common pitfalls of least squares regression, as it is 

commonly applied to insured loss data, and two alternative methods of 

evaluating loss trends will be illustrated. Both methods are based on simple least 

squares regression, but include modifications designed to account for the 

characteristics of insurance loss data. 

The results of various methods are compared using industry loss data. 

Stochastic simulation is also used as a means of evaluating various trend 

estimation methods. 

The concepts presented are not new. They are presented here in the context of 

analyzing insured loss data to provide actuaries with additional tools for 

estimating loss trends. 
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Introduction 

This paper is organized into eight sections. The first section will describe the 

importance of estimating loss cost trends in Property/Casualty ratemaking. In 

addition, it will introduce the common industry practices used to estimate the 
underlying loss cost inflation rate. 

The second section will provide a review of basic regression analysis since 

regression is commonly utilized for estimating loss trends. It will also describe 
other relevant statistical formulae. 

The third section will describe some characteristics of insured loss data, This 

section will describe how insured losses violate some of the basic assumptions of 

the ordinary least squares model. It will also describe the complications that 
result because of these violations. 

The fourth section will describe several methods that can be utilized along with 

informed judgement to identify outliers. 

The fifth and sixth sections will describe two alternative methods that address the 

shortcomings of ordinary least squares regression on insured loss data. 

The seventh section applies the common method of exponential least squares 
regression and the two alternative methods to industry loss data and compares 
the results. 

In the last section, the performance of exponential least squares regression and 
the alternative methods will be evaluated using stochastic simulation of loss data 
with a known underlying trend. 

While the determination and use of credibility is an essential component of loss 

trend determination, it is beyond the scope of this paper. However, the concepts 
and methods presented here apply equally to the determination of the trend 

assigned to the complement of credibility. The methods presented here are 

designed to extract as much information about the underlying trend from the 

available data. They are not intended to minimize the importance or use of 

credibility. 
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In addition to credibility, there are many other considerations that must be taken 

into account when applying loss trends, such as the effect of limits and 

deductibles. These issues are beyond the scope of this paper. 

Section 1: Actuarial Literature and Industry Practice 

In the ratemaking process, it is widely agreed that trend selection is the 

component that requires the most judgement. 1 According to the Actuarial 

Standards of Practice, the application of the appropriate trending procedures is 

essential to estimating future costs in the determination of rates. 2 

Despite the importance of trending in ratemaking and the degree of judgment 

required, there is little written specifically regarding the determination of loss 

trends. Most ratemaking papers cite trending as an integral part of the process 

and describe the author's selected approach. This is entirely appropriate as the 

subject of these papers is ratemaking and not specifically trend estimation. 

The actuarial literature is sparse on the process of selecting the type of data to 

evaluate, preparing trend data, choosing the most appropriate model and 

assessing the appropriateness of the selected trends. 

There are papers addressing several of the important basic issues of trending. 

These include the appropriate trending period and the overlap fallacy. 3 In 

addition, the CAS examination syllabus addresses the permissibility of using 

calendar year data to determine trends applied to accident year data. 4 These 

authors have well and fully addressed these topics and they need not be 

revisited. 

1 David R. Chernick, "Private Passenger Auto - Physical Damage Ratemaking", p. 6. 

2 ASP #13... 

3 Chernick, ibid., Charles F. Cook, "Trend and Loss Development Factors", CAS Proceedings, 

Vol. LVII, p. 1 and McClenahan, Foundations of Casualty Actuarial Science, 2d Ed, Casualty 

Actuarial Society, Arlington, VA, 1990, Chapter 2. 

4 Cook, ibid. 
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In much of the syllabus material, both past and present, there are considerable 
differences between the types of data used for trending and the amount of 

discussion dedicated to the selection of the trend. Generally, each paper selects 

either calendar or accident year data and utilizes either the simple linear or 

exponential regression model with little guidance regarding which is more 

appropriate or discussion of the data to which the model is applied. These 
omissions are understandable since the subject of the articles is ratemaking, of 

which trend selection is only one component. There are acknowledgements of a 

need for better loss trending procedures contained in several papers. 

A survey of rate filings was conducted to assess common industry practice. 

From this review, it is difficult to know definitively the amount of analysis that 

underlies the selection of trends. However, each company and the one rating 

agency examined display four-quarter-ending calendar year data with either 
simple linear or exponential regression results to support loss trend selections, s 

As illustrated in both literature and practice, it is common in the Property & 

Casualty industry to estimate loss cost trends using either linear or exponential 
least squares regression. This is understandable since least squares regression 

is familiar to both regulators and company management. Further, least squares 

regression has been integrated into all commonly used electronic spreadsheet 

packages. 

The validity of using linear or exponential least squares regression, the basic 
assumptions of regression analysis and the characteristics of loss data, in 

evaluating ratemaking trends has not been widely addressed. When selecting a 

model to estimate future trends, it is important to consider whether the data used 

violates assumptions of the model. 

Loss Data 

An essential consideration in evaluating loss trend involves the selection of the 

type of loss statistics to analyze. It is often useful to analyze both paid and 

incurred loss frequency and severity if available. 

5 Allstate, Nationwide, Progressive, State Farm and ISO 
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For example, paid claim counts may include claims closed without payment. 

Therefore, changes in claim handling procedures during the period under review 

may affect the trend estimate. Likewise, changes in case reserving practices and 

adjuster caseloads may affect incurred and/or paid severity amounts. 

Analysis of both paid and incurred amounts, or amounts net versus gross of 

salvage and subrogation, can assist in identifying changes in claims handling. In 

any event, the loss statistics used should be defined consistently throughout the 

experience period. For example, if the paid loss amounts are recorded gross of 

salvage and subrogation for a portion of the time period, and net for the 

remaining, the amounts should be restated to a consistent basis prior to analysis. 

Section 2: Least Squares Regression Basics 

Least squares regression is a general term that refers to an extensive family of 

analytical methods. All of these methods share a common basic form. 

where, 

}~ is the i '~ observation of the response variable. 

,8, is a vector of model parameters to be estimated. 

.~, is a vector of the the independent variables 

~, is the random error term. 

Regression models are designed to use empirical data to measure the 

relationship between one or more independent variables and a dependent 

variable assuming some functional relationship between the variables. The 

functional relationship can be linear, quadratic, logarithmic, exponential or any 

other form. 

The important point is that the functional relationship, the model, is assumed 

prior to calculation of the model parameters. Incorrect selection of the model is 

an element of parameter risk. 

In addition to selection of the model, regression analysis also involves 

assumptions about the probability distributions of the observed data. This is 
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essential in the development of statistical tests regarding the parameter 

estimates and the performance of the selected model. 

Simple L inear  Regress ion 

The most common form of regression analysis is simple linear regression. The 

simple linear regression model has the following form. 

= P0 + # ,  X ,  + E, 

where, 

Y, is the i 'h observation of the response variable. 

,b' 0 and ,8, are the model parameters to be estimated. 

X, is the i 'h value of the independent variable. 

e, is the random error term. 

The parameters of the regression model are estimated from observed data using 

the method of least squares. This method will not be described in detail here. It 

is sufficient for our purpose to note that the least squares estimators, b,, have 

the following characteristics: 

1. They are unbiased. That is, E[b,] = p , .  

2. They are efficient. The least squares estimators have the minimum 

variance among all unbiased linear estimators. 

3. The least squares estimators are the same as the maximum likelihood 

estimators when the distributions of the error terms are assumed to be 

independent and normally distributed with a mean of zero and a 

variance of (~2. 

Because the normal distribution of the error terms is assumed, various statistical 

inferences can be made. Hypothesis testing can be performed. For example, 

the hypothesis that the trend is zero can be tested. Confidence intervals for the 

regression parameters can be calculated. Also, confidence intervals for F and a 

confidence band for the regression line can be calculated. These very useful 

results make simple linear regression appealing. 
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Exponential Regression 
While linear regression models are often satisfactory in many circumstances, 

there are situations where non-linear models seem more appropriate. Loss cost 

inflation is often assumed to be exponential. The exponential model assumes a 

constant percentage increase over time rather than a constant dollar increase for 

each time period. 

The general form of the exponential regression model is given by 

}~ = Yo + Y~ e~'v' + E, 

The parameter estimates of a non-linear regression model usually cannot be 

described in closed form. Therefore, numerical methods are used to determine 

parameter estimates using either the least squares or maximum likelihood 

method. Often electronic spreadsheet software will include tools to estimate the 

parameters for several non-linear regression models. 

As with linear regression, statistical inferences such as confidence intervals for 

the parameter estimates, hypothesis testing and a confidence band for the fitted 

curve can be made. 

The Exponential to Linear Transformation 
In practice, the linear regression algorithm is often applied to the natural 

logarithm of the observed data. This transformation of the observed data 

simplifies the calculation of the regression parameters. However, in using this 

approach the analyst has, perhaps unknowingly, assumed the error terms are 

Iognormally distributed rather than normally distributed. 

The observed data is modeled using the equation, 

Ln(Y, ) = ~o +/31 .~( + 6, 

This transformation is equivalent to the model, 

Y, = Ke ~'''' .[e" ], where K = e '~ and e" is the error term. 

and the trend is obtained from the linear least squared regression estimate of/~',. 
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If the error term of the linear regression model, c,, is assumed to have a 

N(0,c) distribution, it can be shown that the error term in the transformed model 

is Iognormal with expected value e °'12 . The error terms are positively skewed. 

This distribution of the error terms in the linearized model may be preferable to 

the normal distribution if the analyst believes it is more likely that observed 

values are above the mean than below the mean. This certainly may be the case 

with insured loss data. 

Note that the Iognormal distribution of the error term in the linearized model 

affects the calculation of confidence intervals and test statistics for the model. 

The familiar forms of the test statistics based on the normal distribution do not 

apply. 

The Coefficient of Determination, R 2 

Perhaps the most cited statistic derived from regression analysis is the coefficient 

of determination, R 2. R 2 can be interpreted as the reduction of total variation 

about the mean that is explained by the selected model. When R a is closer to 

one, the greater is the modeled relationship between X and Y, whether the model 

is linear, exponential or some other form. 

The Durbin-Watson Statistic 

The Durbin-Watson statistic, D, is used to test for serial correlation of the 

residual errors, e,. The value of D is calculated from the observed and fitted 

values of Y, where e, = (~ - ~ ) .  

n 

D ~ f=2 
n 

/=1 

This value is compared to critical values, d~ and d., calculated by Durbin and 

Watson. The critical values define the lower and upper bounds of a range for 
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which the test is inconclusive. When D > d ~ ,  there is no serial correlation 

present. When /_) < dr., there is some degree of serial correlation present. 6 

Sect/on 3: Insured Loss Data 

There are several distinct characteristics of insured loss data that should be 

recognized when selecting a regression model. In broad terms, one expects 

data to be comprised of an underlying trend, a seasonality component, a possible 

cyclical nature and a random portion. 7 These traits make the estimation of the 

underlying trend more difficult and the rigid use of simple linear or exponential 

regression imprudent. 

Unusual Loss Occurrences 

The nature of insured losses may violate the common assumptions of simple 

linear or exponential least squares regression. For example, loss events that 

cause widespread damage can generate extraordinarily high claim frequencies in 

a given time period. The reverse, a time period with an extraordinarily low claim 

frequency, is unlikely. A similar skewness can occur in severity data for small 

portfolios or, almost certainly, in medium to large portfolios of liability risks due to 

shock losses. Examples of these characteristics are evident in trend data 

provided by the Insurance Services Office. 

Widespread Loss Events 

In the chart below of Homeowner claim frequencies as reported by the Insurance 

Services Office for the state of Oregon, there is an obviously unusual occurrence 

in the first quarter of 1996. The increase in claim frequency over the prior annual 

period is over 50%. 

6 Neter, et. al., A~j)lied Linear Statistical Models, 4 ~ ed., McGraw-Hill, Boston, 1996 p 504. 

7 Spyros Makndakis and Steven C. Wheelwright, _Forecasting Methods for__Mana~ement. 5 ~h Ed., 

John Wiley & Sons, New York, 1989, p. 96. 

30 



13.0 

11.0 

9.0 

7.0 

50 

Oregon Homeowners 

4QE Paid Frequency 

Ye ar/Qtr 

Because the data is twelve-month-moving, the dramatic rise in frequency that 

occurred in the first quarter of 1996 is transferred to the subsequent three 
observations. Therefore, the error terms are not independently distributed, as 

commonly assumed, due to the construction of the data. 

A review of the severity data for the same time period shows a corresponding, 

though less dramatic, drop in claim severity. This is typical of a high frequency, 

low severity weather loss event. This drop in claim severity may go unnoticed if it 

were not for the associated increase in frequency. Again, due to the twelve- 
month moving organization of the data, the error terms are not independently 

distributed. 
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Shock Losses 
A high severity claim in a small portfolio may cause a distortion in the data and 

affect the trend calculated by ordinary least squares methods if no adjustments 
are made. A visual inspection of Nevada Private Passenger Auto Bodily Injury 

severity data provided by the Insurance Services Office shows an unusual 

occurrence in the first quarter of 1998. 

The quarterly data shows the elevated severity in the first quarter of 1998 neatly 

as one high point while the four quarter ending data exhibits this phenomena as 

a four point plateau, This phenomenon occurs more often in smaller portfolios, 
even when utilizing basic limit data. 

Nevada PPA - Bodily Injury Liability 
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Effects of Unusual Loss Occurrences 

While the cause of these events is dissimilar, the result on the data is the same. 

One may expect the distribution of the error term for claim frequency and severity 

to be positively skewed, rather than normally distributed as commonly assumed. 

The Iognormally distributed error terms of the transformed exponential regression 

model may be more appropriate than the exponential model with normally 

distributed errors. 

As demonstrated above, insured loss frequency and severity data may exhibit 
abnormally high random error. If these errors occur early in the time series, the 

resulting trend estimates from least squares regression will be understated. 

Conversely, if the shock value occurs late in the time series, the trend estimate 
will be overstated. The use of twelve-month-moving data compounds this effect 

since the shock is propagated to three additional data points. 

There are several methods available to identify outliers and measure their 

influence on the regression results. These include Studentized Deleted 
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Residuals, DFFtTS, Cook's Distance and DFBETAS. 8 The identification of such 

occurrences is addressed in section four below. 

Seasonality of Data 

The nature of insurance coverage creates seasonal variation in claim frequency 

and severity. For example, winter driving conditions may cause higher Collision 

and Property Damage Liability claims in the first quarter. Similarly, lightning 

claims may be more prevalent during the summer months in certain states. The 

probability of severe house fires may be higher during the winter months. Auto 

thefts may be more frequent in summer months causing elevated severity for 

Comprehensive coverage. 

When reviewing New York Private Passenger Auto data for Collision coverage 

on a quarterly basis, one can see the seasonal nature of claim frequencies. This 

seasonality can be illustrated by grouping like quarters together. 

New York Collision 

Qtrly Paid Frequency 

110 

10.0, i I . . . . . . .  ~ . . . .  

@ 
90 . . . . . . . . . . . . . . .  

80 ~ 
70 
60 1 

Year/Qtr 

Generally, the use of twelve-month-moving data is a convenient method for 

adjusting the seasonal nature of insured losses. However, four-quarter-ending 

a Neter, et. al., ibid, and Edmund S Scanlon, "Residuals and Influence in Regression", CAS 

Proceedings, Vol. LY-,XXI, p. 123 
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data creates serially correlated errors when used in ordinary least squares 

regression. 

Serially Correlated Error 
Actuarial literature shows trend data organized in a variety of ways. Some 

authors use twelve-month-moving calendar year data observed quarterly, others 

use accident year data observed annually, still others use calendar quarter data 

observed quarterly. Each format has advantages and disadvantages. It is 

important to recognize the implications of the data organization on the regression 

results. 

Any organization of data that has overlapping time periods from one point to the 

next, by its construction, results, in serially correlated error terms. Serial 

correlation of error terms occurs when the residual errors are not independent. 

This result is shown for twelve-month-moving calendar year data in Exhibit 2 

using the Durbin-Watson statistic. 

Additionally, one can plot residuals to detect serial correlation. Below the 

residual plot is displayed for twelve-month-moving New York Collision frequency. 

As one can see, the errors for adjacent points are related. As noted above, the 
independence of the error terms in ordinary least squares regression is generally 

assumed and certain conclusions about the regression statistics are based on 

this assumption. 
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According to Neter, et. al., when this assumption is not met the following 

consequences result. 

1. The estimated regression coefficients are still unbiased, but they no longer 

have the minimum variance property and may be quite inefficient. 

2. Minimum Squared Error (MSE) may seriously underestimate the variance 

of the error terms. 

3. The standard deviation of the coefficients calculated according to ordinary 
least squares procedures may seriously underestimate the true standard 

deviation of the estimated regression coefficient. 

4. Confidence intervals and tests using the t and F distributions are not 

strictly applicable. 

Remedial  Measures 

Each of the first two issues with the insured loss data, widespread loss events 
and extraordinary claim payments, can be resolved by removing outlying points 

before calculating the exponential or linear regression. The removal technique 

must rely on statistical tests and actuarial judgment. This will be discussed in the 

following section. Seasonality and serial correlation can be addressed using 

regression with indicator variables on quarterly data. Regression with indicator 

variables explicitly incorporates seasonality as a component of the model. The 

use of quarterly data eliminates the serial correlation resulting from the use of 

overlapping time periods. 

Comments on Goodness-of-Fit 

Estimating the underlying trend in a given dataset entails more than simply fitting 

a line to a set of data During the estimation process, it is important to determine 
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w h e t h e r  the underlying assumptions are met and whether  the equation 

accurately models the observed data. 9 

Many consider R 2, the coefficient of determination, the most important statistic for 

evaluating the goodness-of-fit. The coefficient of determination is the proportion 

of the data's variability over t ime that is explained by the fitted curve. However, it 

is widely agreed that this is not sufficient. 1° The coefficient of determination, by 

itself, is a poor measure of goodness-of-fit.1 

To assume that a low R 2 implies a poor fit is not appropriate. It has been shown 

that a low or zero trend, by its nature, has a low R2value. 12 Also, whenever  the 

random variation is large compared to the underlying trend the R 2 will not be 

sufficient to determine whether  the fitted model is appropriate. One can illustrate 

the low R a values associated with data exhibiting no trend over time. The scatter 

plot below was generated from a simulation with an underlying trend of zero. 

Simulation R e s u l t s  " 
Underlying Trend = 0% 
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9 scanlon, ibid. 

lo D. Lee Barclay, "A Statistical Note on Trend Factors: The Meaning of R-Squared", CAS Forum, 

Fall 1991, p. 7, and Ross FonticeUa, "The Usefulness of the R z Statistic", CAS Forum, Winter 

1998, p. 55, and Scanlon, ibid. and Neter et. al., ibid. 

11 Barclay, ibid. 

la Barclay, ibid. 
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The residuals between the actual and fitted points are highly useful for studying 

whether a given regression model is appropriate for the data being studied. 13 It 

is useful to graph the fitted data against the observed data to look for patterns. TM 

A random scattering of residuals occurs when the fit is proper. 15 It is important 

that the error term not appear systematically biased when compared to 

neighboring points. 

The use of the R 2 statistic or plots of the residuals may result in the decision that 

the model is an appropriate fit to the data. This conclusion applies to the 

historical period based on this analysis. Another consideration is the 

extrapolation of the trend model into the future. As McClenahan illustrates with 

the use of the 3 rd degree polynomial, a perfect fit within the data period does not 

always result in the appropriate trend in the future. TM Extrapolation beyond the 

data period should also be considered before the decision to proceed with the 

model is undertaken. 

Section 4: Identification of Outliers 

This section describes methods by which one can identify extraordinary values 

from observed loss data. These methods are designed to identify outliers from a 

dataset on which regression is to be performed. An excellent reference on these 

and other statistical methods is Applied Linear Statistical Models by Neter et. al. 

Each of these methodologies cannot be applied without judgement. None of the 

methods is so robust as to produce reliable results in all circumstances. 

13 Neter, et. al., ibid, p. 25. 

14 Fonticello, ibid. 

15 Barclay, ibid. 

le McClenahan, ibid. 
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Therefore, the selected points should always be compared to the original 

dataset. 

The identification of the cause of the outlier is preferred. For example, if 

possible, the claims department should be consulted if a single large claim or if a 

widespread claims event, such as a catastrophe, appear to distort the data. 

Visual Methods 
When performing simple linear regression there are several visual methods 

which can result in easy identification of outlying points. Among these graphs 

are residual plots against the independent variable, box plots, stem-leaf plots and 

scatter plots 17. While residual plots may lead to the proper inference regarding 

outliers, there are instances when this is more difficult. When the outlier imposes 

a great amount of leverage on the fitted regression line, the outlier may not be 

readily identifiable due to the resulting reduction of the residual. 

Studentized Residuals 
There are several standard methods that can be utilized to assist with the 

identification of outliers, each with advantages and disadvantages. The 

studentized residual detects outliers based on the proportional difference of the 

error term, ¢,, and the variance of these errors. The studentized residual is 

defined: 
e i r ,= 

s{~ ,}  ' 

Where s{e i } is an estimate of the standard deviation of the residual. This 

estimate is easily calculated as s{e,} =~MSB( ] -h , ) ,  where h, is the diagonal 

element of the hat matrix H= X ( X ~ )  -~ X ' .  Interestingly, ]~ = HY and e = ( ! -  H)Y. 

The hat matrix will be used in future development of outlier identification for 

simplification of the formulae. 

This method has the same disadvantage as identification of outliers using 

residual graphing. The variance of the errors includes the error of the i th 

17 Neter,  et. al, ibid. 
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observation. In addition, there is no statistical test from which one can base a 

decision regarding outliers. 

Student ized Dele ted Residuals 

A significant improvement in identifying outliers uses the studentized deleted 

residual. For the i'hobservation the deleted residual, d,, is the difference 

between the i'* observation, g,, and the fitted point when the fitted curve 

includes all but the i 'h observation, ~',~,~. By excluding the i 'h observation one can 

determine the influence of the observation on the fitted function. Fortunately, the 
deleted residual can be computed relatively easily. 

d, ~ - ~' Y, - Y,(,) where h,, is the diagonal from H. 
1 - h .  

The deleted residual, d,, when studentized (divided by the estimated standard 

deviation of d,), follows the t(n-p-1) distribution. Therefore, each studentized 

deleted residual can be tested using t ( l - a / / 2 n , n - p - ] ) .  Fortunately, the 
studentized deleted residuals, L, can be computed without performing n 

separate regressions. It can be shown that, 

e, ~ n - p - 1  

"= ~sE~,, 0 - h,,) = e, LssE(-~ - h,-~ ; -  e f  J 

DFFI TS 

One measure of influence is the DFFITS statistic. The DFFITS is the 
standardized difference between the fitted regression with all points included and 

with the i '~ point omitted. 

Eh l 2 
DFFITS,  - ~ , l h "  = t, • 

This represents the number of standard deviations 1~ increases or decreases 

with inclusion of the i 'h observation. Note that the DFFITS statistic is a function 

of the studentized deleted residual and can be computed without performing 

multiple regressions. Observations are coHered~_/ outtiers if the DFFITS is 
greater than one for medium datasets and 2,/P/ for large datasets. ¥ / n  
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Cook's D 

Another measure of influence is Cook's Distance measure, D,. Scanlon utilizes 

Cook's D statistic to identify outliers. TM Cook's D measures the influence of the 

i 'h case on all f~ted values. 
/1 ^ 

-r,,,,) 
Oi 

- j=l 

p . M S E  

The denominator standardizes the squared difference measure of the numerator. 

Evaluation of Cook's D is accomplished by utilizing the F(p, n-p) distribution. A 

percentile value less than 10-20% shows little influence on the fitted values, while 

a percentile value of 50% or more indicates significant influence. 

Fortunately, Cook's D can be calculated for each observation from a single 

regression using the following relationship. 

p.MSE (l-h.) 

As with all models good judgement is imperative and comparison to the original 

data is advised. In addition to the methods described above, one can calculate a 

confidence band around the fitted curve. Observations outside the confidence 

band are candidates for removal. 

Each of these methods is designed to identify a single outlier from the remaining 

data. These techniques may not be sufficient to distinguish outliers when other 

outliers are adjacent or nearby. Each of these methods is extendable to identify 

multiple outliers from the remaining data. However, a discussion of these 

extensions is beyond the scope of this paper. 

la Scanlon, ibid. 
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Section 5: Manual  Intervention - Deletion~Smoothing of  Outliers 

Manual Intervention 

The identification of extraordinary values is certainly a matter of judgement. In 

the analysis that follows, the determination of outliers is completed by use of 

visual inspection. 

In many cases a visual review of the twelve-month-moving data can identify 

outliers. However, the occurrence of two ouliers within four quarters of each 

other can be difficult to detect using twelve-month-moving data. For this analysis 

the data is decomposed into the quarterly loss data shown below. 

Table 1 - Quarterly Frequency - Oregon Homeowners  

1 '~ Quarter 2 nd Quarter 3 rd Quarter 4 th Quarter 

1994 6.167 5.778 6.194 7.319 

1995 7573 6.665 8076 8613 

1996 24.861 8.456 7006 6 555 

1997 9.303 6053 5.906 5778 

1998 7.300 5.301 5.592 5 986 

1999 8.539 5.463 4.965 

The observed frequency in the first quarter of 1996 is identified as an outlier. 

Treatment of Outliers 

Once the outliers have been identified, one can proceed in several ways. First, 

the analyst may simply remove the outlying point from consideration and 

complete the analysis as if the observation did not occur. While this alternative 

may seem appealing, it does not allow for the reconstruction of twelve-month- 

moving data. 

The second approach is to replace the outlier with the fitted point from the 

regression after removal of the outlier. This removes the outlier from the 

regression entirely, but allows reconstruction of the four-quarter-ending data. 

The final approach is to replace the outlying point with the fitted point plus or 

minus the width of a confidence interval, as appropriate. This choice mitigates 
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the extent to which the outlier affects the regression results, without removing the 
point entirely. 

For simplicity, the authors have selected the first approach for comparison 

purposes but acknowledge that the other two procedures may be appropriate in 

other circumstances. 

Parameter  Est imat ion 

Estimation of the underlying trend in the data is completed through exponential 

regression on the quarterly data, excluding the outliers, with indicator variables to 

recognize any seasonality. 

Section 6: Qua l i ta t i ve  P red i c t o r  Var iab les  f o r  Seasona l i t y  

This method of least squares regression recognizes the seasonal nature of 
insured losses through the use of qualitative predictor variables, or indicator 

variables. Indicator variables are often used when regression analysis is applied 

to time series data. Also, since the data used in this method is quarterly rather 

than twelve-month-moving, first-order autocorrelation of the error terms is not 

present. Hence, the issues that arise from such autocorrelation are eliminated. 

The linearized form of the exponential regression model is given as 

Ln(Y~) =,8o + fl, X ,  + f l : D  2 + f lsD s +f l ,  D, +6, 

Where, 

}I, is the dependent variable 

X, is the independent variable (time) 

D 2 = 1, if second quarter, 0 otherwise 

D 3 = 1, if third quarter, 0 otherwise 

D 4 = 1, if fourth quarter, 0 otherwise 

c, is the random error term 

The model above can be viewed as four regression models, one for each set of 

quarterly data. 
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The exponential equivalents, without error terms, are 

First Quarter: 

Second Quarter: 

Third Quarter: 

Fourth Quarter: 

}I, = [e po ].  e p,x, 

Y, =e  ~' .[e~o].eP, x, 

Y, = e  ~' .[e.8O ].e¢, x, 

Y, = e "  .[e "8° ].e Ax' 

One can think of ¢~' as the trend component of the model and e ~' , J '  and eP' as 

the seasonal adjustments to e ~° . 

Essentially, the assumption is that the rate of change in frequency or severity 

over time is constant for all quarters, but the level of frequency or severity differs 

by quarter. This differs from multiple regression models, which assume separate 

trends for each quarter. A single trend, rather than four different trends, is 

intuitively appealing for ratemaking applications. 

Section 7: Comparison of Results 

This section compares trend estimates derived from five estimation methods 

applied to industry data provided by The Insurance Services Office. The data is 

displayed in Exhibit 1. Exponential least squares regression on twelve-month- 

moving data, quarterly data and annual data are used as examples of common 

industry practice. The results from the exponential regressions will be compared 

to results derived from the alternative methods described above. 

Detailed calculations using the Oregon Homeowners data are shown in the 

attached exhibits. The results in the tables below show the annual trend derived 

from each method and the associated R 2 value in parentheses. 

Table 1 - Oregon Homeowners Frequency 

# Years of Observations 

Method ~ 3~E= 4_~yr, 5~r 

12 MM -1 5% (.06) -13.9% (.53) -170% (.62) ~9% (17) 

Quarterly -156% (.32) -26.7% (.45) -132% (.21) -39% (03) 

Annual - -53% (.50) -192% (72) -10.1°/o (.34) 

Manual Adjustment -- -6.8% (.79) -8.4% (58) -2 6% (20) 

Indicator Variables -94% (.91) -222% (.75) -109% (.48) -26% (27) 
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Table 2 - New York PPA Collision Frequency 

# Years of Observations 

Method ~ 3 yr. 4yr. ,Syr~ 

12 MM 0.3% (.04) -1.7% (.43) -2.2% (.61) -1.9% (.58) 

Quarterly -0.6% (.00) -1.6% (.07) -2.8% (.17) -1.7% (.10) 

Annual -- -0.6% (.14) -2.3% (.66) -1.2% (.37) 

Manual Adjustment . . . . .  1.0% (.80) -0.8% (.84) 

Indicator Variables 1.7% (.83) -0.6% (.80) -2.2% (.76) -1.2% (.74) 

Table 3 - Nevada PPA Bodily Injury Severity 

# Years of Observations 

Method ~ 3 yr. 4yr. 5yr. 

12 MM 1 2% (06) 3.0% (.52) 3.1% (.72) 3.1% (.78) 

Quarterly 4.9% (.10) 4.3% (.20) 4.1% (.31) 2.7% (.25) 

Annual -- 3.5% (.63) 2.8% (.71) 37% (.85) 

Manual Adjustment -- 1.2% (.85) 1.9% (.65) 1.4% (.41) 

Indicator Variables 9.4% (.57) 4.9% (.36) 4.0% (.37) 27°/o (.27) 

The manual adjustment method and regression using indicator variables provide 

addit ional est imates of the underlying loss trend to assist the actuary in selecting 

appropriate adjustment for ratemaking. 

Section 8: Evaluation of Methods Using Stochastic Simulation 

In this section, a simulation is constructed to test the accuracy of each estimation 

method, Each of the five methods above is applied to the simulated data. 

Personal auto severity data is simulated using a known underlying trend, a 

normally distributed random error term, a seasonal adjustment for each quarter 

and a shock variable to simulate a single large claim payment, 
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Simulation Parameter Estimation 

Based on the Nevada PPA Bodily Injury severity analysis from the previous 

section the following simulation parameters were selected. 

Table 5 - PPA Bodily Injury Severity Simulation Parameters 

Trend 3.5% e a' - l 

Severity Variance 5.048 10 .2 MSE / Yo 2 

Base Severity $8,700 e '~° = E IYo ] 

Seasonal Shock Shock 

Quarter Adj_ustment Probability_ Magnitude 

First 1.000 -- 1/23 20% 

Second 1.013 e p~ 1/23 20% 

Third 0.987 e p~ 1/23 20% 

Fourth 1.03 e p' 1/23 20% 

The shock probability and magnitude were chosen based on the observed data. 

Of the 23 observations, only one observation appeared to have an extraordinarily 

high severity. The magnitude of the shock is fixed at 20%. The simulation could 

be further modified to include a stochastic variable for the shock magnitude. 

Simulations for other states and lines of business would incorporate other 

parameter values based on observed data. 

The simulation function is given by, 

Ln(Y, ) = [flo + P, X,  + lt2 D 2 + p ,  Ds + f14 D4 ]" ~', + 

where, 

and 

Pr[l~, = (1 + ~, )] = 1 / 2 3 ,  

Pr[I~, = l.OOl = 22 / 23 ,  

~, is  N ( O , o  "2) 
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The shock value of the natural logarithm of the severity, !+ 6, , corresponding to 

the shock value of the severity must be calculated. It can be shown that the 

value of 5, is given by 

In(! + a) , where a is the shock value for Y. 
po +p,X, +P2 

Likewise, the error variance, ~x 2 , for In(y, ) is derived from the estimated 

variance of Y, = MSE~ 2 according to the following relationship. 
/Y0 

MSE (e ~ -1) 
^ = e ~ '  

Simulation Results 

Ten thousand simulated data sets were generated. The five estimation methods 

were applied to each data ~et. 

It is important to note that the application of the manual intervention method 

assumed correct identification of the extraordinary observations in every 

simulation. In practice, identification of extraordinary values depends on 

judgement and statistical methods as described previously. Therefore, the 

comparison that follows may overstate the accuracy of the manual intervention 

method. 

The table below summarizes the results of each regression method based on 

10,000 simulations of twenty observations. Since the underlying trend in the 

simulation is known, accuracy is measured using the absolute difference 

between the estimated trend and the actual trend. The percentage of estimates 

above the actual trends is also shown in order to detect upward bias in the 

estimation method. Also, the percent of estimates within various neighborhoods 

of the actual trend are calculated. 

The simulation was constructed with a seasonal component and outliers. 

Therefore, it is not surprising that the manual intervention method that excludes 

the outliers and includes quarterly indicator variables produces good results. 
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Table 5 - Comparison of Methods (based on 10,000 simulations) 

Percentage of Estimates 

Within 75% 

of Actual 

54.1% 

490% 

486% 

49 3% 

Within 1% Average t 

of Actual a 2 

669% 74 

625% 34 ' 

61 3% ~75 

620% .~_~ 
67.6% 

r 

Average Average 

Trend Absolute Above Within 5% 

Method Estimate Difference Actual of Actual 

12 MM 3.52% 0.82% 5 0 . 7 %  37.7% 

Quarterly 333% 0.91% 44.1% 34.5% 

Annual 351% 0.93% 502% 33.6% 
Indicator 

3.51% 092% 5 0 . 4 %  34.4% 
Variables 
Manual 

3.50% 0.81% 49.4% 37.7% 
Adjustment 

539% 

A similar process can be used to simulate frequency data which include the 

probabil ity of loss events that produce large numbers of claims. 

Other Simulation Results 

Four other simulations were performed. The first compares results when no 

shocks are present. The second simulation included only data when shock 

values were present. The third simulation included shocks early in the time 

series only. The final simulation included shocks only late in the time series. 

N o  SHOCKS 

Method 

12 MM 

Quarterly 

Annual 

Indicator 
Variables 
Manual 
Adjustment 

Table 6 - Comparison of Methods (based on 10,000 simulations) 

w 

Average Average 

Trend Absolute Above 

__Estimate Difference Actual 

3.50% 0.69% 50.0% 

3.33% 0.78% 43 2% 

3.51% 0]8% 50.7% 

3.51% 078% 508% 

3,51% i 0 .78% 50.8% 
~__ 

Percentage of Estimates 

Within .5% Within 75% 

of Actual of Actual 

43.2% 607% 

392% 55.8% 

390% 554% 

39.2% 55 4% 

39.2% 554% 

Within 1% Ave~rage 

of Actual 

. 75 0%0 

. 68 9% 

.__688% 

68 9% ~ _  
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The results of this simulation show that there is little 

traditional regression techniques and regression using 

variables for seasonality. 

ALL SHOCKED 

difference between 

qualitative predictor 

Method 

12 MM 

Quarterly 

Annual 

Indicator 
Variables 
Manual 
Adjustment 

Table 7 - Comparison of Methods (based on 10,000 simulations) 

Percentage of Estimates 

Average i Average 

Trend Absolute Above 

Estimate i Difference Actual 

3.52% i 0 .89% 49.9% 

3.35% 0.97% 44.7% 

3.53% 1.01% 50.5% 

3.53% 0.98% 50.6% 

3.51% i 081% 49.7% 

Within 5% Within .75% Within 1% 

of Actual of Actual of Actual 

35.2% I 50.0% 63.0% 
r 

31.9% 46.3% 58.9% 

30.5% : 44.6% 57.3% 

31.4% 45.5% 58.6% 

37.9% 54.0% 67.2% 

Avemge 
R 2 

.70 

31 

~72 

.45 

54 

The results of the simulation using only data with shocks illustrate the increased 

accuracy of the manual adjustment method described previously under these 

circumstances. 

SHOCKED EARLY 

Method 

12 MM 

Quarterly 

Annual 

Indicator 
Variables 
Manual 
Adjustment 

table 8 - Comparison of Methods (based on 10,000 simulations) 

Average Average 
I 

Trend Absolute Above 

Estimate i Difference Actual 

1.68% 1.88% 6.7% 

1.87% 1,78%, 11.9% 

1.93% 1.77% 14.1% 

2.05% 1,66% 15~1% 
I 

3.50% 0,84% 49.9% 

Percentage of Estimates 

Within .5% Within .75% 

of Actual of Actual 

126% 19.3% 

15.4% 23.2% 

15.8% , 23.5% 

17.4% 25.5% 

36.6% 52.1% 

Within 1% 

of Actual 

26.4% 

30.5% 

31.6% 

34.9% 

65.6% 

Average 
R z 

.35 

.16 

.46 

.33 

53 
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This simulation illustrates the understatement of trend estimates by traditional 

methods when shock vaiues occur early in the time series. While proper 

elimination of the shocks may be difficult, this simulation shows the value of the 

proper identification. 

SHOCKED LATE 

Method 

Table 9 - Comparison of Methods (based on 10,000 simulations) 
. . . .  

Average Average 

' Trend L Absolute 

Estimate| Difference 
t- 

12MM ~ 5.37% 193% 
/ 

Quarterly ! 5.23% 1.85% 

Annual 2.22% ! 
Indicator 
Variables t ~  207% 

Manual 0.~5%--! 
A d j u s t m e n t  I__ 3 52°~ 

Percentage of Estimates 

Above VV~thin .5% 

Actual of Actual 

933% 124% 

89.5% 15.5% 

935% 106% 

2 0 ~  121% 

371% 

Within .75% Within1% Average 

of Actual I of Actual R 2 _  

.79 191% .6% _. 

231% I 31.3% -39 1 
168% ~2_27% 8 0 -  

52 3°/,, [ 6 5  1% 

This simulation illustrates the overstatement of trend estimates by traditional 

regression techniques when shocks occur late in the time series. 

Conclusion 

The regression concepts discussed here are not new to actuaries. Nor are the 

characteristics of insured loss data. Actuaries are familiar with the stochastic 

nature of claim frequency and severity. Actuaries are also keenly aware of the 

potential for loss events, be they weather events that generate an extraordinary 

number of "normal" sized claims, or single claims with extraordinary severity, that 

do not fit the assumptions of basic regression analysis. 

While outlier identification techniques are described in section four, they have not 

been applied to the industry data. The evaluation of these techniques is a 

subject worthy of further research. In addition, the authors would welcome 

development of techniques to discriminate between random noise and 
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seasonality, to identify turning points in the trend and to distinguish between 

outliers and discrete but "jumps" in the level of frequency and severity. 

Hopefully, the authors have presented some additional tools for ratemaking and 

stimulated interest in developing trend estimation techniques that recognize the 

unique characteristics of insured losses. 
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Nevada Bodily Injury 
Insurance Industry Loss Data 

Q/fly Paid Qtrly Paid 
YY/Q Frequency Severity 
94/1 2.018 8,836.39 
94/2 2.042 8,634.60 
94/3 2,100 9, 021.44 
94/4 2.186 8,310.44 
95/1 2.108 8,000.58 
95/2 2.140 8,040,02 
95/3 1.967 8.786.99 
95/4 2.064 9,415.44 
9611 1 95,4 7,993.37 
96/2 1.842 9,213,77 
96/3 1.751 9,124.03 
96/4 1.757 9,084.54 
9711 1,739 8,371.74 
97/2 1.861 9,572,92 
97/3 1.837 8,560.24 
97/4 1.831 9,103.45 
98/1 1.770 11,106,61 
98/2 1,999 9,743.20 
98/3 1,778 8,651.21 
98/4 1.749 9,552.60 
9911 1 799 9,594,95 
99/2 1,830 9,205,35 
99/3 1.755 9,79976 

Four Qtr Four Qtr 
Ending Paid Ending Paid 
Fmauencv ~;evedty 

94/1 
94/2 
94/3 
94/4 2.087 8,694.21 
95/1 2.110 8,486.04 
95/2 2134 8,338+22 
95•3 2.100 8,277.70 
95/4 2.070 8,557.51 
96/1 2.031 8,560.77 
96/2 1,956 8,855.56 
9613 1.901 8,935,94 
96/4 1.826 8.840.39 
97/1 1.772 8,950.26 
97/2 1,778 9,049.11 
97/3 1 799 8,904.48 
97•4 1,817 8,912.80 
98/1 1,824 9,574,94 
98/2 1 859 9,621,17 
98[3 1,844 9,642.72 
9814 1,823 9,753,45 
99/1 1.830 9.396.03 
99/2 1.789 9,252.20 
99/3 1,783 9,535.72 

Includes copyrbg~ed material of Insurance $e~K:es 
Offlce, Irtc with ;ls pefmiss~ Copyright, Insurance 
Ser~c~ Off~e 1999 
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New York Collision 
I n s u r a n c e  I n d u s t r y  L o s s  Da ta  

Qtrly Paid Qtrly Paid 
Frequen(;y Severity 

94/1 10085 1,96988 
94/2 7458 1.753.67 
94/3 7 359 1,946 69 
g4/4 7 586 2,073 42 
95/1 7 951 2,150 86 
95/2 6858 2,02218 
95/3 7 067 2,106 83 
95•4 7692 2,21401 
9611 9 326 2,230 18 
96/2 6.993 2,037 11 
96/3 6 948 2,113 95 
96/4 7 575 2,27575 
97/1 7 792 2,46061 
97/2 6 860 2,18590 
97/3 7023 2,226 98 
97/4 7 235 2,301 27 
98/1 7 423 2,349 35 
98•2 6 635 21112 72 
98/3 6 889 2,225 14 
98/4 6 982 2,268 54 
99/1 8103 2,392 75 
99/2 6821 2,196.11 
99/3 7000 2.29t 83 

Four Qtr Four Qtr 
Ending Paid Ending Paid 

Y Y ~  Frequency Severit3 
94/1 
94/2 
94/3 
94/4 8 117 1,93910 
95/1 7 588 1,984 33 
95/2 7437 2,050.69 
95/3 7 363 2,090 35 
95/4 7 391 2.12697 
96/1 7 738 2,15211 
96/2 7 768 2,154 42 
96/3 7734 2,155 9'5 
96/4 7704 2,171 35 
97/1 7328 2,230 23 
97/2 7 292 2,265 26 
97/3 7 309 2,291 61 
97/4 7225 2,29813 
98/1 7 137 2,26821 
98/2 7 128 2,249 98 
98/3 7 094 2,24949 
98/4 7031 2,241 10 
99/1 7 200 2,255 85 
99/2 7 198 2,275 84 
99/3 7226 2,291 96 

includes copynghted rnateriai of Insurance Sent~c~ 
Off~e. bnc with ~s pen~nissio~ Copyright, ins~mc, e 
Servk~s Off~e 1999 
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O r e g o n  H o m e o w n e r  

I nsu rance  I ndus t r y  Loss  Data 

Qtrly Paid Qtrly Paid 
Frequency Sevedtv 

94/1 6.167 2,365.18 
94/2 5.778 2,228.85 
94/3 6.194 2,224.27 
94/4 7.3t9 2,227,28 
95/1 7,573 2,477,43 
95•2 6,665 2,436,19 
95•3 8.076 2,700.68 
95/4 8.613 2,209,63 
96/1 24861 1,97335 
96/2 8456 2,620,94 
9613 7,006 2.832,13 
9614 6.555 3,070.97 
97/1 9.303 2,353.67 
97/2 6.053 2,535,58 
97/3 5.906 2,747.17 
97•4 5.778 2,556,34 
9811 7300 2,689,08 
98/2 5301 2,569,03 
98/3 5,592 3,034.36 
98/4 5.986 2,730 10 
9911 8539 3.12660 
99/2 5,463 3,313,96 
99•3 4.965 3,625.18 

Four Qtr Four Qtr 
Ending Paid Ending Paid 
Freouencv Sevedty 

94/1 
94/2 
94/3 
94/4 6.366 2,259.55 
95/1 6.715 2,297.02 
95/2 6,935 2,344,92 
95/3 7,409 2,468,28 
95/4 7.734 2,452,25 
96/1 12069 2,200,97 
96/2 12.493 2,241.76 
96/3 12,196 2,252.52 
96/4 11 856 2,376 12 
9711 7,827 2,683,58 
97/2 7.222 2,670.32 
9713 6.942 2,646.38 
97/4 6.744 2,525.25 
98/1 6,258 2,635,14 
98/2 6.066 2,645,05 
98/3 5984 2,713,38 
98/4 6035 2,754 39 
99/1 6,353 2,897 10 
99/2 6.384 3.054,73 
99/3 6, 220 3,175,16 

Includes copyrighted material of InSu rar.ce Services 
Of~e. Ir~c w~th its pemlission Copyright, Insurwlce 
Setvicel Office 1999~ 
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C~ 

o f l m m t  ~ 
~ | I  R~ l ress lon  with I nd i ca t~  Vadab le t  On Quarterty Frequency 

~P.u=-~=~,~ ~ Qtdy~mq_ ;~ D2 [33 D4 

1 94/4 6 17 0 O0 0 0 ! 
2 95/1 5 78 O 28 0 0 6 
3 98/2 6 19 0 50 1 0 0 
4 95/3 7 32 0 75 0 1 0 
5 95/4 757  1 00 0 0 1 
6 96/1 6 66 1 25 0 0 0 

7 96/2 8 08 1 50 1 0 O 

8 95/3 861 1 75 0 1 0 
6 96/4 24  86 2 00 0 0 1 
10 97/1 8 46 2 25 O O 0 
11 87/2 7 01 2 50 1 0 0 

12 97/3 6 55 275  0 1 0 
13 97/4 8 30 3 00 0 0 1 
14 98/1 6 05 3 25 0 0 0 

15 88/2 5 81 3 50 1 0 O 
16 98/3 5 78 3 75 0 1 0 
17 9814 7 30 4 00 0 0 1 

18 89/1 5 30 4 28 0 0 9 
19 9912 5 59 4 80 1 0 0 
20 8813 5 99 4 75 0 1 0 

O r e g o n  H o m e o w n e r s  F r e q u e n c y  
2s0 
240 . . . .  ¢ 

120 . . . . . . . .  

YYtQ 

, D ~ r n - W a t ~ a  

I 820 2 387 -o 4875 0 24 10 08 
1 754 1 903 -8 t465 0 02 O 11 6 71 
1 823 1 824 -0 1007 0 01 0 00 6 85 
1 991 1 @68 00248 000  002  7 14 

2 024 2 281 "O 2869 0 07 0 08 8 79 
1 896 1 877 0 0193 0 00 0 08 8 53 
2 089 1 886 0 1818 O 04 0 03 6 67 
2 153 1 940 0 2133 0 05 0 00 6 96 
3 213 2 255 0 9583 0 92 0 55 9 54 
2 135 1 651 02846 008  0 4 5  836  
1 947 1 871 0 0759 0 01 0 04 650  

1 879 1 813 -0 0340 0 60 0 01 8 78 
2 230 2 229 0 0011 0 00 0 00 9 29 
1 800 1 825 -0 0246 0 00 0 00 6 20 

1 777 1 845 -6 0~87 0 00 0 O0 6 33 
1 754 1 887 -0 1330 002  0O0 6 6 0  
1 988 2 203 -O 2150 0 05 0 01 9 05 

1 668 1 799 -0 1308 0 02 0 01 6 04 
1 721 1 819 -0 0983 001 000  6 17 
1 790 1 861 .0 0712 001 080  643  

SUm 1 53 1 41 

O 0.82 

Number of X 4 O0 
Observations 20 00 

dv at 05 1 83 

OL at 05 0 90 

T e l t  iS Incor lc lu l l ve  

du at 01 1 57 

dE at 01 0 68 

Test is Inconclus ive 

R e s i d u a l  P l o t  

l o 0  t 
0 ~  
o6O 
o447 
020 ,t ¢ • 

~20 $ • • 

R e Q r e s e i o n  O u t . o u t  

~ .A~n~ l ih /  ~acto~ 
Trend -2 58% 1st Qtr 1 O00 

R ? g 27 2ha Qtr 1 028 
Obs 20 3rd Qtr 1 078 

41h QtT 1 488 



"--3 

O f lgOn  Homec*wmm 
Exponen t l | l  Regrlmsk>n on  Quarter ly Frequency 

1 9414 6 17 0 00 
2 95/1 5 75 0 26 
3 95/2 618  050  
4 95/3 7.32 075  

5 95/4 7.57 1 0 0  
6 96/1 666  1 2 5  
7 S6/2 808  1 50  
8 96/3 8 61 1 7 5  
9 96/4 24.86 2 00 
10 97/1 846  2 25 
11 97/2 7.01 250  

12 97/3 65~  2 75 
13 97/4 0 30 3~00 
14 98/1 6 05 325  

15 98/2 5 9 t  3 50 
16 98/3 5.78 375  
17 98/4 7.30 4.00 
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Ratemaking for Workers Compensation 

By Owen M. Gleeson, FCAS, MAAA 

Abstract 

The market for Excess Workers Compensation in the United States has grown rapidly 

over the last two decades. These are estimates that the annual premium volume in the 

excess $500,000 attachment segment of this market is now in excess of $1 billion. This 

paper presents a method of estimating rates for this type of coverage. The method 

generates loss distribution of the total cost of individual large claims, Medical costs are 

estimated form data samples. Indemnity costs, however, are for the most part estimated 

from the benefits mandated in the Workers Compensation statutes. 
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I. Introduction 

A. General Remarks 

The market for property/casualty insurance in the United States has evolved rapidly in the 
past 15 years. In particular, the alternative market for Workers compensation insurance 
has shown explosive growth. Many of the entities that incur workers compensation costs 
are now self-insured on the lower cost layer, e.g. the first $100,000 per claim. These self- 
insured firms or groups still purchase insurance protection above retentions that are 
$100,000 higher. The market for this type of coverage is now very large and in premium 
dollar terms easily exceeds $1 billion. Another measure of the size of the market is that 
the Self-Insurance Institute of America has over one thousand corporate members. 

The task of estimating rates for this type of business is made difficult by several of the 
characteristics of large workers compensation claims. The first is that large workers 
compensation claims are infrequent and thus the amount of data available for ratemaking 
is severely limited. A second characteristic is that large workers compensation claims 
develop very slowly with the result that the ultimate cost of an individual claim, 
particularly those involving medical may not be knownfor many years. Another aspect of 
these claims is that there are distinct components of the loss:medical and indemnity. The 
view adopted here is that the medical costs and the indemnity costs follow separate and 
distinct distributions. As a result the distribution of the variable which is the sum of these 
costs is quite complex. It is thus very difficult to model the underlying distribution of 
these costs by using a sample of incurred losses. 

Currently there is no pricing mechanism in the United States for this class of business 
that provides comfort to the users and is widely accessible. The objective of this paper is 
to provide a solution to the problem of pricing this line of business which will be seen as 
generally satisfactory. There are of course no claims implied that what is presented in the 
following is the only solution or the solution that is "best" in some sense. In addition, this 
paper will not explore the issue of risk loading or required profit. Rather the paper will 
focus on the sufficiently difficult task of estimating the pure loss cost. 

B. Types of Claims 

The focus of this paper is excess workers compensation costs. It follows that only those 
types of claims whose cost might exceed a given limit e.g. $100,000 would be of interest. 
Workers Compensation claims are often classified into six types: Medical Only, 
Temporary Total, Minor Permanent Partial, Major Permanent Partial, Permanent Total 
and Fatal. It 's assumed for the purposes of this paper that no claim falling into one of the 
first three classifications will be large enough to pierce the limits of interest. Therefore 
only the remaining three types of claims will be analyzed. 

At this point a discussion of the characteristics of each of the three types of claims will be 
presented. It is hoped that this will provide motivation for the methods and tactics used in 
producing the cost estimates. Each of the types of claims to be discussed, i.e. Fatal, 
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Permanent Total, and Major Permanent Partial have a medical component of the total 
claim cost and an indemnity component of the cost. These will be discussed separately. 

1. Fatal 
a. Indemnity Benefits 

The statutory specification of the indemnity benefits associated with fatal claims 
can be quite complex. In highly simplified terms the parameters specifying the 
benefits might be described as (l) period of benefits (2) basic percentage of wage 
and (3) degree of dependency. For example, the period of benefits could be 
lifetime. However the period of benefits could be limited by attained age, say age 
65, or limited by amount (the maximum amount of fatal benefits in Florida is 
$100,000). The basic percentage of wage is usually expressed in terms such as 
"66 2/3 percent of the fatally injured individuals average weekly wage." (Many 
workers in the United States do not receive the same amount of compensation 
every week. As a result, it is necessary to determine the amount that should be 
deemed the average weekly wage in the event of injury. Each state has developed 
a complex set of rules to decide this question. This subject will not be explored 
here.) The degree of dependency in a fatal case is determined generally by 
familial status e.g. spouse, spouse and dependent children, dependent parents or 
siblings, etc. 

The specifications vary from one state to another. Thus the first step in dealing 
with the costs of fatal claims is to analyze the laws of the state for which rates are 
being estimated. Another step in the process is to decide on the simplifying 
assumptions that need to be made in order to make the calculations tractable. 

An example of the detail that should be considered in analyzing the excess 
workers compensation costs for a given state is the mandates of the State of 
Pennsylvania. This is to be found in Appendix A. 

b. Medical Costs 

It would be reasonable to think that there are probably little or no medical costs 
associated with a Fatal claim. However, the data sets that the author and his 
associates have reviewed have virtually all presented some fatal claims with 
related medical costs. For the majority of fatal claims the medical cost is found to 
be zero. However, there are medical costs associated with the other fatal claims 
and these seem to fall into the following categories: small, medium and very 
large. We speculate that the small costs are ambulance and emergency rooms fees 
for individuals who survive a matter of hours. The medium costs may be 
associated with claims where the injured party survived lbr a matter of days and 
then expired. 

The very large costs were likely the result of heroic and extensive efforts to treat a 
very seriously injured person with the result that life was sustained for a year or 
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two followed by the expiration of the injured person. This last group averages 
over $1,000,000, but seems extremely rare. 

The above view has been developed by examining claim files, discussions with 
claims adjusters and from conversations with others personally familiar with the 
details of high cost workers compensation claims 

2. Permanent Total 
a. Indemnity 

As in the case with fatal claims, the statutory specifications of indemnity benefits due an 
impaired party can be fairly complex. The general parameters are !) the period of 
benefits 2) limitations and/or offsets and 3) basic percentage of wage. The period of 
benefits for permanent total claims in most states is lifetime. Many states mandate 
payment of full benefits to injured individuals as long as they survive. However in other 
states there are limitations or offsets most of which are associated in one way or another 
with Social Security. For example, some states mandate payments only until eligibility 
for Social Security. On the other hand some states require that the basic benefits be offset 
by benefits obtainable under the Disability provisions of Social Security. The offsets vary 
widely from state to state and can have significant impact on the cost of permanent total 
claims. Finally there is the question of the basic percentage. This is usually expressed as 
something like 66 2/3 percent of wages. However the percent is different from one state 
to another and may be expressed as a percent of spendable income. 

Again the law of the state under consideration must be analyzed carefully. Also as is the 
case with fatal claims, it may be necessary to make some simplifying assumptions. 

b. Medical 

Many Permanent Total claims are characterized by extremely large medical costs. Not 
only are the costs large but the costs seem to develop upwards throughout the life of  the 
claim which may be on the order of severaJ decades. Unfortunately, most data collecting 
agencies do not follow the development on individual claims for a sufficiently long time. 
This is not to be construed as criticism but rather recognizes the fact that the development 
in PT claims while perhaps very large for an individual claim may not contribute a 
significant amount of development to the overall workers compensation total loss cost. 
As an example, if the developed medical cost on PT's throughsay 10 years is 4% of the 
total loss cost dollar and the remaining development is 50% (probably too negative a 
view) then the overall pure premium might be underestimated by 2%. 

However, the interest here is not in aggregates but in the size of individual claims. The 
data used by the author is drawn from a numbq" of private well-maintained databases of 
individual workers compensation claims. In each of these, there are claims from many 
accident years. The open claims are developed individually. The method will be 
addressed in a later section. Both closed and open are then trended to the experience 
period. Since Permanent Total claims are rather rare it seems virtually impossible to 
generate a data set that can be used to provide an empirical size of loss distribution that 
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can be used without resorting to some smoothing. Thus, some smoothing (graduation) 
must be introduced before the "tail" of the distribution can be used for pricing. 

3. Major Permanent Partial 

It's customary in Workers Compensation data preparation to rely on "C" values to 
distinguish between Major Permanent Partial and Minor Permanent Partial. The problem 
with using this definition is that the c-values vary by state and by accident year. 

The approach used here was to obtain data by state on claims designated Major 
Permanent Partial and to examine the characteristics of the data. This was supplemented 
by information drawn from Workers Compensation Loss Cost filings from New York and 
Pennsylvania which contain considerable detail State Workers Compensation laws were 
also consulted with respect to benefits provided for permanent partial. 

Evaluation of this body of information led to conclusions with respect to the medical 
distribution and the indemnity distribution. The expected value and the range of the 
distribution as well as some general characteristics are discussed in the tbltowing. 

a. Indemnity 

The indemnity associated with a Permanent Partial claim generally depends on the type 
of injury. Examples of the type of injury are "Loss of a hand", "loss of an arm", "'Loss of 
a foot", and so forth. An example of the compensation is "Ix~ss of a hand 335 weeks". 
The amount of compensation is usually a percent of wage, e.g. 66 2/3 percent. As shown 
in Appendix A, state workers compensation law list many specific types of injury each of 
which entitles the injured party to a particular set of benefits. 

The large number of categories alone would make modelling of the costs difficult even if 
there were good data on the frequency of type of injury. Ilowever this is not the case. In 
addition, analysis indicates that Permanent Partial claims do not contribute significantly 
to the overall excess costs. This is due to the fact that review of an extensive amount of 
data shows that, while the Permanent Partial claims are serious with a large average 
value, the fiequency of claims in excess of say $500,000 is low and that there ,are also no 
truly catastrophic claims. 

Given the above it was decided to resort to analysis of sample data to estimate the 
distribution of indemnity of Major Permanent Partial claims. 

b. Medical 

Indemnity costs on Major Permanent Partial are relatively well constrained by the 
limitations resulting from statutorily defined benefits. However, injuries resulting in 
Permanent Partial disability can result in a large range of incurred medical costs. In some 
cases, such as loss of a hand, the injury maybe satisfactorily treated rapidly and at a low 
medical cost. On the other hand there are catastrophic injuries such as severe burns or 
injuries to the spinal column where the injured party will require significant medical 
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treatment but will eventually be able to return to work. At this point it might be observed 
that there are some individuals who find that their quality of life is enhanced if they are 
able to resume some sort of gainful employment no matter how serious the injury. Thus, 
these individuals cannot be considered to be permanently and totally disabled. 

C. Discussion of Lack of Data 

It 's probably worthwhile at this point to recall that the objective is to determine rates for 
excess workers compensation coverages. Thus by far the largest number of claims 
incurred under Workers Compensation coverages are, by definition, of no interest. For 
example, consider the following data extracted from a Pennsylvania Compensation 
Rating Bureau Loss Cost filing. 

Table I 
Ultimate Number of Injuries 

Period Fatal 

M~or Minor 
Permanent Permanent Permanent Temporary 

Total Pa~ial Partial Total 

1991 150 207 2480 3411 39,571 
1992 167 205 2449 3375 39,124 
1993 132 201 2393 3304 38,154 
1994 163 203 2394 3308 38,093 
1995 110 211 2449 3406 39~004 

722 1,027 12,165 16,804 193,946 

From the point of view of credibility standards, it can be seen that there are insufficient 
claims of the type of interest for rate making purposes even if the claims were restricted 
to basic limits as found in other lines of business. Of course as previously mentioned the 
size of some of the claims encountered in Statutory Workers Comp range up to $20 
million. While it would be interesting to determine the number of claims necessary for 
full credibility on claims of this size the knowledge gained is probably not worth the 
effort. However, we suspect that it is well in excess of all the claims of the size under 
consideration that are incurred in the United States in the span of a decade. Thus the 
answer is irrelevant since the number required exceeds the number available. Therefore it 
is necessary to develop an approach that circumvents this lack of data. 

Excess Workers comp rates are needed by state since the statutory benefits vary by state 
with respect to the indemnity portion of the claim. This compounds the data availability 
problem in that a smaller number of claims are available in a given jurisdiction. Also 
whereas relatively large states like Pennsylvania and Texas which have respective 
populations of approximately 12 million and l~ million might have enough claims to 
provide basis for a reasobably accurate estimate, the problem of constructing rates for 
states like Iowa and Oregon with populations of approximately 3 million each remains. 
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Another issue that surfaced in the process of the construction of the rates is that the 
indemnity portions of the serious workers compensation claim develops much differently 
from the medical portion of the claim. The data in the table below has been generated by 
using data drawn from a recent Pennsylvania Loss Cost filing to demonstrate that the 
indemnity costs develop much more rapidly that medical costs. This stands to reason. 
Consider a typical Permanent Total claim. Within a matter of five to ten years it should 
be certain that the claimant is entitled to Permanent Total benefits. At this point, the cost 
of the indemnity portion of the claim has been precisely determined. However the 
medical costs are a function of how well the claimant responds to treatment, indicated 
altemative treatment paths that emerge, new developments in medical care and so forth. 

Required Reserve/ 
Current Reserve 

Period Medical Indemnity 

12 months 2.8180 3.6879 
24 months 2.6563 2.3059 
36 months 2.7917 1.6556 
48 months 2.8603 1.3140 
60 months 3.1292 1.1207 
72 months 3.2063 1.0000 * 

*approximate 

The above suggests that applying a single development factor to the total of indemnity 
and medical will likely produce less satisfactory results than the process of applying 
development factors separately if possible or avoiding the use of development factors if 
feasible. 

Another aspect of the data problem is the question of combining data from different 
states. Because the indemnity benefits (which account for about 50% of Major Permanent 
Partial and 2/3 of Permanent Total costs) vary so significantly from one state to another 
as a result of offsets, limitations, etc not to mention escalation it was decided that the 
approach that would produce the most accurate results would be to estimate the 
indemnity costs by state if at all possible. 

On the other hand medical costs are not statutorily determined. While costs of some of 
the more minor aspects of medical care such as bandages, splints, emergency room costs 
probably display regional variations, the larger dollar costs such as treatment at national 
burn care units or spinal treatment centers demonstrate more homogeneity than 
indemnity. In addition the treatment proposed for estimating state indemnity costs has no 
analogue for medical cost. 

The above characteristics of serious workers compensation claims: low frequency, high 
severity, different types of development for component costs and lack of comparability of 
cost from state to state led to the solution proposed on the next section. 
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lI. General Approach to Solution of Estimating Excess Workers Compensation Costs 

A. Outline of Basic Solution 

The basic solution to modeling the distribution of costs of large claims consists of two 
steps. The first step was to create a distribution of costs for each type of serious claim: 
Fatal, Permanent Total and Major Permanent partial. This step required the creation of 
separate of distributions for indemnity and medical. These distributions were then used to 
create a joint distribution for each of the type of claims. Excess cost factors are then 
generated for each type of claim. 

The second step was to determine the portion of the pure premium that is Fatal, 
Permanent Total or Major Permanent Partial and then weight the excess factors of the 
individual components. 

The statement of the solution is fairly simple. However, the physical execution of it is 
not. For example, given the above, the number of cost outcomes or cells for Permanent 
Total Costs is numbered in the millions using an approximating method of calculating the 
costs. Essentially what is determined is the frequency function CPT (m,w,a,l) where m is 
medical cost, w is wage, a is age at time of injury and 1 is the number of years lived after 
the injury. The distribution of the costs of fatal claims CF(m,w,a,l) is calculated in a 
similar manner. The cost distribution for Major Permanent Partial is obtained in a slightly 
different manner. One component is the medical cost. The other is the indemnity. 
However the awards are not so life or age dependent since there are certain lump sums 
statutorily provided for regardless of age or wage. Thus for this type of injury the 
distribution of indemnity is determined from a statistical sample. The compound 
distribution of costs is denoted CMPP(m, I). 

For a given retention, R, the excess costs as a percentage of total costs are obtained by 
type of injury for a given state. These percents are then weighted by the percent of the 
pure premium ascribable to that type of injury. For example, suppose the retention for 
State G is 500,000. Further suppose that 58.8% of total PT costs are excess 500,000; 
2.48% of total Fatal costs are excess 500,000 and 3.36% of Major Permanent Partial are 
excess 500,000. Also suppose that 12.2% of the pure premium (loss cost only) is the cost 
of PT's, 3.1% is the Fatal cost and 63.3% is the Major PP cost with 21.2% of  loss costs 
attributable to other types of injuries. 

Then the excess factor for 500,000 
is (58.8%)(12.2%)+(2.48%)(3.1%)+(3.36%)(63.3%) = 9.3~% 

The problem to be solved, the difficulties, motivation and methodology have been 
outlined above. What follows are some examples that are designed to assist in the 
understanding of the methodology. 
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B. Examples 

1. Example #1 

In this example it is assumed that there are three types of claims which account 
collectively for all the incurred loss. The goal is to determine that excess costs for an 
attachment point of $500,000. Each type of claim is comprised of two components. The 
components are considered to be independent. The distribution of the components of each 
type of claim are given in the tables below. 

Claim Type 1 

Component A(1 ) Component B(I). 

Amount Prob. Amount Prob. 

100,000 6.0% 150,000 8.0% 
150,000 8.0% 225000 9.0% 
200,000 9.0% 300000 12.0% 
250,000 10.0% 375,000 14.0% 
300,000 12.0% 450,000 18.0% 
350,000 14.0% 525,000 16.0% 
400,000 16.0% 600,000 14.0% 
450,000 11.0% 1000000 6.0% 
500,000 9.0% 1500000 2.0% 
550,000 5.0% 2,000,000 1.0% 

Claim Type 2 

Component A(2) _Component B(2) 

Amount Prob. Amount Prob. 

25,000 2.0% 50,000 4.0% 
75,000 3.0% 100,000 6.0% 

125,000 5.0% 150,000 10.0% 
175,000 15.0% 200,000 12.0% 
225,000 25.0% 250,000 18.0°/0 
275,000 25.0% 300,000 18.0% 
325,000 15.0% 350,000 12.0% 
375,000 5.0% 400,000 10.0% 
425,000 3.0% 450,000 6.0% 
475,000 2.0% 500,000 4.0% 
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Claim Type 3 

Component A(3) Component B(3) 

Amount Prob. Amount Prob. 

0 85.0% 
50,000 10.0% 

100,000 4.0% 
500,000 1.0% 

200,000 8.0% 
250,000 9.0% 
300,000 10.0% 
350,000 11.0% 
400,000 12.0% 
450,000 12.0% 
500,000 11.0% 
550,000 10.0% 
600,000 9.0% 
650,000 8.0% 

If a joint distribution is created for each type of claim and the excess of 500,000 percent 
is calculated for each, the excess percent is as shown in the following table. 

Excess Cost 

Claim 
Type Prcnt. 

#1 39.50% 
#2 13.40% 
#3 7.70% 

Further assume that percent of the pure premium is known to be distributed as follows 

Distribution 
of 

Loss Cost 

Claim 
Type Prcnt. 

#I 5.2% 
#2 71.3% 
#3 23.5% 

Then the percent of the cost excess 500,000 is calculated as 
(39.5%)(5.2%)+(13.4%)(71.3%)+(7.7%)(23.5%) = 16.55% 
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2. Example #2 

This example illustrates some of the calculations involved in estimating the distribution 
of costs for Fatal claims. In order to estimate the distribution of indemnity costs for a 
fatal claim a number of parameters need to be specified. These are as follows: 

Wage Distribution 

Ratio Percent 
AWW Workers 

to Earning 
SAWW* AWW 

0.30 5.0% 
0.60 30.0% 
1.00 40.0% 
1.35 10.0% 
1.50 15.0% 

*AWW = Average Weekly Wage, SAWW - State Average Weekly Wage 

b. State Average Weekly Wage 

SAWW = $600 

Distribution of Ages at time of death 

Percent of 
Workers 

Age at Age 

20 20.0% 
30 20.0% 
40 20.0% 
50 20.0% 
60 20.0% 

d. Benefit Assumptions 

Surviving spouse receives 66 2/3% of wage at time of death. 

Maximum = 100% SAWW 
Minimum = 20% SAWW 
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e. Life Table 

US Life Tab le -  1980 
See Appendix B. 

f. Distribution of Inderanity Costs 

Given data in a., b., d., and e. above the distribution of indemnity costs for fatalities 
suffered by individuals aged 40 is as given in the following table. 

Distribution of 
Indemnity Costs 

at Age 40 

Group Probability Amount Group Probability Amount 

GI 1.78% 60,545 G13 3.65% 1,245,619 
G2 3.88% 158,419 GI4 2.54% 1,343,204 
G3 6.76% 256,890 GI5 2.80% 1,447,386 
G4 7.94% 354,637 GI6 1.59% 1,553,684 
G5 9.89% 458,065 GI7 1.15% 1,646,886 
G6 11.19% 554,423 GI8 0.64% 1,743,391 
G7 10.20% 647,978 G 19 0.30% 1,836,176 
G8 7.89% 748,037 G20 0.15% 1,938,251 
G9 7.96% 854,019 G21 0.03% 2,051,441 

GI0 8.30% 955,471 G22 0.01% 2,144,589 
G11 6.21% 1,051,717 G23 0.003% 2,215,200 
G12 5.10% 1,144,313 

The figures in the above table were obtained by first calculating the costs for each 
individual cell. For example, suppose a fatally injured worker was earning $810 per 
week. Then the surviving spouse's weekly benefits would be (662/3%)($810) = $540 or 
an annual amount of $28,080. Also assume that the spouse receives benefits for exactly 
twenty years and then dies. The amount received is (20)($28,080) = $561,600 and the 
probability of this event is (10%)((84,789 - 83,726)/94,926) = .112% (see wage 
distribution and Appendix B). The outcomes were then grouped into intervals of 
$100,000. The outcome of the above described event would fall into group G6. 

A graph of the distribution of indemnity costs for a person age 40 is shown in Figure #1. 
This is followed by a graph of the distribution of costs for a person age 30 in Figure #2. 

A few things should be noted about the two graphs. One is that the distribution of costs in 
the age 30 graph is somewhat to the right of the age 40 distribution. This would be 
intuitively expected since the individuals age 30 at time of death would provide about an 
additional 10 years of benefits to their survivors. 
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It 's also interesting to note that both o f  the distributions are somewhat "'lumpy". The 
distributions have been created from a life table which is fairly smooth, and the 
combination o f  a wage distribution and certain benefits assumptions. 

It seems that the fact that the wage distribution shows an uneven distribution of  wages 
and the statutory benefits display certain maximums and minimums is the cause of  the 
unevenness. Thus it is doubtful that there is any existing statistical distribution currently 
widely used that would fit these curves. 

The graph in Figure 3 shows the distribution of  costs for all ages 20 through 60. Note that 
some of  the "lumpiness" still remains. The right hand portion of  the graph is of  greatest 
concern to excess reinsurers and it is important to test the assumptions that go into the 
creation of  this tail. 

The medical costs are assumed to be distributed as follows 

Fatal Medical 
Distribution 

Amount Probability 
$0 99.0% 

$100,000 0.75% 
$1,000,000 0.25% 

When a joint distribution is created using the above distribution and the distribution of  
indemnity costs shown in Figure 3, the distribution shown in Figure 4 is obtained. 

The distribution of  loss and medical combined is presented in numerical form in 
Appendix C. The percent o f  costs excess $500,000 is found to be 43.08%. The interested 
reader with access to a spreadsheet should be able to duplicate these results. 

III. Claim Characteristics, Details and Considerations 

A. General Remarks 

Previously the three types of  claims that needed to be considered were 
discussed in very general terms. However, as noted earlier, changes in 
estimates that are small relative to ground up costs can be large ~ith respect to 
Excess costs. Thus it is necessary to analyze the characteristics o f  these claims 
and contributions to the costs in a fair amount of  detail. A detailed explanation 
of  some of  the cost characteristics and variation by stale follows. 
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B. Permanent Total 

1. Medical 

a. Comments/Range of  Amounts 

As mentioned previously it is difficult to obtain a single body o f  data that 
is sufficiently large and reasonably error free to be used in this process. 
Claims up to $20 million have been observed in the industry and it is thus 
reasonable to construct a distribution that accommodates claim costs o f  
this amount even though the data on hand may not contain a claim of  that 
size. 

On the other end o f  the spectrum, ultimate incurred medical amounts that 
are less than $25,000 have been observed. This is difficult to explain. 
However, it has been suggested the accidents that are disabling such as 
blinding might be one explanation. Another is that some states have 
customarily awarded permanent total status for what seems to be minimal 
injuries. An example o f  this is an actual case where permanent total 
disability was awarded for tendinitis o f  the elbow. The medical costs o f  
treating an injury of  this type would be expected to be nominal. 

Intuitively, the data may not be satisfying but given that the same thing is 
shown in several data sets it is reasonable to accept the indications. 

b. Data/Quality, Amount, Culling 

Given some of  the observations above, it was found necessary to 
thoroughly review data sets almost on a claim by claim basis to eliminate 
claims which for one reason or another seem to have been erroneously 
included. For example claims whose incurred medical was below a certain 
cutoff point as of  a given time e.g. two years after the date o f  accident 
were excluded. Also claims that demonstrated incurred medical but no 
indemnity were excluded. Other filtering protocols were also employed 
that resulted in data set felt to be free of  at least obvious errors. 

c. Development 

Having cleaned up the data as much as possible the next step taken was to 
project individual costs to ultimate. At this point the only type o f  costs 
under discussion are the medical incurred amounts. Data was drawn from 
a recent Pennsylvania Loss Cost filing was used to develop the estimates 
in the following table. 
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Case Res. Case Res. Case Res. 
Period Devl. Factor Period Devl. Factor Period Devl. Factor 

12 mos. 2.82 84 mos. 3.26 156 mos. 2.61 
24 mos. 2.66 96 mos. 3.42 168 mos. 2.39 
36 mos. 2.79 108 mos. 3.37 180 mos. 2.20 
48 mos. 2.86 120 mos. 3.02 192 mos. 1.90 
60 mos. 3.13 132 mos. 2.84 204 mos. 1,81 
72 mos. 3.21 144 mos. 2.70 

These factors are applied to the case reserves on individual open claims 
where the factors are selected according to the accident year of  the claim. 
For example,  suppose the year in which the data is being analyzed is 1999 
and the accident year is 1992. Also assume that the undeveloped medical 
incurred is $272,312 where paid = $118,705. Then the ultimate medical 
incurred is (3.26)( 153,607)+ 118,705 = 619,464. 

This method sometimes will produce ultimate values that seem 
unreasonable and in that case judgement  may have to be employed to 
temper the results. 

d. Trending 

The next step is to trend the cost on individual claims up to the current 
date. A good source o f  data for this purpose that is easily accessible is the 
Bureau o f  Labor Statistics. The web site address is www.bls.org. The 
medical increases for the last 10 years have been in the 3+% range. 

After bringing the costs up to current level the costs are then projected to 
the middle of  the period for which the rate will be applicable. Use o f  a 
future trend factor o f  approximately 3.5% at thc writing o f  this paper 
seems reasonable. 

e. Statistical Modeling 

In previous applications of  this method it has been found that the data 
even after the previously described adjustments is not smooth enough over 
various intervals to be used immediately. In particular it is often the case 
that there are ranges of  several million dollars where there are no claims. 
Conversely - but occurring less often - there are instances when a fairly 
narrow interval might include two or more fairly large claims. "Fairly 
large" as used in this context means  over 5 million. 

Because of  the large range of  values and the characteristics o f  various 
types of  medical claims associated with Permanent Total claims there is 
no reason to expect that any known statistical distribution will describe the 
distribution o f  medical claims. This is especially true with respect to 
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2. 

fitting a single curve over the whole range of values. Some fitting over 
limited ranges may seem workable but the benefits seem questionable. 

One well known curve that initially seemed appealing was the log-normal 
curve. However when a goodness of fit test was used (Komolgorov- 
Smimov) on a medium size set of data the results were found to be 
inconclusive. Later when testing on a much larger body of data it become 
clear that the test results were indicating that it was unlikely that the data 
was generated as a sample from a log-normal distribution. 

The solution adopted was to simply use the data as a foundation for an 
empirical curve. Before final construction of the curve, smoothing was 
conducted over consecutive intervals. A facsimile of the final curve is 
shown in Figures 5a-f. 

Indemnity 

a. Sampling vs. Modeling? 

As indicated previously the objective of modeling of this component of 
the claim cost is to avoid estimation based on sampling of claims. In the 
case of the medical portion the nature of the actual causative mecha~nism is 
unknown. Thus it is necessary to resort to samples. However, that is not 
necessary with respect to indemnity and it was felt that a model could be 
constructed to estimate the costs with the resulting estimates possessing 
significantly less error than estimates produced by a sampling procedure. 

Use of Statutorily Mandated Benefits 

( 1 ) Variation by State 

Indemnity benefits vary by state with parameters associated with each 
of the following items displaying differences from one state to another. 

(a) Function of Average Weekly Wage of Injured Individual 

Most states define that indemnity benefits as a percent of wages. E.g. 
Alabama-66 2/3%; Georgia-66 2/3%; Idaho-67%; and so forth. 
However other states use different measures. E.g. Connecticut-75% of 
after tax income; Iowa-80% of spendable earnings; Michigan-80% of 
spendable earnings; Maine-80% of after tax AWW, etc. In addition, 
there are a few other states with somewhat more complex rules. 

(b) Maximum and Minimums 

As in the above states display differences in the Maximum indemnity 
awards. Most states define the maximum in terms of the state average 
weekly wage. For example, Alabama-100% SAWW; Colorado-91% 

b. 
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SAWW; Florida-100% SAWW; Iowa-200% SAWW Mississippi-66 
2/3% SAWW. The maximum for New York is a dollar amount = 
$4OO. 

Minimum show similar variations. Alabama-27.5% SAWW; Idaho 
45% SAWW; Illinois-50% SAWW; Louisiana 20% SAWW; 
Michigan 25% SAWW etc. It should be noted here that there seems to 
be more variations in the Minimum than the Maximums. Many states 
have dollar amount minimums. 

(c) Limits 

In addition to the specifications in (1) and (2) above some states have 
limits specified in either time and/or amounts. Usually when there are 
limits these are expressed in both time and amounts. For example, 
South Carolina-500 weeks, $241,735; Mississippi-450 weeks, 
$131,787. For the most part however, the benefits are granted for life, 
although some states have offsets and other lypes of limitations that 
are discussed in the next section. 

(d) Offsets 

Some states have introduced Offsets and this trend has continued into 
the present time. For example: Arkansas-Reduce PP 50% of non- 
employee portion of public/private funded retirement/pension plan of 
65 years or older; Colorado-Social Security, unemployment 
compensation, an employer-paid pension plan; Michigan-Disability, 
unemployment compensation, pension, old age Social Security 
retirement; New Jersey-Social Security; Pennsylvania-unemployment 
compensation, Social Security Old Age and certain severance and 
pension payments. 

These offsets can be difficult to evaluate due to the vagueness of 
summaries of the law which are to be found in the most often used 
reference documents. However each state has contacts that will 
attempt to answer the questions. It must be kept in mind though that 
sometimes the answers are not correct with the implication that more 
than one source should be used if possible. 

(e) Escalation 

In most states the amount of weekly indemnity payable is determined 
close to the time of injury and remains at that level as along as 
payments are made. However some states mandate escalating benefits 
during part or all of the payment period. For example Florida requires 
escalation at 5% per year for 10 years with the escalation being an 
arithmetic increase, rather than a geometric increase. Connecticut and 
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Massachusetts mandate escalation tied to the CPI but limited to 5% in 
Massachusetts. Nevada's benefits are increased by an amount equal to 
the change in the SAWW. 

(2) Estimation of Parameters by State 

(a) Wage/Benefit Distribution 

As an example of the way the distribution of benefits is calculated, the 
following is presented. It's assumed in the state of interest that the 
minimum benefit is 20% of the SAWW and that the maximum is 100% 
of the SAWW. Wage distribution data was obtained from the NCCI 
and the following table created 

Wage Distribution 

Wage Wtd Wage Wage Wtd Wage 
Group A_~ Dist. Group Avg. Dist. 

1 0.300 4.1% 13 0.943 4.2% 
2 0.354 1.9% 14 0.995 3.8% 
3 0.411 2.8% 15 1.043 3.5% 
4 0.460 4.3% 16 1.092 3.3% 
5 0.518 4.6% 17 1.140 2.9% 
6 0.566 4.8% 18 1.210 2.8% 
7 0.625 5.3% 19 1.249 2.6% 
8 0.672 5.1% 20 1.310 2.5% 
9 0.732 5.0% 21 1.352 2.3% 
10 0.783 4.9% 22 1.410 2.0% 
11 0.836 4.8% 23 1.454 1.9% 
12 0.891 4.6% 24 1.500 16.0% 

If it is assumed that the SAWW is 600 and the benefit 66 2/3% times 
AWW, then the figures in the Wtd. Avg. column should be multiplied by 
400 producing the following table. 
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Benefit Distribution 

Wage Wtd Wage Wage Wtd Wage 
group  Avg Dist. Group Av 8 Dist. 

1 $120.00 4.1% 13 $377.20 4.2% 
2 141.60 1.9% 14 398.00 3.8% 
3 164.60 2.8% 15 417.20 3.5% 
4 184.00 4.3% 16 436.80 3.3% 
5 207.20 4.6% 17 456.00 2.9% 
6 226.40 4.8% 18 484.00 2.8% 
7 250.00 5.3% 19 499.60 2.6% 
8 268.80 5.1% 20 524.00 2.5% 
9 292.80 5.0% 21 540.80 2.3% 
10 313.20 4.9% 22 564.00 2.0% 
11 334.40 4.8% 23 581.60 1.9% 
12 356.40 4.6% 24 600.00 16.0% 

This is one of  the building blocks of  the excess costs. 

(b) Age 

It would obviously be very cumbersome to calculate the benefits by 
wage group across all working ages and then to compound the amounts 
with amounts from a medical distribution whose approximate range is 
0-20 million. On the other hand it would b c a  mistake to oversimplify 
and, perhaps, chose as an average age o f  all workers, say 40 years. 

The protocol outlined on this paper is to assume that some workers are 
age 20 at time o f  injury, some 25 and so forth in five-year intervals up 
to age 60. "/'his makes the number of  ages more manageable and it 
seems, through some research and analysis, still provides a good 
estimate of  the costs. 

(c) Life Tables 

The life tables used in these calculations are the tables from the 1979- 
1981 experience period and is total population. Thus, it includes males, 
females and all races. This is obtainable from the Center for Disease 
Control and can be downloaded from their website. 

Theses tables are used based on the assumption that the U .S  work 
force has the same proportions of  men and women as does the general 
population. Another assumption implicitly made here is lhat men and 
women have equal exposure to serious injury. 

It could and has been argued extensively that for Permanent Total 
injuries, or at least certain subsets, an impaired life tablc should be 
used. However medical care today has advanced to the point that even 
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very seriously injured individuals can expect a normal life span. The 
NCCI undertook a study of impaired lives fairly recently (within the 
last 10 years) and published a life table based on the study. Review of 
that table did not offer convincing evidence that other than the total 
U. S. population should be used 

(d) Offsets 

It should be noted that the Florida benefit law is being used as an 
example here in the discussion of "offsets" and the analysis of these 
benefits should not be construed as applying to any other state. The law 
of each state must be analyzed on its own. Under Florida law the sum 
of benefits from both Social Security and the State (Workers Comp) is 
limited to 80% of ACE (Adjusted Current Earnings). It is assumed in 
this example that the individual is earning $475.00 per week. Also 
assume for the sake of specificity that the year of the accident is the 
year 2000. A simplifying assumption used at this point is that the ACE 
for this individual in the year 2000 is $475. 

Next the Social Security benefits for the disabled workers must be 
estimated. The benefits are based on earnings through the previous year 
and hence the earnings are adjusted back to 1999. We then estimate the 
Social Security benefit based on that number and using the Social 
Security benefit structure. (This can be obtained form the Social 
Security benefit website). In this case, the Social Security benefits are 
found to be $210.34 per week. 

The next step is to estimate the benefit under Workers Comp. Since the 
individual is earning $475 per week and the benefit is awarded at 2/3 
AWW the benefit is $316.67 per week. The sum of the Social Security 
Benefit and the Workers Comp benefit is $527.01 which exceeds 80% 
of $475 by $147.01. This amount is the "Offset". Thus the Workers 
Comp benefits are reduced from $316.67 per week to $169.66. This 
leaves the sum at $380.00 = (.8)(ACE). 

It should also be noted at this point that Florida provides for escalating 
benefits for a period. The interpretation of this part of the law made 
here is that the 5% increase applies to the amount $169.66. 

The law in Florida operates in the above described ways since by 
agreement with the Social Security Administration, Social Security 
"pays first". It should be noted that the agreements have been worked 
out on a state-by-state basis. 
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(e) State Average Weekly Wage 

Since rates are made to be effective for some period in the future 
historical information must be trended to that period. When a history of 
State Average Weekly Wage is available, this is used to trend to the rate 
effective period. An example of this is given in the following table. 

Statewide Average Weekly Wage 
-Maximum Weekly Benefit- 

(Massachusetts) 

I 0/1/97-9/30/98 $665.55 
10/1/96-9/30/97 $631.03 
10/1/95-9/30/96 $604.03 
10/1/94-9/30/95 $585,66 
10/l/93-9/30/94 $565.94 
10/1/92-9/30/93 $543.30 
10/1/91-9/30/92 $515.52 

C. Fatal 

This is taken from the Commerce Clearing ttouse publication "Workers 
Compensation". 

If this type of information is not available, the NCCI Statistical Bulletin 
can be used in conjunction with wage increase inibrmation obtainable 
form the Bureau of Labor Statistics. 

1. Medical 

As noted earlier most Fatal claims do not have any medical cost associated 
with them. However some Fatal claims do display medical costs in small, 
medium or even large amounts. The average cost of the medical on Fatal 
claims is very', very small in comparison to the indemnity costs, ltowever 
the task here is to estimate the Excess costs and thus the medical costs 
although small in relation to first dollar costs can add significantly to 
Excess costs. This is especially true when the Fatal benefits are extremely 
limited as in Florida where Fatal benefits are limited to $100,000. 

The distribution generated for use in this methodology looks something 
like the following 
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Fatal Medical 
Distribution 

Amount Probability 

$0 95.0% 
$500 4.0% 

$100,000 0.7% 
$1,500,000 0.3% 

2. Indemnity 

As in the case of Permanent Total injuries it was decided during the 
development of this methodology that the best estimate of the distribution 
of indemnity costs incurred on Fatal claims would be produced by starting 
with an analysis of the Statutory mandated benefits. A discussion of the 
components of these awards following. 

a. Age 

It assumed here that the ages of workers was uniformly distributed and 
that the propensity to suffer a fatality was the same at each age. It must 
be noted here that this is a simplifying assumption. There is some data 
available that would indicate that the frequency of mortality is slightly 
higher for workers in their twenties than for workers at higher ages. It 
has been speculated that this is a result of young workers either not 
having been fully trained in safety procedures, simply lacking 
experience, being either more inclined to take risks or being less 
careful. It should be mentioned here that similar data indicates that 
workers between fifty and sixty are more inclined to suffer permanent 
total injuries than younger workers. In this case it has been speculated 
that older workers are simply less physically fit than younger workers 
with the following implications. The first is that the execution of a 
particular task is more likely to result in an injury to an older worker 
than a younger worker e.g. lifting an object weighing 70 pounds. The 
second is that, given a particular injury, it may be that a younger 
worker would have a propensity to heal more quickly and completely 
than an older worker. These considerations have not been incorporated 
into the model due to the lack of a highly reliable database. 

However the actuary should make an effort to be aware of this and 
other types of information which are difficult to quantify but which 
would affect the underlying risk. This naturally should be 
communicated to any underwriter with whom the actuary might be 
working on this type of risk. 
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In order to perform the calculations it is necessary to assume a certain 
age or potential ages o f  the deceased worker. As is the case with 
Permanent Total claims discussed previously the assumption used here 
is that the worker 's  age at time of  death was either 20, 25 . . . . .  , up to 
60. 

b. Wage 

The starting point in determining the benefits to the primary, dependent 
(usually the spouse) o f  a deceased worker is usually weekly wages 
(occasionally "spendable income" or "after tax income"). About 40% 
of  the state have limitations in either time or amount. For the rest, the 
cost of  the benefits are estimated by first constructing a distribution of  
wages in a given state. Use o f  the same method as outlined in Section 
11 B 2b. (2)(a) [Permanent Total Indemnity] can be used here. 

c. Percent Award 

There are a variety of  benefit awards depending upon whether or not 
there is a spouse, whether there are "school age" children and upon the 
existence and dependency of  others, e.g. parents, siblings. The "school 
age" above is in quotes since the specific max imum age for a school 
age child varies by' state except for a few states where there is actually 
no age limit. For example in New York the Percent o f  Wages  is 
a) Spouse Plus Children - 66 2/3, 
b) Spouse Only ' -66  2/3, 
c) One Child Only-66 2/3 
while in Oklahoma the Percent of  Wages is 
a) Spouse Plus Children - 100%, 
b) Spouse Only - 70%, 
c) One Child Only - 50% 

In addition there are variations such as the spouse ' s  percentage 
increasing to a higher number  after the children have left school. There 
are also lump sum payments  to the spouse and/or children as well as 
funeral expenses and burial expenses. 

Given the above it seems reasonable to select a conservative but 
uncomplicated approximate level o f  benefits. For example,  in the case 
o f  Oklahoma cited above if we assume that at the time of  death there is 
a surviving spouse and two children aged 9 and 12 then the payments  
are 100% for 11 years (23 max i mum if in school), 85% for the next 3 
years and 70% thereafter. In order to simplify the calculations, it 
seems reasonable to simply assume level payments  at 80% tor life. 
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d. Maximum, Minimum 

Weekly fatality benefits are limited as is the case for Permanent Total. 
Usually the maximum and minimum can be shown to be a function of 
the SAWW. However benefits to children may cause some small 
exceptions. These limitations play a significant role when the benefits 
are payable for life but are not nearly as important when there are time 
or amount limitations. For example consider Florida where the 
limitation on Fatal benefits is $100,000. 

The maximum weekly benefit in Florida is $522 per week. Thus the 
length of payments is about 3.7 years. If  the weekly maximum was 
50% higher the length of the payments would be about 2.5 years and if 
50% lower, the length would be about 5.5 years. Thus the average 
point of payment would be either 1.85 years, 1.25 years or 2.75 years 
with the difference between any of these being no more than a year 
and a half. This is insignificant from the point of view of the time 
value of money and for excess rating purposes. 

e. Offset, Limitation 

(1) Offsets 

Some states have Social Security offsets. Examples are 
Connecticut, District of Columbia, New York and Utah. The 
offsets for Fatal benefits are generally somewhat more complex 
that the offsets for Permanent Total Benefits. For example the New 
York law specifies "Where the death occurs on or after January 1, 
1978 and the spouse is receiving benefits under the social security 
act for each $10 of the deceased average weekly wage in excess of 
$100, but in no case may the reduction exceed 50 percent of the 
spouse's share of the social security benefits. 

• Average weekly wage 
five percent; 

• Average weekly wage 
ten percent; 

over $100 up to and including $110, 

over $110 up to and including $120, 

• Average weekly wage over $190 up to and including $190, 
forty five percent; 

• Average weekly wage over $200 up to and including $110, 
fifty percent; 
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(2) Limitations 

As noted previously about 40% of  the states have some sort of  
aggregate limitation on the amount  o f  Fatal benefit payments.  For 
example California 's  limit on Fatal benefits is $125,000 ($160,000 
if  children), Florida's limit is $100,000, the Kansas limit is 
$200,000 and Texas limit $206,000. Other states have limits 
expressed in weeks. For example the Georgia limit is 400 weeks 
(or to age 65); the Idaho limit is 500 weeks; Illinois' limit is 20 
years at TT rate whichever is greater), Virginia is 500 weeks and 
so forth. 

It should be noted that any or all o f  these limitations can change in 
an}' year. Anyone employing the outlined method should consult 
the law or summaries  o f  the law in specific states to determine the 
most current statutory limitations on benetlts. 

Escalation 

A few states still mandate escalating benefits tbr Fatal claim 
benefits. Most o f  these arc in the Northeast e.g. Connecticut, 
Massachusetts  and Rhode Island. It goes almost without saying 
that escalation is a major component  costs. States with this type of  
benefit will exhibit the highest excess cost for workers 
compensation. 

g. Mortality Table 

As is the case with Permanent Total claims the life tables used in 
thcse calculations are the tables from tile lq79-1981 U.S, 
experience and is derived from total population statistics. The 
implicit assumption made here is that men and women suffer 
{htalities equally in the workplace. This i~ probably not a precisely 
correct assumption and it has been speculated that perhaps the 
mortality rate is higher for men since men engage in inherently 
more hazardous work e.g. contracting, roofing, logging and 
fishing. However a considerable number  ~f women drive or ride in 
vehicles as part o f  the job and many of  the fatalities experienced in 
the course o f  work result from vehicle accidents  Whatever the true 
exposure, the unavailability of  good data makes attempts to 
measure the mix o f  male and females with respect to fatal claims 
somewhat impractical, It should also bc noted that use of  an "'all 
lives" mortality table when most of  the workers compensation. 
fatalities arc men adds a degree of  conse1~atism, tt might be noted 
here that in developing this methodology many similar decision 
points were encountered and the decision was made to make 
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D. Major Permanent 

1. 

a .  

b. 

conservative selections due to the large degree of risk taken in 
underwriting an excess workers comp program. 

Finally it should be noted that spouse's benefits generally cease 
upon remarriage and that a lump sum benefit is paid at this point. 
In an ideal world this might reduce the costs of the benefits 
somewhat. However because of changing options available to 
survivors, availability of remunerative work and other 
considerations and because of the lack of availability of reliable 
remarriage tables it was decided to ignore this feature of the 
workers comp benefit laws and thus add another bit of 
conservatism to the estimate. 

Partial 

Medical 

Source of Data 

Data on Major Permanent Partial claims can be obtained from the 
NCCI, actuarial consulting firms, large primary carriers with 
substantial books of workers compensation or perhaps other rating 
bureaus such as the PCRB or the NYCIRB. 

Large established casualty reinsurers usually also have substantial 
databases on excess workers comp losses that they usually regard as 
proprietary. However reinsurer databases often suffer from two 
problems. One is that retentions have shifted dramatically over the 
years with the result that it is difficult to combine data from various 
years. In addition, information on serious claims that only presents part 
of the picture can be misleading. That is, trying to estimate the 
distribution of all Major Permanent Partial claims from a group of 
claims that have pierced a particular retention is significantly more 
difficult than working with the totality of this type of claim. And in 
order to use the methodology outlined in this paper, the entire 
distribution is needed. 

Range of Amounts 

It was mentioned earlier that the range of the medical costs associated 
with this type of injury can be surprisingly large. Some databases that 
we were able to access displayed claims whose maximum incurred 
medical was not much over $500,000. But other databases presented 
claims in the multiple millions of dollars. Serious injuries such as 
damage to the spinal column, severe bums requiring extensive 
reconstructive surgery and electrical burns causing nerve and muscle 
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damage are only a few of  the examples o f  medical catastrophes that 
are vet3,' costly but which may allow an individual to return to work. 

The probabilities of  this type o f  event are low as might be expected, 
but in constructing the distribution curve for medical costs on Major 
Permanent Partial claims consideration should be given to claims that 
could be in excess of  $5 million. At the other end o f  the scale it 's 
reasonable to assume that the medical cost of  a Major Permanent 
Partial claim should have a min imum on the order o f  $15,000-$20,000. 

The expected value o f  the average medical claim for Major Permanent 
Partial has been estimated to be between $80,000 and $100,000 in 
PCRB filings in recent years. 

Indemnity 

a. Source o f  Data (not Statutory) 

For Fatal and Permanent Total Claims it was felt that direct recourse to 
state Statutes would generate the best available estimate o f  indemnity 
costs associated with these types o f  claims, t towever this is not true 
with respect to the benefits provided for Major Permanent Parfia[. For 
one thing there are an inordinate number of  categories e.g. loss of  
index finger, thumb, eye, great toe, other than great toe, foot. arm. 
hand, leg and on and on and on. 

If a good current distribution of these injures by type were available 
(this would require a lot of  injuries in each categou, to be credible) and 
the distribution could be expected to be applicable to the period for 
which the rates are to be effective (working environments  are changing 
rapidly, so this is questionable) then this approach might be feasible. 
However we thought that the best way to estimate the distribution was 
to access a database of  claims. 

Data on the indemnity costs associated with Major Permanent Partial 
claims can be obtained from some of  the sources previously cited. 
However it should be noted that the benefits for and definition of 
Major Permanent Partial claims va~, significantly from one state to 
another. As a small example of  this, Illinois lav~ specifies "The 
specific case o f  loss of  both hands, both arms, or both feet, or both 
legs, or both eyes, or any part thereof, or the permanent and complete 
loss o f  use thereof, constitutes total and permanent disability". In other 
states some of  these described injuries would be classified as Major 
Permanent Partial. 

Because of  the variation from state to state the methodology adopted 
here has been to acquire a sample of Major PP's  from a single state, 
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IV. 

thereby obtaining, it is hoped, homogeneous data and constructing the 
indemnity distribution curves. When there is not recourse to additional 
data for all the states the curve is adjusted by reviewing the details of  
the Statutory PP indemnity benefits. 

It should be noted that indemnity benefits can be unexpectedly large 
particularly in comparison with the schedule benefits listed in 
summaries of the Workers Compensation laws. This is the result of the 
fact that in a number of states Temporary Total benefits may be 
received for as much as 500 weeks and is not to be deemed a reduction 
to subsequently awarded Permanent Partial benefits. 

b. Range of Amounts 

Indemnity benefits for Major Permanent Partial claims seem to be 
relatively well contained in comparison to the benefits that might be 
experienced on Fatal or Permanent Total claims. Thus from the point 
of view the excess insurer or reinsurer indemnity benefits are not much 
of a threat to higher retentions. However, because Major Permanent 
Partial claims are serious claims it might be expected that the 
indemnity costs will not be trivial. In addition when these costs are 
combined with moderately high medical costs even relatively high 
retentions will be penetrated. 

Since Major Permanent Partial claims are serious it might be expected 
that the minimum indemnity costs will be in the range of 15 thousand 
to 20 thousand dollars. The indemnity benefits would contemplate 
temporary total plus scheduled benefits. On the other end of  the range 
it is entirely possible that the maximum indemnity benefits that might 
be observed would be in the interval of 500,000 to 750,000 dollars. It 
should be noted that in some states compensation for temporary 
disability is allowed in addition to scheduled benefits, in others 
temporary benefits are allowed with some limitations and in some the 
temporary benefits are deducted from the scheduled amount. 

Pennsylvania rate filings show estimated indemnity benefits averaging 
between 140,000 and 160,000 dollars. 

Weighting Excess Factors 

It may seem surprising but the determination of the weights by type of loss 
may be the weakest link in this methodology. Often the weighting must be 
based on data that is the summary of data on a handful of claims. 

This is particularly true in states with small populations. Thus some 
judgement, intuition and just plain common sense must be used in selecting 
the weights when estimating XS rates for a given state. 
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A. Source of Data 

Data is available from the various statistical gathering and ratemaking 
organizations. The National Council on Compensation Insurance is the 
most prominent of these and issues a widely distributed and used Statistical 
Bulletin each year. A facsimile of part of Exhibit X from the 1998 bulletin 
appears below. 

Distribution of Incurred Losses 
By Type By State 

Permanent Permanent Temporary Medical 
Policy Fatal Total Partial Total Only 

State Period % % % % % 

AL 1.8 5.2* 67.3 21. I 4.6 
CA 1.3 7.5 75.6 8.7 6.9 
LA 2.5* 4.3* 54.2 30.8 8.2 
MA 3.1 5.2 56.1 31.8 3.8 
NY 
TX 3.7 5.4 56.2 27.8 6.9 

The asterisk (*) indicates that the figure is based on less than 25 cases. 
Given this, it might be expected that the indicated weight is not especially 
accurate since the sample size is small and that the range of values of 
individual claims is quite large. 

In addition to the above cited weakness, the 1998 Edition also did not 
display weights for several states. Some were large states, notably Ohio 
and Pennsylvania. 

Similar weights can be extracted from the rate filings of other rating 
bureaus such as PCRB, NYCIRB and WCIRBC. 

B. Development 

In addition to noting the problem of sparse data, it is also necessary to 
recognize the fact that development may not be to a truly ultimate value. 
The following table is taken from a recent Pennsylvania Loss Cost filing. 
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All Policy Years 

1. Experience as Reported 

lndem. Med. Total Prcnt. 

Death 1,413.4 144.4 1,557.8 1.9"/o 
Perm T. 3,636.7 1 , 8 9 1 . 6  5,528.3 6.7% 
Maj. Perm Pa 24 ,898 .2  7 ,577 .1  32,475.3 39.6% 
Min Perm Pa 6 , 8 2 5 . 5  4 , 9 4 6 . 8  11,772.2 14.3% 
Temp Total 12 ,709 .9  12,613.8 25,323.7 30.9*/, 
Med. Only 5,437.8 5,437.8 6.6% 

82,095.1 100.0% 

2. Developed Experience 

Indem. Med. Total Prcnt. 

Death 1,634.9 319.3 1,954.2 1.8% 
Penn T. 6,512.2 4 , 5 8 1 . 0  11,093.2 10.2% 
Maj. Perm Pa 36,037.2 19,046.9 55,084.1 50.4% 
Min Perm Pa 6 , 0 1 7 . 6  4 , 6 9 7 . 9  10,715.5 9.8% 
Temp Total 11 ,974.5  12,438.1 24,412.6 22.4% 
Med. Only 5,854.6 5,854.6 5.4% 

109,114.2 100.0% 

Less mature data exhibits a greater change in the distribution of the type 
of loss as the following table shows 

Latest Policy Year 

1. Experience as Reported 

Indem. Med. Total Prcnt. 

Death 194.4 20.1 214.5 2.2% 
Perm T. 116.7 230.0 346.7 3.6% 
Maj Perm Pa 1,139.6 403.8 1,543.4 16.0% 
Min Perm Pa 1,165.0 798.9 1,963.9 20.3% 
Temp Total 2,363.8 2 , 2 9 2 . 9  4,656.7 48.1% 
Med Only 947.4 947.4 9.8% 

9,672.6 100.0% 
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V. 

2. Developed Experience 

Indem. Med. Total Prcnt. 

Death 267.3 56.5 323.8 1.7% 
Penn T. 1,032.7 805.0 1,837.7 9.7% 
Maj Perm Pa 6,197.3 3,281.6 9,478.9 50.0% 
Min Perm Pa 957.0 755.3 1,712.3 9.0% 
Temp Total 2,191.0 2,255.9 4,446.9 23.5% 
Med Only 1,157.0 1,157.0 6.1% 

18,956.6 100.0% 

Of particular interest in the two above tables is the development of the 
percentages for Permanent Total and Major Permanent Partial. The 
percentage of the third type of loss, Fatal, is close to 2.0% at first 
reporting and at its projected ultimate. However the Permanent Total 
percent develops substantially and the Major Permanent Partial only 
slightly less. 

It should be noted that the above figures are taken from a primary rate 
filing with the development terminated after a reasonable amount of time. 
However, experience with Permanent Total claims would suggest that the 
cost of this type of claim continues to develop over a period measured in 
decades. Thus the distribution percentage for PT in particular is likely on 
the low side even at what is construed to be ultimate for the purposes of 
the rate filing. Thus the selection of the weights requires some judgement. 
For example the Permanent Total column of the above constructed 
facsimile shows weights between 5.2% and 7.5%. The states displaying 
5.2% as the weight for PT are Alabama and Massachusetts. However 
Massachusetts is a much higher benefit state than Alabama with not only 
a higher average weekly wage but also with escalating benefits to age 65. 
On the other hand the fatal benefits in Texas are about the same as in 
Louisiana, so it is difficult to justify the difference in weights shown in he 
table. Thus, when selecting weights, consideration must not only be given 
to whatever data is available but also to the state mandated benefits. 

Examples 

Presented below is an additional example of the method under discussion. 
This is considered to be a true Excess Workers Compensation example 
with data sources and calculations being very close to what has be 
previously discussed. 

A. Example #3 

In the following it is assumed that the medical distribution Permanent 
Total Claims is as displayed in Figures 5a-5f. The indemnity is 

96  



-,,,1 

Workers' Compensation Permanent Total Medical Distribution 
Range : 0 - ~ , 0 0 0  

3,0% 

v 2 5 %  

1 5 %  

1 + 0 %  
O0 

i i i i i i i i i 

5,0 10 0 15 0 20.0 25+0 30 0 35.0 4 0 0  45.0 

Medical Clakn Cost (000) 

Workers' Compensation Permanent Total Medical Distribution 
Range : 50,000 - 500,000 

20.0% 

1 5 . 0 %  

1 0 . 0 %  

! 
5r0% 

0.0% 
'30 

I I i i i 

100 150 200 250 300 

Ivbdlcal C l J m  C06t (000) 

[ ]  [ ]  [ ]  [ ]  ,-, ~, 
i i i 

350 400 450 

F i g u r e  5 a  

50+0 

Figure 51:) 

S00 



0 8 %  

l Workers' Compensation Permanent Total Medical Distribution J 
Range 500000 - 1,000,000 

F i g u r e  5(: 

0 6% 

g 
g 04% 

0 2 %  

0 0% 
500 

I I I I I I I I I 
550 600 650 700 750 800 850 900 950 1 .ooo 

li41~dlclll Claim Cost (000) 

Workers' Compensation Permanent Total Medical Distribution 
Range 1 rrlUion - 2 5  million 

F i g u r e  ,Sd 

O3% 

O3% 

01% 

01% 

o 0% i i i i i i i i i i i i I i 
1 0 0 0  1 ,100 1,200 1,300 1,400 1 ,500 1 ,600 1 ,700 1 ,800 1,900 2 ,000  2 ,100  2 ,200  2 ,300  2 A 0 0  2 , 5 0 0  

M ~ c l  Ci=m C ~ t  (000) 



Workers' Compensation Permanent Total Medical Distribution 
Range 25 rrdl~n - 50 hilton 

Figure 5e 

0 08% 

0 07% 

i 0 06% 

005% 

0 04% 
2,500 

- ~'~'~ - ~ ~ ~  c.~-'--o a 
I 1 I [ I J J I 

2,750 3,000 3.250 3,500 3,750 4,000 4,250 4,500 
Medical ~ Cost ((:x)o) 

I 
4,750 5,000 

014% 

I Workers' Compensation Permanent Total Medical Distribution 
Range : 5 mllk~ - 17 ~ 

Figure 5f 

0 12% 

0 10% 

0 08% 

~ . 06% 

~_. 0 04% 

0 02% 

o 00% , I i i I i [ i [ I i t I i I i A i I i i L ~ 

5.000 6,000 7,000 8.O00 9,O00 1 0 . 0 0 0  11 ,000  1 2 . 0 0 0  13,000 14,000 1 5 , 0 0 0  16,000 17.0OO 

Clmm Cost (ooo) 



generated by assuming a wage distribution similar to that produced by 
NCC1 in the past and assuming a given level of SAWW and benefits. 
The SAWW is assumed to be $600 in this example. 

The percent indemnity benefit is assumed to be 66 2/3% of wage at 
time of injury for Permanent Total claims. The maximum is 100% of 
the SAWW and the minimum is 20%. The self-insured retention (SIR) 
is $500,000. Given the above information the excess cost is found to be 
55.8%. 

For Fatal claims the medical distribution is as shown in the following 
table 

Fatal 
Medical Distribution 

Amount Probability 

0 25.0% 
8,000 67.5% 

75,000 4.0% 
300,000 3.0% 

1,750,000 0.5% 

Again the SAWW is assumed to be $600. The percent indemnity is 
assumed to be 50% for Fatal claims. The maximum and minimum 
percents are 100% and 20% respectively. The SIR's $500,000. The 
above assumptions result in an excess percentage of 34.1%. 

Finally data with respect to Major Permanent Partials is displayed in 
Figures 6 and 7 following. Figures 6a, 6b and 6c display the medical 
costs. Figures 7a and 7b display the indemnity costs. The percent of 
costs excess $500,000 is 11.5%. 

Next assume that the weights are as given in the following table. 

Weights by 
Type of Loss 

Type of 
Loss Weil~hts 

Fatal 2.0% 
Perm. Total 11.5% 
Maj. Penn. Pa. 55.0% 
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VI. 

These weights combine with the previously estimated excess factors to 
produce an excess factor of 13.45%, i.e. 
(2.0%)(34.1%)+(11.5%)(55.8%)+(55.0%)(11.5%) = 13.4%. 

B. Example #4 

In Appendix D, the reader will find a complete set of excess factors for 
Pennsylvania. These were developed using the described methodology. 

Miscellaneous 

1. Change of Benefits 

Over the past decade workers compensation laws have been revised 
often with varying levels of impact emanating from given changes. 
Many of the changes have been focused on benefits. In an effort to 
bring the benefits accruing to an injured worker to a level equal to 
economic benefits accruing from other events, the benefits have 
generally been reduced and/or the administration of the law modified. 
For example, Maine at one time mandated escalating benefits for 
workers that had been killed or had been permanently and totally 
disabled. The benefits plus the rate regulation grew so onerous that 
eventually the insurance industry stopped underwriting workers 
compensation exposures in that state. The resulting problems that this 
caused businesses that operated in Maine were partially remedied by 
reducing the statutory benefits. Currently instead of escalating lifetime 
benefits fatal claims receive level benefits for 500 weeks. Permanent 
Total claim now receive level lifetime benefits but these are now offset 
to an extent by Social Security benefits and other benefits such as 
employer funded benefits. 

Pennsylvania and Louisiana are two other states which have revised 
the statutorily mandated benefits in the last decade. 

Changes such as these will naturally generate changes in excess costs, 
usually lowering them as a result of decreasing statutory benefits. 
Reliance on existing data to estimate the revised excess costs only 
makes sense if the particulars of previously incurred permanent total 
and fatal claims are known and present the possibility of estimating the 
costs under the new benefit system. Even when available this is 
tedious and expensive with the adjusted values being subject to some 
degree of error. 

It is suggested that the methodology presented in this paper is superior 
in that an estimate of the excess factors that would be expected under 
the new law can be produced in a very short time. This not only saves 
expense which is usually somewhat important but it also saves time 
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which is often more critical. In addition to the above, the view 
presented here is that the estimate generated using the described 
methodology is, at any rate, more accurate since it does not depend on 
a small sample of claims. 

2. Uncertainty and Sensitivity Testing 

Even if  all the steps described above are executed in a reasonably 
effective manner, there may still be a good deal of uncertainty in the 
final rates that are produced. One of the reasons for this is the data 
problem that has been discussed above a number of times. If there is 
one true statement that can be made about developing Excess Rates for 
Workers Compensation it's that there is never enough data available 
and that the ultimates on individual claims will never be known with 
sufficient accuracy to provide a great deal of comfort. 

Another of the reasons is that the law governing Statutory Benefits 
made not be entirely clear and/or interpretations of the law may be 
somewhat flawed. Finally, those administering the law may not be 
applying the law as intended. 

As a result of the uncertainty it is advisable to examine the rates that 
have been produced and to evaluate the contribution of each 
component. Once this is done the person charged with producing the 
final rates should test the sensitivity of the rates to changes in a given 
component or simultaneous changes in a number of components. This 
should provide a guide to which elements produce the greatest change 
in the rate for a given amount of error. Additional resources can then 
be brought to bear on the re-estimation for critical components. 

3. Pricing of Layers 

The methodology presented here is designed to provide the cost of 
statutory benefits excess of a given retention. The cost is expressed as 
a percent of the pure premium. For example in Appendix D it can be 
seen that the cost excess $500,000 is 9.88%. However many specific 
excess treaties are written for layers such as $500,000 excess $500,000 
(usually referred to as 500 xs 500). The excess pricing should be able 
to accommodate this. In Appendix D the price of the excess 
$1,000,000 layer is found to be 2.50%. Thus the cost of the layer 500 
xs 500 is 7.38%. 

After constructing a table of excess factors a test of the results can be 
generated by examining the costs of consecutive layers such as 250 xs 
250, 250 xs 500, 250 xs 750 etc. There of  course should be no 
reversals and the costs should be decreasing uniformly. While this test 
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4. 

does not guarantee that the results are accurate it is a simple task to 
perform and may identify missteps in calculations. 

Cost Determination for "Compromise and Release" States 

Occasionally a question is raised with respect to whether the proposed 
method needs to be modified for use in states where serious claims can 
be settled essentially through paying lump sum to the injured party. 

The position adopted here is that it is necessary in constructing rates to 
provide for the costs of all claims regardless of how they are ultimately 
disposed. The first step is to estimate the nominal costs of all claims 
that will occur and estimate the cost of the various retention levels. 
The next step in converting these cost estimates into prices, is to 
estimate the impact of investment income. This leads to a price that is 
charged for the risk. In the event that a claim occurs, the funds plus 
future interest should be enough to pay for the claims or to pay the 
claims immediately on a present value basis. Thus those charging the 
calculated price in exchange for assuming the risk should be 
indifferent as to whether the claims are settled early or not. 

Adjusting Statewide Indications to Reflect Individual Risk 

The methodology presented in this paper was designed to produce 
statewide rates. Thus the rates will be adequate but not excessive for a 
risk whose profile is exactly the same as the state as a whole. However 
the vast majority of risks presented to an underwriter will generate risk 
which is either greater or less. 

It has been suggested that adjusting the rates to reflect the Hazard 
Group profile might produce the appropriate rates. However it should 
be noted that somewhat over 90% of all risks fall into either Hazard 
Group II or Hazard Group Ill. Thus adjusting the statewide rates by 
Hazard Group may produce some improvement in matching the rates 
to the risk but it would seem that the progress would be minimal. 

It would seem that a better approach would be develop a profile of the 
risk by classification code with debits or credits assessed by code. The 
process of developing debits or credits by classification code is a 
major undertaking and is beyond the intended scope of this paper. 
However thinking along these lines will likely reproduce rates that 
more closely match the risk than recourse to Hazard Groflp. 

Statistics to begin the above suggested process are available from the 
various ratemaking bureaus. 
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6. Allocated Loss Adjustment Expense Considerations 

The methodology and the examples presented in this paper did not 
consider the impact of allocated loss adjustment expense. However it 
is felt that this methodology can be extended to include allocated loss 
adjustment expense costs. It would seem that this would add an 
additional layer of complexity. Evidence available to the author of this 
paper suggests that ALAE is not a direct add-on. That is, it would be 
inappropriate to load each claim value by say 10%. For example, a 
claim whose size is $15,000,000 would not carry an associated ALAE 
cost of $1,500,000. 

On the other hand, whereas the medical and indemnity costs seem to 
be independent, it would appear that the ALAE amount is, in some 
way, related to the size of the claim cost excluding ALAE. However 
incurred ALAE as a percent of incurred losses seems to be negatively 
correlated to the size of loss. 

Payout Rates 

There may be an initial temptation to model the payout of the incurred 
claim costs evenly over a lifetime. This is generally incorrect. For 
limited benefit fatal claims, Major Permanent Partial and Employer's 
Liability the average date of payment is actually within three to seven 
years of the accident date. 

Permanent Total claims present something of a paradox especially in 
comparison to, say, General Liability. As a rule of thumb, the larger 
G.L. claims are paid later and hence it might be expected that 
additional investment income might be generated to offset the cost of 
the ultimate settlement (This is not an inviolate rule.) However, larger 
Permanent Total Claims are, all things being equal, caused by larger 
medical costs. Claims like these generally, (not always), demonstrate 
extremely large medical payments in the earlier years to counteract the 
effect of the serious injuries. Thus, generally, the larger the Permanent 
Total claim, the faster the payments. On PT claims where the incurred 
medical in very high (excess of 2-5 million) a retention of 500,000 can 
be pierced in a year or two. 

8. Closing Remarks 

The method outlined in this paper was developed in response to a 
specific problem. The problem - generation of reasonably accurate 
estimates of excess workers compensation costs- is sufficiently 
important and of wide enough interest to justify the cost in some 
circumstances. 
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The effort, cost, and acceptance of the methodology do not guarantee, 
of  course, that the rates are as accurate as they might be. This is due in 
part to the difficulties previously discussed. It is also due to 
assumptions that have been untested but where at least a degree of 
testing may be possible. Thus work must continue to refine the 
methodology. 
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Appendix A 

Pennsylvania - Compensation Benefits 
Summary of Salient Items 

Death Benefits 

Dependents: In the case of death, compensation will be computed on the 
following basis, and distributed to the following persons, provided that in no case 
will the wages of the deceased be taken to be less than 50 percent of the SAWW. 

Children, no spouse: If there is no surviving spouse entitle to compensation, 
compensation will be paid to the guardian of the child or children, if there is no 
guardian, then to such other persons as may be designated by the board as follows 

• If there is one child, 32 percent ofwag,s  of deceased, but not in excess 
of the SAWW 

• If there are two children, 42 percent of wages of deceased, but not in 
excess of the SAWW 

• If there are three children, 52 percent of wages of deceased, but not in 
excess of the SAWW 

• If there are four children, 62 percent of wages of deceased, but not in 
excess of the SAWW 

• If there are five children, 64 percent of wages of deceased, but not in 
excess of the SAWW 

• If there are six children, 66 2/3 percent of wages of deceased, but not 
in excess of the SAWW 

Spouse and children: To the widow or widower, if there is one child, 60 percent 
of wages, but not in excess of the SAWW. To the widow or widower, if there are 
two children, 66 2/3 percent of wages but not in excess of the SAWW. To the 
widow or widower, if there are three or more children 66 2/3 per cent of wages, 
but not in excess of the SAWW. 

Parents: If there are neither widow, widower, nor children entitled to 
compensation, then to the father or mother, if dependent to any extent upon the 
employee at the time of the injury, 32 percent of wages but not in excess of the 
SAWW. (Additional wording omitted) 

SiblinBs: If there are neither widow, widower, children, nor dependent 
parent, entitled to compensation, then to the brothers and sisters, if actually 
dependent on the employee for support at the time of death, 22 percent of wages 
for one brother or sister, and an additional five percent for each additional brother 

109 



Appendix A cont'd 

or sister, with a maximum of 32 percent of the wages of the employee, not to 
exceed the SAWW. 

Generally, compensation is payable to or on account of any child, brother, or 
sister, only if and while the child, brother, or sister, is under the age of 18. If the 
child, brother, or sister is dependent because of disability, then compensation will 
be paid during the disability of a child, brother, or sister over 18 years of age. 
Furthermore, if the child is enrolled as a full-time student in any accredited 
educational institution, then compensation will continue until the student turns 23. 
(Additional wording omitted) 

Spouse Only: To a surviving spouse if there are no children, 59 percent of wages 
not to exceed the SAWW 

Miscellaneous Benefits: 

Funeral Expenses Whether or not there are dependents, the reasonable expense of 
burial, not exceeding $3,000 will be paid by the employer or insurer directly to 
the undertaker (without deduction of any amounts already paid for compensation 
or for medical expenses). 

Permanent Disability Compensation 

Permanent Total Disability: For total disability, 66 2/3 percent of the 
wages of the injured employee beginning after the seventh day of total 
disability, and payable for the duration of total disability. However, 
compensation cannot be more than the maximum compensation payable. 
If the benefit is less than 50 percent of the SAWW, the benefit payable 
will be the lower of 50 percent of the SAWW or 90 percent of the 
employee's average weekly wage. (Additional wording omitted) 

Permanent Partial Disability: For partial disability, 66 2/3 percent of the 
difference between the wages of the injured employee before the injury 
and the earning power of the employee thereaiter; but compensation 
cannot be more than the maximum compensation payable. (Additional 
wording omitted) 

Schedule of Permanent lniuries. For all disability resulting from permanent injuries of the 
following classes, 66 2/3 percent of wages is exclusively paid for the following number 
of weeks 

• Iossofhand 335 weeks 

• loss of forearm 370 weeks 
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Appendix A cont'd 

• loss o f  an ann  410 weeks 

• loss o f  a foot 250 weeks 

• loss o f  a lower leg 350 weeks 

• loss o f  a leg 410 weeks 

• loss o f a n  eye 275 weeks 

• loss o f  a thumb 100 weeks 

• loss o f  a first or index finger 50 weeks 

• loss o f  a second finger 40 weeks 

• loss o f  a third finger 30 weeks 

• loss o f  a fourth or little finger 28 weeks 

• loss o f  a great toe 40 weeks 

• loss o f  any other toe 16 weeks 

(Additional wording omitted - including lengthy section on Hearing Loss) 

Healing period compensation: In addition to the payments  provided for permanent 
injuries o f  the classes specified, any period o f  disability necessary and required as a 
healing period is compensated in accordance with the provisions o f  this subsection. The 
healing period ends when the claimant re tums to employment  without impairment in 
earnings, or on the last day o f  the period specified in the following table, whichever is the 
earlier. 

• For the loss o f  hand 20 weeks 

• For the loss o f  forearm 20 weeks 

• For the loss o f  an arm 20 weeks 

• For the loss o f  a foot 25 weeks 

• For the loss o f  a lower leg 25 weeks 

• For the loss o f  a leg 25 weeks 

• For the loss o f  an eye I0 weeks 

• For the loss o f  a thumb or part thereof  10 weeks 

• For the loss o f  a any finger or part thereof  6 weeks 

• For the loss o f  a great toe or part thereof 12 weeks 

• For the loss o f  a any other toe or part thereof six weeks 

(Additional wording omitted) 
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79-81 U.S,Standard Life Table 

Number 

100.000 56 
98,740 57 
98,648 58 
98,584 59 
98.535 60 
98,495 61 
98,459 62 
98.426 63 
98,396 64 
98,370 65 
98.347 66 
98,328 67 
98,309 68 
98,285 69 
98,248 70 
98,196 71 
98,129 72 
98,047 73 
97,953 74 
97,851 75 
97,741 76 
97,623 77 
97,499 78 
97,370 79 
97,240 80 
97,110 81 
96,982 82 
96,856 83 
96,730 84 
96,604 85 
96,477 86 
96,350 87 
96,220 88 
96,088 89 
95,951 90 
95,808 91 
95.655 92 
95,492 93 
95,317 94 
95,129 95 
94,926 96 
94,706 97 
94,465 98 
94,201 99 
93,913 100 
93,599 101 
93,256 102 
92,882 103 
92,472 104 
92,021 105 
91,526 106 
90,986 107 
90,402 108 
89,771 109 
89,087 110 
88,348 111 

Appendix B 

Number 
of live~ 

87.551 
86,695 
85,776 
84.789 
83,726 
82,581 
81,348 
80.024 
78,609 
77,107 
75,520 
73,846 
72,082 
70,218 
68,248 
66,165 
63,972 
61,673 
59,279 
56,799 
54,239 
51,599 
48.878 
46,071 
43,180 
40,208 
37,172 
34,095 
31,012 
27,960 
24,961 
22,038 
19.235 
16.598 
14,154 
11.908 
9.863 
8,032 
6.424 
5,043 
3,884 
2,939 
2,185 
1.598 
1.150 

815 
570 
393 
267 
179 
119 
78 
51 
33 
21 
0 
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Group 

GI 
G2 
G3 
G4 
G5 
G6 
G7 
G8 
G9 
G10 
G l l  
G12 
G13 
G14 
G15 
G16 
G17 
G18 
G19 
G20 
G21 
G22 
G23 
G24 
G25 
G26 
G27 
G28 
G29 
G30 
G31 
G32 
G33 
G34 
G35 
G36 
G37 
G38 
G39 

Indemnity & Medical Age : 20-60 

Probability Amount Group 

3.392298% 58,942.96 G1 
5.509995% 155,860.20 G2 
7.702869% 255,115.73 G3 
9049774% 354,567.58 G4 
9.333479% 455,459.36 G5 
8.461007% 553,659.39 G6 
8.817601% 649,715.82 G7 
8.254022% 749,451 97 G8 
7.031388% 850,871.57 G9 
5.844955% 953,687.72 G10 
4.316986% 1,052,420.61 G11 
4.333955% 1,146,177.19 G12 
3.974101% 1,247,102.48 G13 
3.206946% 1,346,987.28 G14 
2.891444% 1,449,632.62 G15 
1.716948% 1,551,120.97 G16 
1.479908% 1,645,467.42 G17 
1.136829% 1,748,418.39 G18 
0.849223% 1,843,87316 G19 
0.907306% 1,948,071.59 G20 
0.525709% 2,055,019.66 G21 
0.401405% 2,148,343.07 G22 
0.251621% 2,243,637.95 G23 
0.157137% 2,336,717.51 G24 
0.097350% 2,440,360.63 G25 
0.029220% 2,550,790.86 G26 
0.012159% 2,644,844.76 G27 
0.005467% 2,743,043.15 G28 
0.003101% 2,838,520.33 G29 
0.002246% 2,947,941.25 
0.001283% 3,055,167.92 Total: 
0.000977% 3,148,337.99 
0.000603% 3,243,437.87 
0.000372% 3,336,082.85 
0.000225% 3,439,668.49 
0.000061% 3,551,044.20 
0.000021% 3,644,484.67 
0.000007% 3,737,255.81 
0.000003% 3,827,854.55 

100,000000% 753,447.87 

P[obability 

3.426564% 
5.842723% 
7.736413% 
9.082577% 
9.358949% 
8.475570% 
8.842459% 
8.270407% 
7.039757% 
5.850663% 
4.307616% 
4.330345% 
3.961901% 
3.186389% 
2.872877% 
1.691124% 
1.459716% 
1.116369% 
0.831567% 
0895396% 
0.513358% 
0.390635% 
0.241198% 
0.148850% 
0.089951% 
0.024563% 
0.008410% 
0.002640% 
0.001013% 

100.000000% 

Appendix C 

Amount 

58,942.96 
155,84650 
255,111.55 
354,564.07 
455,465.94 
553,644.28 
649,687.29 
749,450.07 
850,884.23 
953,713.27 

1,052,394.21 
1,146,097.40 
1,247,071.31 
1,346,931.95 
1,449,607.32 
1,551,108.52 
1,645,353.36 
1,748,429.45 
1,843,676.94 
1,948,009.42 
2,0.55,167.92 
2,148,337.99 
2,243,437.87 
2,336,082.85 
2,439,668.49 
2,551,044.20 
2,644,484.67 
2,737,255.81 
2,827,854.55 

750,197.87 
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Appendix D 

Sample rates constructed using described methodology 

State: Pennsylvania 
Effective Year: 1999 

Excess of Excess Factor 

100,000 37.67% 
150,000 30.51% 
200,000 25.32% 
250,000 21.44% 
300,000 l 8.31% 
350,000 15.68% 
400,000 13.43% 
450,000 11.51% 
500,000 9.88% 
750,000 4.97% 

1,000,000 2.50% 
1,250,000 1.55% 
1,500,000 1.07% 
2,000,000 0.66% 
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SURPLUS ALLOCATION FOR THE INTERNAL RATE OF RETURN MODEL: 

RESOLVING THE UNRESOLVED ISSUE 

Abstract 

In this paper, it is shown that with a certain definition of risk-based discounted loss 

reserves and a certain method of surplus allocation, there is an amount of premium for a 

contract which has the following properties: 

(1 .) It is the amount of premium required for the contract to neither help nor hurt the 

insurer's risk-return relation. 

(2.) It produces an internal rate of return equal to the insurer's target return. 

If the insurer gets more than this amount of premium, then the insurer can get more return 

with the same risk by increasing the percentage of the premium for the overall book 

which is in the segment. Conversely, if the insurer gets less than this amount of 

premium, the insurer can increase its return by decreasing the percentage of the overall 

premium which is in the segment. The amount of premium is equal to the risk-based 

premium in "Pricing to Optimize an Insurer's Risk-Return Relation," (PCAS 1996). 

The above property 1 of risk-based premium is proven by Theorem 2 of the 1996 PCAS 

paper and not by the present paper. The present paper proves property 2. 
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1. INTRODUCTION 

The problem of relating pricing to the risk-return relation has been discussed in many 

recent actuarial papers. Surplus allocation is not described in these papers as something 

that can be done in a theoretically justifiable way. Actually, though, surplus allocation 

has been used in a way that has been proven by a theorem (Theorem 2 of [1]) to derive 

the amount of premium for any contract which will neither improve nor worsen the 

insurer's risk-return relation. Certain estimates have to be used of  course, e.g. 

covariances and expected losses. The precise mathematical relationship between this 

premium and the risk-return relation is specified by the statement of Theorem 2. This 

theorem, and the corresponding definition of risk-based premium, are very rarely 

mentioned in recent papers relating pricing to the risk-return relation. 

Since the internal rate of return (IRR) model has been a part of the CAS exam syllabus 

for years, and since it is a widely used method in insurance and other industries, it may be 

possible to explain the method of [1] to a larger group of readers by relating it to the IRR 

method. 

The IRR model can be used to measure the rate of return for an insurance contract or a 

segment of business, but only if the method used for allocating surplus can be related to 

the insurer's risk-return relation. The model is generally presented without a 

theoretically justifiable method of allocating surplus. But if an arbitrary method of 

allocation (such as allocating in proportion to expected losses) is used, the results are 

almost meaningless. The purpose of this paper is to complete the IRR method. 

Incidentally, there are several actuarial papers which argue that surplus allocation doesn't 

make sense because risk is not additive, or because in the real world all of surplus is 

available to support all risks. Actually, just as a function f(x) associates each number x 

with another number, surplus allocation is a mathematical function which associates each 

member of a set of risks with a portion of sttrplus. This function can be used as a part of 

a chain of reasoning in order to prove a theorem, as was done in Theorem 2 of [ 1 ]. 
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Although surplus allocation was used in deriving the properties of risk-based premium in 

[1 ], the derivation doesn't actually require any mention of surplus allocation. When risk- 

based premium is related to the IRR method in section 4 of this paper, surplus allocation 

is used because that is the traditional way of explaining the IRR method. 

The approach presented here: 

(1 .) addresses the risk-return relation in a fundamental way 

(2.) addresses the problems of the time value of money and the discounting of losses 

(3.) addresses the problem of loss reserve risk 

(4.) assigns a risk-based premium to the sum of two contracts or segments which 

equals the sum of the individual risk-based premiums 

The premium derived in this paper by the 1RR method is the same as that determined by 

the method in [1] The method in [1] is simpler to apply, but the IRR model has the 

advantage of being widely used and understood. It is on the CAS syllabus and has also 

been used by non-actuaries for many years. In order to relate the method in [1] to the 

1RR method, explanations will be given of both methods. However, since both methods 

are explained at length in the literature (see [2],[3],[4]), the explanations will be brief and 

informal. This could actually be an advantage, since it could make the presentation more 

lively and readable. The part of the paper which is new is the derivation of the 

equivalence of the two methods, given certain assumptions and conditions. 
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2. THE IRR MODEL 

The IRR model is a method of estimating the rate of return from the point of view of the 

suppliers of surplus. Suppose for example that an investor supplied $100 million to 

establish a new insurer, and that $200 million in premium was written the next day. Also 

suppose that twenty years later the insurer was sold for $800 million. Ignoring taxes, the 

return r to the investor satisfies the equation $100 million (1+020 = $800 million. 

Therefore, the return r equals 10.96%. 

Suppose that, beginning at the time of the above initial investment, each dollar of surplus 

is thought of as being assigned to either an insurance policy currently in effect, a loss 

reserve liability, or some other risk. Suppose that a cash flow consisting of premium, 

losses, expenses, outflows of surplus, and inflows of surplus, is assigned to each policy in 

such a way that the following is satisfied: the total of all the cash flows minus the 

outstanding liabilities immediately prior to the time at which the above insurer is sold for 

$800 million produces an $800 million surplus. It is then possible to express the input of 

$100 million, and the payback of $800 million twenty years later, as the total result of the 

individual cash flows assigned to each policy. Based on the individual cash flows, the 

overall return of 10.96% could then be expressed as a weighted average of individual 

returns for each policy. The individual return for a policy is called its intemal rate of 

return. The following example is taken from [2]. 

An Equity Flow Illustration 

A simplified illustration of an insurance internal rate of return model should clarify the 

relationships between premium, loss, investment, and equity flows. There are no taxes or 

expenses in this heuristic example. Actual Internal Rate of Return models, of course, 

must realistically mirror all cash flows. 
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Suppose an insurer 

• collects $1,000 of premium on January 1, 1989, 

• pays two claims of $500 each on January 1, 1990, and January 1, 1991, 

• wants a 2:1 ratio of undiscounted reserves to surplus, and 

• earns 10% on its financial investments. 

The internal rate of return analysis models the cash flows to and from investors. The 

cash transactions among the insurer, its policyholders, claimants, financial markets, and 

taxing authorities are relevant only in so far as they affect the cash flows to and from 

investors. 

Reviewing each of these transactions should clarify the equity flows. On January 1, 

1989, the insurer collects $1,000 in premium and sets up a $1,000 reserve, first as an 

unearned premium reserve and then as a loss reserve. Since the insurer desires a 2:1 

reserves to surplus ratio, equity holders must supply $500 of surplus. The combined 

$1,500 is invested in the capital markets (e.g., stocks or bonds). 

At 10% per annum interest, the $1,500 in financial assets earns $150 during 1989, for a 

total of $1,650 on December 31, 1989. On January l, 1990, the insurer pays $500 in 

losses, reducing the loss reserve from $1,000 to $500, so the required surplus is now 

$250. 

The $500 paid loss reduces the assets from $1,650 to $1,150. Assets of $500 must be 

kept for the second anticipated loss payment, and $250 must be held as surplus. This 

leaves $400 that can be returned to the equity holders. Similar analysis leads to the $325 

cash flow to the equity holders on January 1, 1991. 
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Thus, the investors supplied $500 on 1/1/89, and received $400 on 1/1/90 and $325 on 

1/1/91. Solving the following equation for v 

$500 = ($400)(v) + ($325)(v ~) 

yields v = 0.769, or r = 30%. (V is the discount factor and r is the annual interest rate, so 

v = 1/(l+r).) 

The internal rate of return to investors is 30%. If the cost of equity capital is less than 

30%, the insurer has a financial incentive to write the policy. 

This concludes Feldblum's example. My only attempt to improve this simplified 

illustration is the following. The $1,000 reserve set up on January I, 1989 is an unearned 

premium reserve and by the end of 1989 there is a $1,000 loss reserve. In between, the 

sum of the unearned premium reserve and the loss reserve is always $1,000. 

Feldblum doesn't claim that the method of surplus allocation in the illustration can be 

directly related to the risk-return relation. Allocating in proportion to expected losses 

doesn't distinguish between the riskiness of unearned premium, loss reserves, property 

risks, casualty risks, catastrophe covers, excess layers, and ground-up layers, for 

example. Different methods of surplus allocation could be judgmentally applied to 

different types of contracts, but from a theoretical risk-return perspective a certain use of 

covariance is required. This will be explained in the next section. 

121 



3. RISK-BASED PREMIUM 

What follows is an informal explanation of  the derivation in [1] o f  the properties of  risk° 

based premium. In the discussions below of  an insurer's risk-return relation over a one 

year time period, "return" refers to the increase in surplus, using the definition of  surplus 

below. (The term "risk-based discounted" is used in the definition and will be explained 

later.) 

surplus = market value of  assets - risk-based discounted loss and loss adjustment reserves 

- market value of  other liabilities (3.1) 

At any given time, the return in the coming year is a random variable. ] 'he variance of  

this random variable is what we refer to by the term "risk". The expression ~'optimizing 

the risk-return relation" is used in the same way that Markowitz [5] used it, i.e., 

maximizing return with a given risk or minimizing risk with a given return. (Markowitz 

was awarded the Nobel Prize several years ago for his work on optimizing the risk-return 

relation o f  asset portfolios.) 

For an insurance contract, or for a segment of  business, the risk-based premium can be 

expressed as follows: (The term "loss" will be used for "loss and loss adjustment 

expense.") 

risk-based premium = expense provision + risk-based discounted losses + risk-based 

profit margin. (3.2) 
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The above expense provision is equal to expected expenses discounted at a risk-free rate. 

The starting time T for discounting recognizes the delay in premium collection. 

Expenses are considered to be predictable enough so that the risk-free rate is appropriate. 

The risk-based discounted loss provision is equal to the sum of the discounted values, 

using a risk-free rate and the above time T, of 

(a.) the expected loss payout during the year 

(b.) the expected discounted loss reserve at year-end, discounted as of year-end at 

a "risk-based" (not "risk-free') discount rate 

A risk-free rate is used to discount (a) and (b) above because the risk arising from the fact 

that (a) and (b) may differ from the actual results is theoretically correctly compensated 

by the risk-based profit margin (see (3.2) above). 

The phrase "contract or segment of business" will be replaced below by "contract", since 

the covariance method used below has the following property: the risk-based premium 

for a segment equals the sum of the risk-based premiums of the contracts in the segment. 

At the inception of an insurance policy, the payout of losses during the year that the 

contract is effective, and the estimated risk-based discounted loss reserve for the contract 

at the end of the year, are unknown. The effect of the contract on surplus at the end of 

the year, i.e., the difference in end of year surplus with and without the contract, can be 

thought of as a random variable X at inception. The insurer's return, i.e., the increase in 

surplus during the year, is also a random variable. Call it Y. 

Assuming that the contract premium equals the risk-based premium, the expected effect 

of the contract on surplus at the end of the year is equal to the accumulated value, at the 

risk-free interest rate, of the risk-based profit margin. This is true because the expense 

provision portion of the formula (3.2) above pays the expenses, and the risk-based 

discounted losses portion pays the losses during the year and also accumulates at risk- 

free interest, to the expected value of the risk-based discounted loss reserves at the end of 

the year. Therefore, by formulas (3.1) and (3.2), above, the effect of the contract equals 

the accumulated value of the risk-based profit margin. 
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The random variables X and Y were defined above. If 

Cov(X,Y)/Var(Y)=E(X)/E(Y) (3.3) 

then, according to Theorem 2 of [1], the contract neither improves nor worsens the risk- 

return relation, in a certain sense. This was defined above in the abstract. Note that 

E(X), above, equals the accumulated value of the risk-based profit margin. 

One of the components of risk-based premium is the expected value of the risk-based 

discounted loss reserves at the end of the year. This expected value is greater than the 

expected value of the loss reserves discounted at the risk-tree rate corresponding to the 

duration of the loss reserves. This is how the risk-based premium provides a reward for 

the risk of loss reserve variability. The risk-based discount rate is therefore less than the 

risk-free rate. 

At the end of each year following the effective period of a contract, if the matching assets 

for the risk-based discounted loss reserves are invested at the risk-tree rate~ their expected 

value at the end of the following year will be greater than the expected discounted 

liability. This is because the risk-based discount rate is less than the risk-free rate. 

Assume, for example, that the loss payout is exactly equal to the expected loss payout. 

At the moments that loss payments are made, both the discounted loss reserve and the 

matching assets are reduced by the same amount. At other times, the matching assets are 

growing at the risk-free rate and the discounted liability is growing at the lower risk- 

based discount rate. 

At the beginning of the second year after the inception of the policy, the end of the year 

matching assets minus the discounted loss reserve can be thought of as a random variable 

Z. If Cov(Y,Z)/Var(Y) is equal to E(Z)/E(Y), then, according to Theorem 2 of [1], the 

risk-based discounted loss reserve and matching assets neither improves nor worsens the 

risk-return relation for the year. It is possible to compute a discount rate before the 

inception of the contract such that Cov(Y,Z)/Var(Y) is equal to E(Z)/E(Y). Note that if 
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the matching assets are not risk-flee, that affects both Cov(Y,Z) and E(Z) and may have a 

slight effect on the risk-based discount rate. If risk-based discount rates are computed for 

each of the years until the loss reserve is expected to be fully paid, the risk-based 

premium for the contract is determined. 

For practical purposes, the above derivation of risk-based discounting of losses for a 

contract can be simplified if certain estimates are used. For example a single risk-based 

discount rate can be used for all future years. This approach was used in [1]. Since risk- 

based premium is determined by the estimated expense payout, loss payout, risk-based 

profit margin, and risk-based discount rate, the explanation of risk-based premium has 

now been concluded. The following two examples are taken from [1]. 

Catastrophe Cover Risk Load 

In this example, in order to estimate the value of a catastrophe cover to a ceding 

company, we will suppose that the ceding company re-assumes the cover, and we will 

estimate the required risk-based profit margin. 

Assume that: 

1. The probability of zero losses to the catastrophe cover is .96, and the probability 

that the losses will be $25 million is .04. Therefore, the variance of the losses is 

24 trillion, and the expected losses are $1 million. 

2. Property premium earned for the year is $100 million, and there is no casualty 

premium. 

3. The standard deviation ofpre-tax underwriting return is 15 million. 

4. The expected pre-tax retum from the entire underwriting portfolio is $8 million. 

5. Taxes have the same proportional effect on the expected pre-tax returns on total 

premium and on the catastrophe cover, and on the standard deviations of returns. 

6. The covariance between the catastrophe cover's losses and total property losses 

net of the cover is equal to .50 times the variance of the cover's losses. 

7. The discount rate for losses is zero. 
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8. Total underwriting return, and the return on the catastrophe cover, are statistically 

independent of non-underwriting sources of surplus variability. 

It follows from 1, 6 and 8 above, and from the fact that Cov(X,Y+Z) = Cov(X,Y) + 

Cov(X,Z), that the covariance with surplus of the pre-tax return on the catastrophe cover 

is 24 trillion + .50(24 trillion); i.e., 36 trillion. It follows from 3 and from Cov(X,Y+Z) = 

Cov(X,Y)+Cov(X,Z) that the corresponding covariance for total underwriting is (15 

million) 2 , i.e., 225 trillion. Therefore, it follows from assumption 4 that the risk-based 

profit margin for the catastrophe cover should be such that the pre-tax return from re- 

assuming the catastrophe cover is given by (36/225)($8 million)= $1.28 million. (This is 

greater than the cover's expected losses.) If the cover costs more than $2.28 million, then 

it improves the insurer's risk-return relation to re-assume it. However, the cover may be 

necessary to maintain the insurer's rating and policyholder comfort. 

Required Profit Margin by Layer 

Suppose that for some insurer: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

All premium is property premium. 

The accident year expected property losses for the $500,000 excess of $500,000 

layer, and the 0-$500,000 layer, respectively, are $10 million and $90 million. 

Expected losses excess of $1 million are zero. 

The accident year property losses for each of the above layers are independent of 

all non-underwriting sources of surplus variation. 

The discount rate is zero. 

The coefficients of variation (ratios of standard deviations to means) of the higher 

and lower layers are .30 and .15, respectively. 

The correlation between the two layers is .5. 

Taxes have the same proportional effect on th e returns of both layers. 
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Let a and b denote the standard deviations of the losses to the higher and lower layers, 

respectively. Let 13 denote the correlation. With the above assumptions, the pre-tax 

covariances with surplus for the higher and lower layers, respectively, are given by 

a 2 + pab = ((10 million)(.30)) 2 

+ (.5)(10 million)(.30)(90 million)(. 15) 

= 29.25 trillion, and 

b2+ pab = ((90 million)(.15)) 2 

+ (.5)(10 million)(.30)(90 million)(.15) 

= 202.5 trillion 

The allocated surplus for 0-$500,000 layer is 202.5/29.25 (i.e.., 6.9) times as great as the 

allocated surplus for the $500,000 excess of $500,000 layer. The expected losses are 

nine times as great for the lower layer. Therefore, the required profit margin, as a 

percentage of expected losses, is 1.3 (i.e., ((9)(29.25))/202.5) times as great for the higher 

layer as it is for the lower layer. This is expected due to the higher layer's larger 

coefficient of variation. 
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4. RISK-BASED PREMIUM AND THE IRR MODEL 

An example is given below to show the following, Suppose that the risk-based premium 

of my model, for a certain contract corresponds to a certain expected rate of return for the 

insurer. Then, the expected rate of return for the contract, using the IRR model, also 

equals that target rate if the method of allocating surplus for the IRR model is the 

covariance method of my model. 

Suppose the target rate of return is 15%. The risk-based premium for a contract equals 

expense provision + risk-based profit margin + risk-based discounted losses. Suppose 

that premium and expenses are paid at the end of the year, and the expected loss payout is 

$100 at the end of each year for four years. Suppose expenses are $70 and the risk-based 

profit margin is $30. Suppose that the risk-based discount rate is 4%. It then follows that 

the risk-based discounted losses at the end of the year equal $377.51 and the risk-based 

premium equals $70 + $30 + $377.51, or $477.51, 

By the words surplus and return, I will mean them as defined in my model. The portion 

of surplus allocated to the contract for the first year will be called S~ and, using (3.3), it 

equals 

(Surplus)((Covariance(Contract's After-Tax Underwriting Return, Surplus))/(Variance of 

Surplus)) 

It is possible to estimate the taxes corresponding to underwriting return at the end of the 

year of a contract, and the taxes corresponding to the return on risk-based discounted loss 

reserves and matching assets in the following years. The effect on taxes of premium 

earned, expenses incurred, investment income from premium, and losses paid during the 

year, as well as the effect of loss reserves discounted at the beginning and the end of the 

year, can be used. In the case of risk-based discounted loss reserves and matching assets, 

the expected taxes are less than taxes on the matching assets. This is because loss 

rcscrves are discounted from a point in time one year later at the end of the year than at 
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the beginning of the year, producing a loss for tax purposes. If  the discount rate used for 

tax purposes equals the risk-free rate, but the tax law payout rate is faster than the actual 

payout rate, the tax effect is the same as the effect of using the actual payout rate and a 

certain discount rate which is lower than the risk-free rate. 

Assume for simplicity that the insurer's assets earn 6% for the period of the coming year 

and that the tax produced by each type of return is 35% of the return. Then, the above 

$30 risk-based profit margin and the above allocated surplus Sj satisfy the equation 

.15Si =.65(.06S1+30) 

since the 15% target return on allocated surplus is produced by the remainder, after 35% 

tax, of 6% investment income on allocated assets plus the $30 risk-based profit margin. 

Solving the equation gives Sl = $175.68. 

The surplus allocated for the second year equals 

(Surplus)((Covariance(Contract's After Tax Loss Reserve Return, Surplus))/(Variance of  

Surplus)) 

This allocated surplus will be called $2. The amount of surplus allocated the next two 

years are defined similarly and will be called $3 and $4. 

The risk-based discounted loss reserve corresponding to $2 equals $277.51 and satisfies 

the equation 

.15S2 = .65(.06S2 + (.06 -.04)$277.51) = .65(.06S2 + 5.55) 

since the 15% return is equal to the after-tax return from investment income from the 

allocated assets plus the after-tax return on loss reserves and matching assets. The 
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matching assets earn 6% and the discounted reserves increase at a rate o f  4%, i.e., the 

risk-based discounted rate. Solving the equation gives $2 = $32.50. 

Similarly, the risk-based discounted loss reserves corresponding to $3 and $4 are $188,61 

and $96.15, respectively. Therefore, 

.15S3 - .65(.06S3 + (.06 - .04)188.61) = .65(.06S3 + 3.77) 

.15S~- ,65(.06S4 + (.06 - .04)96.15) = .65(.06S4 + 1.93) 

So $3 = $22.09, and $4 = $11.26. It will nov,' be shown that the rctum on the contract is 

15% according to the IRR model, using the same allocation o f  surplus as above. It was 

shown above that 

.15SI - . 65 ( ,06S i  + 30) (4.1) 

.15S2 - .65(,06S2 + 5.55) (4.2) 

.15S3 = .65(.06S3 + 3.77) (4.3) 

.15S~ - .65(.06S4 + 1.93) (4.4) 

If S~, $2, $3, and $4 are added, respectively, to both sides o f  the four equations above, 

respectively, and each equation is divided on both sides by' 1.15, we get 

S~ = ( l / l .15)(Sl  + .65(.068~ + 30)) 

St - ( 1/1.15 )($2 + .65(.06S2 + 5.55)) 

S~ = (1/1.15)(S~ + .65(.06S3 + 3.77)) 

$4 - (1/1.15)($4 + .65(.06S4 + 1.93)) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Therefore. 

Sl = (1/l.15)($1 -- $2 + .65(.06Si + 30)) + (1/1.15)$2 

Sz=( l / t . 15 ) (Sz  S3+.65( .06S2+.5 .55) )+(1 /1 .15)$3  

$3 = (1/1 .15)($3-  $4 + .65(.06S3 + 3,77)) + (1/1.15)$4 

(4.9) 

(4.10) 

(4.11) 
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By substituting the expression which is equal to $4 in equation (4.8) for $4 in Equation 

(4. l l), we get 

$3 = (1/1.15)($3 - $4 + .65(.06S3 + 3.77)) + (1/1.15) 2 ($4 + .65(.06S4 + 1.93)) 

By substituting the above expression for the term $3 at the extreme right of  Equation 

(4.10), we get 

$2 = (1/1.15)($2- $3 + .65(.06S2 + 5.55)) + 

(1/1.15)2($3 - $4 + .65(.06S3 + 3.77)) + 

(1/1.I 5) 3 ($4 + .65(.06S4 + 1.93)) 

By substituting this expression for the term $2 at the extreme right of  Equation (4.9), we 

get 

Sl = (l/1.15)(Sl - $2 +.65(.06St + 30)) + 

(1/1.15)z($2 - $3+.65(.06S2 + 5.55)) + 

(I/1.15)3($3 - $4+.65(.06S3 + 3.77)) + 

(I/1.15)4($4 + .65(.06S4 + (1.93)) 

Therefore, Sj is the discounted value, at a 15% return, of  amounts at the end of  years 

1,2,3 and 4 which are each equal to the following: the stun of  supporting surplus which is 

no longer needed at the end of  the year plus the after-tax return during the year resulting 

from investment income from supporting surplus and from the contract. So, according to 

the IRR model, the rate of  return on the contract is 15%. This completes the 

demonstration of  the relationship between risk-based premium and the IRR model. 
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Abstract 

This paper focuses on issues and methodologies for fitting 

alternative statistical models- -probability distributions- -to 

samples of insurance loss data. The interaction of parametric 

loss distributions, deductibles, policy limits and rating 

variables in the context of fitting distributions to losses are 

discussed. Fitted loss distributions serve an important function 

for the purpose of pricing insurance products. The procedures 

illustrated in this paper are based on a sample of insurance 

losses, and with lognormal as the underlying loss distribution. 

Key words 

Loss Distributions, Generalized Linear Models, Curve Fitting, 
Right Censored and Left Truncated data, Rating Variables, Maximum 
Likelihood Estimation. 
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I. Introduction 

This section presents some preliminaries regarding losses, 

deductibles, policy limits and rating variables as inputs for 

fitting distributions to losses. In section 2, a method for 

fitting a single distribution to losses is considered. In this 

instance, the information provided by rating variables is either 

not considered or is not available. The method of maximum 

likelihood has been applied to estimate model parameters in the 

presence of deductibles and policy limits. Sections 3 and 4 

develop methodologies for fitting alternative statistical models- 

-family of loss distributions--to loss data, using the 

information provided by rating variables. This is achieved by 

requiring a parameter of a loss distribution to depend upon 

values of rating variables. Criteria for assessing goodness of 

fit are discussed. Furthermore, large sample statistical tests 

for assessing the impact of rating variables upon loss 

distributions are given. Some concluding statements are made in 

section 5. 

Insurance data considered here have the following 

characteristics: a) losses are specified individually, b) for 

each individual loss, the information about deductibles and 

policy linlits is furnished, and c) for each loss, we have 

auxiliary policy information regarding the rating variables. Each 

of these three items is discussed further below. 
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Losses are given on an individual basis, and have not been 

grouped by loss size. The methodologies to fit distributions to 

data differs, depending on whether losses are grouped or 

individually specified. Losses may be closed or open. The amount 

recorded for each loss is the incurred value as of the latest 

available evaluation period. If some losses in the sample data 

are still open as of the latest evaluation period, then those 

losses should be properly adjusted for further development. 

Unfortunately, most of the methodologies for development of 

losses to their ultimate values are only available for grouped 

data. Further research on the topic of development of individual 

losses to their individual ultimate values is welcomed. 

Individual losses should be suitably trended to reflect values 

expected in the future. The methodology presented in this paper 

has been applied to a sample of commercial fire losses (see Table 

A of Appendix A) . Those losses were mostly closed, as of their 

latest evaluation date, hence adjustments for further development 

were not warranted. Finally, in order to fit distributions to 

losses, zero losses should be excluded. 

Deductibles are used to exclude certain losses. Usually 

deductibles are small--for example, a few hundred or a few 

thousand dollars. However, for a large insured, deductibles may 

be sizable due to the existence of self-insured retention or 

other underlying coverages. Only dollar deductibles are 

considered here. Time deductibles such as waiting periods are not 
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treated. A reported loss with a value in excess of its deductible 

is said to be left truncated. If a loss arises from a policy with 

no underlying deductible, then for the purpose of the 

computation, a value of zero is imputed as the "deductible" 

amount. It is not required that the deductible amount be the same 

for each loss. 

Policy limits serve to limit the amount of payment on a 

given loss or a loss occurrence. When the loss amount is at least 

as large as its policy limit, the loss is said to have been right 

censored. If a loss arises from a policy where there is no 

underlying policy limit, then any amount greater than the loss 

amount may be imputed as the "policy limit". In these instances, 

those losses have not been censored. Varying policy limits are 

allowed for. In fact, no grouping of losses based upon deductible 

or policy limit amounts is required. 

Samples of insurance loss data are usually incomplete. This 

is due to inclusion of left truncated (losses in excess of 

deductibles) and right censored (some losses capped by their 

respective policy limits) data in the sample. Due to this 

incompleteness of data, it becomes more difficult to estimate the 

parameters of a loss distribution and to assess the goodness of 

fit. Many traditional approaches for estimation of parameters of 

a loss distribution or assessing the goodness of fit of a 

distribution are valid only if the sample of observations is 
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complete, that is, when there are neither left truncated nor 

right censored observations in the sample. 

Rating variables in insurance depend upon the line of 

business, the degree of competition present in the market, and 

regulation. The effect of the rating variables upon loss 

distributions has important implications for underwriting 

selection. It also provides for a more differentiated rating 

system. How to incorporate the information provided by rating 

variables into the process of fitting distributions to losses is 

discussed in sections 3 and 4. 

Following is a description of how to fit a single 

distribution to a sample of insurance loss data. 

2. Fitting a Single Distribution to 

Losses 

Fitting a single distribution to losses is based upon 

consideration of alternative statistical models---probability 

distributions--as data-generating mechanisms. The assumption made 

is that the observed losses are a realization of a probabilistic 

process governed by a parametric distribution. The purpose of 

fitting a distribution to losses is to identify a specific 

parametric distribution which provides a reasonable fit to the 

data. A good introduction to the subject of fitting distributions 
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to losses is given by Hogg and Klugman (1984). This paper 

complements their work by focusing on certain related topics. 

First, more emphasis is placed on the procedures for fitting loss 

distributions to individual loss data rather than grouped data. 

Second, methodologies required to incorporate rating variables in 

the process of fitting distributions to losses are presented in 

sections 3 and 4. Finally, readers of this paper may find the 

computer programs (codes) given here to be beneficial for the 

purpose of the computing maximum likelihood estimates of 

parameters of a loss distribution. 

Fitting a distribution to losses serves to moderate the 

effect of sampling variation in the data. This is achieved by 

replacing an empirical distribution by a more smoothed (fitted) 

distribution. Furthermore, estimates of tail probabilities beyond 

the range of the original data can be provided based on fitted 

distribution. 

At least two problems complicate the fitting of a parametric 

distrlbution to loss data. The first problem concerns the 

tendency of many losses to be settled at rounded figures. This 

notion is incompatible with selecting a parametric distribution 

such as lognormal or Pareto, where the probability of taking any 

specified value is zero. The second problem arises from the fact 

that many statistical procedures assume that losses in a sample 

are identically distributed. Insurance risks are normally 

heterogeneous. Each risk has its own risk characteristics and its 
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own propensity to produce a potential loss. For instance, two 

different drivers have differing loss propensities. To a certain 

extent, risk characteristics are reflected by underwriting rating 

factors. For this reason, risks with the same values for their 

underwriting factors are cross-classified to produce 

"homogeneous" classes. The use of rating factors to cope with the 

heterogeneity problem is addressed in sections 3 and 4. In this 

section, the information provided by rating factors is ignored in 

order to concentrate on fitting a single loss distribution to 

data. 

For the sake of exposition, the process of fitting a single 

distribution to loss data has been broken down into four steps: 

I. Conslderation of a number of parametric probability 

distributions as potential candidates for underlying 

loss distribution. 

2. For each distribution specified in step i, the 

estimation of the parameters of the distribution from 

sample data--hence, the determination of a set of fitted 

distributions. 

3. Specification of a criterion for choosing one or a few 

fitted distributions from step 2 above. 

4. Assessing the goodness of fit for the fitted 

distribution(s) in step 3. 

Let us proceed with a more detailed account of these steps. 

These steps will be illustrated below by reference to a numerical 
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example. The first step requires considering a number of 

parametric distributions as potential candidates for the data 

generating mechanism. The list of potential parametric 

distributions as candidates for loss distribution is enormous. In 

practice, one can entertain only a few parametric distributions 

for the purpose of fitting a distribution to losses. In this 

paper, I have selected the following parametric probability 

distributions: lognormal, Pareto, Weibull, gamma, inverse gamma, 

and exponential. This list is subjective, but some of the above 

distributions have been used by actuaries and have appeared in 

actuarial literature. The list chosen here is only for 

illustrative purposes and is not meant to be exhaustive. 

The second step involves the estimation of the parameters of 

each probability distribution selected in step 1 from the data. 

Once one has estimated the parameters of a given distribution, 

one then has a fitted distribution. The estimation of parameters 

of a loss distribution is made difficult because of 

incompleteness of data. Some commonly used statistical procedures 

to estimate parameters of a distribution for a sample of complete 

data are: the method of moments, the least squares estimation as 

used for regression models, and the maximum likelihood 

estimation. These parameter estimation procedures are outlined in 

most basic statistics texts. For incomplete sample data (presence 

of left truncated or right censored data), the above estimation 

procedures are not applicable without further modifications. The 
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application of estimation procedures suitable for complete data 

to insurance data which is incomplete will produce inefficient 

parameter estimates. In this paper, the estimation of parameters 

of a loss distribution is based upon proper specification of the 

likelihood function reflecting the presence of left truncated and 

right censored observations in the data. 

Following are some necessary notations needed to write an 

expression for the likelihood function in the case of incomplete 

data. 

Let Yi be the i th loss amount (incurred value), l~i~ n, 

where n denotes the number of losses in the data set. 

D i is the deductible for the i th loss. 

PL, is the policy limit for the i th loss. 

/(y;8,@) denotes the density function for the loss amount in 

the case of complete data. 8 is the primary parameter of 

interest. ~ is the nuisance parameter which may be a vector. 

F(y;O,~) denotes the cumulative distribution function for the 

loss amount. 

The contribution of a loss to the functional form of the 

likelihood function depends upon whether the loss is ground-up or 

in excess of deductible, and furthermore if the loss has been 

capped by its respective policy limit. Hence, the contribution of 

a loss to the likelihood function may be one of the four mutually 

exclusive and exhaustive forms, written as i,1, Li2, L,3, and Li4 ' 
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as defined below. In addition, four indicator variables, 8,1, di2, 

~,3 and J,4 are used in order to write a succinct expression for 

the likelihood function of the sample. 

Case i: No deductible, and loss below policy limit (neither left 

truncated nor right censored data). The complete sample case. 

L = f ( y , ; 8 , ~ p )  (2 . l a )  il 

_ / 1 , 1 f D i  = 0  and y, < P L  i 

d'l - [0 ,  Otherwise (2 .  l b )  

Case 2: A deductible, and loss below policy limit (left truncated 

data) 

L - f(Di ~ Yi;0'q~) ( 2 . 2 a )  
i2 1 -  F(Di;0,~p) 

= ( 1 , 1 f D  i > 0  and y, < P L  i 

" /0, Otherwise (2.2b) 

Case 3: No deductible, and loss capped by policy limit (right 

censored data) 

L = 1-  F(PL,;0,~o) ( 2 . 3 a )  
~3 

= l l ,  l f D i  =0 and y, > P L  i 
6'3 [0,  Otherwise ( 2 . 3 b )  

Case 4: A deductible, and loss capped by policy limit (left 

truncated and right censored data) 

[ - F ( D  i + PL,;O, tp) ( 2 . 4 a )  
L'4 = 1-  F ( D , ; 8 , ~ )  

f l  I f D  i > 0  and y, > P L  i 
b"4 = [,qO' Otherwise ( 2 . 4 b )  
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The contribution of the i th loss to the likelihood function is 

given by 

The likelihood function for the sample is given by 

L =~IL, (2.6) 

The log-likelihood is given by 

I = ~ log( t i )  (2 . 7 a )  

=El,, (2.7b) 

I, = log( L, ) ( 2 . 8 a )  

= d,i log(  L,~ ) + 8,2 log(  L~2 ) + 6,s log(  L,~ ) + 6,4 log(  L,, ) ( 2 . 8  b ) 

where the log, as used in this paper, represents the natural 

logarithm. 

Equation (2.5) represent the contribution of the i ~ loss to the 

likelihood function. The likelihood function for the data is 

given by equation (2.6). To estimate the parameters 0 and ~ we 

should maximize the likelihood function or alternatively minimize 

the negative of the logarithm of the likelihood function. 

Equation (2.7) and (2.8) provide expressions for the logarithm of 

the likelihood function. 

Note that the contribution to the likelihood function for an 

individual observation in most basic statistics textbooks is of 

the form (2.1a) . 
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The third step requires a criterion for ranking or comparing 

alternative fitted probability distributions. This step is needed 

to reduce the number of fitted distributions in step 2 to one or 

a few potential candidates. A statistical criterion used for 

comparing alternative models--statistical distributions--is based 

upon the value of Akaike's Information Criterion, AIC; refer to 

Akaike (1973). 

The AIC criterion is defined by 

AIC = - 2(maximized log-likelihood) 

+ 2(number of parameters estimated) 

Note, AIC can also be written as 

AIC = - 2{maximized log-likelihood - number of parameters estimated} 

When two models are compared, the model with a smaller AIC value 

is the more desirable one. 

The AIC is based on log-likelihood and it penalizes the log- 

likelihood by subtracting for the number of parameters estimated. 

Two other model selection criteria used in statistics are 

Schwarz's Bayesian Information Criterion (BIC), Schwarz(1978), 

and Deviance as used in Generalized Linear Models; see McCullagh 

and Nelder (1989). These three criteria are based on maximized 

log-likelihood function. 

Before proceeding -to step 4, regarding fit, I shall 

illustrate steps i, 2, and 3 by reference to a numerical example. 

Let us consider the data in Table A of Appendix A. Here, we have 

a sample of i00 commercial fire losses. For each loss the 
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deductible, policy limit, and the code for a type of construction 

are stated. For the time being, let us ignore the information 

about the construction since we are concerned with fitting a 

single distribution to the data. For each distribution listed in 

Table 1 below, I have computed the maximized log-likelihood 

function, and the corresponding AIC values. For the case of 

weibull distribution, the program used to compute the maximum 

likelihood estimate of parameters and the computed value of 

maximized log-likelihood function is given as Exhibit 1 in 

Appendix B. This program is coded in S-Plus, a statistical 

software suitable for data analysis. The computation of maximized 

likelihood function for other distributions in Table 1 is similar 

to the one for Weibull. 
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Distribution 

Table 1 

Negative 

maximized 

log-likelihood Number of 

function Parameters AIC 

lognormal 897.8 

Pareto 895.2 

Weibull 899.8 

gamma 914.5 

inverse gamma 893.7 

exponential 986.4 

2 

2 

2 

2 

2 

1 

1799.6 

1794.4 

1803.6 

1833.0 

1791.4 

1974.8 
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With regard to Table i, it should be noted that the values of 

maximized likelihood function are positive. The values of 

logarithm of the maximized likelihood functions are negative and 

hence the negatives of the logarithm of the maximized likelihood 

functions are positive figures. 

Table 1 can be used for selecting a parametric distribution for 

the data. Based on the AIC criterion as a method of ranking 

different fitted distributions, note that the AIC values of 

lognormal, Pareto, and inverse gamma are "comparable". The AIC 

values for gamma and exponential distributions suggest relatively 

more inferior fits. I have selected lognormal, with parameters 

and ~, as the distribution to be fitted to our data. There are 

several reasons for this selection. First, it is easier to 

interpret the parameters of a lognormal distribution. Selecting a 

simpler model is preferable, as it is easier to explain and 

comprehend. By taking the logarithm of the losses, the 

parameter represents the location parameter (mean), and the 

parameter is the scale (standard deviation). Second, lognormal 

distribution has been previously used to describe the 

distribution of fire losses; see Benckert and Jung (1974). 

Now we proceed with step 4, regarding the fit. By examining 

the data in Appendix A, we note that the losses can be divided 

into four categories according to four cases defined for 

specification of the likelihood function (see Table 2 below): 
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Table 2 

# Case Number of Losses 

i. No deductible and loss below policy limit 

2. A deductible, and loss below policy limit 

3. No deductible and loss capped by policy limit 

4. A deductible and loss capped by policy limit 

1 

96 

0 

3 
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For our data, most of the losses are of case 2, i.e., losses with 

deductibles and values below their policy limits. Due to the 

paucity of data, we concentrate only on case 2. 

For lognormal distribution, we can compute theoretical 

conditional distributions (probabilities) and conditional limited 

expected values based on a fitted distribution, and compares 

these quantities with their respective sample counterparts. 

The conditional distribution or probability of a lognormal random 

variable, X, with parameters ~ and s is given by 

q)( Iog(b)5 g ) _ ~(log(a)  ~ M ) 

p ( x ~ b l X > a )  = ~ a 

] _ ~ (  !Og( ,?  - ~ )  

where ~ is the cumulative distribution function of a standard 

normal distribution. Here a represents a threshold or a 

deductible amount D, and b is usually the sum of deductible and 

limit, i.e., D + PL. 

The conditional limited expected value is defined 

b y  

E[min(X,b) IX >a ] = 

1 2 

1 ~(l°lg(a)-'u) { e'U÷2°" [e(Iog(b)_.._o. o-) ~(Iog(a)-.u-o 2 o .  )l+hll-¢,(I°g(b)-o. 
O" 

Table 3 summarizes the comparison of theoretical and sample 

values of conditional probabilities and conditional limited 

expected values for case 2 of data in Appendix A. 
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Table 3 

Comparison of Conditional Probabilities and 

Conditional Limited Expected Value for Fitted 

Lognormal with its Sample Values 

a = 500 

2,000 

5,000 

i0,000 

20,000 

30,000 

40,000 

50,000 

P(X~b]X>a) 
Based on Sample 

lo~normal* estimate 

0 485 0.494 

0 714 0.699 

0 832 0.843 

0 909 0.904 

0 938 0.952 

0 954 0.976 

0 964 0.988 

E[min( X,b) IX >a ] 
Based on Sample 

lognormal* estimate 

1,538.7 1,620.9 

2,666.4 2,737.2 

3,747.2 3,764.3 

4,969.3 4,907.7 

5,716.8 5,547.9 

6,248.3 5,833.6 

6,655.8 6,071.7 

, ~ : 5.887, ~ = 2.302 are the maximum likelihood estimates 

for the fitted lognormal distribution. 
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The comparisons of fitted and sample quantities in Table 3 

suggests the lognormal provided a "reasonable" fit to the data. 

It is worth making a few comments regarding fit. First, our 

sample size is I00, with 96 observations for case 2. With small 

sample sizes, considerable sampling variability are encountered 

in estimation of model parameters. Second, a perfect fit implies 

no smoothing! Third, the fit for a specific type of distribution 

is judged to be good if it has a high predictive power, that is, 

whether the same type of distribution provides good fits to many 

samples of the same kind. A quotation from Lindsey (1995), is 

appropriate here: "If a model represents the sample too well, it 

will have no chance of representing a second, similarly 

generated, sample very well. A model too close to a sample will 

usually be too far from the population." Finally, it is worth 

emphasizing that there are many other possible potential 

candidates (probability distributions) for fitting to a specific 

data set. Thus, curve fitting is to some extent subjective and 

not a perfect science. From a practical point of view, there are 

other considerations related to fitting a distribution to a 

sample. These are: a) the volume and quality of data, b) the time 

constraint in which to do the curve fitting, c) the knowledge and 

experience of the curve fitter, d) availability of suitable 

software (programs), e) convergence of iterative algorithms for 

estimation of model parameters, and specification of initial 
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values for parameters, and f) the treatment of outliers. Last but 

not the least is consideration of the purpose for which the 

fitted distribution is used. With all these qualifications 

regarding fit, we shall assume the lognormal provides a 

reasonable fit to the data in Appendix A. 

3. Fitting a Family of Distributions to Loss 
Data: A Mean Approach 

In section 2, procedures to fit a single distribution to 

loss data were considered. The information provided by rating 

variables was not considered. As mentioned earlier, risks in 

insurance tend to be heterogeneous. Risks with different 

attributes may well have different loss distributions. To a 

certain degree, a risk's characteristics are reflected through 

the values pertained by its rating variables. Thus, we expect the 

loss distribution for fire for a small unprotected frame building 

be different from a large, highly protected and fire-resistive 

building. It is desirable to have loss distributions which 

reflect these differences. Our approach to this issue is to 

construct suitable statistical models--family of loss 

distributions. Two possible solutions are proposed in this paper. 

The first solution, as explained in this section, is similar in 

spirit to the Generalized Linear Models (GLM) approach. An 

excellent account on the subject of GLM is given by McCullagh 
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and Nelder (1989). An alternative solution is presented in 

section 4. 

Loss distributions dependent upon rating variables have 

important implications for underwriting selection and 

determinatJon of rates. By including the rating variables, one 

generally improves the fit to the data. Using statistical models 

enables one to assess the effect of rating variables on loss 

distributions by performing statistical tests of hypotheses. 

A traditional approach for obtaining loss distributions 

dependent upon risk attributes is to segment losses into 

subgroups. Then, for each subgroup, a separate fitted loss 

distribution is obtained. For instance, in fire insurance, losses 

may be classified broadly by construction as fra~r~e, masonry and 

fire-resistive. Three fitted loss distributions can be obtained 

according to the types of construction. Segmentation of data into 

classes glves rise to credibility problems. For the problem 

alluded to, it would be exasperating if one considered eight 

construction types instead of three, and in addition, considered 

other rating factors such as protection and occupancy. 

In section 2, we noted that the lognormal distribution 

provides a reasonable fit to the data in Appendix A. Mirroring 

the approached used in GLM, let us now fit a [ami[y of ]ognormal 

distributions to our data. 

The GLM methodologies consist of three components. These are 

referred to as the random component, the ~stematic component, 
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and the link. The random component: the random variable of 

interest, Y (e.g., losses) or a transformation of Y, has a 

distribution belonging to the exponential family of 

distributions. The density, in canonical form, for the 

exponential family is 

f(y; & ~) = exp{ [(Oy - b ( ~ )  / a(~)] + c(y, ~)} 

where a(.), b(.) and c(.) are some specific functions. 0 is the 

primary parameter of interest, and @ is often referred to as the 

nuisance parameter. Suitable loss distributions in the 

exponential family include normal, gamma and inverse Gaussian. 

The systematic component of a GLM specifies the explanatory 

variables, xl x 2 .... xp (e.g., rating variables). The explanatory 

variables may only influence the distribution of the Y through a 

single linear function called the linear predictor ~, 

9 = f l O  + f l l X l  + . . . +flpXp 
The link, g, specifies how the mean of Y, E(Y), is related 

to the linear predictor ~, i.e. 

g( E(Y)) = q = ~fljxj 
J 

The form of the link function varies by the type of distribution 

within the exponential family of distributions. For the normal 

distribution the link function is the identity map, i.e., ~ = ~. 

In GLM, the information provided by explanatory 

variables (rating variables) is summarized by a linear predictor. 

1 5 5  



Each explanatory variable is considered either as a factor 

(categorical) or as a covariate (quantitative). For instance, 

sex, construction, and protection are categorical in nature, 

while age and amount of insurance are quantitative. 

Some additional notations are needed to specify our 

.th 
statistical model. Let ~ denote a linear predictor for the l 

loss. It summarizes the information conveyed by the rating 

variables for the i th loss. We write 

~=xiT  ~ 

p 

t~o 

p 

/.i 

where ~ is a (p+l) × I vector of unknown parameters. X. is a 
! 

(p+l) × I vector of known constant terms, xv's. The first element 

of X i, x,0 is set equal to one. Its purpose is to represent a 

constant term (intercept) in the expression for the linear 

predictor. The other x~'s components, I</~I,, are used to 

represent rating variables. The value of p is partially dependent 

upon the number of categorical rating factors included in the 

model, as well as their respective number of levels (values). In 

addition, p depends upon the number of quantitative rating 

variables in the model. Note that when rating variables are not 

taken into consideration, or the information about them is not 

156 



available, then p takes on the value of zero. This corresponds to 

the fitting of a single distribution to the entire loss data as 

described in section 2. 

Following are some examples of the linear predictors, ~, to 

be discussed throughout this paper. Some commonly used 

categorical rating factors in fire insurance are construction, 

protection, and occupancy. The amount of insurance (insured 

building value), a measure of exposure, is quantitative. Here, we 

shall consider only construction and building value for 

illustrative purposes. Assume there are three possible 

construction types (levels), namely frame, masonry and fire- 

resistive. In GLM, as well as regression analysis, the 

contribution of a categorical variable to a linear predictor is 

made by specifying dummy variables. For the construction rating 

factor, we need to introduce two dummy variables ~, and ~2, 

defined as follows: 

~1, If  the i 'h risk is a flame 
C,~ = [ O, Otherwise  

= ~1, If the i 'h risk is a masonry 
C'2 [ O, Otherwise 

For the i th loss, let BV i denote the amount of insurance 

purchased by the policyholder to cover damages arising from peril 

of fire to the building. For a fire policy, the policy limit for 

the building cover is synonymous with the building value. Since 

there is a wide range of variability among building values, we 
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shall use the logarithm of the building value instead of building 

value as our covariate in the linear predictor. For these two 

variables, namely, construction and building value, we shall 

define four statistical models corresponding to four linear 

predictors as follows: 

Model A: % =fl0 (3.1A) 

Model B: U,=flo+~l+fl2~2 (3.1B) 

Model C: qi = ~0 + ~ll°g(B~ ) (3.1C) 

M o d e l  D: ~ =flo+flllog(BVi)+fl2~l+fl]C,2 ( 3 . 1 D )  

The linear predictor given by equation (3.1A) is used when 

either we do not take into consideration the information given by 

rating variables or when no information on rating variables is 

available. In these instances, we are fitting a single 

distribution to the entire data. We shall refer to this Model A 

as the "base" model (distribution). The base distribution is used 

as a benchmark to gauge the relative improvement in fit by 

including rating variables. 

The linear predictor corresponding to (3.1B) is appropriate 

if construction is the only rating factor used. Using the 

statistical methodology developed here, the entire data is used 

to estimate the values of the parameters ~0 ' ~I' ~2 

simultaneously. This approach is different from the one in which 

the data is segmented into three sub-groups according to types of 

construction. 
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The linear predictor (3.1C) is used when we wish to examine 

only the effect of exposure size (building value) on loss 

distribution. 

Finally, we shall use (3.1D) when both construction and 

building value are considered. In this case, the vector 

.th x/ =(I log(BVi) Cil C,2 ) represents the contribution of the 1 

risk's attributes to the linear predictor, and p has the value of 

three. 

The four linear predictors given by (3.1A), (3.1B), (3.1C), 

and (3.1D) generate four statistical moOels. This is an example 

of nested models. For nested models, some models are a special 

case of a more general model. The linear predictors (3.1A), 

(3.1B) and (3.1C) are special cases of the linear predictor 

(3.1D). For the linear predictor (3.1D), Model D, we can 

entertain the following statistical tests of hypotheses: 

Ho: 131 = 132 = 133 = 0 ( 3 . 2 )  

Ho: 13z = 133 = 0 ( 3 . 3 )  

Ho: 131 = 0 ( 3 . 4 )  

The null hypothesis (3.2) is used to test if either construction 

or building value (exposure size) has any effect on loss 

distribution. The acceptance of this null hypothesis, subject to 

the usual interpretation of Type Two error probability, suggests 

that the rating variables have no appreciable influence on the 

loss distribution. The rejection of (3.2) implies that the 
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inclusion of building value or construction in the linear 

predictor gives a superior model as compared to the fit by the 

base distribution, Model A. The acceptance of the null hypothesis 

(3.3) suggests that in the presence of building value, the 

addition of the construction factor does not improve the fit. 

Null hypothesis (3.4) can be similarly interpreted. 

By conducting statistical tests corresponding to the 

previously stated hypotheses, the effects of rating variables on 

loss distributions can be assessed. The test statistics are 

likelihood ratio tests. The asymptotic distribution of test 

statistics are Chi-squares. Hence, for small sample sizes, the 

implications of the above tests based on Chi-squares are only 

approximately valid. 

Here, we assume that the underlying loss random variable, 

Yi--for the i t" risk--has a lognormal distribution with parameters 

~i and ~ The parameter ~i is the mean of transformed variable 

log(Yi). We shall refer to models in this section as "Mean" 

models. Using an approach similar to GLM, we relate the rating 

variables of interest to parameter ~i by using an identity link 

function. That is, 

i 
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where fl0.fll ..... fie are regression like parameters and xij's 

represent the contribution of explanatory rating variables for 

the i t" risk. Hence, we have a family of lognormal distributions, 

with parameters ~.fll ..... pp and ~ to describe the distribution of 

losses. 

It is assumed that the parameter ~ is the same for each risk, and 

does not vary by the rating variables. We shall examine an 

alternative approach in the next section, where ~ is not 

constant. Although, the mean and variance of the loss 

distributions vary by rating variables, but due to the constancy 

of ~, the skewness, and the kurtosis are not dependent on rating 

variables. 

The mechanism to fit a family of lognormal distributions to 

the data of Table A of Appendix A has now been established. A set 

of nested hypotheses of interest, (3.2), (3.3), and (3.4) in 

reference to model (3.1D) has also been stated. We now need to 

perform the necessary computations to estimate the model 

parameters, and calculate log-likelihood statistics for 

alternative models as described by linear predictors (3.1A), 

(3.1B), (3.1C), and (3.1D) . 

The program to compute maximum likelihood estimate of model 

parameters for the linear predictor (3.1D), as well as the value 

of the negative of log-likelihood based upon maximum likelihood 

estimates is given as Exhibit 2 of Appendix B. 
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Likelihood ratio test statistics are needed for performing nested 

statistical tests of hypothesis (3.2), (3.3), and (3.4). The 

likelihood ratio test statistics can be calculated from the 

values of log-likelihood statistics for the appropriate models. 

The upper portion of Table 4 below provides t:he values of 

the negativ~ of log-likelihood statistics for the9 ~ mean" models 

according to linear predictors (3.1A), (3.1B), (3.1C), and 

(3.1D) . The lower portion of Table 4, provides the values of the 

necessary likelihood ratio test statistics for performing nested 

statistical hypotheses (3.2), (3,3), and (3.4). In addition, the 

appropriate 95 ~h percentiles and degrees of freedom of the 

asymptotic distributions of test statistics are also provided. 
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Table 4 

Likelihood Statistics for Alternative 
Statistical Models 

"Mean" Models 

Linear 
Model Predictor 

A ~i = flo 

B fli = flo + f l lCil  + fl2Ci2 

C fli = flo + f l l log(BVi)  

D ~i = flo + fll l°g(BVi ) + flZ Cil + f13 Ci2 

Negative of logarithm of 
Likelihood function 

897.7654 

894.8344 

896.8284 

892.7099 

Nested Hypotheses based on Model D 

DF 95 cn perc. 

Test of Likelihood Ratio* for of 
Hypothesis Test Statistics Chi-sq. Chi-sq. 

Ho: 13, = 1132 = 133 = 0 -2( log  L, - log L D )= 1 0 . 1 1 1 0  3 7 . 8 1 4 7  

Ho: 132 = 133 = 0 -2( log  L c - log L D )=  8 . 2 3 7 0  2 5.  9915 

H0:131 = 0 -2(log L s - log L D )= 4.2490 I 3. 8415 

• LA, L B, Lc, and L D, above, correspond to likelihood statistics for 

" Mean" Models A, B, C, and D respectively. 
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Let us interpret the results given by Table 4, later on we shall 

make some qualifications regarding our interpretations. 

If we are interested to test whether construction factor or 

building value has an effect upon the shape of the loss 

distribution, the appropriate null hypothesis is 

H0: ~i = ~2 = ~J = 0. The value of the test statistic, i.e., the 

likelihood ratio test statistics is I0.IIi. Since i0.iii exceeds 

the value of 7.8147 (the boundary of rejection region), it implies 

that we should reject the null hypothesis H 0. The implication is either 

construction or building value have an influence on the shape of the 

loss distribution. Similar interpretations can be given for the other 

two null hypotheses. 

Some qualifications regarding the above interpretation of Table 4 are in 

order. First, due to relatively small sample size, and the 

approximate distribution of likelihood ratio test, as Chi- 

squares, we should be careful to interpret the results given in 

Table 4. Second, the numerical estimate of parameters (see 

Exhibit 2 of Appendix B) and the implications of the nested test 

of hypotheses, are only for illustrative purposes and are not 

intended to be used for any rating purposes. 

Finally, the Model D has the largest likelihood value. Based upon 

the values of likelihood statistics, as well as the AIC values, 

Model D fits the data better than Model A, the base distribution. 

Recall that Model A corresponds to the case of fitting a single 
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distribution to the data. Thus, the consideration of rating 

variables has led to an improvement in fit, and this improvement 

is statistically significant. 

4. Fitting a family of Lognormal 
Distributions with Different Scale Parameters 

In section 3, a family of lognormal distributions using a 

procedure ~ similar" to the GLM approach was introduced. These 

alternative statistical models were referenced to as "Mean" 

models. The linear predictor was set equal the ~ parameter of the 

lognormal, and the a parameter was assumed to be constant. By 

considering the logarithm of losses, log(Y), the rating variables 

affected the mean of the distribution but not the scale, the 

parameter. In this section, a family of lognormal distributions 

is introduced where the scale o is made to depend on rating 

variables, and the parameter ~ is treated as a constant. Using 

methodology similar to that in section 3, four new statistical 

models A, B, C, and D, are defined corresponding to four linear 

predictors as follows: 

Model A: Gi =fl0 (4.1A) 

Model B: ~,=flo+fllC, l+fl2C,2 (4. IB) 

Model C: cri = fl0 +fl, log(BVi) (4. IC) 

Model D: a~ =fl0+illlog(BVi)+ff2C, l +fl3Cn (4.1D) 
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These models will be referred to as "Scale" models. Parallel to 

the development in section 3, we have three nested statistical 

hypotheses of interest for Model D, linear predictor (4.1D), 

defined as 

H0: ~l = ~2 = ~3 = 0 (4.2) 

Ho: ~2 = ~3 = 0 ( 4 . 3 )  

Ho: ~l = 0 ( 4 . 4 )  

The purpose and interpretation of these hypotheses is similar to 

those of (3.2), (3.3), and (3.4) of section 3. 

With the mechanism established in section 3, we want to 

evaluate the it of alternative "Scale" models fitted to the data 

in Table A of Appendix A. The results of these computations are 

summarized in Table 5 below. A program for the maximum likelihood 

estimate of parameters, and likelihood statistics for Model B, 

linear predictor (4.1B), is given in Exhibit 3 of Appendix B. For 

comparison purposes, the values of likelihood ratio statistics 

for the "Mean" models are also reproduced in Table 5. 
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Table 5 

Likelihood Statistics for Alternative 
Statistical Models 

"Scale" Models 

Linear Negative of logarithm of 
Model Predictor Likelihood function 

A (ri ='80 897.7654 

B O'~ = '80 +'8I Cil +t92 Ci2 8 9 2 .  4242  
C a = ,80 +'8, log(BV,) 895. 7967 

D ~i = fl0 + fll log(BVi ) + '82 Cn + '83 Cn 887.9109 

Nested Hypotheses Based On Model D 
Comparison of "Mean" & "Scale" Models 

Test of Likelihood Ratio Mean 
Hypothesis Test Statistics* Model 

H0: fll  = f12 = '83 = 0 -2(log L A - log L D )  lO. 111o 

Ho: 132 = 133 = 0 -2 ( logL C - I O g L D )  8 . 2 3 7 0  

Ho: 131 = 0 - 2 ( l o g L B - I O g L D )  4.2490 

DF 95 t" perc. 
Scale for of 
Model Chi-sq. Chi-sq. 

19.7090 3 7.8147 

15.7716 2 5.9915 

9.0266 1 3.8415 

*Depending upon the context, the L^, L s, Lc, and LD, above, correspond 

to likelihood functions for "Mean" or "Scale" Models A, B, C, and D. 
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Once again we should be careful to interpret the results 

given in Table 5 due to relatively small sample size, and the 

approximate distribution of likelihood ratio test as Chi-squares. 

With these qualifications in mind, it appears that the "Scale" 

models provide a better fit than the "Mean" models to our data. 

5. Conclusion 

This paper discusses issues related to curve fitting. It 

provides appropriate statistical methodologies for fitting 

parametric distributions to loss data. In particular, the 

interaction of parametric probability distributions, deductibles, 

policy limits and rating variables are considered. The presence 

of deductibles and policy limits complicate the estimation of 

parameters of loss distribution, and the assessment of goodness 

of fit. Procedures to fit a single distribution or a family of 

distributions to loss data were given. Statistical tests of 

hypotheses to assess the effect of rating variables upon loss 

distribution were discussed. The methodologies developed in this 

paper were applied to a sample of loss data using lognormal as 

the reference distribution. Sample programs coded in S-Plus, a 

statistical package, were provided to illustrate the~numerical 

computation of maximum likelihood estimate of model parameters 

and maximized likelihood function. Finally, the results in this 
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paper suggest that for any specific data set, there may be many 

viable statistical models suitable for the purpose of fitting 

distributions to the data. 
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Appendix A: TABLE A 

Deduct- Policy Cons- Deduct- 
ible Limit Loss truction ible 
1,000 57,000 502 2 250 

250 41,000 31,971 1 1,000 
1,000 1,000 367 1 100 

250 60,000 698 2 250 
100 10,000 4,863 2 250 
250 24,000 834 2 250 
250 16,000 646 1 500 
250 60,000 198 2 250 

1,000 66,000 275 2 0 
250 36,000 500 1 250 
I00 53,000 1,518 2 250 
250 70,000 2,430 2 i00 
250 51,000 357 1 250 
250 79,000 2,008 2 1,000 
500 139,000 3,044 1 250 
250 155,000 238 2 250 
250 150,000 3,244 2 250 
250 98,000 850 2 250 
250 100,000 198 2 500 
i00 ii0,000 ii0,000" 1 250 
250 i15,000 1,191 1 1,000 
250 100,000 1,852 3 250 

5,000 153,000 4,433 1 250 
250 120,000 100 2 500 
250 100,000 2,501 2 1,000 
250 350,000 1,057 2 250 
250 373,000 180 1 1,000 

1,000 208,000 9,385 1 500 
1,000 600,000 2,300 3 250 
1,000 284,000 5,589 1 250 
1,000 263,000 652 2 500 

250 312,000 3,975 1 1,000 
250 280,000 485 2 250 

1,000 312,000 2,092 2 250 
2,500 250,000 250,000" 1 1,000 

250 300,000 250 2 1,000 
500 625,000 1,305 3 250 

1,000 319,000 6,729 3 500 
500 9,214,000 185 2 1,000 

1,000 3,000,000 22,930 3 5,000 
1,000 800,000 498 3 250 

500 838,000 990 2 1,000 
250 1,400,000 5,491 3 500 

1,000 1,500,000 1,185 3 1,000 
500 36,819,000 6,032 2 1,000 
250 1,282,000 13,775 2 500 
250 1,000,000 150 3 1,000 

1,000 6,127,000 4,536 2 1,000 
I00 1,140,000 298 3 250 

1,000 1,910,000 335 2 1,000 

Policy 
Limit 

43,000 
1,000 

33,000 
7,000 

64,000 
45,000 
30,000 
2,000 

I0,000 
52,000 
3,000 

50,000 
89,000 

200,000 
I00,000 
85,000 

103,000 
ii0,000 
ii0,000 
175,000 
154 000 
i00 000 
134 000 
125 000 
115 000 
630 000 
402 000 
204 000 
300 000 
350 000 
595 000 
275 000 
290 000 
560 000 
371 000 
362 000 
317,000 

6,817,000 
3,010,000 
6,023,000 

700,000 
1,000,000 
1,442,000 
2,000,000 
2,526,000 

65,065,000 
1,236,000 
5,000,000 
2,275,000 
2,700,000 

Cons- 
Loss truction 

75 2 
865 3 
206 2 

2,303 1 
11,760 2 

402 2 
3,352 1 

511 1 
1,115 2 

237 2 
1,197 2 
7,107 2 

535 2 
5,959 2 
1,224 3 

85,000* 1 
2,358 2 

31,243 2 
1,488 1 
2,702 3 

850 2 
300 2 
930 2 
305 2 
190 2 

1,875 1 
5,075 2 

972 2 
271 3 
87 1 

625 2 
20,934 1 

609 1 
325 2 

6,012 1 
860 2 

2,720 2 
1,040 3 

48,762 1 
20,576 1 

230 2 
200 2 

1,247 1 
10,000 2 
4,525 3 

16,981 2 
4,911 2 

81,692 2 
21,447 2 

992 2 

*Building losses with asterisks next to them are losses capped by their 
respective insured building values (right censored.) 
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Appendix B: Exhibit I 

An S-Plus Program to Compute Maximum Likelihood 
Estimate of Parameters & Maximized Likelihood 

Statistic for Weibull Distribution 

mydata<-TableA 
m<-data.frame(mydata) 
Weibull<-function(lamda, alfa, data = data.matrix) 

D <- data.matrix[,l] 
PL <- data.matrix[,2] 
y <- data.matrix[,3] 

z <- D+((y <PL)*y+(y >=PL)*PL) 
deltal<- ~D==0)*(y <PL) 
delta2<- (D> 0)*(y <PL) 
delta3<- (D==0)*[y >=PL) 
delta4<- (D> 0)*(y >=PL) 
L1 <- alfa*lamda*(z^{alfa-l))*exp(-lamda*{z~alfa)) 
L2 <-(alfa*lamda*(z^(alfa-l))*exp(-lamda~(z^alfa)))/exp(-lamda'(D^alfa)) 
L3 <- e×p( - lamda * (z^alfa)) 
L4 <- exp{ - lamda * (z^alfa))/exp( - ]amda * (D^alfa)) 
logL<- deltal*log(Ll)+delta2*log(L2)+delta3*log(L3]+delta4*log{L4) 

-logL } 
min.Weibull<-ms(~Weibull(lamda,alfa), data=m, start 
=list(lamda=],alfa=.15~) 
min. Weibull 
value: 899.802 
parameters: 

lamda alfa 
0.4484192 0.223073 

formula: ~ Weibull(lamda, alfa) 
i00 observations 
call: ms(formula = ~ Weibull(lamda, alfa), data - m, start = list(lamda 
= i, alfa = 0.15)) 

S-Plus is a statistical package produced by StatSci, a division of 
MathSoft, Inc., Seattle, Washington. 

Weibull density is : /(X;2 ,~) = aAX a-I exp(-2 x = ) 
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Appendix B: Exhibit 2 

An S-Plus Program to Compute Maximum Likelihood 
Estimate of Parameters & Maximized Likelihood 

Statistic for a Family of Lognormal Distributions 
Based on "Mean" Model D 

mydata<-TableA 

m<-data.frame(mydata) 
lognormal.model.D <- function(b0,bl,b2,b3,sigma, data=data.matrix) 

{ D <- data.matrix[,l] 

PL <- data.matrix[,2] 

y <- data.matrix[,3] 

z <- D+(y*{y<PL)+PL*(y>=PL)) 

cnst <- data.matrix[,4] 

C1 <- cnst == 1 

C2 <- cnst == 2 
d <-D+(D == 0)*I 

mu <- b0+bl*log(PL)+b2*Cl+b3*C2 

deltal <- {D == 0)*(y < PL) 

delta2 <- (D > 0)*(y < PL) 

delta3 <- (D == 0)*(y >= PL) 

delta4 <- (D > 0)*(y >= PL) 

L1 <- dlnorm(z,mu,sigma) 

L2 <- dlnorm(z,mu,sigma)/(1-plnorm(d,mu,sigma)) 

L3 <- l-plnorm(z,mu,sigma) 

L4 <- (l-plnorm(z,mu,sigma))/(l-plnorm(d,mu,sigma)) 

logL <-deltal*log(Ll)+delta2*log(L2)+delta3*log(L3)+delta4*log(L4) 

-logL } 
min.model.D<-ms(-lognormal.model.D(b0,bl,b2,b3,sigma), data=m, 

start=list(b0=4.568, bi=0.238, b2=1.068, b3=0.0403, sigma=l.322)) 

min.model.D 

value: 892.7099 

parameters: 
b0 bl b2 b3 sigma 

1.715296 0.3317345 2.154994 0.4105021 1.898501 

formula: lognormal.model.D(b0, bl, b2, b3, sigma) 

i00 observations 
call: ms(formula = ~ lognormal.model.D(b0, bl, b2, b3, sigma), data=m, 

start =list(bO=4.568, bi=0.238, b2=i.068, b3=0.0403, sigma=l,322)) 
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Appendix B: Exhibit 3 

An S-Plus Program To Compute Maximum Likelihood 
Estimate of Parameters & Maximized Likelihood 

Statistic for a Family of Lognormal Distributions 
Based on "Scale" Model B 

mydata<-TableA 

m<- data.frame(mydata) 
lognormal.Scale.model. B<- function(bO,bl,b2,mu, data=data.matrix) 

( D <- data.matrix[,l] 
PL <- data.matrix[,2] 
y <- data.matrix[,3] 

cnst <- data.matrix[,4] 
z <- D + Cy*(y < PL)+PL*(y >= PL)) 

Cl <- cnst == 1 
C2 <- cnst == 2 
d <- D + (D == 0) * 1 
sigma <- b0+bl*Cl+ b2* C2 

deltal <- (D == 0)'(y < PL) 
delta2 <- (D > 0)*(y < PL) 
delta3 <- (D == 0)*{y >= PL) 

delta4 <- (D > 0)*(y >= PL) 
L1 <- dlnorm(z,mu,sigma) 
L2 <- dlnorm(z,mu, sigma)/(l - plnorm(d, mu, sigma}) 

L3 <- ] - plnorm(z,mu, sigma) 
L4 <- (i - plnorm(z,mu, sigma))/(l - plnorm(d,mu,sigma)) 
logL <-deltal*log(Ll)+delta2*log(L2)+delta3*[og[L3)+delta4*log(L4) 

-logL } 
min. Seale. B<- ms(~lognormal. Scale.model.B(b0,bl,b2,mu}, data-m, 

+ start=list(bO=2,bl-O,b2=O,mu=6)) 

min. Scale. B 
value: 892.4242 

parameters: 
b0 bl b2 mu 

1.583642 1.324647 0.1066956 6.55098 
formula: lognormal. S£ale.model.B(b0, bl, b2, mu) 

I00 observations 
call: ms(formula = ~ lognormal. Scale.model. B(b0, bl, b2, mu), data = m, 

start = list(bO = 2, bl = O, b2 = O, mu = 6)) 
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Approximations of the Aggregate Loss Distribution 

Dmitry Papush, Ph.D., FCAS, 
Gary Patrik, FCAS 

Felix Podgaits 

Abstract 

Aggregate Loss Distributions are used extensively in actuarial practice, both in ratemaking and reserving. 
A number of approaches have been developed to calculate aggregate loss distributions, including the 
Heckman-Meyers method, Panjer method, Fast Fourier transform, and stochastic simulations. All these 
methods are based on the assumption that separate loss frequency and loss severib distributions are 
available. 

Sometimes, however, it is not practical to obtain frequency and severity distributions separately, and only 
aggregate information is available for analysis. In this case the assumption about the shape of aggregate 
loss distribution becomes very important, especially in the "tail" of  the distribution. 

This paper will address the question of what type of probability distribution is the most appropriate to use 
to approximate an aggregate loss distribution. 
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Introduction 

Aggregate loss distributions are used extensively in actuarial practice, both in ratemaking 
and reserving. A number of  approaches have been developed to calculate aggregate loss 
distribution, including the Heckman-Meyers method, Panjer method, Fast Fourier 
transform, and stochastic simulations. All these methods are based on the assumption that 
separate loss frequency and loss severity distributions are available. 

Sometimes, however, it is not practical to obtain frequency and severity distributions 
separately, and only aggregate information is available for analysis. In this case, the 
assumption about the shape of aggregate loss distribution becomes very important, 
especially in the "tail" of the distribution. 

This paper will address the question what type of probability distribution is the most 
appropriate to use to approximate an aggregate loss distribution. We start with a brief 
summary of some important results that have been published about the approximations to 
the aggregate loss distribution. 

Dropkin [3] and Bickerstaff [1] have shown that the Lognormal distribution closely 
approximates certain types of homogeneous loss data. Hewitt, in [6], [7], showed that two 
other positive distributions, the gamma and log-gamma, also provide a good fit. 

Pentikainen [8] noticed that the Normal approximation gives acceptable accuracy only 
when the volume of risk business is fairly large and the distribution of the amounts of the 
individual claims is not too heterogeneous. To improve the results of Normal 
approximation, the NP-method was suggested. Pentikainen also compared the NP- 
method with the Gamma approximation. He concluded that both methods give good 
accuracy when the skewness of the aggregate losses is less than !, and neither Gamma 
nor NP is safe when the skewness of the aggregate losses is greater than 1. 

Seal [9] has compared the NP method with the Gamma approximation. He concluded that 
the Gamma provides a generally better approximation than NP method. He also noted 
that the superiority of the Gamma approximation is even more transparent in the "tail" of 
the distribution. 

Sundt [11] in 1977 published a paper on the asymptotic behavior of the compound claim 
distribution. He showed that under some special conditions, if  the distribution of the 
number of claims is Negative Binomial, then the distribution of the aggregate claims 
behaves asymptotically as a g a(ama-type distribution in its tail. A similar result is 
described in [2] (Lundberg Theorem, 1940). The theorem states that under certain 
conditions, a negative binomial frequency leads to an aggregate distribution, which is 
approximately Gamma. 

The skewness of the Gamma distribution is always twice its coefficient of variation. 
Since the aggregate loss distribution is usually positively skewed, but does not always 
have skewness double its coefficient of variation, adding a third parameter to the Gamma 
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was suggested by Seal [9]. However, this procedure may give positive probability to 
negative losses. Gendron and Crepeau [4] found that, if severity is Inverse Gaussian and 
frequency is Poisson, the Gamma approximation produce reasonably accurate results and 
is superior to the Normal, N-P and Escher approximations when the skewness is large. 

In 1983, Venter [12] suggested the Transformed Gamma and Transformed Beta 
distributions to approximate the aggregate loss distributions. These gatmna-type 
distributions, allowing some deviation from the Gamma, are thus appealing candidates. 

This paper continues the research into the accuracy of different approximations of the 
aggregate loss distribution. However, there are two aspects that differentiate it from 
previous investigations. 

First, we have restricted our consideration to two-parameter probability distributions. 
While adding the third parameter generally improves accuracy of approximation, 
observed samples are usually not large enough to warrant a reliable estimate of an extra, 
third, parameter. 

Second, all prior research was based upon theoretical considerations, and did not consider 
directly the goodness of fit of various approximations. We are using a different approach, 
building a large simulated sample of aggregate losses, and then directly testing the 
goodness of fit oI' various approximations to this simulated sample. 

Description of the Method Used 

The ideal method to test the fit of a theoretical distribution to a distribution of aggregate 
losses would be to compare the theoretical distribution with an actual, statistically 
representative, sample of observed values of the aggregate loss distribution. 
Unfortunately, there is no such sample available: no one insurance company operates in 
an unchanged economic environment long enough to observe a representative sample of 
aggregate (annual) losses. Economic trend, demography, judicial environment, even 
global warming, all impact the insurance marketplace and cause the changes in insurance 
losses. Considering periods shorter than a year does not work either because of seasonal 
variations. 

Even though there is no historical sample of aggregate losses available, it is possible to 
create samples of values that could be aggregate insurance losses under reasonable 
frequency and severity assumptions. Frequency and severity of insurance losses for major 
lines of business are being constantly analyzed by individual insurance companies and 
rating agencies. The results of these analyses are easily available, and of a good quality. 
Using these data we can simulate as many aggregate insurance losses as necessary and 
then use these simulated losses as if they were actually observed: fit a probability 
distribution to the sample and test the goodness of fit. The idea of this method is similar 
to the one described by Stanard [10]: to simulate results using reasonable underlying 
distributions, and then use the simulated sample for analysis. 
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Our analysis involved the following formal steps: 

1. Choose severity and number of claims distributions; 
2. Simulate the number of claims and individual claim amounts, and calculate the 

corresponding aggregate loss; 
3. Repeat many times (5,000) to obtain a sample of aggregate losses; 
4. For different probability distributions, estimate their parameters, using the 

simulated sample of aggregate losses; 
5. Test the goodness of fit for the various probability distributions. 

Selection of Frequency and Severity Distributions 

Conducting our study, we kept in mind that the aggregate loss distribution could 
potentially behave very differently, depending on the book of business covered. Primary 
insurers usually face massive frequency (large number of claims), with limited 
fluctuation in severity (buying per occurrence excess reinsurance). To the contrary, an 
excess reinsurer often deals with low frequency, but a very volatile severity of losses. To 
reflect possible differences, we tested several scenarios that are summarized in the 
following table. 

Scenario # Type of I Expected Number Per Occurrence Type of  Severity 
Book of Business of Claims Limit Distribution 

1 Small Primary, 50 $0 - 250K 5 Parameter 
Low Retention , Pareto 

2 Large Primary, 500 $0 - 250K 5 Parameter 
Low Retention Pareto 

3 50 $0 - 1000K Small Primary, 
High Retention 
Large Primary, 
High Retention 
Working Excess 

500 

20 

$ 0  - 1 0 0 0 K  

$750K xs 
$250K 

5 Parameter 
Pareto 

5 Parameter 
Pareto 

5 Parameter 
Pareto 

6 High Excess [ 10 $4M xs $1M 5 Parameter 
i Pareto 

7 High Excess 10 $4M xs $ I M Lognormal 

Number of claims distribution for all scenarios was assumed to be Negative Binomial. 
Also, we used Pareto for the severity distribution in both primary and working excess 
layers. In these (relatively) narrow layers, the shape of the severity distribution selected 
has a very limited influence on the shape of the aggregate distribution. In a high excess 
layer, where the type of severity distribution can make a material difference, we tested 
two severity distributions: Pareto and Lognormal. More details on parameter selection for 
the frequency and severity distribution can be found in the exhibits that summarize our 
findings for each scenario. 
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Distributions Used for the Approximation of Aggregate Losses 

As we discussed before, we concentrated our study on two-parameter distributions. 
Basically, we tested three widely used two-parameter distributions, to test their fits to the 
aggregate loss distributions constructed in each of the seven scenarios. Each of these 
three distributions was an appealing candidate to provide a good approximation. The 
following table lists the three distributions used. 

Type of [ Parameters Probability Density Mean Variance 
Distribution Function 

Normal cr 2 

Lognormal 

Gamma 

~t 
(~>0 

I.t 
t~>0  
(x>O 
13>0 

f(x) =l/(o~/2n) * 
exp(-(x- ~t)2/(2o2)) 

fix) =l/(ox~/2r0 * 
exp(-(ln x - ~)2/(2o2)) 

f(x) = 1/(F(x)) * 
13-~x"'texp(-x/[3) 

P 

exp(~t + o2/2) exp(2~t + o 2) * 
[exp(o 2) - 1] 

a[32 

A Normal distribution appears to be a reasonable choice, at least when the expected 
number of claims is sufficiently large. One would expect a Normal approximation to 
work in this case because of the Central Limit Theorem (or, more precisely, its 
generalization for random sums; see, for instance, [5]). As we shall see, however, to 
make this happen, the expected number of claims must be extremely large. 

A Lognormal distribution has been used extensively in actuarial practice to approximate 
both individual loss severity and aggregate loss distributions ([1], [3]). A Gamma 
distribution also has been claimed by some authors ([6], [9]) to provide a good fit to 
aggregate losses. 

Parameter Estimates and Tests of Goodness of Fit 

Initially we used both the Maximum Likelihood Method and the Method of Moments to 
estimate parameters for the approximating distributions. The parameter estimates 
obtained by the two methods were reasonably close to each other. Also, the distribution 
based on the parameters obtained by the Method of Moments provided a better fit than 
the one based on the parameters obtained by the Maximum Likelihood Method. For these 
reasons we have decided to use the Method of Moments for parameter estimates. 

Once the simulated sample of aggregate losses and the approximating distributions were 
constructed, we tested the goodness of fit. While the usual "deviation" tests (Kolmogorov 
- Smirnov and g2-test) provide a general measurement of how close two distributions are, 
they can not help to determine if the distributions in question systematically differ from 
each other for a broad range of values, especially in the "tail". To pick up such 
differences, we used two tests that compare two distributions on their full range. 
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The Percentile Matching Test compares the values of distribution functions for two 
distributions at various values of the argument up to the point when the distribution 
functions effectively vanish. This test is the most transparent indication of where two 
distributions are different and by how much. 

The Excess Expected Loss Cost Test compares the conditional means of two distributions 
in excess of different points. It tests values E[X - x I X > x] * Prob{X > x}. These values 
represent the loss cost of the layer in excess o fx  if X is the aggregate loss variable. The 
excess loss cost is the most important variable for both the ceding company and 
reinsurance carrier, when considering stop loss coverage, aggregate deductible coverage, 
and other types of aggregate reinsurance transactions. 

Results and Conclusions 

The four exhibits at the end of the paper document the results of our study for each of the 
seven scenarios described above. The exhibits show the characteristics of the frequency 
and severity distributions selected for each scenario, estimators for the parameters of the 
three approximating distributions, and the results of the two goodness-of-fit tests. 

The results of the study are quite uniform: for all seven scenarios the Gamma distribution 
provides a much better fit than the Normal and Lognormal. In fact, both Normal and 
Lognormal distributions show unacceptably poor fits, but in different directions. 

The Normal distribution has zero skewness and, therefore, is too light in the tail. It could 
probably provide a good approximation for a book of business with an extremely large 
expected number of claims. We have not considered such a scenario however. 

In contrast, the Lognormal distribution is overskewed to the right and puts too much 
weight in the tail. The Lognormal approximation significantly misallocates the expected 
losses between excess layers. For the Lognormal approximation, the estimated loss cost 
for a high excess layer could be as much as 1500% of its true value. 

On the other hand, the Gamma approximation performs quite well for all seven scenarios. 
It still is a little conservative in the tail, but not as conservative as the Lognormal. This 
level of conservatism varies with the skewness of the underlying severity distribution, 
and reaches its highest level for scenario 2 (Large Book of Business with Low 
Retention). When dealing with this type of aggregate distribution, one might try other 
alternatives. 

As the general conclusion of this study, we can state that the Gamma distribution gives 
the best fit to aggregate losses out of the three considered alternatives for the cases 
considered. It can be recommended to use the Gamma as a reasonable approximation 
when there is no separate frequency and severity information available. 
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Scenario 1 

Frequency: Negative Binomial 
Expected Number of Claims 50 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 13,511 
Per Occurrence Limit 250,000 

Method of Moments estimated parameters for: 
Lognorrnal Normal Gamma 
Mu 13.347 Mu 691,563 Alpha 
Sigma 0.447 Sigma 325,246 Beta 

Mean 691,563 Mean 

Percentile matching~ 
P(X>x) 

_x Empirical ~ o r m a l  N o r m a l  Gamma 
500,000 69.36% 6 9 . 2 2 %  7221% 68.90% 
750.000 38.06% 3 4 . 2 7 %  4 2 . 8 7 %  37.02% 

1,000,000 16.48% 14.72% 17 15% 16.16% 
1,250,000 6.16% 608% 4.30% 6,11% 
1.500,000 1.94% 2 53% 0.65% 2.09% 
1,750,600 0.62% 1 07% 0.06% 0.66% 
2,000,000 6.06% 0 47% 0.00% 0.20% 

Expected Loss costs 
E[X-xl X>x] * P(X>x) 

Empirical Lognormal N o r m a l  Gamma 
237,751 2 2 7 , 0 1 1  1 7 8 , 6 4 8  234,823 
104,504 100,316 43,996 t03,823 
38,636 42,118 5,123 40,019 
12.293 17,660 245 13,924 
3,618 7,553 4 4.483 

870 3,323 0 1,369 
111 1,507 0 393 

Scenario 2. 

Frequency: Negative Binomial 
Expected Number of Claims 500 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 13,511 
Per Occurrence Limit 250.000 

Method of Moments estimated parameters for: 
Lognormal Normal Gamma 
Mu 15.740 Mu 6,922,204 Alpha 
Sigma 0.144 Sigma 1,004,786 Beta 

Mean 6,922,204 Mean 

Percentile matching_ 

_x Empirical ~ r m a l  
6,000,000 82.48% 82.07% 
7,000,000 44.92% 44 05% 
8,000,000 13.74% 1413% 
9.000,000 2.64% 2.94% 
9.500,000 1.02% 1 18% 

10,000,000 0.28% 0.44% 
10,500,000 0.02% 0.16% 

P(X>x) 
Normal Gamma 

82.06% 81.94% 
46.91% 46.01% 
14.17% 14.26% 
1 93% 2.63% 
0.52% 0.94% 
0.11% 6.30% 
0.02% 0.09% 

Expected Loss costs 
E[X-xl X>x] * P(X>x) 

Empirical Lognorma! Norma l  Gamma 
t,009,130 1,001,072 836,942 1,007,562 

362,107 3 6 2 , 9 5 6  170 ,371  363,947 
83,509 89,015 10,310 83,937 
11,978 15,524 137 12,315 
3,821 5,838 8 4,024 

586 2,072 0 1.192 
16 699 0 322 
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4.521 
152,965 

691,563 

47.462 
145,849 
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Frequency: Negative Binomial 
Expected Number of Claims 50 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 18,991 
Per Occurrence Limit 1,000,000 

Percentile matching 
P(X>x) 

x Empirical Lognormal N o r m a l  Gamma 
1,000,000 38.88% 3547% 4739% 38.70% 
1,500,000 18.28% 1484% 19 75% 17.27% 
2,000,000 6.82% 6.44% 5 09% 7.08% 
2,500,000 2.82% 2,95% 0.77% 2.78% 
2.750,000 1.54% 204% 024% 1.88% 
3,000,000 0,92% 1,43% 0.07% 1.03% 
3,250,000 0.42% 1 01% 0 02% O.8;P/o 
3,500,000 0.28% 0.73% 0.00% 0 . 3 ~  

Frequency: Negative Binomial 
Expected Number of Claims 500 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 18,991 
Per Occurrence Limit 1,000,000 

Percentile matching 
P(X>x) 

_x Empiricel Lognormal No rma l  Gamma 
10,000,000 40JN% 3979% 4 3 . 7 4 %  41.12% 
12,000,000 12.S0% 1 2 . 4 4 %  1230% 12.59% 
14,000,000 2.18% 2 81% 153% 2,43% 
15,000,000 0.88% 1 23% 039% 0.92% 
16,000,000 0.38% 0.52% 0.08% 0.32% 
17,000,000 0.12% 021% 0.01% 0.10% 
18,000,000 0.0(5% 0.08% 0 00% 0.03% 

Scenario 3. 

Method of Moments estimated parameters for: 
Lognormal Normal Gamme 
Mu 13590 Mu 958,349 Alpha 
Sigma 0 605 Sigma 636,775 Beta 

Mean 958,349 Mean 

Expected Loss costs 
E[X-xl X>x]" P(X>x) 

~ i r i c a l  Lognormal Normal Gamma 
233,797 212 ,405  110 ,782  228,287 
94,548 94,109 13,815 94,254 
35,445 44,012 692 ~,798 
12,438 21,761 13 13,826 

7,085 15,599 1 8,362 
4,021 11,313 0 8,062 
2,534 8,296 0 3,029 
1,697 6,145 0 1,807 

Scenario 4. 

Method of Moments estimated oammeters for: 
Lognormal Normal Gamm~ 
Mu 16,065 Mu 9,685,425 Alpha 
Sigma 0,204 Sigma 1,995,223 Beta 

Mean 9,685,426 Mean 

E x ~ . e d  Loss cost~ 

Empirical L0gnormal 
8S0,476 651,609 
160,831 165,420 
22,879 33,145 
8,930 13,941 
3,160 5,689 
1,060 2,268 

l U  888 

E[X-x i X>x] " P(X>x) 
Normal Gamma 

283,657 854,236 
14,936 181,977 

166 24,231 
9 8,544 
0 2,799 
0 887 
0 247 
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Frequency: Negative Binomial 
Expected Number of Claims 20 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 315,640 
Per Occurrence Excess Layer $750K x $250K 
Skewness 0.416 

Percentile matching 
P(X>x) 

x Empir ical  Legnormal Normal Gamma 
6,000,000 50 .26% 46.50% 54.46% 48.72% 
8,000,000 24 .48% 21.77% 26.83% 23.81% 

10,000,000 9.70% 9.40% 8 . 8 8 %  0.87% 
12,000,000 3.28% 3.96% 1 . 8 8 %  3.63% 
14,000,000 1.00% 1.68% 0 . 2 5 %  1.22% 
18,000,000 0.28% 0.72% 0 . 0 2 %  0.38% 
20,000,000 0.04% 0.14% 0 . 0 0 %  0.03% 

Scenario 5. 

Method of Moments estimated parameters for: 
Lognormal Normal Gamma 
Mu 15.571 Mu 6,306,951 Alpha 
Sigma 0.416 Sigma 2,739,428 Beta 

M e a n  6,306,951 Mean 

Expected Loss costs 
E[X-xl X>x] * P(X>x) 

Empirical Lognormal No rma l  Gamma 
1,225,433 1,173,911 682,504 1,218,440 

503,151 515 ,230  120,368 511,426 
174,023 219,525 9,991 191,144 
54,155 93,588 355 65,274 
14,274 40,508 5 20,761 

3,491 17,921 0 5,238 
772 3,779 0 494 

Exhibit 3 

5.301 
1,189,872 
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Scenario 6. 

Frequency: Negative Binomial 
Expected Number of Claims 10 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 1,318,316 
Per Occurrence Excess Layer $4M x $1M 
Skewness 1 B87 

Loqnormal 
Mu 
Sigma 

Mean 

Method of Moments estimated parameters for' 
Normal Gamma 

16006 Mu 12,985.319 Alpha 
0864 S i g m a  131683,648 Beta 

12.985319 Mean 

Percentile matchingL 
P(X>x) 

x Enlpirical Log.normal Norma l  Gamma 
15.000,000 31.80% 27 46% 44 15% 31.13% 
20.000.000 22.42% 17 57% 30 41% 21.61% 
25.000.000 15.32% 11 70% 19 00% 15.05% 
30,000,000 10.56% 8.06% 1069% 16.50% 
40.000.000 5.36% 4 15% 242% 5.14% 
50,000,000 2.52% 2 32% 0 34% 2.52% 
60,000.000 1.10% 1 38% 0 03% 1.24% 

Expected Loss costs 
E[X-x I X>x] " P(X>x) 

Empirical Lognormal Norma l  Gamma 
4,359,267 3,731,938 1,991,361 4,319,503 
3,026,84t 2,628,509 806 .980  3,011,961 
2,094,021 1.908,864 271 ,738  2,106,§72 
1,455,987 1,421,737 74.986 1,473,927 

689,160 837,602 3.009 724,182 
324,128 525,046 49 356,764 
152,034 345,040 0 176,096 

Scenario 7. 

Frequency: Negative Binomial 
Expected Number of Claims 10 
Severity: Lognormal 
Expected Severity 2 166,003 
Per Occurrence Excess Layer $4M x $1M 
Skewness 1 190 

Lognormal 
Mu 
Sigma 

Mean 

Method of Moments estimated parameters for: 
Normal Gamma 

16601 Mu 20.233,595 Alpha 
0667 S i g m a  151141,348 Beta 

20 233,595 Mean 

Percentiie matching 
P(X>x) 

x Empirica ! Loqnorma! Norma l  Gamma 
20.000 000 42.16% 37 60% 50 62% 40.65% 
25.000,000 30.66% 25 76% 37 65% 29.44% 
30.000,000 21.52% 17 77% 25 95% 20.99% 
40.000.000 10.64% 876% 9 59% 10.31% 
50.000.000 5.24% 4 55% 2 47% 4.91% 
60.000.000 2.06% 2 48% 0 43% 2.29% 
70000,000 0.76% 1 41% 0 05% 1.05% 

Expected Loss costs 
E[X-xl X>x] * P(X>x) 

Empirie~ L oRnormal Norma l  Gamma 
5,984,377 5,371.757 3.116,920 6,861,977 
4,167,564 3.806.611 1,488,582 4,122,201 
2,877,740 2.731,389 615 ,453  2,872,036 
1,299,737 1.462.583 65,324 1,364,938 

546,755 822,414 3,471 635,179 
204,979 482,606 88 291,091 
69,923 293,789 1 131,796 

Exhibit 4 

0.901 
14,419,533 

12,985,319 

1.786 
11,330.681 

20.233.595 
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Abstract 

The warranty business is a relatively new line of insurance in the property-casualty market. For 
the most part insurance coverage for warranties, extended warranties and service contract 
reimbursement policies has been introduced over the last thirty years. There is great opportunity 
in this line of business for the pricing actuary. It is an area where one can use his imagination 
and creativity in developing actuarially sound models to price and evaluate warranty business. 

This paper starts with auto extended warranty ratemaking, where there is usually plenty of data 
to use the traditional actuarial approaches to ratemaking. From there the paper discusses a 
non-traditional rate-making approach when historical experience is not available. This "back-to- 
basics" approach focuses on developing the pure premium by independently deriving frequency 
and severity. The next topic is the inclusion of unallocated loss adjustment expense (ULAE) into 
the pricing equation. In this line of business, because of the long-term commitments, ULAE 
must be carefully analyzed and provided for. Lastly, the paper discusses a number of pricing 
pitfalls to avoid. Some of these errors have been made by the author, and it is in the hopes of 
exposing these pitfalls that they can be avoided by others. 
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Introduction 

The warranty business is a relatively new line of business to the property/casualty market. It is 
generally within the last thirty years that insurance coverage has become an integral method to 
transfer this risk. Warranty coverage is basically mechanical breakdown insurance; if a product 
does not work due to some mechanical or component failure and it is covered under a warranty 
contract, than the product is either repaired or replaced, depending on the type of coverage in 
force. 

Relatively speaking, there is very little actuarial literature on the topic of warranty business in 
general. Several that come to mind are the 1994 Proceedings paper by Roger Hayne, 
"Extended Service Contracts" and two papers in the 1993 CAS Forum Ratemaking Call Papers, 
"A Pricing Model for New Vehicle Extended Warranties" by Joseph S. Cheng and Stephen J. 
Bruce, and "The Use of Simulation Techniques in Addressing Auto Warranty Pricing and 
Reserving issues" by Simon J. Noonan. Some of the topics addressed in those papers will be 
touched on in this paper. 

The pricing of a warranty product lends itself to the pricing actuary's expertise. It is generally a 
line that has predictable frequencies and severities, given a credible amount of data. On the 
auto warranty class, there is usually a great deal of data available to analyze using traditional 
actuarial methods. Other product areas do not have large amounts of data and the actuary is 
forced to develop a price by deriving a value for frequency and severity. 

The warranty market today can be divided up into five basic segments, each with its own set of 
distinguishing characteristics. These segments would be the automobile service contracts, 
commercial warranties (example; policies covering business equipment), home warranties 
(example; public service policies covering furnaces and air conditioners), retail warranties 
(example; policies covering VCRs) and Odginal Equipment Manufacturers (OEM) warranties. In 
this paper we will discuss auto extended warranty ratemaking and OEM warranty ratemaking, 
as well as several general topics which touch all areas. 
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VEHICLE EXTENDED WARRANTY 

The auto extended warranty concept dates back to the early 1970's. Prior to that the only 
warranties on automobiles were the manufacturer's warranties on new vehicles, which were 
generally limited to 12 months or 12,000 miles. Used cars were usually sold with no warranty. 

In the early t970's a few independent companies, generally not insurance companies but third 
party administrators (TPA) began to offer limited warranties on used cars. Soon there were a 
number of companies offedng one, two and three year terms for these warranties, 

Eventually these independents recognized another market could be extending the warranty 
beyond what was offered by the manufacturer. Covering new vehicles appeared to be a great 
cash flow bonanza, as the money for the coverage was paid up front, while claims would be 
delayed by the year's coverage under the manufacturer's warranty. Interest rates were very high 
in the early and middle of the 1980's, and investors were lured by the promise of high returns. 
Manufacturers began to offer their own extended warranties, forcing independent TPAs out or to 
reduce pricing. Some of these TPAs were backed by insurance companies; many were not. 

The late 1980's saw a turmoil in this business as pricing on new vehicle service contracts (VSC) 
was woefully inadequate. During this time the manufacturers also began to lengthen the term of 
the underlying warranty to three years or thirty-six thousand miles. This posed an immediate 
pricing problem. Purchasers of an extended warranty would expect the pricing to go down as 
the manufacturer now covered more claims. However, actuarial studies indicated double digit 
rate increases necessary. Interest rates also were coming down, lowering the investment 
income. 

TPAs that raised rates lost much of their volume almost overnight, as dealers had a choice of 
the manufacturers' or other independents' products. However, a number of independents did 
survive this period. Most of these a r e  either owned by or closely affiliated with an insurance 
company for security reasons, as long-term promises of vehicle service are being made. The 
manufacturers control about 70% of the new vehicle extended warranty market with the 
independents sharing the rest. The independents have a greater share of the used vehicle 
market. 

Insurance companies play an important role in the selling of the extended warranty product. The 
extended warranty is an after-market product, that is, the dealer and consumer will generally 
conclude the purchase of the vehicle before introducing the availability of the extended 
warranty. If the dealer is successful in selling the consumer an extended warranty or service 
contract, the dealer has then committed to a long-term relationship to service that vehicle. 

In most states, the extended warranty service contract is not considered insurance and is not 
regulated by the insurance department. It is simply a contract between the dealer and the car 
buyer and is covered under contract law. What is considered insurance by most states and is 
regulated by the various insurance departments is the Service Contract Reimbursement Policy 
(SCRIP). If the dealer chooses to sell an independent TPA's VSC, the dealer needs to assure 
himself that the TPA will be there to fulfill the promises made to the consumer. The consumer 
also must satisfy himself that should he move from the area or the dealer goes out of business, 
covered repairs wilt still be made. The TPA must therefore show that he is secure; most TPA's, 
through an insurance company, therefore provide a SCRIP to the dealer. This SCRIP provides a 
guarantee to the dealer and the consumer that if a covered repair is necessary it will be done, 
either at the selling dealer or at an authorized repair shop. 
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The vehicle service contract 

The vehicle service contract (VSC) has a number of options in terms of limits and coverage. The 
predominate products will be discussed here. The discussion will be broken into three 
segments; used vehicles, new vehicles and near-new vehicles. Used vehicles are those which 
are being resold to the consumer by a dealer and which no longer are covered by the 
manufacturer's warranty, New vehicles are those which have had no previous owners and have 
the full protection of the manufacturer's warranty. Near-new vehicles are those that have had a 
previous owner and are being resold by the dealer with some protection still under the 
manufacturer's warranty. 

Used Vehicle Service Contracts - Limits 

a. One-year term - The VSC coverage is limited to one year from purchase of vehicle. Mileage 
on the vehicle at time of purchase is also used as an eligibility factor, i.e., a vehicle with 
mileage beyond a certain limit will not be eligible for an extended warranty. 

b. Two-year term - This VSC coverage is limited to two years from the purchase of the vehicle. 
Again a mileage limit as described above is in place, but it is usually lower than the one-year 
eligibility as the coverage lasts longer. 

Three-year term - This VSC coverage is limited to three years from the time of purchase 
with an eligibility mileage limit in place. Again, this eligibility limit would normally be lower 
than that for the two-year term. 

New Vehicle Service Contracts - Limits 

The limits on a new VSC are almost always a combination of years and mileage. The most 
popular combinations are usually in multiples of whole years (5,6 or 7) and multiples of 10,000 
miles, from 60,000 to 100,000. An example of how this is shown would be 5/100,000, which 
represents 5 years or 100,000 miles, whichever comes first. At one time an option for unlimited 
mileage was offered, but industrywide experience was so poor that this option is now very 
seldom seen. Coverage starts upon the purchase of the vehicle. 

Near-new Vehicle Service Contracts - Limits 

These limits would normally be expressed as those shown for new VSCs. In fact, until recently 
this group was not separated from the "new" grouping. A new VSC would be sold to a consumer 
as long as there was still coverage under the manufacturer's warranty, the theory being that 
there was very little exposure to loss anytime during the period under which the vehicle was 
covered by the manufacturer. Upon analysis, however, it was found that loss costs were higher 
for new VSCs sold 18 months after coverage started under the manufacturer's warranty than 
for new VSCs sold on vehicles within that 18 month period. 

We initially began to study the loss costs of this group because we noted that a program which 
we underwrote for motorcycles had much higher loss experience for older bikes which were 
grandfathered into the program. These older motorcycles were only eligible for the new program 
if they had been purchased no more than one year prior to the inception of the program. The 
resulting loss costs on these bikes were significantly higher than the rest of the program; we 
guessed that there was some type of adverse selection taking place. 
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If adverse selection was taking place in our motorcycle program where we provided an option to 
purchase an VSC more than a year after the bike was bought, then it would be reasonable to 
assume that the same adverse selection was taking place when a car owner purchased a VSC 
more than a year after he bought the car. As noted above our subsequent analysis of the near- 
new group showed significantly higher loss costs in comparison to the new group, and we 
therefore created the near-new group with higher rates. 

Before the two-year lease option became popular, this group of vehicles was very small. 
However, this group has grown substantially over the last five years as the two year lease 
became predominant. Remember, the most prominent manufacturer's warranty is now 
3•36,000, so a vehicle coming off a two-year lease still has up to a year of underlying coverage, 
depending on mileage. 

Coverage offered under a vehicle service contract 

Coverage under the VSC is for mechanical breakdown due to failure of a covered component 
only, and perhaps some incidental coverage such as rental reimbursement and towing when a 
covered mechanical breakdown has occurred. No physical damage due to other perils is 
covered. For instance, an engine breakdown caused when a vehicle is caught in a flood is not 
covered. 

There are usually several options available in terms of coverage. There are a myriad of 
components that make up the automobile, with some obviously being more essential to the 
actual running of the auto than others. Basic coverage would normally cover the powertrain of 
the vehicle, such as the engine and transmission. Other options could be offered, up to 
"bumper-to-bumper" which pretty much covers everything in and on the car. 

Vehicle Service Contract Ratemaking 

Before discussing the actual ratemaking for VSCs, it is important to understand the makeup of 
the total price paid by the ultimate consumer, the purchaser of the vehicle. The total price is 
comprised of: 

P = I + A + T + M ;  

where P = total price, 

I = Insurer cost, 

A = Agents commissions, 

T = TPA administrative costs, and 

M = Dealer markup. 

To clarify, let us build the ultimate price to the consumer from the bottom up. First, the insurer 
determines the expected loss costs and adds any internal company expenses. This is passed to 
the TPA as the insurer cost. The TPA has administrative costs (underwdting, claims, systems, 
etc) which then get added on to the insurer cost. For the most part the TPA has an independent 
agency force in place to sell the SCRIP to the dealer, thus agent's commissions must also be 
included. (Note that as we pointed out eadier, the dealer sells the consumer a VSC, which is not 
typically considered insurance, and thus the dealer is not an insurance agent.) All of the above 
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costs make up what is called the dealer's cost, to which the dealer then adds whatever markup 
he can to arrive at the total price. Since this markup is not regulated in any state but Florida, 
total price for the same VSC can vary from consumer to consumer, depending on the 
negotiating skills of the buyer and seller. 

Dealer markup is not regulated in any state but Florida, and therefore is not included as a cost 
in filed rates anywhere but Florida. The remaining costs, however, may or may not be included 
in filed rates. Some companies file rates which only include insurer costs (I); the TPA will then 
collect a fee per VSC (T + A) from the dealer, which he will then have to use to pay the TPA's 
expenses as well as any commissions to his distribution force, if any. The filed rates may 
include I +T + A, in which case the insurer will pay out a commission to the TPA equal to T+A. 
In Florida, the filed rates include all costs. While these different scenarios do not present a 
problem for ratemaking, it does cause difficulty if one is trying to do a competitive rating study 
among various companies, as unless the costs included in the ratemaking are known, 
comparisons are almost worthless. 

Insurer costs {I) are the next item of evaluation. Insurer costs are made up of expected loss 
costs and the insurer's expenses. The expected loss costs are a function of many variables, 
including but not limited to: 

a. Manufacturer (Asian, US, European) 

b. Coverage option 

c. Make (Ford, Toyota, etc) and model (Explorer, Corolla, etc) 

d. Term limit option 

e. Mileage limit option 

f. Deductible option 

g. Underlying warranty (manufacturer's warranty) 

h. Special factors ( four-wheel drive, commercial use, advanced technology for example). 

The company must decide what loss cost variables they would like to include in the ratemaking; 
the above would be a pretty standard method to analyze data. As the variables above are all 
important elements that differentiate rates, it is important that the data be captured in the same 
detail. It is also important that the data be analyzed on a policy year basis. Because of the multi- 
year terms of the policies, it is important to match the losses to the policies that generated those 
losses. It also avoids any distortions caused by improper earning of the premium. 

The earning of the premium for a warranty product is not straightforward. In general, premium is 
earned over the policy period to reflect the exposure to loss during that policy period. For an 
annual policy the premium is usually earned pro rata as losses are assumed to be uniformly 
distributed over the policy period. This is not true in the extended warranty coverage. 

For used VSCs losses generally come in faster than a pro rata distribution. A useful rule of 
thumb is that half of the losses have emerged when the term is one-third expired, and two- 
thirds of the losses are emerged when the term is half done. For example, on a two-year term 
used VSC, two-thirds of the losses have emerged one year into the term. One primary reason 
for this accelerated loss pattern is that mechanical problems on used vehicles can occur pretty 
quickly after the sale. Sometimes a used car dealer will use the extended warranty as a 
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maintenance program. (This will be discussed later in the dealer management section.) For 
used VSCs, the premiums should be earned accordingly. 

On new VSCs the earning is somewhat trickier. First, very few losses are expected under the 
extended warranty while the underlying warranty has not expired. The only losses during this 
period would be towing or rental expenses over and beyond what the underlying covers. Once 
the underlying warranty has expired, losses emerge on the extended warranty cover. As the 
frequency and severity of repairs are expected to increase during the remainder of the service 
contract we would envision an ever-increasing loss payout pattern. This type of pattern is well 
described by the reverse sum of the digits function (see Exhibit E for definition and formula), 
and this pattern is often used. 

However, in actuality, while loss emergence does accelerate for a period of time after the 
expiration of the underlying warranty, this emergence slows down considerably towards the end 
of the term. This variable is sometimes called the attrition factor. Several things may happen 
during the life of the VSC; the mileage limit could be hit before the term limit, the car may be 
sold and the warranty not transferred, the owner voids the warranty by poor maintenance, or 
even the owner just doesn't keep track of the warranty contract. In any event, this attrition factor 
does exist, and it causes the loss payout pattern to take an "S" shape, slow starting out, grows 
quickly in the middle and slows down at the end. Premiums should be earned in the same 
fashion. 

The loss payout patterns are direct byproducts of the actuarial analysis of the policy year loss 
triangles. The actuary decides at what level the earnings should be done, and has the data 
collected in these levels. For instance, earnings may be done by term and mileage, so 
premiums and losses would be segregated into term and mileage subsets by policy year. 

Losses are developed to ultimate using a variety of methods. Because the loss emergence is 
low in the beginning of the contract period, more recent policy years benefit from the use of the 
Bornhuetter/Ferguson (B/F)* and the Stanard/Buhlmann (S/B)** methods in addition to simply 
multiplying the selected loss development factor by the emerged losses. It is also valuable to 
use average claim costs to develop ultimate losses (See Exhibit A). Note that for more recent 
years the paid loss projection is erratic as there are few emerged losses. 

We also calculate a pure premium projection of ultimate losses (columns 13-15 in Exhibit A.) 
We use the B/F annual projection to get an ultimate pure premium per contract (column 13.) 
The B/F projection is used as its values are between the paid and the S/B projections, and thus 
we hope to be neither too optimistic nor too conservative. In column 14 we convert the annual 
pure premium into a running cumulative pure premium. In this way we incorporate mature years' 
pure premiums which have minimal actuarial adjustments along with the more recent years' 
pure premiums which are very dependent on actuarial assumptions on development. We then 
multiply the number of contracts written (column 2) by the cumulative pure premium to obtain 
the pure premium projection in column 15. 

* For definition and explanation of the B/F method, please see Foundations of Casualty 
Actuarial Science, pages 210-214. 

** For definition and explanation of the S/B method, please see Foundations of Casualty 
Actuarial Science, pages 352-354. 
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Of course, the other actuarial adjustments must also be made. Premiums must also be 
developed to ultimate as well as put on current rate level, and losses must be trended from the 
midpoint of the experience period to the midpoint of the proposed policy period. Individual 
policy years are then averaged and compared against the expected loss ratio to compute the 
required rate level indication. 

LOSS TREND 

Loss trend is a function of change in frequency vs a change in severity. For auto warranty 
business, normally the frequency is high and the sevedty is low. Frequency is affected by 
changes to the underlying manufacturers' warranties, the quality of the vehicles, the changing 
mix of business, and the dealers' service departments' propensity to use the warranty coverage. 
Severity is affected by the change in technology, change in mix, change in labor rates, 
availability of parts and again the service departments' willingness to use the warranty product. 
Both internal and external sources of data should be used to finally select a trend factor. Exhibit 
B shows an internal measure by component for frequency and severity, as well as an external 
measure of change in severity, using the government's PPI index as a source. For the external 
measure, we have examined the PPI for auto parts, both new and rebuilt, and for labor charges. 
We have weighted these indices together to get a combined external index. As labor charges 
usually make up about half of the total repair bill, we have given it a weight of 50%. We have 
given auto parts new and rebuilt each a weight of 25%, which assumes that half the time new 
parts are used in the repair job and half the time rebuilt parts are used. 

The selection of annual loss trend factors in auto warranty business is not straightforward. We 
include external indices in our determination as it is often difficult to explain why internal factors 
change. For instance, in Exhibit B we show a change in frequency for the new VSC group. This 
is counterintuitive as it is generally accepted that the quality of new vehicles has improved; 
shouldn't we then see a decrease in frequency? Perhaps our mix of vehicle make and model 
has changed. Let's say the we determine that our mix did change. Would we expect the same 
mix change in the next policy year for which we are projecting rates? 

Another problem arises because of the multiyear policy terms. On the new and near-new groups 
we must wait several years before we become comfortable with projecting a true frequency and 
severity. We then must use a four or five year old trend factor to project lost costs for the 
upcoming policy year. We have current calendar year data, but that is a mix of claims from up to 
seven policy years. If the volume and mix of business is stable over the ratemaking experience, 
then calendar year trends can be useful, otherwise it can lead to distortions. 

It is therefore necessary to include external factors to smooth the results of our internal trend 
analysis. It is appropriate to give a higher weight to the external factors as they are determined 
from an industrywide database. This is important because a SCRIP program will most likely get 
a spread of business from all makes and models. These industrywide or government indices are 
also important as they tend to smooth the results from internal analysis. As we are often 
projecting many older policy years in calculating the rate level indication, we must be conscious 
of the compounding effect of many years of trend to this calculation. 

OLDER YEARS: CAN THEY BE USED IN RATEMAKING? 

As is seen in Exhibit A, nine policy years have been used in the ratemaking study. We also 
know from the discussion above that there have been changes over that period of time, most 
notably the change in the underlying manufacturer's warranty from 1 year / 12,000 miles to 3 
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years / 36,000 miles. This shift would have a significant impact on the older years. Can these 
older years be used? 

If the TPA or insurer keeps very detailed claim data, an actuary can "as it" the older years. 
Claims from those older years can actually be recast as if the new terms and conditions were in 
place. This is helpful not only in getting more accurate projection data but also in calculating 
loss development factors. Thus older years not only can be used but they are very valuable as 
they represent truly mature loss data. 

IMPORTANCE OF RATEMAKING 

The accuracy of the extended warranty rate level indication cannot be stressed enough. 
Remember, rates are being set on contracts that could be up to seven years in duration. These 
contracts are a single premium and are non-cancelable by the insurer. Oftentimes it is several 
years before the adequacy of the current rates can be ascertained, which means you may have 
written several years of inadequately priced business. If you lower the rates you will most likely 
lose business and thus revenue just when the claim activity is increasing. It is therefore very 
important to perform rate level analyses every twelve to eighteen months and make adjustments 
as necessary. 

DEALER MANAGEMENT 

The actuary, from the pricing analysis, especially the analysis of frequency, can often find some 
trouble spots. Notice above that both frequency and severity can be affected by the dealers, or 
more precisely, the dealers' service departments. It is important, therefore, to keep track of the 
frequency and severity for each dealer. It is a relatively simple matter to set up a test of 
significance for an individual dealer's frequency and severity. If either measure is significant, 
i.e., it is outside the normal range of frequency or severity, than appropriate dealer rehabilitation 
measures must be taken. By rehabilitation it is meant that the dealer must be put on a program 
in which frequency and severity are closely monitored, with special reporting done monthly. If 
within a prescribed time period the dealer's experience has not improved, then the SCRIP will 
most likely be cancelled. Of course, the TPA (and the insurer) are still responsible for the run-off 
of the inforce VSCs, which may last up to seven years. 

As in any line of insurance, fraud must be guarded against. In the warranty business, you must 
be vigilant against increases in frequency because severity cannot be changed too drastically. A 
good dealer management program is a must in this business and the pricing actuary can 
certainly play an important role. 

WHAT TO LOOK OUT FOR: 

THE ONLY CONSTANT IS CHANGE 

The vehicle service contract ('VSC") industry is young relative to most standard casualty lines of 
business. As such, it is still evolving. The programs offered by the various third-party 
administrators of VSCs are constantly changing. These changes in coverage terms and 
conditions, coverage term options, deductibles and eligibility guidelines are driven by two sets of 
factors: marketing requirements and changes in the environment of the marketplace. It is 
important to understand the dynamics of these evolutionary changes and to incorporate such 
understanding into the ratemaking process. 
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MARKETING REQUIREMENTS 

Innovation is an important marketing tool in the VSC industry. A VSC administrator's need to 
take an offensive position, to capture or retain market share, generally results in program 
changes that increase risk. Most VSC administrators rely on a network of independent general 
agents to distribute their programs to their first-level customers, automobile dealers. 
Participating auto dealers employ after-sale specialists, finance and insurance ("F&I") 
managers, to sell VSCs to the second-level customers, automobile purchasers. All auto dealers 
sell VSCs. 

A reasonably effective F&I manager will place a VSC on 30-40% of the retail sales transactions 
at the dealership. The average profit generated by a VSC sale can add 50-100% to the profit 
generated by the sale of the vehicle itself. Competition for the auto dealer's business is fierce. 
Any innovation gives the agent new ammunition to improve his sales pitch. The latest change 
might have enough impact to tip the account his way. Changes to VSC programs which expand 
vehicle or mileage eligibility can increase penetration rates at existing accounts. Expanded 
coverages or benefits give the F&I manager more reasons to justify higher retail pricing, 
increasing gross profit margins. 

ENVIRONMENTAL CHANGES 

In opposition to the pro-active nature of marketing-driven changes, environment-driven changes 
are reactive in nature. The impetus to these changes can come from many directions. 
Changes in the length or extent of an automobile manufacturer's warranty coverages can 
require changes in terms, coverages or vehicle rating. Innovations in parts or systems, 
especially high tech, electronic replacements for existing systems can require changes in 
coverages, exclusions and rating. Changes in vehicle purchasing patterns can change the 
makeup of an entire book of business. Ten years ago, a one, two or three year-old vehicle was 
the hardest used car to sell. Four years ago, such vehicles made up only 10% of VSC sales. 
Today, such cars account for more than 30% of the VSCs sold. 

KNOW WHAT YOU ARE MEASURING 

All of the foregoing is meant to illustrate one point. In order to ensure accuracy in ratemaking, 
especially when measuring trend, know the history of the block of business you are observing. 
In your due diligence study, prior to starting any rate adequacy study, pay special attention to 
the following: 

Data Integrity - Have all data items, especially manually-coded indicators, been entered and 
maintained in a consistent manner throughout the history of the database? Are changes in 
coverage reflected in changes in plan/coverage codes? Run comparison tests on contracts and 
claims involving similar vehicles/repairs over multiple policy and accident years. 

Vehicle Coverage - What changes in coverage options, term/mileage availability, deductible 
options, vehicle or mileage/age eligibility categories have taken place over the years? When 
were such changes introduced? Obtain copies of all contracts sold and highlight changes or 
additions. 
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Benefits - Have ancillary benefit packages (substitute transportation, towing, trip interruption) 
changed in composition or in the extent/nature of the benefits provided? Include benefit 
packages in your comparison of coverage, conditions, exclusions. 

Claims Adjustment Policies - What changes have been made in the interpretations of 
coverages, conditions and exclusions over the years? When were such changes introduced? 
Obtain copies of all procedure manuals, both external and internal, as well as any pertinent 
policy memoranda. 

Rate Structures - Have there been changes instituted in the method of rating vehicles? Have 
surcharges been added/dropped? Have vehicle classifications changed? Obtain copies of all 
rate charts and state premium filing exhibits. 

Vehicle Mix - Has the mix of makes, models, equipment changed enough to affect trends in 
composite loss development patterns or ultimate losses? Has the geographic mix of business 
changed over the years under study? Obtain historical state/agent loss ratio reports. 

IN CONCLUSION 

Assessing the impact of change, and the rating provisions employed to offset change, is an 
essential ingredient in the vehicle service contract ratemaking process. By initially focussing 
your attention on this aspect of the ratemaking process, you will learn how to apply your 
analytical skills and techniques to the best advantage. 
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RATEMAKING WITHOUT HISTORICAL DATA 

The most accurate ratemaking is done when there is credible historic program data with which 
to work. Many times, however, historic data is not available. It may be that the program is new. 
Oftentimes the program is immature; remember that extended warranty contracts are usually 
multiyear terms, thus it is usually a number of years before the first policy year is completely 
expired. It is in these situations that one must use a "back to basics" approach. To price a 
program properly, one must start with an accurate pure premium, which is the product of 
frequency times severity. 

An interesting example of using a pure premium approach is the pricing of a new program such 
as the second generation of wind turbines. In the early 1980's, the US. government, in an effort 
to decrease our dependency on foreign oil, granted tax credits for the advancement of 
alternative energy sources. As part of this initiative, a number of wind turbines were hastily 
developed and deployed. Each of these machines had manufacturer's warranties, most of which 
were subsequently insured. Coverage included both mechanical problems and business 
interruption. Through the ensuing years, the wind turbines proved mechanically deficient and 
large losses were paid out by insurance companies. 

In the mid-nineties, a second generation of wind turbines were being developed and coverage 
sought for manufacturer's warranties. As there had been problems in the past, the financial 
backers of these new wind turbines were asking for four specific warranties from the 
manufacturer; workmanship, efficacy, availability and design defect. Each of these coverages is 
described in more detail below. 

Workmanship - This covers both mechanical breakdown of the machine and the installation of 
the machine, and would usually be limited to one year from start-up 

Efficacy - This would cover the buyer of the wind turbine for lost revenues as a result of the 
machine not reaching the promised power generation levels. 

Availability - Coverage is given for lost revenues due to down-time in excess of a prescribed 
number of hours. Total hours functioning would be determined by average sustained wind 
speed at the field site. 

Design Defect - This would cover the retrofitting and lost income due to failure of the wind 
turbines to perform due to faulty component design. Failure rate thresholds for various 
components would be established. 

Each of the above coverages poses a challenge to the actuary with respect to developing 
frequency and severity. A thorough examination of the engineering of the new machine must be 
done. As the actuary is not usually suited for this role, an independent engineering analysis 
must be sought. 

The U.S. and other governments often can provide data on failure rates of s=milar components 
(gears, generators, bearings, etc) used in the wind turbine. Deductibles must be established so 
this does not become a maintenance program and aggregates must also be in place so that a 
worst-case loss can be determined. Also, as variation exists about all expected values for 
variables such as failure rates, a risk premium must be considered. 

Exhibit C shows a possible approach to determining the pure premium for the above coverages 
for year 1 of a multiyear manufacturer's warranty, Three separate calculations are made; 
revenue loss exposure per wind turbine, design defect loss exposure, and materials and 
workmanship loss exposure. 
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Revenue loss exposure/wind turbine - This calculation includes the business interruption 
coverage from both the efficacy and availability sections above. Potential downtimes are given 
for repairs or retrofits of various components along with the probability that failure of that specific 
component will occur. For example, given that downtime projected for normal maintenance is 
274 hours annually and that 125% of those hours will be used, we can expect 342.5 hours to be 
used annually in normal maintenance. In total, we expect 1,396.1 hours of downtime; in this 
program we are allowed 10%, or 876, hours of downtime annually (876 hrs = 10% of 24 hr/day x 
365 days). This is shown at the bottom of Exhibit C, and is the deductible feature of the 
program. As noted above, about 40% of the deductible would be used for normal maintenance; 
the other 60% would be to reduce dollar-swapping as well as have the insured share in some 
risk. With a machine expected to produce 82 kwh/hour, and at $.08/kwh, a resultant loss of 
$3,412 is expected. A worst-case scenado is also provided, with the probability of occurrence 
increased by two standard deviations of the expected probability of failure. 

Desi,qn defect loss exposure - This calculation includes the retrofit cost (sevedty) and the 
probability of failure (frequency) by component. Expected costs for each component are 
calculated; the expected cost per wind turbine for this coverage would be $1,040. The worst- 
case scenario include revised retrofit costs as well as increased frequencies as described 
above. 

Materials and workmanship loss exposure - As above, a retrofit cost and probability of 
failure is assigned for each component resulting in an expected cost of failure for each 
component. The total expected cost for this coverage would be $544. Worst-case scenario is 
calculated as described above. 

As mentioned above, consideration must be given to adding a risk premium to the above. A 
number of assumptions have been made which, if wrong, can materially affect the calculated 
pure premium. For instance, the wind turbine is expected to produce 82 kwh per hour. This has 
not been proven. Also, a rate of $.08 per kwh produced may vary widely in today's fluctuating 
energy market. Probabilities of failure for similar components tested in government studies 
might not be representative of the actual components used in the design and manufacture of the 
wind turbines. In place of a risk premium, a retrospective rating policy might be considered. In 
any event, while a determination of a pure premium can be made, its accuracy is only as good 
as the assumptions made. There can be a wide range into which the correct premium may fall. 
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HANDLING OF UNALLOCATED LOSS ADJUSTMENT EXPENSE 

Unallocated loss adjustment expense (ULAE) can be defined as that part of loss adjustment 
expense which covers the creation and maintenance of a claims department, among other 
things. It has been overlooked in the past and is one of the reasons why entities have turned to 
insuring the warranty exposure. Consider the warranty product. The pure premium is typically 
made up of high frequency low severity occurrences, i.e., there are many small losses. 
Expected losses in this scenario are generally predictable, and in the early days of shorter-term 
(mostly annual) warranties the manufacturer kept this risk. As both manufacturer's warranties 
and extended warranties increased in length of policy term, problems were created. 
Manufacturers or retail outlets which sold warranties went out of business on occasion, leaving 
the consumer with a worthless warranty, one on which he most likely paid the premium up front. 

A warranty is a promise to pay for a covered repair or replacement to a product; if the provider is 
not around at the end of a five or ten year policy term, that promise goes unfilled. This is one 
reason that the transfer of this dsk by insurance is now so common. However, insurance 
companies may decide that they no longer want to be in the warranty business or may go out of 
business themselves, and non-recognition of ULAE costs can lead to financial difficulties in 
these instances. 

Take for example the auto extended warranty provider. Typically a new-car buyer may purchase 
an extended warranty for up to seven years or one hundred thousand miles, whichever comes 
first. The warranty insurer gets the full premium at the time of purchase of the car and is now 
obligated for the full term of the contract. This means that if for whatever reason the insurer 
leaves the warranty business, some provision for the fulfilling of the warranty promise must be 
made. The creation and maintenance of a claims department to fulfill this promise falls under 
the heading of ULAE and is an important consideration for the actuary in pricing the warranty 
risk. 

Exhibit D illustrates the calculation of ULAE by showing the cost of maintaining a claims 
operation for the duration of the inforce policies. The calculation starts with the number of claims 
expected annually, and then the determination of how many underwriters, claim adjusters, 
auditors and clerks would be needed to service those claims. Also factored in would be the cost 
of equipment, and facilities for these people. As can be seen, the total cost can then be reduced 
to a rate per contract and included in total price. 

The most important calculation in Exhibit D may be the of distribution of claims. In this example 
warranty contracts are sold with terms varying from 1 year to 7 years. For policy year 1998, the 
contract sold on December 31 = of that year will not expire until December 31, 2005. If no more 
contracts were ever written, there would be a need for a claims staff for seven more years. It is 
important that claims data can be linked to policy information in order to determine the claim 
development (it is not uncommon for warranty administrators to keep premium and claims data 
completely separated, though this is becoming less and less common). If no data is available, a 
distribution can be developed by working with sources knowledgeable with tile product being 
warrantied. There may also be similar products being warrantied about which claim 
development data is available that can be used as a proxy. 

The actual ULAE costs can be determined in one of two ways. The costs may be determined 
by viewing the claims operation either as an on-going business or as a run-off operation. 
Viewing it as a run-off operation would lower the costs as claim-paying standards would most 
likely drop. The insurer is no longer interested in maintaining a strong service image. For 
example, in an on-going operation the standard of issuing a claim payment from notice of claim 
may be five days; in a run-off operation this standard could be relaxed to two weeks or more. 
This philosophy would also influence the setting of a ULAE reserve. 
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ULAE can be collected in various ways, depending on the way an insurer provides the warranty 
product. If the insurer administers the settling of the claims it can be included in the warranty 
premium. If a third party administrator (TPA) handles the claims, it may be provided for by fees 
charged by the administrator to the dealer or retailer or it may be part of the commission 
structure. For example, the TPA may earn a commission of 25%, but only get 15% with the 
remaining 10% amortized over several years. 

As can be seen, not recognizing the ULAE costs on a multiyear non-cancelable policy can have 
financial implications. At the very least, a liability should be shown in the financial statements. At 
the worst, it could lead to a claims department totally unprepared to handle the volume of claims 
in the future. 
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PITFALLS 

Many companies have entered the insuring of manufacturers' and extended warranty market 
and many have failed, losing great amounts of money. Most often failures occur because the 
risk being transferred was not understood. Let's face it, at the outset, this business looks very 
attractive, as for the most part premiums are paid up front in full, and claims may occur years 
later. Just think of all the investment income to be made! 

Vehicle Service Contracts 

Vehicle service contracts ("VSCs") present us with a unique risk/exposure structure. In no other 
form of insurance is the insured, the producing agent and the service provider the same entity. 
This structure is akin to a doctor selling health insurance to his own patients. As you might 
imagine, such a structure is full of moral hazards and conflicts of interest. 

As a companion function to careful ratemaking, account management is a necessity to ensure 
the success of any VSC program. Opportunities abound for unscrupulous dealership personnel 
to take advantage of a VSC program. Used car sales managers can increase gross profits by 
avoiding reconditioning expenses and having failed vehicles repaired under the VSC program. 
F&I managers can increase gross profits by posting incorrect issue mileages in order to reduce 
premiums below required levels, while maintaining high retail rates (retail rates are only 
controlled in Florida). Service departments can comb over each car in order to "discover" 
claims. 

None of the previous examples can be controlled through underwriting or claims adjustment 
efforts or controls. Without effective account management systems, administrators are left with 
three, equally unpalatable alternatives: raise rates, post-claims underwrite or cancel bad 
accounts. If rates are raised beyond competitive levels, business will fall off. Generally, the 
greatest losses are among the lowest risk, most profitable vehicle makes. The artificially high 
rates become attractive only to high-risk dealers, selling high-risk cars, which will soon prove 
even the artificially high rates to be inadequate. Tightening claim adjustment policies can have 
the same effect - lost business. Cancellation of poorly-performing accounts, while eliminating 
the problem, can end up eliminating all of a company's problems. 

Information flow is the cornerstone of a successful account management system. Situations 
can change quickly in the automobile business. A monthly exception report, listing and 
classifying all poorly-performing accounts, is absolutely necessary. Also necessary is an 
experienced, well trained staff to manage the recovery process. The overall concept of account 
management is to identify problem accounts, to identify the specific problem areas within the 
operation of such accounts and then to take corrective action. 

Identifying problem accounts is simply a matter of generating a listing of accounts whose earned 
loss ratios exceed a specific target. The three major areas of VSC groupings involve new 
vehicles, near-new vehicles (or extended eligibility new vehicles) and used vehicles. If any or all 
of the target loss ratios for these groupings are exceeded, the account should show on the 
listing. If programming resources permit, it is also useful to develop some sort of ranking 
system, encompassing factors such as : newly acquired account shock losses, number of VSC 
grouping target loss ratios exceeded, overall loss ratio target loss ratio exceed, as well as the 
amount by which the targets have been exceeded. 

Identifying problem areas within the operation of the targeted accounts is a more complex issue 
In order to begin the analysis of specific problem areas, a more complex target set, or model, is 
necessary. This model needs to be constructed according to major franchise group (Standard 
Asian, luxury Asian, standard domestic, luxury domestic, standard European, luxury European) 
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and reflect acceptable frequency and severity targets for each VSC grouping (New, Near-New, 
Used, Total). Frequency and severity targets for this matrix can be calculated by averaging the 
results of several accounts within each franchise group whose loss ratios for all VSC groupings 
are at or below target levels. 

Once the variances from frequency/severity targets are established, specific causes for such 
variances can be derived and solutions proposed. High rates of early used vehicle claims can 
be traced to less than adequate used vehicle reconditioning practices. Generally high claim 
severity (usually combined with high rates of multi-item repairs) usually point to highly 
incentivised service writers/technicians "discovering" failures that were not prompted by 
customer complaints. Generally, high frequency levels point to some type of customer incentive 
program, e.g. free inspections or other service specials. 

In order to implement solutions, the internal systems and the state filings must be flexible 
enough to provide support for: reduced claim reimbursement (factory time and/or labor rates as 
opposed to retail) claim elimination periods (typically 30 days on used vehicles) premium 
adjustments (individual rate premium modifier factors) underwriting restrictions (high mileage 
used vehicles, long term new vehicle plans). Rate adjustments, elimination periods and 
underwriting restrictions are used to address selection and reconditioning issues, involving the 
sale of the VSCs. Reduced claim reimbursement is used to combat overzealousness in the 
service department. By focussing the solutions on the specific areas of the account's operation 
that is causing the problem, recovery is speeded and recovery rates are increased. 

WARRANTY IN GENERAL 

In the early days companies evaluated warranty business on a calendar year basis. Premiums 
on multi-year terms were earned evenly over the contract period. Unfortunately, losses tended 
to occur later in the term of the warranty. In Exhibit E, it can be seen how this combination 
understates the loss ratio in the first calendar year of the warranty term. Now, since the loss 
ratio is so low, an obvious albeit erroneous conclusion would be that not only should we write 
more of this business, we should reduce rates to help our marketers! It only takes a few years to 
dig a deep hole, as inadequately priced business has now been written for several years. Rate 
relief is essential. Of course, this leads to further problems. If the rate level increase needed is 
large, there may be difficulty getting approval from the various states. Even if approvals are 
finally received, implementing a large rate increase could lead to a very rapid drop-off in VSCs 
written, as dealers can use a competing program. A large drop-off in VSCs would mean a large 
reduction in revenue, just when the cash is needed to pay the claims from the old business. It is 
easy to see how this could become a run-off operation. 

Earning premiums correctly is very important as can be seen above. Premiums should be 
earned in direct proportion to the loss payout pattern. Earning premiums in this fashion 
maintains the proper loss ratio for the life of the policy period, as shown in Exhibit E. Hopefully 
existing loss payout data is available in order to determine the payout pattern. In cases where 
the data is not available and the losses are expected to start out slowly in the beginning of the 
term and monotonically increase over the life of the contracts, the reverse sum of the digits rule 
can be used. Exhibit E shows the loss payout pattern described by this rule. As shown, we 
would earn 1/36 of the premium in the first year, 2/36 in the second year, and so on up to 8/36 
in the last year. Note that this earning methodology is conservative; it does not recognize the 
aforementioned "attrition factor." The state of Louisiana actually requires that a non-insurance 
company that guarantees warranties or extended warranties earn its income no faster than the 
reverse sum of the digits rule. If the term of the contract pedod is annual, this rule is often 
referred to as the reverse rule of 78s (using monthly earnings). 
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Pricing of warranties or extended warranties should be do~ le by product or at most by 
homogeneous classes of products. Do not make the mistake of giving one overall rate for a 
warranty program made up of many different products. Exhibit F, example 1, illustrates what 
can happen. Company A administers a warranty program for "brown and white goods" (basically 
electronics appliances, and office equipment.) Loss costs are available, and Company A is 
looking to transfer the warranty risk to insurance company B. Since B will insure the entire 
program, B decides to give a single program rate of $169. Unfortunately for B, A writes a new 
account which only sells refrigerators. This changes the mix of risks, thus changing loss costs 
and making the single rate of $169 inadequate as the new rate should be $193. Practically 
speaking, rates would not be modified every time a new account came on line, so it would be 
better to charge a rate by class to minimize the mix change problem. 

Another pricing pitfall to avoid is basing the rate on the overall revenue an administrator gets for 
the warranty contract. Again in Exhibit F, example 2 Company A (the administrator) sells a 
warranty contract for $50, and Company B (the insurer) determines that the loss cost is $5. B 
than grosses the loss cost up for expenses and wants $7 in premium. B than sets a rate of 14% 
per revenue. Unfortunately for B, next year A decides to lower its selling price of the warranty to 
$40. Now B only gets $560 per contract, which barely covers his loss costs let alone his 
expenses. 

Another problem often encountered by the pricing actuary on warranty business is the lack of 
quality data. To properly price a warranty product, policy year data must be used. Most 
administrators do not show data in policy year format; some cannot show it as losses cannot be 
tied back to the premium. Obviously in this type of operation there can be no verification of 
coverage; the claim is paid when it is presented. This type of account cannot be soundly priced. 
If triangular data is available, it must be reconciled with the TPA's audited financials. Again, 
many TPAs are not used to providing actuarial data, so a thorough checking of the data is 
required. 
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CONCLUSION 

Ratemaking in the extended warranty line of business is well-suited to take advantage of the 
actuarial approach. The business is driven by frequency rather than severity so that it lends 
itself to actuarial modeling. For the vehicle extended warranty there is often credible data 
available. When there is not data available, the "back-to-basics" approach is best done by an 
actuary. The actuary is an essential member of the warranty pricing team. 
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AUTO EXTENDED WARRANTY EXHIBIT A 

LOSS PROJECTIONS 

O~ 

1 2 3 4 5 

Ultimate Paid 
POlICy Number of : Wntten Average Losses 
Year Contracts Premium Premium To Date 

199C 1 25,000 , $ 5,000t000 , $ 200 , $4,8001000 
1991 i 25r000 , $ 5r050=000 , $ 202 , $5~201~500 
1992~ 3 0 0 0 0 5  6,150~000 , $ 205 , $6~211~500 
1993 35~000 , $ 71350~000 , $ 210 , $ 5~9531500 
19941 40,000 , $ 81520,0oo ' $ 213 , $513~7,600 
199~J 45~000, $ 9~675~000 , $ 215 , $ 3~678~50~ 
1996 50000 $11r000000 $ 220 $1 100000 
1997 55~000 , $12~375~000 , $ 225 , $ 111~375 
1998 60,000. $13,800,000. $ 230.  $ 13,800 

¢o(umn notes on calculation 
4 col 3 /ca l  2 
6 oo1510o13 
8 1 0 0 - 1 0 0 / o c l  7 
10 col 5 x cal 7 
11 ====> 
12 ¢ol 5 + col 3 x col 8 x col 9 
13 col 12/col 2 
14 (sum of col 12 current and preceding years) I 

(sum of cot 2 current and preceding years) 
15 col 2 x col 14 

6 7 8 

Paid I 
Loss I Paid IBNR 
Ratio I LDF Factor 

96.0% 11300 0.0(30 
103.0% c 10001 0.000 
1010% 1.030 0.029 
81 0% 1.1401 0.123 
63 0% 1450 0 310 
38 0%' 2306'  0565 
10 0%I 5400 j 0 815 
09%'  27.700' 0.964 
01%'  43200(31 0998 

ELR est I prem 
1990 92% I $ 5rO0~'O00 
1991 92% $ 5.050r000 
1992 92% $ 6~150,000 
1993, 92%~ $ 7,350,000 
1994, 92%, $ 6r520,000 
1995 92% $ 9,6751000 
1996. 92%, $ 11,000r000 
1997. 92%• $ 12~375~000 
1998, 9 2 %  $ 13~800r000 

totals $ 78,920,000 

5b ibnr = elr est x 
elr est = [ibnr est + 
ibnr est = elf est x 

elr est x 

cj 10 11 !2 

Paid Stanard- S-F 
ELR Projection Suhtmann Projection 

85 0% $ 4600000 s 4,800,000 j s 4,600,ooo 1 s 
850%'  $ 5T201T500 ' $ 5~201r500 J $ 5r201 500 ~ $ 
850%'  $ 6,397~845 ' $ 6,377,189 J $ 6,363',757 J $ ' 
850%'  $ 6T786=990 ' $ 8~788r419 , $ 6r720,737 $ 
850%'  $ 71783=020 ' $ 7T813r382 ' $ 7,615,117 ' $ 
85 0%' $ 8T455,950 ' $ 8,7341748 ' $ 8,324r707 ' $ 
850%'  $ 5,940,000 ' $ 9~390j586 ' $ 8,718,519 ' $ 
85 0%" $ 3r085~088 ' $ 11r144~799 ' $10r250,387 ' $ 
850%'  $ 5,961 600 ' $12,749,013 ' $11,716,647 ' $ 

13 14 15 

Pure Cumulative Pure 
Premium Pure I Premium 
/Contract Premium Prolectio¢l 

192 , $ 192 , 4rBO~tO00 
208 , $ 200 , $ 5rOOOr750 
212 $ 205 $ 6t136~971 
192 : $  201 : $  7,026,172 
'~90 , $ 198 , $ 7~9221867 
185, $ 195 , $ 8,'780~809 
174 $ 191 $ 9,548~867. 
186 ' $ 190 ', $10,458,065 
195. $ 191 . $11,459,403 

Stanard / Buhlmann CalculatioR 
premium x 

1-la~l • 1 0 - !ag , IBNR 
0~0 $ + C 
O 000 $ $ - 
0029 ~ 179,126 , ~ 165,689 
0123, 902r632 , 834r919 
0310, $ 2,644,138 , $ 2,445,782 
0 565, $ 5r468,478 , $ 5,058r248 
0815 $ 8,962~963 $ 8r290,586 
0 964', $ 11,928t249 ', $11,033;424 
0 998  $ 13,768,056 , $ 12,735,213 

• $ 43.853,642, 

Calculation of ELR E s t i m ~  

$43,853,642 
$32,435,775 ] / $ 78,920.000 
$ 78,920.000 $ 32,435,775 
$43.853,642 = elr est x $ 78,920,000 
$32,435.775 = elf est x $ 35,066,358 

092 = elr est 

I reported I ulbmate 
losses losses 

0 $ 4,BOOrO00 $ 4~800T000 
$ 5,201~500 $ 5~201r500 

I $ 6r211 500 $ 6,377,189 
$ 5,953,500 $ 6r768t419 
$ 5,367r600 i $ 7~813~382 
$ 3r676r600 $ 8r734~748 

586 I $ t 100,000 I $ 9~390~586 
$11~033~424 ' $ 111,375 ' $ 11,144~799 

• $ 13800 ' $ 12,749r013 

$32,435,775 

$ 32,435.775 



AUTO EXTENDED WARRANTY EXHIBIT B 

TREND ANALYSIS 

INTERNAL REPAIR COST ANALYSIS 

1999 
pOtCy claim 

component coverage count count  payment  frequenc-/ seventy 
rental lew 75,000 18,000 $ 1,050,000 200~ $ 70 
~t~'pump new 75,000 6,000 $ 1,050,000 80~ $ 175 
i k c ~ d  compressor new 75,000 3,750 $ 1,500,000 50=~ $ 400 

pump new 75000 2,250 $ 528.750 30% $ 235 
¢anlmumon(automatc)internalparls Jew 75,000 21250 $ 1,743,750 30~ $ 775 
:ranlMude (autoenat¢) imemal pa~ls new 75.000 2,250 $ 1,912,500 3 0~; $ 850 

(automate) as~mb~ nc-w 75,000 1,125 $ 1,293,750 1 5~ $ 1,150 
n b ' l ~  ( a u t O )  assembly new • 75,000 750 $ 750,000 1 0~ $ 1,000 
Ingmeec~mbly ~w 75,000 450 $ 678,000 06~( $ 1,500 
~lRemntial(re~assembly 'row 75,000 300 $ 157,800 0.4~( $ 525 
~l~rn~l~t(ma41ual}astmmbly :new 75,000 75 $ 62~250 0.t~ $ 830 

new 75.000 34.200 $10,723,500 456% $ 314 

EXTERNAL TREND ANALYSIS 

Producer Phce Index Data 

Annual Trend in Index 
Parts Paris 3ombr~ 
New Rebu~ Labor Annual ~d~X 

wmgnt= 0.25 0.25 05 Trend 1 000 
1990 1,1% 0,0 eA 46% 27~( 1 027 
1991 OE% 0 0~l 3 8% 2 1 ~ 1 048 
1992 0.6% 2 2% 3.2% 23°A 1 072 
1993 0 4% 05% 27% 1 6~ 1089 
1994 1 5% 1 3% 23% 1 9~; 1109 
1995 0,2% -0,4°A 2,3% 1 le~ 1,121 
1996 -0 7% *1.5% 3 8% 1 4% 1136 
1997 -0 6% -08% 3 5% 1 4% i 1.152 

exponengal Vend = 1 8% 

1999 

I~J~Y c.~m I 
count count payment  fmquenc,/ seve~y 
60,000 11.400 $ 885,000 190% $ 75 
60,000 4,200 $ 735,000 70% $ 175 
60,000 2,700 $ 1,012,500 4 5% $ 375 
60:000 2,100 $ 472,500 3 5~ $ 225 
60~000 1,500 $ 1,155,000 25% $ 770 
60,000 1,500 $ 1,275,000 2 5% $ 850 
60,000 900 $ 1,060.000 15% $ 1,200 
60,000 600 $ 660,000 10% $ 1,100 
60,000 360 $ 522.000 06% $ 1,450 
60,000 180 $ 94.500 03% $ 525 
60,000 60 $ 66,000 01% $ 1,100 

60,000 25,900 $ 7,927,500 425~ $ 311 

E E ~ m m ~ E E ~  
I I m ~ m ~ E E ~  
i ~ m , t ~ E B ~  
E ~ E ~ E E ~  
E E ~ m ~ r ~ I I E ~  

I I m ~ m ~ m B ~  

E E ~ m ~ E E ~  
E E 3 ~ E E ~  



WIND TURBINES 

YEAR 1 EXPOSURE 

revenue loss ex~osu= 

item 

inormal maintenance 
rotor blade repair 
hub retrofit 
,teeter damper retrofit 
gearbox retrofit 
,generator retrofit 
,mainframe repair 
iyaw beadn 9 retrofit 
tower repair 
totals 

=/wind t u r b i n e  
potential probability "probal~le ' 
downtime /of downtime 
(hrs/yr) ~occurrence hours 

2741 1.25 ' 342.5 
1440 0.08 ' 115.2 
180C 0.10 180.0 

96 0.15 14.4 
216(] 0.15 324.0 
2166 0.10 216.0 

96 0.15 14.4 
1806 0.10 , 180.0 

96 0.10 9.6 
1396.1 

revenue loss @$O.08/kwh; 90% availability 
876 hours allowable 
projected 82 kwh/hour 

Defect loss 

$3,412 

probability probable 
item retrofit of cost 

, cost , ~ccurrence ,exp°sure 
normal maintenance n/a , 1.00, ~0 
rotor blade repair , $2,000 0.05 , $100 
hub retrofit $5,000 , 0.06 , ~300 
teeter damper retrofit , $2,500 • 0 ,08  , $200 
gearbox retrofit , ~1,000 , 0.06, $240 
generator retrofit $1,000, 0.04, $40 
mainframe repair $0 0.06 ~o 
yaw bearing retrofit $4,000, 0.04 , ~;160 
tower repair $0,  0.08, $0 
totals L $1 ~040 

materials and workmanshi~ lols e~osure 

~0bability probable 
item retrofit ~)f cost 

,c°st ,°ccurrence ,exposure 
normal maintenance , n/a , rVa , $0 
.rotor blade repair , ~2,000, 0.04 , $80 
hub retrofit , $2,000, 0.04, ~80 
teeter damper retrofit , $700 0.04 $28 
Rearbox retrofit :~,500 0.06 ~210 
generator retrofit , }1,200, 0.04, $48 
mainframe repair , $700 , 0.06, $42 
yaw beadn,q retrofit , ~2,800 , 0.02 , $56 
tower repair , $0,  0.04, $0 
totals $544 

EXHIBIT C 

potential 
downtime 
(hrs/yr) 

274 
1440 
1800 

96 
2160 
2160 

96 
1800 

96 

worst case worst case 
probability downtime 

hours 
1.96 536.2 
0.22 318.8 
0.52 943.6 
0.77 74.1 
0.49 1057.0 
0.24 521.4 
0.49 47.0 
0.27 485.4 
0.58 55.8 

4039.3 

$20,751 

reasonable 
retrofit 
cost 

n/a 
~16,500 

$6,500 
$4,000 

$.19,200 
$7,000 
$7,500 
$5,500 
$3,000 

worst case worst case 
probability exposure 
occurrence 

2.00 $0 
0.08 , $1,292 
0.30 $1,952 
0.45 $1,791 
O. 16 . $3~052 
0.07 $478 
0.16, $1,192 
0.15 $842 
0.31 $919 

$11,518 

worst case worst case 
probability exposure 
occurrence 

2.00 $0 
0.15 $306 
0.22 $448 
0.29 $206 
0.30 , $1,051 
0.15 . $184 
0.30 $210 
0.08 $214 
0.29 $0 

$2,620 

reasonable 
retrofit 
cost 

n/a 
$2,000 
$2,000 

$700 
$ 3 , 5 0 0  
$1,200 

$700 
$2,800 

$0 
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Assumpt ions 

Oustanding ULAE Estimates EXHIBIT D 
AS of 10/97 PAGE 1 

Contract. Claims Development. & Frequency 
PY1991 PY1992 PY1993 PY1994 PY1995 PY1996 PY1997 PY1998 

Number of Written Contracts 
Processing Frequency Ratio 
Projected Processed Claims 

Cumulative Claim Development Pattern 
Incremental Claim Development Pattern 

Projected Processed Claims 

PY98 
PY97 
PY96 
PY96 
PY94 
PY93 
PY92 
PY91 

PY91-97 
PY98 

85,000 90.000 95,000 100,000 105,000 110,000 115,000 120,000 
110% 110% 110% 110% 110% 110% 110% 110% 

93,500 99,000 104,500 110 ,000  115500 121 000 126,500 132,000 

1 yr 2yr 3yr 4yr 5yr 6yr 7yr 8yr 
25% 40% 55% 75% 85% 95% 98% 100% 
25% 15% 15% 20% 10% 10°/, 3% 2% 

CY1998 CY1999 CY2000 C Y 2 0 0 1  CY2002 CY2003 CY2004 CY2005 Total O/S 

33,000 19,500 19,800 26,400 13.200 13,200 3,960 2,640 132,000 
18,975 18,975 25,300 12,650 12.650 3.795 2,530 94.875 
18,150 24.200 12.100 12.100 3,630 2,420 72,600 
23,100 11.550 11.550 3,465 2,310 51,975 
11,000 11,000 3,300 2,200 27,5~ 
10,450 3,135 2,090 15,675 
2,970 1,980 4,950 
1,870 1,670 

86.515 70840 54,340 30.415 18,5g0 6,215 2,530 269,445 
33,000 19,800 19.800 26.400 13,200 13200 3,960 2.640 132,000 

Pwlonnel & Plant Costs 

Average Salarf 
Avg No of Claims Processed pet" Day 
Avg NO of Claims Processed pet" Yr 
Benefits(as %age of sataP/) 
Rent per Square Foot 
Square Feet P~ Person 
Total Rent Cost per Person 
Equipment 
Telephone per Claim Cost 
Mist per Claim Costs(postage, electric, etc ) 

Inflation Factors 

Annual Wage Inflation Rate 
Annual Plant Cost Inflation Rate 

5.0% 
2.0% 

Adjuster Underwriter Auddor Clerk 

40,000 45,000 60,000 25.000 
20 110 325 110 

5,000 27,500 75,000 27,500 
17% 17% 17% 17% 

15 15 15 15 
200 200 200 200 

3,000 3,000 3,000 3,000 
315 315 315 315 

4.50 4.50 4.50 4.50 
1.00 1.00 1.00 1.00 

Dates 

Run Off Date 
1213111997 

Summary of Results 

I X, ,':7:1:10; 9' 

~enano Of X ~  

Personnel Effeciency Level 

* 94.0% 

Plant Cost Savings 

" 0.0% 

Total Avg/Clm J Avg/Pol 
6,746,891 25.0 27.54 
2,956,620 22.4 24.64 



ULAE P r o j e c t i o n s  

Prk~ Book 

PY91÷97 

EXHIBIT D 
PAGE 2 

Expected Required Number o1 Personnel Annual Personnel Costs 
Claim Tot Wages Wage 

CY Counts Adlusters Underwriters Auditors Clerks Adjusters UndeP~vrrters Auditors Clerks Benefits & Benefits Inflation Total 

1998 86,515 19 0 4 0 2 0 4 0 760,000 180.000 t00 00~ 100,000 193.800 1,333,800 5 0% 1,333,e00 
1999 70,840 160 30 1.0 30  640,000 135,000 50.000 75,000 153,000 t,053,000 50% 1,105,650 
2000 54,340 12 0 2 0 1 0 2 0 480,000 90,000 50,000 50000 113,900 783.900 50% 864,250 
2001 30,415 7 0 2 0 1 0 2.0 280,000 90.000 50,000 50,000 79900 549,900 5 0% 636,578 
2002 18,590 4 0 1 0 1 0 1 0 160,000 45.000 50000 25,000 47.600 327,600 5 0% 398,200 
2003 6,215 20  1 0 1 0 1 0 80,000 45,000 50,000 25.000 34000 234,000 50% 298,65Q 
2004 2,530 1 0 t 0 1 0 1 0 40,000 45,000 50,000 25,000 27,200 187,200 5 0% 250,866 

Totals 269,445 61 14 8 14 2,440.000 6 3 0 , 0 C O  400.000 350,000 649,400 4,469.400 4,887,993 

Plant Costs Total Avg ULAE 
Plant Total ULAE Per 

CY Telephone Rent Equipment Other Total Inflation Plant Estimate Claim 

1998 389,318 87,000 9,135 86,515 571.9E~8 2 0% 571 g68 1.905,768 22 
1999 318,780 69,000 7.245 70,840 468.865 2 0% 475,182 1,580,832 22 
2000 244,530 51,000 5355 54,340 355,225 2 0% 369.576 1 233.826 23 
2001 136,868 36,000 3,780 30,415 207,063 2 0% 219736 856,314 28 
2002 83,655 21,000 2.205 18,590 125.450 2 0% 135791 533991 29 
2003 279£;8 15000 1575 6r215 50758 2 0% 56040 354,690 57 
2004 11.385 12.000 1.260 2.530 27,175 20% 30.603 281.469 111 

Totals 1,212,503 291000 30,555 269,445 1,803.503 1.858897 6,746,891 25 



L*J 

NeWBOO~ 

PY98 

Totals 

CY 

1998 33,000 70  20  10 
1999 19,8OO 40  10 10 
2000 19,8OO 4 0  10 10  
2~1  26,4OO 60  10 10 
2002 13,2~ 30  10 10 
2 ~ 3  13,2~ 30  10 10 
2004 3,960 10  10 10 
2 ~ 5  2 ,~0  10 10 10 

132.000 29 9 8 

EXHIBIT D 
PAGE 3 

Expected Required Number of Personnel Annual Personnel Costs 
CLaim Tot Wages Wage 

Counts Adjusters Unde~riters Auditors Clerks AdJusters UndeP/anters Audrtors Clerks Benefits & Benefits Inflation Total 

20  280,000 90.000 50.000 50,000 79,900 549,900 50% 549.900 
1 0 160,000 45000 50.000 25,000 47,600 327,600 50% 343.980 
1 0 160,000 45,000 50,0OO 25,000 47,600 327,600 5 0% 361,179 
1.0 240,OO0 45.000 50,000 25.000 61,200 421,200 50% 487.592 
1 0 120,000 45.000 50,000 25,000 40 ,8OO 280,600 5 0% 341.314 
1 0 120,000 45,000 50,000 2 fi,0CO 40,800 280,800 50% 358,360 
1 0 40,000 45.000 50,000 2 5 , O O 0  27,200 187,200 50% 2 , 5 0 . ~  
1 0 40,00(} 45.000 50,000 2 5 , O O 0  27,200 187,200 5 0% 263.409 

8 1,160,000 405.000 400.000 225,000 372,300 2.562,300 2.956.620 

Totals 

Plant Costs Total Avg ULAE 
Plant Total ULAE Per 

CY Telephone Rent Equipment Other Total Inflation Plant Estimate Claim 

1998 148,500 36,000 3,780 33,000 
1999 89,100 21,000 2,20fi 19,600 
2000 89,100 21,000 2,205 19,800 
2001 118,800 27,000 2,835 26,400 
2002 59,400 18.000 1.890 13.200 
2003 59.400 18.000 1.890 13,200 
2004 17,820 12,000 1.260 3,960 
2005 11.880 12,000 1.260 2,640 

594000 165.000 17,325 132,000 

2 0% 
20% 
2.0% 
2 0% 
2 0% 
2 0% 
2 0% 
2 0% 

549,900 17 
343,980 17 
361,179 18 
487,592 18 
341,314 26 
358,380 27 
250,866 63 
263,409 100 

2,956,620 22 



Earned Premium 

Cumulative Earnings 

Incurred Losses 

Cumulative Losses 

Policy Year X Loss Ratio 

Earned Premium 

Cumulative Earnings 

Incurred Losses 

Cumulative Losses 

Policy Year X Loss Ratio 

EXTENDED WARRANTY EXHIBIT E 

EARNING OF PREMIUM IN POLICY YEAR X 

LO,~$ PAYOU T PATTERN BY CALENDAR YEAR 

+2 +4 +3 I X 3o, oi x"7 ,1  x104  x 12,1 x 18o, ol x÷620o, o x÷,20o, o x÷,13o, o TOTALI o,o 
For usa with examples POLICY yEAR WRI17-EN PREMIUM = $100,000 
below: 

EXPECTED LOSS RATIO = 75% 

EXPECTED LOSSES = $ 75,000 

EXAMPLE 1: PREMIUMS EARNED PRO-RATA 

X 
$ 12,500 $ 

$ 12,500 $ 

$ 2.250 $ 

$ 2,250 $ 

18% 

EXAMPLE 2: PREMIUMS EARNED IN PROPORTION TO LOSS PAYOUT PATTERN 

X 
$ 3,000 $ 

$ 3,000 $ 

$ 2.250 $ 

$ 2,250 $ 

75% 

EXAMPLE 3: PREMIUMS EARNED IN PROPORTION TO REVERSE SUM OF THE DIGIT RULE 

Earnings done over 8 years, thus sum of digits = (n)(n+l)12 = 8 x 9 l 2 = 38 

X 
Earned Premium Pattern 1/36 I 
Earned Premiums $ 2,778 $ 

Cumulative Earnings $ 2.778 i $ 

Incurred Losses , $ 2,250 $ 

Cumulative Losses . $ 2,250 $ 

Policy Year X Loss Ratio 81% 

X + l  X ÷ 2  X ÷ 3  X ÷ 4  X + 5  X ÷ 6  X + 7  TOTAL 
12,500 $ 12,500 $ 12,500 $ 12,500 $ 12,500 $ 12.500 $ 12.500 $ 100,000 

25,000 $ 37,500 $ 50,000 $ 62,500 $ 75,000 $ 87,500 $100,000 

5,250 $ 7,500 $ 9,000 $ 11,250 $ 15.000 $ 15,000 $ 9,750 $ 75,000 

7.500 I $ 15.000 $ 24,000 $ 35,250 $ 50,250 $ 65,250 $ 75,000 

30% 40% 48% 56% 67% 75% 75% 

X ÷ l  X + 2  X + 3  $ X + 4  I X + $  X + 8  X + 7  iTOTAL 
7,000 $ 10,000 $ 12,000 15.000 I $ 20.000 $ 20,000 $ 13,000 $ 100,000 

i 
10.000 $ 20.000 $ 32,000 $ 47,000 $ 67,000 $ 87,000 $100,000 

5 ,250 '$  7,500 $ 9,000 $ 11,260 $ 15,000 $ 15,000 $ 9,750 $ 75,000 

7,500 $ 15,000 $ 24.000 i $ 35,250 $ 50,250 $ 65,250 $ 75,000 

75°/¢ 75% 75% 75% 75°/~ 75% 75% 

X ÷ l  X ÷ 2  I X ÷ 3  X + 4  X ÷ 5  I X + 6  X + 7  TOTAL 
2/38 3/36 4136 5136 6..'36! 7138 8136 36136 

5,556 l $ ,  8,333 , $ 11,111 , $ 13889 $15667L$ 19,444 , $ 22,222 i $  100,000 

8,333 $ 16~667 $ 27,778 $ 41 867 $ 58 333 $ 77,778 , $100,000 1 

11,250 $ 15,000 $ 5,250 $ 7,500 ' $ 9,000 ' $ 15,000 , $ 9 750 ' $ 75,000 

7,500 ' $ 15.000 ! $ 24,000 ' $ i 35,250 , $ 50,250 , $ 65,250 , $ 75 000 

90% 90%! 86% 85% I 86% I 84% 75% 
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EXTENDED WARRANTY 

RATING PROBLEM CAUSED BY CHANGE IN MIX 

EXHIBIT F 

EXAMPLE 1: CHANGE IN LOSS COSTS DUE TO CHANGE IN MIX o TPA ADDS REFRIGERATOR ACCOUNT 

ORIGINAL MIX OF RISKS CALCULATION OF SINGLE RATE 
number of loss costs total loss 
contracts per centract costs Loss cest per contract = $ 127 

VCRs 200 $ 80 $ 16,000 Expected loss ratio 75% 
Refd~lerators 200 $ 200 $ 40,000 

copiers 200 $ 100 $ 20,000 Gross rate per contract = $ 169 

totals 600 $ 127 $ 76,000 

VCRs 
Refri~leraters 

copiers 

j tnt~l~ 

NEW MIX OF RISKS CALCULATION OF SINGLE RATE 
number of loss costs total less 
contracts per contract costs Loss cost per contract = $ 145 

200 $ 80 $ 16,000 Expected loss ratio = 75% 
400 $ 200 $ 80,000 
200 $ 100 $ 20,000 Gross rate per contract = $ 193 

EXAMPLE 2: GROSS RATE BASED ON REVENUE 

Year1 

Price of Loss insurer insurance IC as % Insurance 
Warrant}, Costs Expenses Costs ef Price Premium 

$ 50.00 $ 5.00 $ 200 $ 700 14% $ 7 00 

Year 2 -  rate still 14% $ 40.00 $ 5.00 $ 200 $ 700 18% $ 5.60 
of price 
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A Macro Validation Dataset for U.S. Hurricane Models 

By Douglas J. Collins and Stephen P Lowe 

Abstract 

Public and regulatory acceptance of catastrophe models has been hampered by the 
complexity and proprietary nature of the models, The outside user is generally 
dependent on the modeler to demonstrate the validity and reasonableness of model 
results. Accordingly, we have developed a dataset permitting macro validation - one 
that would allow a lay person to compare the overall results oi r a hurricane model to 
an historical record. 

The macro validation dataset consists of the aggregate insured losses from 
hurricanes affecting the continental United States from 1900 through 1999. The 
historical losses in each county have been "trended" - adjusted from the conditions 
at the time to those existing today. The trending reflects not only estimated changes 
in price levels, but also estimated changes in the value of the ~tock of properties and 
contents, and changes in the insurance system Our work extends and improves 
upon similar work by tandsea and Pielke (1998), published by the American 
Meteorological Society 

The paper describes the construction of the validation dataset and summarizes the 
resulting size of loss distributions by event, state and county It also provides tables 
summarizing key statistics about all hurricanes affecting the United States (and 
Puerto Rico, the I.J~S~ Virgin Islands and Bermuda) during the 20 ~h century. Finally, we 
compare summary statistics from the dataset to the results of a hypothetical 
probabilistic hurricane model. 
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I. INTRODUCTION 

Hurricane Andrew in 1992 heightened the concern among property insurers and 
reinsurers about the potential for losses from natural catastrophes. This heightened 
concern spread beyond hurricanes to other perils with the Northridge earthquake in 
1994, and several major winter snowstorms and tornadoes during the nineties. 
Major catastrophes outside the U.S. during this time have also helped keep 
catastrophe issues in the forefront for property insurers and reinsurers worldwide. 

Since natural catastrophes are infrequent, traditional actuarial pricing methods are of 
limited value. Actuaries are accustomed to estimating rate adequacy by adJusting a 
body of historical insurance premium and loss experience to reflect the anticipated 
future environment. For property insurance, this typically involves a projection using 
three to six years of recent, mature experience, Prior to hurricane Andrew, the 
actuarial literature suggested using a thirty-year experience period for measuring 
excess wind loads in property insurance ratemaking. 

When extreme events in a particular region are expected to happen only once every 
hundred years or more, alternative approaches are clearly required This is true 
whether the objective is to measure expected losses for rating purposes or probable 
maximum losses 1 for risk and capital management purposes. For catastrophe risk 
management, probabilistic computer simulation models have been developed as 
such an alternative. These models incorporate longer-term historical data about the 
physical events as well as engineering knowledge about their destructive potential, 
Insurers, reinsurers and rating agencies have generally accepted use of the models 
to project losses. 

The models and their use as a ratemaking tool have not been free from controversy. 
Some insurance regulators have rejected their use in rate filings, citing the difficulty 
of verifying the model results. Regulators have also cited extreme rate indications 
and inconsistent results between competing models as a basis of their rejection. 
Despite these issues, the use of models continues to increase because they provide 
the most comprehensive use of available data to measure the costs and risks of 
catastrophes, In response, regulators in Florida and Louisiana have set up formal 
processes for evaluating catastrophe models, 

Model Validation 

Fundamentally, all catastrophe models proceed along the same analytical path. First, 
the key scientific parameters describing a specific historical or hypothetical event are 
determined. The models then estimate the incidence of damaging forces to property 
from that event. Finally, the resulting property damage and insured loss are 

The probable maximum loss, or PML, is the loss amount that is estimated to be exceeded 
with a specific probability, for example 1% (or exceeded once within a specified return 
period, for example 100 years), resulting from one or more causes of loss affecting a portfolio 
of properties. 
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estimated based on the characteristics of the structure and the policy terms, More 
specifically, a probabilistic hurricane model contains the following four basic steps. 

1. Assess the likelihood of events of various sizes, intensities and paths 
2. Estimate the wind speeds at specific locations affected by each event 
3. Estimate the damage to property, given the estimated wind speeds 
4. Estimate the insured losses, given the damages. 

A probabilistic hurricane model contains a comprehensive set of hypothetical events, 
each with an assigned probability. The event set is intended to provide a 
representative sampling of possible hurricane paths, sizes and intensities. Thus, it 
produces an estimate of the range of possible insured losses for any relevant 
location or geographical area. The statistical distribution of insured losses occurring 
at a particular location is reflective of the convolution of the four steps cited above. 

At each of these steps, local validation is performed by comparing the model's 
predictions for a particular parameter to the available actual datasets. For example, 
the probability of an Atlantic hurricane making landfall in a particular coastal segment 
from the hypothetical sample can be compared to the actual number of landfalls 
since 1871, the beginning year of published records by NOAA? Similarly, the 
model's probability of a hurricane with a particular size, path or intensity can be 
validated by comparison to historical hurricane records. The wind speed generated 
at a particular location for a simulated historical event can be compared to the actual 
observed wind speed. Finally, the predicted damages and insured losses to a 
particular type of structure subjected to a given wind speed can be compared to the 
actual damages and losses sustained at locations where that wind speed was present 
in a historical event. 

At each step of the process, error is introduced to the extent that model results do 
not fully agree with actual observations. Model error is present because no model 
can precisely replicate an actual physical event. By definition, a model is a 
representation of the event; it seeks to capture the key underlying variables and their 
inter-relationships, leaving estimation errors from variables and inter-relationships 
not captured. Simulating a large number of hypothetical events can reduce certain 
of these errors. Some of the key contributors to hurricane model error are: 

• In determining the likelihood of events of various sizes, intensities and paths 

- -  limited availability of key parameters for a sufficient number of historical 
events 

- -  limited availability of information on the historical frequency of rare events 
- -  limited ability to predict changes in hurricane landfall frequency over time. 

The National Oceanic and Atmospheric Administration of the U 5, Department of 
Commerce, publishes track and parameter information on hurricanes since 1871 In addition, 
there are numerous summaries and studies of prior documented storms In recent years, 
there has also been research based on proxy approaches that derive past hurricane activity 
from geologic and biologic evidence 
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• In estimating the wind speeds at specific locations affected by each event 

- -  l imited availability of wind speed data for a sufficient number of locations for a 
sufficient number of historical events 

- -  limited ability to simulate the actual impact of land, vegetation and man-made 
objects on wind speeds 

- -  limited ability to simulate the possible variations in windfield shape (i.e., the 
distribution of wind velocity by distance and direction from the center), 
particularly including localized bursts of wind. 

• In determining the damage to property 

- -  limited knowledge of precise types and values of property exposed at the 
time of the event 

- -  limited knowledge of the construction quality of those properties. 

• In determining the insured losses 

- -  l imited knowledge of claims adjusting practices of companies 
- -  l imited availability of accurate historical insurance claims data in sufficient 

detail by location and coverage 
- -  limited knowledge of potential impact of governmental actions and demand 

surge 
- -  limitations in our ability to determine the portion of damage due to flood 

rather than wind. 

These errors can be significant or modest in relation to the final results produced by 
the model. For example, Kelly and Zeng (Kelly and Zeng 1996) suggest that, based 
on their experience with one hurricane model, the errors introduced by the damage 
step are generally much less than a single order of magnitude while the errors 
introduced by the event steps can be several orders of magnitude. In other words, 
the model's estimate of expected losses for a particular risk might be off by 20% due 
to a mis-specified damage function, but those same expected losses might be off by 
200% due to mis-estimation of the landfall probability. 

Macro Validation Dataset 

In the authors' view, public (and regulatory) acceptance of these models is hampered 
by the complexity of this layered validation approach, which leaves the outside user 
with an unclear picture of the overall goodness of fit between the model and 
historical data. The problem is only exacerbated when the model formulas and the 
validation results are treated as proprietary by the modelers. Accordingly, we set out 
to develop and publish a dataset permitting macro validation - one that would al low 
a lay person to compare the overall results of the model to an historical record. In 
addition to a comparison of model results to historical results, the dataset also 
demonstrates the limitations of the historical experience and data. 
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The macro validation dataset consists of the aggregate insured losses from each 
hurricane affecting the continental United States from 1900 through 1999. The 
dataset includes storms determined by NOAA to have caused hurricane conditions 
over land. Exhibit 1 lists these hurricanes 3 and shows their magnitude, as 
determined by NOAA, in each of the coastal states affected. The overall losses for 
each event have been allocated to county, based on estimates of relative loss within 
the state. The historical losses in each county have then been "trended" - adjusted 
from the conditions at the time to those existing today. Our work extends and 
improves upon similar work published by Pielke and Landsea (Pielke and Landsea 
1998), which looks at total economic damages rather than insured losses and does 
not cover the entire 20 'h century. 

Because the models are used primarily by the insurance industry, our focus was to 
estimate the aggregate insured losses directly sustained by the U.S. insurance 
industry. The same approaches described in the paper can be used to project total 
economic losses as well. 

The remainder of this paper has two major sections. Section II describes the 
construction of the validation dataset, which consists of the losses from each 
historical event adjusted to 2000 cost and exposure levels. Section III illustrates the 
use of the dataset, 

II. CONSTRUCTING THE VALIDATION DATA 

Historical Losses 

Data on the losses sustained from past hurricanes is available from a variety of public 
and private sources. The various data sources differ as to the types of costs 
included, the level of detail, and whether the figures are actual results or estimates. 

The National Weather Service (NWS, which is part of NOAA) compiles data on the 
economic impact of each U.S. hurricane; that data is published annually in the 
Monthly Weather Review. A summary of this historical data from 1900 forward is 
presented in Deadliest, Costliest, and Most Intense United States Hurricanes of This 
Century (Hebert. Jarrell and Mayfield 1996). The data published by NWS are 
estimates based on surveys of the areas affected and consultations with experts, not 
a tabulation of actual costs incurred. The estimates include all direct costs stemming 
from the event, including insured losses, uninsured property losses, federal disaster 
assistance outlays, agriculture and environmental losses, etc. (Technically, the 
insured losses include some secondary costs due to the inclusion of business 
interruption and additional living expense claims.) Typically. the estimates for each 
event are not broken down by state or county. Separate estimates are made when a 
single hurricane makes more than one distinct landfall. 

] The summary tables on Exhibit ], Sheet 3, show total storms by category and state. 
Appendix A displays key statistics on hurricanes affecting Bermuda, Hawaii. Puerto Rico and 
USVI during the 20 th century. 
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Property Claim Services, Inc. (PCS), a subsidiary of Insurance Services Office (ISO), 
prepares estimates of the direct insured losses for each natural catastrophe, 
including hurricanes. Their historical data extends back only to 1949. To be 
considered a catastrophe by PCS, the aggregate insured losses from the event must 
exceed a set dollar threshold. This threshold was originally set at $1 million; over 
time it has been raised to its current level of $25 million. The estimates published by 
PCS are based on surveys of insurers' reported loss activity, insurer market share 
data and a database of the number and types of structures by county. The current 
PCS practice is to prepare an initial loss estimate approximately two weeks after the 
event and to revise its estimates based on new information after subsequent 60 day 
periods until the estimate stabilizes, at which point no further revisions are made. 
Until the late 19805, PCS estimates were rarely updated after 60 days and evidence 
suggests that these estimates often underestimated the total loss. 

The PCS estimates are intended to include all insured losses paid directly by US. 
insurers under property and inland marine insurance coverages. This would include 
payment of the costs to repair or replace damaged property and contents, 
reimbursement for alternative housing while repairs are effected, and compensation 
for business interruption losses. The insurer's specific expenses for adjusting the 
claims are not included. The PCS estimates for each event are currently broken 
down by state, separately for personal property, commercial property and 
automobile, and also include the number of claims and the average payment. 

Because they are prepared by different organizations using different source 
information, the NWS and PCS estimates of losses are not always consistent. 
Special studies have also been made in the past to collect actual insured losses for 
the industry. In a 1986 study, the All-Industry Research and Advisory Council 
(AIRAC) conducted a survey of insurers, asking them to provide their direct losses for 
the seven hurricanes occurring in 1983 and 1985 (AIRAC 1986). Responses were 
obtained from 95 insurers, who represented between 63% and 80% of the market 
share in the states affected. AIRAC then extrapolated the survey results to an 
industry-wide level based on the collective market shares of the respondents in the 
states affected by each event. (Collective market shares were based on premiums 
written by state.) In the AIRAC survey, insurers were requested to report their direct 
incurred losses including windstorm pool assessments, but excluding claim 
adjustment expenses. The AIRAC study indicated higher losses than the PCS 
estimates for 4 of the 7 hurricanes studied, including the 3 largest. In total for the 
seven storms, the AIRAC survey indicated losses of approximately $2.7 billion, 50% 
higher than the PCS estimate of $1.8 billion, as shown in Table 1. 
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TABLE 1 

Comparison of PC$ Estimates of Industry Losses to Estimates from the AIRAC 
Survey 

Year Hurricane PCS Estimate AIRAC Survey Percent 
Difference 

1983 Alicia $615,C00 $1,274,500 .47% 

1985 Bob 13,000 9,946 3]% 

1985 Danny 37,000 24,509 51% 

1985 Elena 543,000 622,050 -13% 

1985 Gloria 418,000 618,299 -32% 

1985 Juan 44,000 78,448 -44% 

1985 Kate 77,000 67,830 14% 

TOTAL $1.807,000 $2,695,582 -49% 

Certain state insurance departments also conduct studies of hurricane losses in their 
state. In the case of  hurricane Andrew, the Florida Department of Insurance 
compiled the actual losses for the insurance industry. Under emergency rules 
promulgated by the Department, each insurer operating in the state was required to 
report their accumulated losses to the Department at the end of each quarter. The 
reported figures include only losses (i.e., not including costs of adjusting the claims), 
for Florida business only. Losses in Louisiana and elsewhere are not included. 4 The 
results as of March 31, 1994 were published in The Journal o f  Reinsurance (Lilly, 
Nicholson and Eastman 1994). In the aggregate, insurers reported 798,356 claims 
from hurricane Andrew, with a total dollar cost of  approximately $16.1 billion. As of 
that date, insurers had paid out roughly 91.9% of that figure, with the balance 
representing their estimate of payments still to be made pending final adjustment. 
The final PCS estimate for Florida losses from Hurricane Andrew was $15 billion. 

In constructing our validation dataset, we selected what we considered to be the best 
available estimate of the industry aggregate insured losses for each event. For 
events where no PCS or other direct estimate of insured losses was available, we 
estimated the insured losses as a percentage of the NWS/NOAA total loss estimate, 
There were 49 hurricanes for which no estimate of actual loss was available. This 
occurred only for weaker hurricanes that caused relatively small actual losses, 
generally those with under $1 million of actual losses prior to 1950. For these events, 
actual loss was estimatedjudgmentally. These judgmental estimates were selected 
to be consistent with estimates of total loss by year in Hebert, Jarrell and Mayfield 

4 Anecdotally, we would point out that insurance losses could be sustained by policyholders 
far away from the event. For example, in the case of hurricane Andrew an insurer sustained a 
loss by a Massachusetts policyholder who lost a camera while vacationing in Florida at the 
time. This loss would not be included in the figures quoted above. 
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(Hebert, Jarrell and Mayfield 1996). The normalized loss for these hurricanes 
represents only about 3% of the total normalized loss. 

Aflocation of Losses to County 

Once a best estimate of the industry aggregate insured losses was selected, the 
losses were allocated to county. We devised a damage index for each county that 
reflected the estimated relative impact of the hurricane. The damage indices for all 
counties affected by an event were scaled such that, when multiplied by the number 
of housing units in the county at the time, the sum across all counties balanced to the 
selected industry aggregate insured loss. 

The damage indices for an event are derived from the ToPCat hurricane model. The 
use of these indices means that the allocation of losses to county (and to state, prior 
to PCS estimates) is model-dependent. Nevertheless, the total insured loss estimates 
for each storm are not model dependent as they are balanced to the selected 
industry loss estimate. 

Trending 

The historical losses reflect the price levels and property exposure existing at the 
time of the event. If the same event were to happen today, the losses arising from 
that event would reflect 

• today's price levels, reflecting the general inflation in price levels that occurred 
during the intervening period 

the current stock of properties and contents, reflecting the increase in the number 
of structures of various types, any increases in the average size or quality of the 
structures, and the greater amounts and value of the typical contents in the 
structures 

the current insurance system, including increases in the prevalence of insurance, 
the expansion of coverages, and changes in claim practices or the legal system 
governing how claims are settled. 

Actuaries are accustomed to adjusting historical costs to current conditions by 
means of trend factors that account for changes in conditions during the intervening 
period. We developed trend factors to account for each of the three components 
above. Our goal was to adjust all historical losses forward to conditions prevailing in 
2000, 

The impact of monetary inflation was measured by reference to the Implicit Price 
Deflator (IPD) for Gross National Product, published by the Department of Commerce 
in their annual Economic Report to the President. An inflation trend factor was 
computed by dividing the estimated value of the IPD at year-end 2000 by the value at 
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the time of the event. The IPD is only available back to 1950. For prior years, a 3.5% 
annual trend was assumed. 

Of course, property values have increased by more than inflation. For example, the 
average size of houses and the amount of contents have gradually increased over 
time. The national growth in the value of property was measured using estimates of 
Fixed Reproducible Tangible Wealth (FRTW) published by the Department of 
Commerce's Bureau of Economic Analysis. FRTW measures the total value of all 
structures and equipment owned by businesses, institutions, and government as well 
as residential structures and durable goods owned by consumers In this context, 
structures include buildings of all types, utilities, railroads, streets and highways, and 
military facilities. Similarly, equipment includes industrial machinery and office 
equipment, trucks, autos, ships, and boats. While FRTW includes some elements not 
entirely relevant to property insurance such as military facilities and highways, these 
elements represented less than 10% of the total as of year-end 1995. 

FRTW estimates are prepared annually; time-series data is presented on several 
different bases. We utilized the Real Net Stock of FRTW series, which is net of 
depreciation, and adjusted to 1992 dollar levels such that it accounts only for real and 
not inflationary growth in the net value of property over t ime A national property 
growth factor was computed by dividing the estimated value of the Real Net Stock of 
FRTW at year-end 2000 by the corresponding value at the time of the event 1 his 
growth factor accounts for aggregate growth in property values due to population 
growth and increases in per capita wealth. The selected FRTW series ~s only 
available back to 1925 For prior years, we assumed a 2.5% per year trend. 

The national growth in property exposure has been far from uniform geographical ly 
The general migration of the U.S. population towards the South and West over the 
last several decades has been well publicized. Of particular relevance to potential 
hurricane losses is the increased concentration of people and pr{~perty in vulnerable 
coastal locations. 

Pielke and Landsea (Pielke and Landsea 1998) have suggested that the national 
property growth factor be adjusted based on relative growth of the population in the 
affected region versus the nation as a whole. They introduce a population 
adjustment equal to the ratio of the growth in population in the affected coastal 
counties to the growth in population nationally. While this approach reasonably 
captures the migration of the U.S. population to the Sunbelt, it fails to take into 
account the explosive growth in vacation homes. (Census population data accounts 
for people at the location of their principal residence,) This issue is particularly 
significant because a large number of vacation homes are located in coastal resort 
areas: Cape Cod, Long Island, Cape Hatterras, Florida, etc. 

We improve upon Pielke and Landsea's approach by using the growth in the total 
number of housing units in each county during the time period for which it is 
available, rather than the growth in population. Housing unit data is available from 
the Census, back to 1940 (County data from the decennial census was interpolated 
to obtain annual housing unit estimates for each county. Prior to 1940, we used 
population statistics to estimate housing units) 
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A second improvement relates to the way in which the county data is used. Pielke 
and Landsea (Pielke and Landsea 1998) identified the coastal counties that were 
affected by each event and based their geographic adjustment on the aggregate 
change in population for all counties combined. Because we estimated the insured 
loss by county, we were able to weight the growth by relative damage in each 
county. 

Since we are adjusting insured losses, a final adjustment was necessary to account 
for changes in the insurance system. Ideally, this adjustment should account for 
each of the following. 

Changes in the prevalence of insurance coverage. Coverage for the wind peril is 
fairly universal today, primarily because mortgage lenders require it. (This 
requirement does not exist for earthquake insurance, resulting in significantly 
lower market penetration for that coverage, even in earthquake-prone areas.) 
Property that is uninsured tends to be lower valued. Prior to the introduction of 
multiple peril policies in the 1960s, wind coverage was far less universal. The 
introduction of FAIR plans and wind pools has also contributed to more universal 
coverage. 

Changes in the level and structure of coverage. Competition has led to gradual 
increases in the level of coverage offered by standard insurance policies. For 
example, coverage for contents, generally written as a standard percentage of 
building coverage on personal lines policies, has increased over time. More 
significantly, there has also been a longer-term trend away from actual cash value 
to replacement cost coverage. This shift has been widespread in homeowners; 
even some business-owners is now written on a replacement cost basis. 
Conning (Conning & Company 1996) has pointed out that this change in coverage 
significantly increases the insurer's exposure, essentially changing it from a net 
(of depreciation) to a gross value basis. One coverage trend has acted to reduce 
insurers hurricane exposure in recent years. Subsequent to Hurricane Andrew, 
there was a significant increase in required deductibles in coastal areas. While 
individuals have tended to resist voluntary increases in retentions, there has been 
a longer-term trend toward larger self-insured retentions in the commercial 
insurance sector. 

Changes in the typical practices regarding claim settlements. While this element 
may be the hardest to specify, industry professionals believe that policyholders 
have a greater propensity to file claims, particularly claims relating to minor or 
consequential damage. At the same time, insurers are more will ing to interpret 
the coverage in a manner favorable to the insured (contrary to public perception), 
in the interests of customer satisfaction, particularly after a catastrophe. 

Taken collectively, all of these factors work to increase the extent of economic losses 
covered by insurance, particularly as one goes further back in time. The insurance 
utilization index was derived from a review of ratios of PCS insured loss estimates to 
NOAA economic loss estimates from 1949 through 1995. The data and selected 
insurance utilization index are compared in the graph on Appendix B, Exhibit 2. The 
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selected index from 1950 through 1995 was based on a linear least squares fit of the 
data. The fit produced a line from approximately 21% in 1950 through 55% in 1995. 
From 1995 through 2000, the insurance utilization rate was kept at a constant 55% to 

judgmental ly reflect the increasing use of deductibles. Prior to 1950, a linear trend 
from 10% in 1900 through 21% in 1950 wasjudgmentally selected. As total 
economic losses were used as the starting point for normalization prior to 1949, this 
latter assumption has virtually no impact on normalized losses. 

Appendix B, Exhibit I displays the historical growth rates in the IPD and FRTW 
indexes as well as the national growth in population and housing units. 

Mathematically, the trend procedure can be expressed as follows: 

x("-.o0ol,[ R .0O°Ixf  ..... I x f ' -  .... 1 
L,.,,ooo=L.,. ~ IPO,, ) FRTW ) ~ HUzooo/HU ) [ INS ) 
Where: 

Lc.y 
IPD,, 
F R 774" 
HUc, y 

INSy 

is the insured loss in county c from an event in year y 

is the value of the Implicit Price Deflator for year y 

is the Real Net Stock of Fixed Reproducible Tangible Wealth for year y 

is the estimated number of Census Housing Units in county c in year y 

in the insurance utilization index for year y 

Limitations of the dataset 

We believe that the validation dataset produced by the normalization process 
described above is useful for comparing the results of US. hurricane models to the 
historical record. The dataset provides a macro tool that can be used by model users 
with limited knowledge of the detailed assumptions underlying the model. 
Nevertheless, it should be expected that probabilistic model results will vary from the 
results of the normalization process. The causes of this variation can be segregated 
into two types: variations caused by limitations in the normalization model, and 
variations caused by basic differences between a historical normalization process 
and a probabilistic model. A summary of the causes of each type is outlined below. 

• Limitations of the normalization process itself (these limitations would also relate 
to comparisons of normalized and modeled historical storm results) 

- -  unavailability of insured loss estimates prior to the inception of PCS estimates 
in 1949 

- -  inaccuracies in the historical PCS insured loss estimates (as previously noted, 
the AIRAC study in 1986 and the Florida Department of Insurance study of 
Hurricane Andrew in 1992 both indicated significantly different levels of 
industry losses than the PCS estimates) 
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- -  leveraging in the trending procedure (small changes in the initial estimate of 
the insured loss or its allocation to county can produce large changes in the 
normalized amount for events that occurred many years ago; this distortion 
should be less significant at the statewide level or for groups of neighboring 
counties) 

- -  trending of exposures based solely on housing units (normalized losses in 
counties with commercial property growth significantly different than housing 
unit growth will be distorted) 

• Basic differences between historical normalization and probabilistic models 

- -  probabilistic models provide a representative sampling of possible hurricane 
paths, sizes and intensities, which can produce results that differ significantly 
from the results of one hundred-year period that are influenced greatly by the 
location of the 5 or 10 largest or most intense storms 

- -  probabilistic model industry loss estimates are dependent on the accuracy of 
the modeler's estimate of total insured property exposures by ZIP code or 
county that are used in the modeling to estimate industry loss (these industry 
exposure sets are independently developed by modelers, or may be 
developed by users, based on insurance industry or external statistics on 
property values) 

- -  probabilistic models may include tropical storms that do not reach hurricane 
strength or strafing hurricanes that do not produce hurricane winds over land 
(these differences can distort loss comparisons as well as frequency 
comparisons) 

Results 

Exhibit 2 presents an illustrative calculation of losses in Mississippi from Hurricane 
Camille. The inputs are the year of the event, the estimated total losses for the event, 
by state (from PCS) and the damage index for each county. To illustrate how 
inflation, real growth in property values, population migration, insurance utilization 
and housing units combine to increase the level of economic losses from a 
hurricane, we will look at the figures for the two counties contributing most to the 
Mississippi losses: Hancock and Harrison. Since 1969, housing units have grown by 
222.8% in Hancock and 90.7% in Harrison. The normalization process brings the 
Hancock losses up by 2716%, from approximately $20 million to $549 million, while 
the Harrison losses increase by 1604%. The Hancock increase is attributed to: 

Inflation 297.4% 
Growth in wealth per capita (2.317 + 1.703) 36.1% 
Growth in insurance utilization 55.6% 
Growth in housing units 222.8% 

Thus, in Hancock County, the impact of inflation (297.4%) is less than the combined 
impact of the other three factors (584% = (1.361 x 1.556 x 3.228)-1), the most 
important of which is the growth in the number of housing units. 
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Exhibit 3 summarizes the estimated actual and normalized losses for hurricanes 
affecting the U.S. during the 20 ~" century. The normalized losses for these 164 
hurricanes average $1.75 billion per storm, or $287 billion per year. The resulting 
size of loss distribution by Saffir-Simpson category on Exhibit 3, Sheet 4 shows the 
impact of storm severity on insurance losses. While only about 9% of historical 
events were category 4 hurricanes, those events produced 55% of the normalized 
losses, Interestingly, the category 5 hurricanes have not produced a similarly 
skewed impact because the only two such events (#2 in 1935 and Camille in 1969) 
did not hit densely populated areas. 

Exhibit 3, Sheet 4 also shows the variation in normalized loss by decade, most 
notably the high losses in the twenties and the relatively low losses in the seventies 
and eighties. 

III USING THE VALIDATION DATA 

Severity Distributions by State 

Exhibit 4 displays annual aggregate (Sheet 1) and maximum single occurrence 
(Sheet 2) distributions by slate based on the normalized losses from 1900 to 1999. 
Due to the low probability of having more than one hurricane per year in most states, 
the results in Sheets I and 2 are quite similar. Florida, with almost 50% of the 
expected annual losses, and Texas, with over 21%, dominate the results, The total 
annual aggregate distributions at the longer return periods (20 years and greater) are 
also driven by the worst storms in those two states. 

As 100 years is not a sufficiently long time period to credibly determine the likely loss 
levels at the longer return periods, random elements are evident in the state 
distributions. For example, the 100-year loss for South Carolina, Hurricane Hugo in 
1989, is approximately 10 times the 100-year loss in Georgia, Hurricane Opal in1995. 
Georgia was not hit heavily in the 20th century, having had no landfalling events, but 
saw several major hurricanes in the 19 th century. On a probabilistic basis, it is 
reasonable to expect the 100-year loss in Georgia to be somewhat closer to the 
South Carolina 100-year loss. 

The normalized results by state are compared to those of a hypothetical 
representative probabilistic hurricane model ("Model T') in Exhibit 6, Sheets 1 and 2. 
Sheet I compares normalized and modeled frequency and severity distributions by 
Saffir-Simpson category and by return period for Texas, Florida and countrywide, 
Sheet 2 compares normalized and modeled expected losses by state, Based on the 
Model T indications, Georgia, New Jersey and New York were relatively lucky during 
the 20 ~ century, while Texas was the most unlucky. Comparisons such ~s those in 
Exhibit 6 could be used to learn more about the assumptions behind a probabilistic 
model. For example, in this case it would be useful to learn the answers tO questions 
such as: 
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• What data are the Model T frequency distributions based on, and why do they 
differ from the 20 th century distributions? 

• What are the paths and Saffir-Simpson categories of the typical 50 year and 100 
year return events in Model T, compared to the worst events by state during the 
20 'h century? 

• Why are the Model T expected losses in Texas so much lower and New York and 
New Jersey so much higher than the normalized 20 m century expected losses? 

• How do these and other key differences from the 20'" century storm set affect the 
results of Model T on a specific insurer's portfolio? 

Severity Distributions by County 

Exhibit 5 displays annual aggregate loss distributions for counties with significant 
annual expected losses in Texas and Florida. Random elements are even more 
evident at the county level. For example, Dade County has expected losses over 3 
times expected losses in Broward County and over 5 times those in Palm Beach 
County, Florida, due to the influence of Hurricane Andrew and storm number 6 of 
1926. 

These results could be compared to the results of a probabilistic model to determine 
how the model's expected losses vary from historical results in these counties. For 
example, Model T indicates expected losses in Dade County 27% higher than in 
Broward County and 36% higher than in Palm Beach County. Of course, as one 
looks at smaller geographic areas (e.g., county rather than state), one would expect 
larger differences between a model and the historical results of one hundred-year 
period. 

Estimates of Losses from Historical Events 

Exhibit 6, Sheet 3 compares the normalized losses from the 50 largest events of the 
20 m century to the Model T results for those same events. Here we see evidence that 
modeled individual storm estimates often differ significantly from the normalized 
amounts. Differences of over 50% occur on 18 of the 50 storms. These differences 
occur primarily on storms prior to the advent of PCS estimates in 1949. Only 2 of the 
18 (Hurricane King in 1950 and Hurricane Donna in 1960) have normalized estimates 
based on PCS. These differences indicate the uncertainty in both normalizing and 
modeling these older storms. 

In conclusion, the normalized hurricane loss database provides a variety of tools for 
hurricane model users to perform macro validation tests of model assumptions. In 
keeping with the spirit of this call for papers on data, the authors will provide 
interested readers with an electronic copy of the normalized loss database by event 
and county. We trust that future research will expand the scope of hurricane loss 
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data to include not only hurricanes of the 21 ~ century, but improvements to this 20'" 
century database, and perhaps also the addition of estimates of hurricane losses in 
prior centuries. 
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2 2 L 

2 2 2 
3 3 

2 2 
1 L 1 

2 1 2 

1 
1 

m B ~ m ~ m  3 3 

1 

2 

4 4 L 2 L L 
3 1 L 
1 
3 

1 

3 
3 

1 

3 

2 2 2 2 2 L 

3 
1 

1 
L L 

1 
1 
4 
2 
1 
3 
2 
1 
3 
2 
t 
3 
3 
1 
1 

f 1 
1 

3 3 3 L L L 3 
L L 3 L 1 3 
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1 
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H u r r t c a n e l  Af fecbng the  Con t inen ta l  U.S. 1900 - 1999 
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H U ~  O ~  of Cat~jo~ and Coastal States Affect~i 
Number/ F~ tUS TX TX TX FL FL FL FL 

Year Name La~rdafi So Ce NO r x LA MS AL NW SW SE NE F k GA SC NC V A M~ DE NJ L~ ~ ~ ~ ~ ~ ~ 

3 3 1 3  3 [ t t :~ 1985 Ekma 01~ob 
19~5 Glona 27 -Sep 
1985 Juan 28~:3~ 
1985 Kate 21-Nov 
19~ BOrl~e 26-Jun 1 ! 

3 

L ,  L 
L 3 

1 L 

1 
L 2 L 

2 2 

1 1 

3 4 if 

L "t 
3 

I 
2 2 

L 

1 ~  ~ '~7-Aug 
1967 Floyd 12 -Ocl 
19~8 FIo~eoce 09-Sep 
1989 Chant~ 01 ,Aug 1 1 
1989 Hugo 21 -S~p 
1989 ~ 15-Oct 1 1 
1991 Bob 19-Aug 
1992 Anclrm~ 24-Aug 
1993 Emily 01-Sep 
1995 Enn 01 -Au~l 
1995 Opal 04~Oct 
1996 Bellha 12-~JI 
199~ Fr~n 05-Se~ 
1997 Danny 18-Jul 
1996 Bonnie 26-Au~ 
t99~ Ead 02-S~O 
1~98 ~mrgas 2~S~O 
1999 IB41~t 2:2-Aug 3 3 
1999 F IO~  16-S~o 

Number o# Hunk:ames Affectm 0. by Category 

I!1 

if L 

3 

2 
L 3 

L 2 1 1  

I 
L 2 L 

LI32LL 

2 2 2 2  

L 
L L  

LLLLL 

3 
3 
t 
2 
I 
1 
1 
1 
1 
,4 
'T 
2 
4 
3 
1 
3 
2 
3 
t 
2 
1 
2 
3 
2 

, 32712911 1 : ° 5 1 : i 6 : !  . . . . . .  
3 6 1 3 10 8 5 15 7 6 7 1 2 1 1 5 3 3 2 48 
4 1 1 4 6 3 2 4 2 15 
5 I 1 ,2  

To[~ 14 6 17 9 24 20 26 8 5 14 5 1 0 1 9 8 $ 6 2 164 

areas ~ r~cmat~ed damage greater I~a~ $25 mllkOn 
L 0 2 4 I I 2 2 .5[ 4 4 3 7 3 I 4 3 3 I 5 4 2 3 I 2 2 2 2 2 2 I 0 

Numbe~ of Humoa~es rnakirKj First t nn<lf~  by CategoP¢ 

3 6 1 3 10 5 3 5 4 7 16 2 3 1 1 48 
4 1 1 4 6 2 1 4 1 15 
5 1 1 2 

Total 13 6 17 6 15 14 22 3 0 10 0 0 0 1 4 0 2 2 0 164 

Nolas 
Coastal statues atleofed, and Category deslgPatlo~s according to Sa~z~qampe, o~ Humcar~ Scofe based on Neumann (NePJm~n, Jarvlnen, Mc, Ad*e and 
Elms 1993) t~rough 1992 ~ on NOAA sun,~nae/ceCocls for 1993-199<3 States "offecteo" rat~E~ts NOAA's tudgrrmnt as to wi~ch areas received humc~e 
c . o n d ~  at the nlensify rd the ~efi ne~ Saltir *~rnp$on cate~ory In some cases, ~e conddJon= may have e, isled only ,n very Ioca~zed areas and n~ay ~ l  
have exJated tn a~reas thad conta~S<J s,gnlflcant amounts of ~n$~red I ~ o ~ y  A~e~op.BI states "~th non~allZed losses grealer than $25 rr~lt~ noted by 'L' 
Filet latlddofl in¢l~aled by it~lbcs (strafing of coa~lat i~ands no~ consrdered as ~rst tandfatt if subsequent land f a41 more s,gn~6£~nt } 

Saffir -~mpson Centrat 
Numbe~ Pressure OR Winds OR Surge 

(CateootvI lMh~b~r'~i (MPH) 
1 >979 74-95 6*5 
2 965 - 979 96-110 E-8 
3 945 - 964 11%130 9-12 
4 9ZO - 944 131-155 13-18 
5 <920 >155 >18 

Coastal C o u ~  D~tndo~: FIonda Northwest is Escarn~a tc Pasco Counbe$ 
Texas SouWl is Catnor~ to Nuec~s ~ Florida S o u ~ l  is Ptn~l~ to Monroe Coontms 
Texas CerdrN ~ San P ~  Io MmtalgOeda ~ S  Flond~ SOt.~helll ~ DIKle tO Ind,an RJvqlr C~unt~ls 
Texal Noclh ~ Bcazorm to Orange C ~  F~ol~ N O - - S t  ~S ~q~vard to Nass~ Courlllq~Jz 

236 



Exhib i t  2 

N o r m a l i z a t i o n  o f  Catastrophe Losses for Inflation and Rea l  G r o w t h  in  P r o p e r t y  

Hur r i cane  Cami l l e  - Augus t  17. 1969 

Housing 
Units 

AI Time Of 
Event Oamage Event 

C~unty 1969 Index 

MS Amite County 4.353 06% S 26 
MS At~ala County 6.586 1 0% 69 
MS Carroll County 3.017 11% 34 
MS Choctaw County 2.824 01% 4 
MS Clarke County 5,077 04% 21 
MS Copiah County 7,652 1 0% 77 
MS Covington County 4,207 15 9% 668 
MS Fotresl County 18,642 14 0% 2,601 
MS George County 3,860 7 2% 279 
MS Greene County 2,691 28% 76 
MS Grenada County 6,412 08% 53 
MS Hancock County 7,230 2793% 20,198 
MS Harnson County 40.778 2069% 84,387 
MS Hinds County 65,870 1 7% 1,113 
MS Holmes County 7.145 22% 157 
MS Humphreys County 4,314 01% 5 
MS Jackson County 26.463 372% 9,856 
MS Jasper County 4,956 1 5% 74 
MS Jefferson Davis County 3,865 21 9% 845 
MS Jones County 18,104 3 5% 635 
MS Lamar County 4,842 28 1% 1,362 
MS Lawrence County 3,530 7 1% 252 
MS Leake County 5,742 1 2% 68 
MS Leflore County 13,046 07% 95 
MS Lincoln County 6.591 0 7% 59 
MS Madison County 6,202 38% 311 
MS Marion County 7,305 289% 2,108 
MS Montgome~ County 4,210 08% 38 
MS Neshoba County 6,991 01% 10 
MS Newton County 6,493 06% 40 
MS Panola County 7,932 0 2% 19 
MS Pear~ River County 8,637 101 3% 8.753 
MS Perry County 2,819 82% 232 
MS Pike County 10,625 07% 75 
MS Rankin County 11,753 7.3% 856 
MS Scot1 County 6,581 39% 257 
MS Simpson County 6,378 13.8% 882 
MS Smith County 4,427 7 3% 321 
MS Stone County 2.450 28.2% 690 
MS Tallahatchie County 6,241 0.5% 31 
MS Walthafl County 4.006 6 3% 253 
MS Wayne County 5,033 0 9% 44 
MS Webster County 3,378 0.3% 9 
MS Winston County 5,836 01% 5 
MS Yalobusba County 4,130 04% 18 
MS Yazoo County 8,700 05% 39 

Mississippi Total 138,000 
Alabama 2,000 
Florida 1,000 
Louisiana 25.000 

Event Total 166,000 

Estimated Growth Est=maled 
Losses (000's) in Losses (000's) 

At Time Of Number of Overall Adjusted 
Hous=n 9 Adjustment to 

Units F@~ 20,00 

384% 1164% $ 306 
192% 1003% 690 
537% 1293% 434 
338% 1126% 42 
50 8% 1266% 268 
45 9% 1227% 947 
746% 1469% 9,811 
71 0% 1439% 37,417 

113 1% 1792% 5,002 
878% 1580% 1,205 
494% 1257% 669 

2228% 2716% 548,553 
907% 1604% 1,353,784 
51 6% 1275% 14,190 
129% 949% 1,495 
-83% 771% 38 

1116% 1760% 175,443 
429% 1202% 889 
401% 1176% 9,959 
475% 1241% 7,880 

2158% 2656% 36,172 
586% 1334% 3,358 
483% 1248% 842 

65% 896% 853 
54 9% 1303% 771 

289 4% 3276% 10,175 
47.6% 1242% 26,168 
22.1% 1027% 355 
66.0% 1396% 143 
40.6% 1183% 469 
71.1% 1439% 276 

1362% 1987% 173.896 
61.5% 1527% 3.543 
530% 1287% 964 

2656% 3075% 26.319 
59 1% 1338% 3.437 
646% 1384% 12,206 
399% 1177% 3,781 

1294% 1930% 13,324 
-11 4% 745% 231 
48 7% 1226% 3.096 
642% 1381% 606 
362% 1146% 102 
34 1% 1128% 54 
38 0% 1161% 204 
11 2% 935% 367 

1146% 1805% 2.490,730 
101 8% 1698% 33,950 
1731% 2297% 22,972 
912% 1609% 402,137 

2,949.789 

Countrywide: Changein PnceLevet- GNP Deflat~ 
Real Growth in National Weallh 
Growth in Insurance Utilizabo~. 
Growlh in Number Or Housing Units 

297.4% 
131 7% 
55.6% 
70.3% 
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Hurr icane Loss Est imates  
Continental  U.S.  1900 - 1999 
Dol lars in Thousands  

Insured 
Hurricane Total Estimated Aclual Loss at Time o( Event Loss Max 
Number/ insurance Normalized Loss Max 

Year N~me E E.conomic UIjti;;~tion t n~ red  Soume T0 ~O00 $tate/Reqion Cateqory 

1900 1 $ 30,CO0 t 0 0 %  $ 1,500 NOAA $ 16,485,683 TX - No 4 
1901 3 100 102% 10 NOA.~, 76,846 NC 1 
1901 4 925 102% 95 NOAA 366,142 LA 2 
1903 3 800 107% 85 NO,~ 2,124,106 FL - SE 2 
1903 4 200 107% 21 NO/,.A 61,970 NJ 1 
1904 2 2,000 10 9% 218 NO/~ CO46,193 SC 1 
1906 2 100 11.3% 11 NOAA 894,836 FL - SE 1 
1906 4 1,500 113% 170 NOA,=, 525,681 NC 3 
1906 5 1,500 11.3% 170 NOAA 662,658 AL 3 
1906 6 100 113% 11 NOAA 687,544 FL - SE 2 
1908 2 100 11.6% 12 NOAA 37,659 NC 1 
1909 3 1,900 120% 228 N O A A  1,119,560 TX NO 3 
1909 5 100 12 0% 12 NO.~v~ 87,098 TX - So 2 
1909 7 1,100 120% 132 NOAA 189,900 LA 4 
1909 9 5,000 12.0% 599 N O , " , A  7,976,601 FL - SE 3 
1910 2 100 12.2% 12 NOAA 75,760 TX - So 2 
1910 4 1,CO0 12.2% 122 N O A A  2,735,157 FL - SW 3 
1911 1 675 12 4% 84 NO,~ 438,29"6 FL - NW 1 
1911 2 325 12.4% 40 NO,C.A 58,145 SC 2 
1912 3 100 12.6% 13 NOAA 27,091 AL 1 
1912 5 100 12.6% 13 NOAA 65,024 TX - So 1 
1913 1 100 12 9% 13 r~OAA 66.228 TX - So 1 
1913 2 3,CO0 12.9% 386 k~O~ 534.237 NC 1 
1915 2 50,0CO 13 3% 4.988 NOAA 16,146 375 TX - No 4 
1915 4 100 13.3% 13 NOAA 43,577 FL NW 1 
1915 5 13,000 13.3% 1.729 ~ O A . ~  1,709,809 LA 4 
1916 1 CO,CO0 13,5% 2,028 r ,~OAA 3,096,434 MS 3 
1916 2 125 135% 17 NOAA 15,474 MA 1 
1916 3 100 13.5% 14 NOAA 17,866 SC 1 
1916 4 350 13.5% 47 NOAA 147,702 TX - So 3 
1916 13 1,125 13.5% 152 NOAA 208,433 FL - NW 2 
1918 14 300 135% 41 NOA/~ 65,139 F L - S W  1 
1917 3 100 13.7% 14 NO/k=, 28,690 FL - NW 3 
1918 1 5,CO0 14.0% 698 NO.e,A 775,971 LA 3 
1919 2 22,000 14.2% 3,120 N O A A  10,009,409 FL - SW 4 
1920 2 3,000 14,4% 432 NOAA 348,405 LA 2 
1920 3 100 14,4% 14 NOpv~ 18,497 NC 1 
1921 1 275 146% 40 NOA.~ 31.069 TX - No. Ce 2 
1921 6 2,725 14,6% 398 N O A A  1,624,995 FL - SW 3 
1923 3 100 15,1% 15 NO~ 9.557 LA t 
1924 4 100 15,3% 15 NO~ 12.256 F L - N W  1 
1924 7 100 15.3% 15 NOAA 86,278 FL - SE 1 
1925 2 250 15.5% 39 NA3A.~, 155,351 FL - SW 1 
1926 1 3,000 15.7% 472 N O A A  1.755.434 FL - NE 2 
1926 3 4.000 15.7% 629 NOA,~ 305,313 LA 3 
1926 6 105.000 157% 16,506 NO,~, 49.728.840 FL - SE 4 
1928 1 250 t6,2% 40 NO,¢.':~ 132.787 FL - SE 2 
1928 4 25.0(X) 16,2% 4,040 NOA. ,~  9.816.472 FL - SE 4 
1929 1 250 164% 41 NOAA 18,946 TX - Ce 1 
1929 2 975 164% 160 r~OAA 356.558 FL -  SE 3 
1932 2 7,500 170% 1,278 ~ 836,911 TX-  No 4 
1932 3 250 170% 43 NOAA 32.860 AL 1 
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H u r r i c a n e  L o s s  E s t i m a t e s  

C o n t i n e n t a l  U . S .  1 9 0 0  - 1 9 9 9  

Dol lars in Thousands  

Hurricane 
NumbeH 

Name 

1933 5 
1933 8 
1933 11 
1933 12 
1933 13 
1934 2 
1934 3 
1935 2 
1935 6 
1936 3 
1936 5 
1936 13 
1938 2 
1938 4 
1939 2 
1940 2 
19A0 3 
1941 2 
1941 5 
1942 1 
1942 2 
1943 1 
1944 3 
1944 7 
1944 11 
1945 1 
1945 5 
1945 9 
1946 5 
1947 3 
1947 4 
1947 8 
1948 5 
1948 7 
1948 8 
1949 1 
1949 2 
1949 10 
1950 Baker 
1950 Easy 
1950 Kmg 
1952 Abte 
1953 Barbam 
1953 Caml 
1953 Florence 
1954 Carol 
1954 Edna 
1954 Hazel 
1955 Connie 
1955 Diane 
1955 #one 
1956 Flossy 

Total Estimaled Actual Loss al Time of Event 
tnsurance 

EconomiC U!iliza~ign Insur~,~ Source 

$ 250 173% $ 43 NO.~ $ 
17.000 17 3% 2,934 NO,'V~ 

1,000 17 3% 173 NOAA 
12,000 173% 2,071 NOAA 

1000 17 3% 173 NOAA 
2,600 17 5% 454 NOAA 

250 17 5% 44 NOAA 
6,000 17 7% 1,062 NOAA 
5.500 17 7% 974 NO,'~ 

250 17 9% 45 NOAA 
250 179% 45 NO**,A 
250 17 9% 45 NOAA 
250 18 4% 46 t'~A.", 

306,000 184% 56,182 NO~- 
250 18 6% 46 NOAA 
250 18 8% 47 NOAA 

7,000 16 8% 1.316 NO.V, 
950 190% 181 NOAA 

7,050 190% 1,341 NOAA 
250 19 2% 48 NOAA 

26,500 19 2% 5,099 ~,OAA 
17,000 195% 3,308 NOAA 

250 197% 49 NO,~ 
100.000 19 7% 19,680 NOAA 
63,000 197% 12,398 NOAA 

250 199% 50 NOAA 
20,000 19 9% 3,980 NO.~ 
60,000 19 9% 11,940 NOA.*, 

5,200 201% 1,046 NOAA 
250 203% 51 NO.,,,A 

110,000 20 3% 22,374 NOAA 
23,000 203% 4,678 NO~ 

900 20 6% 185 NO.~ 
12,000 206% 2,467 NOAA 
5,500 20 6% 1,131 NO.~, 

250 208% 52 NOA,~ 
8,300 PCS 

6.700 208% 1,392 NOAA 
500 21 0% 105 NOAA 

3,300 21 0% 693 NO.~V~ 
10,386 PCS 

2,800 225% 630 NOV, 
1,000 23 3% 233 NO.V. 

500 233% 116 NO,V, 
500 233% 116 NOA.~, 

136,000 PCS 
11,500 PCS 

122,000 PCS 
25.200 PCS 

800,000 249% 9,911 NO,~ 
4,500 I~:S 
3,700 

Insured 
Loss Max 

Normalized Loss Max 
T 9 2000 StatelReqi0n Caleqq~ 

67,732 FL - NE 1 
1,356,989 VA 2 

368,245 TX - So 2 
1,163.819 FL -SE 3 

75.739 NC 3 
133,959 LA 3 

17,976 TX -So 2 
1,191,386 FL -  SW 5 
1,371,030 FL * SE 2 

17,658 TX - So 1 
20,289 FL - NW 3 
18,891 VA 2 

9,005 LA 1 
9.965,606 CT 3 

41,746 FL - NE 1 
8,223 TX - No 2 

293,910 SC 2 
64,533 TX - No 3 

942,310 FL - SE 2 
13,296 TX-  No 1 

1,028.039 TX - No, Ce 3 
970,828 TX-  No 2 

8,796 NC 1 
2,087,738 MA 3 
5,855,3,43 FL -SW 3 

20,416 FL -  SW 1 
825,054 TX - No, Ce 2 

3,762,550 FL -SE 3 
465,074 FL - SW 1 

10,278 TX - NO 1 
5,432,151 F L -  SE 4 
1,460,391 FL - SE 2 

17,118 LA 1 
668,635 F L -  SE 3 
224,907 FL - SE 2 

11,446 NC 1 
2,728.296 FL - SE 3 

217.219 TX-  No 2 
13,449 AL 1 

194,890 FL - SW 3 
2,853.627 FL - SE 3 

55,046 SC 1 
19,612 NC 1 
Co3,152 ME 1 
10,799 FL - NW 1 

6.265.912 MA 3 
643,598 MA 3 

8,196,810 NC 4 
1,378,549 MD 3 

696,402 NC 1 
362,090 NC 3 
275,001 LA 2 
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Huntcane  Loss Est imates 
C o n t i n e n t a l  U,S. 1900 - 1 9 9 9  

Dol lars  in Thousands  

Hurricane Total Estimated Actual Loss at Time of Event 
Number/ Insurance 

Year N~m0 Economic Utilization Insured Source 

1957 Audrey $ 32,000 Pcs 
1959 Cindy $ 500 278% 139 NOAA 
1959 Debra 7,900 PCS 
1959 Gracie 13,000 PCS 
1960 Donna 91,000 PCS 
1960 Ethel 1,000 28 6% 286 NOA,~. 
1961 Cada 100,000 PCS 
1963 Cindy 154 ~cs 
1964 Cleo 67,200 Pcs 
1964 Dora 12,000 PCS 
1964 Hilda 23,000 PCS 
1964 Isabel 2,000 PCS 
1965 Betsy 515,000 PCS 
1966 Alma 5,400 PCS 
1966 Inez 596 PCS 
1967 Beulah 34,800 PCS 
1968 Giedys 2.580 PCS 
1969 Camil le 166,000 PCS 
1969 Gerda 500 354% 177 NOAA 
1970 Celia 309,950 PCS 
1971 Fern 1,380 PCS 
1971 Edith 5,730 PCS 
1971 Gin9er 2,000 F'CS 
1972 Agnes 101.948 Pcs 
1974 Carmen 14,721 Pcs 
1975 Eloise 77,868 PCS 
1976 Belle 22,697 PCS 
1977 Babe 2,000 PCS 
1979 Bob 20,000 42 9% 8,582 NO~  
1979 David 86,990 Pcs 
1979 Frederic 742,044 PCS 
1980 ALten 57,611 PCS 
1963 Alicia 1.274,500 AIRAC 
1984 Diana 36,000 AIRAC 
198~ Bob 10,000 AIRAC 
1985 Danny 24,500 AIRAC 
1985 Elena 622,000 AJRAC 
1985, Gloria 618.300 JURAC 
1985 Juan 78.500 AIRAC 
1985 Kate 67.800 ~URAC 
1986 Bonnie 21.269 PCS 
1986 Charley 7.000 l:',c s 
1987 Floyd 500 49.0% 245 ~K)/~ 
1988 Florence 10,000 PCS 
1989 Chan~al 40,000 PCS 
1989 Hugo 2,955,000 PCS 
1989 Jerry 35,000 PCS 
1991 Bob 610.000 PCS 
1992 Andrew 16,600,000 FL Degl 
1993 Emily 30,000 PCS 
1995 Enn 375,000 PCS 
1995 Opal 1.990,000 PCS 

Insured 
Loss 

Normalized 
To 2000 

$ 1,176.396 
5,7t7 

393.073 
805,316 

4.709,959 
11,837 

3,47E218 
3,954 

3,746,855 
403,169 
596,026 
122,518 

11,518,111 
194,630 

16,208 
888.088 

96,877 
2,949,789 

2,439 
4,568,366 

18,825 
71,158 
31,447 

956,927 
118,642 
783.072 
127.951 

11.414 
34.636 

547,711 
3,686,521 

283.869 
3,912~101 

133,682 
29,419 
58,548 

1,650,468 
1,435,127 

192,283 
189,781 
42.825 
19.357 

502 
19.065 
89,972 

5,529.261 
63,918 

923,918 
24,486.691 

47,299 
484.223 

2,584.891 

Max 
Loss 

State/Reoion 

LA 
SC 
TX - No 
SC 
FL - SE 
MS 
TX - No, Ce 
TX - No 
FL - SE 
FL ~ NE 
LA 
FL - SE 
LA 
FL - SW 
FL - SE 
TX - So 
FL - SW 
MS 
ME 
TX - Ca. So 
TX - No, Ce 
LA 

NC 
PA 
LA 

FL - NW 
NY 
LA 
LA 

FL - NE 
AL 
TX - So 
TX - No 
NC 
SC 
LA 
MS 
NY 
LA 
FL -NW 
TX - No 
NC 
FL - SW 
LA 
TX - No 
SC 

TX - NO 
MA 
FL - SE 
NC 
FL - NW, NE 
FL - NW 

Max 
CateQorv 

4 
1 
1 
3 
4 
1 
4 
1 
2 
2 
3 
2 
3 
2 
1 
3 
2 
5 
1 
3 
2 
1 
1 
1 
3 
3 
1 
1 
1 
2 
3 
3 
3 
3 
1 
1 
3 
3 
1 
2 
1 
1 
1 
1 
1 
4 
1 
2 
4 
3 
1 
3 
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Hurr icane L o s s  E s t i m a t e s  
Con t i nen ta l  U.S. 1900 - 1999 
Dollars in Thousands 

Insured 
Hurricane Total Eslimaled Actual Loss at Time of Event Loss Max 
Number/ Insurance Normalized Loss Max 

Year N~m~ E~:oqgmic Utilization Insu~,d $ovrc e To 2000 Stale/Reoion Cateaorv 

1996 Bertha $ 135,000 PCS $ 169,071 NC 2 
1996 Eran 1.535,000 PCS 1,910,703 NC 3 
1997 Danny 35,000 PCS 41,277 AL 1 
1998 Bonnie 360,000 PCS 400,501 NC 2 
1998 Earl 18,000 Pcs 19,929 EL - NW 1 
1998 Georges 1,t55,000 PCS 1,270,333 FL - SW 2 
1999 Bret 30,000 Pcs 31,388 TX - So 3 
1999 Floyd 1,875.000 Pcs 1,979,274 NC 2 

_# % Cate•orv Sum % Avera(]e 
62 37 8% 1 7,573,283 2 6% $ 122,150 
38 23.2% 2 24,289,360 85% 639,194 
47 287% 3 93,362,199 325% 1,986,430 
15 9 1% 4 157,930,884 55 0% 10,528,726 
2 12% 5 4,141,174 1 4% 2,070,587 

164 1000% All 33,586399 287,296,900 1,751.810 

#_ % Dec~e Sum % Avera(]e 
15 91% Aughts 31,942,476 111% 2,129,498 
20 122% Teens 36,264,818 126% 1,813,241 
15 91% Twenties 64,400,759 224% 4,293,384 
17 104% Thirties 16,689,841 58% " 981,755 
23 14.0% Forties 27,116,547 94% 1,178,980 
18 11 0% Fifties 23,209,438 8 1% 1,289,413 
15 91% Sixbes 28,736,676 100% 1,915,778 
12 73% Seventies 10,956,670 38% 913,056 
16 98% Eighties 13,630,178 4.7% 851,886 
13 7 9% Nineties 34,349,498 12 0% 2,642,269 

164 All 287,296,900 1.751.810 

Notes: 
Where based 0n NOAA. insured loss equals economic loss times insurance utilization factoe times flood 
adjustment factor Only the following storms, which had unusual amounts of uninsured flood damage, were 
reduced to reflect flood; 1900 #1 (50%}, 1915 #2 (75%). 1916 #1 (50%), 1955 Diane (5%) 

Economic losses for smaller events estimated judgmentany 

PCS losses exclude the following stales and tardtones, which were excluded from the normalization model: 
1975 EIolse PA, PR 
1979 David PR, Vl. VA to MA 
1979 Frederic K¥. NY, OH, PA, WV 
1980 Allen PR, VI 
1989 Hugo PR, VI 
1995 Opal NC, SC, TN 
1996 Fran PA, OH 
1997 Danny NC, SC 
1998 Geofges PR. Vl 
1999 Floyd PA, RI 
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Normal ized Hurricane Loss - Annual  Aggregate  Severity Distr ibut ions by Sta te  
Dollars in Thousands 

Normalized Actual 2Oth Centur~ Return Periocl tYears) 
S~ate 100 5O 25 2_O 

Texas $ 16357,807 $ 16,044,802 $ 4,568,366 $ 3,912,101 $ 959,320 $ 

Lomsiana 10426,919 1,642,437 1.115,135 723,002 343,52 t 

Miss~sslpp~ 2490.730 1,337,271 799.333 735,718 159.861 

/IJabarna 2406881 1,363,217 385,039 379,566 31 137 

Fledda 49,744060 23,763,689 7,976,601 5,837.485 3,052795 

Georgia 429,105 176,122 101,460 73,375 15.783 

South Carc4ina 4, t 40.037 606,128 244,375 220,535 40.168 

Nortt~ Carolina 1,943,528 1,768,044 1,399,847 1,371 862 267,909 

Virginia 2,188,909 872,795 112,753 t 04,579 33,871 

Mar/land 834038 484,365 53,170 48,076 5,340 

Delaware 341.019 26,476 14,979 14,200 365 

New Jersey 980301 600,714 99.297 92,297 32,234 

New York 3 082,156 1,490.510 208,076 183,374 36,439 

Connechcut 4,095.213 504,385 151 939 76,484 50 

Rhode Island 1 322,697 416,528 160,166 134.081 

Massachusetts 2.904.903 1.484,027 456.272 367 780 924 

New Hampshire 412,611 159.311 11,635 10,464 

Maine 285,940 56,837 18,511 17,402 

Total All States 51,789,586 24,486,691 16,485,683 15,106.320 9.373,159 

5 

133,896 

30640 

3683 

1 335 

910060 

1,094 

5,947 

23,152 

842 

3,555,627 

Exhibi t  4 
Sheet  1 

E xpeeled % of 
Annual Total 

$ 615,179 214% 

195,641 6 8% 

77,431 27% 

61,380 2 1% 

1 422.764 495% 

11,487 O 4% 

61,660 21% 

t 09,399 3 8% 

38,253 1 3% 

16,951 06% 

4,360 0 2% 

22.166 0 8% 

61.227 2 1% 

50,944 1 8% 

24,819 0 9% 

63.812 2 2% 

6178 02% 

4,175 0 1% 

2,872,969 

Nota: Return penod loss based on distnbu6on by stale of normahzed losses in Exhibit 3. e g  100 year 
return is the worst year in the 20th century, 50 year return is the SeCOnd worst year, 25 year return is the 4th 
worst year, etc. Not to be confused with probabilistic return penod distributions and expected losses based 
on catastrophe models, which are intended to reflect longer term probabilities 
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Normalized Hurricane Loss - Maximum Single Occurrence S e v e r i t y  D i s t r i b u t i o n s  by State 
Dollars in Thousands 

Normalized Actual 20th Centur,/Relurn Period {Years~ 
State 100 5O 25 2O 10 

Texas $16,357,807 $16,044,802 $ 4,568,366 $ 3,912,101 $ 959,320 $ 

Louisiana 10,426.919 1,540,864 1,115.135 723.002 343,527 

Mississ~pp* 2.490,730 1.331,575 793,954 735,718 159,861 

Alabama 2,406.138 1,363,217 383,807 218.189 31.137 

Florida 47,989.146 23,763.689 7,976,601 5,837.485 2,853.627 

Georgia 429,105 176.122 101,460 73,375 15,783 

Soulh Carolina 4,140,037 605.316 244,375 220,535 37,008 

North Carotina 1943.528 1,641,766 1,371,862 641,628 26L909 

Virginia 2,188.909 854,007 112.753 104,579 33,871 

Maryland 834,038 484,106 53.170 48,076 5,340 

Delaware 341.019 26,476 14,979 14,200 365 

New Jersey 600,714 579.055 99,297 92.297 32,234 

New York 3,082,156 1,077,727 208,076 183.374 36.439 

Connecticut 4,095,213 351,008 151,939 76,484 50 

Rhode Island 1,183.942 416.528 160,166 134,081 

Massachusetts 2,655,844 1.484~027 456.272 367.780 924 

New Hampshire 332.968 159,311 11.635 10,464 

Maine 263.178 56.837 18,511 17,402 

Total Air States 49,728,840 24,486,691 16,146,375 11,518.111 7,976.601 

69,972 

28513 

3.683 

t ,335 

894,836 

1.094 

5.947 

23.152 

842 

3,476,218 

Exh ib i t  4 

S h e e t  2 

100 Year Event 

1900- 1 ("isaac's") 

1965 - Betsy 

1969 - Camille 

1979 - Frederick 

1926 - 6 

1995 - Opal 

1989 - Hugo 

1954 - Hazel 

1954 - Hazel 

1954 - Hazel 

1954 - Hazel 

1938 - 4 or 1954 - Hazel 

1936 - 4 ("Great New England") 

1938 - 4 ("Great New England") 

1954 - Carol 

1954 - Carol 

1954 * Carol 

1954 - Carol 

Note Relurn period loss based on distribution by state of the largest normalized loss per year in 
Exhibll 3. e g , 100 year return is the worst event, 50 year return is the second worst event, 25 year 
return is the 4lh worst event, etc Not to be confused with probal~listic return period distributions an(:l 
expected losses based on calastrophe models, which are intended to reflect longer term probabdibes. 
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N o r m a l i z e d  H u r r i c a n e  Loss  - A n n u a l  A g g r e g a t e  Sever i t y  D i s t r i b u t i o n s  by  State a n d  C o u n t y  

C o u n t i e s  w i t h  S i g n i f i c a n t  A n n u a l  E.xpected L o s s e s  
Do#lars in Thousands 

Esbmated 
2000 Notma�zed Actual 201h Cenlun/Return Penod (Years) 

State CounW Hous4na Units 100 ~ 25 20 10 

TX 

FL 

Expected 
Expected LOSS Per 
Ann~al Unit ~$'s) 

Hams 
Galveston 
Nueces 
Brazona 
Fort Bend 
Cameron 
Aransas 
San Patnc~ 
Montgomet~ 
Hidalgo 
Jefferson 
Matagorda 
Chambers 
Viclona 

1,305,351 $9,953.674 $8,841.048 $729,077 $560.265 $199.602 $0 $245,595 $188 
110,157 4,606,461 4,084,453 360,805 316.733 44,502 1106 104,432 948 
122,333 7,287,137 2,001,912 90,356 53,950 36.982 0 98.660 806 
88,261 1.359.509 581.793 166,175 164.674 28.757 434 33.046 374 

121,367 911,594 401,431 160,493 153,787 14.463 O 23,965 197 
114,432 647.510 513.497 68.357 32,195 3.978 0 14.581 127 

14,188 1.203.723 114.140 6,721 4,802 1.624 0 14,044 990 
26,640 1,032,527 136,714 6,96,B 5,220 3.636 0 12,619 474 

114,584 285.815 244,840 53.763 22,594 3,909 O 7,953 69 
184,668 665,041 119,872 14,585 5,975 0 0 7.720 42 
97,658 261,334 165,980 33,504 21,097 7,430 32 6,103 63 
18329 179,112 141,720 42,226 9,220 1,892 206 4,539 248 
9305 145,296 127,939 8,388 4,940 1,430 11 3,147 338 

31,792 268,874 14,153 5,013 1,338 355 C 3,067 96 

Dade 960,587 24,841,690 21,503,754 2,448.916 1,154.922 5281163 32.834 594,201 690 
Btoward 784.873 8,274,310 1.837,931 1,276,267 1,250.347 432.580 30,674 188,435 240 
Palm Beach 580.029 2.613,939 2.449,415 1,278.092 874.908 186,600 30.599 119.848 207 
Monn3~ 48.610 3.285,189 1.3G6,132 815,359 659.162 93,993 8.586 86.746 1,785 
Lee 232,004 4.333.589 1.174.856 282.775 278.928 47,403 14.434 75.937 327 
Escambia 122,238 1.242.614 537,338 243.515 86.124 8,999 156 26.799 219 
8mvaKI 228.560 805.310 688,639 202.758 173.427 23,231 2,025 25.084 110 
Colltet" 134,052 1,510+837 345,577 110,492 68.745 12,317 4,488 25,022 187 
Salrasota 174,066 1.167,395 723,028 112,817 51,022 23,990 5,187 24.846 143 
Firlellas 470889 603,486 470,479 152,418 95,421 58,754 9,286 23.269 49 
Santa Rosa 52623 961,706 639,907 150,955 83,197 8,161 250 22.866 435 
SL Lucle 94,~o6 1.110,664 376.664 115,185 76,406 24.309 1,799 21,996 232 
hilitsborougt~ 413122 749,675 222,368 134,788 95.736 26.053 4,100 16,790 41 
Okaloosa 
Matin 
Manatee 
Volusia 
Orange 
polk 
Indian River 
Charlotte 
Pasco 
Lake 
Sem~ole 
Du-,tal 
Bay 
Osceola 
Marion 
H~h~nds 

79,064 632,113 336.647 121,265 C00,763 5,794 336 14,755 187 
64.667 619.485 272,745 117,000 74,602 10.303 1,420 14.627 226 

133,772 483,954 468A04 71.797 39,658 23,189 3,284 13,879 104 
216,688 314,543 278,835 148,743 137,068 14,648 1,118 13,635 63 
339,869 411,441 196,923 134,578 122,244 20,628 343 13,610 40 
213.034 375,193 365.058 124,589 109,153 16,023 1,041 13,420 63 

52,411 562,726 174,576 40,527 37.628 12,896 509 11,084 211 
84,296 568.944 270,309 22,544 16.893 6,665 761 10,036 119 

175.8,54 219,943 162,509 47.060 30.902 11.942 1,696 6.880 39 
106,250 186,706 179,379 44.272 42,158 8,788 301 6,538 62 
152.097 145.588 95.484 61.216 55.408 6.372 0 5,571 37 
317,548 232.279 84.687 46.432 28.001 5.734 O 5.544 17 
81.598 264.066 100.921 36.975 17.167 5.810 O 5.423 66 
70,504 148,485 65,616 36.843 23,752 6,872 219 4.080 58 

124,315 131,971 107,128 23,137 22,395 8,516 243 4,071 33 
46.304 60,603 52.898 25.421 22,991 2.042 236 2.745 59 

Nora: Return penocl loss based on dlsldbu~on by state and county of normalized losses in Exhibit 3, e g ,  100 year return 
is t6e worst year In the 2Olh cet~tuty, 50 yely return i~ the seco~l woPst year. 25 ~ mtum is ~ 4~ ~ ~ar,  ~ ,  
NO( tO be confused wdh probabitts6c return ~ distdbofions and expected losses based on Catastrophe models, whch 
m ~t8,nde(I to reflect longer t~nm Wobabilibes Expected k:]$s per unit cofftpanss expected armual losses (personal 
commercial, and auto) ~ th  residential - only housing units, ie., it is interKled as II mte~ve measure of cost per u~t of 
IlXpOSute bof not as a measure of ~ l J a l  costs per unit, 

Exhibi t  5 
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Comparison of Actual vs, Modeled Hurricane Experience 

Exhibit 6 
Sheet 1 

Number of Landfalling Storms per Century 

Actual 20th Century Model T 
Ceteqory CW T._.XX F...L CW T.~X FL 

1 63 12 17 62.0 11.0 16.5 
2 36 8 15 37.5 8.5 15.0 
3 48 10 16 46.0 9.5 17.0 
4 15 6 5 16.0 5.0 6.0 
5 2 0 1 2.5 0.5 1.0 

All 164 36 54 164.0 34.5 55.5 

Estimated Annual Aggregate Insured Loss ($000) 

Normalized 20th Centur~ Model T 
Cat~qory CW T__X FL CW T._XX FL 

1 $ 75,733 $ 9,146 $ 44,648 $ 59,199 $ 5,176 $ 26,473 
2 242,894 22,175 134,857 300,721 34,207 143,086 
3 933,622 131,962 329,344 852,477 88,322 391,428 
4 1,579,309 451,897 902,001 1,262,920 186,123 714,092 
5 41,412 11,914 403,634 65,421 191,347 

Expected 2,872,969 615,179 1,422,764 2,878,951 379 ,250  1,466,427 

Estimated Annual Aggregate Insured Loss ($000) 

Return Normalized 20th Century Model T 
Period IYrs} CW T._.XX FL CW T._.XX FL 

5 $ 3,555,627 $ 133,890 $ 910,060 $ 3,569,742 $ 126,796 $ 954,030 
10 9,373,159 959,320 3,052,795 6,917,383 684 ,396  3,206,555 
20 15,106,320 3,912,101 5 , 8 3 7 , 4 8 5  11,780,896 2,032,334 7,702,533 
25 16,485,683 4,568,366 7 ,976 ,601  14,687,232 2,821,885 10,343,645 
50 24,486,691 t6,044,802 23,763,689 21,710,120 5,061,653 17,296,870 
100 51,789,586 16,357,807 49,744,060 33,133,590 8,331,148 28,926,913 

Expected 2,872,969 615,179 1,422,764 2,878,951 379 ,250  1,466,427 

Notes: Countrywide (CW) normalized figures based on continental U.S. from Exhibits 3 and 4. 
Texas and Florida actual frequencies from Exhibit 1. 
Texas and Florida normalized damages from Exhibit 4 and undedying data. 
Model T is a hypothetical probabilistic hurricane model 
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Comparison of Actual vs. Modeled Hurricane Expected Losses by State 

Annual E Kt~ecled Losses ($000) 
Normalized Model T 

Stale Actual Model T Difference 

Te~(as $ 615,179 $ 379,250 *38% 
Louisiana 195,641 197,501 1% 
Mississippi 77,431 54,460 -30% 
Alabama 61,380 54,522 -11% 
Florida 1,422,764 1.466,427 3% 
Georgia 11,487 27,649 142% 
South Carolina 61,660 84,864 38% 
North Carolina 109,399 110,872 1% 
Virginia 38,253 43,274 13% 
Mat/land 16,951 11.685 -31% 
Delaware 4.360 2,766 -37% 
New Jersey 22,166 52,633 137% 
New York 61,227 157.509 157% 
Connecticut 50,944 59,260 16% 
Rhode Island 24,619 26~220 6% 
Massachuselts 63,812 96,552 51% 
New Hampshire 6,178 41721 -24% 
Maine 4,175 4.830 16% 

All Slates 2,872,969 2,878,951 0% 

TX 

LA 

MS 

AL 

FL 

GA 

SC 

NC 

VA 

ME) 

DE 

NJ 

NY 

CT 

RI 

MA 

NH 

ME 

Comparison of Model T and Normalized Expected 
Losses by State 

--F---q-----T-, ~-- -]-- f----! .... 
I 

, I I I I I I , 

F 

I ..c~[ 

B= 

20O 

Notes 

400 600 800 1,000 1,200 1.400 

Expected Losses ($Mil l ions) 

Normalized figures from E xhibil 4, Sheet 1 
Model T is a hypothehcal probabilistic hurricane model 

• Model 3- 
I"1 Normalized j 

1,600 

Exhibit 6 
Sheel 2 
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Comparison of Actual vs. Modeled Hurricane Losses 
T o p  50 H is to r i ca l  N o r m a l i z e d  E v e n t s  

Rank 
Number/ 

Year Name Normalized Mogfel T 

1 1926 6 49,728,840 44,000,000 
2 1992 Andrew 24,486,691 24,900,000 
3 1900 1 16,485,683 11,900,000 
4 1915 2 16,146,375 9,800,000 
5 1965 Betsy 11.518,111 12,900.000 
6 1919 2 10,009,409 4,800,000 
7 1938 4 9,965,606 12,800,000 
8 1928 4 9,816,472 16,700,000 
9 1954 Hazel 8,196,810 6,700,000 

10 1909 9 7,976,601 3,400,000 
11 1954 Carol 6,265,912 5,600,000 
12 1944 11 5,855,343 9,700,000 
13 1989 Hugo 5,529,261 5.900,000 
14 1947 4 5,432,151 17,600,000 
15 1960 Donna 4,709,959 8,800,000 
16 1970 Celia 4,568,366 4,400,000 
17 1983 Alicia 3,912,101 2,800,000 
18 1945 9 3,762.550 6,600.000 
19 1964 Cleo 3,746,855 2,900,006 
20 1979 Frederic 3,688,521 2,100,000 
21 1961 Carla 3,476.218 2.600,000 
22 1916 1 3.096,434 2,300,000 
23 1969 Camille 2.949,789 3,300,000 
24 1950 King 2,853,627 7.500,000 
25 1910 4 2,735,157 3,100,000 
26 1949 2 2,728,296 6,700,000 
27 1995 Opal 2,584,891 2,400,000 
28 1903 3 2,124,106 2,600,000 
29 1944 7 2,087,738 4,500,000 
30 1999 Floyd 1,979,274 2,000,000 
31 1996 Fran t,910,703 2,100,000 
32 1926 1 1,755,434 2,700,000 
33 1915 5 1,709.809 2,700.000 
34 198~ Elena 1,650,468 1,300,000 
35 192", 6 1,624,995 5,400,000 
36 1947 8 1,460,391 1,200,000 
37 1985 Gloria 1,435,127 1,900,060 
38 1955 Connie 1,378,549 1,700,000 
39 1935 6 1,371,030 1.500,000 
40 1933 8 1,356,989 1,300,000 
41 1998 Georges 1,270,333 1,300,000 
42 1935 2 1.191,386 2,400.000 
43 1957 Audrey 1,176,396 1,000,000 
44 1933 12 1,163,819 3.900,000 
45 1909 3 1,119,560 1,600,000 
46 1942 2 1,028.039 500,000 
47 1943 1 970,828 700,000 
48 1972 Agnes 956,927 400,000 
49 1941 5 942.310 8,100,000 
50 1991 Bob 923,918 1,300,000 

264,812,155 294,300,000 

Notes: Normalized figures from Exhibit 3 
Model T is a hypothetical hurricane model 

Max 
Loss Max 

State/Reqion Cateqory 

FL - SE 4 
FL - SE 4 
TX - No 4 
TX - No 4 
LA 3 
FL - SW 4 
CT 3 
FL - SE 4 
NC 4 
FL - SE 3 
MA 3 
FL -SW 3 
SC 4 
FL - SE 4 
FL - SE 4 
TX - Ce, So 3 
TX - No 3 
FL -SE 3 
FL - SE 2 
AL 3 
TX - No, Ce 4 
MS 3 
MS 5 
FL - SE 3 
FL - SW 3 
FL - SE 3 
FL - NW 3 
FL - SE 2 
MA 3 
NC 2 
NC 3 
FL - NE 2 
LA 4 
MS 3 
FL - SW 3 
FL - SE 2 
NY 3 
MD 3 
FL - SE 2 
VA 2 
FL - SW 2 
FL - SW 5 
LA 4 
FL -SE 3 
TX * No 3 
TX - No, Ce 3 
TX - No 2 
PA 1 
FL - SE 2 
MA 2 

Exhibit 6 
Sheet 3 
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H u r r i c a n e s  A f f e c t i n g  t h e  B e r m u d a ,  H a w a i i ,  P u e r t o  R i c o  a n d  U ~ ; V 1 1 9 0 0 - 1 9 9 9  

A p p e n d i x  A 

Exhib i t  1 

Oate of 
Number! First 

Name Landfall 

1900 4 17-Sep 
1903 6 28-Sep 
1915 3 03-Sep 
1916 10 23-Sep 
1918 4 04,Sep 
1921 3 15-Seo 
1922 2 21-Sep 
1926 10 22-Oci 
1939 4 16-OCl 
1947 9 20-Oct 
1948 6 13+Sep 
1948 8 07-Oct 
1953 Edna 17 Sep 
1963 Ahane 09-Aug 
19e7 Emily 24-Sep 
1989 Dean 05 Aug 
1999 Gert 21-Sep 

Cate(joq( and Ke)- tslands Affected 
HaNVallan Islands Puerto US V+roin island5 PR or US Landfall 

Bermuda Hawal~ Kaua~ Oahu Rbc~ ~ T h o m a 5  St (~r~x ~ Slates Affected and Ca~cqory 

t None 
1 None 
1 None 
1 None 
1 None 
1 Nor~ 
2 None 
3 None 
3 None 
2 None 
2 None 
2 FLSE 2 
2 None 
1 None 
2 None 
1 None 
1 None 

1950 Hiki 15-Aug 
1957 Nma 02-Oec 
1959 DOI 0E.-Aug 
1982 Iwa 23-Nov 
1992 Iniki 11 -Sep 

1916 5/San Hipoltlo 22 Aug 
1916 12 
19215 l lSan Libor~0 23-Jul 
1929 41San Felipe 13-Sep 
1930 2 02-Sep 
1931 6/San N~olas 10-Sep 
1932 7/San Ciprlan 26-Se~ 
1956 Santo Clara (Betsy) 12-Au 9 
1960 Donna 05-Sep 
1989 H~K:JO 18-Sep 
1995 Manlyn 16-Sep 
1996 Bertha 08-Jul 
1996 Hotlense t0 SeD 
1998 Georges 2 ~ -SeD 
1999 Lenny 17-Nov 

Catego~ 1 
Cateoory 2 
Cateoonf 3 
Category 4 
Category 5 
TOtal 

1 
1 
2 
1 1 
4 

9 0 3 1 
E 0 1 0 
2 0 O 0 
0 O 1 0 
0 0 0 0 
17 0 5 1 

1 2 2 2 None 
2 2 None 

1 1 FLNE 2 
5 5 5 FLSE 4 FLNE 2 GA 1, SC 1 
1 1 None 
2 2 1 2 None 
2 2 1 2 None 
t t Non~ 

1 1 FLSW4. NC 3. NY 3 
4 3 4 4 SC 4 

2 2 2 None 
1 1 NC2 

1 I Nooe 
2 1 2 2 FLSW 2, MS 2 

1 1 None 

5 3 4 7 
3 5 3 6 
0 1 0 0 
I 0 1 1 

10 0 1 15 
1 9 9 1 

Note: Category desCjnatbons, a, ccord~ng to Sa~rlSimpson Humcane Scale, based on estimated sustained wlads over 
land reflecting authocs' }udomenl baS~d on r e v ~  of 

• NOAA summan/reports and best track files (www ~hc noaa 90v/paslalq html) 
- Neumann (Newmi~n, Jarvinen, McAd~e and Elms, 1993, p 31) 
• P~bert (Hebett. J~t,rell and Mayf~ld, 1996. Table 14) 
- Tucker (Tucker. 1995) 

No huh'cartes have affected the west coast Of the U S dunng the 20th century Accordin 9 to the 
NatK)nal Weather Sen/¢e office ~n Oxna~, California, two storms are recogmzed as havre 9 
produced tropical storm condit~ns over land: 

- September 25, 1939 in Southern California (Long Beach area) 
- Octolber 6, 1972 in Artzona (remnants Of Humcane JOanne) 
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Hurricanes Affecting the Bermuda, Hawaii, Puerto Rico and USVI 1900-1999 
Esbmated Damage at Time of Event 
Dollars in Thousands 

Number/ Estimated Damaae 
Year Name Economic Insured Source 

B~rmudp 
1900 4 Unk 
1903 6 Unk 
1915 3 Unk 
1916 10 Unk 
1918 4 Unk 
1921 3 Unk 
1922 2 Unk 
1926 10 Unk 
1939 4 Unk 
1947 9 Unk 
1948 6 Unk 
1948 8 Unk 
1953 Edna Unk 
1963 Arlene 75 Tucker 
1987 Emily 35,000 NOAA 
1989 Dean 5,000 NOAA 
1999 Gert Unk 

Hpw~lii 
1950 Hiki Unk 
1957 Nina 200 Hebert 
1959 Dot 6,000 Hebert 
1982 Iwa 137,000 PCS 
1992 Iniki 1,906,000 PCS 

Insured 

Eqqnomic PR USVI ~9ur~:e 

Puetlo Rim and USVI 
1916 51San Hipolito 1,000 Hebert 
1916 12 Unk 
1926 1/San Libono 5,000 Hebert 
1928 4/San Felipe 85,000 Hebert 
1930 2 Unk 
1931 6/San Nicolas 200 Hebert 
1932 7/San Cipnan 30.000 Hebert 
1956 Santo Clara (Betsy) 40,000 10,000 PCS 
1960 Donna Unk Hebert 
1989 Hugo 440,000 800.000 PCS 
1995 Madlyn 75,000 800.000 PCS 
1996 Bertha Unk 
1996 Hortense 150,000 PCS 
1998 Georges 1,750.000 50,000 PCS 
1999 Lenny Unk 

A p p e n d i x  A 
Exhib i t  2 
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A,opendlx B 
Exhibit 1 

HbstonCal Indices Used pn Normahzation Medet 
Annual  Growth Rates 

Year 

1901 
1902 
1903 
1904 
1905 
t906 
1907 
1908 
1909 
1910 
1 9 1 1  

1912 
1913 
1914 
1915 
1916 
1917 
1918 
1919 
1920 
1921 
1922 
1923 
1924 
1925 
1926 
1927 
1928 
1929 
1930 
1931 
1932 
1933 
1934 
1935 
1936 
1937 
1938 
1939 
1940 
1941 
1942 
1943 
1944 

1945 
1946 
1941 

1948 
1949 
1950 

ImphOl Net Slock Nabonal 
Price of Housmg National insurance 

Deflalor FRTW Un~Is Population Ubllzabon 

3 5% 2 5% 1 9% 1 9% 2 2% 
3 5% 2 5% 1 9% 1 9% 2 2% 
3 5 %  2 5 %  1 9% 1 9% 2 1 %  
3 5 %  2 5 %  19% 1 9 %  2 1 %  
3 5% 2 5% I 9% 1 9% 2 0% 
3 5% 28% I 9% 1 9% 2 0% 
3 5% 2 6% 1 9% 1 9% 1 9% 
3 5% 2 5% 1 9% 1 9% 1 9% 
3 5% 2 5% 1 9% 1 9% 1 9% 
3 5% 2 5% I 9% 1 9% 1 8% 
35% 2 5 %  14% 14% 18% 
3 5% 2 5% 1 4% 1 4% 1 8% 
3 5% 2 5% ! 4% 1 4% 1 7% 
3 5% 2 5% 1 4% 1 4% I 7% 
3 5% 2 5% 1 4% 1 4% 1 7% 
3 5% 2 5% 1 4% 1 4% 1 7% 
3 5% 2 5% 1 4% 1 4% 1 6% 
3 5% 2 5% 1 4% 1 4% 1 6% 
3 5% 2 5% 1 #.% 1 4% 1 6% 
3 5% 2 5% I 4% 1 4% 1 6% 
3 5% 2 5% 1 5% 1 5% 1 5% 
3 5% 2 5% 1 5% 1 5% 1 5% 
3 5% 2 5% 1 5% 1 5% 1 5% 
3 5% 2 5% 1 6% 1 5% 1 5 %  
3 5% 2 5% 1 5% I 5% 14% 
35% 41~/, 15% 15% 14% 
3 5% 3 6 %  ! 5% 1 5% 1 4% 
3 5% 3 2% 1 5% 1 5% t 4% 
3 5% 32% 1 5% 1 5% 1 4% 
3 5% ! 7 ~' 1 5% 1 5% 1 3% 
3 5% 0 4% 0 ~% O 7% 1 3% 
3 5% .I 0% F/ t% 0 7% 1 3% 
3 5% 1 3% '3 Z% 0 7% 1 3% 
3 5% -0 6% 0 7% 0 7% 1 3% 
3 5% 0 2%, C ?% O 7% 1 3% 
3 5% ! 5%, 0 7% 0 7% 1 2% 
3 5% 1 8% O 7% 0 7% 1 2% 
3 5 %  0 9 %  0 7 %  0 7 %  1 2 %  
3 5% 1 7% 0 7% 0 7% 1 2% 
3 5% 2 1% (', 7% 0 7% 1 2% 
3 5 %  3 7 %  2 1 %  14% 12% 
3 5 %  5 4 %  2 1 %  14% 12% 
3 5 %  5fl% 2 ! %  14% 1 1% 
3 5 %  4 6 %  2 1 %  14% 1 1% 
3 5 %  2 ! %  2 1 %  14% 11% 
3 5 %  0 4 %  2 1 %  1 4 %  1 1% 
3 5 %  14% 2 1 %  1 4 %  11% 
3 5 %  2 1 %  2 1 %  14% 11% 
3 5 %  2 6 %  2 ! %  14% 1 1% 
3 5 %  3 7 %  2 1 %  14% 1 1 %  

Impbc!t Ne~ Stock Naliorla] 
Price o1 Housbng Nabonal Insurance 

Year Deflator FRTW Units PopulalnOn Util ization 

1951 5 5% 4 0% 2 4% 1 7% 36% 
1952 14% 3 6 %  2 4 %  17% 3 5 %  
1953 0 9 %  4 2 %  2 4 %  17% 3 4 %  
1954 0 9 %  9 7 %  2 4 %  17% 3 2 %  
1955 2 7 %  4 3 %  2 4 %  17% 3 1 %  
1956 3 2% 3 7% 2 4% 1 7% 3 0% 
1951 2 8% 34% 2 4% f 7% 3 0% 
1958 2 7% 2 8~/o 2 4% 1 7% 2 9% 
1959 0 8% 3 6% 2 4% f 7% 2 8 %  
1960 t 6% i ~% 2 4% 1 7 %  2 7% 
1961 1 0% 3 1% ! 6% 13% 2 6% 
1962 1 3% ! 5% I 6% 1 3% 2 6 %  
1963 1 5 b  7% 1 6% 1 3% 2 5% 
1964 1 4,,, 4 1% 1 6% 1 3% 2 5% 
1965 2 2'o 4 494, 1 6% 1 3% 2 4% 
1966 3 4% 4 5";= 1 6% 1 3% 2 3% 
1967 34% 4 0% 1 6% 1 3% 2 3% 
1968 4 5r/~, 4 1 %  ! 6 %  13% 2 2 %  
1969 4 9% !, 9% " 6% 1 3% 2 2% 
1970 51 ' : ;  -:,2% 16% 13% 2 1 %  
1971 4 9~b 3 ~'% 2 6% 1 1% 2 1% 
1972 4 4% Z 0% 2 6% 1 l %  2 0% 
1973 6 9% ~ 9% 2 6% 1 1% 2 0 %  
1974 10 6% 3 0% 2 6% 1 1% 2 0 %  
1975 7 6 ' 1  2 2 %  2 6 %  1 1% 1 9% 
1976 5 5% 2 6% 2 6% 1 1% 1 9% 
1977 6 7 %  9 1 %  2 6 %  1 1% 19% 
1978 7 t~'c, ~ 5% 2 6% 1 1% I 8% 
1979 8 z'),, ~ 4,~ 2 6% 1 1% t 8% 
198D 10 0% ;? 5=, 2 6% 1 1% 1 8% 
1981 8 4% 2 4:!£ 1 5% 0 9% 1 7% 
1982 5 ?'~, 1 81 1 5% 0 9% 1 ?% 
1983 3 9~', :; 2'~ 1 5% 0 9% 1 7% 
1964 3 5% ] 1 ° i  t 5% 0 9% 1 6% 
1965 3 4 ] ;  ! 3 t  1 5% O 9% 1 6% 
1986 ,:' 5;~ ? 2'!:: 1 5% 0 9% 1 6% 
198 e t ~'~;, t 0"¢ 1 5% 0 9o/0 1 6% 
1988 4 0% :: 9~', 1 6% 0 9 %  1 6% 
1989 3 9% : 6~'* 1 5% 0 9% 1 5% 
1990 4 5% :' ~ i ,  ! 5% 0 9% 1 5% 
1991 3 4'h 1 6% 1 2% 10% 1 5% 
1992 2 6% I 7% 1 2% 1 0% 1 5% 
!993 2 b'~' Z 0% 1 2% 1 0% 1 4% 
1994 2 r~% r 2% 1 2% 1 0% 1 4% 
1995 2 1 °' 5% 1 2% I 0% 1 4% 
1996 ! 8~': 2 7% 1 2% 1 0% O 0% 
1997 ! 7 ° ' ?% 1 2% 1 0% 0 0% 
1998 I 29'<, 2 7% 1 2% 1 0% O 0% 
1999 1 5~' 7% 1 2% 1 0% 0 0% 
2000 2 !£ '  ~ 7% ~ 2% 1 0% 0 0% 

NOteS: Imphcd pnce deflator available back to 1950; 3 5% trend assumed for 1960 and prior 
FRS~/ i s  f ixed reproducable langlble wealth, Depar lmenl of Commerce Bureau of Econom< AnaP~sis 

- Available back Io 1925, 2 5% trend assumed for 1925 an0 prbor 
Housing units and population growth based on annual growth between each decenntal census 
Insurance utd~zatlon index based on Imear trends I ron  1900 to 1950 and from 1950 Io 1995 

- See lext arxl graph on Appendix B, Exhibit 2 for further information 
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Appendix B 
Exhibit 2 

Industry Annual Insured Hurricane Losses as a 
Percentage of Total Damages (Insurance 

Utilization Ratio - Actual vs Selected) 
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by Louise Francis 

Francis Analytics and Actuarial Data Mining, Inc. 

Abstract: 
This paper will introduce the neural network technique of analyzing data as a 
generalization of more familiar linear models such as linear regression. The reader is 
introduced to the traditional explanation of neural networks as being modeled on the 
functioning of neurons in the brain. Then a comparison is made of the structure and 
function of neural networks to that of linear models that the reader is more familiar with. 
The paper will then show that backpropagation neural networks with a single hidden 
layer are universal function approximators. The paper will also compare neural networks 
to procedures such as Factor Analysis which perform dimension reduction. The 
application of both the neural network method and classical statistical procedures to 
insurance problems such as the prediction of frequencies and severities is illustrated. 

One key criticism of neural networks is that they are a "black box". Data goes into the 
"black box" and a prediction comes out of it, but the nature of the relationship between 
independent and dependent variables is usually not revealed.. Several methods for 
interpreting the results of a neural network analysis, including a procedure for visualizing 
the form of the fitted function will be presented. 

Acknowledgments: 
The author wishes to acknowledge the following people who reviewed this paper and 
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Neural Networks Demystified 

Introduction 

Artificial neural networks are the intriguing new high tech tool for finding hidden gems 
in data. They belong to a broader category o f techniques for analyzing data known as data 
mining. Other widely used tools include decision trees, genetic algorithms, regression 
splines and clustering. Data mining techniques are used to find patterns in data. 
Typically the data sets are large, i.e. have many records and many predictor variables. 
The number of records is typically at least in the tens of thousands and the number of  
independent variables is often in the hundreds. Data mining techniques, including neural 
networks, have been applied to portfolio selection, credit scoring, fraud detection and 
market research. When data mining tools are presented with data containing complex 
relationships they can be trained to identify the relationships. An advantage they have 
over classical statistical models used to analyze data, such as regression and ANOVA, is 
that they can fit data where the relation between independent and dependent variables is 
nonlinear and where the specific form of the nonlinear relationship is unknown. 

Artificial neural networks (hereafter referred to as neural networks) share the advantages 
just described with the many other data mining tools. However, neural networks have a 
longer history of research and application. As a result, their value in modeling data has 
been more extensively studied and better established in the literature (Potts, 2000). 
Moreover, sometimes they have advantages over other data mining tools. For instance, 
decisions trees, a method of splitting data into homogenous clusters with similar expected 
values for the dependent variable, are often less effective when the predictor variables are 
continuous than when they are categorical. I Neural networks work well with both 
categorical and continuous variables. 

Neural Networks are among the more glamorous of the data mining techniques. They 
originated in the artificial intelligence discipline where they are often portrayed as a brain 
in a computer. Neural networks are designed to incorporate key features of neurons in 
the brain and to process data in a manner analogous to the human brain. Much of the 
terminology used to describe and explain neural networks is borrowed from biology. 
Many other data mining techniques, such as decision trees and regression splines were 
developed by statisticians and are described in the literature as computationally intensive 
generalizations of classical linear models. Classical linear models assume that the 
functional relationship between the independent variables and the dependent variable is 
linear. Classical modeling also allows linear relationship that result from a 
transformation of dependent or independent variables, so some nonlinear relationships 
can be approximated. Neural networks and other data mining techniques do not require 
that the relationships between predictor and dependent variables be linear (whether or not 
the variables are transformed). 

Salford System's course on Advanced CART, October 15, 1999. 
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The various data mining tools differ in their approach to approximating nonlinear 
functions and complex data structures. Neural networks use a series of neurons in what is 
known as the hidden layer that apply nonlinear activation functions to approximate 
complex functions in the data. The details are discussed in the body of this paper. As the 
focus of this paper is neural networks, the other data mining techniques will not be 
discussed further. 

Despite their advantages, many statisticians and actuaries are reluctant to embrace neural 
networks. One reason is that they are a "black box". Because of the complexity of the 
functions used in the neural network approximations, neural network software typically 
does not supply the user with information about the nature of the relationship between 
predictor and target variables. The output of a neural network is a predicted value and 
some goodness of fit statistics. However, the functional form of the relationship between 
independent and dependent variables is not made explicit. In addition, the strength of the 
relationship between dependent and independent variables, i.e., the importance of each 
variable, is also often not revealed. Classical models as well as other popular data mining 
~echniques, such as decision trees, supply the user with a functional description or map of 
the relationships. 

This paper seeks to open that black box and show what is happening inside the neural 
networks. While some of the artificial intelligence terminology and description of neural 
networks will be presented, this paper's approach is predominantly from the statistical 
perspective. The similarity between neural networks and regression will be shown. This 
paper will compare and contrast how neural networks and classical modeling techniques 
deal with three specific modeling challenges: 1) nonlinear functions, 2) correlated data 
and 3) interactions. How the output of neural networks can be used to better understand 
the relationships in the data will then be demonstrated. 

Tvoes of Neural Networks 
A number of different kinds of neural networks exist. This paper will discuss 
feedforward neural networks with one hidden layer. A feedforward neural network is a 
network where the signal is passed from an input layer of neurons through a hidden layer 
to an output layer of neurons. The function of the hidden layer is to process the 
information from the input layer. The hidden layer is denoted as hidden because it 
contains neither input nor output data and the output of the hidden layer generally 
remains unknown to the user. A feedforward neural network can have more than one 
hidden layer. However such networks are not common. The feedforward network with 
one hidden layer is one of the most popular kinds of neural networks. It is historically 
one of the older neural network techniques. As a result, its effectiveness has been 
established and software for applying it is widely available. The feedforward neural 
network discussed in this paper is known as a Multilayer Perceptron (MLP). The MLP is 
a feedforward network which uses supervised learning. The other popular kinds of 
feedforward networks often incorporate unsupervised learning into the training. A 
network that is trained using supervised learning is presented with a target variable and 
fits a function which can be used to predict the target variable. Alternatively, it may 
classify records into levels of the target variable when the target variable is categorical. 

256  



This is analogous to the use of such statistical procedures as regression and logistic 
regression for prediction and classification. A network trained using unsupervised 
learning does not have a target variable. The network finds characteristics in the data, 
which can be used to group similar records together. This is analogous to cluster analysis 
in classical statistics. This paper will discuss only the former kind of  network, and the 
discussion will be limited to a feedforward MLP neural network with one hidden layer. 
This paper will primarily present applications of this model to continuous rather than 
discrete data, but the latter application will also be discussed. 

Structure of a Feedforward Neural Network 

Figure I displays the structure o f a  feedforward neural network with one hidden layer. 
The first layer contains the input nodes. Input nodes represent the actual data used to fit a 
model to the dependent variable and each node is a separate independent variable. These 
are connected to another layer of neurons called the hidden layer or hidden nodes, which 
modifies the data. The nodes in the hidden layer connect to the output layer. The output 
layer represents the target or dependent variable(s). It is common for networks to have 
only one target variable, or output node, but there can be more. An example would be a 
classification problem where the target variable can fall" into one of  a number of  
categories. Sometimes each of the categories is represented as a separate output node. 

As can be seen from the Figure 1, each node in the input layer connects to each node in 
the hidden layer and each node in the hidden layer connects to each node in the output 
layer. 

Figure 1 

Three Layer Feedforward Neural Network 

Inpul Hidden Ouq~t 

Layer LayeT LIar 

(Inpul Data) (Processes D*ta) (Predicted Value) 
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This structure is viewed in the artificial intelligence literature as analogous to that o f  
biological neurons. The arrows leading to a node are like the axons leading to a neuron. 
Like the axons, they carry a signal to the neuron or node. The arrows leading away from 
a node are like the dendrites of  a neuron, and they carry a signal away from a neuron or 
node. The neurons of  a brain have far more complex interactions than those displayed in 
the diagram, however the developers of  neural networks view neural networks as 
abstracting the most relevant features o f  neurons in the human brain. 

Neural networks "learn" by adjusting the strength of  the signal coming from nodes in the 
previous layer connecting to it. As the neural network better learns how to predict the 
target value from the input pattern, each o f  the connections between the input neurons 
and the hidden or intermediate neurons and between the intermediate neurons and the 
output neurons increases or decreases in strength. A function called a threshold or 
activation function modifies the signal coming into the hidden layer nodes. In the early 
days o f  neural networks, this function produced a value o f  I or 0, depending on whether 
the signal from the prior layer exceeded a threshold value. Thus, the node or neuron 
would only "fire" if the signal exceeded the threshold, a process thought to be similar to 
that o f  a neuron. It is now known that biological neurons are more complicated than 
previously believed. A simple all or none rule does not describe the behavior o f  
biological neurons, Currently, activation functions are typically sigmoid in shape and can 
take on any value between 0 and 1 or between -1 and 1, depending on the particular 
function chosen. The modified signal is then output to the output layer nodes, which also 
apply activation functions. Thus, the information about the pattern being learned is 
encoded in the signals carried to and from the nodes. These signals map a relationship 
between the input nodes or the data and the output nodes or dependent variable. 

Examole 1: Simple Example o f  Fitting a Nonlinear Function 
A simple example will be used to illustrate how neural networks pcrtbma nonlinear 
function approximations. This example will provide detail about the activation functions 
in the hidden and output layers to facilitate an understanding of  how neural networks 
work. 

In this example the true relationship between an input variable X and an output variable 
Y is exponential and is o f  the following form: 

X 

Y = e :  +~: 

Where: 
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- N(0,75) 

X - N(12,.5) 
and N (It, o) is understood to denote the Normal probability distribution with parameters 
It, the mean o f  the distribution and o, the standard deviation o f  the distribution. 

A sample o f  one hundred observations o f  X and Y was simulated. A scatterplot o f  the X 
and Y observations is shown in Figure 2. It is not clear from the scatterplot that the 
relationship between X and Y is nonlinear. The scatterplot in Figure 3 displays the "true" 
curve for Y as well as the random X and Y values. 

Figure 2 
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Figure 3 
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A simple neural network with one hidden layer was fit to the simulated data. In order to 
compare neural networks to classical models, a regression curve was also fit. The result 
o f  that fit will be discussed after the presentation o f  the neural network results. The 
structure o f  this neural network is shown in Figure 4. 

Figure 4 
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with One Hidden Node 

0 +e +4 

Input Hidden Oulput 

Layer Layer Layer 

260  



As neural networks go, this is a relatively simple network with one input node. In 
biological neurons, electrochemical signals pass between neurons. In neural network 
analysis, the signal between neurons is simulated by software, which applies weights to 
the input nodes (data) and then applies an activation function to the weights. 

Neuron signal of  the biological neuron system --) Node weights o f  neural networks 

The weights are used to compute a linear sum of  the independent variables. Let Y denote 
the weighted sum: 

Y = w o + w~ * X~ + w 2 X  2... + w X ,  

The activation function is applied to the weighted sum and is typically a sigmoid 
function. The most common of  the sigmoid functions is the logistic function: 

1 
f ( Y )  - 

i + e  -r 

The logistic function takes on values in the range 0 to 1. Figures 5 displays a typical 
logistic curve. This curve is centered at an X value of  0, (i.e., the constant w0 is 0). Note 
that this function has an inflection point at an X value o f  0 and f (x)  value of .5 ,  where it 
shifts from a convex to a concave curve. Also note that the slope is steepest at the 
inflection point where small changes in the value of  X can produce large changes in the 
value of  the function. The curve becomes relatively flat as X approaches both ! and -1.  

Figure 5 
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Another sigmoid function often used in neural networks is the hyperbolic tangent 
function which takes on values between -1 and 1: 

e r _ e  - v  

f ( Y )  e r + e  -r  

In this paper, the logistic function will be used as the activation function. The Multilayer 
Perceptron is a multilayer feedforward neural network with a sigmoid activation function. 

The logistic function is applied to the weighted input. In this example, there is only one 
input, therefore the activation function is: 

1 
h = f ( X ;  wo, w I ) = f ( w  0 + W l X  ) = 1 + e -tw°" +WlX ) 

This gives the value or activation level of the node in the hidden layer. Weights are then 
applied to the hidden node: 

w2 +w3h 

The weights w0 and wz are like the constants in a regression and the weights wm and w3 
are like the coefficients in a regression. An activation function is then applied to this 
"signal" coming from the hidden layer: 

1 
o = f ( h ;  w 2 , w 3 )  = 1 + e -(w~ +w3h) 

The output function o for this particular neural network with one input node and one 
hidden node can be represented as a double application of the logistic function: 

f ( f ( X ;  Wo, w, ); w~, w, ) 
- (w l  +w4 i÷  e ,.o,,1 ~" l + e  

It will be shown later in this paper that the use of sigrnoid activation functions on the 
weighted input variables, along with the second application of a sigmoid, function by the 
output node is what gives the MLP the ability to approximate nonlinear functions. 

One other operation is applied to the data when fitting the curve: normalization. The 
dependent variable X is normalized. Normalization is used in statistics to minimize the 
impact of  the scale of the independent variables on the fitted model. Thus, a variable 
with values ranging from 0 to 500,000 does not prevail over variables with values 
ranging from 0 to 10, merely because the former variable has a much larger scale. 
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Various software products will perform different normalization procedures. The software 
used to fit the networks in this paper normalizes the data to have values in the range 0 to 
1. This is accomplished by subtracting a constant from each observation and dividing by 
a scale factor. It is common for the constant to equal the minimum observed value for X 
in the data and for the scale factor to equal the range of the observed values (the 
maximum minus the minimum). Note also that the output function takes on values 
between 0 and 1 while Y takes on values between -oo and +oo (although for all practical 
purposes, the probability of negative values for the data in this particular example is nil). 
In order to produce predicted values the output, o, must be renormalized by multiplying 
by a scale factor (the range of  Y in our example) and adding a constant (the minimum 
observed Y in this example). 

Fitting the Curve 
The process of finding the best set of weights for the neural network is referred to as 
training or learning. The approach used by most commercial software to estimate the 
weights is backpropagation. Each time the network cycles through the training data, it 
produces a predicted value for the target variable. This value is compared to the actual 
value for the target variable and an error is computed for each observation. The errors are 
"fed back" through the network and new weights are computed to reduce the overall 
error. Despite the neural network terminology, the training process is actually a 
statistical optimization procedure. Typically, the procedure minimizes the sum of  the 
squared residuals: 

M i n ( E ( Y  - 17) 2 ) 

Warner and Misra (Warner and Misra, 1996) point out that neural network analysis is in 
many ways like linear regression, which can be used to fit a curve to data. Regression 
coefficients are solved for by minimizing the squared deviations between actual 
observations on a target variable and the fitted value. In the case of linear regression, the 
curve is a straight line. Unlike linear regression, the relationship between the predicted 
and target variable in a neural network is nonlinear, therefore a closed form solution to 
the minimization problem does not exist. In order to minimize the loss function, a 
numerical technique such as gradient descent (which is similar to backpropagation) is 
used. Traditional statistical procedures such as nonlinear regression, or the solver in 
Excel use an approach similar to neural networks to estimate the parameters of  nonlinear 
functions. A brief description of  the procedure is as follows: 

1. Initialize the neural network model using an initial set of weights (usually 
randomly chosen). Use the initialized model to compute a fitted value for an 
observation. 

2. Use the difference between the fitted and actual value on the target variable to 
compute the error. 

263 



3. Change the weights by a small amount that will move them in the direction of a 
smaller error 

• This involves multiplying the error by the partial derivative of the 
function being minimized with respect to the weights. This is because 
the partial derivative gives the rate of change with respect to the 
weights. This is then multiplied by a factor representing the "learning 
rate" which controls how quickly the weights change. Since the 
function being approximated involves logistic functions of tbe weights 
of the output and hidden layers, multiple applications of the chain rule 
are needed. While the derivatives are a little messy to compute, it is 
straightforward to incorporate them into software for fitting neural 
networks. 

4. Continue the process until no further significant reduction in the squared error can 
be obtained 

Further details are beyond the scope of this paper. However, more detailed information is 
supplied by some authors (Warner and Misra, 1996, Smith, 1996). The manuals of a 
number of  statistical packages (SAS Institute, 1988) provide an excellent introduction to 
several numerical methods used to fit nonlinear functions. 

Fitting, the Neural Network 
For the more ambitious readers who wish to create their own program for fitting neural 
networks, Smith (Smith, 1996) provides an Appendix with computer code for 
constructing a backpropagation neural network. A chapter in the book computes the 
derivatives mentioned above, which are incorporated into the computer code. 

However, the assumption for the purposes of this paper is that the overwhelming majority 
of readers will use a commercial sottware package when fitting neural networks. Many 
hours of development by advanced specialists underlie these tools. Appendix 1 discusses 
some of  the software options available for doing neural network analysis. 

The Fitted Curve: 
The parameters fitted by the neural network are shown in Table 1. 

Table 1 
WO Wl 

Input Node to Hidden Node -3.088 3.607 
Hidden Node to Output Node -1.592 5.281 
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To produce the fitted curve from these coefficients, the following procedure must be 
used: 

1. Normalize each xi by subtracting the minimum observed value 2 and dividing by the 
scale coefficient equal to the maximum observed X minus the minimum observed X. 
The normalized values will be denoted X*. 

2. Determine the minimum observed value for Y and the scale coefficient for y3. 
3. For each normalized observation x*~ compute 

1 
h (  x *i ) = ! + e - I -3"088+ j 

4. For each h (x'i) compute 

1 
o ( h ( x * i ) )  1 + e  -~-Isg~,5281h~x'" 

Compute the estimated value for each yi by multiplying the normalized value from 
the output layer in step 4 by the Y scale coefficient and adding the Y constant. This 
value is the neural network's predicted value for Yi. 

Table 2 displays the calculation for the first 10 observations in the sample. 

2 10.88 in this example. The scale parameter is 2.28 
3 In this exlmple the Y minimum was 111.78 ~ the scale parameter was 697.04 
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Table 2 

(1) (2) (3) (4) (5) (8) (7) (8) 
Input Pattern Weighted X 

X Y Normalized X Input Logistic(Wt X) Weighted Node 2 Logistic Rescaled Predicted 
((1)-10.88)12.28 -3,088*3.607"(3) ll(l*exp(-(4))) -1.5916+5.2814"(5) 1/(l+exp(-(6))) 697.04"(7)+111.78 

t~ 

12.16 665.0 0.5613 -1.0634 0.2567 -0.2361 0.4413 419.4 
11.72 344.6 0.3704 -1,7518 0.1478 -0.6109 0,3077 326.3 
11.39 281.7 0.2225 -2.2854 0,0923 -1.1039 0.2490 285.3 
12.02 423.9 0.4999 -1.2850 0.2167 -0.4471 0,3900 383.7 
12.63 519.4 0.7679 -0.3184 0.4211 0,6323 0,5530 566.9 
11.19 366.7 0,1359 -2.5978 0.0693 -1.2257 0,2269 270.0 
13.06 697.2 0.9581 0.3678 0.5909 1 5294 0,8219 684.7 
11,57 368.6 0,3011 -2.0020 0.1190 -0,9631 0.2763 304.3 
11,73 423.6 0.3709 -1.7501 0.1480 -0.8098 0.3079 326.4 

1,05 221.4 0.0763 -2.8128 0.0566 -1.2925 0.2154 261,9 



Figure 6 provides a look under the hood at the neural network's fitted functions. The 
graph shows the output of  the hidden layer node and the output layer node after 
application of  the logistic function. The outputs of each node are an exponential-like 
curve, but the output node curve is displaced upwards by about .2 from the hidden node 
curve. Figure 7 displays the final result of  the neural network fitting exercise: a graph of  
the fitted and "true" values of  the dependent variables versus the input variable. 

Figure 6 
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It is natural to compare this fitted value to that obtained from fitting a linear regression to 
the data. Two scenarios were used in fitting the linear regression. First, a simple straight 
line was fit, since the nonlinear nature of the relationship may not be apparent to the 
analyst. Since Y is an exponential function of X, the log transformation is a natural 
transformation for Y. However, because the error term in this relationship is additive, not 
multiplicative, applying the log transformation to Y produces a regression equation which 
is not strictly linear in both X and the error term: 

B x B X 

Y = A e  2 +oo__~ln(Y)=ln(Ae 2 + 6 ) = I n ( Y ) = l n ( A ) + B X + E  
2 

Nonetheless, the log transformation should provide a better approximation to the true 
curve than fitting a straight line to the data. The regression using the log of Y as the 
dependent variable will be referred to as the exponential regression. It should be noted 
that the nonlinear relationship in this example could be fit using a nonlinear regression 
procedure which would address the concern about the log transform not producing a 
relationship which is linear in both X and c. The purpose here, however, is to keep the 
exposition simple and use techniques that the reader is familiar with. 

The table below presents the goodness of fit results for both regressions and the neural 
network. Most neural network software allows the user to hold out a portion of the 
sample for testing. This is because most modeling procedures fit the sample data better 
than they fit new observations presented to the model which were not in the sample. Both 
the neural network and the regression models were fit to the first 80 observations and 
then tested on the next 20. The mean of the squared errors for the sample and the test 
data is shown in Table 3 

Table 3 
Method Sample MSE Test MSE 
Linear Regression 4,766 8,795 
Exponential Regression 4,422 7,537 
Neural Network 4,928 6,930 

As expected, all models fit the sample data better than they fit the test data. This table 
indicates that both of  the regressions fit the sample data better than the neural network 
did, but the neural network fit the test data better than the regressions did. 

The results of this simple example suggest that the exponential regression and the neural 
network with one hidden node are fairly similar in their predictive accuracy. In general, 
one would not use a neural network for this simple situation where there is only one 
predictor variable, and a simple transformation of one of the variables produces a curve 
which is a reasonably good approximation to the actual data. In addition, if the true 
function for the curve were known by the analyst, a nonlinear regression technique would 
probably provide the best fit to the data. However, in actual applications, the functional 
form of  the relationship between the independent and dependent variable is often not 
known. 
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A graphical comparison of the fitted curves frGm the regressions, the neural network and 
the "true" values is shown ,in Figure 8. 

Figu re 8 
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The graph indicates that both the exponential regression and the neural network model 
provide a reasonably good fit to the data. 

The Io~,istic function revisited 
The two parameters of the logistic function give it a lot of flexibility in approximating 
nonlinear curves. Figure 9 presents logistic curves for various values of the coefficient 
w). The coefficient controls the steepness of the curve and how quickly it approached its 
maximum and minimum values of 1 and -1. Coefficients with absolute values less than 
or equal to 1 produce curves which are straight lines. Figure 10 presents the effect of  
varying w0 on logistic curves. 
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Figure 9 

Logistic Function for Various Values of wl I 
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Varying the values o f  w0 while holding wL constant shifts the curve right or left. A great 
variety o f  shapes can be obtained by varying the constant and coefficients o f  the logistic 
functions. A sample o f  some o f  the shapes is shown in Figure I I. Note that the X values 
on the graph are limited to the range o f  O to 1, since this is what the neural networks use. 
In the previous example the combination o f  shifting the curve and adjusting the steepness 
coefficient was used to define a curve that is exponential in shape in the region between 0 
and 1. 
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Using Neural Networks to Fit a Complex Nonlinear Function: 

To facilitate a clear introduction to neural networks and how they work, the first example 
in this paper was intentionally simple. The next example is a somewhat more complicated 
CHIVe .  

Example 2: A more complex curve 
The function to be fit in this example is o f  the following form: 

f(X) = In(X) + sin(6Xs) 

X - U(500,5000) 

e - N(0,.2) 

Note that U denotes the uniform distribution, and 500 and 5,000 are the lower and upper 
ends o f  the range o f  the distribution. 

A scatterplot o f  200 random values for Y along with the "true" curve are shown in Figure 
12 

Figure 12 

Scatterplot  o f  Y = s in(X/675)+ ln(X)  + e 
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This is a more complicated function to fit than the previous exponential function. It 
contains two "humps" where the curve changes direction. To illustrate how neural 
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networks approximate functions, the data was fit using neural networks of different sizes. 
The results from fitting this curve using two hidden nodes will be described first. Table 4 
displays the weights obtained from training for the two hidden nodes. W0 denotes the 
constant and Wi denotes the coefficient applied to the input data. The result of  applying 
these weights to the input data and then applying the logistic function is the values for the 
hidden nodes. 

Table 4 
W0 WI 

Node i -4.107 7.986 
Node 2 6.549 -7.989 

A plot of  the logistic functions for the two intermediate nodes is shown below (Figure 
13). The curve for Node 1 is S shaped, has values near 0 for low values of  X and 
increases to values near 1 for high values of X. The curve for Node 2 is concave 
downward, has a value of I for low values of X and declines to about .2 at high values of 
X. 

Figure 13 

Plot of Values for Hidden Layer Nodes 
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Table 5 presents the fitted weight~ connecting the hidden layer to the output layer: 

Table 5 
W0 Wl 
6.154 -3.0501 

W2 
-6.427 
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Table 6 presents a sample of applying these weights to several selected observations from 
the training data to which the curve was fit. The table shows that the combination of the 
values for the two hidden node curves, weighted by the coefficients above produces a 
curve which is like a sine curve with an upward trend. At tow values of X (about 500), 
the value of node 1 is low and node 2 is high. When these are weighted together, and the 
logistic function is applied, a moderately low value is produced. At values of X around 
3,000, the values of both nodes 1 and 2 are relatively high. Since the coefficients of both 
nodes are negative, when they are weighted together, the value of the output function 
declines. At high values of X, the value of node 1 is high, but the value ofnode 2 is low. 
When the weight for node 1 is applied (-3.05) and is summed with the constant the 
value of the output node reduced by about 3. When the weight for node 2 (-6.43) is 
applied to the low output of node 2 (about .2) and the result is summed with the constant 
and the first node, the output node value is reduced by about 1 rcsulting in a weighted 
hidden node output of  about 2. After the application of the logistic function the value of  
the output node is relatively high, i.e. near 1. Since the coefficient of  node 1 has a lower 
absolute value, the overall result is a high value for the output function. Figure 14 
presents a graph showing the values of the hidden nodes, the weighted hidden nodes 
(after the weights are applied to the hidden layer output but betbre the logistic function is 
applied) and the value ofthe output node (after the logistic function is applied to the 
weighted hidden node values). The figure shows how the application of the logistic 
function to the weighted output of the two hidden layer nodes produccs a highly 
nonlinear curve. 

Table 6 
Computation of Predicted Values for Selected Values of X 

(3) (4) 
((1)-508)/4994 

X Normalized X Output of Output of 
Node 1 I Node 2 

508.48 0.00 0.016 0.999 
1,503.00 0.22 0.088 0.992 
3,013.40 0.56 0.596 0.890 
4,994.80 1.00 0.980 0.1901 

(5) (6) (7) 
6.15- l / ( l+exp(- 6.52+3.56 
3.05"(3)- (5)) "(6) 
6.43*(4) 
Weighted Output Predicted 
Hidden Node Y 
Node Logistic 
Output ,Function , 

-0.323 0.420 7.889 
-0.498 0.378 7.752 
-1.392 0.199 7.169 
1.937 0.874 9.369 

Figure 15 shows the fitted curve and the "true" curve for the two node neural network 
just described. One can conclude that the fitted curve, although producing a highly 
nonlinear curve, does a relatively poor job of  fitting the curve for low values of X. It 
turns out that adding an additional hidden node significantly improves the fit of the curve. 
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Figure 14 
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Table 7 displays the weights connecting the hidden node to the output node for the 
network with 3 hidden nodes. Various aspects of the hidden layer are displayed in Figure 
16. In Figure 16, the graph labeled "Weighted Output of Hidden Node" displays the 
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result of applying the Table 7 weights obtained from the training data to the output from 
the hidden nodes. The combination of weights, when applied to the three nodes produces 
a result which first increases, then decreases, then increases again. When the logistic 
function is applied to this output, the output is mapped into the range 0 to I and the curve 
appears to become a little steeper. The result is a curve that looks like a sine function 
with an increasing trend. Figure 17 displays the fitted curve, along with the "'true" Y 
value. 

Weight 0 
-4.2126 

Table 7 
Weight 1 
6.8466 

Weight 2 
-7.999 

Weight 3 
~6.0722 

Figure 16 

Hidden Node 

I" ~\\ "'\\ // 
-" 1 09 -.\ 

\ 

04 

i - -  j 

0 1500 3000 4500 
X 

We 

2 

ihted Output of Hidden Node 

/ 1  
I 

, f ~ ' \  / 

\\~,~,/// I 
1100 2200  33(30 4400 

X 

Logistic Function of Hidden Node Output 

0 1500 3000 4500 
X 

276  



Figure 17 
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It is clear that the three node neural network provides a considerably better fit than the 
two node network. One of the features of neural networks which affects the quality of 
the fit and which the user must often experiment with is the number of hidden nodes. If 
too many hidden nodes are used, it is possible that the model will be overparameterized. 
However, an insufficient number of nodes could be responsible for a poor approximation 
of the function. 

This particular example has been used to illustrate an important feature of neural 
networks: the multilayer perceptron neural network with one hidden layer is a universal 
function approximator. Theoretically, with a sufficient number of nodes in the hidden 
layer, any nonlinear function can be approximated. In an actual application on data 
containing random noise as well as a pattern, it can sometimes be difficult to accurately 
approximate a curve no matter how many hidden nodes there are. This is a limitation that 
neural networks share with classical statistical procedures. 

Neural networks are only one approach to approximating nonlinear functions. A number 
of other procedures can also be used for function approximation. A conventional 
statistical approach to fitting a curve to a nonlinear function when the form of the 
function is unknown is to fit a polynomial regression: 

Y =a+blX+b2X2 . . .+bnX n 

th Using polynomial regression, the function is approximated with an n degree polynomial. 
Higher order polynomials are used to approximate more complex functions. In many 
situations polynomial approximation provides a good fit to the data. Another advanced 

277 



method for approximating nonlinear functions is to fit regression splines. Regression 
splines fit piecewise polynomials to the data. The fitted polynomials are constrained to 
have second derivatives at each breakpoint; hence a smooth curve is produced. 
Regression splines are an example ofcontemporary data mining tools and will not be 
discussed further in this paper. Another function approximator that actuaries have some 
familiarty with is the Fourier transform which uses combinations of sine and cosine 
functions to approximate curves. Among actuaries, their use has been primarily to 
approximate aggregate loss distributions. Heckman and Meyers (Heckman and Meyers, 
1983) popularized this application. 

In this paper, since neural networks are being compared to classical statistical procedures, 
the use of polynomial regression to approximate the curve will be illustrated. Figure 18 
shows the result of fitting a 4 th degree polynomial curve to the data from Example 2, 
This is the polynomial curve which produced the best fit to the data. It can be concluded 
from Figure 18 that the polynomial curve produces a good fit to the data. This is not 
surprising given that using a Taylor series approximation both the sine function and log 
function can be approximated relatively accurately by a series of polynomials, 

Figure 18 allows the comparison of both the Neural Network and Regression fitted 
values. It can be seen from this graph that both the neural network and regression 
provide a reasonable fit to the curve. 

Figure 18 
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While these two models appear to have similar fits to the simulated nonlinear data, the 
regression slightly outperformed the neural network in goodness of  fit tests. The r 2 for the 
regression was higher for both training (.993 versus .986) and test (.98 versus .94) data. 

Correlated Variables and Dimension Reduction 

The previous sections discussed how neural networks approximate functions of a variety 
of shapes and the role the hidden layer plays in the approximation. Another task 
performed by the hidden layer of neural networks will be discussed in this section: 
dimension reduction. 

Data used for financial analysis in insurance often contains variables that are correlated. 
An example would be the age of a worker and the worker's average weekly wage, as 
older workers tend to earn more. Education is another variable which is likely to be 
correlated with the worker's income. All of these variables will probably influence 
Workers Compensation indemnity payments. It could be difficult to isolate the effect of 
the individual variables because of the correlation between the variables. Another 
example is the economic factors that drive insurance inflation, such as inflation in wages 
and inflation in the medical care. For instance, analysis of monthly Bureau of Labor 
Statistics data for hourly wages and the medical care component of the CPI from January 
of 1994 through May of 2000 suggest these two time series have a (negative) correlation 
of about .9 (See Figure l 9). Other measures of economic inflation can be expected to 
show similarly high correlations. 

Figure 19 
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Suppose one wanted to combine all the demographic factors related to income level or all 
the economic factors driving insurance inflation into a single index in order to create a 
simpler model which captured most of the predictive ability of the individual data series. 
Reducing many factors to one is referred to as dimension reduction. In classical 
statistics, two similar techniques for performing dimension reduction are Factor Analysis 
and Principal Components Analysis. Both of these techniques take a number of 
correlated variables and reduce them to fewer variables which retain most of the 
explanatory power of the original variables. 

The assumptions underlying Factor Analysis will be covered first. Assume the values on 
three observed variables are all "caused" by a single factor plus a factor unique to each 
variable. Also assume that the relationships between the factors and the variables are 
linear. Such a relationship is diagrammed in Figure 20, where F1 denotes the common 
factor, U1, U2 and U3 the unique factors and X1, X2 and X3 the variables. The causal 
factor FI is not observed. Only the variables X1, X2 and X3 are observed. Each of the 
unique factors is independent of the other unique factors, thus any observed correlations 
between the variables is strictly a result of their relation to the causal factor F 1. 

F i g u r e  2 0  

One Factor Model 

///•,X 1 " -  - UI 

j ~  

FU" * X 2 ,  - U2 

~ 3  * U3 

For instance, assume an unobserved factor, social inflation, is one of the drivers of  
increases in claims costs. This factor reflects the sentiments of large segments of the 
population towards defendants in civil litigation and towards insurance companies as 
intermediaries in liability claims. Although it cannot be observed or measured, some of 
its effects can be observed. Examples are the change over time in the percentage of 
claims being litigated, increases in jury awards and perhaps an index of the litigation 
environment in each state created by a team of lawyers and claims adjusters. In the social 
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sciences it is common to use Factor Analysis to measure social and psychological 
concepts that cannot be directly observed but which can influence the outcomes of  
variables that can be directly observed. Sometimes the observed variables are indices or 
scales obtained from survey questions. 

The social inflation scenario might be diagrammed as follows: 

Figure 21 
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In scenarios such as this one, values for the observed variables might be used to obtain 
estimates for the unobserved factor. One feature of  the data that is used to estimate the 
factor is the correlations between the observed variables: If there is a strong relationship 
between the factor and the variables, the variables will be highly correlated. If  the 
relationship between the factor and only two of the variables is strong, but the 
relationship with the third variable is weak, then only the two variables will have a high 
correlation. The highly correlated variables will be more important in estimating the 
unobserved factor. A result of Factor Analysis is an estimate of the factor (FI) for each 
of  the observations. The F1 obtained for each observation is a linear combination of  the 
values for the three variable for the observation. Since the values for the variables will 
differ from record to record, so will the values for the estimated factor. 

Principal Components Analysis is in many ways similar to Factor Analysis. It assumes 
that a set of variables can be described by a smaller set of  factors which are linear 
combinations of the variables. The correlation matrix for the variables is used to estimate 
these factors. However, Principal Components Analysis makes no assumption about a 
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causal relationship between the factors and the variables. It simply tries to find the 
factors or components  which seem to explain most  o f  the variance in the data, Thus both 
Factor Analysis  and Principal Components  Analysis  produce a result of  the form: 

= w~X~ + ~,v,_X:...+ w ) (  

where 

i is an estimate o f  the index or factor being constructed 
Xi ..X, are the observed variables used to construct the index 
w~ ..w, are the ~ eights applied to the variables 

An example o f  creating an index from observed variables is combining observations 
related to lit igiousness and the legal environment  to produce a social inflation index. 
Another example is combining economic inflationary variables to construct an economic 
inflation index for a line o f  business,  a Factor analysis or Principal Components  Analysis 
can be used to do this. Somet imes the values observed on ~ ariabtes are the result o f  or 
"caused" by more than one underlying factor. The Factor Analysis and Principal 
Components  approach can be generalized to find multiple factors or radices, when the 
obsers'ed variables are the result of  more than one unobserved factor 

One can then use these indices in further analyses and discard the original variables. 
Using this approach, the analyst achieves a reduction in the number  of  variables used to 
model thc data and can construct a more parsimonious model. 

- S .  

Factor Analysts  ts an example of  a more general class o f  models known as Latent 
Variable Models. For instance, observed values on categorical variables may also be the 
result o f  unobserved factors. It would be difficult to use Factor Analysis  to estimate the 
underlying factors because it requires data from continuous variables, thus an alternative 
procedure is required. While a discussion o f  such procedures is beyond lhe scope o f  this 
paper, the procedures do exist. 

It is informative to examine the similarities between Factor Analysis  and Principal 
Components  Analysis  and neural networks. Figure 22 diagrams lhc relationship between 
input variables, a single unobserved factor and the dependent variable. In the scenario 
diagrammed,  the input variables are used to derive a single predictive index (FI)  and the 
index is used to predict the dependent variable. Figure 23 diagrams the neural network 
being applied to the same data. Instead o f  a factor or index, the neural network has a 
hidden layer with a single node. The Factor Analysis  index is a weighted linear 
combination o f  the input variables, while in the typical MLP ncural network, the hidden 
layer is a weighted nonlinear combination o f  the input variables. The dcpcndent variable 
is a linear function o f  the Factor in the case o f  Factor Analysis  and Principal Components  
Analysis and (possibly) a non linear function o f  the hidden layer in the case o f  the MLP. 
Thus,  both procedures can be viewed as performing dimension reduction. In the casc o f  

In fact Maslerson created such indices for the Property and Casualty lines m the 1960s, 
s Principal Componenls, because it does not have an underlying causal facrm is nol a lalenr variable model 

282  



neural networks, the hidden layer performs the dimension reduction. Since it is 
performed using nonlinear functions, it can be applied where nonlinear relationships 
exist. 

Example 3: Dimension reduction 
Both Factor Analysis and neural networks will be fit to data where the underlying 
relationship between a set of independent variables and a dependent variable is driven by 
an underlying unobserved factor. An underlying causal factor, F a c t o r l ,  is generated 
from a normal distribution: 

F a c t o r l  ~ N(1.05,.025) 

On average this factor produces a 5% inflation rate. To make this example concrete 
F a c t o r l  will represent the economic factor driving the inflationary results in a line of 
business, say Workers Compensation. F a c t o r l  drives the observed values on three 
simulated economic variables, Wage Inflation, Medical Inflation and Benefit Level 
Inflation. Although unrealistic, in order to keep this example simple it was assumed that 
no factor other than the economic factor contributes to the value of these variables and 
the relationship of  the factors to the variables is approximately linear. 

Figure 22 
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Figure 23 
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Also, to keep the example simple it was assumed that one economic factor drives 
Workers Compensation results. A more realistic scenario would separately model the 
indemnity and medical components of  Workers Compensation claim severity. The 
economic variables are modeled as followsr: 

l n ( W a g e l n f l a t i o n )  = .7 * ln(  F a c t o r l )  + e 

e -  N(0,.005) 

In( M e d i c a l l n f i a t i o n  ) = 1.3 * In( F a c t o r l  ) + e 

e -  N(0,.01) 

I n ( B e n e f i t  _ l e v e l  _ t r e n d )  = .5 * ln(  F a c t o r l  ) + e 

e ~ N(0,.005) 

Two hundred fi~y records of  the unobserved economic inflation factor and observed 
inflation variables were simulated. Each record represented one of  50 states for one of  5 
years. Thus, in the simulation, inflation varied by state and by year. The annual inflation 
rate variables were converted into cumulative inflationary measures (or indices). For each 
state, the cumulative product of  that year's factor and that year's observed inflation 

6 Note that the according to Taylor's theorem the natural log of a variable whose value is close to one is 
approximately equal to 1 minus the vartable's value, i.e., ln(l+x) ~ x. Thus, the economic variables are, to 
a close approximatton, linear functions of the factor. 
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measures (the random observed variables) were computed. For example the cumulative 
unobserved economic factor is computed as: 

t 
C u m f a c t o r l  t = [1 F a c t o r l  k 

k=l 

A base severity, intended to represent the average severity over all claims for the line of 
business for each state for each of the 5 years was generated from a lognormal 
distribution. 7 To incorporate inflation into the simulation, the severity for a given state 
for a given year was computed as the product of  the simulated base severity and the 
cumulative value for the simulated (unobserved) inflation factor for its state. Thus, in 
this simplified scenario, only one factor, an economic factor is responsible for the 
variation over time and between states in average severity. The parameters for these 
variables were selected to make a solution using Factor Analysis or Principal 
Components Analysis straightforward and are not based on an analysis of real insurance 
data. This data therefore had significantly less variance than would be observed in actual 
insurance data. 

Note that the correlations between ihe variables is very" high. All correlations between the 
variables are at least .9. This means that the problem of multicollineariy exists in this 
data set. That is, each variable is nearly identical to the others, adjusting for a constant 
multiplier, so typical regression procedures have difficulty estimating the parameters of  
the relationship between the independent variables and severity. Dimension reduction 
methods such as Factor Analysis and Principal Components Analysis address this 
problem by reducing the three inflation variables to one, the estimated factor or index. 

Factor Analysis was performed on variables that were standardized. Most Factor 
Analysis software standardizes the variables used in the analysis by subtracting the mean 
and dividing by the standard deviation of  each series. The coefficients linking the 
variables to the factor are called loadings. That is: 

Xl  = bt Factor1 
X2 = b2 Factorl 
X3 = b3 Factorl 

Where Xl ,  X2 and X3 are the three observed variables, Factorl is the single underlying 
factor and b~, b2 and b3 are the Ioadings. 

In the case of Factor Analysis the Ioadings are the coefficients linking a standardized 
factor to the standardized dependent variables, not the variables in their original scale. 
Also, when there is only one factor, the loadings also represent the estimated correlations 
between the factor and each variable. The loadings produced by the Factor Analysis 
procedure are shown in Table 8. 

7 This distribution will have an average of 5,000 the fwst year (after application of the inflationary factor for 
year I). Also In(Severity) ~ N(8.47,.05) 
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Table 8 
Variable Loading Weights 
Wage Inflation Index .985 .395 
Medical Inflation Index .988 .498 
Benefit Level Inflation Index .947 .113 

Table 8 indicates that all the variables have a high loading on the factor, and thus all are 
likely to be important in the estimation of an economic index. An index value was 
estimated for each record using a weighted sum of the three economic variables. The 
weights used by the Factor Analysis procedure to compute the index are shown in Table 
8. Note that these weights (within rounding error) sum to 1. The new index was then 
used as a dependent variable to predict each state's severity for each year. The 
regression model was of the form: 

Index =.395 (Wage Inflation)+.498(Medical Inflation)+. 113(Benefit Level Inflation) 

S e v e r i t y  = a + b * I n d e x  + e 

where 

S e v e r i t y  is the simulated severity 
I n d e x  is the estimated inflation Index from the Factor Analysis procedure 
e is a random error term 

The results of the regression will be discussed below where they are compared to those of  
the neural network. 

The simple neural network diagramed in Figure 23 with three inputs and one hidden node 
was used to predict a severity for each state and year. Figure 24 displays the relationship 
between the output of the hidden layer and each of the predictor variables. The hidden 
node has a linear relationship with each of the independent variables, but is negatively 
correlated with each of the variables. The relationship between the neural network 
predicted value and the independent variables is shown in Figure 25. This relationship is 
linear and positively sloped. The relationship between the unobserved inflation factor 
driving the observed variables and the predicted values is shown in Figure 26. This 
relationship is positively sloped and nearly linear. Thus, the neural network has produced 
a curve which is approximately the same form as the "true" underlying relationship. 
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Figure 24 
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Intervretin~ the Neural Network Model 
With Factor Analysis, a tool is provided for assessing the influence of a variable on a 
Factor and therefore on the final predicted value. The tool is the factor Ioadings which 
show the strength of the relationship between the observed variable and the underlying 
factor. The Ioadings can be used to rank each variable's importance. In addition, the 
weights used to construct the index s reveal the relationship between the independent 
variables and the predicted value (in this case the predicted value for severity). 

Because of the more complicated functions involved in neural network analysis, 
interpretation of the variables is more challenging. One approach (Potts, 1999) is to 
examine the weight connecting the input variables to the hidden layer. Those which are 
closest to zero are least important. A variable is deemed unimportant only ifaU of these 
connections are near zero. Table 9 displays the values for the weights connecting the 
input layer to the hidden layer. Using this procedure, no variable in this example would 
be deemed "unimportant". This procedure is typically used to eliminate variables from a 
model, not to quantify their impact on the outcome. While it was observed above that 
application of  these weights resulted in a network that has an approximate linear 
relationship with the predictor variables, the weights are relatively uninformative for 
determining the influence of  the variables on the fitted values. 

Table 9: Factor Example Parameters 
Wo Wl W2 W3 
2.549 -2.802 -3.010 0.662 

Another approach to assessing the predictor variables' importance is to compute a 
sensitivity for each variable (Potts, 1999). The sensitivity is a measure of  how much the 
predicted value's error increases when the variables are excluded from the model one at a 
time. However, instead of actually excluding variables, they are fixed at a constant value. 
The sensitivity is computed as follows: 

1. Hold one of the variables constant; say at its mean or median value. 
2. Apply the fitted neural network to the data with the selected variable held 

constant. 
3. Compute the squared errors for each observation produced by these modified 

fitted values. 
4. Compute the average of the squared errors and compare ~t to the average squared 

error of  the full model. 
5. Repeat this procedure for each variable used by the neural network. The 

sensitivity is the percentage reduction in the error of the full model, compared to 
the model excluding the variable in question. 

6. If desired, the variables can be ranked based on their sensitivities. 

s This would be computed as the product of each variable's weight on the factor limes the coefficient of  the 
factor in a linear regression on the dependent variable (.85 in this example). 
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Since the same set of parameters is used to compute the sensitivities, this procedure does 
not require the user to refit the model each time a variable's importance is being 
evaluated, The following table presents the sensitivities of the neural network model 
fitted to the factor data. 

Table 10 
Sensitivities of Variables in Factor Example 
Benefit Level 23.6% 
Medical Inflation 33.1% 
Wage Inflation 6.0% 

According to the sensitivities, Medical Inflation is the most important variable followed 
by Benefit Level and Wage Inflation is the least important. This contrasts with the 
importance rankings of Benefit Level and Wage Inflation in the Factor Analysis, where 
Wage Inflation was a more important variable than Benefit Level. Note that these are the 
sensitivities for the particular neural network fit. A different initial starting point for the 
network or a different number of hidden nodes could result in a model with different 
sensitivities. 

Figure 27 shows the actual and fitted values for the neural network and Factor Analysis 
predicted models. This figure displays the fitted values compared to actual randomly 
generated severities (on the left) and to "true" expected severities on the right. The x-axis 
of the graph is the "true" cumulative inflation factor, as the severities arc a linear 
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function of the factor. However, it should be noted that when working with real data, 
information on an unobserved variable would not be available. 

The predicted neural network values appear to be more jagged than the Factor Analysis 
predicted values. This jaggedness may reflect a weakness of neural networks: over 
fitting. Sometimes neural networks do not generalize as well as classical linear models, 
and fit some of the noise or randomness in the data rather than the actual patterns. 
Looking at the graph on the right showing both predicted values as well as the "true" 
value, the Factor Analysis model appears to be a better fit as it has less dispersion around 
the "true" value. Although the neural network fit an approximately linear model to the 
data, the Factor Analysis model performed better on the data used in this example. The 
Factor Analysis model explained 73% of the variance in the training data compared to 
71% explained by the neural network model and 45% of the variance in the test data 
compared to 32% for the neural network. Since the relationships between the independent 
and dependent variables in this example are approximately linear, this is another instance 
of a situation where a classical linear model would be preferred over a more complicated 
neural network procedure. 

Interactions 

Another common feature of data which complicates the statistical analysis is interactions. 
An interaction occurs when the impact of two variables is more or less than the sum of 
their independent impacts. For instance, in private passenger automobile insurance, the 
driver's age may interact with territory in predicting accident frequencies. When this 
happens, youthful drivers have a higher accident frequency in some territories than that 
given by multiplying the age and territory relativities. In other territories it is lower. An 
example of this is illustrated in Figure 28, which shows hypothetical c u r v e s  9 of expected 
or "true"(not actual) accident frequencies by age for each of four territories. 

The graph makes it evident that when interactions are present, the slope of the curve 
relating the dependent variable (accident frequency) to an independent variable varies 
based on the values of a third variable (territory). It can be seen from the figure that 
younger drivers have a higher frequency of accidents in territories 2 and 3 than in 
territories 1 and 4. It can also be seen that in territory 4, accident frequency is not related 
to age and the shape and slope of the curve is significantly different in Territory 1 
compared to territories 2 and 3. 

9 The curves are based on s~nulated data. However  data from the Baxter (Venebles and Ripley) automobile 
claims database was used to develop parameters for the simulation. 
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As a result of interactions, the true expected frequency cannot be accurately estimated by 
the simple product of  the territory relativity times the age relativity. The interaction of 
the two terms, age and territory, must be taken into account. In linear regression, 
interactions are estimated by adding an interaction term to the regression. For a 
regression in which the classification relativities are additive: 

Yta = B0 + (Bt * Territory) + (B=*Age) + (B= * Territory * Age) 

Vl/here: 

Y= = is either a pure premium or loss ratio for territory t and age a 
B0 = the regression constant 
Bt, Ba and Bat a re  coefficients of the Territory, Age and the Age, Territory interaction 

It is assumed in the regression model above that Territory enters the regression as a 
categorical variable. That is, if  there are N territories, N-1 dummy variables are created 
which take on values of  either I or 0, denoting whether an observation is or is not from 
each of  the territories. One territory is selected as the base territory, and a dummy 
variable is not created for it. The value for the coefficient B0 contains the estimate of  the 
impact of the base territory on the dependent variable. More complete notation for the 
regression with the dummy variables is: 

Yt~ = B0 + Btl*T1 + Bt2*T2 + Bt3 * T3 +B=*Age + Batl* Tl*Age+ Bat2* T2*Age+ Bat3* 
T3*Age 

where TI, T2 and T3 are the dummy variables with values of either I or 0 described 
above and Btl - Bt3 are the coefficients of the dummy variables and Bail-  Bat3* are 
coefficients of the age and territory interaction terms. Note that most major statistical 
packages handle the details of converting categorical variables to a series of dummy 
variables. 

The interaction term represents the product of the territory dummy variables and age. 
Using interaction terms allows the slope of the fitted line to vary by territory. A similar 
formula to that above applies if the class relativities are multiplicative rather than 
additive; however, the regression would be modeled on a log scale: 

ln(Y~ )= B*0 + (B*t * Territory) + (B 'a 'Age)  + (B'at * Territory * Age) 

where 
B*0, B' t ,  B*= and B'at are the log scale constant and coefficients of the Territory, Age 
and Age, Territory interaction. 

Examole 3: Interactions 
To illustrate the application of  both neural networks and regression techniques to data 
where interactions are present 5,000 records were randomly generated. Each record 
represents a policyholder. Each policyholder has an underlying claim propensity 
dependent on his/her simulated a g e  and territory, including interactions between these 
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two variables. The underlying claim propensity for each age and territory combination 
was that depicted above in Figure 28. For instance, in territory 4 the claim frequency is a 
fiat .12. In the other territories the claim frequency is described by a curve. The claim 
propensity served as the Poisson parameter for claims following the Poisson distribution: 

"~'6 x 

P(X = x ; 2 ~ ) =  x! e a~' 

Here k,j is the claim propensity or expected claim frequency for each age, territory 
combination. The claim propensity parameters were used to generate claims from the 
Poisson distribution for each o f  the 5,000 policyholders.l° 

Models for count data 
The claims prediction procedures described in this section apply models to data with 
discrete rather than continuous outcomes. A policy can be viewed as having two possible 
outcomes: a claim occurs or a claim does not occur. We can assign the value 1 to 
observations with a claim and 0 to observations without a claim. The probability the 
policy will have a value o f  I lies in the range 0 to 1. When modeling such variables, it is 
useful to use a model where the possible values for the dependent variable lie in this 
range. One such modeling technique is logistic regression. The target variable is the 
probability that a given policyholder will have a claim, and this probability is denoted 
p(x). The model relatingp(x) to the a vector o f  independent variables x is: 

l n ( i P  ; x ) = B  o+B~X~+...+B.X. 
- p  

where the quantity ln(p(x)/(l-p(x))) is known as the logit function. 

In general, specialized software is required to fit a logistic regression to data, since the 
logit function is not defined on individual observations when these observations can take 
on only the values 0 or 1. The modeling techniques work from the likelihood functions, 
where the likelihood function for a single observation is: 

/ ( x ,  ) = p ( x ; ) " ,  (1 - p ( x ,  ) '-  "~ ) 

I 
p(x;)  - 

Where xil. . .xi,  are the independent variables for observation i, y, is the response (either 0 
or !) and BI..B, are the coefficients o f  the independent variables in the logistic 
regression. This logistic function is similar to the activation function used by neural 
networks. However, the use o f  the logistic function in logistic regression is very different 
from its use in neural networks. In logistic regression, a transform, the logit transform, is 

m The overall distribution of drivers by age used in the simulation was based on fitting a curve to 
infoznmtion from the US Department of Transportation web site. 
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applied to a target variable modeling it directly as a function of predictor variables. After 
parameters have been fit, the function can be inverted to produce fitted frequencies. The 
logistic functions in neural networks have no such straightforward interpretation. 
Numerical techniques are required to fit logistic regression when the maximum 
likelihood technique is used. Hosmer and Lemshow (Hosmer and Lemshow, 1989) 
provide a clear but detailed description of the maximum likelihood method for fitting 
logistic regression. Despite the more complicated methods required for fitting the model, 
in many other ways, logistic regression acts like ordinary least squares regression, albeit, 
one where the response variable is binary. In particular, the logit of the response variable 
is a linear function of the independent variables. In addition interaction terms, 
polynomial terms and transforms of the independent variables can be used in the model. 

A simple approach to performing logistic regression (Hosmer and Lemshow, 1989), and 
the one which will be used for this paper, is to apply a weighted regression technique to 
aggregated data. This is done as follows: 

1. Group the policyholder's into age groups such as 16 to 20, 21 to 25, etc. 
2. Aggregate the claim counts and exposure counts (here the exposure is 

policyholders) by age group and territory. 
3. Compute the frequency for each age and territory combination by dividing the 

number of claims by the number of policyholders. 
4. Apply the logit transform to the frequencies (for logistic regression). That is 

compute Iog(p/(l-p)) where p is the claim frequency or propensity. It may be 
necessary to add a very small quantity to the frequencies before the transform is 
computed, because some of  the cells may have a frequency of 0. 

5. Compute a value for driver age in each cell. The age data has been grouped and a 
value representative of  driver ages in the cell is needed as an independent variable 
in the modeling. Candidates are the mean and median ages in the cell. The 
simplest approach is to use the midpoint of  the age interval. 

6. The policyholder count in each cell will be used as the weight in the regression. 
This has the effect of  cau~,ng the regression to behave as if the number of 
observations for e: ~h cell equals the number of policyholders. 

One of the advantages of  using the aggregated data is that some observations have more 
than one claim. That is, the observations on individual records are not strictly binary, 
since values of 2 claims and even 3 claims sometimes occur. More complicated methods 
such as multinomial logistic regression N can be used to model discrete variables with 
more than 2 categories. When the data is aggregated, all the observations of the 
dependent variable are still in the range 0 to 1 and the Iogit transform still is appropriate 
for such data. Applying the logit transform to the aggregated data avoids the need for a 
more complicated approach. No transform was applied to the data to which the neural 
network was applied, i.e., the dependent variable was the observed frequencies. The 
result of aggregating the simulated data is displayed in Figure 29. 

H A Poisson regression using Generalized Linear Models could also be used. 
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Figure 29 
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Neural Network Results 
A five node neural network was fit to the data. The weights between the input and 
hidden layers are displayed in Table 11. If we examine the weights between the input 
and the hidden nodes, no variables seem insignificant, but it is hard to determine the 
impact that each variable is having on the result. Note that weights are not produced for 
Territory 4. This is the base territory in the neural network procedure and its parameters 
are incorporated into we, the constant. 

Table 11 : Weights to Hidden Layer 
Node! N0(Constant) Neight(Age) Weight(Territory 1 ) Neight(Territory 21 Neight(Territory 3) 

t -0.01 0.18 -0.02 -0.OE 0.09 
0.3. = -0.01 -1,06 -0.73 -0.10 

-0.3( 0.21 -0.07 -0.8; 0.46 
4 -(3.0' 0.19 -0,01 -0.0~ 0.09 
5 0.56 -0.08 -0.90 -1.1( -0,98 

Interpreting the neural network is more complicated than interpreting a typical regression. 
In the previous section, it was shown that each variable's importance could be measured 
by a sensitivity. Looking at the sensitivities in Table 12, it is clear that both age and 
territory have a significant impact on the result. The magnitude of their effects seems to 
I~  roughly oqual 
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Table 12: Sensitivity of Variables in Interaction Example 
Variable Sensitivity 
Age 24% 
Territory 23% 

Neither the weights nor the sensitivities help reveal the form of the fitted function. 
However graphical techniques can be used to visualize the function fitted by the neural 
network. Since interactions are of interest, a panel graph showing the relationship 
between age and frequency for each territory can be revealing. A panel graph has panels 
displaying the plot of the dependent variable versus an independent variable for each 
value of  a third variable, or for a selected range of  values of a third variable. (Examples 
of  panel graphs have already been used in this paper in this section, to help visualize 
interactions). This approach to visualizing the functional form of the fitted curve can be 
useful when only a small number of  variables are involved. Figure 30 displays the neural 
network predicted values by age for each territory. The fitted curve for territories 2 and 3 
are a little different, even though the "true" curves are the same. The curve for territory 4 
is relatively fiat, although it has a slight upward slope. 

Figure 30 
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Re~ression fit 
Table 13 presents the fitted coefficients for the logistic regression. Interpreting these 
coefficients is more difficult than interpreting those of a linear regression, since the logit 
represents the log of the odds ratio (p/(1-p)), wherep represents the underlying true claim 
frequency. Note that as the coefficients of  the Iogit of  frequency become more positive, 
the frequencies themselves become more positive. Hence, variables with positive 
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coefficients are positively related to the dependent variable and cocfficicnts with negative 
signs are negatively related to the dependent variable. 

Table 13: Results of Regression Fit 
Variable Coefficient Significance 
Intercept -1.749 0 
Age -0.038 0.339 
Territory 1 -0.322 0.362 
Territory 2 -0.201 0.451 
Territory 3 -0.536 0.051 
Age'Territory 1 0.067 0.112 
Age*Territory 2 0031 0.321 
Age*Territory 3 0.051 0.079 

Figure 31 displays the frequencies fitted by the logistic regression. As with neural 
networks graph are useful for visualizing the function fitted by a logistic regression. A 
noticeable departure from the underlying values can be seen in the results for Territory 4. 
The fitted curve is upward sloping for Territory 4, rather than nat as the true values are. 

Figure 31 
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I rrab'a 14 I 
esults of Fits: Mean squared error 

[Training Data~est Data 
eural Network| 0.005t 0,014 
egression l 0.007] 0.016 

In this example the neural network had a better performance than the regression. Table 
14 displays the mean square errors for the training and test data for the neural network 
and the logistic regression. Overall, the neural network had a better fit to the data and did 
a better job of capturing the interaction between Age and Territory. The fitted neural 
network model explained 30 % of the variance in the training data versus 15% for the 
regression. It should be noted that neither technique fit the "true" curve as closely as the 
curves in previous examples were fit. This is a result of the noise in the data. As can be 
seen from Figure 29, the data is very noisy, i.e., there is a lot of randomness in the data 
relative to the pattern. The noise in the data obscures the pattern, and statistical 
techniques applied to the data, whether neural networks or regression will have errors in 
their estimated parameters. 

Example 5: An Example with Messy Data 

The examples used thus far were kept simple, in order to illustrate key concepts about 
how neural networks work. This example is intended to be closer to the typical situation 
where data is messy. The data in this example will have nonlinearities, interactions, 
correlated variables as well as missing observations. 

To keep the example realistic, many of the parameters of the simulated data were based 
on information in publicly available databases and the published literature. A random 
sample of 5,000 claims was simulated. The sample represents 6 years of  claims history. 
(A multiyear period was chosen, so that inflation could be incorporated into the 
example). Each claim represents a personal automobile claim severity developed to 
ultimate 12. As an alternative to using claims developed to ultimate, an analyst might use 
a database of  claims which are all at the same development age. Random claim values 
were generated from a lognormal distribution. The scale parameter, p., of the lognormal, 
(which is the mean of  the logged variables) varied with the characteristics of the claim. 
The claim characteristics in the simulation were generated by eight variables. The 
variables are summarized in Table 15. The la parameter itself has a probability 
distribution. A graph of  the distribution of the parameter in the simulated sample is 
shown in Figure 32. The parameter had a standard deviation of  approximately .38. The 
objective of the analysis is to distinguish high severity policyholders from low severity 

12 The analyst may want to use neural network or other data mining techniques to develop the data. 

299  



Figure32 

1.2 

0.8 

0.4 

0.0 
6.50 6.75 700 725 7.50 7.75 8.00 825 850 8 75 900 

MU 

J Distribution of Mu ] 

policyholders. This translates into an estimate ofp. which is as close to the "true" p as 
possible. 

Table 15 below lists the eight predictor variable used to generate the data in this example. 
These variables are not intended to serve as an exhaustive list of  predictor variables for 
the personal automobile line. Rather they are examples of the kinds of  variables one 
could incorporate into a data mining exercise. A ninth variable (labeled Bogus) has no 
causal relationship to average severity. It is included as a noise variable to test the 
statistical procedures in their effectiveness at using the data. An effective prediction 
model should be able to distinguish between meaningful variables and variables which 
have no relationship to the dependent variable. Note that in the analysis of the data, two 
of  the variables used to create the data are unavailable to the analyst as they represent 
unobserved variables (the Auto BI and Auto PD underlying inflation factors). Instead, 
six inflation indices which are correlated with the unobserved Factors are ayailable to the 
analyst for modeling. Some features of  the variables are listed below. 
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Number of 
Categories 

~,ge of Driver 
Territory 
~ge of Car 
3ar Type 
3redit Rating 
IAuto BI Inflation Factor 

Auto PD and Phys Dam Inflation Factor 

Law Change 
Bogus 

Variable Type 

Continuous 
Categorical 
Continuous 
Categorical 
Continuous 
Continuous 

Continuous 

Categorical 
Continuous 

45 

No 

Missing Data 

No 
No 
Yes 
No 
Yes 
No 

No 
No 

Table 15 
Variable 

Note that some of the data is missing for two of  the variables. Also note that a law 
change was enacted in the middle of  the experience period which lowered expected claim 
severity values by 20%. A more detailed description of the variables is provided in 
Appendix 2. 

Neural Network Analysis of Simulated Dalo 
The dependent variable for the model fitting was the log of  severity. A general rule in 
statistics is that variables which show significant skewness should be transformed to 
approximate normality before fitting is done. The log transform is a common transform 
for accomplishing this. In general, Property and Casualty severities are positively 
skewed. The data in this example have a skewness of 6.43, a relatively high skewness. 
Figure 33, a graph of the distribution of  the log of severity indicates that approximate 
normality is attained after the data is logged. 

Figure 33 
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The data was separated into a training database of 4,000 claims and a test database of 
1,000 claims. A neural network with 7 nodes in the hidden layer was run on the 4,000 
claims in the training database. As will be discussed later, this network was larger than 
the final fitted network. This network was used to rank variables in importance and 
eliminate some variables. Because the amount of variance explained by the model is 
relatively small (8%), the sensitivities were also small. Table 16 displays the results of 
the sensitivity test for each of the variables. These rankings were used initially to 
eliminate two variables from the model: Bogus, and the dummy variable for car age 
missing. Subsequent testing of the model resulted in dropping other variables. Despite 
their low sensitivities, the inflation variables were not removed. The low sensitivities 
were probably a result of the high correlations of the variables with each other. In 
addition, it was deemed necessary to include a measure of inflation in the model. Since 
the neural network's hidden layer performs dimension reduction on the inflation 
variables, in a manner analogous to Factor or Principal Components Analysis, it seemed 
appropriate to retain these variables. 

Table 16: Sensitivities of Neural 
Network 
Variable Sensitivity Rank 
Car age 9.0 1 
Age 5.3 2 
Car type 3.0 3 
Law Change 2.2 4 
Credit category 2.2 5 
Territory 2.0 6 
Credit score 1.0 7 
Medical Inflation 0,5 8 
Car age missing 0.4 9 
Hospital Inflation 0.1 10 
Wage Inflation 0,0 11 
Other Services Inflation 0.0 12 
Bogus 0.O 13 
Parts Inflation 0.0 14 
Body Inflation 0.0 15 

One danger that is always present with neural network models is overtltting. As more 
hidden layers nodes are added to the model, the fit to the data improves and the r 2 of the 
model increases. However, the model may simply be fitting the features of the training 
data, therefore its results may not generalize well to a new database. A rule of thumb for 
the number of intermediate nodes to include in a neural network is to use one half of the 
number of  variables in the model. After eliminating 2 of the variables, 13 variables 
remained in the model. The rule of  thumb would indicate that 6 or 7 nodes should be 
used. The test data was used to determine how well networks of various sizes performed 
when presented with new data. Neural networks were fit with 3, 4, 5, 6 and 7 hidden 
nodes. The fitted model was then used to predict values of claims in the test data. 
Application of the fitted model to the test data indicated that a 4 node neural network 
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provided the best model. (It produced the highest r e in the test data). The test data was 
also used to eliminate additional variables from the model. In applying the model to the 
test data it was found thai dropping the territory and credit variables improved the fit. 

Goodness of Fit 
The fitted model had an r 2 of 5%. This is a low re but not out of line with what one 
would expect with the highly random data in this example. The "true" la (true expected 
log (severity)) has a variance equal to 10% of the variance of the log of severity. Thus, if 
one had perfect knowledge of ~t, one could predict individual log(severities) with only 
10% accuracy. However, if one had perfect knowledge of  the true mean value for severity 
for each policyholder, along with knowledge of the true mean frequency for each 
policyholder, one could charge the appropriate rate for the policy, given the particular 
characteristics of the policyholder. In the aggregate, with a large number of 
policyholders, the insurance company's actual experience should come close to the 
experience predicted from the expected severities and frequencies. 

With simulated data, the "true" la for each record is known. Thus, the model's accuracy 
in predicting the true parameter can be assessed. Figure 34 plots the relationship between 
~t and the predicted values (for the log of severity). It can be seen that as the predicted 
value increases, p. increases. The correlation between the predicted values and the 
parameter mu is .7. 

i : 
I 

Figure 34 
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As a further test of the model fit, the test data was divided into quartiles and the average 
severity was computed for each quartile. A graph of the result is presented in Figure 35. 
This graph shows that the model is effective in discriminating high and low severity 
claims. One would expect an even better ability to discriminate high severity from low 
severity observations with a larger sample. This is supported by Figure 36 which 
displays the plot of"true" expected severities for each of  the quartiles versus the neural 
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network predicted values. This graph indicated that the neural network is effective in 
classifying claims into severity categories. These results suggest that neural networks 
could be used to identify the more profitable insureds (or less profitable insureds) as part 
of the underwriting process. 

Figure 35 
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In the previous example some simple graphs were used to visualize the form of the fitted 
neural network function. Visualizing the nature of the relationships between dependent 
and independent variables is more difficult when a number of variables are incorporated 
into the model. For instance, Figure 37 displays the relationship between the neural 
network predicted value and the driver's age. It is difficult to discern the relationship 
between age and the network predicted value from this graph. One reason is that the 
predicted value at a given age is the result of many other predictor variables as well as 
age. Thus, there is a great deal of dispersion of predicted values at any given age due to 
these other variables, disguising the fitted relationship between age and the dependent 
variable. 

Figure 37 
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Researchers on neural networks have been exploring methods for understanding the 
function fit by a neural network. Recently, a procedure for visualizing neural network 
fitted functions was published by Plate, Bert and Band (Plate et ai., 2000). The procedure 
is one approach to understanding the relationships being modeled by a neural network. 
Plate et al. describe their plots as Generalized Additive Model style plots. Rather than 
attempting to describe Generalized Additive Models, a technique for producing the plots 
is simply presented below. (Both Venables and Ripley and Plate et al. provide 
descriptions of Generalized Additive Models). The procedure is implemented as follows: 

I .  

2. 

Set all the variables except the one being visualized to a constant value. Means 
and medians are logical choices for the constants. 
Apply the neural network function to this dataset to produce a predicted value for 
each value of  the independent variable• Alternatively, one could choose to apply 
the neural network to a range of values for the independent variable selected to 
represent a reasonable set of values of  the variable. The other variables remain at 
the selected constant values. 
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3. 
4. 

Plot the relationship between the neural network predicted value and the variable. 
Plate el al. recommend scaling all the variables onto a common scale, such as 0 to 
1. This is the scale of the inputs and outputs of the logistic functions in the neural 
network. In this paper, variables remain in their original scale. 

The result of applying the above procedure is a plot of the relationship between the 
dependent variable and one of the independent variable. Multiple applications of this 
procedure to different variables in the model provides the analyst with a tool for 
understanding the functional form of the relationships between the independent and 
dependent variables. 

The visualization method was applied to the data with all variablcs set to constants except 
for driver age. The result is shown in Figure 38. From this graph we can conclude that 
the fitted function declines with driver age. Figure 39 shows a similar plot for car age. 
This function declines with car age, but then increases at older ages. 

Figure 38 
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Figure 39 

Visualization Plot of Predicted log(Severity) vs car age 
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Suppose we wanted to visualize the relationship between a predictor variable which takes 
on discrete values and the dependent variable. For instance, suppose we wanted to know 
the impact of the law change. We can create fitted values for visualizing as described 
above but instead of producing a scatterplot, we can produce a bar chart. Figure 40 
displays such a graph. On this graph, the midpoint for claims subject to the law change 
(a value of I on the graph) is about .2 units below the midpoint of claims not subject to 
the law change. This suggests that the neural network estimates the law effect at about 
20% because a .2 impact on a log scale corresponds approximately to a multiplicative 
factor of 1.2, or .8 in the case of a negative effect (Actually, the effect when converted 
from the log scale is about 22%). The estimate is therefore close to the "true" impact of 
the law change, which is a 20% reduction in claim severity. 
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Figure 40 
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The visualization procedure can also be used to evaluate the impact of inflation on the 
predicted value. All variables except the six economic inflation factors were fixed at a 
constant value while the inflation variables entered the model at their actual values. The 
predicted values are then plotted against time. Figure 41 shows that the neural network 
estimated that inflation increased by about 40% during the six year time period of the 
sample data. This corresponds roughly to an annual inflation rate of about 7%. The 
"true" inflation underlying the model was approximately 6%. 

One way to visualize two-way interactions is to allow two variables to take on their 
actual values in the fitting function while keeping the others constant. Figure 42 displays 
such a panel graph for the age and car age interaction. It appears from this graph that the 
function relating car age to the predicted variable varies with the value of driver age. 

Figure 41 
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Figure 42 
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Rem'ession Model 
A regression model was fit to the data. The dependent variable was the log o f  severity. 
Like neural networks, regression models can be subject to overfitting. The more 
variables in the model, the better the fit to the training data. However, if  the model is 
overfit it will not generalize well and will give a poor fit on new data. Stepwise 
regression is an established procedure for selecting variables for a regression model. It 
tests the variables to find the one that produces the best r z. This is added to the model. It 
continues cycling through the variables, testing variables and adding a variable each 
cycle to the model until no more significant variables can be found. Significance is 
usually determined by performing an F-test on the difference in the r 2 of  the model 
without a given variable and then with the variable. 

Stepwise regression was used to select variables to incorporate into the model. Then a 
regression on those variables was run. The variables selected were driver age, car age, a 
dummy variable for the law change and the hospital inflation factor. Note that the 
hospital inflation factor had a very high correlation with both underlying inflation factors 
(even though the factors were generated to be independent o f  each other Z 3). Thus, using 
just the one variable seems to adequately approximate inflation. On average, the increase 
in the hospital inflation index was 4.6%. Since a factor o f  1.15 (see Table 17) was 
applied to the hospital inflation factor, inflation was estimated by the regression to be a 
little over 5% per year, The regression model estimated the impact o f  the law change as a 
reduction of .3  on the log scale or about 35% as opposed to the estimate 0fabout 22% for 
the neural network. Thus, the neural network overestimated inflation a little, while the 
regression model underestimated it a little. The neural network estimate o f  the law 

~3 This may be a result of using a random walk procedure to generate both variable. Using random walk 
models, the variables simulated have high correlations with prior values in the series. 
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change effect was close to the "true" value, while the regression overestimated the 
magnitude of the effect. 

The regression found a negative relationship between driver age and severity and 
between car age and severity. An interaction coefficient between age and car age was 
also estimated to be negative. The results correspond with the overall direction of the 
"true" relationships. The results of the final regression are presented in Table 17. 

The fitted regression had a somewhat lower r 2 than the neural network model. However, 
on some goodness of fit measures, the regression performance was close to that of the 
neural network. The regression predicted values had a .65 correlation with It. versus .70 
for the neural network. As seen in Figures 43 and 44, the regression was also able to 
discriminate high severity from low severity claims with the test data. Note that neither 
model found the Bogus variable to be significant. Also, neither model used all the 
variables that were actually used to generate the data, such as territory or credit 
information. Neither technique could distinguish the effect of these variables from the 
overall background noise in the data. 

Table 17: Regression Results 
Variable Coefficient Significance 
Intercept 7.210 0 
Age -0.001 0.448 
car age -0,024 0.203 
Law -0.306 0.0001 
Hospital Inf 1.1 0,0059 
Age*car age -0.001 0.0195 
R 2 = .039 

Figure 43 
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Usin~ the model in prediction 
To estimate severities, the fitted log severities must be transformed back to their original 
scale. This is generally accomplished by applying the exponential function to the values 
predicted by the model. If  the data is approximately Iognormally distributed, as in this 
example, a simple exponential transform will understate the true value of  the predicted 
severity. The mean o f a  lognormal variable is given by: 

, z 

E ( Y ,  ) = e . . . . . .  

where 

E(Y,) is the expected value for the i th observation 
lai = the mean for i 'h observation on the log scale 
2 is the variance of  severities on a log scale 

Since ~ti and o 2 are unknown, estimates of  their values must be used. The predicted 
value from the neural network or regression is the usual choice for an estimate o f  [u.i. The 
mean square error o f  the neural network or regression can be used as an estimate o f o  2 in 
the formula above. A predicted value was computed for the claims that were used to fit 
the neural network model. A plot o f  the predicted severities versus the "true" expected 
severities is displayed in Figure 43. 

311 



Figure 43 
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Applying the models 
Some of the possible applications of neural networks and other modeling techniques can 
utilize predictions of claim severity. A company may want to devise an early warning 
system to screen newly reported claims for those with a high probability of developing 
into large settlements. A severity model utilizing only information available early in the 
life of a claim could be used in an early warning system. A fraud detection system could 
also be based on claim severity. One approach to fraud detection is to produce a severity 
prediction for each claim. The actual value of the claim is compared to the predicted 
value. Those with a large positive deviation from the predicted are candidates for further 
investigation. 

However, many of the underwriting applications of modeling and prediction require both 
a frequency and a severity estimate. A company may wish to prune "bad" risks from its 
portfolio, pursue "good" risks or actually use models to establish rates. For such 
applications either the loss ratio or pure premium will be the target variable of interest. 
There are two approaches to estimating the needed variable: 1 ) One can separately 
estimate frequency and severity models and combine the estimates of the two models. 
An illustration of  fitting models to frequencies was provided in Example 4 and an 
example of fitting models to severities was supplied in Example 5. 2) Alternatively, one 
can estimate a pure premium or loss ratio model directly. 

One difficulty of modeling pure premiums or loss ratios is that in some lines of business, 
such as personal lines, most of the policyholders will have no losses, since the expected 
frequency is relatively low. It is desirable to transform the data onto a scale that does not 
allow for negative values. The log transformation accomplishes this. However, since the 
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log is not defined for a value of zero it may be necessary to add a very small constant to 
the data in order to apply the log transform. 

Once a pure premium is computed, it can be converted into a rate by loading for expenses 
and profit. Alternatively, the pure premium could be ratioed to premium at current rate 
levels to produce a loss ratio. A decision could be made as to whether the predicted loss 
ratio is acceptable before underwriting a risk. Alternatively the loss ratio prediction for a 
company's portfolio of risks for a line of business can be loaded for expenses and profit 
and the insurance company can determine if a rate increase is needed. 

Summarv 
This paper has gone into some detail in describing neural networks and how they work. 
The paper has attempted to remove some of the mystery from the neural network "black 
box". The author has described neural networks as a statistical tool which minimizes the 
squared deviation between target and fitted values, much like more traditional statistical 
procedures do. Examples were provided which showed how neural networks 1) are 
universal function approximators and 2) perform dimension reduction on correlated 
predictor variables. Classical techniques can be expected to outperform neural network 
models when data is well behaved and the relationships are linear or variables can be 
transformed into variables with linear relationships. However neural networks seem to 
have an advantage over linear models when they are applied to complex nonlinear data. 
This is an advantage neural networks share with other data mining tools not discussed in 
detail in this paper. Future research might investigate how neural networks compare to 
some of these data mining tools. 

Note that the paper does not advocate abandoning classical statistical tools, but rather 
adding a new tool to the actuarial toolkit. Classical regression performed well in many of  
the examples in this paper. Some classical statistical tools such as Generalized Linear 
Models have been applied successfully to problems similar to those in this paper. (See 
Holler et al. for an example). 

A disadvantage of  neural networks is that they are a "black box". They may outperform 
classical models in certain situations, but interpreting the result is difficult because the 
nature of the relationship between dependent and target variables is not usually revealed. 
Several methods for interpreting the results of neural networks were presented. Methods 
for visualizing the form of the fitted function were also presented in this paper. 
Incorporating such procedures into neural network software should help address this 
limitation. 
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A p p e n d i x  1 : N e u r a l  N e t w o r k  S o f t w a r e  

Neural network software is sold at prices ranging from a couple o f  hundred dollars to 
$100,000 or more. The more expensive prices are generally associated with more 
comprehensive  data mining products, which include neural networks as one of  the 
capabilities offered. Some o f  the established vendors o f  statistical software such as SPSS 
and SAS sell the higher end data mining products 14. These products are designed to 
function on servers and networks and have the capability o f  processing huge databases. 
They also have some o f  the bells and whistles useful to the analyst in evaluating the 
function fit by the neural network, such as a computation o f  sensitivities. Both o f  these 
products allow the user  to apply a number  o f  different kinds o f  neurat networks, 
including types o f  networks not covered in this paper. 

Many o f  the less expensive products provide good fits to data when the database is not 
large. Since the examples  in this paper used modestly sized databases, an expensive 
product with a lot o f  horsepower was not required. Two of  the less expensive tools were 
used to fit the models  in this paper: a very inexpensive neural network package, 
Brainmaker,  and the S-PLUS neural network function, nnet. The Brainmaker tool has a 
couple o f  handy features. It creates a file that contains all the parameters o f  the fitted 
neural network function for the hidden and output layers. It also has the capability o f  
producing the values o f  the hidden nodes. Both o f  these features were helpful for the 
detailed examination o f  neural networks contained in this paper. However,  the 
Brainmaker  version employed in this analysis had difficulty filling networks on larger 
databases l-s, so the S-PLUS nnet function was used for the last example. The S-PLUS 
rmet function is contained in a library supplied by Venables and Ripley, rather than the 
vendors  o f  S-PLUS, but it is included in the basic S-PI,US package. This software also 
provides the fitted parameters for the hidden and output layers. (However, it does not 
provide the fitted values for the hidden nodes). Chapter 9 o f  Venables and Ripley 
describes the software and how to use it. (Venables and Ripley, 1999). 

The  commonly  used commercial  software for fitting neural networks does not 
incorporate the visualization technique used for Example 5. Plate has provided an S- 
PLUS library incorporating his visualization technique (which is similar to, but a little 
different from, the one used for this paper) in the statlib library, at 
htto://lib.stat.cmd.edu/S/. The library with the visualization software is named Ploteff. 

Numerous  other products with which the author o f  this paper has no experience are also 
available for fitting neural networks. Thus, no statement made in this paper should be 
interpreted as an endorsement o f  any particular product. 

14 The SPSS dam mining product is called Clementine. lT, e SAS product ~s called the Enterprise Miner. 
SPSS also sells an inexpensive neural network product, Neural Conncction q~e author has used Neural 
Connection on moderately sized databases and found it to be effecnve on prediction and classification 
groblems. 

It should be noted that lhe vendors of Brainmaker sell a professional version which probably performs 
better on large databases. 
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Appendix 2 

This appendix is provided for readers wishing a little more detail on the structure of the 
data in the Example 5. 

The predictor variables are: 
Driver age: Age of  the driver in years 
Car type: This is intended to represent classifications like compact, midsize, sports utility 
vehicle and luxury car. There are 4 categories. 
Car age: Age of the car in years 
Representative parameters for the Driver age, Car type and Car age and their interactions 
variables were determined from the Baxter automobile claims database 16 
Territory: Intended to represent all the territories for 1 state. There are 45 categories. 
Reasonable parameters for territory were determined after examining the Texas 
automobile database used in the Casualty Actuarial Society's ratemaking competition. 
Credit: A variable called leverage, representing the ratio o f the sum of all revolving debt 
to the sum of all revolving credit limits was used as an indicator of the creditworthiness 
of  the driver. This is a variable not typically used in ratemaking. However, some recent 
research has suggested it may be useful in predicting personal lines loss ratios. 
Monaghan (Monagahan, 2000) shows that credit history has a significant impact on 
personal automobile and homeowners' loss ratios. Monaghan discussed a number of 
possible credit indicators, which were useful in predicting loss ratios. The leverage 
variable was judgmentally selected for this model because it had high predictive accuracy 
and because parameters could be developed based on information in Monaghan's paper. 
I fa  company had access to its policyholders' credit history, it might wish to develop a 
separate credit score (perhaps using neural networks) which used the information of a 
number of credit history variables. Another credit variable was used in addition to the 
leverage ratio. People with a leverage ratio of  0 were divided into 2 categories, those 
with very low limits (< $500) and those with higher limits (>=$500). A third category 
was created for claimants with leverage greater than 0. For the purposes of illustrating 
this technique, it was assumed that the entire impact of the credit variable is on severity, 
although this is unlikely in practice. 

Automobile Bodily Injury (ABI) inflation factor and Automobile Property Damage and 
Physical Damage (APD) inflation factor: These factors drive quarterly increases in the 
bodily injury, property damage and physical damage components of average severity. 
They are unobserved factors. The ABI factor is correlated with three observed variables: 
the producer price index for hospitals, the medical services component of the consumer 
price index and an index of  average hourly earnings. The APD factor is correlated with 
three observed variables: the produce price index for automobile bodies, the producer 
price index for automobile parts and the other services component of the consumer price 
index. Bureau of Labor statistics data was reviewed when developing parameters for the 
factors and for the "observed" variables. The ABI factor was given a 60% weight and the 
APD factor was given a 40% weight in computing each claim's expected severity. 

~6 This database of Automobile claims is available as an example database in S-PLUS. Venables and 
Ripley supply the S-PLUS data for claim severities in a S-PLUS library. See Venables and Ripley, p.467. 
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Law Change: A change in the law is enacted which causes average severities to decline 
by 20% after the third year. 

Interactions: 
Table 18 shows the variables with interactions. Three o f  the variables have interactions. 
In addition some o f  the interactions are nonlinear (or piecewise linear). An example is 
the interactions between age and car age. This is a curve that has a negative slope at 
older car ages and younger driver ages, but is flat for older driver ages and younger car 
ages. The formula used for generating the interaction between age, car age and car type 
is provided below (after Table 19). In addition to these interactions, other relationships 
exist in the data, which affect the mix o f  values for the predictor variables in the data. 
Young drivers (<25 years old) are more likely not to have any credit limits (a condition 
associated with a higher average severity on the credit variable). Younger and older 
(>55) drivers are more likely to have older cars. 

Table 18 
Interactions 
Driver Age and Car Type 
Driver Age and Car Age 
Driver Age and Car Age and Car Type 

lqonlinearitie$ 
A number o f  nonlinear relationships were built into the data. The relationship between 
Age and severity follows an exponential decay (see formula below). The relationships 
between some o f  the inflation indices and the Factors generating actual claim inflation 
are nonlinear. The relationship between car age and severity is piecewise linear. That is, 
there is no effect below a threshold age, then effect increases lincarly up to a maximum 
effect and remains at that level at higher ages. 

Missin~ Data 
In our real life experience with insurance data, values are often missing on variables 
which have a significant impact on the dependent variable. To make the simulated data in 
this example more realistic, data is missing on two o f  the independent variables. Table 19 
presents information on the missing data. Two dummy variables were created with a 
value o f  0 for most o f  the observations, but a value o f  I for records with a missing value 
on car age and/or credit information. In addition, a value of  1 was recorded for car age 
and credit leverage where data was missing. These values were used in the neural 
network analysis. The average o f  each of  the variables was substituted for the missing 
data in the regression analysis. 
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Table 19 
Missing Values 
Car Age 10% of records missing information if driver age is < 25. Otherwise 5% of data 

is missing 

Credit 25% of records are missing the information if Age < 25, otherwise 20% of data is 
missing. 

The ~t parameter o f  the lognormal severity distribution was created with the following 
function: 

BFI = max(0, min(4,carage[I] - 6)) 
BF2= ( cartype[I] = 4 or cartype[I]=2) 
BF3= max(O, min(6,(carage[l] - 3))) 
BF4 = ( cartype[I] = 1 or cartype[l] = 3 or cartype[l] = 4) * BF3 

/.t [I]<-(7.953)-.05"BF1+ 2* exp(-.15*Age[I])*BF4* exp(-.15*Age[l])*BF3 -0.15 * 
BF3+ 1.5*exp(-. l 'Age[I ] )*  
BF4+log(terrfactor)+Law[l]*log(.8)+log(leverage[I]))+log(Factorl*.6) + log(Factor2*.4) 

where 

I is the index o f  the simulated observation 
BF1, BF2, BF3, BF4 are basis functions which are used to incorporate interaction 
variables and piecewise linear functions into the function for ~t. 

rt[l] is the lognormal mu parameter for the i 'h record 
Age is the driver 's age 
cartype is the car type. 
carage is the car 's  age 
terrfactor is the multiplicative factor for territory 
Law is an indicator variable, which is 0 for quarters 1 through 12 and 1 afterwards. 
leverage is the multiplicative factor for the claimant 's credit leverage 
Factorl,  Factor2 are the bodily injury and property damage inflation factors. 

The dispersion parameter o f  the lognormal, o, was 1.2. 
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Abstract 

Multifractals are mathematical generalizations of fractals, objects displaying "fractional 
dimension," "scale invariance," and "self-similarity." Many natural phenomena, includ- 
ing some of considerable interest to the casualty actuary (meteorological conditions, 
population distribution, financial time series), have been found to be well-represented by 
(random) multifraetals. In this part I paper, we define and characterize multifractals and 
show how to fit and simulate multifractal models in the context of two-dimensional 
fields. In addition, we summarize original research we have published elsewhere 
concerning the multifractal distribution of insured property values, and discuss how we 
have used those findings in particular and multifractal modeling in general in a severe 
storm catastrophe model. 

Introduction 

In this section, we introduce the concepts of fractals and multifractals. 

Fraetals 

Mathematicians have known of sets whose dimension is not a whole number for some 
time, but the term "fractal'" emerged on the scientific and popular scenes with the work of 
Benoit Mandlebrot in the 1960s and 1970s [Mandlebrot 1982]. 

Mathematically, a fractal can be defined as a point set with possibly non-integer 
dimension. Examples of fractals include continuous random ~alks (Weiner processes), 
the Cantor set, and the Sierpinski triangle (the latter two discussed below). Phenomena in 
natqre that resemble fi-actals include dust spills and coastlines. 

Regular tYactals possess the attribute of self-similarity. This means that parts of the set 
are similar (in the geometrical sense of equivalence under a transformation consisting of 
magnification, rotation, translation, and reflection) to the whole. This givcs regular 
fractals an "infinite regress" look, as the same large-scale geometrical features are 
repeated at ever smaller and smaller scales. Self-similarity is also known as scale 

The authors would like to thank Jol~l Mangano for his contributions to this paper, Shaun Lovejoy and 
Daniel Schertzer tbr their helpful conversations, and Gary Venter for his review of an early draft. Errors, 
of cottrse, are solely the responsibility of the authors. 
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symmetry or scaling - the fractal doesn ' t  have a characteristic scale at which its features 
occur; they occur at all scales equally. 

Irregular fractals do not possess  strict self-similarity, but possess  statistical self-similarity 
and scaling. This will be clarified below. 

The key numerical index o f  a fractal, i t s fractal  dimension, deserves further explanation. 
It is not immediately obvious how the concept o f  dimension from linear algebra, the 
m a x i m u m  number  o f  linearly independent vectors in a space, can be generalized to 
include the possibility o f  noninteger values. While there are several ways  o f  doing so - 
and they often coincide - the so-called capacity dimension (somet imes  misnamed the 
Hausdorf f  dimension 2) is perhaps the easiest to understand. 

Consider  a closed and bounded subset  S o f  N-dimensional  Euclidean space R N. We 
define a covering o f  S o f  size ~. to be a set o f  hypercubes {Hi} such that (1) each 
hypercube is o f  size ~. on a side and (2) the set S is contained within the union o f  all 
hypercubes uHi .  For any ~., let n(~.) be the m i n i m u m  number  o f  hypercubes needed to be 
a covering o f  S. The dimension o f  S can then be defined in terms o f  the scaling behavior 
o f  coverings o f  S, i.e., the behavior o f  n(~.) as ~.---~0. 

Examples:  

• I f  S consists o f  a finite number  o f  points, then for all ~. less than the m i n i m u m  
distance between points, a covet ing needs to have as m a n y  hypereubes as there are 
points: n is constant for small ~,. 

• I fS  consists o f  a line segment  o f  length L, then n(~.)=L/~.: n varies as the reciprocal o f  
the first power o f  scale ~.. 

• If  S consists  o f  a (sub-) hypercube o f  dimension m and length L on a side, then n(~.) is 
approximately (L/~.)m: n varies as the reciprocal o f  the ruth power o f  scale ~.. 

This exponential relation, n(~.) oc ~-ra, motivates the definition o f  fractal dimension: 

d = - l i m / I ° g ( n ( a ) )  ) (1) 
~-,o~, log(a)  J 

The previous examples  show that by this definition, a set o f  isolated points has  d imension 
zero, a line segment  has dimension one, and an m-hypercube has dimension m, as we 
would expect. 3 

Subsets  o f  the unit interval may  have various d imensions  less than or equal to one, and 
cardinality is no guarantee o f  dimension for infinite sets. Finite point sets have 

2 The definition of Hausdorff dimension is more technically complicated, involving an inftmum rather than 
a limit, thereby handling cases where the limit (in equation t below) does not exist. 

3 Note that the dimension N of the embedding space is irrelevant. While it is true that a line segment of 
finite length can be made to fit in a hypercube of arbiUarily small side if the dimension of the hypercube is 
big enough, what really matters is the scaling behavior. That is, if the side of the hypercube is halved, then 
two of them are needed to cover the line segment - unplying the line segment has dimension one. 

323  



dimension zero, o f  course, but there are countable subsets with dimension zero and those 
with dimension one. For example, the set o f  rational numbers (a countable set) is a dense 
subset o f  the real numbers, meaning that any open set around a real number contains a 
rational. Therefore, the fractal dimension o f  the rationals is the same as that o f  the reals 
(they need exactly the same covering sets), that is, one. 

On the other hand, the countable set consisting o f  points Xk = a k, k=1,2,3 .. . .  where 
0<ct<l, has dimension 0. This can be seen by considering coverings by blocks o f  length 
~.= cd for some arbitrary j. The first block covers all points xj, x~+t, and at most (j-l)  
blocks are needed to cover the other ( j- l)  points. Thus, 

log(n(~.))/log(~.) < Iog(j)/(j*log(ct)) --~ 0. 

Nothing in the definition o f  fractal dimension precludes the possibility o f  a set S having a 
noninteger dimension d. We now present some examples to show how this can happen. 

The Cantor set is a subset o f  a line segment and is defined recursively as follows. Start 
with the entire line segment. Remove the middle third, leaving two disconnected closed 
line segments. Repeat the process on each remaining line segment, ad infinitum. In the 
limit, we have the Cantor set. At stage k o f  the construction (the whole segment being 
stage 0), we have 2 k subsegments each o f  length 3 "k, for a total length of  (2/3) k. In the 
limit, the Cantor set has measure 4 zero (it consists o f  points with no net length) because 
in the limit, (2/3) k goes to zero. For any length 2.=3 -k, we need 2 k segments Hi to cover 
the set. Therefore the fractal dimension o f  the Cantor set is log(2)/log(3) = 0.63093 .... 
corresponding to something between a line and a set o f  isolated points. 

The self-similarity o f  the Cantor set follows directly from its construction. Each sub- 
segment is treated in precisely the same way (up to a scale factor) as the original 
segment. 

As an example o f  a noninteger fractal dimension in a 2-dimensional space, consider the 
Sierpinski triangle (also known as the Sierpinski gasket). This subset o f  the unit square is 
defined recursively as follows: Start with an equilateral triangle and its interior. Draw an 
inscribed triangle (point down) connecting the midpoints o f  each side. This divides the 
triangle into four similar and congruent sub-triangles. Remove the interior o f  the 
inscribed triangle. Repeat the process on each o f  the remaining three sub-triangles. 
Figure 1 shows an approximation to the result. As with the Cantor set, the Sierpinski 
triangle has zero measure (no area), because each stage o f  the construction takes up (3/4) k 
area o f  the outer triangle. Assuming the original triangle is inscribed in a unit square, at 
stage k o f  the construction, we need 3 k squares Hi o f  side 2.=2 -k to cover the set. 
Therefore, the Sierpinski triangle has fractal dimension log(3)/log(2) - 1.584963 .... 
corresponding to something between a linear and a planar figure. 

The self-similarity o f  the Sierpinski triangle again follows directly from its construction. 
Each sub-triangle is a miniature version o f  the original triangle and is similar to all other 
triangles appearing in the set. 

4 Measure theory is reviewed in the next section. 

324  



The analysis o f  fractal dimension by this method is generally termed box-counting. 
There are other approaches, but they will not be discussed here. Note that the method 
applies to arbitrary sets, not just self-similar ones. A non-self-similar set is called an 
irregular fractal i f  it has a noninteger fractal dimension. 

Among natural phenomena, coastlines are frequently cited as good examples o f  irregular 
fractals. The measured length o f  a coastline depends on the scale o f  accuracy o f  the 
measuring tool. Comparing maps at various scales, one can see progressive deterioration 
o f  detail as larger scales are used. What appears as a wrinkled inlet on one map is 
abstracted to a simple polygon on the next and then obliterated completely on the next. 
[Barnsley] gives the fractal dimension o f  the coast o f  Great Britain as approximately 1.2. 
[Woo] discusses numerous areas where fractal laws relate to natural hazard processes. 

This notion o f  scale-dependent measurements will play a central role in the practical 
application o f  fractal and multifractai theory to real-world problems. 

Multifractals 

Multifractals, also known as fractal measures, generalize the notion o f  fractals. 
Mandlebrot also worked on multifractals in the 1970s and 1980s [Mandlebrot 1988], but 
the first use o f  the term is credited to U. Frisch and G. Parisi [Mandlebrot 1989]. Rather 
than being point sets, multifractals are measures (distributions) exhibiting a spectrum o f  
fractal dimensions. 

A brief  review o f  measure theory is in order. A measure It on a space X is a function 
from a set o f  subsets o f  X (a o-algebra o f  "measurable sets") to the real numbers R. In 
order to be a measure, the function It must satisfy It(~)=0, It(S)_>0, and p. o f  any count- 
able collection o f  disjoint sets must equal the sum o f  It on each set. Actuaries typically 
encounter only probability measures, where, in addition, p.(X)=l. The usual measure on 
R N is Lebesgue measure v(S), characterized by the fact that i f  S is a rectangular solid 
with sides o f  lengths ~i, i= 1 . . . . .  N, then v(S)=Fli2.i. 

I f  a measure It on R N is zero on every set for which v is zero (i.e., it is absolutely 
continuous), then the ratio o f  measures/a(H)/v(H) where H is a neighborhood (with non- 
zero measure) around a point x is well-defined, and in the limit, as the neighborhood 
shrinks to measure zero, the ratio fix), if  it exists, is the density o f  It, also known as the 
Radon-Nikodym derivative. Not all measures have densities; think o f  a probability 
function with a point mass at zero. As H shrinks around the point mass, It(H) cannot 
become less than the point mass, but v(H) goes to zero; the density becomes infinite. 

Multifractals, as measures, tend to be extremely ill.behaved, not characterizable in terms 
o f  densities and point, line, plane, etc., masses. 

The simplest way to create a multifractal is by a multiplicative cascade. Consider the 
"binomial multifractal," constructed on a half-open unit interval (0,1] with uniform 
density as follows: Divide the interval into two halves (open on the left) o f  equal length. 
Distribute 0<p<l o f  the mass uniformly on the left half  and l-p o f  the mass uniformly on 
the right half  (here p is a constant throughout all stages o f  the construction). Repeat on 
each subinterval. Figure 2 shows several stages o f  construction with p=I/3.  The 
horizontal axes show the unit interval and the vertical axes show density. The upper left 
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panel shows stage 1, where 1/3 o f  the mass is on the left half  and 2/3 is on the right. Note 
that the average density is 1. The upper right panel shows stage 2, where the left and 
right halves have each been divided. The 2 "d and 3 rd quarters o f  the interval have the 
same density because they have masses of(1/3)*(2/3) and (2/3)*(1/3), respectivelj¢. The 
lower left panel shows stage 4 where the interval has been divided into 2 = 16 
subsegments. Some local maxima seem to be appearing, they are labeled. The lower 
right panel shows stage 7, and begins to give a sense o f  what the ultimate multifractal 
looks like. Note the similarity o f  left and right halves. 

As you can see, at the local maxima, the density "blows up" as the scale resolution gets 
finer. Note how the maximum density increases from panel to panel. However, the rate 
o f  divergence is different at different points. The set o f  locations with particular 
(different) rates o f  divergence turn out to be fractals (with different fractal dimensions). 
Thus we have layers o f  fractals representing different "orders of  singularities," with a 
relationship between the rate o f  divergence and the fractal dimension. See Appendix A 
for mathematical details. 

This relationship is known as the spectrum o f  singularities - no single fractal dimension 
suffices to characterize the fractal measure, hence the name multifractaL 

Having a spectrum o f  singularities means that the multifractal measure consists o f  
infinitely spiky peaks sprinkled throughout predominant valleys, but that with proper 
mathematical technology, the peaks can be classified by the rate at which they diverge to 
infinity, and comparable peaks can be collected together into fractal "mountain ranges.'" 

Figure 3 shows a real-world density field that approximates a multifractal. It is the 
population density o f  the northeastern USA. The big spike in the middle is New York 
City. Lesser spikes pick out other densely-populated cities. 

In their analysis o f  turbulent meteorological phenomena, [Schertzer & Lovejoy] write the 
functional relationship between a chosen scale o f  resolution ~. and the average densities 
q~ measured at that scale as: 

Pr{~ a > 2 r }Qc 2 -~'' '  (2) 

This is very much in the spirit o f  box-counting for fractals, except the equivalent 
formulation for fractals would have (1) the event inside Pr{ } being the probability o f  
finding any point o f  the fractal in a k-neighborhood, instead o f  points that satisfy a 
certain degree of  singularity, and (2) the exponent on the right hand side being a constant, 
the fractal dimension o f  the set, instead o f  a function. In this formulation, the function 
c(y) carries all the information necessary to characterize, in a statistical sense, the 
multifractal. 5 

s It is tempting to read this equation as a statement about the probability of encountering a point with 
exponent ~/or higher or the probability of fractal dimension. However, if the fractal dimension of points 
having exponent "f or higher is less than the dimension of the embedding space, then such points make up a 
set of (Lebesgue or probability) measure zero. In the typical multifractal, "'almost" all the mass is 
concentrated in "almost" none of the region. The equation is really a statement about the scaling 
relationship between mtensity and probability. 
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Compare Figure 3 with Figures 4 and 5. The former measures population density at the 
resolution o f  8 miles. The latter two measure it at resolutions o f  16 and 32 miles, 
respectively. Clearly, one 's  impression of  this density field is largely driven by the scale 
of  resolution used. A systematic investigation o f  the appearance o f  a field using various 
scales o f  resolution is at the heart o f  multi fractal analysis. 

A box-counting approach developed by [Lavallre et. al.] known as Probability 
Distribution Multiple Scaling (PDMS) can be used to estimate the probabilities o f  
singularities with assorted rates o f  divergence. (See also [Lovejoy & Schertzer 1991].) It 
turns out that directly estimating c(y) in such a fashion is not a productive approach to 
analyzing real data sets for multifractality due to the severe demands that the procedure 
places on the sample data. In the next section, we will show how multifractals can be 
understood equally well through the behavior o f  their moments. 

[Pecknold et. al.] give many examples o f  (apparent) multifractals in nature. See also 
[Ladoy et. al.] These include rain and cloud fields (measured from scales o f  a thousand 
kilometers and years down to millimeters and seconds - see [Lovejoy & Schertzer 
1991]), human population density (as above, also see further discussion below), and 
foreign exchange rates. Part o f  the impetus for the development and practical application 
ofmultifractal analysis came from "the burgeoning mass o f  remotely sensed satellite and 
radar data" [Tessier et. al., 1993]. Depending on the scale o f  resolution used, measure- 
ments o f  cloud cover could be made to vary drastically; moreover, how this variation 
with scale behaved was also dependent on the level o f  intensity chosen as a threshold 
just the sort o f  fractals-within-fractals behavior to be expected from multifractal fields. 

Spatial Fields 
In this section, we delve into the general theory o f  self-similar random fields, focusing on 
the two-dimensional case. (The extension to three or more dimensions is straight- 
forward.) Examples are taken from our applications in property-liability insurance. 

Analysis of Multifraetal Fields 

Analysis o f  random multifractals is an extension o f  the analysis o f  random fields. Recall 

that a random field ~o(r) is a collection o f  real-valued random variables ~p, indexed by r, 
where r may be 

• an integer, for example, in the case where the random field is a (discrete) time series, 

• a real number, for example, in the case where the random field is a (continuous) 
stochastic process, 

• a vector in D-dimensional Euclidean space R D, in the case o f  a general random field. 

Typically, we focus on O = 1 for financial/econometric time series and O = 2 for spatial distributions in 
geography or meteorology. 

To analyze a random multifractal, we must first respect the fact that it is a measure, and 
strictly speaking may not (typically does not) possess real-valued densities. Therefore, 
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we cannot treat a random multifractal as a random field q~(r). 6 However, as we have 
seen in previous sections, when viewed at a finite scale of resolution L, a multifractal 

does have a well-behaved density that we can treat as a random field ~oL(r). Thus, the 
approach to studying random multifractals is to consider sequences o f  random fields that 
describe the density o f  the measure at various scales o f  resolution, and to study the 
scaling behavior o f  those sequences. 

Appendix B outlines the mathematics. The box-counting approach appears to admit 
straightforward application (and becomes PDMS) as discussed above. For various 
reasons discussed below, it is more fruitful to deal with moments of  the random fields. 
The key object o f  the analysis is the so-called K(q) function, describing the scaling 
behavior o f  the qth-moments o f  the sequence o f  random density fields as the scale of  
resolution 3. varies. At finer resolutions, the density fields appear more "spiky" and 
average q-powers o f  the fields for q>l  (q<l)  get arbitrarily large (small) according to the 
power law: 

E(~P q ) = ( 2 )  -r<q) . (3) 

The boundary conditions K(O) = K(I)  = 0 further constrain the K(q) curve. 

S y n t h e s i s  o f  M u l t i f r a c t a i s ;  2 -D M n l t i p l i c a t i v e  C a s c a d e  

Above, we described how recursive application o f  multiplication o f  densities - a multi* 
plicative cascade - generated the simple binomial multifractal on a line segment. A 
similar operation, in two dimensions, can be used to generate a multifractal akin to the 
Sierpinksi triangle. Consider the following two-by-two matrix: 

a =[201 ~ 104 ] (4) 

Take a unit square with uniform density. Divide it into four quadrants and multiply the 
density in each quadrant by the corresponding element o f a .  Note that the average o f  the 

four elements o f  a is 1.0, so the average density across the entire square is unchanged. 
Repeat the procedure on each quadrant, recursively. In the limit, we have a multifractal. 
At stage k, neighborhoods o f  the upper left comer have average density 2 k. That point has 
the highest degree o f  singularity. 7 The lower left comer has a different sort o f  
singularity, with density 0.6 k approaching zero as the scale shrinks. The entire lower 
right half  is empty (density zero). Like the Sierpinski triangle, in fact, the s]uare is 
almost everywhere empty: at each stage, the area with nonzero density is (3/4) which 
approaches zero as k increases without bound. Figure 6 depicts the result. 

6 It might be tempting to consider a random measure as a collection of random variables indexed by subsets 
of the underlying R ° space, but that quickly becomes awkward to work with. 

7 Countably many other points have the same degree of singularity. These are the "upper left comers" of 
k a  nonzero subcells; at all stages k after some stage a, they have density m2 " . 
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A random version of the Sierpinski multifractal can be seen in Figures 7 and 8. Here, the 
positions of the elements of  a are randomly shuffled at each downward step in the 
cascade. Statistically, the random and regular versions are identical, but visually, the 
random version suggests phenomena taken from biology or geography. 

Figure 9 shows the empirically fit and theoretical ("universal") K(q) curves for the 
Sierpinski multifractal. The latter will be explained in the next section. 

Universa l i ty  Classes; F o r m  of  K(q) 

By making certain plausible assumptions about the mechanisms generating a multifractal, 
we can arrive at a "universal" theory, akin to a central limit theorem, for multifractals. 
The critical assumption is that the underlying generator (analogous to the multiplicative 
factors in the matrix of the previous example) is a random variable with a specific type of 
distribution: the exponentiated extremal L~vy distribution. This is plausible because Lrvy 
distributions generalize the Gaussian distribution in the central limit theorem. 

This leads to a two-parameter family of K(q) curves: 

K(q)=IaC~t_l(q~-q) a ~ l  
(5) 

[ C , . q l o g ( q )  a = 1  

where C~ acts as a magnification factor and ct, related to the tail index of  the L~vy 
generator, determines curvature. These parameters in turn can be related to position and 
scale parameters/1 and cr to be applied to a "standard" L~vy variable A~(- 1 ). 

The derivation, and an introduction to Lrvy variables, is presented in Appendix C. 

Synthes is  o f  Mult i fraetais:  Extremal  L~vy Generators  

In creating multifraetals for liability applications, we adopt this still somewhat 
controversial theory of  universality. 8 That is, each step of a simulated multiplicative 
cascade is a multiplication by the random factor a given by equation 32 (Appendix C) for 
appropriately chosen parameters. A cdf of random step factors corresponding to the best 
universal fit to the Sierpinski cascade example above is shown in Figure 11 (thick curve). 
A multiplicative cascade with these random step factors could be used instead of the four- 
element array used above (shown as thin line step function) to construct a multifractal 
with roughly the same properties as the Sierpinski multifractal. 

The Laplace transform of  the logarithm of these factors take on the particularly simple 
forms described in Appendix C. This fact is exploited in data analysis, as will be 
explained later in the discussion of  Trace Moments. 

s The scope and relevance of the necessary conditions to real-world phenomena are hotly debated. 
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Example Spectrum Analysis: Insured Property Portfolios 

A preliminary step, to be taken before fitting a K(q) curve to suspected multifractal data, 
is spectrum (Fourier) analysis. The key point is that a multifractal must possess a spectral 
density having a certain shape: a straight line in a log-log plot. Furthermore, the slope o f  
that line has additional implications. Therefore, spectrum analysis is used as a screening 
step before applying multifractal analysis. The mathematics relating K(q) to spatial 
spectral density is presented in Appendix D. 

The spatial distribution o f  the human environment has been studied in geography and 
human ecology. [Major] analyzed homeowners insurance property as a two-stage Poisson 
process. Multifractal approaches include the analysis by [Tessier et al. 1994] o f  the 
global meteorological network (i.e., locations o f  weather stations) and [Appleby] 's study 
o f  population in the USA and Great Britain. Until [Lantsman et. al.], no one had studied 
the spatial distribution o f  insured property values (Total Insured Value, or "TIV"). 

[Lantsman et. al.] show that some portfolios o f  insured homeowners properties display a 
spatial distribution consistent with multifractal behavior (over appropriate scales). Figure 
12 shows the isotropic power spectra o f  the insured value density of  five geographically 
distinct regions o f  an insured property portfolio. 

The preparation of  such graphs starts with a grid o f  insured values at a sufficiently small 
scale of  resolution. First, accumulate insured value totals over a 2tin-squared grid over 
the UxU area. In practice, we have found Tm=7 or 8 to be comfortable for Pentium-III 
class machines. If  the data originates as individual observations (e.g., geocoded lat-lon 
locations) then each observation must be assigned to the appropriate grid cell. If the data 
originates as areal data (e.g., accumulated values for polygons) then the data must be 
allocated to the grid. In any case, make sure that L=U/2 TM is larger than the resolution of  
the data. For analysis o f  large portfolios with ZIP-level data, we typically use U - 512 or 
1024 miles 9 with Tm = 6 or 7, resulting in a resolution o f  L=8 miles, which is a bit bigger 
than the square root o f  the average area o f  a ZIP code)  ° 

The second step is to compute the 2-dimensional discrete Fourier transform (DFT) of  the 
array. The third is to convert to an isotropic power spectrum. Appendix D has details. 
Roughly speaking, the isotropic power spectrum reveals the strength (vertical axis) o f  
various periodicities (horizontal axis) in the spatial data, averaged over all directions. 

The horizontal axis o f  Figure 12 represents the wavenumber (spatial frequency) r where, 

e.g., wavenumber r =10 corresponds to a periodicity o f  512/10 = 51.2 miles. The plots 

stop at the finest resolution o f  8 miles, corresponding to wavenumber r = 512/8 = 64. 
The vertical axis represents the power (spectral density - i.e. Fourier component ampli- 
tude - squared) P(r), with arbitrary constant factors used to separate the five curves. 

9 A 1024-mile square covers about one-sixth of the USA. 

~0 Since most of the population resides in smaller, more densely populated ZIP codes, we feel that an 8-mile 
resolution is appropriate. 
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All but one curve show the smooth, Ioglinear relationship between power and wave 
number that is to be expected from a self-similar random field. The exception displays 
higher than expected spectral amplitude at wavenumbers 45-50 (-11 miles) and less than 
expected at wave numbers 30-35 (-16 miles). This anomaly was traced to unique factors 
in this insurer's distribution channel. They had a strong affinity marketing program for 
military personnel. In Washington DC proper, the portfolio's spatial density of  insured 
value was nearly zero. However, in two suburban enclaves adjacent to nearby military 
bases, the value density was among the highest observed in the region. The two groups 
were about 11 miles apart and 16 miles away from the center of  DC. If  not for this 
unusual geographic structure to the market, the power spectrum would have been similar 
to that of the other regions. 

Fitting g(q); Trace Moment Analysis 

In this section, we discuss how to fit a universal K(q) curve to spatial data and use the US 
population density in the northeast (Figure 3 discussed previously) as an example. 
Conceptually, the idea is very simple: construct an empirical K(q) curve by measuring 
the moment scaling behavior as expressed in equation 14 (Appendix B), then find 
parameters Ci and ct that produce a best-fitting theoretical K(q) curve (equation 5, 
equation 31 of  Appendix C). In practice, a few wrinkles emerge. 

Data preparation starts with the gridding process discussed above in the context of 
spectral analysis. Most of  the square grid should contain meaningful data; too many 
"structural zeroes" (e.g., representing water or other area that cannot by definition 
support positive values) will distort the analysis. In the case of Figure 3, each grid entry 
is an approximate t~ count of  persons living in that 8x8 mile geographic square. 

Having represented the field as a 2Tin-square matrix, normalize the entries by dividing 
each by the average value of  all the entries; this makes the average entry equal one. 

The next step is to prepare a series of locally averaged ("dressed") versions of the data 
matrix, each 2 r on a side for T=0,2,...,Tm-1. Specifically, the four elements indexed by 

I+1 - (2*r+i, 2*c+j) (where i=O,l and j=0,1) of the 2 grid are averaged to become the value 
of  the (r,c) element of  the 2 T grid. These represent the same field, but at progressively 
coarser scales of resolution.12 See Figures 3 through 5, mentioned previously. Note that 
for each grid, the average cell value is one. The coarsest grid, corresponding to T=0 and 
scale U, consists of  the single entry, one. 

The fourth step is to compute qth powers of the dressed fields and look for a loglinear 
relationship between them and the scale. If multifractal scaling is present, we should see, 
for each fixed q, a linear relationship between T (the label identifying the coarseness of  a 

H Recall the original data was at the ZIP code level o f  resolution, so entire ZIP codes were allocated to 
particular grid squares, introducing a bit o f  distortion at the smallest scales. 

12 Tm As a refinement of  this prOcess, we start with two grids, the 2 -sided grid as described, as well as a 
, Tn~2 slightly coarser 3 2 -sided grid, and operate on them in parallel. This way, we get a factor o f  i .5 or 1.33 

(ideally it would be the square root o f  two) between adjacent scale ratios instead o f  a factor o f  two. This  
doubles the sample o f  scale ratios in the analysis. 
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grid, equal to Iog~ of the number of  rows or columns in the grid ) and the logarithm of the 
average of  the qth power of the grid entries. 

Figure 13 shows this relationship for q = 0.6, 0.9, and 1.4. These so-called trace 
moments are close enough to linear to make the multifractal model appropriate. 

Having satisfied ourselves that scaling is present, the fifth step is to estimate K(q) values 
as coefficients in a linear regression version of equation 16 (Appendix B), for each of  a 
range of  values for q. A certain amount ofjudgrnent is called for, however, in choosing 
the range over which the regression should be carried out. [Essex] and [Lavall6e et. al.] 
discuss "symmetry breaking" that results from the limitations of sample data. The 
selected range of scaling must avoid these extremes in order to deliver unbiased estimates 
of moments, and hence undistorted K(q) estimates. Linear regression in this case suggests 
that K(0.6) = -0.2, K(0.9) = -0.1, and K(1.4) = 0.3. An example of the resulting empirical 
K(q) curve based on slopes estimated from regressions of trace moments corresponding 
to q values ranging from 0.16 to 4.5 is shown in Figure 14. 

Before considering how to best fit a universal K(q) to the empirical curve, we must 
address additional limitations of the methodology. The relation between K(q) and c(7 ) 
(the latter "box counting" exponent expressing the scaling behavior of  probability of 
extreme values) is given by a Legendre transform; there is a one-to-one correspondence 
between moments and orders of singularities [Tessier et. al. 1993]. Realistic limitations 
to data (rounding low values to zero, finite sample size, bounded sample) can limit the 
range of  observable singularities and consequently introduce distortions in the measured 

K(q). In addition, estimating the universal parameters Cl and o. by nonlinear least 
squares may run afoul of a substantial degree of collinearity between the parameters. 

For such instances, [Tessier et. al. 1993, 1994] developed the double trace moments 
technique. This is based on the observation that i f a  universal field is exponentiated first 
by 1"1, then averaged to scale Z., then exponentiated to q, we have the relation 

K(q,rl) = r/~' . K(q,1) (6) 

where the second arguments refer to the exponent of the original field from which the 

K(q) estimate is made. This allows an estimation of the field's O~ by fixing q and varying 
r I. Figure 15 shows a graph of log K(q,rl) vs. log r 1 for various q. Due to the limitations 
cited above, this equation as applied to sample data tends to break down except for a 

limited range of q; thus we estimate ot as the maximum slope observed in the graph. With 

a good estimate o f ~  in hand, an ordinary least-squares estimate of Ct is easy to obtain. 

In this case, a standard two-parameter nonlinear regression does fine, with Ct =0.66 and 

Ci = 0.72 obtained. The resulting theoretical K(q) curve is compared, to the empirical 
version in Figure 16. 

Simulating Universal nultifractal Data; Synthetic Geocoding 

The utility of a model of  insured value emerges when detailed geographical information 
about a portfolio of  risks is lacking. Often the information fed into catastrophe models in 
the US is based on aggregations at the county or ZIP code level. While this may suffice 
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for hurricane risk analysis, it does not for thunderstorm wind, tornado or hail perils. On 
the one hand, the average s!ze o f  a ZIP code is 8 by 8 miles, and the distribution o f  
properties over the area is typically very sparse, irregular and non-uniform. A damage 
potential (expected damage rate) field representing a hail or tornado event is o f  a 
comparable scale (scattered patches less than a mile wide by a few miles long for hail; 
narrower and longer for tornadoes), and it, too, is highly non-uniform (e.g., 90% o f  the 
damage potential from a tornado occurs in less than 5% o f  its area). Given that the 
details o f  the hazard and exposure fields must be superimposed to obtain a reasonable 
estimate o f  losses sustained, one can appreciate the difficulty of  working with aggregate 
data. 

Previous solutions to the problem were simplistic and reflected a characterization o f  TIV 
over the area either as regularly or randomly uniformly distributed, or, at the other 
extreme, concentrated at a single point, (i.e., the area's centroid). The result o f  this kind 
o f  misrepresentation is a critical misestimation o f  the variability inherent in the process o f  
loss generation. Figures 17 and 18 illustrate this. 

Figure 17 is a map o f  a portion o f  a real homeowner property portfolio. The scale is 8 
miles on a side, the average size o f  a ZIP code. Figure 18 shows a realization o f  the same 
number o f  homes assuming a uniform spatial point process. The true portfolio shows 
more "clumps and gaps" than the relatively smoother uniform random version. Figure 19 
shows the results o f  applying the multifractal model. While it does not reproduce the 
original portfolio (no random model would be expected to), it does appear to exhibit the 
same spatial statistics. When intersected with a number o f  simulated damage footprints 
from hail or tornadoes, it will clearly do a better job o f  estimating the damage probability 
distribution than will either the uniform random version or a version that puts all the 
properties at the center o f  the figure. The uniform distribution will result in too many 
small loss events and not enough large loss events, and vice-versa for the centroid. 

The construction o f  a synthetic geocoding proceeds as follows: 

1. Create a multifractal field over the area in question. Typically, we use a five- 
to seven-stage process, depending on the outer scale. A seven-stage process 
divides a square into 27x27=16,384 grid cells; this is sufficient to carve an 8- 
mile square into 2.5 acre parcels. At each stage i = 0 to Tin, instantiate a 2ix2 i 
array o f  independent and identically distributed exponentiated extremal Lrvy 
random variables (see equation 32 o f  Appendix C). 13 In the example o f  
Figure 19 we used the parameters t~ = 0.8, Cj = 0.6. In [Lantsman et. al.], we 
reported different parameters for industry and selected client portfolios, t4 
Combine factors via multiplicative cascade as described for the Sierpinski 
multi fractal. 

~3 [Samorodnitsky & Takku] has an efficient algorithm for simulating Ldvy variables. 

~4 Specifically, ot = 1.024 and C~ = 0.560 for industry TIV measured at the ZIP code level, and a = 0.552, 
C~ = 0.926 for a geocoded client portfolio. The implications of this difference are discussed in that paper. 
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2. Normalize the field and use it as a probability distribution to drive a 
multinomial point process. If the area is a polygon other than a square, then 
grid ceils must be identified as to being inside or outside the polygon. Outside 
grid cells are zeroed out; inside cell intensity values are divided by the total o f  
all inside values to renormalize. Say the grid probability in cell i is p,. The 
desired number o f  homes, N, is then allocated to each cell Ni, by a 
multinomial(N, Pl, P2 . . . . .  P4^Tm) joint random variable draw. In practice, this 
is implemented by a sequence o f  conditional binomial r.v. realizations. The 
first r.v. is Ni-binomial(N, p~). Subsequent cells'  realizations are conditional 
on all that precede, viz., N3-binomial(N-Ni-N2, p3/(I-pl-p2)), etc. 

Project APOTH: Thunderstorm Simulation 

Occurrence rates for small scale thunderstorm-related perils (wind, hail, tornadoes) have 
traditionally been computed as an annual rate averaged over a fairly wide region. This is 
done by counting the number o f  occurrences of  some peril o f  interest - say, hail two 
inches or more in diameter, tornadoes F3 or more, etc. - in a given area (frequently, a 
one- or two-degree longitude/latitude box). This count is normalized to the area o f  the 
box and the period o f  record. When this process is continued for more boxes (usually 
overlapping), contour maps can be plotted showing the smoothed variation in the rate. 
These types o f  maps are often developed for differing severity levels, such as hail >1", 
>2", etc. or tornadoes >F2, >F3, etc. To this extent, both frequency and severity are 
incorporated into them. 

Maps such as these are often used to estimate the probability o f  occurrence for an event 
o f  at least a certain severity at a single location. Such an application might be estimating 
the chance that a nuclear power plant will be hit by an F4 or F5 tornado. These maps can 
also be used to estimate probabilities o f  an event hit to a town or subdivision. 

Unfortunately, point-frequency maps are not very useful for modeling the typical 
insurance catastrophe loss event. While there are cases where a single violent tornado or 
a single storm o f  large diameter hail hits a highly populated area and produces a large 
loss, there are also other cat events whose losses are aggregates o f  many moderate losses 
which occurred in different locations, possibly over several states and over several days. 

The goal o f  Project APOTH (Atmospheric Perils Other Than Hurricane) is to develop the 
capability to credibly estimate probabilistic losses from the thunderstorm perils o f  hail, 
tornado, and straight-line winds (non-tornadic high wind gusts). The APOTH project 
presently has models that can realistically simulate both the geographical and seasonal 
characteristics o f  severe storms, as well as model their small-scale ground damage 
patterns as they affect homeowners  anywhere in the lower 48 states o f  the USA. The 
model can be easily extended to include other lines of  business once vulnerability 
functions become available from further research. 

One objective o f  natural hazard simulation is to produce a "future history" o f  
meteorological events, in sufficiently rich detail to be able to explore the range o f  damage 
effects on a subject portfolio o f  insured properties, yet maintain a statistically stationary 
relationship to the available historical data upon which the simulation is based. 
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The production of tornadoes and hail involves meteorological processes exhibiting 
complex behavior over a wide range of scales, from synoptic weather patterns (thousands 
ofkm) down to the size of  the hailstone (millimeters or centimeters). We have made use 
of multifractal modeling, not only to distribute property values in statistically appropriate 
patterns, but directly in the simulation of the hazards themselves. 

Multifractal modeling is not appropriate to all scales, however. Thunderstorms exhibit a 
strong seasonality during the year, nonhomogeneity of occurrence frequencies over 
distances of thousands of km, and anisotropy in terms of preferred directions of 
movement. At the smaller scales, the structure of tornado tracks and hail streaks 
(continuous bands of hailfall) are also highly idiosyncratic. In between, however, we 
have found that the scale of the swath (tens to hundreds of km) on a single day is 
amenable to multifractal modeling. 

Figure 20 shows a set of  reported hail occurrences for 3/30/98. Unfortunately, while 
swaths may make conceptual and meteorological sense, data are not reported in swath 
groupings. Before we can analyze swaths, we must identify them, using various tools 
including Bayesian classification, modal clustering, and nearest-neighbor methods. 
Figure 21 shows the same set of reports, now grouped into meaningful swaths. 

In order to expand the data into a meaningful set of  possible altemative scenarios, we 
have followed the practice of other modelers in using the historical data as a template for 
a synthetic "'probabilistic database" of  possible events. Figure 22 exemplifies the typical 
practice of  equally displacing all reported events by some random X-Y translation 
vector. ]5 One of our innovations is to use multifractal modeling to create and recreate 
alternative detailed patterns within a given swath. 

Our procedure is as follows: 

1. Historical reports are grouped into swaths as mentioned above. 

2. Swaths are characterized by a small number of  key parameters: the location, 
size, orientation, and eccentricity of the bounding ellipse; the prevailing storm 
motion direction within, and parameters describing the overall intensity level 
of  the activity. In the case of hail, intensity is defined by a categorical type 
label and the total volume of hail (number of  hailstones). In the case of  
tornado, intensity is defined by Fujita class-specific Poisson parameters for 
the number of touchdowns and two principal component scores defining the 
conditional distribution of tornado path lengths. In the case of non-tornado 
wind, intensity is defined as total wind power (war(s). 

3. When an historical swath is drawn from the database as a template for a 
simulated swath, the ellipse is gridded at the 1-km scale and a multifractal 
field (with parameters appropriate to the peril and type) is laid down over the 
grid. As described above for simulated geocoding, this field is "condensed" to 
a schedule of report (hail, tomado, or wind event) locations. 

Js Since this translation is by no more than a degree in either direction, it is a bit difficult to see at first. 
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4. Details of each report (hail streak size and intensity details; tornado F-class 
and track length, etc.) are drawn from conditional distributions, with 
correlation induced with the intensity of the underlying multifractal field at 
the point of condensation. 

Figure 23 shows several realizations of the multifractal simulation of these particular 
swaths. Note how they respect the ellipse boundaries, yet vary dramatically in their inner 
detail. A much richer variety of possible outcomes is made possible, compared to simple 
location-shift models, but the statistics of event properties and their spatial colocation are 
still respected. 

Conclusion 

In this part I paper, we introduced the ideas of fractal point sets and multifractal fields. 
We showed that while those mathematical constructs are rather bizarre from a traditional 
point of view (e.g., theory of smooth, differentiable functions), they nonetheless have 
applicability to a wide range of natural phenomena, many of which are of considerable 
interest to the casualty actuary. We showed how to analyze sample data from 
multidimensional random fields, detect scaling through the use of  the power spectrum, 
detect and measure multifractal behavior by the trace moments and double trace moments 
techniques, fit a "universal" model to the trace moments function K(q), and use that 
model to simulate independent realizations from the underlying process by a 
multiplicative cascade. In particular, we discussed synthetic geocoding and the 
simulation of non-hurricane atmospheric perils. 

In the companion part. II paper, we focus on time series analysis and financial 
applications. 
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Appendix A: Binomial Multifractal 
This appendix establishes' a relationship between orders o f  singularities and fractal 
dimension in the binomial multifractal on the half-open unit interval (0,1]. We follow the 
presentation in [Mandlebrot 1989]. 

Divide the interval into two halves (each open on the left) o f  equal length. Distribute 
0<p<l o f  the mass uniformly on the left half and 1-p o f  the mass uniformly on the right 
half  (here p is a constant throughout all stages o f  the construction). Repeat on each 
subinterval. 

At stage k o f  the construction, we have 2 k pieces o f  length 2 k, o f  which k!/(h!(k-h)!) o f  
them have density ph( 1 _p)k-h. 

Any point x in the interval can be expanded as a binary number 0.blb2b3 .... ~6 By 
considering the sequence o f  expansions truncated at bk, we make meaningful statements 
about the behavior o f  the measure at x. For example, define 

1 * 
f ( k )  =- k -~b , .  (7) 

Then, in a Z=2 k -wide  neighborhood o f  x, the average density is p~'f~k)(l-p)~k) = Z ~00, 

where a ( k ) =  Iog2(pl-~k)(l-p)f(k)). I f  f =---]imf(k), the proportion o f  l ' s  in the binary 

expansion, exists, then we can consider that the density behaves as k -~ in the  limit. Such 
a point is termed a singularity of exponent ct. As ~. gets smaller, the density may grow 
without limit or shrink to zero, but the rate o f  that growth is controlled by the exponent ct, 
a quantification o f  spikiness at that point. (This is the classical Hrlder exponent.) 

What is the fractal dimension o f  the set o f  such points? (Here, the exposition becomes 
quite deliberately sketchy, as proper delta-epsilon arguments would take up an undue 
amount o f  space.) At stage k, we have a total o f  2 k intervals, o f  which n = k!/((kf)!(k(1- 
f))r) have density defined byf(k) = f  Recalling Stirling's approximation for factorial, 

xr~ 2~/~. e x p( - x ) ,  x ~'~2 (8) 

we can write an approximation for n as 

42Mcf(' - f )  

This gives us a fractal dimension d = f log2f + (1-f)log2(l-f). Since the exponent a = 
flog2(l-p) + ( l - f )  log2(p) is also a function o f  f, we have a functional relationship 

between the order o f  the singula~rity a and the fractal dimension d o f  the set o f  points 
having that exponent. 

sb Since binary xyz0111.., is the same as xyzl000_., let us agree to use only the I I I... representation for 
such cases. (This is consistent with our closing the right side of intervals.) 
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Appendix B: Analysis of Multifractal Fields 

A random field is c a l l e d  s ta t ionary  t7 if  the distribution of  q~(rl ) is the same as that o f  

ql(r2) for any different rl  and r2. This does not imply the two random variables are 
independent, however.  For example,  a multivariate normal may have identical marginal 
distributions but nonetheless  possess  a nontrivial correlation structure. A nonstationary 

field is said to have s ta t ionary  increments  if  the distribution of  qT(rl ) - qT(r2) depends 

only on the difference vector r l  - r2.  Furthermore, for D >1, such a field is said to be 

i sotropic  if  the distribution o f  qg(rl)  - qg(r2) depends only oil the magni tude  of  that 

vector, [rl - r21. 

Our discussion follows [Novikov & Stewart], [Shertzer & Lovejoy], [Marshak et. al.] and 

[Menabde et. al.] in the general context o f  a D-dimensional  space and for stationary 
fields. The generalization to non-stationary fields will be discussed in Appendix D. 

Formally, consider a measure  la(X) whose domain consists of  a c~-fietd o f  subsets X of  
R D. Define the scale-L average density as: 

q~L ( r )  = L - °  / z ( V )  (10) 

where V is a / ) -d imens iona l  hypercube o f  side length L centered at r. Our first condition 

for p. to be a random multifractal is to assume ~pt,(r) is a random field. For a particular 

realization o f  ~a, we can compare such field realizations at different scales o f  resolution L 
and U by considering their relative densities 18 defined as: 

aL, v ( r )  = (PL ( r )  / (Pu (r )  ( 11 ) 

where L < U, therefore V L c V U . This is only defined for nonzero values o f  (,ou, but 

note that when it is zero, so must  be (PL. We have the property that: 

aL,v = at. .pa p. U (12) 

where L < p < U (therefore V L c Vp c Vu), and we have suppressed ment ion o f  

volume centers r. This is true for any realization, and thercfore can be considered a 
statement about the random variables as well.19 

These relative densities are random fields in their own right. They characterize how the 
fluctuation (or in termit tencv)  o f  the field varies as a function o f  scale. The assumption o f  

17 Physicists would use the word conservative. 

1~ These would be known as Radon-Nikodym derivatives to a statistician or breakdown coefficients to a 
physicist. 

~9 It is helpful Io think of  the measure ~a as a physical quantity, such as mass, rather than a probability 

measure. That way, probability statements about the random la will not be confused with statements about 
the properties of  particular realizations of  la. 
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stationarity implies that aL.V is a random variable whose distribution does not depend on 

the position of the volume,center r. Furthermore, we assume it depends only on the ratio 
L/U and that the random variables aL.p and ap.v in equation (3) are independent. This 
last statement is the techn{cal definition of it(X) being a statistically self-similar (a.k.a. 
scale-invariant, or scaling) random measure. 

Scaling of Moments, g(q) Function 

It is possible to show that under these assumptions the statistical moments of aL.V have 
the property: 

E(aqL,U ) = q q E(aL,p)E(ap,  U ) (13) 

where E( . )  is expected value operator. Since the moments of aL,V depend only on the 

ratio L/U, the most general expression for scaling behavior of statistical moments is: 

E(aqL,u ) = ( L / U )  -K(q) (14) 

with the boundary conditions K(O) = K(1) = O. 

It is worth noting that for some processes K ( q ) = O . ( q - 1 )  (for q>O)which is 
usually referred to as simple scaling or the (mono)fractal case. However, in nature, most 
processes exhibit a more complex behavior and the K(q) function evaluation requires a 
more elaborate approach. There is a wide class of random multiplicative cascade models 
that produce multiscaling behavior and multifractal fields [Parisi & Frisch]. 

For the special case where scale steps are factors of two, we can specialize equation 14. 

From the definition of aL,8 in equation 11, and noting that 99o is equal to one, we can 
write; 

E(aq.2 ',u ) = E(~.2' ) = 2rK(q) (15) 

log2 [E(epq 2_r ) ] =  T .  K ( q )  (16) 

This form reveals K(q) as the coefficient in a log-linear regression between the scale 
index T and average q-power of the field, as used in empirical data analysis. 

339 



Appendix C: Universality Classes; Form of K(q) 
To further explore the structure and behavior o f  the K ( q )  function we follow [Schertzer 
& Lovejoy], [Lovejoy & Schertzer 1990], and especially [Menabde et. al.] and formalize 
the idea of  a multiplicative cascade generator (MCG): 

GL, U =-In@L LD / o~,U t~) (17) 

We assume that the measure is not zero on any finite hypercube, therefore G is every- 

where defined. By definition o f  ~L (equation t 0 o f  appendix B), the ratio is less than one 
and so GL,t; is a non-negative random variable whose distribution depends only on the 

ratio L/U.  For arbitrary n, we can introduce n hypercubes of  side length p ,  which nest 

between VL and Vt~ so that: 

Ll pt = P~ I,°2 =...=P, IU =(LIU) ~ .... (18) 

After a series o f  transformations the resulting expression for G~.,t, will be: 

GL, U = Gt.,p ' + G p,.p~ + . . . +  G I, , U (19) 

The random variables on the right-hand side o f  equation (8) are assumed to be indepen- 
dent and identically distributed random variables with a pdf: 

p(g;  (L / U)"" )  = p(g;  p, / p,., ) (20) 

which depends solely o'n the scale ratio, ( L / U )  l/n . The property expressed in equations 

19 and 20 implies that the probability density for GL.u belongs to the class o f  infinitely 
divisible distributions [Feller]. The natural candidate for a MCG would therefore be a 
random variable with a stable L~vy distribution. 

An aside oil Lrvy random variables is in order. Lrvy random variables generalize 
Gaussian (normal) random variables in the Central Limit Theorem. The CLT states that 
the distribution o f  a sum o f  a set o f  N independent, identically distributed random 
yariables with f inite variance converges to a normal distribution as the number N 
increases without bound. More generally, if  the restriction to finite variance is removed, 
we can say that the sum converges to a L~vy distribution. 

Lrvy distributions are characterized by four parameters: ct, which must be in (0,2]; 13, 
which must be in [-1,1]; and la and ~>0, which are otherwise unrestricted. The latter two 
are location and scale parameters, respectively, allowing us to express a Lrvy random 
variable as ~t+~Aa(13) where A is "standardized" and depends on only two parameters. 
Note that cr is not the standard deviation because in general, variance is infinite for a 
Lrvy random variable. The parameter ~t is the tail index: the case et=l gives the Cauchy 
distribution while the case t~=2 gives the Normal distribution. As x increases without 
bound, the probability that a Lrvy random variable exceeds x is proportional to x -~. The 
second parameter, 13, is a symmetry index: i f  13=0, then the distribution is symmetric; 
otherwise, the probability of  the upper tail is proportional to 1+13 and the probability o f  
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the lower tail is proportional to !-[3 (in the large-x limit). When ct=i, the 13 parameter 
becomes irrelevant, and is conventionally set to 0. While there is no closed-form 
expression for the distribution function for Lrvy variables, the characteristic function is 
analytically tractable/° 

To develop a moment scaling relation for the random multifraetal p.(X) we apply the 
Laplace transform to the density functionp(g," L/U): 

oe 

~(s;L/U) = ~exp(-s.g)p(g;L/U)dg (21) 
0 

where s > 0. 

Becausep(g," L/U) is the pdfofan infinitely divisible distribution, from equation 18 we 
can conclude: 

~ ( s ;  L / U )  = ~," (s; (L / U )  j/") (22) 

Equation 22 has the solution: 

g ( s ;  L / U) = (L / U) z(s) (23) 

where, according to the general properties of infinitely divisible distributions [Feller], 

Z(s) can in the most general case he represented by a Lebesgue integral: 

Z(s) = ~1 - e x p ( - s  • X)M(dx) (24) 
X 

0 

where M is a measure such that the integral: 

x-~M(dx) < oo (25) 
I 

For processes under consideration with some degree of rigor we can limit ourselves to 

considering only measures M having a density M .  In such cases we can replace the 

Lebesgue integral with a Riemann integral, replacing M(dx) with M dx. It is this density 

function M* (or equivalently Z(s) or p(g,'L/U) ) that completely determines the 
properties of the MCG and therefore the (statistical) properties of the self-similar 
multifractal p.(X). 

The expression in equation 21 could be considered as an expectation of exp(-sGL.~) and 
can be rewritten as follows: 

2o Refer to [Samorodnitsky & Takku] for information on simulating and evaluating Ldvy random variables. 
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gt(s ;  L / U )  = E[exp(-sGL,L, )] 

= E[exp(sln(~OLL D/tpvUD)] = E((o L/~pt,)~(L/U)St , (26) 

From equations 23 and 26 we can find the moment scaling relation: 

E(~O L / tp v )s = (L I U)  -~D+zl~) (27) 

From equations 14 (appendix B) and 27, after replacing s with q, we can get following 
expression: 

K(q)  = q D -  z ( q )  (28) 

Since by definition in equation 14, K(I)=O, one has the normalization condition in 

equation 28 that Z(I)=D. The asymptotic behavior of K(q) could be deduced from 
equations 24 and 28 as: 

K(q) = qD + 0(1) (29) 

One can choose any form for the density measure M that satisfies the convergence and 
normalization conditions of equations 25 and 28. The most appealing measure is: 

M ' ( x )  oc x -a (30) 

(specifying only the limiting behavior for large x) which corresponds to a stable L6vy 
distribution [Feller]. With this choice of measure and proper renormalization we can 
express K(q) as: 

K ( q ) = I a C ~ l _ l ( q ~ - q )  a ¢ : l  
(31) 

C ~ - q l o g ( q )  cz = 1 

This expression represents the classes of "universal generators" [Schertzer & Lovejoy]. 
The first remarkable thing to notice is that a universal generator is characterized by only 

two fundamental parameters ( G ,  a'). The idea behind the introduction of universality 
classes is that whatever generator actually underlies the multiplicative cascade giving rise 
to a random multifractal, it may "converge" (in some sense) to a well-defined universal 
generator. 

With only two degrees of freedom, the K(q) curves represented by universal multifractals 
are of a limited variety. As mentioned previously, K(q) is constrained to go through the 
points (0,0) and (1,0) with negative values when 0<q<l and posilive values for q>l. The 

parameter CI clearly behaves as a vertical scaling factor. The o' parameter affects the 

curvature, as can be seen in Figure 10, with the extreme case of a -~, 0 converging to a 
straight line (with discontinuity at q = 0). 

For this "universality" result to be useful, we must also investigate which classes of MCG 
are stable and attractive under addition and will at least converge for some positive 
moments (not necessarily integer order). The task to specify universality classes could be 
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accomplished by considering the Lrvy distribution in a Fourier framework, i.e., its 
characteristic function. The restriction imposed by the Laplace transform (equation 21) is 
that we require a steeper than algebraic fall-off of the probability distribution for positive 

order moments, hence, with the exception of the Gaussian case (Or = 2), we have to 

employ strongly asymmetric, "extremal" Lrvy laws (fl = -1), as emphasized by 

[Schertzer & Lovejoy]. The Lrvy location parameter/1 is fixed by the normalization 

constraint and the scale parameter cr is derived from Cl [Samorodnitsky & Takku]. 
Roughly speaking, the universality theory states that multifractals built from random 
multiplicative cascades are statistically equivalent to those built from a special class: the 
exponentiated extremal L~vy variables: 

a = exp(/.t  + or.  A,~ ( -  1)) (32) 

According to [Schertzer & Lovejoy], we can designate the following main universality 

classes by specifying the parameter a: 

1. tz- 2: the Gaussian generator is almost everywhere (almost surely) continuous. The 
resulting field is a realization of the log-normal multiplicative cascade introduced by 
[Kolmogorov], [Obukhov], and [Mandelbrot 1972] to account for the effects of 
inhomogeneity in three-dimensional turbulent flows (turbulent cascades). 

2. 2 > a > 0: the Lrvy generator is almost everywhere (almost surely) discontinuous and 
is extremely asymmetric. 

3. ct = 0+: this limiting case corresponds to divergence of every statistical moment of 
the generator and represents the so-called "'fl" model. 
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Appendix D: Spectrum Analysis; K(q) and Spectrum Slope 
In this section, we explore the relation between the moment  scaling function K(q) and 
the power spectrum o f  the stationary field (PL that represents a random multifractal at the 
(sufficiently small) scale o f  resolution L. 21 Recall that the power spectrum o f  a t ime 
series or one-dimensional  stochastic process quantifies the magni tude (amplitude) o f  
cycles o f  various lengths (periods). Spectral analysis generalizes to mult idimensional  
fields by characterizing not only the amplitude and periodicity o f  such "waves"  but their 

directions as well. An isotropic power spectrum averages the D-dimensional  power 
spectrum over all directions, converting it to a one-dimensional  spectrum. 22 

Because o f  Fourier duality between the correlation function o f  the field and its power 
spectrum [Feller] it is customary in analysis o f  empirical stochastic processes to examine 
the correlation structure o f  a process and then map it into Fourier space. But the 
correlation function is not well suited to analyzing non-stationary fields so we need to 
develop some  guidance as to how to check for stationarity, and, i f  it exists, how to 
quantify the underlying field. 

Because in the case o f  stationarity the functional form o f  the correlation function closely 

relates to the K(q) function, we can be reasonably confident in establishing a direct link 

between the power spectrum and K(q) function o f  the field. Following [Menabde et al.], 
we demonstrate  how it could be accomplished. 

For a D-d imens iona l  isotropic random field (pL(r): 

E(~ L (r~)~PL (r2)) = C([r~ - r~ l) (33) 

where C(r)is the correlation function o f  the field. 

The Fourier transform o f  tpt(r) field is defined as: 

g/(k) = ~exp(-ikr)(o L (r)d °r (34) 

where i = ",/-1, the unit imaginary number.  For an isotropic field (equation 33) one has  
that: 

E(~(k)V.,(h)) ~,~(k-h)P(k) (3s) 

21 Historically, power spectrum analysis played a central role in identifying and characterizing the scaling 
properUes of self-similar random fields. Recent advances [Marshak et al.] in understanding the limitations 
of applicability and sensitivity of power spectrum analysis leads one to realize that the issue of stationarity 
is critical in qualifying and quantifying interminency of the field. The erroneous assumption that everything 
could be extracted from knowledge of the spectral exponent leads to a failure to discriminate between 
qualitatively different fields. 

u This is explained more fully below. 
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where 8 ( )  is a delta function (1 at 0, 0 elsewhere) and P(k) is the isotropic power 
spectrum. On the other hand, from equations 33 and 34 we can get the expression: 

E ( ~ , ( k ) ~ ( h ) )  = ~ e x p ( - i k r ,  - ihr2)C([r ,  - r2l)a°r,a°r, (36) 

After some mathematical manipulations with integrals involving change of  variables, 
introduction of polar coordinates, and performing the integration over the angular 
variables, one can obtain the following elegant result for the power spectrum of a 
stationary isotropic random field: 

P(k ) oc k -°÷x<2) (37) 

The practical implementation of the above on an NxN square grid V(m,n) of  intensity 
values is as follows: Compute the array: 

N " 

Convert this to the isotropic power spectrum by accumulating values IH(k,h)l 2 (i.e. 
complex magnitude squared) into one-dimensional array cells A(r) where 

,(l(k + N/2)modN- N/2 I 
r= rouna~ (h + N/2)modU- N/2 )" (39) 

(Here, the vertical bars indicate vector magnitude, i.e., square root of sum of squares.) 
Then convert A values to averages P by dividing each accumulated A entry by the 
number of H cells contributing to the entry. 

Equation 37 could be utilized in many ways: to check a D-dimensional stationary 
isotropic field for SS properties, to verify the validity of a numerical approximation of the 
K(q) function at the point q = 2, or to examine a non-stationary field with stationary 
increments (Brownian motion and "fractional Brownian motion"). Note that P(k) and 
K(2) can be computed by independent methods from the same data, enabling one to 
verify the consistency of assumptions about stationary increments. 

If  we relax the assumption of  stationarity, the problem of identification and 
characterization of SS fields develops some complications. We outline some important 
guidelines in handling non-stationary fields: 

1. First of  all, the power spectrum analysis still can indicate self-similarity of the field 
under investigation, revealing the following form: 

P(k) oc k -p (4o) 

2. For D-dimensional fields the condition ]3 > D will indicate lack of stationarity, but 
some transformations of  the original field (like power-law filtering or taking the 
absolute value of small-scale gradients) could produce a stationary field. 
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3. The spectral exponent f l  contains information about the degree of stalionarity of the 
field. The introduction of a new parameter H (sometimes called the Hurst exponent) 

related to/~ could aid in the task of characterizing the degree of persistence or long- 
term memory of the field. We will illustrate the importance of parameter H for time 
series in the part II paper. 

4. The arguments that the correlation function is not well suited for non-stationary 
situations (because of its translation dependence) led to the development of new ideas 
about the statistical properties of non-stationary fields to be properly estimated by 
spatial averaging procedures. The Wiener-Khinchine relation applicable to fields with 
stationary increments [Monin & Yaglom] states that it is the second-order structure 
function - not the correlation function - that is in Fourier duality with the power 
spectrum. We will introduce the structure function in the context of time series 
analysis in the part I1 paper and illustrate how lhe structure fimction is the one- 
dimensional analog of the K(q) function. 

A further refinement of the multiplicative cascade is to pass from the discrete cascade, 
which is what has been described up to this point, to the continuous cascade. The idea 
behind a continuous cascade is that rather than proceeding in identifiable steps, the 
multiplicative transfer of intensity variation between scales happens continuously at all 
scales. [Schertzer & Lovejoy] describe a method of implementing continuous cascades 
by means of the Fourier transform. 

The functional form for K(q) (equation 31 in appendix C) could be extended to 
nonstationar)' fields, and fractional integration (power-law filtering in Fourier space) 
could be used to transform simulated stationary random fields to any desired degree of 

non-stationarity (in the sense of spectral exponent f l  ). This is considered more fully in 
the part II paper. 
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Figure 1" Sierpinski Triangle 
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Figure 2: Stages of the Binomial Multifractal 



Figure 3: Northeastern USA Population Density 



F.,JI 

Figure 4: N.E. USA at 1/2 resolution 



Figure 5" N.E. USA at 1/4 resolution 
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Figure 8: Random Sierpinski Multifractal (Perspective) 
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Abstract 

Multifractals are mathematical generalizations of fractals, objects displaying "fractional 
dimension," "scale invariance," and "self-similarity.'" Many natural phenomena, inclu- 
ding some of considerable interest to the casualty actuary (meteorological conditions, 
population distribution, financial time series), have been found to be well-represented by 
(random) multifractals. In part II of this paper, we show how to fit multifractal models in 
the context of one-dimensional time series. We also present original research on the 
multifractality of interest rate time series and the inadequacy of some state-of-the-art 
diffusion models in capturing that multifractality. 

Introduction 
In the accompanying part I paper, we introduced the ideas of fractal point sets and 
multifractal fields. We showed that those mathematical constructs are applicable to a 
wide range of natural phenomena, many of which are of considerable interest to the 
casualty actuary. We showed how to analyze sample data from multidimensional random 
fields, detect and measure multifractal behavior, fit a "universal" model, and use that 
model to simulate independent realizations from the underlying process. In particular, we 
discussed synthetic geocoding and the simulation of non-hurricane atmospheric perils. 

The theory of self-similar random time series is more fully developed than the general 
multidimensional case. In this part II paper, we focus on time series analysis and financial 
applications. We present some additional theoretical machinery here and discuss 
applications to weather derivatives and financial modeling. 

Time Series 

Introduction to Multifractal Time Series Analysis; Structure Function 

Financial and geophysical time series feature a large range of time scales and they are 
governed by strongly non-linear processes; this suggests the possible applicability of 
scaling (multifractal) models. We consider a random process X(t) defined on the time 

segment [0, 7"]. The process X(t) has variously represented exchange rates, interest rates, 
temperature and precipitation in our work. 

As in the two-dimensional case, scale invariance is most readily tested by computing 
P(k), the power spectrum ofX(t). In the case of a one-dimensional time series, standard 
techniques of spectral (Fourier) analysis are available in many off-the-shelf statistical and 
mathematical packages, including Microsoft EXCEL. 

For a scaling process, one expects power law behavior: 
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P(k)  oc k -p (1) 

over a large range of  wave-numbers k (inverse of  time). I f / 3 <  1, the process is stationary 

in the most accepted sense of  the word [I], that is, X(t) is statistically invariant by 
translation in t. If  1 < / 3 <  3, the process is non-stationary but has stationary increments 
and, in particular, the small-scale gradient (derivative or first difference) process will be 
stationary. Introducing the Hurst exponent H (0 < H < 1), a parameter describing the 

degree of  stationarity of X(t), we can express the exponent /3as follows: 

,8 = 2 H  + 1 (2) 

We can demonstrate a wide range of  self-similar processes by changing the Hurst 
exponent: Brownian motion (H = 0.5, /3  = 2), an "anti-persistent" fractional Brownian 
motion (0 < H < 0.5, 1 < /3  < 2), and "persistent" fractional Brownian motion (0.5 < H < 

1, 2 < / 3 <  3). This is the class of  additive models. The last has become popular for 
modeling financial time series. 

Most of  financial and geophysical time series demonstrate non-stationary behavior. This 
creates major complications if power spectrum analysis is the only available tool. It is 
well known [2] that knowledge of /3  alone is insufficient to distinguish radically different 
types of  statistical behavior (the phenomena of"spectral  ambiguity"). It is not so difficult 
to construct two processes with identical power spectra - one additive and sufficiently 
smooth, and the other one multiplicative with a high degree of  intermittency. But such 
cases can be resolved with the help of  multifractal analysis, which can be viewed as an 
extension in the time domain of  scale-invariant spectral analysis. 

An appealing statistical characteristic to use in exploring time series is the structure 
function. Structure function analysis of  processes with stationary increments consists o f  
studying the scaling behavior of  non-overlapping fluctuations AX~ (t) = [ X (t+ r) - X (t) [ 
for different time increments r. One estimates the statistical moments  of  these 
fluctuations, which - assuming both scaling (1) and statistical translational invarianee in 
t ime (i.e., the property of  stationarity increments) depend only on the time increment r 
in a scaling way: 

E(AXr( t )q)  ~ E(AXT )~-~J (3) 

where E( AXr q) is a constant ( T is the fixed largest t ime scale), q > 0 is the order o f  the 
moment,  and ( ( q )  is the scale invariant structure function. The expectation E( AXf( t )q) 
is assumed finite for q in an interval [0, q,,~ ). The structure funetion ( ( q )  is a focal 
concept in the one-dimensional theory ofmultifraetals.  

We examine some properties of  ( ( q ) .  By definition, we have ( ( 0 )  = 0. Davis A. c ta l .  
[1] show that ( ( q )  will be concave: dZ((q) /dq 2 < 0. This is sufficient to define a 
"hierarchy of  exponents" using ~"(q): 
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((q) 
H(q)  - (4) 

q 

It can also be shown that H (q) is a non-increasing function. The second moment is linked 
to the exponent fl as follows: 

f l  = 1 + ( ( 2 )  = 2H(2)  + 1 (5) 

Obtaining _d" (q) or, equivalently, H (q) is the goal o f  structure function analysis. A 
process with a constant H (q) function could be classified as "monoffactal" or 
"monoaffine"; in the case o f  decreasing H (q), multiffactal or "multiaffine." 

Additive processes can be shown to have linear ( ( q )  or constant H (q). For Brownian 
motion we have: 

(aM (q) = q- (6) 
2 

For fractional Brownian motion (the fractional integration of  order h of  a Gaussian 
noise): 

(Frl~C(q)=q(h--½ ) (7) 

Note that Brownian motion corresponds to h - 1 (an ordinary integral o f  Gaussian white 
noise, which gives H =: ½ in Fourier space). 

In the case of  the more exotic "L6vy flight" (additive processes with L6vy noise) the 
behavior of  ( ( q )  is still linear. In this case, there is a L6vy index c~ ( 0 _< a _< 2 ), which 
characterizes the divergence of  the moments of  the L6vy noise. In general ( ( q )  diverges 
for q > ct, but for finite samples we obtain the following ( ( q )  function for a L6vy flight 
o f  index a: 

(t.,t (q) = q (8) 
O~ 

for q < a, and ((q) - 1 for q > a. 

We thus see that observing non-linearity o f  an empirical ~ (,71 function is a solid 
argument against the validity of  an additive model. Below, we will show strong signs o f  
curvature in the behavior o f  some empirical if(q) functions for financial time series. 

The generic multifractal processes (non-linear, non-additive) could be modeled by 
multiplicative cascades. The central part o f  a multiplicative cascades is the generator 
(MCG, discussed in the part 1 paper) which should be represented by some infinitely 
divisible probability distribution. Using *'canonical representation" (the Ldvy-Khinchine 
representation) for infinitely divisible random variables, and argmnents similar to those 
for the K(q) function for the general D-dimensional case. wc c~btain the following 
"universal form" for the structure function o f a  non-stationa~' process: 

( ( q ) = q H -  CI 
a _ l ( q "  - q )  (9) 
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where H = ~1)  the same as (2), CI is a parameter with the same role as in equation (31) 
of part I, and a is the Lrvy index. 

Analogous considerations could guide us to modify part I 's equation (31) to express the 
K(q) function for a non-conservative field: 

f CI 
:~LS_~(q -q) a . l  K(q)+qH (10) 

[ Clqlog(q) a = 1 

where the H parameter is the degree of  non-stationarity of the process. In other words, 
first bring the field to a state of stationarity (by fractional differentiation, i.e., power-law 
filtering in Fourier space or a small-scale gradient transformation) to eliminate the linear 
part qH, and then proceed with the analysis as for conservative fields. 

To summarize, the basic steps are: 

1. Examine the data for evidence of intermittency and self-similarity; this could be 
accomplished by studying the power spectrum. 

2. Establish the status of  multifractality (or monofractality) and qualitatively 
characterize the system under investigation; for this, we use the structure function. 

3. Fit model parameters to the universal form of~'(q). 

4. Simulate, using multiplicative cascade techniques based on the universal form of the 
generator. 

5. Apply, including, possibly, drawing inferences about the underlying process. 

A Growing Crisis in Financial Time Series Modeling? 

There is a growing awareness among researchers that the existing "classical" models 
cannot accommodate some essential properties underlying financial phenomena. The 
accumulation of a tremendous amount of highly reliable data from the financial markets 
around the world reveals distinctive characteristics of  financial time series that had 
previously been overlooked because of  lack of data. Some of the most important features 
are: 

• scaling or self-similarity (at different time scales); 

• long-term memory or persistency; 

• volatility clustering; 

• hyperbolic or "Paretian" tails. 
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To compensate for the consequences of these characteristics, the number of parameters in 
the "classical" models has been increasing over time. If this continues unchecked, it 
could make models unstable and decrease their predictive power. 

We distinguish two major classes of models in use by practitioners today: continuous 
time stochastic diffusion models ("diffusion models") and discrete time series models 
("discrete models"). 

Diffusion models build on the well-understood theory of Brownian motion. The 
development of stochastic calculus (particular It6 integrals) and the theory of martingales 
created the essential mathematical apparatus for equilibrium theory. The assumption of 
arbitrage free pricing (rule of one price) has a very elegant mathematical interpretation as 
a change of stochastic measure and the transformation to a risk-neutral stochastic process. 

Application of diffusion models is a crucial element in the valuation of a wide variety of 
financial instruments (derivatives, swaps, structured products, etc). Researchers have, 
however, long recognized major discrepancies between models based on Brownian 
motion and actual financial data, including long-term memory, volatility clustering and 
fat tails. To resolve these problems some extensions of diffusion models were offered. 
Often, this means introducing more stochastic factors, creating so-called multi-factor 
models. 

Modem discrete models extend classical auto-regressive (AR) moving average (MA) 
models with recent advances in the parameterization of time-conditional density 
functions. These include ARCH, GARCH, PGARCH, etc. Discrete models have been 
partially successful in compensating for lack of long-term memory, volatility clustering 
and fat tails, but at the cost of an increasing number of parameters and structural 
equations. Using appropriate diagnostic techniques one can demonstrate that the 
statistical properties of discrete models (viz., self-similarity of moments, long-term 
memory, etc.) are essentially the same as for Brownian motion. 

There is a third class of models, in little use by practitioners, but familiar to academics. 
This group constitutes the so-called additive models, including fractional Brownian 
motion, Lrvy flight and truncated Lrvy flight models. These models can replicate m o n o -  

fractal structure of underlying processes - their corresponding structure functions g" (q) 
(7), (8) are linear - but they cannot produce multifractal (nonlinear) behavior. 

Case Study: Foreign Exchange 

Here, we present an example of the application of multifractal analysis to exchange rate 
modeling, substantially following Schmidt, F. [3]. Figure 1 represents the exchange rate 
time series (US$/GDM spot rate 1975 - 1990 weekly observations) and Figure 2 the 
corresponding logarithmic changes in exchange rate. 

Figure 3 represents a power spectrum analysis (in log-log space) of the FX time series. 
Visual inspection, and the close fit of the regression line, supports the hypothesis of 
scale-invariant behavior. The power spectrum obeys a power law (Equation l ). The slope 

I A similar "Ptolemaic crisis" afflicted meteorological precipitation modehng in the 1980s. See, e.g., the 
Water Resources Research special issue on Mesoscale Precipitation Fields, August 1985. 
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of the straight line is the parameter fl; here equal to 1.592. This value suggests the 
underlying process may be non-stationary but with stationary increments. 

An important application of multifractal analysis is to characterize all order moments for 
the validation of a scaling model. The appropriate tool to do this for the particular case of 
a time series is structure function analysis. 

To apply the structure function method, we rewrite the equation (3) in logarithmic form: 

Iog[E(AX~(t)q)]=log[E(AXrq)]+((q){Iog(r)-log(T)} (11) 

The expectation E (AX~ ( t )q )  is estimated by the so-called partition function 

f(~r(t)q)=-l~laXAt)l q (12) 

(see Fisher, A. et al. [4]). We then plot log[E(AX~(t)q)] against log(r)  for various values 

o fq  and various values of r. Linearity of  these plots for given values o fq  indicates self- 
similarity. Linearity could be checked by visual inspection or by some more sophisticated 
techniques (e.g., significance test t'or higher-order regression terms). The slope of the 
line, estimated by least squares regression, gives an estimate of the scaling function ( (q )  
for that particular q. 

The structure function, mapping q to its slope, is depicted in Figure 4. Here, we also draw 
an envelope of  two straight lines corresponding to Brownian motion (slope 0.5) and 
fractional Brownian motion (slope 0.6), respectively. The non-linear shape of  the 
empirical curve is the signature of multifractality. 

Having established the existence of multifractality in the data, we can move to the next 
step - fitting parameters. In the case of  one dimensional (time series) field, we use 
equation (9) to find universal parameters. For FX data, the universal parameters are: H = 
0.532, ct = 1.985, CI = 0.035. 

Case Study: Interest Rates 

In this section, we present an original analysis of US interest rates. We use weekly 
observations of 3-month Treasury Bill Yield Rates (1/5/1962 - 3/31/1995). Figure 5 
represents the interest rate time series and Figure 6 the corresponding logarithmic 
changes in interest rate from one period to the next. 

We start with the power spectrum in Figure 7. Visual inspection and regression confirm ~ 
the hypothesis of scaling behavior with corresponding 1~eir = 1.893. The value of  ,Beir 
indicates that this interest rate series might be modeled by a non-stationary process with 
stationary increments. 

Figure 8 represents the ( ( q )  curve for interest rates with the same Brownian motion and 
fractional Brownian motion lines that we used for the FX analysis overlaid on the graph 
for reference. Again, the signature of multifractality is clearly present in the data. We 
obtain the following universal values: H = 0.612, a = 1.492, C1 = 0.095. These values 
could be used to simulate interest rates by applying a multiplicative cascade technique. 
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Andersen-Lund is Not Multifractal  

We present an original analysis of  the three-factor Anderson-Lund model of interest rates 
and show that even this model, with its highly complex structural equations and difficult 
fitting techniques, cannot replicate key features of empirical interest rate data. 

The general form of the diffusion model Vetzal, K. [5] is 

d X  = l ~ ( X , t ) - d t  + c r ( X , t ) ,  d W  (13) 

where X is the (possibly vector) random variable evolving over time, p. is a (possibly 
vector) function describing the instantaneous rate of  change of X at a point in time, and ~r 
is a (possibly matrix) function describing the instantaneous impact of changes in the 
(possibly vector) Gaussian random walk W, i.e. dW is a (are independent) Gaussian 
random variable(s). In the multidimensional case, the dimension of X does not 
necessarily equal the dimension of W. For interest rate models, one of the elements of X 
will represent the short rate of interest. 

The primary purpose of  these models has been to develop arbitrage-free prices of illiquid 
bonds, interest rate derivatives, etc., so the primary consideration has been fidelity in 
reproducing available market data, in particular, yield curves. However, obtaining 
realistic depictions of the objective behavior of the short rate (the historical evolution of 
the short rate over time) has been an important secondary consideration. It is this tension 
between the desire for analytical tractability on the one hand and realism on the other that 
has driven the development of ever more sophisticated models. 

The simplest such model is Merton [6]: 

dr, = tg .d t  + c r . d W  (14) 

where rt is the interest rate at time t, 8 is the average growth rate of the process, and cr is 
a volatility scale parameter. 

Perhaps the most sophisticated of the analytically tractable models is the Cox-Ingersoll- 
Ross (CIR) model [7]: 

dr, = ~ ¢ . ( 8 - r , ) d t  +o- .r ,  ~ z . d W  (15) 

where t¢ is the mean reversion constant and 8 is the global mean of the process. CIR adds 
realism to the Merton model by introducing mean reversion and volatility that is 
functionally dependent on the level of the rate. 

Visual analysis of the interest rate time series graphs (as well as statistical diagnostics) 
reveals several distinctive features to US interest rates that cannot be accommodated by 
the CIR model. 

1. Local trends in interest rate movements, indicating a changing mean to which the 
process reverts. 

2. Heteroscedasticity that is not simply a function of the level of the rates. 

3. Volatility clustering. 
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To address these limitations of CIR and previous models, Andersen and Lund [8] intro- 
duced the following (analytically intractable) three-factor model: 

dr, = lq . (It, - r, )d t  + or,. r, r . d W ~  (16) 

d Ioga~ = t¢ 2 . ( a  - logo',2)dt + ~ .dW2. , (17) 

d/z, =pc 3 . ( O -  / z , )d t  + ~2 . ,u~  .dW3, , (18) 

where rt is the interest rate at time t, ~ is the (unobserved) volatility, ~ is the 
(unobserved) local mean of  the process, kl, k~, k3 are mean reversion constants, 0 is the 
global mean of the process, a is the global mean of the log-volatility process, y, ~l, ~2 are 
parameters, and Wi.t ,  W2,t, W3.t are independent Gaussian random variables. Equation 
(16) can be seen as a generalization of the CIR model with unknown parameter y instead 
of ½, and the fixed mean and volatility terms being replaced by endogenous variables 
evolving through their own diffusions (Equations 17 and 18). 

The Andersen-Lund model represents the most realistic diffusion model we are currently 
aware of. The price of  its realism is the need for substantial computing power. To fit the 
parameters, Andersen and Lund use the so-called Efficient Method of Moments 
procedure Gallant and Tauchen [9], which is an iterative method involving many simu- 
lations of the diffusion process. Calculation of yield curves similarly requires many 
simulation cycles, as there is no (known) closed-form solution. 

Just how realistic is it? Figure 9 shows a 5,000-quarter simulation of interest rates using 
the A-L model with their recommended parameters. Figure 10 is the corresponding 
logarithmic changes in interest rate. A visual comparison of these graphs with the 
corresponding empirical interest rate graphs, and  a cursory statistical examination of 
same, seems to validate the A-L approach to modeling interest rate time series. We will 
demonstrate that a deeper analysis of the scaling properties of all moments (not just the 
first and second) reveals fundamental differences between the A-L simulation and the 
empirical data. The simulated A-L data does not exhibit the multifractality that real 
interest rates possess. 

Figure 11 shows the power spectrum function of the simulated time series out of the A-L 

model. Here, the parameter fl~ir = 1.772, which is fairly close to the value obtained for the 
empirical data. The power spectrum, however, represents second moment statistics only. 
Its slope is not sufficient to validate a particular scaling model: it gives only partial 
information about the statistics of the process. One would need full knowledge of  the 
probability distribution of the process or, equivalently, all of its statistical moments (not 
just second order) for a full validation. 

Figure 12 represents the ~'(q) curve for the A-L simulated interest rate series, with the 
usual Brownian motion and fractional Brownian motion lines drawn for reference. 
Visual inspection and statistical testing indicate that the structure function of  the data 
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simulated by the A-L model and that of Brownian motion are nearly identical; the 
stochastic process underlying the A-L model appears to be monofractal .  2 

The fundamental difference in scaling behavior revealed by the structure function 
comparison could lead to qualitatively different time series behavior. The universal 
parameters fit to the empirical process in the previous section indicate that the underlying 
mechanism should have a multiplicative cascade structure with (approximate) Lrvy 
generator, rather than an additive process of information accumulation (Brownian motion 
type). Paraphrasing Mtiller et al. [10], the large scale volatility predicts small scale 
volatility much better than the other way around. This behavior can be compared to the 
energy flux in hydrodynamic turbulence, which cascades from large scales to smaller 
ones, not vice-versa. 

Conclusions 

In the companion part 1 paper, we introduced the ideas of fractal point sets and 
multifractal fields. We showed that while those mathematical constructs are rather 
bizarre from a traditional point of view (e.g., theory of smooth, differentiable functions), 
they nonetheless have applicability to a wide range of natural phenomena, many of which 
are of considerable interest to the casualty actuary. We showed how to analyze sample 
data from multidimensional random fields, detect scaling through the use of the power 
spectrum, detect and measure multifractal behavior by the trace moments and double 
trace moments techniques, fit a "universal" model to the trace moments function K(q), 
and use that model to simulate independent realizations from the underlying process by a 
multiplicative cascade. In particular, we discussed synthetic geocoding and the 
simulation of  hail and tornadoes. 

In this part II paper, we showed how to analyze time series through the structure function, 
and showed particular examples of foreign exchange and interest rate time series. We 
discussed the variety of time series models in use by practitioners and theoreticians and 
showed how even state-of-the-art diffusion models are not able to adequately reflect the 
multifractal behavior of  real financial time series. 

The field of stochastic modeling is constantly growing and evolving, so the term 
"Copernican revolution" might be too strong to describe the advent of multiplicative 
cascade modeling. Nonetheless, multifractals have clearly taken hold in the realm of 
geophysical and meteorological modeling, and it seems clear that they will eventually 
find ~heir place in the world of financial models, as well. However, there are still 
numerous open questions, such as how to implement arbitrage-free pricing, that need to 
be answered before multifractal models can replace diffusion models as explanations of 
market pricing mechanisms. 

2 Theoretical arguments suggest monofractality for any additive models, Schraidt [3]. 
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Figure 1: US$/GDM Exchange rate time series 
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Figure 3" Power spectrum of FX data (log-log) 
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Figure 4: Structure Function Curve for FX 
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Figure 7: Power spectrum of interest rate 
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"Human inside" 

From the poten~al ad campaign 

D o s s i e r  

Aleksey Popelyukhin is a Senior Vice-president of  Technology with the Sam Sebe LLC and a 
Vice-President of  Information Systems with the Commercial Risk Re in Stamford, Connecticut. 
He holds a Ph.D. in Mathematics and Mathematical Physics from Moscow University (1988). 

His actuarially related achievements include: 

• Prize for the best 1997 article m the "'Data Management discussion paper"program entitled 
"The Big Picture: Actuarial Process from the Data Management point of view'" (1996) 

Creation and distribution of the popular actuarial utilities like Triangle Maker TM (1994) and 
Triangle Maker T M  Pro (1997), Actuarial Toolchest T M  (1998) and Enabler T M  (l 999) 

• Design, development and coding of  the 2nd and 3rd (current) generation of the very powerful 
and flexible actuarial software package called Affinity (1996) 

• Promotion (through his papers andpresentations) of  his notions like Ideal Actuarial ~ystem 
and Data Quality Shield, and paradigms like object-oriented actuarial software and data- 
driven visualization. 

Aleksey is presently developing an integrated pricing/reserving/DFA computer system for 
reinsurance and also an action/adventure computer game tentatively called "Actuarial 
Judgement". Dr. Popelyukhin is an active member of  several scientific societies and an author of  
almost 20 scientific publications. 
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Let Me See: 

Visualizing Actuarial Information 

Aleksey S. Popelyukhin, Ph.D. 

Abstract 

No one would argue that there are limits on how much information a human being can perceive, 
process and comprehend. Even as advances in computer technology throw more and more data at 
actuaries, these limits stay the same. It is time to delegate to computers the very important task of 
presentation of information. 

The article will try to demonstrate how existing data-driven technologies can help to evolve an 
Ideal Actuarial System from an actuarial tool into a company's Alarm System. Utilizing tools 
readily available to everyone who owns a contemporary Office Suite package, actuaries can 
present information in such a way that the effectiveness of Corporate Decision Making, Data 
Error Detection and suitability of Actuarial Algorithms will increa~ dramatically. 

Actuarial results, properly combined, summarized and filtered by importance, may be arranged 
into a so-called Digital Dashboard that serves as aportal into the wealth of detailed actuarial 
information and the calculations behind it. This article itself can be considered as a portal that 
refers actuaries to the wealth of information on visualization techniques and dam-driven 
technologies. 

401 



Let Me  See: 

Visualizing Actuarial Information 

Aleksey S. Popelyukhin, Ph.D. 

Inbx)duction 

"Let's see..." 

to Potyphemu, 

The Actuarial Process, like every analytical process, consists of  three major stages: 

• Data Collection, Cleanup and Transformation 

• Application o f  Algorithms and Methods 

• Representation o f  Results 

All these stages require human interaction: 

7 

t~ers  

Figure I 

The amount of  intbrmation to be processed is io vast, though, that there is no way to do it without 
computers. 
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But, computers are used strikingly differently throughout the process: in the first two stasea we 
serve computers (feeding them with data and supplying them with actuarial parameters selection), 
and only in the last stage computers serve us (providing us with answers for making decisions). 
The irony here is that first two stages (data transformation and application of algorithms) have 
been automated to a fair degree, while presentation of results stage still remains the least 
computerized of all, and tools available for reporting and visualization are severely underused by 
actuaries. 

This article is the first attempt to correct this situation. 

At~ortuletms 

The amount of  numeric information at all stages of  the Actuarial Process is either exceedingly 
massive (raw data), overwhelming the recipient, or too small (summary) to adequately represent 
all the nuances and data patterns. 

Human perception relies heavily on Short-Term Memory (STM) - a small "buffer" where 
external information is recognized and perceived (see [1]). Unfortunately, STM is limited in 
capacity - it can hold only 5-7 similar items at once. Another problem with STM is that new 
information replaces old (it's just a "buffer"), and new information is coming in continuously. 
Every change (in color, size or position) attracts a person's attention and changes the focus of  his 
perception. Even in the best-case scenario, without any distractions, STM can hold information 
only 30 seconds or so*. 

A few approaches seem to alleviate these limitations of human perception (and even exploit its 
weaknesses to attract a person's attention toward the important information): visualization, 
adaptive reporting and alarm systems. Indeed, "traditional" ways of displaying just myriad 
"boring" numbers in a spreadsheet are not adequate anymore. Without proper assistance, it is 
practically impossible to notice imperfections in the data; the inapplicability of  a particular 
actuarial technique; or to pinpoint a claim, line or location that demonstrate unusual development. 

The solution lies in augmenting standard report techniques with the informationfl/tered by 
importance. It means that only a few outstanding items with a/arm/rig behavior show up (or 
somehow get highlighted) in the report. The task of  defining alarms and assigning levels o f  
importance to actuarial results lies squarely on actuarial shoulders. 

It is important to realize that nowadays, with the proliferation of  Office Suites software, a wide 
variety of  visualization tools is within the reach of  every actuary. Almost every chapter o f  this 
article is illustrated by an example from an Office progra m . Equally important, one can safely 
assume that everybody understands the text of  the BASIC' program. Coding in VBA has become 
a skill nearly as essential and vital as reading and writing. 

* Conduct the following experiment: read a new telephone number digit-by-digit and then, (without 
attempting to repeat it, combine digits into groups or make associations and other mnemonic rules) after 30 
seconds pass, try to dial it. Even withottt distraction it is practically impossible - that is probably why 4 ! l- 
type ~ repeat telephone numbers st least two times. 

403 



Adaptive Reporting 
"Data is not necessarily Information." 

Report De~gmw's Commandment 

Every company almost certainly has established a fixed way of  presenting the results of  actuarial 
analysis. The overwhelming majority of  these presentations are static reports with predetrmed 
content and layout: think of it as a list of  reserves for 100 lines ofbuainess or a list of  net present 
value of  premium for 1000 treaties. There is nothing wrong with that way of  presenting 
information, except that human perception cannot effectively span beyond 5-7 similar items. 
Nobody can guarantee that equal attention will be paid to every item m the long, monotonous 
report. To alleviate this problem, sometimes information is presented in a summarized form 
without important details. Either way, important information about the 68 ~ LOB or the 729 ~ 
treaty may escape the reader's attention. 

The solution lies in the use of data-driven technologies to create dynamic or adaptive reports. 
Reports whose size, shape and format adapts to the data. Placing these reports in an interactive 
environment such as a spreadsheet allows the user to interact dynamically with the report 
(effectively creating a whole family of reports rather than a single one), shaping it to the level of  
detail that suits the user. 

A partial list of  data-driven implementations found in spreadsheets includes: 

• Filtering, 

• Outlining, 

• Sorting, 

• Conditional Formatting and 

• OLdP-enabled tools. 

R/t~qr~ 

'The simplest and most straightforward way to reduce the amount of  informauon displayed in the 
report is Filtering. If information is organized as a list or a table in a spreadsheet and there is an 
easy way to define relevant subset, then Filtering fits the bill. 

The AutoFilter feature of  Microsoft Excel is a powerful and elegant implementation of  Filtering. 
Acc~sible and customizable through either an interface or the VBA "macro" language, 
AutoFilter serves as an ideal Filtering tool*. 

* Reporting and Visualization tools, including Filtering, are available in many products, not only 
in Excel. In fact, database products with built-in SQL language provide much more powerful and 
robust Filtering tool. However, these products may be outside the reach of many actuaries. 
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One can use this tool, for example, to limit the visible data table to a particular LOB ~, location 
and Open/Closed status. Another interesting use of Filtering tools, and Exeel's AutoFilter in 
particular, is checking for all distinct values in a list: AutoFilter's drop-down boxes display a 
sorted list of all distinct values present in a column. The fastest way to check ifa huge 
spreadsheet populated with the data contains all requested LOB's, States or Policy Numbers is to 
initiate AutoFilter and click on the down-arrow in the corresponding column. 

I t , ] ' F 1 , O.'.:i{ : 

ABC CT (AI0 Prod 1986 1988 666,434 
CT (Top 10.,.) ~ 1 ~  lg69 1,143.g33 

ABC CT (Custom...) Paid 1~8 1990 1.342,429 
ABC CT n ~" Paid lg~t  1991 1.432,131 

CT ~ Paid 1968 1 ~  1 ,~ ,594  
ABC CT (Blare) Peld 1988 1 ~ 3  1,625,430 

CT . ~ )  Paid t 988 lgG¢ 1,682,296 
ABC CT OL Paid 1988 1 ~ 5  1,702,690 

CT OL Paid 1 ~  1 ~  1,766,21s 
~ c  CT OL P~O ~ ~ ~ SSr 1 ,r3o,gr2 
~oc CT OL Paid 190S 1909 7o4,1~ 
ABC CT 04. Paid lgsg 1990 1,272.152 

CT G(. Paid 1909 1991 1,464.204 

Figure 2 

Example 1. For an illustration of using AutoFilter for something less straightforward than 
plain-vanilla filtering (i.e., by LOB or Location), observe how to use it to filter losses in 
the 90 tb percentile of their Incurred Value: 

Const colLOSS As Integer = 6 'Loss value is located in the column number colLOSS 
Sub CreativeUseOfAutoFilterO 

Dim rRange As Range,nRows As Long 
ActiveSheet.Celis( 1, l).S¢lect 
With Selection 

nRows = .CurrentRegion.Rows.Count 
Set rRange = .Offset(I, colLOSS- l).Resiz~nRows- 1, I) 
.AutoFilte¢ 
.AutoFilter Field:=colLOSS, Criterial :=">" & ApplicatimxPereendle(rRang¢, 0. 9) 

End With 
End Sub 

Filtering is a fast and effective way to cut down the amount of data displayed. However, ifa 
filtered subset is still too large, or there is a need to see different levels of detail for different 
groups of data, or the user has to see different aggregate values (subtotals, averages), then 
Outlining or Pivot Tables would be a better choice of tools. 

Outlining 

Outlining is a hierarchical representation of data organized into a list or table, with the ability to 
hide or display details of all or selected groups on any level of the hierarchy. Every user of 
Windows Explorer or any other File Directory tool is familiar with the notion of Outlining. 
Excel's implementation of Outline allows both horizontal (mwsdrecords) and vertical 
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(column.~fields) outlining. Along with the ability to display detailed records, Excel's Outline 
supports aggregate functions such as sum, count, average, standard deviation, etc. This capability 
may become handy in situations when different members of  a hierarchy are treated at different 
levels of  detail. 

Example 2. A screenshot below illustrates Outline's advantages over AutoFilter: it allows 
the display of different levels of  detail for different LOB's on the same screen. While WC 
information is shown up to the State and Accident Year levels, GL and AL are shown 
only as aggregates without unnecessary details. 

[..i ~ ~ ~ c  ~ ~ , ~  , , 712~  
wc Nv l ~ r  1 .r30~ e 

~ JM~WC NY Total 3,443,119 

wc  c r  lgsr l ~ r s , ~  
A, B C ~  CT Told 3,919,99"1 

~ w c  ~ 1 ~  2,172,o41 
~ c  ~ 1met 

~ W C  T o l d  11,762 ,e60 

~mc ~ .  TolJ L4 ~Ss,~r0 
ABC AL Tolel 7,249,632 

TOl~ _33.,_2'57,762 
~,e09,931 
la,qllr,ll~ t 41Q [~Nrand Told 

Figure 3 

Example 3. Microsoft Access 2000's tables with properly defined "master-detail" 
relationships can display records in an Outline fashion too, making table navigation as 
simple and intuitive as browsing a directory tree in Windows Explorer. 

l 

I 

. 

Im 

Figure 4 
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Sort/nO 

Sorting is a powerful technique that brings the most important records to the top o f  the display or, 
in the case of printed report, to the first page. Sorting does not reduce the amount of  data 
displayed, but it assures that the first several records get more attention before the report reader 
gets tired. Consequently, the main skill of  using Sorting is in defining what constitutes 
importance. An ability to rank information in accordance to its significance, and to identify 
which actuarial measurements affect decision-making the most is a yardstick that separates great 
report designers from mere mortals. 

"Combined Loss Ratios," "Net Profitability" and "Reserve Adequacy" - all these measurements 
may serve as actuarial significance indicators. Both more sophisticated ones like "percent Change 
of  the Current Estimate of  the Net Ultimate Loss Hindsight Estimated" or simpler ones like 
"Time since the Latest Loss Run" help to sort data and generate useful actuarial information. 

W r q , a ~ l ~  II~mlam l ~ t a m  lemmom l ~ x m l p m m  Imns'sort'~tton~ 
~ ~NA-~m~9 S 2~4j~n s s.roo,~ It ¢ t a 2 / n n a ,  t 

~ S 9'13,50~ It 2,.~00.000 It 
~ $ 6.7~.411 $ 0 . 1 ~  $ 

t ~  ~ A ~ I  $ 4 ~ . 7 1 9  $ 9 . ~  $ 

2000 NV',C.k-OOOOS S 7.gg¢.304 S 24.600,01~ $ I1.tl 
1 ~  NVqA4XX)12 S 1,594,191 $ s.500,000 S 2,~0.1~0 8.t8 
lgg8 NWA-O(XX32 It S~18,746 $ 2¢J,100.(XX) $ 9,700,0(XI 11.17 
2000 ~ S  $ g,t35.813 $ 31,8111),000 It I1.tl 
199e NWA.O00t0 It 4,S37,832 It 5.200.000 It 1.11 
2000 ~ , t . . I x ~ 7  s S.4.~,OOdl S 4S,~00.000 $1S,I]O0,~O S.lS 

1998 NVVA-G3023 S 8,313,738 S 13,800,000 $ IklS 
l g ~  Nt~'A-00032 $ 254.B~ $ 900,000 $ &lS 
1S88 NWA-00024 It 2,723,108 $ 10.500,000 $ 8.14 
1999 Nt~'A-OOO28 It 6.413,104 $ 23,t00,000 S 8.13 

Figure 5 

Examvle 4. In a situation where a new significance indicator has to be added or modified, 
there is the need to copy an analytical expression into all the cells adjacent to the existing 
data table. The code below helps in these situations: 

Sub FillAdjacentColunm0 
With ActiveCell 

.Resize(.CurrentR©gion.Rows.Cotmt + .CurrentRegien.Row - .Row, l).Formula_ 
= .Formula 

End With 
End Sub 

Conditional Formatting 

Conditional Formatting is a feature of  Microsoft Excel that allows users to define the font, color, 
border and background pattern of a cell as a function o f ~ e  values m other cells. When values 
the referenced cells change so does the conditional format. Despite some limitations (currently, 
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Excel currently supports up to 3 variable formats per cell), this feature opens unprecedented 
creative possibilities for report designers. Combined with other reporting techniques like 
Filtering, Sorting and Pivot Tables, Conditional Formatting is indispensable for attracting the 
report reader's attention to the most crucial information. Due to its dynamic nature, Conditional 
Formatting can serve as a building block for an actuarial Alarm System (a cell automatically 
becomes red when an actnarially significant value becomes too high or too low). 

Given that the format condition's formula can be any expression that uses user-defined functions 
along with built-in ones, the use of Conditional Formatting is limited only by one's imagination: 
it 's use can range from data-error detection to Thomas Mack-like assumption testing to statistical 
outlier warnings (see [2]). 

Example 5. A powerful yet simple application of Conditional Formatting would be 
highlighting statistical outlicrs. For example, it would be convenient to see values in a 
triangle of  age-to-age factors that are too far (more than 2 or 3 standard deviations) from 
the column's average. Outliers like these frequently trigger an additional investigation of 
data that usually produces interesting results: 

A I ~P I . e  I O I , !  [ F ' t  O I N 1 ~ I J I W I b I m 

- -  2441 1.423 1 . 1 .  1230 1.101 1,087 l~ag 1 .  

2,387[ LaBf[  1,143" 1,133 I ~  1,074 
2.420 1.3158 1,138 1.112 1~67 
2~2 1~374 1182 1188 

2 ~  1310 1.1 m 

, , , ,  I ~  1 ~  • ....... II TO'- 
2,.321 

¢..~dm,,L- 

~ ' 
I,,.A~,~CE(e~ :m)-ee >z'.~'~e,~ ,m) "k,I 

d~matwJImbtmm A4Blt~YyZz ,,,I,EmL,, 

[ ]  I 

Example 6. As an example of the user-defined fommt condition formula, one can use an 
algorithm that assigns different types to the treaties based on the relationships among 
parameters like Premium, Ultimate Loss, Aggregate Limit and others. Every treaty's 
record in this kind of report can be formatted in accordance with assigned type. And as 
the estimate of  the ultimate net loss changes, the type of the treaty (potentially) changes, 
and so does the formatting. 
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Conditional Formatting used in combination with other reporting techniques is especially 
powerful. Sorting a list of  records by one criterion (e.g., Net Profitability) and Conditionally 
Formatting them according to another criterion (e.g., treaties with a particular insurance company 
can create quite an impressive display and produce an easy-to-comprehend overall picture. 

OI.AP 

OLAP stands for Online Analytical Processing and there are many tools from numerous vendors 
that provide OLAP functionality. However, in order to demonstrate the accessibility of  these 
tools, only one particular implementation of OLAP will be considered - Microsoft Excel's Pivot 
Tables. 

A Pivot Table is essentially a mechanism for displaying multidimensional information in 2-D. 
Before data can be used in a Pivot Table, it is converted into multi-D array called an OLAP cube, 
where the table's fields become dimensions. That is, a $1,000,000 i 999 WC California paid loss 
as of  6/30/2000, becomes an element (value, measure) of  the OLAP cube with dimensions such 
as State, LOB, Accident Year, Evaluation Date stored at the intersection of  the "CA," "WC," 
"1999," and "6/30/2000" members of  these respective dimensions). There are only two 
meaningful ways to display multi-D info in 2-D: cross-section and projection with aggregation - 
and both ways are implemented in Excel's Pivot Tables. When used to display a cross-section of  
the data, a Pivot Table serves as a Filtering tool; when used to display aggregations (subtotals, 
averages, etc.), Pivot Table serves as an Outline*. Pivot Tables also support Sorting and, to some 
degree, Conditional Formatting. So, in effect, this tool incorporates all the adaptive reporting 
techniques described above, and as such it should serve as a preferred choice for any report 
designer. In addition to that, Pivot Tables are capable of  using external data sources and, 
consequently, are subject to fewer limitations than Excel's Sort, Filter and Outline. 

* Bear in mind, that for true Outllnin~ it is necessary to support hierarchies. Starting with Excel 2000, 
Pivot Tables' dimensions do support hierarchies. See [3] for examples of actuarial hierarchies. 
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The total flexibility of Pivot Tables may cause some problems for actuaries. 

First, it is unclear which dimensions to choose for display and which ones for aggregation (or 
errata-section) to get actuarially meaningful results. Also, actuaries should define additional 
(calculated) fields with some kind of "actuarial significance" indicator, which can be later used in 
Sorting, Filtering or Conditional Formatting. 

Second, unlike other professions where cresting a Pivot Table is a destination - a final act of the 
amdytical process - actuaries frequently use aggregated data as a starting point of their analysis 
(see [4]). If created properly, a Pivot Table can serve as a convenient storage for actuarial 
triangles with selective drill-down capabilities. One can create an OLAP Cube hierarehy in such a 
way that any suspicious element of the triangle can be drilled-down for details up to individual 
Claims and even individual payments Iced: 
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Figure 6 

The problem is that with an unpredictable shape/size of  the Pivot Table it is hard to incorporate 
its content into subsequent calculations. One workaround is to use the GETPIVOTDATA 
spreadsheet function, while another is to use the Pivot Tables' Calculated Fields - an ability to 
add fields/dimensions to the Pivot Table that are calculated on the fly. 

Example 7. Sometimes, a Calculated Field is the only mechanism to add new dimensions 
correctly. As an example, consider the Loss Ratio field. A Loss Ratio like any ratio is a 
nonlinear operation and, consequently cannot be summarized properly: a sum of ratios/s 
practically never" a ratio of  the sums. That is where Excel's Pivot Tables make a clear 
distinction between input fields (for subtotals, the sums o f  ratios are calculated) and 
Calculated Fields (for subtotals, the ratios o f  sums are calculated). 

Unless the ratios have the Smile ~ o l u t c  values and different signs. 
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Example 8. Once a (calculated on the fly) Loss Ratio field is added to the Pivot Table, 
one can use it for Sorting and Filtering. A screenshot below illustrates 3 important 
features of  Pivot Tables simultaneously. First, by the simple dragging of  the field label, 
one can rearrange the Pivot Table from a "Policies by Underwriting Years" to an 
"Underwriting Years by Policies" view. Second, one can Son a field by the results of  on- 
the-fly calculations: in our case we sorted Policies by Loss Ratios in descending order. 
And, third, one can Filter by the results of  on-the-fly calculations; in our case we chose to 
display just the 5 worst policies per underwriting year based on the Loss Ratio indicator. 
Note that we could choose any indicator (like Net Profitability or Discounted Loss Ratio) 
that is available in the Pivot Table as an input field or a dynamically calculated field. As 
one can see, the impressive reporting tools are all there; the quest is on for actuarial 
indicators. 
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Visualization 

Seeing is believing 

Popular belief 

Visualization (see [5]) is the process of  exploring, transforming and viewing data as images to 
gain understanding and insight into the data. Studies in human perception, computer graphics, 
imaging, numerical analysis, statistical methods and data analysis have helped to bring 
visualization to the forefront. Images have unparalleled power to convey information and ideas. 
Informally, visualization is the transformation of  data or information into pictures.., it engages 
the primary human sensory apparatus, vision, as well as the processing power of  the human mind. 
The result is an effective medium for communicating complex and/or voluminous information. 

As the amount of  data overwhelms the ability of  the human to assimilate and understand it, there 
is no escape from visualization. So actuaries have to develop conventions for representation of 
their data and results. 

There exist a multitude of  visualization approaches: mapping scalars to colors, contouring 
(isosurfaces), glyphs (arrows of  different color, length, direction), warping (display o f  different 
stages in the motion), displacement plots, time animations, streamlines (particle traces) and tensor 
algorithms. 
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There are unavoidable problems with multidimensional visualization: projection (only two or 
three dimensions are available) and understanding (we as humans do not easily comprehend more 
than three dimensions or three dimensions plus time animation). Projections can be implemented 
if the three most important dimensions are identified in such a way that the remaining dimensions 
can be ignored. Once again, it is an actuarial task to choose these dimensions. 

Charts 

This paper is too short to discuss all the possible uses of  charts and diagrams in the actuarial 
process. A great number of wonderful books (see [6]-[8]) explain which type of chart to use in 
which situation: a line chart for displaying increases, bar for shares, pedestal for ranks, Gantt for 
schedules, etc... However, it is up to actuaries to decide how to display triangular data. 

Exan~le 9.By examining the 3-D chart representing logarithms of age-to-age factors, one 
can formulate a hypothesis about changes in calendar year trends (arguably not 
immediately evident from looking at the raw data): the last 4 years have different trend 
than the rest of the triangle. Rotating the graph for the look from another angle allows 
one to confirm or discard that hypothesis. The final check comes from the algorithm 
described, for example, in [9]. 
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Figure 8 

For almost 86 years since 1914, CAS members have not yet agreed on the standard graphical 
representation of a triangle (one of the most basic actuarial notions). The author firmly believes 
that properly displayed triangles may reveal some important Uends that are not evident in 
numerical representations. 
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Not only does visualization inspire useful hypotheses for actuarial analysis: sometimes it's the 
only way to deal with the data*. Developments in new areas of actuarial science present new 
challenges in demonstrating findings. DFA ~ that deals with many less traditional notions, such as 
scenarios and strategies, is a good example of such a challenge. 

Example lO. The majority of actuarial information contains a location code associated 
with the values. Legislation requirements, types of coverage, rates, exposures and loss 
performance differ from region to region. Geo-coding swLPdy emerges as one of the 
hottest actuarial applications. Yet it is hard to imagine how one can notice trends and 
dependencies of geographically related data without visualization. Microsoft MapPoint - 
ideologically, an integral part of Microsoft Office - provides the means for precisely that 
type of visualization. For example, a map of WC Ultimate development factors by State 
based on NCCI data (see [ I0]) is presented below. 

o ...... i[ 
° II ' 
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Figure 9 

Animation 

Ifa picture is worth a thousand words, then an animation is worth a thousand pictures. 

Animation is the best way to exploit an aspect of the human psyche called "selective attention" - 
people readily react (by shifting the focus of their attention) to any movement, including change 
in color, size or position. Animation is suitable for visualization of the range of uncertainty and/or 
development - two of the most important actuarial phenomena. While not a standard feature of a 
plain-vanilla spreadsheet, animation is nevertheless quite within reach of every Microsoft Excel 
u s e r .  

• So-called "quarterly" triangles, sometimes studied by actuaries, can easily reach size of 60x60 or more, 
which makes them impractical for examining by traditional means (in a spreadsheet), yet visualization 
techniques would shine in this circumstance. 
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Exanml¢ 11. Below is the code for conceptual animation: 

Sub A n i m a t i o n l n E x c e l 0  

Dim i ~  Loeg 
Call SetupAnimatien 'see Appen~ 2 
Application.lteradea = True 
Applicatien.Maxlteratiens = 1000 
Applicatio~MaxClmagc = O. ! 
F o r i =  I To 1000 

Calculate 
Next  i 

End Sub  'do no t  fgwget  to res tore  original Calcula t ion  Mode/// 

Taking a tip from the computer games industry, animation can be effectively used for 
visualization of the simulation process (see [11]). Indeed, with the growing importance of  DFA 
and other non-analytical modeling techniques, simulations are steadily becoming a technique o f  
choice for the majority of  actuaries. Currently, however, all intermediate steps used in simulation 
arc hidden from the user - such a wealth of  information is, essentially, discarded. Use of  
animation may prevent this "waste" of  intermediate calculations. Animated display of 
simulation's steps may help the user to visualize the dynamics of  the simulated process or 
appreciate the range of  uncertainty in simulated scenarios. 

Interactive selecUon 

Another application of visual technologies is the interactive selection of  actuarial parameters. For 
example, selecting parameters by moving points directly on the graph of  a development pattern 
appears to be much more intuitive and convenient than typing numbers into spreadsheet cells. 
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This fimctionality - a two-way link between the graphical display of  numbers and their values in 
a spreadsheet - is not yet as user-friendly as other Office tools. But given that this feature is 
available in numerous other applications, it is only a matter o f  time until Visual Editing becomes 
an equal member of  the Office tools roster and actuaries are able to incorporate interactive 
graphical manipulation of  numbers into their spreadsheets. 

Example 12. Even though "Visual Chart Editing" is not a standard Office feature, with 
some amount of  VBA programming, it is possible to establish a two-way link between 
numbers and shapes in Excel (below is the code behind the buttons from Figure 10): 

Sub VisualizationFromShapeToSprendsheet0 
Dim cell AS Range, node As SlmpcNode, n AS Integer 
Set cell = AetiveCell 
ActiveSheet.Range("Coordinates").CurrentRegion.Cleat 
ActiveSheet.Shapes("InteractiveSelect").Select 
n = 0  
For Each node In ActiveShect.Shapes("interactiveSeleet").Nndes 

i1--11+1 
ActiveSheet.Range("Coordinates").Cells(n, 1 ) = node.Points( I, 1 ) 
ActiveSheet.Rangc("Coordinates').Cells(n, 2) = (210 - lode.Points(l, 2)) / 200 

Next node 
cell.Select 

End Sub 

Sub VisualizationFromSpfeadsheetToShape0 
Dim c As Range, cell As Range 
Set cell = ActiveCell 
On Error Resume Next 
ActiveSheet.Shapes("IntemcfiveSelect').Delete 
With ActiveShect.Shapes.BuildFreeform(msoEdifingAuto, 0, 0) 

Fo¢ Each c In ActiveSheet.Range("Coordinates").Ctm~tRegion.Resize(, 1) 
.AddNodes msoSegmentLine, rmoEditingAuto, c.Value, 210 - 200 * c.Cells(I, 2).Value 

Next c 

.ConvenToShape.Select 
End With 
Selection.Name = "lnteractiveselect" 
ActiveSheet. Shapes("Interactiveselect').Nodes.Delete I 
Selection.Placement = xlFreeFloating 
cell.Select 

End Sub 
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Alarm Systems 

It's the eleventh hou r -  do you know where your reserves ere? 

Actuarial proverb 

o a m  Oual~/ 

Companies that build data warehouses and clean up their data soon realize that the majority of  
their data comes from external sources (TeA's  iv, industry bodies, self-insureds), which are neither 
clean nor in a single format. It is time to combine efforts and make sure that every source can 
supply high quality data in a timely manner. 

There are some recommendat!ous on data.quality procedures by IDMA v (see [12], [13]) and data 
elements' definitions by ISO ~ and NCCf  '~ (see [ 10], [ ! 4]), but they are not part of  everyday life 
in every data collection entity. In fact, a study of  more than 40 TPA's  (see [15]) showed that 
practically every one of  them has failed even the most primitive data quality checks. 

Example 13. An Alarm System that is worth its while should trigger some action when a 
problem is found. Painting some cells in a spreadsheet is a good example of  such an 
action, but automatically sending an e-mail with the description of  the problem would be 
much more effective. The code below continues Example 5: first, it checks a triangle of  
age-to-age factors for outliers and then it sends an e-mail to the System Administrator 
with the addresses of  all problematic cells: 

Sub AlarmEvent0 
Dim c As Range, sAlarm As SUing 
Dim otlApp As Outlook.Applic~ion, eMaii As Object 
For Each c In Range("Tri").SpecialCelIs(xlCeUTypeSameFormatCondldons) 

c.select 
Range("Temp').Formula = c.FormatConditiens( I ),Formula I 
If  Not Applicafion.lsError(Renge("Temp").Value) Then 

If Range("Temp").Value Then 
sAlarm = sAlarm & "Problem at :" & c.Address & Chr(13) 

End If 
End If 

Next c 

I f  stdarm & "" <2, "" Then "if there is any problem 
Set otlApp = New Outlook.Applkadon 'launch Outlook 
Set eMail = otlApp.Createltem(olMaiUtem) 'and create e-Mail m~sage  
With eMail 

.To = "samsebe@consultant.corn" 

.Subject = "ALARM from" & ActiveWorkbook.Name & "!" & ActiveShee1.Name 

.Body = sAlarm 

.Send 'send e-Mail 
End With 
Set eMail = Nothing 
otlApp.Quit 
Set otlApp = Nothing 

EadIf  
End Sub 
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Data Quality can be tested both on the detail level and on pre-aggregated levels (see [15]). In both 
cases, reporting techniques like Filtering, Sorting and Conditional Formatting may help attract 
attention to the problem (the same applies to visualization techniques, which can help to pinpoint 
a problem). One can calculate changes in case reserves and sort claims in descending order by 
that field to bring the largest outstanding claims on top. Or, using conditional formatting, one can 
highlight outliers among age-to-age factors (see Example 5). 

Algorithms Applicability 

Closely related to Data Quality tests on the pre-aggregated (as opposed to detailed) level is 
actuarial assumption testing (see [ 15]). Indeed, a monotonically increasing number of claims can 
be both a data quality test and a requirement for the applicability of the Berquist-Shcrman 
algorithm. The same for the assumption of lognormality in ICRFS ~", which coincides with the 
check that requires incremental gross payments to be positive. An Alarm System may warn users 
about Thomas Mack-style test (see [2], [16]) failures. 
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Figure 11 

Digital Dashboard 

Digital Dashboard is Microsoft's name for a portal that consolidates the most important personal, 
professional, corporate and external information with an immediate access to analytical and 
collaborative tools. In a single view, the user can see charts, Alarm messages, Pivot Tables, 
calendars, etc. Thus, Digital Dashboard looks like an obvious place for all important reports and 
alarms. Dashboard's space limitations re-emphasize the necessity of  smart and space-conscious 
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reporting techniques: Dashboard's start screen is the place for the most important information 
presented in the most concise way. 

While every reporting and visualization technique described in this paper is powerful and 
effective, it is their combinations (Filtering + Sorting, Pivot Tables + Conditional Formatting, etc 
+ etc...) that convert a flood of  data into truly useful and indispensable information. Digital 
Dashboard - a "combination of  combinations" of  reporting tools - is just a very logical extension 
of  the mechanisms that make this information immediately available and accessible. By the same 
token, Digital Dashboard is a most natural interface for an Alarm System. Not only can it display 
all types of  alarms in a single location, but also - thanks to its portal capabilities - it can provide 
links to detailed information that triggered an alarm. 

Figure 12 

With the proliferation of  the lnternet, portal interfaces have become very popular: an ability to 
organize a wealth of  information into a concise and focused display is very appealing. In fact, this 
article itself is organized as a portal into a wealth of  information on reporting and visualization 
techniques: it is just a concentrated extract of  the most important facts about tools available to 
actuaries, and as such it serves as a starting point for further research. 
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Actuarial Significance 
"The whole system makes me feel.., insignificant." 

Anti. 

Actuaries have a lot of  work to do before any of  the aforementioned techniques can be used to 
generate useful reports and visualizations. 

For adaptive reporting, actuaries have to decide which measurements are of  actuarial significance, 
so reports can be filtered or sorted accordingly. Every step of  the actuarial process requires 
different significance indicators. For the data preparation step, actuaries should find 
measurements that will catch severe data errors that may considerably affect the consequent 
application of actuarial methods. For the results presentation step, actuaries should define (and 
calculate during the application of algorithms step) indicators that will aid decision-making. That 
will help to concentrate the attention of  the report readers on important issues and will energize 
and strengthen the decision-making process. 

Another important area that needs assistance from actuaries is in Alarm Systems. Nobody likes 
false alarms. It is actuary's job to come up with and f'me-tune alarm definitions, to determine 
which combination of  circumstances should trigger an actuarial alarm and attract immediate 
attention. 

Selection of  these most important variables depends on the available data and the goal oftbe 
display, and is clearly an actuarial task. It would make sense for actuaries to develop conventions 
that cover most situations. Unfortunately, to the best of  the author's knowledge, this work has not 
even started. 

Conc lus ion  

"The gods help them that help themselves." 

Aesop 

A list of  easily accessible presentation techniques with examples of  their uses should help 
actuaries to realize what tools are available for Actuarial Reporting. But it is up to actuaries to 
express themselves using these tools. Indeed, reporting techniques described in this article are so 
flexible it does not make sense to use a limited number ofpre-designed "canned" reports 
anymore. In addition to that, reporting tools are incredibly interactive - they were designed in 
order to give the end user (i.e., actuary) report-creation power. And they are so easy to use - it is 
a sin not to use them. 

The importance of  presentation skills is severely underestimated by actuaries: it is conceivable 
that quite a few companies would still remain solvent if actuaries-in-charge could convincingly 
present results of  their analysis. If actuaries expect computers to be effective helpers in reporting 
and visualization tasks, they have to define "actuarially significant" information and learn how to 
present it in the most "attention-grabbing" way. That would insure that actuarial analysis is 
indeed used as a solid foundation for the company's decision-making process. 
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Appendix 0 

Readers of  the Acrobat version of  this paper (downloaded from the www.casact.om website) can 
copy code snippets from the text and paste them into Excel ' s  VBA Editor as described below. 

Appendix 1 

To run subroutines described throughout the article: 

• launch Excel, preferably version 97 or better 

• press AIt-FI1 to start VBA n Editor 

• f i n d  a project  with the name o fyour  current spreadsheet or, i fyou prefer, PersonaLxls 

• right-click on theproject  and choose Insert~Module 

• ~vpe or copy/paste the desired fragment  o f  the code into the Module window 

• launch code f rom the Excel: press AIt-FS, select macro name andpress  Run 

Appendix 2 

Sub SctupA nirrmtion 0 
Dim sName As String 

With Active, Sheet 
.Cells(I, 2).Formula = "T" 
.Cells(l, 3).Formula = "X" 
.Cells(2, 2).Formula = "12" 
.Cells(3, 2).Formula = "24" 
.Ceils(10, 3).Formula = "1"  
.Cells(l ,  l ) .FormulaRIC1 = "=RC+0.01" 
Range("B2:B3").Seleet 
S©leetion.AutoFill Destination:=Range("B2:B 10"), Type:--xlFi l lDefauh 
Rauge("C2:C9").Select 
Sclect ion.FormulaRIC ! = "= I -EXP( - I /R1CI / ( I -RC[ -1 ] /R I0C2) / ( I -RC[ - i ] /R10C2) ) "  

End With 
sNmlle = ActiveSheet.Nam¢ 
Charts.Add 
ActiveChn~ChartTyp¢ = xlXYScatterSmooth 
ActiveChart.SetSom'cel)ata Source:=Sheets(sName).Range( "B I :C I 0") 
AcliveChart.Location Where:=xlLocationAsObject, Name:=sName 
With Act/veChart.Axes(xlValtte) 

MinimuraScale = 0 
.MaximumScale = 1.2 
.MinorUnit = 0.04 
~MajorUnit = 0.2 
.CrossesAt = 0 

End With 
End Sub 
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Acronyms 
i . f 

BASIC Beginner s All-purpose Symbolic Instruction Code: one of the earliest and simplest high-level 
I~Ogramming languages - still a very popular choice among educators 

i L _ . . • 
• OB~ Line of Business. here, a type of msurance coverage like Workers" Compensation or Professional 

Liab. .y.  

m D F A  - Dynamic Financial Analysis: a process for analyzing the fmancial condition of an insurance 
entity. 

, v  T P A  - Third Party Administrator: a company in the business of handling day-to-day activities and/or 
providing services on insurance claims. Consequently, TPA is a primary source of actuarial data. See [14]. 
"IDMA - Insurance Data Management Association: an independent nonprofit association dedicated to 
increasing the level of professionalism in insurance data management, httD://www.ins-data-momt 91T • 
" I S O -  Insurance Services Office, Inc.: leading supplier of statistical, actuarial, underwriting, and claims 
information, httv://www.iso.cegm. 

• ii NCCI - National Council on Compensation Insurance, Inc.: a value-added collector, nmnager, and 
dis~butor of information related to workers' compensation insurance, htW://www2.ncci.com/ncciweh 
v m  I CRFS - Interactive Claims Reserving Forecasting System: commercially available statistical 
modeling framework from Insureware. hlW://www.insu~ware.¢gm ' 

VBA - Visoal BASIC for Appllentions: version of BASIC language embedded into host application 
(i.e. Excel) with the access to host's objects - a better "macro language", htto://www.mierosot~eom. 
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November 17, 2000 

To Actuaries Preparing Statements of Actuarial Opinion Regarding 
Property/Casualty Loss and Loss Adjustment Expense Reserves: 

The Casualty Actuarial Society's (CAS) Valuation, Finance, and Investments 
Committee (VFIC) has prepared the attached note entitled "Materiality and 
ASOP No. 36: Considerations for the Practicing Actuary". 

Actuarial Standard of  Practice No. 36, Statements of Actuarial Opinion Re- 
garding Property~Casualty Loss and Loss Adjustment Expense Reserves, 
became effective on October 15, 2000. Among other things, the new ASOP 
requires the actuary to use the concept ofmateriality in a number of impor- 
tant ways. The American Academy of  Actuary's Committee on Property 
and Liability Financial Reporting (COPLFR) asked VFIC to prepare a note 
that would aid the actuary considering materiality in the context of  ASOP 
No. 36. 

This note is the result. It is intended to be distributed as an appendix to the 
Practice Note prepared by COPLFR as well as via the CAS website and The 
Actuarial Forum. 

Some of the general concepts of materiality discussed in the note may be 
relevant beyond statements of actuarial opinion. However, this note does 
not discuss the intended purposes of  analyses in any other contexts, and in- 
tended purpose is key to consideration ofmateriality. 

IMPORTANT CAVEAT: This note is intended only as an aid and does 
not supercede the actuary's professional judgment or the language of 
ASOP No. 36. Although the note has been prepared by knowledgeable 
members of VFIC, it has not received the professional review process 
required for establishment of actuarial standards. Accordingly, the note 
is not an authoritative document for actuaries and is not binding on any 
actuary. VFIC recommends that this note be read in conjunction with 
ASOP No. 36. 

2000 Valuation, Finance, and Investments Committee 
Casualty Actuarial Society 

Harvey A. Sherman, Chairperson 

Thomas E. Hettinger Paul J. Brehm Gary G. Venter 
Donald K. Rainey Paul B. LeStourgeon Aaron Halpert 
James M. Bartie Christopher M. Suchar Evelyn T. (Toni) Mulder 

Joseph R. Lebens Richard W. Gorvett William M. Wilt 
Manalur S. Sandilya Michael G. McCarter Kenneth Quintilian 
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Materiality and ASOP No. 36: 
Considerations for the Practicing Actuary 

Introduction 

This note has been prepared by the Valuation, Finance, and Investments Com- 
mittee (VFIC) of the Casualty Actuarial Society as an aid to the actuary con- 
sidering the concept of  materiality contained in Actuarial Standard of  Prac- 
tice (ASOP) No. 36, Statements of Actuarial Opinion Regarding Property/ 
Casualty Loss and Loss Adjustment Expense Reserves. 

ASOP No. 36 requires the actuary to use the concept ofmateriality in a num- 
ber of  important ways, including: 

determination of  whether or not to issue a qualified opinion, 

determination of the need for disclosure of significant risks and 
uncertainties, 

consideration of factors likely to affect the actuary's reserve 
analysis, and 

determination of the need for a number of  other possible disclo- 
sures. 

There is no formulaic approach to determining the standard of  materiality 
the actuary should use for a given statement of  actuarial opinion (SAO). The 
ASOP instructs the actuary to evaluate materiality based on professional judg- 
ment, any applicable guidelines or standards, and the intended purpose of  
the SAO. 

VFIC intends this note to aid the actuary who must evaluate materiality in 
the course of  preparing a SAO. Following this introduction are three sec- 
tions: 

. Materiality and ASOP No. 36: Discusses the use of the concept of 
materiality in ASOP No. 36, highlighting its impact on decisions 
made by the actuary in the course of  preparing a SAO. 

. Materiality in Accounting Contexts: Reviews the concept of  
materiality in accounting contexts, including both regulatory and 
SEC financial reporting. This discussion is not intended to be 
guidance for the actuary, since an actuary's issues and concerns are 
not in general the same as those of  accountants. Instead, this review 
is provided to enrich the discussion of  potential issues with regard to 
materiality. 

. Materiality, Statements of Actuarial Opinion, and ASOP No. 36: 
Discusses qualitative and quantitative concepts the actuary may 
wish to consider while coming to a professional judgment on 
materiality in the context of ASOP No. 36. Although certain 
quantitative measures caq be suggested for consideration in certain 
circumstan~.' es, no formulaic approach to a quantitative materiality 
standard can be developed. 
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Several caveats are in order at this point: 

This note is intended only as an aid and does not supercede the 
actuary's professional judgment or the language of ASOP No. 
36. Although the note has been prepared by knowledgeable 
members of VFIC, it has not received the professional review 
process required for establishment of actuarial standards. 
Accordingly, the note is not an authoritative document for 
actuaries and is not binding on any actuary. VFIC recommends 
that this note be read in conjunction with ASOP No. 36. 

This note discusses concepts ofmateriality relevant to the SAO's 
that are the subject of  ASOP No. 36. This note does not focus on 
considerations of  materiality that may be required for other pur- 
poses, such as GAAP or Statutory financial statements. Although 
some of  the general concepts of  materiality that are discussed here 
are relevant in other contexts, key to the concept of  materiality is 
consideration of  the intended purpose of  the analysis..Discussion of 
the intended uses of  financial statements is beyond the scope of this 
document. 

ASOP No. 36 applies to any written SAO on loss and loss expense 
reserves. Many SAO's are prepared to be filed for regulatory 
purposes with an insurer's statutory annual financial statements. If  
the actuary is preparing an SAO for some other purpose, e.g., 
valuation of  a company or of  a book of  business, then the actuary's 
materiality standards may differ from those relevant to the statutory 
SAO. 

2000 Valuation, Finance, and Investments Committee 

Thomas E. Hettinger 
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Casualty Actuarial Society 
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Materiality and ASOP No. 36 

ASOP No. 36 applies to actuaries issuing written statements of  actuarial opin- 
ion regarding property/casualty loss and loss adjustment expense reserves in 
the following situations: 

the opinion is provided to comply with requirements of  law or 
regulation for a statement of  actuarial opinion; or 

the opinion is represented by the actuary as a statement of  actuarial 
opinion. 

Further, if the actuary's statement includes opinions regarding amounts for 
items other than loss and loss adjustment expense reserves, ASOP No. 36 
applies only to the portion of  the statement of actuarial opinion that relates to 
loss and loss adjustment expense reserves. 

Whenever the actuary determines that a material condition exists, the actu- 
ary is required to make some response to the condition. The following lists 
sections of  ASOP No. 36 that use the word "material". For convenience, the 
discussion below quotes some of  the context showing how the term material 
(with added highlighting) is used in the section. 

Again, please note that VFIC has not reproduced ASOP No. 36 in this 
note. Actuaries should read that document in conjunction with this one. 

Sections 3.3.2 d: "The actuary is not required to issue a qualified opinion if 
the actuary reasonably believes that the item or items in question are not 
likely to be material.'" 

Section 3.3.3: "When the actuary reasonably believes that there are signifi- 
cant risks and uncertainties that could result in material adverse deviation, 
the actuary should also include an explanatory paragraph in the statement of  
actuarial opinion." This statement is further clarified. "The actuary is not 
required to include in the explanatory paragraph general, broad statements 
about risks and uncertainties due to economic changes, judicial decisions, 
regulatory actions, political or social forces, etc., nor is the actuary required 
to include an exhaustive list of  all potential sources of  risks and uncertain- 
ties." 

Section 3.4: "... the actuary should consider the purposes and intended uses 
for which the actuary prepared the statement of actuarial opinion. The actu- 
ary should evaluate materiality based on professional judgment, materiality 
guidelines or standards applicable to the statement of  actuarial opinion and 
the actuary's intended purpose for the statement of  actuarial opinion." 

Section 3.5: "In addition to the reserve methods used, the actuary should 
consider the relevant past, present, or reasonably foreseeable future condi- 
tions that are likely to have a material effect on the results of  the actuary's 
reserve analysis or on the risk and uncertainties arising from such condi- 
tions." 
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Specific considerations listed in Section 3.5 are the following: 

Coverage Provisions - consider coverage changes, coverage 
disputes, or coverage litigation. 

Changing Conditions - consider changes in conditions particularly 
with regard to claims, losses, or exposures that are new or unusual. 

External Conditions - consider forces in the environment that are 
likely to have a material effect on the results of  the actuary's 
reserve analysis. However, the actuary is not required to have 
detailed knowledge of  all the economic changes, regulatory 
changes, judicial decisions, political or social forces, etc., that may 
affect the settlement values. 

Data - consider whether there are significant data problems or 
issues. 

Assumptions - consider the sensitivity of  the reserve estimates to 
reasonable, alternative assumptions. When the use of  reasonable, 
alternative assumptions would have a material effect the actuary 
should consider the implications regarding the risks and uncertain- 
ties associated with such an effect. 

Changes in Assumptions, Procedures or Methods - consider 
whether the change is likely to have a material effect on the results. 
The use of  assumptions, procedures or methods for new reserve 
segments that differ from those used previously is not a change is 
assumptions, procedures, or methods. Similarly, when the determi- 
nation of reserves is based on the periodic updating of  experience 
data, factor, or weights, such periodic updating is not a change in 
assumptions, procedures or methods. 

Section 3.7.1 Collectibility: " I f  the amount of  ceded reinsurance reserves is 
material, the actuary should consider the collectibility of  ceded reinsurance." 

Section 3.7.4 Risk Transfer  Requirements:  "... the actuary should ascer- 
tain whether an adjustment to the reserves to meet such requirements is likely 
to have a material effect on the actuary's reserve analysis or on the risk and 
uncertainties associated with the reserves." 

Section 4.5 Changes in Opining Actuary 's  Assumptions, Procedures,  or 
Methods: " I f  a change occurs in the opining actuary's assumptions, proce- 
dures, or methods from those previously employed in providing an opinion 
on the entity's reserves, and if the actuary believes that the change is likely to 
have a material effect on the results of  the actuary's reserve analysis, then 
the actuary should disclose the nature of  the change. If  the actuary can not 
make a judgement as to whether the change is likely to have a material effect 
on the results of  the actuary's reserve analysis, the actuary should disclose 
that there has been a change in actuarial assumptions, procedures, or meth- 
ods, the effect of  which is unknown. No disclosure is required unless the 
actuary believes that the changes are likely to have a material effect on the 
results of  the actuary's reserve analysis." 
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Further, the statement of  opinion should include the following disclosure(s): 

Section 4.6.a.: "If  there have been changes in accounting or processing pro- 
cedures that significantly affect the consistency of  the data used in the re- 
serve analysis and that the actuary believes are likely to have a material 
effect on the results of the actuary's reserve analysis, then the actuary should 
disclose the nature of  such changes in accounting or processing procedures." 

Section 4.6.c.: "If  the scope of  the opinion includes consideration of  regula- 
tory or accounting requirements regarding risk transfer in reinsurance con- 
tracts and if an adjustment to the reserves to satisfy such requirements is 
likely to have a material effect on the results of the actuary's reserve analy- 
sis, then the actuary should disclose the impact of the risk transfer require- 
ments." 

Section 4.6.g.: "If  the actuary reasonably believes that there are significant 
risks and uncertainties that could result in material adverse deviation, an 
explanatory paragraph (as described in section 3.3.3) should be included." 

Section 4.6.h.: "If  the statement of  actuarial opinion relies on present values 
and if the actuary believes that such reliance is likely to have a material 
effect on the results of  the actuary's reserve analysis, the actuary should dis- 
close that present values were used in forming the opinion . . . .  " 

Section 4.6.i.: "If  the statement of  actuarial opinion relies on risk margins 
and if the actuary believes that such reliance is likely to have a material 
effect on the results of  the actuary's reserve analysis, then .... " 

Nora bene: The use of materially in the following excerpt from ASOP No. 
36 differs from those discussed above as it refers to the actuary's procedures 
rather than to the results of  the actuary's analysis. 

Section 4.8.: The "actuary must be prepared to justify the use of  any proce- 
dures that depart materially from those set forth in this standard and must 
include, in any actuarial communication disclosing the results of  the proce- 
dures . . . .  " 

Materiality in Accounting Contexts 

As of  this writing, there is no ASOP specifically addressing materiality. 
Therefore, the primary guidance to the opining actuary is the language in 
ASOP No. 36. Secondarily, the opining actuary may consider other docu- 
ments (including this one) originating both inside and outside the actuarial 
profession. 

The NAIC in the preamble to its new Accounting Practices and Procedures 
Manual (Codification) and the SEC in its Staff Accounting Bulletin (SAB) 
No. 99 have addressed materiality. These documents discuss materiality 
from an accounting viewpoint. While neither document can be taken as an 
Actuarial Standard of  Practice, the language itself may provide some under- 
standing as to what constitutes materiality for certain parties interested in the 
opining actuary's work (e.g., regulators and public auditors). 
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A. NAIC Accounting Practices and Procedures Manual 

The Codification defines a material omission or misstatement of an item in a 
statutory financial statement as having a magnitude such that it is probable 
that the judgment of  a reasonable person relying upon the statutory financial 
statement would be changed or influenced by the inclusion or correction of  
the item. 

In narrowing the definition, the following considerations are discussed: 

Some items are more important than others and require closer 
scrutiny. These include items which may put the insurer in danger 
of  breach of  covenant or regulatory requirement (such as an RBC 
trigger), turn a loss into a profit, reverse a downward earning trend, 
or represent an unusual event. 

The relative size of  the judgment item is usually more important 
than the absolute size. An example for this is a reserve amount that 
would significantly impact the earnings of  a small company but 
barely impact the earnings of  a large company. 

The amount of  the deviation of an item that is considered immaterial 
may increase if the attainable degree of precision decreases. 

B. S.E.C. Staff Accounting Bulletin No. 99 

SAB No. 99 uses a similar definition of materiality and has many of the same 
considerations as does Codification, but it applies to financial statements 
filed with the SEC. 

Of  primary importance is that an item that is small in absolute magnitude 
may be important if its inclusion or modification would change someone's 
conclusion about the basic financial condition of  the company. Numerous 
examples given in the document include, but are not limited to, masking a 
change in earnings or other trends, changing a loss into a gain or vice versa, 
hiding a failure to meet analysts' expectations, and affecting a portion of the 
business identified as having a key operational role. 

But SAB No. 99 notes additional concerns beyond those it has in common 
with Codification. One issue is that the common practice of  using quantita- 
tive thresholds as rules of  thumb for materiality has no basis in law or ac- 
counting literature. Another is that the materiality of items should be consid- 
ered both separately and in total. An example given considers materiality 
issues affecting revenues and expenses even though the difference in net 
income may net out to be small. Similarly, an item may be immaterial in the 
context of  the current year financial statements only to cumulate with other 
items in the future to yield material differences. 

Following are summarized concepts from SAB No. 99 concerning whether a 
particular set of  circumstances is material. 

There should not be exclusive reliance on a percentage or numerical 
threshold to determine something is material or not. 
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The use of  a percentage or numerical threshold may provide the 
basis for a preliminary assumption regarding materiality. 

A matter is material if there is a substantial likelihood that a reason- 
able person would consider it important. 

Both "quantitative" and "qualitative" factors should be considered 
in assessing an item's materiality. Experienced human judgment is 
necessary and appropriate. 

Following are qualitative considerations excerpted from SAB No. 99. Note 
that these items are not necessarily the appropriate items for considering 
materiality with regard to an SAO submitted to fulfill regulatory require- 
ments. To quote: 

"Among the considerations that may well render material a quantita- 
tively small misstatement of  a financial statement item a r e -  

• whether the misstatement arises from an item capable of  precise 
measurement or whether it arises from an estimate and, if so, the 
degree of  imprecision inherent in the estimate 

• whether the misstatement masks a change in earnings or other 
trends 

• whether the misstatement hides a failure to meet analysts' consen- 
sus expectations for the enterprise 

• whether the misstatement changes a loss into income or vice versa 

• whether the misstatement concerns a segment or other portion of  
the registrant's business that has been identified as playing a 
significant role in the registrant's operations or profitability 

• whether the misstatement affects the registrant's compliance with 
regulatory requirements 

• whether the misstatement affects the registrant's compliance with 
loan covenants or other contractual requirements 

• whether the misstatement has the effect o f  increasing 
management's compensation - for example, by satisfying require- 
ments for the award of bonuses or other forms of  incentive 
compensation 

• whether the misstatement involves concealment of  an unlawful 
transaction." 

Further, SAB No. 99 concludes that each misstatement should be considered 
both separately and in the aggregate. 
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Materiality, Statements of  Actuarial Opinion, and ASOP No. 36 

VFIC intends that the prior section's review ofmateriality in an accounting 
context be regarded as suggestive of issues an actuary may consider in evalu- 
ating materiality in the context of  ASOP No. 36. One common element 
between financial reporting and the SAO is that judgments regarding materi- 
ality involve both qualitative and quantitative considerations. As noted in 
Section 3.4 of ASOP No. 36: 

"The actuary should evaluate materiality based on professional judg- 
ment, materiality guidelines or standards applicable to the statement of 
actuarial opinion and the actuary's intended purpose for the statement of 
actuarial opinion." 

Requiring the use of  professional judgment and placing importance on in- 
tended purpose both emphasize the role of qualitative considerations in evalu- 
ating materiality. 

Actuaries will naturally also focus on quantitative considerations related to 
judgments on materiality. No formula can be developed that will substitute 
for professional judgment by providing a materiality level for each situation. 
What can be done is to highlight some of the numerical considerations that 
may be relevant to the determination of  materiality in some situations. 

A. SAO's Filed with Statutory Annual Statements 

Many SAO's are prepared to satisfy the regulatory requirement that such a 
statement be filed along with a company's annual statement. In that case, a 
key concern of  the management and regulatory audiences for the SAO is 
company solvency. At least two qualitative issues suggest themselves for 
consideration in this context: 

Would the item under consideration affect the opining actuary's 
judgment as to whether the loss and loss expense reserves make a 
reasonable provision for the liabilities of the entity being opined on? 

Would the item under consideration affect the opinion reader's 
judgment concerning the impact of  the loss and loss expense 
reserves on the solvency of  the entity being opined on, even if the 
loss and loss expense reserves do make a reasonable provision for 
the liabilities of the entity being opined upon? 

Following are possible quantitative measures that the actuary could consider 
in the initial phase of  determining whether a particular item is material in the 
context of a SAO prepared for filing with regulators: 

Absolute magnitude of item that represents a correction or a 
different result if reviewing the work of others. 

Absolute magnitude of  item for which data are not available or are 
incomplete. 

Ratio of item to reserves or statutory surplus. 
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Impact of  item on IRIS ratios. 

Impact of  item on risk-based capital results. 

Likelihood or size of  potential variation of  ultimate actual result 
from current expectations. 

B. SAO's Prepared for Other Purposes 

If  the SAO is prepared for a purpose other than that of  reporting to regula- 
tors, other measures may be appropriate. As a qualitative consideration, the 
actuary may wish to consider the following issue: 

Would the item under consideration affect the opinion reader's 
judgment of  the impact of  loss and loss expense reserves relative to 
the purpose for which the SAO was obtained? 

Here are some other quantitative measures that may be relevant in these con- 
texts: 

Ratio of  item to net income or net worth. 

Impact of  item on earnings per share. 

Evaluation of these quantitative measures to determine a materiality stan- 
dard must be considered in conjunction with the purpose or intended use of  
the opinion, the specific circumstances of  the entity being opined upon, and 
the actuary's professional judgment. Variations in a company's circumstances 
or in the purpose for which the opinion is sought can cause .variations in 
materiality standards even for analyses of  otherwise equivalent liabilities. 
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C A S  T a s k  Force  on Fair  V a l u e  Liabi l i t ies  
W h i t e  P a p e r  on Fair  V a l u i n g  P r o p e r t y / C a s u a l t y  Insurance  Liabi l i t ies  

E x e c u t i v e  S u m m a r y  

This white paper was undertaken by the CAS Task Force on Fair Value Liabilities in reaction to 
recent developments by the Financial Accounting Standards Board (FASB) and the International 
Accounting Standards Committee (IASC). it is meant to be an objective discussion of the issues 
surrounding the fair valuing of property/casualty insurance liabilities, particularly in the United 
States. While the recent FASB and IASC proposals are mentioned and quoted, the white paper is 
meant to be applicable to the "fair value" issue in general, wherever the issue appears. 

The paper begins with an introduction and background, including a definition of"fair value." In 
general, fair value is defined as the market value, ifa sufficiently active market exists, or an 
estimated market value otherwise. Most definitions also include a requirement that the value 
reflect an "arms length" price between willing parties, so as to eliminate "fire sale" valuations. 
Most observers agree that a sufficiently active market does not exist in most cases for 
property/casualty insurance liabilities. Hence, estimation methods have to be used to determine 
their fair value. 

A short history of the fair value concept then follows. In brief, the concept of" "fair value" 
gained prominence as a result of the 1980's Savings & Loan crisis in the United States. The 
accounting rules for these banks at that time did not require the recording of assets at market 
value, hence, banks were able to manipulate their balance sheets through the selective selling of 
assets. Troubled banks could sell those assets with market values higher than recorded book 
values and inflate their reported equity, even as the quality of their balance sheet was 
deteriorating. The concern was raised that any time financial assets are not held at their 
economic value (i.e., market or fair value), financial reports can be manipulated through the 
selective buying and selling of assets. 

Since then, the FASB has been embarked on a long-term project to incorporate "fair value" 
concepts inthe accounting for financial assets and liabilities. In December of 1999, they 
released a document labeled "Reporting Financial Instruments and Certain Related Assets and 
Liabilities at Fair Value (Preliminary Views)." This document proposed, tbr the first time, that 
certain insurance liabilities also be reported at "fair value." 

At around the same time, the IASC, in its efforts to develop consistent international accounting 
standards, released its "Insurance Issues" paper. This paper also proposed a fair value standard 
for the recording of insurance liabilities. 

The paper is organized into the following sections at~er the introduction 
A. Background regarding fair value concepts 
B. Fair Value in the insurance context 
C. Alternatives to Fair Value Accounting for p/c insurance liabilities. 
D. Methods of Estimating Risk Adjustments - a brief discussion of possible methods for 

determining risk adjustments, required in the fair valuing of insurance liabilities. Pros 
and cons for each method are listed. Detailed discussions of these methods can be 
found in the technical appendix. 

E. Accountin~ Presentation Issues, including alternative income statement or balance 
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sheet formats in a "fair value" world. 
F. Implementation Issues surrounding the fair valuing ofp/c  insurance liabilities for 

financial accounting statements. 
G. Accounting Concepts, or how well fair value accounting and the issues discussed in 

the earlier sections would be viewed in the context of  general accounting concepts 
(such as reliability, relevance and representational faithfulness). 

H. Credit Standing and Fair Value Liabilities, a discussion of  issues related to the 
reflection of  credit standing in determining the fair value of  liabilities. This issue has 
given rise to vigorous discussion, both within and outside the actuarial profession. Due 
to the controversial nature of  this issue, it has been given its own separate section, 
rather than including it within the earlier sections. 

1. Professional Readiness 
J. Summary and observations. 
K. Technical Appendices. 

These sections are meant to be conceptual discussions, with any discussion of  detailed 
implementation procedures left to the technical appendices. The appendices also include a list of  
references for each section. 

Key findings of the task force include: 

1. New reouirement 
In all the accounting conventions that we were aware of, insurance liabilities have not been 
stated at fair value, resulting in a lack of  established practice to draw on. This has implications 
in numerous areas, including estimation methods, implementation problems and practitioner 
standards. As with any new requirement, the switch to a fair value valuation standard for 
property/casualty insurance liabilities would probably result in many unanticipated 
consequences. These consequences could be mitigated if implementation is phased in, For 
example, one phase-in alternative would be to institute disclosure requirements at first, followed 
by full fair value reporting depending on the results of  the disclosure period. 

2. Alternatives to fair value 
There are several alternatives to fair value accounting. These alternatives range from the current 
use o f  undiscounted liabilities to conservative discounting approaches to hybrid approaches that 
combine fair value accounting with other present value methods. Some of  these alternatives may 
result in many of  the benefits of  fair value accounting, but avoid some of  the disadvantages. It is 
also clear that all approaches have some disadvantages. 
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3. Expel:ted Value versus best estimate 
All the methods discussed in this paper assume that expected value estimates are the starting 
point in the fair value estimation process. The task force recognizes that confusion sometimes 
exist as to where current practice stands. While the term "best estimate" is commonly used in 
current accounting literature, it is not clear whether this means the best estimate of  the expected 
value (mean), or the mode (i.e., most likely value), median (the value which will be too low half 
the time, and too high half the time) or midpoint (the average of the high and low of  the range of 
"reasonable" estimates). While a recent U.S. actuarial standard has cleared up some of this 
confusion (ASB No. 36, Statement of  Actuarial Opinion Regarding Property/Casualty Loss and 
Loss Adjustment Expense Reserves, discussion of  "expected value estimates" and "risk 
margins"), the task force believes that clarification on this topic within the accounting standards 
would be beneficial, and would become even more important in a fair value context. 

4. Multiple methods 
There are multiple methods for estimating the fair value of property/casualty insurance liabilities. 
All of  these methods have their own advantages and disadvantages. No one method works well 
in all situations. As such, those estimating fair value may need to use a variety of  methods. The 
task force sees a need for any accounting standard to provide for flexibility in estimation 
methods. 

5. Continuum from pricing methods 
Several of  the possible methods for estimating insurance liability fair values are currently used 
for pricing. In addition, given that the charged premium may generally be assumed to be a 
"market" price (in a sufficiently competitive market), that charged premium may be a reasonable 
initial estimate of  the unexpired policy liabilities' fair value. Hence, the initial estimate of  a 
policy's liabilities' fair value may be the result of  an existing pricing model. 

6. "Typical" line / "typical" company limitation of most current methods 
A major issue in determining the fair value of  insurance liabilities is the reflection of risk. There 
are several methods in the current actuarial and financial literature that can be used to calculate 
this risk margin, for a "typical" line in a "typical" company~ Most of  these methods will require 
further development to go beyond the typical line / typical company limitation. 

7. A fair value accounting standard would lead to new research 
The previous finding discussed a limitation of current fair value estimation methods. The 
implementation of a fair value accounting standard would lead to new research to address these 
and other limitations in a fair value estimation process. This would be analogous to the 
expansion of methods to quantify risk transfer, following the implementation in the United States 
of  FAS 113 (reinsurance accounting). 

4 4 2  



8. When market prices and "fair value" estimates are in conflict. 
The task force observed that there are at least four situations where market prices may be in 
conflict with the results of  a fair value estimation process. In these situations, the fair value 
estimation process may be preferred over a market value for financial reporting. These situations 
include: 

• Market  disequilibrium. Given a belief in an efficient market, disequilibrium positions 
should be only temporary, but how long is temporary? Restrictions on insurance market 
exit and entry (legal, regulatory and structural) can lead to disequilibrium positions that 
last years. The underwriting cycle is viewed by some as a sign of temporary 
disequilibrium, whereby the market price at certain points in the cycle may not equal 
what some believe to be a fair value. 

• Market  disruption. At various points in time, new events lead to significant uncertainty 
and temporary disruption in the market for insurance products. Examples can include a 
threatening hurricane, a newly released wide-ranging court decision and new legislation 
(e.g., Superfund, or California Proposition 103?). At such times, market prices right after 
the event may be wildly speculative, or the market may even be suspended, making fair 
value estimation even more uncertain. 

• Information As~,mmet~. The market price for a liability traded on an active market is 
likely to be quite different depending on the volume of  liabilities actually traded. For 
example, if a primary insurer cedes 1% of  its liabilities, the reinsurers will quite rationally 
believe that this liability is not a fair cross-section of the primary's entire portfolio: i.e., 
the ceding insurer is selecting against the reinsurer. Consequently, the price will be 
rather high, compared to the case where the entire portfolio (or a pro-rata section of  it) is 
transferred. Thus, the "actual market price" is not a better fair value representation than 
an internal cash flow based measurement unless most of  the insurer's liabilities are 
actually transferred. This situation arises because the market (i.e., reinsurance market) 
does not have access to the insurer's private information on the liabilities. If all of  the 
private information were public, then the actual market prices for liability transfers would 
better represent their fair value." 

• Significant intangibles. Market prices for new business may be set below expected costs 
for such business, due to the value of  expected future renewals. As such, an estimated 
fair value that ignores this intangible may be materially different from the market price. 

Both the IASC and FASB proposals indicate a preference for the use of observed market values 
over estimated valuations. Given the imbalances noted above, the task force is uncertain as to 
how to reconcile the realities of  the insurance marketplace with the IASC's and FASB's 
preferences for observed market value. It may be that internal estimates can sometimes be 
preferable to market based estimates in a fair value accounting scheme. 

9. Implications of risk margin approaches without value additivity 
Some risk margin methods produce risk adjustments (when expressed as a percentage 
adjustment) that are independent of  the company holding them or the volume of business. Such 
risk adjustments are said to show "value additivity," i.e., the risk margin for the sum of  two item., 
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is the sum of their two risk margins. 

Not all risk margin methods result in value additivity. When this is the case, reporting problems 
can occur. For example, if the risk margin for the sum of line A and line B is less than the sum 
of  the two risk margins, how should this synergy be reported? As an overall adjustment, outside 
of the line results? Via a pro-rata allocation to the individual lines? 

The issue of  risk margins and value-additivity centers around discussions of whether markets 
compensate for diversifiable risk. Diversifiable risk is generally not additive. For example, the 
relative risk or uncertainty in insuring 2,000 homes across the country is generally less than 
twice the relative uncertainty from insuring 1,000 homes across the country. 

it is not clear whether value-additivity should or should not exist for risk margins in a fair value 
system. A key question in the debate is the role of  transaction costs, i.e., the costs of  managing 
and/or diversifying risk, and how the market recognizes those costs in its quantification of risk 
margins. 

The task force has not taken a final position on this issue. Instead it has flagged the issue 
wherever it has been a factor in the discussion. 

10. Susceptibility to actuarial estimation 
We have found nothing in the estimation of fair value that is beyond the abilities of  the actuarial 
profession. We have also found existing models that can be used in the endeavor. This is not to 
say that the initial results of  such actuarial estimation would be problem-free. Problems would 
undoubtedly occur during any initial implementation, and new techniques and concepts would 
have to be learued. In short, if fair value accounting rules were implemented for insurance 
liabilities, actuaries would be capable of  producing such fair value estimates, with improvement 
to be expected over time in both the breadth of estimation methods and actuarial expertise in 
applying these methods. 

I !. Increased reliance on sub]ective assumptions in financial statements 
The implementation of  fair value accounting for insurance liabilities would increase the number 
of  assumptions underlying reported insurance liabilities. For example, fair value estimates 
would require assumptions about "market" risk margins and future yields not currently part of  
the typical property/casualty reserving process. This increased reliance on judgment has been 
cited by some as a disadvantage of  a fair value accounting standard. The task force suspects 
however that any additional uncertainty caused these additional assumptions is likely to be 
second order compared to differences in the various company's expected value estimates (before 
application of  risk margins and discounting). 
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12. Historical comnarisons - imnlementatlon issues, nresentation issues 
The implementation o f  fair value accounting would cause problems with the traditional ways o f  
making historical comparisons, particularly for historic development triangles. One difficulty 
involves the possible need to restate history, to bring past values to a fair value basis. Should 
these restated values reflect perfect hindsight, or should some attempt be made to reflect the 
uncertainty (and estimation risk) that probably existed back then? (Any such restatement may 
have to consider restating several years of  history, based on current reporting requirements.) Or 
should historic development data not be reported on a fair value basis, similar to current 
reporting requirements in the U.S. statutory statement, Schedule P, whereby undiscounted values 
are reported even if the held reserves are discounted? 

13. Gross versus net provisions. 
Under most accounting systems, both gross and net (of reinsurance) liabilities must be reported. 
Assuming that the net liabilities contain less risk than the gross liabilities, this would imply the 
cession of a risk provision. This could change the character of  ceded liabilities, as they are 
currently reported and commonly interpreted. 

14. Tax issues. 
The change to fair value accounting may have tax implications, where the applicable tax laws 
rely on financial reporting impacted by the change. Of  particular concern is the treatment of  risk 
margins in fair value estimates, relative to tax laws. While risk margins are clearly part of  
market pricing realities, their acceptance by tax authorities and statutes may not be as clear. This 
should not be an issue for U.S. property casualty insurers, given the current U.S. tax code, but 
may have major implications in other jurisdictions. 

15. Credit standing reflection in valuing liabilities. 
The most contentious issue in the current fair value accounting proposals is whether or not the 
obligator's credit standing should be reflected in fair valuing its liabilities. Many feel that the 
existence of guaranty funds, the priority position of  policyholders among other creditors in the 
event of  insurer insolvency, and the need for insurers to be seen as solid in order to stay in 
business make this issue mostly inunaterial. There are still strongly held concerns, for those 
situations where the adjustment may be material. Many feel that the impact of  credit standing on 
liabilities should not be reflected independent on its impact on franchise value, and are 
concerned that some fair value proposals would fail in this regard. Rather than advocating a 
certain position, the task force has listed arguments on both sides of  this issue. 

16. Actuarial workload requirements 
Fair value accounting may require reserving actuaries to monitor many more variables than they 
currently monitor. New items for the reserving actuary to track the impact of  may include yield 
curves, market risk premiums, asset betas, and credit standing. The calculation of the fair value 
for unexpired in-force policy liabilities may noticeably increase the actuarial workload, relative 
to the unearned premium and premium deficiency liabilities that they replace. Fair value 
accounting may also require more frequent "fresh start" updates of  estimates than traditional 
accounting, at least to reflect changing market interest rates. 
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| 7 ,  P r o f e s s i g ~  Readiness 
Given no established practice in this area to-date, some education effort will probably be 
required. Professional readiness may also not be determinable until general understanding of  the 
issue increases. 

18. Standards versus principles 
There is limited amount of  practice in this area today. The task force believes that it would be 
appropriate to first develop general principles or a practice note, and defer development of  
official standards until practice has had a chance to develop. 

The task force hopes this white paper will aid in the understanding of fair value accounting 
issues as applied to property/casualty insurance. We acknowledge that no one paper can include 
all that is known about a topic, especially one as new and emerging as this one. As such, we 
expect this to be only an initial step in the understanding of  the issue. 
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C A S  Task  Force  on Fa ir  V a l u e  Liabi l i t ies  
W h i t e  P a p e r  on Fair  V a l u i n g  P r o p e r t y / C a s u a l t y  Insurance  Liabi l i t ies  

Introduct ion  

11 Goal o f  the paper, and who its authors are. 
The following is a discussion of fair value accounting as applied to property/casualty (p/c) 
insurance liabilities. It is the work product o f  the Casualty Actuarial Society's Task Force on 
Fair Value Liabilities, a task force created specifically to address fair value insurance issues 
raised by several recent accounting proposals (discussed in the Background section below). The 
issue of  possible reporting of  insurance liabilities at fair value existed prior to these recent 
accounting proposals. Hence, this paper is also meant to be a general resource for p/c insurance 
liability fair value discussions in general. 

This paper is not meant to advocate any particular position, but is instead meant to be a "white 
paper," an objective discussion of the actuarial issues associated with fair value accounting. 

2) Scope 
The scope of this paper is limited to the issue of  fair valuing of  p/c insurance liabilities (and 
related insurance assets), with particular emphasis on insurance accounting in the United States. 
The analysis includes discussion of  estimation issues and their application to accounting. It does 
not address fair valuing of life or health insurance liabilities, although we recognize the benefits 
of  a consistent approach, where possible, across all insurance liabilities. 

The scope is meant to include all material property/casualty insurance liabilities, regardless of  
the type of  entity reporting them in their accounting statements. This would include insurance 
liabilities held by self-insureds, captives, reinsurers, etc. It would also include unearned 
premium liabilities, accrued retrospective premium assets/liabilities, material contingent 
commission liabilities and the like. We have not addressed all possible insurer liabilities, but we 
have addressed those we believe to be material at an insurance industry level. 

3) Format of the paper 
The paper is organized into the following sections 

A. Background,  including a definition and history of fair value in general. 
B. Fair Value in the Insurance Context 
C. Alternatives to Fair Value Accounting for p/c insurance liabilities. 
D. Methods of Estimating Risk Adjustments required in the fair valuing of insurance 

liabilities. 
E. Accounting Presentation Issues, including alternative income statement or balance 

sheet formats in a "fair value" world. 
F. Implementation Issues surrounding the fair valuing of  p/c insurance liabilities 
G. Accountin2 Concepts, or how well fair value accounting and the issues discussed in 

the earlier sections would be viewed in the context of  general accounting concepts 
(such as reliability, relevance and representational faithfulness). 

H. Credit Standin2 and Fair Value Llabmties. a discussion of issues related to the 
reflection of  credit standing in determining the fair value of  liabilities. 
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I. Professional Readiness 
J. Summary and Observations 
K, Technical Appendices 

These sections axe meant to be conceptual discussions, with any discussion of  detailed 
implementation procedures left to the technical appendices. 
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CAS Fair Value Task Force 
White Paper on Fair Valuing Property/Casualty Insurance Liabilities 

Section A - Background 

11 De f in i t i on  o f  " fa i r  v a l u e "  
What is "fair value?" Accounting authorities do not currently have a consistent definition for this 
term. However,  a short definition t could be: 
a. the market value, i f a  sufficiently active market  exists, OR 
b. an est imated market value, otherwise. 

I f  no active market exists, an estimated market  value can be determined from the market price of  
s imilar  assets (or liabilities). If  no sufficiently s imilar  assets (or liabilities) exist, the estimated 
market value is based on a present value of  future cash flows. These cash flows are to be 
adjusted for "the effects o f . . .  risk, market  imperfections, and similar factors i f  market-based 
information is available to est imate those adjustments. "2 

In adjusting these cash flows, one of  the more controversial possible adjustments is the impact o f  
the ent i ty 's  (or obligor's) own credit  standing. Under some proposals, the weaker  the obligor's 
financial situation, the lower the fair value of  their liabilities would be. The assumption is that 
the parties to the entity is indebted to would lower their settlement demands,  recognizing the risk 
of  possibly getting much less i f  the entity went  insolvent. This would represent a major change 
to the accounting paradigm for "troubled" companies.  A separate section of  the white paper has 
been devoted to this issue, due to its controversial nature and its impact  on almost  every facet o f  
the fair value discussion. 

Note that the fair value is an economic value, but not the only possible "economic value." Other 
examples  of  economic values include economi c "value-in-use" and forced liquidation value. 
Economic value-in-use can be defined as the marginal  contribution of  an item to the overall  
entity's value. The forced liquidation value is the cash value achievable in a forced sale. Due to 
the pressures involved, the forced sale price may be materially different from the normal market  
price. 

Whi le  fair value accounting could be applied to any asset or liability, it is most  commonly an 
issue for financial assets or liabilities. Financial assets are generally either cash or contractual 
rights to receive cash or another financial a s se t )  Financial l iabilit ies are generally obligations to 

There is no universally accepted definition of "fair value" to-date, although they all follow the same general 
concept given by this short definition. The detailed definition that FASB is proposing can be found in FASB's 
Preliminary Views document titled "Reporting Financial Instruments and Certain Related Assets and Liabilities at 
Fair Value," dated December 14, 1999, and labeled "No. 204-B." The definition starts on paragraph 47, with 
discussion and clarification continuing through paragraph 83. Paragraph 47 states: 

"Fair value is an estimate of  the price an entity would have realized if  it had sold an asset orpaid if  it had been 
relieved o f  a liability on the reporting date in an arm 's-length exchange motivated by normal business 
considerations. That is, it is an estimate of  an exit price determined by market interactions." 

The IASC has a similar definition (found on page A181 of their Insurance Issues Paper, released November 1999). 
It reads: 

"The amount for which an asset could be exchanged, or a liability settled, between Imowledgeable, willing 
parties in an arm's length transaction. " 

2 Paragraph 56 of the FASB Preliminary Views document mentioned above. 
3 This is a simplified definition. A more complete definition includes both options and equities in its scope. Note 
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provide financial assets. 4 

Lastly, a fair value accounting sys tem focuses on the measurement  of  assets and liabilities, not 
income. The income statement in such a paradigm is just  a consequence of  the changing balance 
sheet. 5 This is in contrast to a "deferral and matching" approach, such as that used to justify 
prepaid expense assets (e.g., Deferred Acquisi t ion Costs, or DAC), where the focus is to match 
revenues and expenses  in the income statement. As a result, a fair value income statement could 
look very different from traditional income statements. 

2) Recent history o f  the fair value concept - United States, 
Financial  assets and liabilities are accounted for in numerous ways under current U.S. accounting 
rules (GAAP, statutory insurance and tax). These include historical cost, amort ized cost, market 
value, present value of  future cash flows, etc. Each of  the various measuring approaches has its 
advantages and disadvantages.  Some approaches produce values that are more readily verifiable 
than others, but perhaps not as relevant. Others produce more relevant values, i f  done correctly, 
but they may not be feasible to use or may be too subject to manipulation. 

Historically,  many financial assets were accounted for at cost or amortized cost. These values 
were readily avai lable  and verifiable, resulting in balance sheet values that could be produced at 
minimal  cost and that were relatively easy to audit. Likewise,  many financial l iabilit ies were at 
ul t imate settlement value, a value that in many cases is contractually set and hence, readily 
avai lable and auditable. 6 

During the U.S. banking crisis o f  the late 1980s, this accounting approach caused problems. 
Banks, which held many financial assets at historical cost, were undergoing financial strains. 
Many became aware that their reported balance sheet value could be improved by selling those 
assets with a market value greater than book value, where the book values were based on 
historical or amortized cost. Assets with market values less than book values were retained, as 
sell ing them would only decrease the reported book equity. 7 As a result, many banks were left 
with asset portfolios dominated by weak and underperforming assets, and many of  these banks 
eventual ly  went  insolvent. 

that this is considered to be a recursive definition, not a circular definition. 
4 This is a simplified definition A more complete definition would include options-related obligations that would 
negatively impact the entity if executed, 
s Accounting systems that focus on the balance sheet are labeled "asset-and-liability-measureraent" approaches by 
the IASC Insurance Issues paper (e.g., paragraph 159). Fair value is an example of, but does not exclusively define, 
such approaches. 
6 This is clearly not the case for the property/casualty industry, where the amount of the loss is not set by contract. 
but instead determined ",ia a settlement process. 
7 This process of selling those assets with market-over-book, while retaining those with book-over-market, is 
referred to as the "cherry-picking" of assets. 
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The FASB, s and many others, felt that a balance sheet based on market values would have 
provided earlier warning of  a bank's financial weakness. They proposed that all bank financial 
assets be reported at market value, at least for U.S. GAAP financial statements. These concerns 
resulted in FAS 9 115, which requires market value accounting for those assets held in a "trading 
portfolio." These discussions also led to the discussion of  fair value accounting for financial 
assets and liabilities. 

New problems arose when determining the scope of  FAS 115. Recognizing the fact that many 
financial institutions compete against one another, whether in the same narrowly defined 
industry or not, FASB proposed that all U.S. financial institutions be subject to their new asset 
reporting rules. This would include securities firms, life insurers and p/c insurers (although it is 
less obvious how p/c insurers compete directly with the others on this list). The FASB's concern 
was that to not treat all competitors equally in these rules would result in an uneven playing field. 

Several parties raised concerns with requiring assets to be held at market value, when the 
liabilities were not reported at market. They believed that this would cause reported equity to 
become very volatile and not meaningful. Given the desire for consistency between asset and 
liability valuation, and the belief by many that market value (or even fair value) accounting for 
insurance liabilities was not possible, they proposed that the standard's scope exclude the 
insurance industry. The FASB was not swayed by this argument. They decided to include the 
insurance industry in the scope of  FAS 115, and possibly address the balance sheet inconsistency 
at a later date. 

Since then, the FASB has had a stated vision of  having all financial assets and liabilities reported 
at fair value, pending resolution of  any remaining implementation issues.l° 

31 F A S B  Fa i r  Value proiect  
In 1986, FASB added a broad-based project concerning the appropriate accounting for financial 
assets and liabilities (i.e., financial instruments) to its agenda. As of  a result of  the influences 
mentioned above (and others), it has evolved into the FASB Fair Value project. 

The FASB has held discussions on this project during much of  1999. In December of  1999, they 
issued a "Preliminary Views" document on this project, which was intended to communicate 
their initial decisions and to "solicit comments on the Board's views about issues involved in 
reporting financial instruments at fair value." The preliminary views document had a comment 

s Financial Accounting Standards Board, the principal setter of GAAP accounting standards in the U.S. The FASB's 
standards are superceded only by the Securities and Exchange Commission (SEC). The FASB also must approve 
AICPA standards of practice before they can become effective. 
9 Financial Accounting Standard. Financial Accounting Standards, or FASs, are issued by the FASB. 
l0 In paragraph 3 of the previously mentioned FASB Preliminary View document is a quote from FAS 133, that 
states as follows. "The Board is committed to work diligently toward resolving, in a timely manner, the conceptual 
and practical issues related to determining the fair values of financial instruments and portfolios of financial 
instnnnents. Techniques for refining the measurement of the fair values of all financial instnnnents continue to 
develop at a rapid pace, and the Board believes that all financial inslaxnncnts should be caxried in the statcngxtt of 
financial position at fair value when the conceptual and measurement issues are resolved. [paragraph 334]" 
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deadline of May 31, 2000. 

This FASB document states that insurance obligations settled in cash (which represents nearly all 
insurance liabilities) are financial instruments, hence, the goal should be to have them reported at 
fair value. This includes reinsurance obligations. In addition, paragraph 46 of this FASB 
document "would prohibit capitalization of policy acquisition costs of insurance enterprises." 
Presumably, the effect of prepaying these expenses would be picked up in the fair valuing of 
unearned premium liabilities. 

As to how to estimate the fair value of these, the preliminary views document references the new 
FASB Concepts Statement of Present Value-Based Measurements, released February I 1, 2000, 
2000. 

4) IASC-  fair value developments and Insurance Issues paper 
Concurrent with the FASB developments discussed above, the International Accounting 
Standards Committee (IASC) II has been working to develop standards for financial instruments 
and for insurance accounting. 

Efforts in the area of financial instruments in general include International Accounting Standard 
(IAS) 39, issued in 1998, and the Joint Working Group on Financial Instruments, currently 
working to develop a standard by the end of 2000. IAS 39 is very similar to FAS 115, in that it 
requires investments in a "trading portfolio" to be held at fair value. Unlike, FAS 115, it creates 
an exception to fair value accounting for any "financial asset ... that does not have a quoted 
market price in an active market and whose fair value cannot otherwise be reliably measured. "~2 

During December 1999, the IASC released an "Issues Paper" focused solely on insurance 
accounting, with a comment deadline of May 3 I, 2000. 

Among other findings, the IASC paper stated that 
• Insurance liabilities should be discounted, and 
• If a new international standard is released that requires fair value accounting for financial 

instruments, then "portfolios of insurance contracts should also be measured at fair 
value. ,,13 

(Note that neither the IASC nor the FASB documents, nor their GAAP consequences impact 
statutory accounting unless the NAIC takes explicit action.) 

tl Per the IASC web site as of January 18, 2000 (http://www.iasc.org.uk/frame/cenl.htm), "The International 
Accounting Standards Committee (IASC) is an independent private-sector body working to achieve uniformity in 
the accounting principles that are used by businesses and other organisations for financial reporting around the 
wodd." 
iz Chapter 30, paragraph 21 of"The IASC-U.S. Compartson Project: A Report on the Simil~trities and Differences 
between IASC Standards and U.S. GA.AP," Second Editiott, published by the FASB in 1999. 
~3 These two Imllets come from the IASC Issues Paper on Insurance, pages iv-v, bullets (d) and (k). 
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CAS Task Force on Fair Value Liabilities 
White Paper on Fair Valuing Property/Casualty Insurance Liabilities 

Section B - Fair Value in the Insurance Context 

1~ General statement 
In general, the fair value projects of both the FASB and IASC propose that any asset or liability 
that ultimately settles in cash should ideally be valued at its "fair value." This would include (but 
not be exclusively limited to): 

• Loss reserves (i.e., claim liabilities) 
• Loss adjustment expense liabilities 
• Policy reserves, including unearned premium or unexpired policy liabilities 
• Accrued retrospective premium assets 
• Return retrospective premium liabilities 
• Contingent commissions 
• Reinsurance recoverable amounts 
• Deductible recoverable amounts 
• Salvage and subrogation recoverable amounts. 

In addition, a fair value accounting approach (at least according to the FASB) would not 
recognize prepaid acquisition costs as an asset. Hence, these assets would disappear under fair 
value accounting. 

Premium deficiency reserves would also disappear under fair value accounting, as any expected 
price inadequacy on in-force policies would be directly reflected in the unearned premium 
reserve valuation. 

Given the absence of an active market for most (maybe all) of these items, their fair value would 
have to be based on an estimate. The estimate would involve discounted cash flows. 

For now, the focus from the FASB and the IASC is on contractual cash flows. Non-contractual 
cash flows, such as future renewals, would be precluded from the cash flows used to estimate fair 
value, even when the renewals are largely unavoidable due to existing legal or regulatory rules. 
The only renewal business flows to be included in these cash flows are those that are 
contractually guaranteed. ~ 4 

i* The treatment of  renewal business is still an open issue. The quandary these accounting organizations face is that 
renewal business IS considered currently by those valuing the overall net worth of  insurance enterprises. Therefore, 
a "market value" of  the enterprise would include these intangibles. I r a  market price would include them, then why 
should a cash flow estimation procedure, generally meant to estimate a hypothetical market value, exclude them.'? 
So far, they have leaned against including them, despite a risk of being inconsistent with real-life market valuations, 
due to problems with reliably estimating the renewal flows. 
While both the FASB and IASC proposals include contractually guaran~-"ed renewals in these projected cash flows, 
the IASC definition further requires that the insurer's pricing flexibility for these renewals be resU'icted in some 
fashion. 
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These discounted cash flows may need to be adjusted for: 
• Risk or uncertainty in the flows (with the size of the adjustment based on market 

compensation for such risk) 
• Credit standing of the obligor 
• "Market imperfections," including possibly illiquidity. 

2) Risk or uncertaint F adjustments. 
A summary of  the October 27, 1999 FASB Board meeting ~5 included the following statement, 
regarding the board's conclusion concerning present value-based measurements. 

"A risk premium is necessary if the risk is identifiable, measurable, and significant. In cases 
where the risk does not meet those characteristics, risk should not be incorporated into a 
measurement." 

We expect little disagreement that the risk in insurance liabilities is "identifiable" and 
"significant." We expect the principal discussion to be on the measurability of this risk, in an 
accounting context. 

3) Credit standin~ o f  the obli~or 
As mentioned above, the FASB views the credit standing of the obligor as an integral part of a 
liability's fair value. After numerous discussions on this topic, they clarified their original 
statements to say that such credit standing reflection "includes the effect of associated deposit 
insurance, state guaranty funds, purchased credit insurance, or similar enhancementsf 6 

4) Market  imperfections, includin~ illiauiditv 
It is generally recognized that there is no active market for most or alt p/c insurance liabilities. 
Hence, such liabilities will be illiquid to some degree in a fair value context. It is less obvious 
how a fair value estimate should adjust for such liquidity problems. 

5) Alternatives to fair value 
Both the FASB and IASC documents recognize outstanding issues regarding the implementation 
of fair value accounting for insurance liabilities. It is possible they may not be resolved or 
resolvable in the foreseeable future. Therefore, it is possible that the accounting standards bodies 
would propose an alternative to fair value accounting, reflecting some of the economics but 
possible not all that might impact a "fair value." 

61 Potential advantages and disadvantages of fair value accounting in the insurance context 
Below are some of the advantages and disadvantages to fair value accounting, as it might be 
applied to insurance liabilities, that have been discussed in prior literature. This partial list is 
intended to aid in comparing fair value accounting to the various alternatives, discussed in the 
next section. More detailed discussion of these and other advantages/disadvantages can be found 

)s From the FASB Action Alert No 99-35, dated November 3, 1999. 
16 FASB Action Alert, No 99-34, Dated October 27, 1999. 
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throughout the later sections of  this paper. 

Poten t ia l  a d v a n t a g e s  - F a i r  Va lu e  

• Consistency with assets. If insurance company investments are to be reported at fair 
value, then its insurance liabilities should be too. This consistent treatment across the 
entire balance sheet would prevent false volatility in reported earnings and equity. 

• Eliminate accounting arbitrage. Valuation of  insurance liabilities at other than what they 
are worth in the market creates incentives to manage earnings through sales of these 
liabilities, even when done at non-economic prices. 

• Consistency with other financial instruments. To the extent that non-insurance financial 
liabilities are similar to insurance liabilities, they should be accounted for similarly. 
Otherwise, the inconsistent accounting rules could create competitive advantages based 
strictly on the accounting, not the economics. 

• Relevance. As the value at which such liabilities could be extinguished or traded, fair 
value should be the most relevant measure for investors. 

Potential  disadvantages - Fair  Value 

• Difficulty in measuring. The calculation of reliable fair value adjustments may be a 
difficult task, and may not always be possible. 

• Greater estimation reliance. Fair value accounting systems increase the number of 
estimates underlying the reported financials. This raises questions as to potential 
estimation error, and even manipulation of estimates. 

• Volatility in earnings. Liabilities held at fair value may show much greater volatility, due 
to changing yield curves and risk adjustments, versus undiscounted or conservatively 
discounted liabilities. ~7 This additional volatility may provide more noise than 
information to capital providers and other users of financial statements. 

* Cost. Implementation and maintenance of a fair value accounting system will cost time 
and resources. There may be other alternatives that cost less, and do not have all the 
disadvantages mentioned above, while still maintaining many of the advantages of fair 
value accounting. 

, Uncertainty. Fair value accounting has never been implemented for insurance liabilities, 
or other liabilities for which there are no active markets. There will inevitably be some 
unintended or unexpected consequences from its implementation. 

~7 Assuming that the conservative discount rate is not readjusted each reporting period. 
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CAS Task Force on Fair Value Liabilities 
White  Paper on Fair  Valuing Property/Casualty  Insurance Liabilities 

Section C - Alternatives to Fair Value Accounting 

Introduction 

For many, the proposals by FASB and 1ASC present some radically new ways to value balance 
sheet items and to measure income for insurers. Most o f  the proposed changes have a reasonable 
theoretical basis, but a practical implementation of  the new methodology will undoubtedly 
present significant challenges to the actuarial and accounting professions. 

For example, as discussed in the Methods for Estimating Fair Value section, all of  the methods 
currently available to measure the risk margin suffer from various disadvantages. None of these 
methods is presently in widespread use for actual valuation of  balance sheet liabilities (however, 
some are commonly used for ratemaking). Although it is likely that more research will evolve 
given an accounting standard that requires a risk margin, it is difficult to see a route that will 
arrive at a widely adopted standard approach. Lacking a standard approach (with appropriate 
guidelines for the magnitude of  risk margins by lines of  business), it may be difficult to enforce a 
reliable comparison across insurers. 

It is also not clear that all the proposed changes will benefit the industry, its customers or 
investors. An example is the inclusion of the effect of  credit risk in the fair value of liabilities. 
This requirement implies that an insurer experiencing a lowered credit standing will see its 
earnings improve. This creates an incentive for companies to increase operational risk and 
thereby increase the insolvency cost to customers. (For a more detailed discussion of  credit risk, 
see the separate section of  this paper on this topic.) 

For these reasons, it is prudent to consider some alternatives to the full implementation of  the 
FASB and IASC proposals. The following are alternatives that we have considered or that have 
been presented in the accounting literature. We do not necessarily endorse any o f  them, but we 
list them here in order to enhance the discussion of  this topic. 

The Alternatives to Fair Value 

1. Undiscounted expected value 

Use the undiscounted expected value o f  the estimated liability payments as its accounting value. 
This alternative is essentially the status quo for property-liability insurers, although some may 
have historically used estimates o f  amounts other than the mean (such as the median or mode). It 
implicitly assumes that the risk margin equals the discount on the liability. Note that current 
statutory and GAAP accounting standards allow discounting for some losses (e.g., workers' 
compensation life pensions). However, the vast majority of  liabilities are not explicitly 
discounted. 

The FASB and IASC proposals indicate that the proper way to view the estimation of  uncertain 
cash flows is that the expected value of  the cash flows is the relevant measurement, Note that the 
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proposals do not directly address this issue with respect to the intended accounting treatment. 
However, the examples in the documents clearly show the preference for expected value. 

The actuarial profession has also recently adopted the expected value criterion. The new 
Actuarial Standard of  Practice No. 36, "Statements of  Opinion Regarding Property/Casualty Loss 
and Loss Adjustment Expense Reserves," specifically requires that the preferred basis for reserve 
valuation be expected value. 

Section 3.6.3 of  the ASOP states "In evaluating the reasonableness of  reserves, the actuary 
should consider one or more expected value estimates of  the reserves, except when such 
estimates cannot be made based on available data and reasonable assumptions. Other statistical 
values such as the mode (most likely value) or the median (50th percentile) may not be 
appropriate measures for evaluating loss and loss adjustment expense reserves, such as when the 
expected value estimates can be significantly greater than these other measures." For some, this 
may be viewed as a change to the previous status quo, while for others, this is merely putting in 
writing the current practice. 

The U.S. regulators' point of  view, as expressed in the NAIC Issue Paper No. 55, proposes that 
the reserves to be booked be "management 's  best estimate," although the term "best estimate" is 
not currently defined. 

When discussing "expected value" in this paper, we define the term to be without a risk margin, 
unless stated otherwise. 

Advantages 
• This is easiest to accomplish. There is no change to current accounting procedures. 
• The risk margin equals the amount of  the discount, so a risk margin is implicitly included 

in the liability value. 
• The risk margin is directly correlated with the amount of  the discount. This is intuitively 

appealing, since many believe that the amount of  risk is positively related to the length of  
the loss payment tail. 

• It is easy to measure the runoffof the  liability. 

Disadvantages 
• It fails to overcome the many problems associated with current accounting, including 

a) Incentive for accounting arbitrage, or transactions undertaken strictly for a favorable 
accounting result, despite no economic benefit. 

b) Misleading information for decision making, in that transactions that have a poor 
economic result may look better than those creating a favorable economic result. 

c) Items with significant long-term uncertainty may appear inestimable on an 
undiscounted basis, even when estimable on a present-value basis. 

d) Companies writing different types of  insurance would not be comparable. 
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It is a poor calculation of  either the risk margin or the present value of the liability. 
Hence, this alternative results in an accounting value for equity that may not adequately 
represent the value to investors, policyholders or other parties. 

2. Present value at a risk-free interest rate 

Use the present value of the estimated liability payments as the accounting value. This alternative 
is equivalent to the fair value, except for the risk margin and adjustment for credit standing. 
Some would view this as the best practical alternative to fair value, given the difficulties in 
estimating the risk margin and credit risk adjustment. For some lines of business, such as 
workers compensation, actuaries routinely calculate present values of the liabilities (although 
typically using a conservative discount rate). For other lines, the loss and LAE payments patterns 
needed for present values are usually a by-product of normal loss reserving or ratemaking 
practices. 

This approach is equivalent to effective-settlement measurement, discussed on page 22 of the 
FASB document "Using Cash Flow Information and Present Value in Accounting 
Measurements" (3-31-99). The effective-settlement method gives the liability value as the 
amount of assets, which when invested at a specified interest rate, will produce cash flows that 
match the expected liability cash outflows. 

Advantages 
• This method is feasible with current actuarial skills and practices. Many insurers 

currently discount loss reserves for some lines of business. Also, the requisite cash flow 
patterns are commonly produced in estimating the undiscounted reserves. 

• Discounting has widespread acceptance and is fundamental to the life/health industry. 
• There is no dispute over how the risk margin should be calculated and applied to 

individual companies. 
• Measuring and displaying the runoffofthe liability is not difficult. 

Disadvantages 
• it will require more work and therefore, expense compared to not discounting. 
• A risk margin is not calculated, so the fair value of the liabilities will be underestimated. 
• The transition to discounted reserves will expose insurers who have carried inadequate 

undiscounted reserves that are implicitly discounted (an example is environmental 
liability). When they are forced to explicitly discount all reserves, some insurers will 
further discount an already implicitly discounted reserve, rather than admit that the 
original reserve was inadequate. 
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Earnings will emerge closer to the time when the policy is written. (i.e., they are front- 
ended). This may provide incentives to writing risky long-tail business for companies that 
have weak earnings. 

3. Present value using an industry-standard risk-adjustment 

This alternative is similar to #2 above. It uses the present value of expected liability payments as 
its accounting value, but the present value is taken using a risk-adjusted interest rate. Here, risk- 
adjusted rate is defined as a rate that produces a present value higher than the present value 
obtained using the appropriate risk-free interest rate (as in #2 above). To accomplish this, the 
risk-adjusted rate must be lower than the risk-free interest rate. The difference between the two 
interest rates is called the risk adjustment. For some short-tail liabilities such as catastrophe loss 
exposure (embedded in unexpired contracts) an adjustment to the interest rate may not be 
appropriate. In these instances, a risk margin, as a percentage of the present value of  expected 
loss, can be added to the present value. 

This method is conceptually equivalent to the fair value (with no credit risk adjustment), except 
that the risk adjustment is determined on an industry-wide basis. Thus, in many cases, the 
circumstances of the individual insurer would be ignored in favor of  accounting simplicity. 

There are several approaches that could be applied to determine the industry-standard risk 
adjustment. A standard-setting organization (such as the AAA or NAIC) could promulgate risk 
adjustments by line of business or for all lines taken together. The organizati(~n might apply 
some of  the methods discussed in Section D and then use judgment to weigh the results in 
producing the risk adjustment(s). The adjustment could also be set to be the same for all lines, or 
to vary by line. 

Advantages 
• It is as nearly as easy as #2 above and it has all of  the same advantages plus others. 
• It produces a fair value for a typical company's  liabilities, since (an) appropriate industry- 

wide risk margin(s) are (is) provided. 
• Comparability between companies may be enhanced, since the risk margins (per unit of  

like liability) would be the same for each insurer. 
• Given the difficulties in accurately estimating risk margins at the industry level in this 

alternative, it remains questionable whether company-specific fair value estimates would 
be reliable enough for accounting purposes. Hence, this may be the most practical 
approach to implementing something akin to fair value. 

Disadvantages 
* It has the same disadvantages as #2 above except for the omission of a risk margin. 
• It may not be a very accurate or reliable calculation of  the risk margin for an insurer with 

atypical liabilities. If risk margins vary by line of business and a single risk margin is 
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applied to all lines, then insurers writing different types of insurance would not be 
comparable. 

• In the case where line-by-line standards are set, new lines may develop for which no 
standards yet exist. The standard setters may forever be trying to catch up to market 
developments. 

• There is no formal process to determine the standard-setting body. 

4. Mixture of lair value and alternatives 

Use fair value for some liabilities and one or more of the alternatives for other liabilities. 
Categories that possibly may require this treatment include unexpired risk (loss embedded in the 
unearned premium reserve, or UPR), catastrophe losses, environmental losses, ceded losses and 
loss adjustment expense. 

For example, estimating the fair value of UPR runoff can be very difficult when the valuation 
date occurs as a storm or major catastrophe is threatening, but the public release or reporting of 
that value is after the event, when the storm either did or did not hit. In this case, an accurate fair 
value as of the balance sheet date has little relevance at the time losses are reported. Note that 
retaining the current UPR calculation, and not reflecting fair value until the loss is incurred, 
would be a "mixture" that retains the current "deferral and matching" paradigm of GAAP 
accounting. 

Under this alternative, either the accounting standard-setting body would establish which 
categories get which treatment, or the insurer would decide on the basis of a materiality criterion. 

Advantages 

• This may be the most practical solution to the problems associated with full 
implementation of the fair value concept. 

• This alternative is flexible. It could be amended as actuaries, accountants and other 
professionals became more adept at measuring the proposed fair value components. 

Disadvantages 

• It may be difficult to decide which items should get the full fair-value treatment and 
which items should continue to be valued as they are now. 

• It could lead to inconsistent accounting of  like items. 
• There would be a possibility for accounting arbitrage, or "gaming" the system. 
• This alternative could lead to "cliff" changes in liabilities, if a given liability could 

change valuation standards over its life (such as when the loss component of the UPR 
becomes incurred). 
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5. Entity-specific measurement 

Use value-in-use or entity-specific measurement. These measurements substitute the insurer's 
assumptions for those that the marketplace would make. This measurement would be similar to 
fair value, but would use an insurer's assumptions regarding interest rate and risk margin. It 
could also reflect the entity's taxes, servicing cost, affiliate structure and financing costs. 
Assuming that credit risk were contemplated in the accounting standard, this measure could also 
incorporate the entity's estimate of  the value of  its expected default on its obligations. This type 
of  measurement is equivalent to assessing the value at which the entity would be indifferent 
between running off the liability and settling the liability in a current cash transaction. This value 
is not necessarily the same as the value that the market would accept for settling the transaction. 

In assessing market value of  a liability exchange, an important economic effect, called 
information asymmetry, is relevant here. In financial markets, the values of  many transactions 
depend on the amount and quality of  information regarding the transaction. Both parties to a 
market exchange do not always have access to the same information. An example is mortgage 
lending, where the originator of  the loan may have more detailed data on the credit-worthiness of  
the homeowner than an institution that has purchased the loan. If offered a small portfolio of  
loans, the loan purchaser will discount the price to guard against anti-selection. However, if the 
original lender offers its entire portfolio for sale, there is less risk of  anti-selection. Therefore, the 
market value of  a single loan chosen at random will depend on how many loans are sold. The 
same phenomenon will be present for insurance liabilities. In this case, we view the market 
transaction as an exchange to a reinsurer. 

Therefore, in order to satisfy value-additivity in estimating fair value of  an insurance liability 
(where an active market does not exist), one must assume that either the hypothetical market 
transaction occurs under symmetric information, or that the insurer's entire portfolio of  liabilities 
is traded in a market large enough to absorb it. Otherwise, the entity-specific measurement will 
most likely give a better market value than one obtained by an actual market transaction having a 
limited size in relation to the entire portfolio. 

Advantages 
• The insurer would have the most control with this approach. 
• An insurer with unique liabilities would be able to use the proper risk margin. 
• The method recognizes the current lack of a market for many insurance liabilities, 

including the large information asymmetry that impedes the existence of  an active 
market. Given this information imbalance, the "market" price is either not transferable to 
similar liabilities (due to individual portfolio differences), or is a naive price. 

• it focuses on the marginal contribution of  the item to the total value of  the firm, not the 
exit price for an item for which exit is not a viable alternative. Hence, it may be a more 
relevant measure to the firm. 
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Disadvantages 
• It might place an additional burden on individual insurers, who would need to derive their 

specific risk margins. 
• It would tend to produce liability values that are not comparable between companies. 

This would partially defeat the purpose of fair value. 
• The method would likely be subject to manipulation by the reporting entity to a greater 

extent than other alternatives. 

6. Cost-accumulation measurement 

This approach is discussed on page 22 of the FASB document "Using Cash Flow Information 
and Present Value in Accounting Measurements" (3-31-99). This method attempts to capture the 
incremental cost that the insurer anticipates it will incur in satisfying the liability over its 
expected term. This method typically excludes the markup and risk premium that third parties 
would incorporate in the price they would charge to assume the liability. 

For insurers, these items are the reinsurer's expenses and profit load associated with reinsuring 
the liabilities, in practice, measurement should be similar to that of the present value alternative 
(#2) above. Insurers would estimate the liability cash flows and discount them using a prescribed 
interest rate. 

Advantages 
• Same as #2. 

Disadvantages 
• Same as #2. 
• It can be dependent on the current corporate structure. For example, it may assume that 

existing affiliates providing services at marginal cost (to the affiliate) will always be 
around. This could result in substantial changes in value if the corporate structure 
changes (e.g., breakup of the parent conglomerate). 

• It may not adequately represent what the market would require to transfer the liability. 
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CAS Task Force on Fair Value Liabilities 
White Paper on Fair Valuing Property/Casualty Insurance Liabilities 

Section D - Methods of Estimating Risk Adjustments 

Section introduction and scope 
The previous sections discussed general conceptual issues relative to fair value accounting and 
the principle alternatives to fair value for insurance liabilities. No detail was given as to how the 
fair value would actually be calculated. This section takes the next step, discussing specific 
methods that may be used in calculating the fair value of  insurance liabilities. 

Risk adjustments 
Fair value estimates reflect expected cash flows, the time value of money and an adjustment for 
risk. This section focuses on the last of  these components, the risk adjustment. The methods 
discussed here assume that expected cash flows and risk-free discount rates are already available. 
For the purpose of  all subsequent discussion the starting point for the discount rate before risk 
adjustment is the risk-free rate. 

Risk to the insurer 
All the methods discussed here focus on the riskiness of  the insured liabilities to the insurer, not 
the risk that the insurer will default on the liabilities. This latter risk, called credit risk, is very 
controversial as to its role in estimating the fair value of liabilities. A s  such, it.is being addressed 
separately, in Section H. Therefore, while some of the methods discussed below may implicitly 
reflect this credit risk, quantifying that risk is not the intent of  this section. 

Risk to loss (and loss expense) liabilities 
The risk adjustments discussed here generally apply to two major liability categories on the 
balance sheet: 1) liabilities already incurred (for example, loss reserves) and 2) liabilities not yet 
incurred for policies already written. The latter liabilities are called the unearned premium (or 
"unexpired policy") liabilities Although all the other methods we describe for liabilities already 
incurred could be used for, the unearned premium liabilities, we provide a separate discussion at 
the end of  this section on methods for computing their risk margins. 

Other balance sheet insurance items, such as contingent commissions and deductible recoverable 
amounts may also be subject to a risk adjustment in estimating their fair value. The risk 
adjustment for these items is not addressed in this section, although some of  the methods 
discussed here may also be feasible for estimating their fair value. 

This section begins with a conceptual discussion of  risk margins, including a discussion of  
diversifiable versus nondiversifiable risk. Next, the methods listed below are presented. These 
presentations are meant to give the reader a brief conceptual overview of  the methods (a more 
involved discussion is included in the appendices). At the end of  this section, a chart comparing 
the listed methods is provided. 
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(Note: Neither the inclusion o f  a method, exclusion o f  a method, nor the order of  the methods 
listed is meant to imply any preference or priority by the task force. Methods were listed i f  
members o f  the task force felt it deserved consideration, whether or not consensus was 
achieved) 

1) Capital Asset Pricing Model (CAPM) based methods, where the liability beta is 
calculated from insurers' asset and equity betas. 

2) Internal Rate of  Return (IRR) method, where the risk adjustment is derived from cash 
flow and rate of  return on equity (ROE) estimates. 

3) Single Period Risk-Adjusted Discount method, where the calendar year ROE is used to 
find a risk adjusted interest rate. 

4) Methods that use historical underwriting results to derive a risk adjustment. 

5) Methods using probability distributions of aggregate losses. 

6) Determining fair value estimates from reinsurance transactions. 

7) Direct estimation of liability market values based on share prices of  property-liability 
insurance companies. 

8) Transformed distribution methods, where the probability distribution of liability 
outcomes is altered to produce a higher expected value. 

9) Naive methods using rules of  thumb. 

I 0) Other methods. 

Conceptual overview - risk margins 

The IASC (paragraph 243) and FASB (Concept statement 5 paragraphs 62 - 71) documents 
require the use of a risk margin when measuring the fair value of  an uncertain liabilities (such as 
an insurer's liabilities) by discounting the expected liability cash flows. The finance and actuarial 
literature generally support this approach. (Butsic, Cummins, D'Arcy, and Myers-Cohn.) 

The economic rationale for a risk margin is that a third party would not accept compensation for 
a transfer of  liabilities if such payment reflected only the present value of the cash flows at a 
risk-free interest rate. The acquiring entity would get an expected risk-free return while bearing 
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risk. A market exchange of  the liability would therefore require a premium or risk margin over 
and above the present value of  the liability discounted at the risk-free rate. 

In this section we discuss various possible feasible methods for estimating a risk margin. All o f  
these methods have been used for estimating risk margins, either for direct application to balance 
sheet liabilities or in ratemaking. Financial theory indicates that the same principles for 
estimating the risk margin in pricing would also apply to a fair valuation of  outstanding 
liabilities. For certain kinds of  short tail liabilities, such as claim liabilities associated with 
catastrophes, the risk margins for pricing may be much larger than the risk margins for liabilities, 
however. This is because, once a catastrophe has occurred the uncertainty regarding future 
payments may be relatively modest, compared to the quite large level of  uncertainty before the 
event has occurred. 

There are two major paradigms used to compute risk loads that are represented in this paper: the 
finance perspective and the actuarial perspective. These two paradigms differ in their treatment 
of  diversifiable versus nondiversifiable risk. In the context of  liability fair value, diversifiable 
risk is defined as risk that can be reduced, per unit of  liability volume, as more volume is added. 
For example, if two statistically independent risks are combined, their joint risk will be reduced 
due to the tendency of  bad outcomes from one being offset by good outcomes in the other. In 
contrast, nondiversifiable (or systematic) risk is defined as risk that cannot be reduced, per unit 
of  liability volume, as more volume is added. Here, bad or good outcomes in one risk are 
matched with the same result in the other. 

The amount of  diversification depends on the correlation between the units being added. This 

L 2 +0.2 o'(x+ y) = q~a~ ~ +2per o" 

effect is evident in the square root rule for summing standard deviations: 
Where p is the correlation between x and y, a ,  is the standard deviation o fx  and ay is the 
standard deviation o f  y. 

Adding more units to a portfolio may or may not reduce its risk. If the correlation between the 
units is one, then there is no reduction in risk per unit volume from adding more of the units. In 
this case the standard deviation o f  the sum will equal the sum of  the standard deviations, and 
when this is normalized by dividing by the mean of  the portfolio, the risk per unit is unchanged. 
In investing, for instance, adding more shares of  a given company's  stock to one's portfolio will 
not reduce the portfolio's risk, since the shares added will be perfectly correlated with the shares 
the investor already owns. 

If the correlation between the units is less than one, then there is a reduction in risk per unit 
volume from adding the units. Thus, if an investor adds to the portfolio shares o f  a company not 
already in it, the risk should decline since the correlation o f  the new stock with stocks in the 
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portfolio should be less than one. If the correlation is negative then there can be a significant 
reduction in risk. 

An example of diversifiable risk from insurance is the random occurrence of losses - -  where the 
fortuitous amount of one claim does not influence the amount of another claim. An example of 
nondiversifiable risk from insurance is medical inflation, where a change in the cost of medical 
care will simultaneously effect the value of general liability and workers compensation reserves. 
Another example is parameter risk, where the mean (or other parameter) of a loss distribution is 
unknown. Here the uncertainty in the mean affects all losses included in the distribution. 

The finance perspective: 
The classical finance perspective, as reflected in such methods as CAPM and internal rate of 
return, posits that an investor is compensated only for that risk that is not diversifiable. 
Diversifiable risk is not rewarded in the financial markets, because an investor can eliminate this 
risk by holding a diversified portfolio of securities. The finance perspective quantifies 
nondiversifiable risk, which is also called systematic risk, by measuring the correlation of a 
security's return with the market's return. From the finance perspective, if an investor owns a 
sufficiently diversified portfolio of securities, the only portion of the securities' return that 
cannot be diversified away is due to its co-movement with the market. Thus, much of the 
finance literature tends to treat systematic risk and covariance with the stock market as 
synonymous, and ignores other possible approaches to defining and quantifying diversifiable 
risk) s For determining risk loads in insurance, this may translate into measuring the correlation 
between insurance companies' returns from underwriting and market returns on its shareholder's 
equity. 

The actuarial perspective: 
In determining risk loads, what has come to be known as the actuarial perspective, in general, 
looks at the contribution of a policy to the total risk of the enterprise. (Risk loads based on 
aggregate probability distribution reflect the actuarial perspective.) The contribution to total risk 
will have a component that is diversifiable (process risk) and a component that is 
nondiversifiable (parameter risk). For many lines, especially in large insurers, the component 
due to process risk will be small, however, due to the law of large numbers. The actuarial 
perspective views the nondiversifiable or parameter risk component as that portion of total 
uncertainty due to the enterprise's inability to accurately measure its true liability and expense 
costs. While parameter risk may sound analogous to systematic risk, as both are viewed by their 
users are nondiversifiable, they are different concepts. Systematic risk is measured by 
calculating correlations with market returns. Parameter risk, where quantified, is measured 
through the use of Bayesian statistics. 

ts Certain approaches, such as Arbitrage Pricing Theory allow factors other than beta to be used in the quantification 
of risk. Except for some very recent research work, these approaches have not influenced the finance-based 
methods used to compute risk loads in property and casualty insurance. 
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The characterization of  the finance approach as quantifying only nondiversifiable risk and the 
actuarial approach as including both diversifiable and nondiversifiable risk is an 
oversimplification. Stulz 19 points out that in the real world, total risk often matters, and costs 
incurred by companies to control total risk are rewarded in the financial markets and the failure 
to do so may be punished. For some kinds of insurance, such as catastrophe insurance, it could 
be difficult to find a market unless some kinds of "diversifiable" risk were rewarded. Property 
catastrophe risk is diversifiable in a perfect market, but the mechanisms for doing so are so 
costly that in practice it is only partially diversifiable. As in the case of formally 
nondiversifiable risk, the whole industry is in the same boat, so the market treats the risk as 
systematic and policyholders in catastrophe-exposed areas pay a risk premium for insurance 
coverage. If an efficient means of diversification were to arise, then that situation would change. 

While the actuarial based methods often explicitly incorporate process (diversifiable) and 
parameter (nondiversifiable) risk components into the risk load formulas, some of the finance- 
based methods, such as internal rate of return, may implicitly incorporate this risk as part of the 
total return on equity required by an insurance company. 

The discussion surrounding diversifiable versus nondiversifiable risk is still evolving. The 
reader should be aware that differing views exist as to whether only diversifiable, or both 
diversifiable and nondiversifiable risk should be included in risk adjustments. The reader should 
also be aware that there are also very different approaches to measuring the nondiversifiable 
component. 

19 Stulz, Rene, "Whats wrong with modern capital budgeting?", Address to the Eastern Finance Association, 
April, 1999 
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Method 1. The CAPM Aonroach 
(Note: references to specific authors mentioned below and in the discussion of  subsequent 
methods can be found in the Appendix.) 

CAPM is the method used in Massachusetts rate filings in the Automobile and Workers 
Compensation lines. Myers and Cohn developed the underlying theory. 

The method equates the present value of  the premium to be charged on a policy to the present 
value of  the losses plus the present value of  the underwriting profits tax plus the present value of  
the tax on invested surplus and premium. 

PV(P) = PV(L) + PV(UWPT) + PV(IT) ,  

where P = Premium, net of  underwriting expenses 
L = losses plus loss adjustment expenses 
UWPT = underwriting profits tax 
IT = tax on investments 

Losses are discounted at a risk-adjusted rate. The premium portion of  underwriting profits is 
discounted at a risk-free rate and the liability portion is discounted at a risk-adjusted rate. 
Investment tax is discounted at the risk-free rate. The risk-adjusted rate used in the calculations is 
derived from CAPM. 

rL = r /  + /3, t ' r .  - r r )  

where rL = risk-adjusted rate 
rt = one period risk-free rate 
~. = Cov(rL,rm)/Var(rm) = the liability or underwriting beta 
r,, = expected rate of  return on market portfolio 

13L, the underwriting beta, is a measure of  the covariance between the underwriting profits for a 
line of  business and the stock market. It represents the systematic risk to the insurer for writing 
the policy. Note that I~L is usually considered to be negative. Otherwise insurance companies 
would incur exposure to risk for a reward equal to or less than the risk-free rate, an illogical 
conclusion. 

Although the Myers-Cohn approach is typically applied in ratemaking to compute risk adjusted 
premiums for new policies, the risk-adjusted discount rate from the calculation can be used to 
discount outstanding reserve liabilities as well. 
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There are at least three approaches to computing fit. The first method is broadly similar to the 
direct estimation technique (Method 7 of  this section). Here, a time series of  publicly traded 
insurer data is analyzed. A beta of equities is determined from insurance company stock prices. 
A beta of assets is determined from a weighted average of insurance company asset betas. The 
liability beta is determined by subtracting the asset and equity betas, weighted by their respective 
leverage values. The risk margin, as a reduction of the risk-free rate, equals the liability beta 
times the market risk premium. This is the method used in Massachusetts. 

The second method uses accounting data to measure the covariance between insurance 
• - 20 . underwntmg returns and the market. A third CAPM-based approach measures beta for a line 

of  business by quantifying the covariance of that line's underwriting return with the return for all 
property and casualty lines. 21 

A numerical illustration of the method is shown in the Appendix. 

Advantages 
• The method has actually been done. In Massachusetts it is the standard method used in 

the workers compensation and personal auto, with risk margins being positive and stable. 
Note that this has only been applied to lines that are relatively homogeneous, and where 
public data is generally available. 

• The method is objective and the analysis is reproducible. 
• The method has been in use for over a decade and has been reviewed by many 

economists. 

Disadvantages 
• Several stages of estimation can produce measurement errors. 

a) Some insurers in the data are also life insurers; carving them out requires estimating 
the equity beta of the life operation. 

b) The liabilities may be under- or overstated in the financial statements. 
c) Mutual insurers, nonpublic companies, self insurers and captives are not included in 

the analysis, introducing a potential bias 
• Intangible assets like franchise value could distort the results. Another similar problem is 

that the present value of income taxes is embedded in the liability value and cannot be 
easily separated from it. 

• Measurement errors on the beta for assets have a leveraged effect on the measurement of 
underwriting betas. 

• It relies on the CAPM model, which may not accurately predict returns for insurance 
firms, as discussed below. 

2° Kozik, Thomas, "Underwriting Betas-The Shadows of Ghosts," Proceedings of the Casualty Actuarial Society / 
(PCAS) LXXXI, 1994, pp. 303-329, 
21 Feldblum, Shalom, "Risk Load for Insurers", PCAS LXXVII, 1990. pp. 160- 195 
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The CAPM beta has come under considerable criticism recently in the finance literature. CAPM 
only recognizes nondiversifiable risk, assuming an efficient, friction-free market. The magnitude 
of transaction costs to diversify an insurance portfolio violates the friction-free assumption, 
casting doubt as to the applicability of CAPM to valuing insurance liabilities. 

Fama and French have shown that factors other than beta contribute significantly to the 
explanation of company stock returns. 22 Their work has caused a great deal of discussion in the 
finance community about the use of CAPM and beta for estimating equity returns and computing 
cost of capital. Alternatives to CAPM that look CAPM-like but incorporate factors other than 
beta into the determination of the risk premium have attempted to address some of the 
deficiencies of the CAPM model. For instance, Fama and French have presented a method for 
deriving costs of equity that uses two additional factors as well as beta. 23 Some of the models 
that appear to be generalizations of CAPM and use factors other than beta are better known as 
examples of the Arbitrage Pricing Model. An introduction to this more general approach is 
provided by D'Arcy and Doherty. 24 

Members of the actuarial community (as opposed to members of the finance community) have 
also criticized CAPM approaches. Much of tbe criticism focuses on the unreliability of estimates 
of underwriting betas as opposed to estimates of equity betas examined by Fama and French. 
Kozik 25 notes that a number of authors have measured the underwriting beta to be zero or 
negative (i.e., no risk load necessary on insurance). He provides a detailed discussion of the 
flaws in current methods of measurements of the underwriting beta, which can cause such results 
to be obtained. 

Note that much of the underlying theory of CAPM is widely used and accepted, although the 
actual mechanisms for measurement have been criticized. Some of the criticisms of CAPM have 
been addressed in extensions of CAPM such as contained in the Automobile Insurance Bureau's 
Massachusetts Rate Filing (1998). Extending CAPM to address some of its limitations is 
currently an area of active research. 

It should be noted that many of the limitations of  the CAPM approach may apply to other 
methods presented in this paper, whenever those methods use CAPM to determine a rate of 
return. 

22 Fama, Eugene and French. Kenneth, "The Cross Section of Expected Stock Returns" Journal of Finance, Vol 47, 
1992, pp. 427--465 
23 Fama, Eugene and French, Kenneth, "The Cross Section of Expected Stock Returns" Journal of Finance, Vol 47, 
1992, pp. 427.-465 
24 D'Arcy, S. P., and Doherty, N. A, "The Financial Theory of Pricing Prnperty-[Aability Insurance Contracts," 
Hut:10ner Foundation, 1988 
23 Kozik, Thomas, "Underwriting Betas-The Shadows of Ghosts," Proceedings of the Casualty Actuartal Society 
(PCAS) LXXXI, 1994, pp. 303-329. 
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The Pricing-Based Methods (Methods 2 and 3~ 

Under this general category of methods, the fair premium for a group of  polices (which could be 
those of  a line of  business or an entire company) is first determined, in this calculation, the value 
of  all nonliability premium components (such as commissions and general expenses) is excluded 
from the fair premium calculation. The resulting premium amount, by definition, is the fair value 
of the liability (losses and loss adjustment expenses). Since the liability fair value and its 
expected payments are known, the implicit risk-adjusted interest rate at which the payments are 
discounted can be readily found. Subtracting this value from the risk-free rate gives an estimate 
of  the risk adjustment to the risk-free rate. Note that this approach can be used to compute a 
dollar-value risk load (to apply to liabilities discounted at the risk-free rate) rather than an 
adjustment to the discount rate. 

This method can be applied to any prospective pricing model that uses expected cash flows. The 
most prevalent cash flow approaches are the internal rate of  return (IRR) and the risk-adjusted 
discount (RAD) models. 

It should be noted that the standard pricing-based methods give a risk margin that is a composite 
of  the risk characteristics of  liabilities already incurred and the unexpired policy liability. As the 
time since policy issuance increases, there may be a significant information gain in a book of  
liabilities (e.g., the insurer knows more about claims once they are reported) This effect is most 
pronounced for property insurance with significant catastrophe potential. To separately measure 
the risk margins in the reserve and unexpired policy portions of  the insurer's liabilities, the 
pricing methods can be modified. For example, in the IRR model, the capital requirement and/or 
the required ROE may be different per unit of  liability for the two liability types. 

M e t h o d  2 - T h e  I R R  method 

The IRR method is used by the NCCI in workers compensation rate filings. 26 It does not directly 
produce a risk mar~in, but it can easily be adapted to do so. The underlying theory is standard 
capital budgeting. 

Under the IRR method, a cohort of  policies, written at the same time, is modeled over time until 
all claim payments are made. At each stage (usually quarterly or annually) the cash flows 
(premiums, losses, expenses, income taxes and investment returns) and balance sheet values are 
estimated. Capital is added based on capital allocation rules, frequently as a fixed proportion to 
liabilities. The application o f  these capital allocation rules results in an initial amount of  capital, 

26 Cummins, L David, "Multi-Period Discounted Cash Flow Ratemaking Models in Property-Liability Insurance," 
Journal of Risk and Insurance, March 1990, Volume 57:1, pp. 79-109. 
27 Bn~aly, Richard A. and Stua~ C. Myers, 1996, "Principles of Corporate Finance (5th Edition)", McGraw-Hill, 
New York 
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then a subsequent capital flow, based on the amount of  additional or withdrawal of  capital 
necessary to maintain the capital allocation assumption at each point in the policy flows. 

When the internal rate of  return on the capital contributions and withdrawals equals the required 
rate of  return on the capital (equity), then the fair premium is obtained. 

The inputs to the IRR method are the capital allocation rules (e.g., the required amount of  equity 
per unit of  liability), the expected payments pattern of the policy flows, the investment return o n  

cash flows, the income tax rate and the required return on equity. Note that the expenses and the 
premium cash flows need not be included in this calculation, since we are only trying to value 
the liability itself. 

The required ROE can be determined using a variety of  approaches. A simple approach often 
used by insurance companies is to select a rate of  return based on examining actual historical 
rates of  return on equity for insurance companies. Roth advocates this approach. 2s Another 
approach is to use CAPM to estimate the industry-average insurer equity beta and then to derive 
the appropriate ROE, given beta. An alternative way to estimate the required ROE is to use the 
dividend growth model, which has been documented in rate filings. Still another approach might 
use the "'hurdle rate" for an insurer that is derived from its experience raising capital. 

The required capital could be based on the company's internal capital allocation rules. Absent 
this, industry-wide "rules of  thumb" or rating agency dictated norms might be used. Note that 
the capital typically used in this calculation is "required" or "target" capital, not actual capital. 
Care must be taken where the capital allocation assumption is dependent on the required ROE 
assumption. 

An additional complication arises where fair value rules require the use of "market assumptions" 
wherever possible, over individual company assumptions. This could imply that the capital 
allocation rules that drive the market price (if one can be said to exist) should be used instead of  
the company's own internal capital assumptions. 

The investment return under a fair value paradigm typically is the set of  currently available 
market yields for investments. This may be complicated by investment in tax-exempt 
investments, especially where the company has significant tax advantages or disadvantages 
relative to the market. Many users of  IRR models make the simplifying assumption that all 
investments are made in taxable securities. 

A numerical illustration of  the method is shown in the Appendix. 

za Rolh, R., "Analysis of Surplus and Rates of Return Using Leverage Ratios,", 1992 Casualty Actuarial Society 
Discussion Paper Program - Insurer Financial Solvency, Volume I, pp 439-464 
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Advantages 

• The IRR is commonly used to price insurance products. The extension to calculate risk 
margins is straightforward and will produce positive and stable risk margins. 

• The method is conceptually simple and easy to explain. 
• The method is objective and the analysis is reproducible. 
• The method will work at the individual insurer level. 

Disadvantages 

• All of  the methods for determining the required return on equity have problems and they 
can produce different answers: 
a) A required ROE based on historical returns depends on the historical period chosen. 
b) A required ROE based on CAPM is subject to the limitations and criticisms that apply 

to CAPM (see Method # I above). 
c) The dividend growth method requires some subjective estimation - -  it will not work 

for companies with erratic or no dividends. 
d) Internal management "hurdle" rates, based on a company's experience in raising 

capital, are very subjective and may not be consistent with the market value approach 
under fair value. 

• The number of  steps required makes this a fairly indirect method. 
• Estimating the present value of  income taxes requires a modification to the method. 
• A required capital estimate is needed. There is no agreed upon method for doing this, and 

no consensus as to whether it should be the company's or the industry's capital allocation 
or requirement. 

Method 3 - The Single-Period ReID (Risk-Adiusted Discount) method 

This method shares some features of  the above IRR method. It is based on the risk-adjusted 
discount method. 29'3° Here the relationship between the required ROE, the expected investment 
return, the income tax rate and the capital ratio is used to find the implied risk-adjusted interest 
rate. Like the above IRR method, the balance sheet values are fair value quantities. It is simpler 
than the IRR model since the risk adjustment is derived directly from a formula (shown in the 
Appendix), rather than by an iterative process. 

The inputs to the single-period RAD method are the required amount of  equity, the investment 
return on cash flows, the risk-free rate, the effective income tax rate and the required return on 

29 Butsic, Robert, "Determining the Proper Discount Rate for Loss Reserve Discounting: An Economic Approach," 
1988 Casualty Actuarial Society Discussion Paper Program - Evaluating Insurance Company Liabilities, pp. 147- 
188. 
J°D'Arcy, Stephen P., 1988, "Use of the CAPM to Discount Property-Liability Loss Reserves", Journal of Risk and 
Insurance, September 1988, Volume 55:3, pp. 481~1.90. 
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equity. The required ROE can be determined using one of  the methods described above for the 
IRR approach. The required capital and the investment return are estimated using historical 
industry data, or from one of  the alternative methods described above for the IRR approach. Note 
that the required capital needs to be consistent with the fair value of  the liabilities. For example,  
i f  the fair value of  reserves were less than a non-fair value such as ultimate undiscounted 
liabilities, the required capital would go up. 

The simplici ty of  this method arises from the assumption that the risk adjustment (as a reduction 
to the risk-free rate) is uniform over time. Thus, evaluating an insurance contract over a single 
period will  be sufficient to determine the risk adjustment. To illustrate the method, we assume 
the following: 

• capital is 50% of  liability fair value, 
• required ROE is 13%, 
• expected investment return (EIR) is 7%, 
• risk-free rate (RFR) is 6%, 
• income tax rate is zero, and 
• fair value for the liability is $100 at t ime zero. 

The formula for the risk adjustment is: 

risk adjustment = capital ratio x (ROE EIR) + RFR - EIR 

= 0.02 0.5 x (0.13 0.07) +0.(}6 0.07 

The formula for the resulting risk-adjusted interest rate is: 

risk-adjusted interest rate = RFR - risk adjustment 

= 0.04 = 0.06 - 0.02 

To see that this works,  note that the beginning assets are the fair premium for the liability of  
$100 plus the required capital of  $50. This amount grows to $160.50 (i.e., $150 x 1.07) at the 
end of  the year. The expected amount of  liability grows at the risk-adjusted rate of  4% to $104. 
Subtracting this amount from assets gives $56.50, which represents the required 13% return ( 
56.5 / 50 = 1.13). 

The income tax rate, however, is not zero, so the formula for the risk adjustment (see the 
Appendix) is somewhat more complicated than shown here. The Appendix provides the 
complete formula and also gives a numerical  illustration of  the method. 
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Advantages 
• The method is very simple and transparent. It is easy to explain and to demonstrate with a 

spreadsheet. 
• The method is reliable, robust and will produce positive and stable risk margins. 
• Inputs are presently available from published sources. For example, many rate filings 

with state insurance departments have estimates for required ROE and capital leverage. 

Disadvantages 
• The method will only produce an industry-average or company-average risk adjustment 

(to the risk-free rate). It would be difficult to apply the method to produce specific lines 
of  business risk adjustments. 

• This method has the same disadvantages relative to the selected ROE as the IRR method. 
• This method has the same disadvantages relative to the selected "required capital" as the 

IRR method. 
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M e t h o d  4 - Methods  B a s e d  on Underwrit ing Data  

A pragmatic approach to developing liability risk adjustments is to use published underwrit ing 
data. Over  a sufficiently long period of  time companies are assumed to earn enough in profit on 
the policies they write to be adequately compensated for the risk they bear. This method 
assumes that the historical returns indicate the true market  perception of  the fair profit for 
bearing insurance risk. The historic profit or risk load can then be related to the risk adjustment 
required for discounted liabilities. 

Typically,  risk adjustments based on underwrit ing data use information published in insurance 
companies '  annual statements. To obtain stable results by line of  business applicable to a typical  
company, data aggregated to industry level by sources such as A. M. Best can be used. 

The published literature on risk adjustments using underwrit ing data primarily focuses on 
est imating a risk adjustment to the factor used to discount liabilities. Alternative methods for 
computing risk-adjusted discount rates use a CAPM approach to compute the risk adjustment. 

Although we focus on using underwrit ing data to compute risk-adjusted discount rates, the same 
data can be used to derive an additive risk load instead. 31 Risk adjustments incorporated through 
the discount rate are discussed first, followed by discussion of  risk adjustment via an additive 
risk load. 

Using Underwrit ing Data to Adjust  the Discount Rate 

Butsic introduced the concept of  using risk adjusted discount rates to discount insurance 
liabilities. 32 He argued that a liability whose value is certain should be discounted at a risk free 
rate. The appropriate risk free rate to use for the certain liabilities is the spot rate for maturities 
equal to the duration of  the liabilities. I f  certain l iabili t ies are discounted at the risk free rate, 
then uncertain l iabili t ies should be discounted at a rate below the risk free rate. The formula for 
the risk-adjusted rate is: 

3t There are several different ways to make a risk adjustment. One way is through an additive risk load to the 
otherwise calculated present value estimate (based on risk-free discount rates). A second is by discounting the 
expected cash flows using a risk-adjusted discount rate. A third is by adjusting the individual expected cash flow 
amounts for each time period, replacing each uncertain amount with the certainty equivalent amount (i.e. the fixed 
amount for which the market would be indifferent between it and the uncertain amount being estimated.) A fourth is 
by adjusting the timing of the estimated cash flows (sometimes used when timing risk is thought to dominate 
amount risk). 
32 Butsic, Robert, "Determining the Proper Discount Rate for Loss Reserve Discounting: An Economic Approach," 
1988 Casualty Actuarial Society Discussion Paper Program - Evaluating Insurance Company Liabilities, pp. 147- 
188~ 
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iL=i -e (R- i ) ,  

where iL = the risk-adjusted discount rate for liabilities, 
i = the risk free rate for duration equal to the duration of  the liabilities, 
e = a leverage factor, equal to surplus divided by the present value of  liabilities, 

(R - i) = the market risk premium, i.e., the excess of  the market's return over the risk-free 
rate. The market return is usually measured as the return on a stock market index 
such as the S&P 500 or the return for all NYSE stocks, but other interpretations 
are possible. 

The above term "e (R - i)" represents the adjustment to the risk free rate for the riskiness of  the 
liabilities. 

There is an analogy between this formula and that for a company's cost of  equity based on the 
CAPM. 

ie=i+ ~c(R- i )  

where iE = the cost of  equity for a company, 
i = the risk-free rate, 
tic = the company's beta, based on the covariance between the return on the company's 

stock and the market's return, 

The specific procedure for computing the adjustment is described in detail in the Appendix. 

Note that the method's results can be very sensitive to the historical time period used as the source 
of  the underwriting data. For example, the selection of  an historical period that includes a major 
market disruption, such as a workers'  compensation crisis, major catastrophe, or mass tort eruption, 
can produce drastically different indications than a time period that excluded this major disruption. 
Thus, it is necessary to consider how long a time period is required to obtain stable and reasonable 
results and whether the method is unstable over time, The longer the historical period used for 
computing the risk adjustment, the more stable the results will be, but the less likely they are to 
reflect current trends in the underwriting cycle or business environment. The shorter the historical 
period used, the more likely it is that the adjustment will reflect the current environment, but at a 
cost of being more unstable and more susceptible to infrequent random events such as catastrophes 
(or the short-term absence of  the long-term catastrophe or large loss risk). 

An additional effect that must be considered is the effect of  taxes. As shown by Myers and Cohn 33 

JJ Myers, S and Cohn, R, "A Discounted Cash Flow Approach to Property-Liability Rate Regulation," Fair Rate of 
Return in Property-Liability Insurance, Cummins, J.D., Hamngton S.A., Eds, Kluwer-NijhoffPublishing, 1987, pp. 
55-78 
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and Butsic 3+, taxes increase the premium needed to obtain a target rate of  return and therefore 
decrease the effective risk-adjusted discount rate. This effect is embedded in the data used to derive 
the risk-adjusted discount rate. It might be desirable to segregate this effect from the pure risk 
adjustment. A procedure for doing this is discussed in the Appendix. 

Advantages 
• The approach produces an adjustment to the discount rate without requiring the 

computation o f  a liability beta. As discussed above in the CAPM method for estimating a 
risk adjustment, the liability beta is one of the more controversial features of  the CAPM 
approach. 

• The approach does not require the computation o f  a leverage ratio 
• The approach is relatively easy to implement. Spreadsheets can be placed on a web site 

containing a sample calculation 
• The data required, such as Bests Aggregates and Averages, is relatively inexpensive and 

readily available 
• A paper presenting the approach has been included in the syllabus of  the Casualty 

Actuarial Society for over 10 years. A description of  this technique is, therefore, readily 
accessible to actuaries (or anyone else who accesses the CAS web site.) 

• This method can easily be applied to individual lines where annual statement data is 
available. 

Disadvantages 
• Results can be very different depending on the historical time period used. This 

committee's research indicates that changing the time period used for the calculation in 
one instance changed the all-lines risk adjustment from 4.5% to 1.0%. The committee 
believes that the results for recent historical periods reflect certain well-known market 
disruptions such as the impact o f  the recognition of  asbestos and environmental 
liabilities. Also, the industry has been in a protracted soft market, which has depressed 
underwriting profitability in the recent historical data. 

• Results for a single line can be unstable. Some lines are unprofitable for extended 
periods o f  time and this method may not produce a positive risk load. Useful data for 
lines with very long tails (or without industry data available) may be a problem+ 
Examples of  such include medical malpractice-occurrence and directors & officers 
(D&O, for which industry accident year data may not be available). 

• Pricing adequacy may vary by line based upon individual line characteristics such as 
regulatory environment, market conditions, geography, etc. An impact of  this is cross 
subsidization of lines where some lines are undercharges at the expenses of  other lines. 
Thus the results for a single line, even over relatively long time periods can be 
misleading. (Our research showed that at least one regulated line had a negative risk 
adjustment using this approach for 30 years.) 

:~ Butsic, Robert P., 2000, Treatment of Income Tax~ in Present Value Models of Properly-Liability [ n s ~ e ,  
Unpublished Working Paper. 
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• Results will be affected by "smoothing" in published financial numbers. 
• The method requires accident year data to do the computation correctly, or else it is 

susceptible to distortion from events with long-term latency issues, such as mass torts or 
construction defect. 

• Results using individual company data may be too volatile, hence, the method has usually 
been applied mostly to industry data. 

Computing Additive Risk Loads Instead of  Risk Ad[ustments to the Discount Rate 

Since the procedures described here focuses on computing a risk adjustment to the discount rate, 
the procedure to compute an additive, dollar-value risk load must convert the risk-adjusted rate 
into a risk load (as a ratio to the liability value). However, it is possible to compute the risk load 
directly using the same data for computing a risk adjustment to the discount rate. This approach 
might be preferred for a short tail line. 

One approach to computing an additive risk load is simply to calculate the ratio of  the profit on 
the policies at the beginning of  the period to the average discounted losses, where losses are 
discounted at a risk-free rate rather than a risky rate. Thus, the risk load (expressed as a 
percentage of  the present value losses) is equal to the present value of  the premiums minus the 
present value of  expenses minus the present value of  the losses (plus loss adjustment expenses) 
divided by the present value of the losses. All quantities are discounted at the risk-free rate. 

Unlike the adjustment to the discount rate, this risk load would not be meaningful unless 
computed by line, since the duration of the liabilities varies by line. An example of this 
computation is shown in the Appendix. 
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Mc~hqd ~ - Actuariql Distribution-Based Risk Loads ~5 

The evolution of  this approach relative to pricing is given first, followed by the extension to the 
valuation of  liabilities. 

Pricing context 

Probabili ty-based actuarial risk loads are among the oldest procedures developed by actuaries for 
est imating the risk adjustment to losses. These approaches continue to develop, even as other 
approaches, which largely evolved from other disciplines (such as economics and finance), 
continue to add to the tools used for deriving risk loads. Distribution based loads arose in the 
context o f  insurance pricing to fill the perceived need to apportion the targeted underwrit ing 
profit to different classes of  business according to their  actual riskiness, as described 
mathematical ly  by the probability distribution of  the loss. 

The first approaches to the problem focused on the volatil i ty of  the individual loss, characterized 
mainly by the severity distribution. In 1970, Hans Biihlmann set forth three possible principles 
that might  be applied to the problem: 

• The Standard Deviation Principle: Risk Load = k SD[Loss], 
• The Variance Principle: Risk Load = k Var[Loss],  
• The Utili ty Principle: U(Equity) = E[U(Equity + Premium - Loss)]. 

Actuarial distribution-based risk loads often invoke collective risk theory to explain the 
derivation of  the r isk load. Collective risk theory provides a model of  the insurance loss 
generating process that can be used to derive aggregate probabili ty distributions. The theory also 
allows derivation of  the distribution parameters such as standard deviations or variances, which 
are used in the risk load formulas. Recent developments in collective risk theory have given rise 
to an additional principle used to derive risk loads: 

• The expected policyholder deficit (EPD 36) principle: Risk Load = ~. Surplus Requirement. 

Surplus is determined based on the expected policyholder deficit, which is derived frorn the 

3s This exposition draws heavily on Glenn Meyers" September 18, 1998 presentation to Casualty Actuaries of New 
England (CANE'). 
36 The "expected policyholder deficit" is the total expected level of uncompensated losses over the total expected 
level of all losses, for a given level of assets (reserves plus surplus) supporting a risk For example, assume 99% of 
the time losses are only $1,1% of the time they are $100, and the total level of assets supporting this risk is $90. 
Then expected uncompensated losses are $0. I 0. Total expected losses are $1 99. The expected policyholder deficit 
is 0.10/1.99, or around 5% For further discussion of this concept, see " Solvency Measurement for Property- 
Liability Risk-Based Capital Applications" By Robert P. Butsic, published in the 1992 CAS discussion paper 
program titled "Insurer Financial Solvency". 
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aggregate probability distribution of  either losses or surplus (assets minus losses). This principle 
is very similar to the tail-value-at-risk principle proposed by Meyers) 7 

Each of  the above principles contains an arbitrary coefficient L, constant across classes of  
business (and concealed in the utility function), that can be adjusted to yield the desired overall 
underwriting profit or rate of  return on surplus. In much of the literature the time element is not 
addressed explicitly. It is straightforward, however to apply the risk load to discounted liabilities. 

The first two of  the principles were applied in the practical context of  increased limits 
ratemaking at the Insurance Services Office (ISO) in the late seventies and early eighties. 

During the eighties, regulatory pressures brought the Capital Asset Pricing Model (CAPM) into 
the debate regarding how to incorporate risk into insurance prices. CAPM is founded on certain 
axioms that are violated in the context of  insurance pricing (e.g., no default, frietionless 
markets), but this intrusion of  modem financial theory stimulated much thought as to how the 
risk load formalism can address enterprise-wide and market-wide issues that had been neglected 
in the earlier formulations. The concept of  systematic risk, already familiar to actuaries as 
parameter risk, was incorporated into practical treatments intended for actual insurance pricing. 

The Competitive Market Equilibriumapproach to risk load incorporates parameter uncertainty 
and other mechanisms, which generate correlations among distinct insurance contracts (e.g., the 
catastrophe mechanism, which can affect many contracts, in different lines of  insurance, in a 
single event). 38 This scheme attempts to integrate capital market theory and collective risk 
theory in the development of  risk loads for insurance pricing. The procedure requires all parties 
to agree that more variance is worse and less is better. (Note that the CAPM disagrees. It treats 
variance not related to the market as not valued by the market and not a concern, as it can be 
diversified away. It assumes no transaction cost to do so.) 

The answer given by this scheme gives a contract risk loading proportional to the change in the 
variance of  the insurer's bottom line caused by the addition of  that one contract to the insurer's 
portfolio. This raised an interesting parallel with work being done at about the same time on 
reinsurance pricing based on marginal surplus requirements. 39 The Competitive Market 
Equilibrium result can be re-expressed in terms of the marginal surplus (risk capital) required to 
support the additional business, and thus linked to the cost of  risk capital. More recent work 
using probability distributions has referenced the expected policyholder deficit concept, rather 
than standard deviation, variance or probability of  ruin to motivate the computation of  marginal 

37 Meyers, Glenn, "The Cost of Financing Insurance", paper presented to the NAIC's Insurance Securitizariou 
Working Group at the March 2000 NAIC quarterly meeting. 
3s Meyers, Glenn G., "The Competitive Market Equilibrium Risk Load Formula for Increased Limits Ratemaking," 
Proceedings of the Casualty Actuarial Society (PCAS), LXXVIll, 1991 
39 Kreps, Rodney E., "Reinsurer Risk Loads from Marginal Su~lus Requirements," Proceedings of the Casualty 
Actuarial Society (PCAS), LXXVII, 1990, p. 196 
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surplus requirement and, therefore, of  risk load. t°' 41 

Extension to Loss and Expense Reserves 

The above methods apply prospectively to situations where the losses have not yet taken place 
and only rating information is available. For risk-adjusted valuation of insurance liabilities, such 
methods would apply to the Unearned Premium Reserve (UPR) and Incurred But Not Reported 
Reserves ([BNR). As long as one has some kind of runoff schedule giving estimates of number 
and type of  claims not yet reported, one can apply these methods to estimate the variability of 
unreported claims. 

Estimating the variability of  reported claims is a different problem because of the information 
available to the insurance company about actual reported claims. Meyers has addressed the 
problem in the context of reserving for workers' compensation pensions, using a parametric 
model for the mortality table and calculating the variance of conditional future payments. 42 
Hayne has used the collective risk model with information about claim counts and severities as 
the claim cohort ages and assumptions as to distributions and correlation structures to estimate 
the distribution of outstanding losses. 43 Heckman has applied distribution and regression 
techniques to estimating the expected ultimate value of claims already reported and of IBNR 
claims. 44 For the two latter methods, the conditional loss distribution provides the information 
needed to calculate risk loads for the reserves. 

There are some unsolved problems associated with approaches based on probability 
distributions. Research is in progress to develop methods for measuring correlations of lines or 
segments of the business with other segments, but there is no generally accepted approach for 
incorporating correlations into the measure of risk. This is believed to be important, as these 
correlations may make a significant contribution to, and in some cases may reduce overall risk. 
In addition, some of the risk load procedures such as those based on standard deviation and 
variance approaches are not value additive. That is, the risk load of the sum is not equal to the 
sum of the risk loads. 

Advantages 

• Actuaries have used the approaches for a long time to compute risk loads. 

4o Meyers, Glenn, "The Cost of Financing Insurance", paper presented to the NAIC's Insurance Securitization 
Working Group at the March 2000 NAIC quarterly meeting. 
41 Philbrick, Stephen W., "Accounting for Risk Margins," Casualty Actuarial Society Forum, Spnng 1994, Volume 
1, pp. 1-87. 
42 Meyer's, Glenn G, "Risk Theoretic Issues in Loss Reserving: The Case of Workers Compensation Pension 
Reserves," Proceedings of the Casualty Actuarial Society (PCAS), LXXVI, 1989, p. 171 
4J Hayne, Roger M., "Application of Collective Risk Theory to Estimate Variability in Loss Reserves," Proceedings 
of the Casualty Actuarial Society (PCAS), LXXVI, 1989, p. 77-110 
44 Heckman, Philip, "Seriatim, Claim Valuation from Detailed Process Models," paper presented at Casualty Loss 
Reserve Seminar, 1999 
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• This is an area of active research with many worked out examples of how the method can 
be applied. 

• The method is intuitive: risk load is related to actual risk for a body of liabilities. 
• The data required to compute the risk loads is readily available within many insurance 

companies and many actuaries are qualified to perform the computation. 
• Many reserving actuaries are familiar with using aggregate loss probabilities to establish 

confidence intervals around their reserve estimates. 
• This method can be used with company-specific data. 
• This method can be used by line to reflect unique line of business risks. 

Disadvantages 

• The approaches have often been criticized as being inconsistent with modern financial 
theory, as classically formulated, relative to compensation for diversifiable risk. For 
example, the risk loads often fail to satisfy the one-price rule, whereby two insurers 
offering identical insurance coverage would charge the same price. 

• Sometimes the weight given to process risk relative to parameter risk in determining the 
risk load can appear to be too large. Many researchers and practitioners believe that risk 
loads apply only to nondiversifiable (parameter or systematic) risk not to unique (or 
process) risk. It should be noted that it is not universally accepted that only diversifiable 
risk matters when computing risk loads. 45'46 

• The risk loads may not satisfy value additivity. As a result, two companies with identical 
lines but a different mix can have different risk margins (see discussion below). 

• A large number of methods for doing these calculations exist, yielding a variety of 
results. There is little guidance regarding which of the available methods is appropriate 
for a given set of circumstances. 

• Certain parameters are not only subjective, but there is little guidance on how to calibrate 
them. For instance, only the more recent papers discuss a conceptual framework for 
selecting ~.. 

• Parameters are often determined in a subjective manner and may therefore be inaccurate. 
• Actuaries are still struggling with measuring the correlations between lines of  business. 

This may be a significant source of risk to companies. 

Note that the lack of value additivity is not universally accepted as a disadvantage. For 
example, some believe there is much less risk in a $1 million (undiscounted) share of  a large 
company's auto liability reserves than in the entire $1 million in undiscounted auto liability 
reserves for a small regional insurer. Thus, the former may be worth more than the latter 
(i.e., valued with a smaller risk margin). 

45 Comell, Bradford, "Risk. Duration and Capital Budgeting: New Evidence on Some Old Questions", Journal of 
Business, 1999 vol 72, pp 183-200. 

Stulz, Rene, "Whats wrong with modem capital budgeting.'?", Address to the Eastern Finance Association, 
April, 1999 
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Method 6 - Using the reinsurance market to estimate the fair value qf liabil~'es 

The reinsurance market offers the most direct approach to estimating the fair value of  an 
insurance company's  liabilities. Blocks of liabilities are often sold either on a retrospective basis, 
in transactions such as loss portfolio transfers, or on a prospective basis in more commonly 
purchased excess of  loss treaties. The price structures associated with these contracts provide 
another glimpse o f  the implicit risk load required to record the liabilities at their fair value. 

Reinsurance prices may require some adjustment before they could be used to estimate the fair 
value of  liabilities. For example, market prices offered by some reinsurers reflect an embedded 
option value equal to the value of  their default on their liabilities. Such market prices would have 
to be adjusted upward to remove this default value. Another example is portfolio transfers that 
include customer lists or renewal rights. The effect of  these lists or rights on the total price 
would have to be isolated and removed before the portfolio transfer price could be used for a fair 
value estimate. 

There are numerous practical issues that need to be addressed before the method can be 
implemented in practice. For example, how would a ceding company measure the risk loading in 
the reinsurer's price structure? How could the analysis of  a particular treaty structured to reinsure 
a portion of  the company's  liability be generalized to estimate the fair value ofal t  its liabilities? 
Possible approaches are: 

Reinsurance Surveys: On a regular basis, leading companies can be surveyed to evaluate the 
risk loading implicit in their reinsurance structure. The survey can be structured to 
discriminate between various lines of  insurance and sizes o f  ceding companies. The implicit 
risk loading can then be published and employed by all companies with a particular set of  
attributes (size, type of business, balance sheet leverage, etc.). Note that this is a 
controversial suggestion. (Asking companies to share loss information is one thing. Asking 
them to share pricing information is something else entirely. First, the pricing "assumption" 
may not be as objective an item as a loss amount. It may be a gut call that varies by sale. 
Second, there are many more antitrust issues in sharing pricing information than in sharing 
loss information.) 
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Conceptually, this would operate similarly to the PCS Catastrophe Options currently offered 
by the Chicago Board o f  Trade. These options are priced based on an index, which is 
constructed in the following way: 

",4 survey of companies, agents, and adjusters is one part of  the estimating process. PCS 
conducts confidential surveys of at least 70% of the market based on premium-written 
market share. PCS then develops a composite of individual loss and claim estimates 
reported by these sources. Using both actual and projected claim figures, PCS 
extrapolates to a total industry estimate by comparing this information to market share 
data. "' 47 

• Extrapolating from a company's own reinsurance program: Companies that submit their 
reinsurance programs to bid will receive reinsurance market price information from a number 
of  providers. At a minimum, even the information contained in one well-documented bid 
may be sufficient to compare the reinsurer's price to the ceding company's best estimate o f  
the ceded liabilities discounted at the risk-free rate. In practice, a number of  adjustments to 
this risk load may be appropriate. For example, if the only reinsurance purchased is high 
layer excess, then the risk loading will be commensurate with the increased risk associated 
with that layer. Publicly available increased limits tables (e.g., ISO) might be suitable in 
some cases to evaluate the relative risk at each layer of  coverage. An insurer's policy limits 
profile can then be employed to evaluate the weighted total limits of  their liability portfolio 
and the resulting risk load. 

Advantages 
• The reinsurance market is the closest structure to a liquid market for insurance liabilities; 
• Most insurers have access to the reinsurance market and can therefore gain information 

regarding their unique risk profile; 
• Similar to catastrophe options, once the survey results are published, it would be 

relatively straightforward to estimate fair value 

Disadvantages 
• Results can be sensitive to capacity changes in the reinsurance market. As such, the 

values at any point in time may not represent future values. In fact, in highly competitive 
market cycles, a negative risk load could be obtained for some coverages. 

• Unstable reinsurance prices also make it difficult to update estimates for each reporting 
period. If the information required for the fair value estimate could not be obtained 
quickly enough, all estimates would have to be recalculated each reporting period. 

• The credit risk of  the reinsurer's default on its obligation is embedded in the price. For 
reinsurance, this can be material, and would have to be removed, but the isolation o f  this 
item from the total price (and other risks) may be problematic. 

• This approach would also raise difficulties in updating the values, as it would require 

4~ Chicago Board of Trade web site: PCS Catastrophe Insurance Options - Frequently Asked Questions 
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regular surveys or continual shopping of  ceded business to reset the risk charges. 48 
• Some reinsurance quotes are not transparent, so that the implied risk loading may be 

difficult  to ascertain. Often, the insurer and reinsurer would each have different estimates 
o f  the expected loss and other components  of  price. 

• The users of  this method will  only sample the reinsurance market. I.e., they will  not be 
using the entire market  for estimation. This could introduce bias. 

• Reinsurance markets  focus much more on prospective exposures rather than past 
exposures, partly due to current accounting treatment of  most retroactive reinsurance 
contracts. As such, there are fewer market prices potentially available (and a much 
smaller market) for reinsurance of  exist ing claim liabilities. 

• Reinsurance prices embed antiselection bias. The price of  reinsurance for the portion of  
an insurer 's  portfolio ceded may be higher than the price if  all risks were ceded. 

u Note that continual updates would be required under fair value accounting. This is because fair value accounting 
is meant to be an idealized market value, i.e., an actual market value ifa sufficiently active market exists, or an 
estimate of what a fair market value would be otherwise. As such, a fair value estimate would have to be updated as 
otten as an active market value would be updated. In general, market values in an active market change constantly. 
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Method 7- Direct estimation of  market values 

This is the method of Allen, Cummins and Phillips. 49 In this approach, a time series of publicly 
traded insurer data is analyzed. The output of the analysis is an estimate of the market value of 
each insurer's liabilities for each year of  the history. The market value of liabilities is derived by 
subtracting the market value of the equity from the market value of total assets. The market value 
of equity is calculated by extending the method of Ronn and Verma to avoid the problem of 
including intangible asset values in the equity measurement, s° Here, the equity value is 
determined so that the measured volatility of the insurer's stock price and of its asset values are 
consistent. This method is described in the section on measurement of credit risk The market 
value of assets is estimated from the separate asset categories, most of which are publicly traded. 

The market value of liabilities thus obtained contains an embedded option value equal to the 
value of default on the liabilities. This value of the default can be separately determined by the of 
Ronn-Verma method. 

Adding back the default value gives the market value of the liability as if there were no credit 
risk. Next, the nominal (undiscounted) value of the liability is compared to the no-default market 
value to determine the implied interest rate at which the nominal value is discounted to get the 
market value. This calculation requires an estimation of the payment pattern of the liabilities 
(also used in the above-average payment duration). The risk margin, as a reduction to the risk- 
free rate, is the difference between the risk-free rate and the implied rate underlying the market 
value. 

A numerical illustration of the method is shown in the Appendix. 

Advantages 
• The method is theoretically sound. It produces a risk load consistent with modem financial 

theory without requiring the calculation of a beta. 
• The method is objective and the analysis is reproducible 
• The method is a type of direct measurement of liabilities that may be desirable by the 

accounting profession. However, the measurement is direct for the industry, but not for a 
particular company 

Disadvantages 
• There are difficulties with the estimation of parameters: 

a) Some insurers in the data are also life insurers, or involved in multiple lines not 
relevant to a particular company at issue; carving them out requires estimating the 

49 Allen, Franklin, J. David Cummins and Richard D. Phillips, 1998, "Financial Pricing of Insurance in a Multiple 
Line Insurance Company", Journal of Risk and Insurance, 1998, volume 65, pp. 597-636. 
~o Ronn, Ehun I., and Avinash K. Verma, 1986, Pricing Risk-Adjusted Deposit Insurance: An Option-Based Model, 
Journal of Finance, 41 (4): 871-895. 
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market equity value of  these other operations. 
b) Some companies are members o f  financial conglomerates, or general conglomerates 

(e.g., General Electric). 
c) Not all insurers are publicly traded. These include foreign companies, privately held 

companies and mutuals or reciprocals. 
The liabilities may be under- or overstated in the financial statements. Therefore, the 
market value may reflect an adjustment to the book value, based on market perceptive of  
this bias. Any perceived change in this bias may make prior history unusable. 
Measurement problems make it difficult to provide a stable estimate for individual line of  
business risk margins. It is also difficult to get a reliable estimate for an individual firm. 
Most actuaries don't have any experience with this method. It has not yet been used in 
practice. 
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M e t h o d  8 - Distribution Transform Method  

A number of authors have proposed risk-loading procedures based on transforming the aggregate 
5~ loss probability distribution. The risk-loaded losses are computed from the mean of  the 

transformed distribution. A simple example of such a transform is the scale transform: 

x ~ k x  

where x = the aggregate losses 
k > l  

As a simple, but unrealistic example (because insurance losses tend to have positive skewness), x is 
a normal variable, that is, if aggregate losses follow a normal distribution and k is I.l, then the loss 
distribution's expected mean is shifted upwards by 10%. Thus, a company purchasing the liabilities 
would require 10% above the present value of the liabilities (at a risk-free ram), in order to be 
adequately compensated for the riskiness of  the liabilities. If one is using this distribution to 
compute primary losses for an exposure where the limits applied to losses m the aggregate, the 
expected mean would be increased by less than 10%, but losses excess of  the primary limit will be 
increased by more than 10%. 

In the more recent literature on the transform method the power transform is used. 52 (Other 
transforms such as the Esscher transform also appear m the literature). This approach raises the 
survival or tail probability to a power. 

S*(x) = S(x)" 

where S(x) = the original survival distribution, 1-F(x), or 1 minus the cumulative probability 
distribution); 

S*(x) = the transformed survival probability. 

I f r  is between 0 and one, the tail probabilities will increase and the transformed distribution will 
have a higher mean than the original distribution. 

The choice of the transformation parameter r is guided by the uncertainty of the business being 

sJ Venter, Gary G., 1991, Premium Implications of Reinsursnce Without Arbitrage, ASTIN Bulletin, 21 No. 2: 223- 
232. Also, 
Wang, Shaun, 1998, Implementation of the PH-Transform in Ratemaking, [Presented at the Fall, 1998 meeting of 
the Casualty Actuarial Society]. Also, 
Butsic, Robert P, 1999, Capital Allocation for Property Liability Insurers: A Catastrophe Reinsurance Application. 
Casualty Actuarial Society Forum, Fall 1999. 
s2 Wang, Shaun, 1998, Implementation of the PH-Transfonm in Ratemaking, [Presented at the Fall, 1998 meeting of 
the Casualty Actuarial Society]. Also, 
Venter, Gary G., 1998, (Discusssion of) Implementation of the PH-Transfoma in Ratemaking, [by Shaun Wang; 
presented at the Fall, 1998 meeting of the Casualty Actuarial Society] 
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priced. The greater the uncertainty, the lower r will be. In practice, this may mean that one 
calibrates the parameter by selecting a transformation that approximates current market premiums 
for a given class of exposures. Wang suggests that using a distribution transformation to derive risk 
loads is the equivalent of including a provision for parameter risk, but not process risk, into the 
formula for risk loads. Thus, one might select r based on subjective probabilities about the 
parameter uncertainty of the business. 

Wang (1998) has suggested that one could apply this approach in two ways. s3 The first applies 
a transform separately to the frequency and severity distributions used to price policies. The 
second transforms the probability distribution of aggregate losses (i.e., the convolution of the 
frequency and severity distributions). However, Venter suggests that one could obtain 
inconsistent results when applying a transform to aggregate losses, and prefers working with the 
frequency and severity distributions. 54 

Option pricing theory and the distribution transform method are related. The parameters of the 
probability distributions used in the option pricing formulas typically reflect "risk neutral" 
probabilities, rather than real probabilities. Thus, for example, the parameters used to price 
interest rate options are generally derived from current actual prices of bonds of different 
maturities, or from the current yield curve, rather than from empirical time series data of the 
various interest rates. One could view the "risk neutral" probabilities as a transformation of the 
distribution for the underlying asset values. 

Advantages 
• The method produces a risk load consistent with modern financial theory without 

requiring the calculation of a beta. Risk loads are value additive. (Note again that there 
is not universal agreement among actuaries that risk loads should be value additive.) The 
approach is similar to that used in pricing options. 

• The method is conceptually straightforward to understand and explain. Once r or a similar 
parameter has been selected, it can be reused subsequently. 

• This approach is currently used in reinsurance pricing. 
• it is theoretically viable for estimating risk loads by layer. Many of the other methods do not 

address layers or deductibles. 
• It is an area of active research for those investigating risk load methodologies. 

Disadvantages 
• It is not in common use for producing prices or risk loads on primary, business. Currently 

its primary use is in producing risk load for layers. 

s~ Wang, Shaun, 1998, Implementation of the PH-Transform in Ratemaking, [Presented at the Fall, 1998 meeting of 
the Casualty Actuartal Society]. 

Venter, Gary G., 1998, (Discusssiott of) Implementation of the PH-Transform in Ratem'aking, [by Shaun Wang; 
presented at the Fall, 1998 meeting of the Casualty Actuarial Society] 
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• As currently applied, in order to calibrate the parameters, it often requires knowledge of  the 
risk loads on primary business. 

• Because it is a new approach, actuaries are not as familiar with it as with some of  the others 
presented in this paper. 

• The parameters may be selected based on the analyst's experience with a particular line of  
business. This introduces an element of  subjectivity, where different analysts may choose 
different values for the parameter. 

• It is not clear which transform choice to use. Many of  the transformation methods are 
chosen for their mathematical tractability, and are not supported with empirical evidence. 
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Method 9 - The Rule-o[-Th~cmb Method 

The methods presented so far require that the person computing the risk-adjusted present value 
of liabilities do original analytical work. In some situations there may not be adequate data or 
other resources to develop the risk adjustment from scratch. In such situations it might be 
appropriate to use a rule of  thumb that provides a "quick and dirty" way to derive a risk 
adjustment. Such methods would be relatively easy to apply but would produce broadly 
reasonable results. Examples of  rules of  thumb would be: 

Compute a risk adjusted discount rate by subtracting 3% from the risk-free rate. 
The risk load should be 10% of the present value of  General Liability liabilities and 5% 
of the present value of  Homeowners liabilities. 

The numbers in the examples above are for illustrative purposes only. A separate body of 
actuaries and other experts could determine actual guideline values. This group would review 
existing research and perform additional studies where necessary. Quite likely, it would 
consolidate results from using one or more of the other methods in this document. 

Advantages 
• For the individual company, it would be simpler to apply than any of the other 

alternatives. It would reduce the work effort for actuaries and others, who would not have 
to separately develop risk adjustments. 

• This approach may lead to industry standard risk adjustments being used, thus creating 
comparability from company to company. 

• It may reduce the likelihood that a risk adjustment methodology can be used to 
manipulate a company's financial statements. 

Disadvantages 
• Fair values produced using this approach may be less accurate because the unique risk 

factors for a company may not be reflected. 
° It precludes actuaries from applying methods that reflect new developments for 

determining risk adjustments. 
• An industry body may be required to perform research to parameterize the risk 

adjustments. This may create antitrust issues. It is not clear that the industry body would 
be sufficiently authoritative for its research to be used in financial valuations. 
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Method 10- Alternative Methods 

This paper has presented a number of  possible approaches to estimating the fair value of  
insurance liabilities. Most of  these approaches are rooted in analytical methods documented in 
the actuarial literature. However, research continues into how to determine risk adjustments. Not 
all current developments are covered in this paper and undoubtedly others will be published. A 
company may wish to use alternative approaches not presented in this paper. In such cases, there 
are a number of  points one should consider: 

• Once selected, the approaches should be used consistently. Changing approaches from 
year to year may result in inappropriate income statements. 

• If the method is changed, it should be documented adequately. 

• The risk margin should be positive. 
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Converting a risk adjus ted  discount  to an additive risk load 

A number of  the methods presented in this paper produce an adjustment to the risk-free discount 
rate. Risk adjusted present values of  liabilities are then derived by discounted the liabilities 
using the risk-adjusted rate. An approach to deriving a dollar-value risk load is to work from the 
risk-adjusted discount rates. This approach might be used if one wanted to discount losses at the 
risk-free rate and apply the risk load to the losses directly. The procedure begins by discounting 
the liabilities at the risk-adjusted and the risk-free rate. It then computes the difference between 
the two discounted quantities. The risk load is this difference divided by the present value of  the 
liabilities, discounted at the risk-free rate, The table below presents an example where this 
calculation is performed for liabilities of  various durations, when the assumed risk-free rate and 
the risk adjustment remain constant. 

Risk Free Rate: 6.0% 
Risk Adjustment 3.0% 

PV @ Risk- PV @ Risk-Adjusted Risk 
Duration Free Rate Rate Load 
1 94.3% 97.1% 2.8% 
2 89.0% 94.3% 5.6% 
3 84.0% 91.5% 8.3% 
4 79.2% 88.8% 10.8% 
5 74.7% 86.3% 13.4% 
6 70.5% 83.7% 15.8% 
7 66,5% 81.3% 18.2% 
8 62.7% 78.9% 20.5% 
9 59.2% 76.6% 22.8% 
10 55.8% 74.4% 25.0% 
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Unearned Premium (or Unexpired Policv) liability methods 

As noted in the background 'section, a fair value accounting system focuses on the measurement 
of  assets and liabilities, not income. As such, the current recording of  unearned premium under 
U.S. GAAP accounting conventions would be replaced with the fair value of  the business written 
but not yet earned. The methods used to estimate this fair value have much in common with the 
above methods that estimate the fair value of  the liabilities for unpaid losses. However, 
additional methods may be applicable since it may be easier to discern the market prices 
underlying earned premium. Ore can argue that the booked premium represents the "market 
price" charged by the particular insurer. 

One area where such additional methods may be needed is property insurance, particularly where 
catastrophe exposure exists. 

Possible methods to consider include: 

• The price at which the business was written, the original entry price. The initial fair 
value for a policy's liability may be the premium charged (less expenses). 

• The price at which the company is currently writing similar business. 

The price at which similar business is currently being written by the market, e.g., a broad 
average price. It is an indication of the current entry price. ~(This value may only be 
available retrospectively shortly after the balance sheet date.) 

The price at which reinsurance is being purchased for this risk, both quota share 
reinsurance, which prices the entire risk, or excess of  loss reinsurance, which should 
provide a market guide to one of the more volatile components of  the risk. This also is an 
indication of  the current exit price. 

An actuarial estimate of  the expected value of  discounted losses associated with the 
business written but not yet earned, adjusted for risk. The estimate of  the necessary risk 
adjustment would be based on the above methods for estimating the market value o f  
unpaid losses. In particular, return on equity models, internal rate of  return models, and 
models based on the aggregate probability distribution of  losses, can be directly applied 
to future losses (losses not yet incurred on business written). 

Note that the actuarial methods applicable to lines of  business that contain a significant 
catastrophe potential may require modification to consider the seasonality of  the exposures. 
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SummarF 

A number of methods for computing risk adjustments to discounted liabilities have been 
presented. These are the approaches that the committee thought were worthy of discussion. Not 
all would be feasible for the individual company actuary to implement. As fair value becomes 
established as an accounting procedure, more research and application will be performed, and 
more methods will become feasible. 

Some methods would require an "official" body such as a committee of  the American Academy 
of Actuaries to perform research to establish parameters. Once established, the parameters could 
thereafter be used at individual companies without further research or analysis being required. 
This would hold only if one agrees that it is acceptable to ignore risks that are unique to 
companies, such as those classified under diversifiable risk. 

Methods such as those based on CAPM and IRR pricing models should be straightforward to 
modify for estimating the fair value of  liabilities. Actuaries are also well acquainted with 
methods based on aggregate probability distributions. Actuaries should be able to apply one or 
more of  the methods to a line of  business for which they are computing risk-adjusted discounted 
r e s e r v e s .  

Some methods are more appropriate for some lines of  business. For instance, methods based on 
using risk-adjusted discount rates have been applied to lines of  business with longer tails such as 
Automobile Liability and Workers Compensation. However, they may be inappropriate for short 
tail volatile lines such as property catastrophe because the risk is not time-dependent. Methods 
based on applying aggregate probability distributions might be appropriate for such short tail 
volatile lines. However, their use outside of increased limits and catastrophe pricing has not 
been well researched. 

The direct estimation method is relatively new and has only been applied by academic 
researchers. Therefore, it could be difficult for practitioners to apply until further study has been 
done. Using reinsurance pricing to develop a risk load is, in principle, the most consistent with 
computing market-based estimates of  liabilities. However, due to limitations on available data, 
the extent of  the market and a lack ofpublisbed research on the approach, it might be difficult to 
apply in practice. There might be special situations where it could be used, such as in evaluating 
~atastrophe liabilities. 

In general, risk adjustments based on industry-wide information will be more stable than risk 
adjustments based entirely on company-specific data. Also, risk adjustments based on individual 
line of  business data will be less stable than risk adjustments established using all-lines data. 
However, such risk adjustments will fail to incorporate some of  the risk components of  that are 
unique to lines of  business or to companies. 
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This summary and discussion provided by the task force of methods available for computing the 
risk adjusted present value o(liabilities demonstrates that actuaries have the theoretical 
understanding needed to implement fair valuing of  insurance liabilities. We have identified a 
number of  models that are available and appropriate for actuaries to use in estimating fair value 
liabilities. No issues have been identified that are not susceptible of  actuarial estimation. 

The following table summarizes our findings on the methods of deriving risk adjustments. 
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L/I 

Summary of Features of Estimation Methods 
Method Uses Industry Uses Company Has Specdic Us~ Leverage Incorporates Incoq0orates Is Value Comrr~ly Used Commonly Used 

Data Speci~ Data Time Elemenl Ratios Systemaltc Risk Process Rtsk Additive in pndng for Reserve 
Ma'gins 

CAPM X X X X X 

Intenal Rate of 
Re(um 

X X X X X X 

Single Period 
PAD 

X X X X X X 

Using UriC- 
writing Results 

X X X X X 

Based on 
PmOability 
Distributions 

X X X X 

Based or1 
Reinsurance 

~rect 
EsOmat=on 

D~stn~tion 
Transforms 

N~ive Methods x x x 



C A S  T a s k  Force  on Fa ir  V a l u e  Liabil i t ies  
Whi t e  P a p e r  on  Fair  Va lu ing  P r o p e r t y / C a s u a l t y  I n s u ran ce  Liabi l i t ies  

Sect ion E - A c c o u n t i n g  Presentat ion  Issues  

The purpose of this section is to discuss financial reporting presentation issues resulting from a 
change to fair value accounting. Financial reporting presentation deals with the design of  the 
reporting template, i.e., what financial values should be displayed, and in what format. It 
assumes that any required value can be determined, such as through the various methods in 
Section D. While many implementation issues may arise from the choice of a particular 
reporting template, such issues will not be discussed in this section. All implementation issues 
will be discussed in the next section (Section F), whether arising from the estimation method 
chosen (Section D), or arising from the presentation template chosen. 

The following actuarial presentation issues will be discussed. This list is meant to stimulate 
awareness of  the various actuarial issues/concerns surrounding presentation and fair value 
accounting. It is not meant to give definitive guidance on how presentation should be done. The 
final choice of  any presentation template is a judgment call, depending on the goals, priorities 
and preferences of  the template designer(s). 

• Historical loss development: 
- risk margins 
- time value of  money 

• Disclosure of  fair value estimation methods. 
• Gross versus net (of reinsurance, other recoverables). 
• Recognition of  premium revenue. 
• Income classification: 

- Unwinding of  interest discount 
- Interest rate changes 
- Experience adjustments, changes in assumptions. 

• Consistent treatment o f  assets and liabilities 
• Different financial statements for insurance vs. noninsurance entities 
• Disclosure of  credit standing impact 
• Consolidated financial statements 
• Regulation and tax requirements 

1. His tor ica l  Loss  D e v e l o p m e n t  - Currently some financial statement exhibits show historical 
loss development. These exhibits are useful for evaluating management's previous estimates 
of  liabilities, and for evaluating the risk inherent in the estimates. Should these exhibits 
show historic fair value estimates.'? Issues associated with doing so on such exhibits include: 

a) Risk margins. The risk margin for a given coverage year runs off over time to a value o f  
zero as the losses are paid. In addition, the perception o f  risk changes over time. For 
example, the risk margin of hurricane losses would have been valued less before the 
recent large hurricane losses in Florida. The perceived risk for mass tort liabilities is also 
now much greater than believed in the 1970s and prior. Are the purposes of  these 
historical exhibits furthered or distracted by including historic risk margin estimates in 
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2. 

3. 

4. 

the reported history? 

b) Time value of money. The amount of discount runs off to zero as losses are paid out. 
Interest rates also fluctuate over time. As such, historical exhibits that reflect the time 
value of money might show development trends impacted strictly by changes in new 
money investment yields or the unwinding of interest discount. The economic impact of 
these trends depends on the how the corresponding asset portfolio was impacted. How 
should the historic loss development exhibits handle this issue? 

A possible way of addressing the above two sub-issues might be to require historic loss 
development exhibits to be on an undiscounted, expected value basis. This would isolate 
the issues surrounding the expected value estimate (although it would ignore the issues 
surrounding the amount of the discount or risk margin). An alternative approach for 
evaluating the amount of the discount would be to require loss development exhibits to 
show all actual and projected values discounted back to the beginning of the coverage year. 
This would allow reflection of time value of money issues and expected value estimate 
issues, without the distortion from interest rate fluctuations. The issue would remain 
regarding whether to use the historical interest rates at the first valuation of the coverage 
year or restate at the current interest rates. 

£)isclosure o[~fair value estimation methods - Should the methods used to determine the fair 
value estimates be disclosed in the financial statements and if disclosed, where, and in what 
levels of detail? Depending upon the method(s) employed, the fair value components may 
differ by line of business as well as subline of business, duration of payments, location of 
the liabilities, and the currency that will pay out the liabilities. In addition, any changes to 
the method(s) or the values used to determine the fair value of liabilities may need to be 
disclosed in the financial statement. 

Gross versus net o(of reinsurance, other recoverables2. -- A decision needs to be made with 
regard to how much of the fair value presentation should be on a gross versus net basis. 
Should fair value adjustments be included in both gross and recoverable reporlings, or 
would an overall net adjustment suffice? Where various amounts are reported in more 
detail, should these fair value adjustments be disclosed in the aggregate or by individual 
reinsurer or excess insurer (for a self-insured's financial statement)? 

Recognitio_n_. o f  Premium Revenue - How should premium revenue be recognized, under a 
fair value accounting system? Currently, premium revenue is recognized for 
property/casualty companies based on earned premiums, which equal written premiums plus 
the change in the unearned premium reserve. Since fair value accounting would require 
estimating the future losses associated with the unexpired portion of the policy, should this 
estimate of future losses be included in the loss reserves, and premium revenue become 
written premium? If so, the unearned premium reserves could disappear. 
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5. 

Long duration policies cause additional presentation issues if premium revenue is defined as 
written premium. Should revenue from long duration policies be reported or disclosed 
separately in financial reports, so as not to distort analyses of  annual exposure growth? 
These policies may also distort otherwise reported policy year loss development trends. 
Should a single long duration policy be broken into separate 12-month policies for the 
purposes of  policy year loss development exhibits? 

Special policy features such as death, disability, and retirement benefits may also be 
impacted by a change in premium recognition. Should such benefits be accounted for as 
loss reserves or as unexpired policy benefits, under a fair value system? 

I n c o m e  c l a s s i f i c a t i o n .  - Under a fair value accounting system, recorded balances (such as 
loss reserves) will reflect the time value of  money, estimated future cash flows, and risk 
adjustments. Any of these components are subject to change over time, as the balance runs 
off. How should the changes in this components be reflected in income? The following 
discussion contains a discussion of the components. 

a) Unwinding of interest discount - The principal question here is whether the unwinding of 
interest discount should be separately reported in income, and if so, where? Currently 
when companies discount property/casualty loss reserves for anticipated investment 
income, the unwinding of  this discount over time flows through underwriting income, as 
a change in incurred losses, and is not separately identified. Discount unwinding for life 
insurance reserves also flows through as a change in incurred losses, but is separately 
identified in U.S. statutory accounting statements. Alternatively, the unwinding could be 
reported as interest expense, not in underwriting income. 

Reflection of this unwinding in incurred losses maintains consistent treatment of  any item 
affecting paid or outstanding losses, at the cost of  distorting comparisons o f  losses to 
charged premiums. This distortion is caused by premiums being fixed in time, with no 
reflection of future investment income potential. If loss reserve discount is all unwound 
in incurred losses, then reported histories of  incurred losses to premiums will tend to 
show excessive loss ratios for any long-tail line, distorting the true profitability picture. 
Reflection in interest expense allows more direct comparisons of losses to charged 
premiums. 

b) Interest rate changes. How should changes in market interest rates used in discounting 
existing liabilities be reflected? Should the effect of  these changes flow through 
underwriting? Should the effect flow through investment earnings? Should it be 
reflected in the same manner as unrealized capital gains, as a change in interest rates 
should affect both liabilities and assets similarly in a matched portfolio? Or should 
changes in loss reserves for any purpose other than unwinding of discount (e.g., change 
in expected ultimate payout, change in expected payment pattern, change in interest rates, 
etc.) all be reported in the aggregate, with no differentiation as to the cause? 
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c) Experience adjustments, Changes in assumptions. Another issue is how should an insurer 
present the effect of  experience adjustments and changes in assumptions? Should 
changes due to actual cash flows being different from expected be reported separately 
from changes in assumptions about the future? The first are "realized" and the second are 
currently "unrealized". Should there be an effort to keep consistency with how similar 
issues for invested assets are treated? Should changes in risk margins be isolated, or 
combined with changes in any other assumptions? 

6. Consistent Treatment of  Assets and Liabilities - This issue arises whenever recoveries are 
available (beyond the initial premium) to offset changes in the estimated liabilities. 
Examples include retrospectively rated insurance policies, deductible policies, policyholder 
dividends, (re)insurance policies for which reinsurance (or retrocession) protection exists, 
and contingent commission plans (on reinsurance contracts). In these examples the change 
in a claim (or similar) liability should lead to an offsetting change (either in full or partial) in 
either an asset or another liability. 

For example, a direct retrospectively rated insurance policy may be subject to reinsurance. 
This could result in at least three balance sheet entries after losses have started to occur: 
• a liability for direct claims 
• an asset (liability) tbr additional (return) premiums on the retrospectively rated policy 
• an asset or contra-liability for the portion of  the claim liability that is recoverable from 

reinsurers. 
The presentation issue regards the manner of  reporting these amounts and their fair value 
adjustments in a consistent manner, and in such a way that their individual adjustments will 
not easily be taken out of  context. 

(Note that to the extent the retrospective rating plan and the reinsurance coverage transfer 
risk, the overall net risk adjustment for all three items should be less than the risk adjustment 
on direct claim liabilities. This implies that the risk adjustment for some of  the individual 
components may be a help to surplus.) 

7. Different Financial Statements for Insurance Versus Non-lnsurance Entities - Should 

8. 

financial statement requirements differ for insurance versus non-insurance entities? This 
issue arises when comparisons are attempted between insurers and self-insurers, traditional 
insurers and captive insurers, or insurers and other financial services companies selling 
similar products. The issue also arises with consolidated financial statements when the 
reporting entity includes both insurance and non-insurance operations. 

Disclosure of  Credit Standing Impact - i f  the fair value of liabilities is to include the impact 
of  credit standing, these impacts should probably be disclosed separately in the financial 
statements. (The credit standing issue is discussed in more detail in Section H.) 
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9. Consolidated Financial Statements - Fair valuation generally requires that transactions be 
measured as if they were at arms-length. A key question regarding consolidated versus legal 
entity reporting is the difficulty in measuring fair value for legal entities of  the same quota 
share group, especially when applied to a fresh start valuation of  old claim liabilities. Thus, 
it may be necessary to estimate fair value for each pool member's direct book of business 
separately, rather than determining the fair value of  the total quota share pool and then 
allocating the total pool result to the pool members. 

A related issue is how to report values containing risk margins if the component reporting 
entities have risk margins that do not add to the total risk margin of  the consolidated entity. 
Should the component risk margins be scaled back to show value additivity? 

10. Regulation and Tax Requirements - The change to fair value will impact both the absolute 
value of  many of  the statement items as well as the format of  the financial statements. This 
may impact existing regulatory and tax use of  financial information that may have come to 
depend on the existing financial statements. The final "fair value" statements may have to 
include accommodations for these needs. Alternatively, the regulatory and tax processes 
could be changed to adapt to the new financial statements. A third alternative would be to 
create additional supplemental reporting, based on the old accounting standards, as if 
nothing had changed. Examples of  areas potentially impacted include federal income taxes, 
solvency testing, and market conduct exams. 
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CAS Task Force on Fair Value Liabilities 
White Paper on Fair Valuing Property/Casualty Insurance Liabilities 

Section F - Implementation Issues 

Introduction 

Up to now, this paper has dealt primarily with two areas associated with fair valuing insurance 
liabilities. The first of these areas was contained in Sections C and D, "Fair Value Alternatives" 
and "Methods of Estimating Risk Adjustments." Sections C and D discuss a variety ofways that 
a liability's fair value could be determined in theory. The second area addressed so far in the 
paper was that of presentation. This was the subject of Section E. 

The current section, Section F, goes the next step, discussing issues arising from the 
implementation of these concepts and methods and presentations. Implementation issues can be 
categorized as: 

1. Issues related to the availability and usability of market  information. These include: 

1,1. The robustness of the transactions occurring in the marketplace. 

1.2. Intangibles included in market prices that might not be relevant in a fair value liability 
valuation. 

1.3. Influence of information asymmetry on market prices. 

1.4. The existence of disequilibriums or temporary disruptions in market prices. 

1.5. The lag between event occurrence and the reporting of the event in the marketplace. 

2. General issues related to developing parameters for fair value methods. These are issues 
that are not related to any particular fair value methodology. Rather they deal with concepts 
that can be thought of as some of the theoretical underpinnings of fair value accounting. 
These include: 

2.1. Whether or not a risk charge should always be included in the fair value of a liability. 

2.2. What properties a risk charge should have, specifically related to the inclusion of a 
value for diversifiable risk and value additivity. 

2.3. Whether an adjustment for an entity's own credit risk should be included in that entity's 
fair value valuation of its liabilities. 

2.4. The issues that need to be weighted when deciding to use industry-wide data or 
company-specific data in a fair value calculation. 

3, Application of fair value methodologies - general issues. This section discusses issues 
that relate to questions that fair value practitioners will need to address when preparing fair 
value financial statements. These issues are ones that relate to how to physically create 
numbers to put on fair value financial statements, but that are not specific to any one 
methodology. Included under this beading are: 

3.1. The steps the actuarial profession might need to take to prepare for the implementation 
of a new requirement. 
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3.2. What items should contain fair value adjustments in their carrying value? 

3.3. How renewal business ought to be considered when developing fair values. 

3.4. How judgment should be accommodated when developing fair value estimates. 

4. Application of fair value methodologies - -  method-specific issues. This section 
highlights issues associated with different methods that a practitioner ought to be aware of 
when choosing a fair value methodology. The specific issues being highlighted are: 

4.1. Methods that rely on CAPM. 

4.2. Methods that rely on public data. 

4.3. Methods that produce results on a total company-basis only. 

4.4. Time period sensitivity of  some methods. 

4.5. The inclusion or exclusion of  a value for process risk in valuations created by different 
methods. 

4.6. The existence or lack thereof of  value additivity in valuations created by different 
methods. 

4.7. The appropriateness of  different methods for the valuation of volatile, short-tailed lines 
of  business. 

5. Presentation issues. These are issues associated with the actual presentation of results in a 
fair value financial statement. Items include: 

5.1. Updating carried values from valuation date to valuation date, especially between full- 
scale analytical re-estimations of  appropriate carrying values (in accounting parlance, a 
"fresh-start" valuation). 

5.2. Issues associated with the initial development of  exhibits that show historical 
development. 
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I. Issues related to the availability and usabilitg o[market information 

This is the first item to be discussed because it is FASB's  and the 1ASC's stated preference that 
market valuations be used wherever  possible. However,  we are skeptical as to the usability of  
market information for developing fair value valuations of  insurance liabilities. The five specific 
reasons for this skepticism are as follows: 

1.1. Is the observed market  active and robust enough for fair value estimation purposes? 
A key principle espoused by both FASB and the IASC is that the first choice for the 
development  of  fair values is from the marketplace. 55 However,  there is not currently much 
of  an active market that can be used to establish price comparisons.  Moreover, the 
transactions that are being done may suffer from a lack o f "marke t  relevancy" whereby the 
marketplace transaction was for a block of  liabilit ies that was similar but not exactly the 
same as the block of  liabilit ies a company is trying to value. The company in this situation 
is faced with trying to decide how the market would respond to the differences between the 
company ' s  l iabilit ies and those that were involved the marketplace transaction. 

!.2. The observed market  values may contain intangibles not relevant to the valuation at 
hand. A similar but unrelatecl marketplace issue is the quantification of  the value of 
noneconomic considerations in a market price. A company could have a variety of  reasons 
for accepting one market  price over another that are particular to that company. One 
example could be the nature of  the relationship that exists with a particular reinsurer. The 
chosen reinsurer might  not be the lowest cost option available to the company, but because 
the company trusts its relationship with the reinsurer, the company may feel the 
noneconomic "relationship value" is worth the extra cost. A different company looking to 
price a similar block of  liabilit ies might  not have the same relationship with a reinsurer. 
For the second company,  then, the relationship value does not exist  and the market price 
assigned to the first company ' s  liabilities would not be appropriate valuation for the second 
company ' s  liabilities. 

~5 There is no universally accepted definition of"fair value" to-date, although they all follow the same general 
concept given by this short definition The detailed definition that FASB is proposing can be found in FASB's 
Preliminary Views document titled "Reporting Financial Instruments and Certain Related Assets and Liabilities at 
Fair Value," dated December 14, 1999, and labeled "No 204-B." The definition starts on paragraph 47, with 
discussion and clarification continuing through paragraph 83 Paragraph 47 states "Fair value ~s an estimate o f  the 
price an enti~, would  have realized i f  it had sold an asset or paid i f  it had been relieved ~ f  a liability on the 
reporting date in an arm "s-length exchange motivated b~, normal business consideration ~ That is. it is an estimate 
o f  an exit price  determined b~, market  interactions." 

The IASC has a similar definition (found on page A18t of their Insurance Issues Paper, released November 1999). 
It reads: "The amount fo r  which an asset could be exchanged, or a liabihty settled, bet~'een knowledgeable, willing 
parties in an arm's length transaction." 
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1.3. Available market information, such as stock analyst estimates, or ilolated reinsurance 
prices may not be reliable due to information asymmetry. The market price for an 
actual liability traded on an active market is likely to be quite different than the market 
value of  an insurer's entire portfolio of  liabilities. It is the latter item that is important in 
fair value accounting, not the former. Unless all the insurer's liabilities are transferred, the 
assuming reinsurers will quite rationally believe that the ceding insurer is selecting against 
the reinsurer. This situation arises because the market (the reinsurers) does not have access 
to the insurer's private information on the liabilities. Thus, the "actual market price" might 
not be a better fair value representation than an internal cash flow-based measurement 
unless most of  the insurer's liabilities are actually transferred. 

1.4. Market data available at a given valuation date may be distorted by disequilibriums 
or  temporary disruptions. The existence of  an underwriting cycle can be viewed as 
tangible evidence of the ongoing disequilibrium in the insurance marketplace, whereby 
product pricing swings back and forth between underpricing and overpricing generally over 
a seven-to-ten-year cycle. Market disruptions can be characterized as new events that lead 
to significant uncertainty and temporary disruption in the market for insurance products. 
Examples can include a threatening hurricane, a newly released wide-ranging court decision 
and new legislation (e.g., Superfund, or California Proposition 103). At such times, market 
prices right after the event may be wildly speculative, or  the market may even be 
suspended, greatly complicating the use of  market prices for fair value valuations. 

1.5. The data available in the marketplace may be out of date. Depending upon the source 
being considered, there are often lags between event occurrence and event reporting. For 
example, an insurer, on behalf o f  its participation in an underwriting pool, may be exposed 
to certain liabilities that will ultimately be shared by all members o f  the underwriting pool. 
If someone were to base a fair value estimate on the pool's reported financials, the fair 
value estimate could reflect a lag of  anywhere from several months to several years 
between when the pool actually experienced the results being reported and the reporting of  
them. 

2. General issues related to the development o f  ~arameters for fair value methods 

These issues are ones that do not specifically pertain to any one fair value method. These are 
"concept-type" items. Some of  these, such as risk charge and credit risk, are items that relate to 
the general concepts that will underlie fair value implementation. Others, such as the use of  
industry-wide versus company-specific assumptions are issues that can not be resolved with a 
global decision and instead will need to be considered each time that a fair value methodology is 
applied. 

2.1. Should a risk charge always be incorporated into the fair value of a liability? Most of  
the guidance to date (from the FASB and IASC) mandates including such a risk charge 
when it is material and estimable, and can be "estimated" from market information. 
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Pantgraph 62 of  FASB's  Statement of  Financial Accounting C o h o r t s  No. 7, Using Cash 
Flow Information and Present Value in Accounting Measurements, says: 

"An arbitrary adjustment for risk, or one that cannot be evaluated by comparison to 
marketplace information, introduces an unjustified bias into the measurement .... in 
many cases a reliable estimate of  the market risk premium may not be obtainable .... In 
such situations, the present value of  expected cash flows, discounted at a risk-free rate 
o f  interest, may be the best available estimate of  fair value in the circumstances." 

Given that there is no active market for many insurance liabilities, there is no readily 
available, direct information on the market risk premium associated with their fair value. 
The market risk premium would have to be estimated. It is unclear as to what marketplace 
information would be required under such guidance for an acceptable estimate o f  the risk 
premium. Would the information have to be insurance specific or even insurance product 
specific, or could it be based on overall market pricing for risk in general financial 
markets? It is also unclear how much judgment may be used to produce an acceptable 
estimate of  this risk premium. 

If the guidance is worded and interpreted too stringently, then it may never be possible to 
include a risk premium in the fair value of  insurance liabilities. Liabilities o f  high risk 
would be indistinguishable from liabilities of  low risk, as long as the present value of  
expected cash flows was the same. More lenient interpretations may allow risk premiums 
for the more common liabilities, but the more unusual or higher risk liabilities may not 
qualify for a risk premium. This would result in a lower liability value (due to absence of a 
risk premium) for the highest risk items, a counterintuitive result, Attempts to always 
include a risk margin may raise reliability and auditability issues, 

2.2. Wha t  properties should risk margins have? The following two items are separate, but 
related. They are separate in that each is an issue in its own right, but they are related in 
that it may only be possible to reflect one or the other, depending upon the fair value 
methodology that is chosen. For example, a methodology that reflects process risk in each 
line of  business within a company might result in a series of  fair values for each line, that 
when added together, produce a fair value in excess of  the fair value that would be 
applicable to the company as a whole. This would be a reflection of  process risk that 
violates value additivity. Both of  these are discussed in greater detail in Section D. 

• Should a value be placed on process (diversifiable) risk in the valuation? 

• Should results have value additivity or not? 

2.3. Should an adjustment for an entity's credit risk be incorporated into that entity's fair 
value of its liabilities? Section H contains the discussion of  this issue. 
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2.4. Ule of  industry-wide assumptions. The two options for data and assumptions to be used 
in the methodologies described in Sections C and D are indnstry-wide or company-specific 
ones. Consideration must be given to the balance between the greater reliability o f  the 
industry data and the greater applicability of  the company-specific data. Availability of  
data at the industry or company level is also a factor in selecting data for risk adjustment 
computations. Industry-wide data provides more consistent and reliable results, but may 
overlook important differences between the risks underlying the industry data and the 
company-specific risks being valued. Company-specific data will be more reflective of  the 
underlying nature o f  the risks being valued, but the volume and the volatility of  the data 
must be considered. If the company-specific data is too sparse or too volatile, it might not 
be usable. This is an issue that will need to be addressed on a situation by situation basis. 

3. Application of  fair value methodologies-general issues 
These issues relate to the questions that fair value practitioners will need to address when 
preparing fair value financial statements. These issues are ones that relate to how to physically 
create numbers to put on fair value financial statements, rather than concept issues such as "what 
does fair value mean?" In this section, application issues are divided into two groups: issues that 
are not specific to any one methodology ("general" application issues) and those that are 
methodology specific. This segment will address the general issues. The methodology-specific 
issues are discussed after the general issue discussion. 

3.1. What steps will the actuarial profession need to take to prepare for the 
implementation of  a new requirement? As with any new requirement, the switch to a fair 
value valuation standard for property/casualty insurance liabilities would probably result in 
many unanticipated consequences. Many of  these consequences would not be evident at 
first, and may take time to resolve once they are discovered. This may involve refinement 
of  existing and development o f  new actuarial models and revisions to the initial accounting 
standards. 

3.2. Fair value accounting will affect more than just loss reserves, Should the same 
methodologies that are being used for loss reserves also be used for other items? How 
can consistency of  underlying assumptions be maintained in the valuation of  all items 
with fair value adjustments? 

Examples of  the items that might warrant fair value adjustments include: 

• The liability associated with the unexpired portion of  policies in-force at the valuation 
date 

• Liability associated with the unexpired portion o f  multi-year contracts 

• Reinsurance contracts with embedded options, including commutation terms, 
cancellation terms, contingent commission provisions, etc. 

• Differences between the fair value o f  liabilities on a net basis versus a gross basis 

• Accrued retrospective premium asset or liability 
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• Salvage and subrogation 

The real issue is not so much what contains fair value adjustments as how the adjustments 
are to be made. The accounting standards will determine those items that should contain 
fair value adjustments. The challenge will be to quantify the adjustments for these different 
items in a manner that is consistent with the adjustments underlying loss reserves. The 
implementation issue facing fair value practitioners is to keep in mind that there should at 
least be consistency of  assumptions when producing fair value adjustments for all those 
items requiring adjustments. 

3.3. Should renewal business be considered in the fair value estimate and if so, how? 
While future accounting guidance will include some discussion of what renewal guarantees 
are required for renewals to be included in fair value estimates, there undoubtedly will be 
areas of  gray, such as how far a contractual provision regarding renewals has to go before it 
is considered a guarantee of renewal. For example, would a guarantee of  a renewal at a 
price no more than the full policy limit (i.e. a riskless contract for the insurer) be considered 
a renewal guarantee? 

3.4. How should judgement be accommodated in the development of fair value estimates? 
All fair value methodologies have at least some judgmental elements within them. One of  
the objectives of  fair value is to have the same liability held be two different entities have 
identical carrying values on each of  the entities financial statements. The inclusion of  
judgement in the development of  fair value estimates could result in situations in which 
different analysts are looking at similar liabilities but produce different results solely 
because of the judgmental elements. 

4. Application of fair value methodologies- method-specific issues 
Clearly from the pros and cons that accompany each of  the methods discussed in sections C and 
D, no one method is appropriate in all situations. Each method has its strengths and weaknesses 
that may make it more or less appropriate as a technique for quantifying a liability's fair value. 
Rather than repeating the methods in sections C and D and identifying each method's 
implementation challenges, this section will describe implementation issues that are common 
across methods. A table summarizing the implementation issues associated with each method 
follows the descriptions. 

4.1. Methods that  rely on CAPM: as described in section D, the CAPM beta has been subject 
to criticism from both finance and actuarial sources. Finance theorists note that CAPM 
only recognizes nondiversifiable risk, assuming an efficient, friction-free market. However, 
insurance is not characterized by art efficient, friction-free market, which throws into 
question CAPM's  applicability to insurance. Additionally, subsequent research has shown 
that more factors than just beta are needed to explain company stock returns. From the 
actuarial perspective, the concern is that estimates o f  underwriting betas have shown great 
volatility as well as the possibility o f  becoming negative. 
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4.2. Methods that rely on public data: not all companies' data is publicly available. This 
makes any methodthat relies on publicly available data subject to whatever distortions 
might exist from using a subset of  all companies Additionally, the data that is publicly 
available can contain distortions arising from systematic overstatement or understatement 
of  liabilities by the entities providing the data. Lastly, there could be data compatibility 
issues arising from changes in the available data sets due to such things as mergers, 
insolvencies, divestitures, acquisitions, restructurings, etc. that alter the entities included in 
the data sets. 

4.3. Methods that produce results only on a total company basis: i fa  method is used that 
produces results on an all-company basis but presentation requires that fair value results be 
displayed at a more detailed level, the methodology must be adapted to the presentation 
needs. 

4.4. Time period sensitivity: the selection of  the historical time period used as the basis for 
determining future parameters and assumptions could greatly influence the results. 

4.5. Incorporates process risk: not all methods produce results that include a value for process 
risk. 

4.6. Value additivity: not all methods produce results that are value additive. 

4.7. Nature of the line of business: some methods are not well suited to the development of  
fair value estimates of  liabilities arising from volatile short-tailed lines. All of  the methods 
can be used for the development o f  fair value estimates o f  long-tailed lines' liabilities. 
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Method 

LJndlscounted Vel~Je 

Present Value al a 
fflk-lme interest rate 
Present Value a( a 
0~valive interest 

En~ty-spe¢~c 
rnaQsurernent 
~t-accumulation 
measurement 
CAPM 

traernal Rate 

s~g~ Pe~od P4~ 
Using U~e~,~ng 
Results 
Based on Probability 
~strd0~ns 
Based o~ 
Reinsurance 
Direct Esdma~ 

DW~bu1~on 
rransforn~ 
P~laive Methods 

List of  Considerations when Selecting an Estimation Method 
Rdiance o~ Reliance o~ Produce Results Time Period Ino:xl~rat~ Is Value Not Oescjned 

CAPM Public Data only on a Total S e n ~  Process Risk Additive Shod Tail 
Company Bas~ Volatile Lines 

X 

X X 

X X X X X 

X" X X X 

X" X X X X 

X X X X 

X X 

X -  J X X 

x x i x x x 
J 

x i x x x 

X X ? 

• Can use other methods to develop the parameter input for the required return on equity. 
"Public data is required when using public reimurance quotes. Public data is not needed if the fair value estimates 
=re derived from quotes made specifically for the entity that is developing the fair value estimate. 
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$, Presentation issues 

The items presented here relate to the actual presentation o f  fair value results in a financial 
statement. These items are not "actuarial" in nature, but rather relate to the mechanics of  
financial statement presentation and disclosures required within the financial statement 
framework. 

5.1. The selected method or methods may be appropriate for fresh-start valuations but not 
interim valuations. Fresh-start in this context refers to the accounting concept, not the tax 
one. The accounting concept of  fresh-start involves "remeasuring an item using current 
information and assumptions" at each valuation date. (IASC Insurance Issues Paper, page 
A182.) 

For example, suppose a company performs a full-scale actuarial review of  reserves for a 
block of business twice a year. The company must publish financial statements quarterly, 
though. The liabilities booked after each full-scale review would be viewed as fresh-start 
valuations. However, for the financial statements produced between reviews, the company 
will need to have some other method of  quantifying the proper liability value to record. 
The company can't  just keep the same liability value from the previous financial statement. 
At a minimum, the company will need to adjust the recorded value to reflect payments 
made, unwinding of  discount, and changes in the discount rate between the two statement 
dates. This process of  updating the reported value without undergoing a full-scale analysis 
is an example of an interim valuation. 

5.2. How should a restatement of historical exhibits to reflect historical fair value 
estimates be done? Any exhibits that show historical data would need to be restated to a 
fair value basis the first time fair value financial statements are produced. The question is 
how to do the restatement. Fair value should reflect conditions and market perceptions at 
the valuation date. It is difficult, if  not impossible, to reconstruct these items after the fact, 
when what the outcomes of  situations that were then uncertain are now known. 
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C A S  T a s k  Force  on Fair  Value  Liabil i t ies  
Whi te  Paper  on Fair  Va lu ing  Property /Casual ty  Insurance  Liabil it ies 

Sect ion G - Account ing  Concepts  

Introduction 

This section discusses the proposed fair value adjustments in terms of the attributes demanded for 
sound accounting bases. We set out below the criteria (termed accounting precepts) that 
accountants and accounting standard setters judge accounting bases by, and consider who the users 
of financial statements are. We then consider each ofthe major fair value adjustments in terms of 
the accounting precepts. The fair value adjustment for the entity's own credit standing is discussed 
in section H. 

Fair value accounting could be applied to any financial reporting; GAAP financial statements, 
statutory (regulatory) financial statements or even tax returns or internal management reports. 
While, in the U.S., GAAP financial reporting is determined by the FASB and the SEC, statutory 
financial statements will remain the responsibility of the NAIC. Even if fair value accounting 
were adopted for GAAP financial statements, a different non-GAAP basis might well be 
maintained for statutory financial statements. 

Generally accepted requirements for '~ood" accounting 
The two relevant accounting pronouncements that discuss how to select the most appropriate 
accounting Ireatment from a range of alternatives are: 

• FASB - Statement of Financial Accounting Concepts no. 2: Qualitative Characteristics of 
Accounting Information. 

• IASC - Framework for the presentation of Financial Statements. 

Fortunately, to a large extent the two documents agree as to what is desirable. The FASB 
document is longer and more discursive. 

The IASC framework document defines the object of financial statements as: 

"to provide information about the financial position, performance and changes in.financial 
position o f  an enterprise that is useful to a wide range o f  users in making economic 
decisions. " 

The desired traits of an accounting system are: 
• Relevance 
• Reliability 
• Comparability and Consistency 
• Neutrality 
• Cost Benefit 
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Relevance. To be relevant information must be capable of  making a difference to users '  
decisions. This is achieved either because the information can directly feed into a prediction o f  
the future position of the enterprise, or because the information can be used to refine previous 
expectations. Untimely information generally has little relevance. The IASC framework details 
a separate characteristic of"understandability," stating it is an essential characteristic of  financial 
statements that the information is readily understood by diligent users. This is implicit in the 
FASB concept of  relevance, information which cannot be readily understood lacks the 
characteristic of  being able to inform users'  decision making. Also implicit in the two concept 
statements is the concept of  transparency, i.e. that items in financial statements should be clearly 
disclosed so as to maximize their utility to financial statement users. (Neither the IASC nor 
FASB documents listed above mention transparency explicitly, although the IASC notes 
"substance over form," that is, following the economic substance rather than legal form as a 
basic requirement). 

Reliability. Reliability depends on the representational faithfulness with which a reported item 
reflects the underlying economic resource, obligation or transactions. Reliability does not imply 
a need for certainty, and reporting the degree of  uncertainty in an item may provide a better 
representation of the underlying economic reality than a single point estimate. In certain cases 
the measurements of  the financial effects o f  items could be so uncertain that enterprises would 
not be allowed to recognize them in their financial statements (for instance, nonpurchased 
goodwill). Financial statements should be free from bias in their measurements. FASB, but not 
the IASC, notes verifiability as a characteristic that helps constrain bias in financial statements. 

Comparability and Consistency. Financial statements should be comparable over time and 
between different enterprises in order to be able to ascertain trends and the relative position of 
different companies. Conformity to a uniform set of  accounting standards helps achieve 
comparability and consistency. 

Neutrality. Financial statements should be free from bias. However, the IASC framework notes 
that where an element of  a financial statement is subject to uncertainty a degree of  caution is 
needed in the exercise of  judgment in making the required estimates. 

CostBenefiL The balance between cost and benefit is a constraint on "good" accounting 
paradigms rather than one of  their qualities. If accounting information can only be generated at 
substantial cost, the relevance and utility of  that information to users needs to be established 
before it is sensible to adopt accounting standards that demand such information. 
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FundcuwentM A~tions 

The IASC framework notes two fundamental assumptions for the preparation of  financial 
statements. These are: 

• The Accruals basis: Transaction are recognized when they occur, not when cash changes 
hands, and reported in the financial period to which they relate. 

• The Going Concern basis: Financial statements are prepared on the basis that the 
enterprise will continue in business for the foreseeable future. If there is the likelihood or 
intention to substantially curtail business or to cease to trade, financial statements may 
need to reflect this in their choice of  accounting policies, and the circumstances are to be 
disclosed. 

Accounting paradiems 

There are two types of  modem accounting paradigm. 

There is the deferral-matching approach, such as in traditional property casualty accounting. 
This approach can be characterized as income statement focused. They aim to match revenue 
and expenses of  a period in the income statement o f  that period, and "park" surplus contractual 
income flows (future income) and surplus costs (such as deferred acquisition costs) in the 
balance sheet so they can be reflected in a subsequent periods' income flows. 

The alternative is the asset-liabili~ approach. These models are balance sheet focused. Their 
aim is to accurately reflect the assets and obligations of a company at periodic intervals. The 
changes in the values of  assets and obligations become the profit (or loss) for that period. A fair 
value accounting approach for the assets and liabilities of  insurance enterprises is one potentially 
available asset-liability paradigm. 

The IASC paper essentially analyses three alternative methods o f  accounting for insurance: the 
current deferral-matching model, full fair value accounting, and an alternative asset-liability 
model. 
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Who uses financial accountinE, what arc their negds, and on what do they focus 

Shareholders, analysts and potential capital providers 

Shareholders and potential capital providers fall into two classes, the professional, often 
institutional, investor and the individual investor. Both may be interested in the long-term 
earnings potential of  the stock, or the potential for short-term capital gains from holding the 
stock. Both groups will be interested in earnings trends, the adequacy of  reserves for future 
payments and the value and quality of  assets held. Sophisticated users should be able to unravel 
almost any accounting treatment given sufficient disclosure, (although whether they will in 
practice be attracted to doing this is questionable). For unsophisticated users it is highly 
desirable that trends in current earnings can be distinguished from fluctuations arising from 
volatile shifts in fair value measurements. In addition, they may find it useful to have clear 
indications of  balance sheet risk. Sophisticated users are also likely to welcome user-friendly 
presentation, particularly in the income statement, and clear indications of  balance sheet risk. 

Policyholders, potential policyholders, brokers and rating agencies 

Personal and some small commercial policyholders are unlikely to resort to examining insurers 
financial statements before purchasing insurance. If they use an independent broker for their 
purchase, the broker is more likely to rely on rating agencies' assessments than to carry out their 
own assessment of  insurers. 

Most prospective commercial insureds and reinsureds and their brokers are interested in the 
solidity of  (re)insurers with whom they place business. Essentially they need to evaluate the risk 
of  the (re)insurer being unable to pay claims in full once they become due. While income 
statement information is not irrelevant, their basic focus is on the balance sheet strengths and 
weaknesses of the company. 

Existing commercial policyholders and in particular policyholders with outstanding claims 
against insurers/reinsurers of  doubtful solvency, require that financial statements provide them 
with sufficient information to evaluate the credit risk they face from their existing policies' 
receivables, so that they may plan and act accordingly. 

Rating agencies have similar aims as commercial insureds and reinsurers. Their basic focus is on 
balance sheet solidity. They, like insurance sector analysts are sophisticated users of  financial 
information, and have access to more detailed financial information than that presented in the 
financial statements. 
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Bankers and Other Creditors 

Bond issues and bank loans are most likely to be the obligation of the holding company of  
insurance groups, not the individual insurance entities underneath the holding company. The 
bond holders and bankers behind this debt will be interested in the ability of  insurance groups to 
service borrowings and repay loans, this is a function of  both balance sheet strength and the 
future profitability of  the company. In addition both these creditor groups may be interested in 
ascertaining that covenants are satisfied. 

Regulators 

Regulators have, at least in the US, two perspectives on insurance companies. First, they are 
interested in the solidity of  insurance companies and in minimizing any call on guarantee funds. 
Second, they may wish to use the financial statements as a resource in the regulation of prices. 
Regulatory analysis in both these areas might be made more difficult if reported profit measures 
are volatile. Well understood and accepted measures of  shareholder equity would also be 
advantageous. Regulators have access to other financial information. Indeed, in the US, 
statutory financial reports will be their primary source for the financial review of an insurance 
company's  operation. 

Outside the US, regulators make more use of  a company's general purpose financial statements, 
and generally desire a single accounting paradigm for general purpose and regulatory financial 
reports. 

Employees 

Employees will be concerned primarily with two questions: how secure is the company? and 
how well is it doing? Most employees will be unsophisticated users of  financial statements. 

Discussion of(air-value valuation bases in the context o f  accounting precepts. 

Fair value adjustment - marking investments to market 

The principal actuarial issue associated with marking of investments to market is balance sheet 
consistency. If investments are marked to market, then their value will fluctuate with various 
financial variables, such as interest rates. If the same variables also impact the economic value 
of  the liabilities, but not the stated value per accounting rules, then reported income and equity 
will be distorted. These reported income and equity values, and especially the reported changes 
in those values, will not be relevant and will not be representationally faithful. 

If insurance company investments are recorded at fair value, then reporting insurance liabilities 
at fair value will create consistent balance sheet accounting, and will improve relevance and 
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representational faithfulness of  reported income and equity. 

There are alternatives to fair value accounting for liabilities that react to some, if not all, of  the 
same variables impacting the investment market value. These alternatives may produce more 
relevant financial reports than the current status quo for U.S. GAAP (where most liabilities are 
undiscounted but many assets are at market). They may also be easier to implement that full 
reflection of fair value for liabilities. The risk is that they may cause an unacceptable level of  
inconsistency relative to the assets, for those financial variables that would impact market values 
but not the alternative standard liability values. 

Fair value adjustment- discounting 
(as applied to loss and expenses reserves, reinsurers" share of loss reserves, unearned premium 
reserves and possibly debtor balances and deferred taxation.) 

Currently, most p/c reserves are carried at an undiscounted value. This current use of  
undiscounted reserves for loss reserves has the following advantages and disadvantages. 

Advantages 
• It is easy to understand 
• It locks in a margin that cannot be distributed to shareholders. (A plus in the eyes of  

regulators and policyholders) 

Disadvantages 
• It is typically an unreliable measure of the economic value of liabilities. Further, the 

degree of distortion varies between different enterprises depending on their mix of 
business and growth history. As a result, return on equity comparisons are distorted both 
within the insurance sector and with other industries. In particular, insurance company 
equity is understated in most cases compared to values for other industries. This 
understatement of insurance company equity leads to an overstatement in returns on 
equity. 

• It results in different valuation bases for assets and liabilities, which can result in spurious 
earnings volatility when interest rates change even when the underlying cash flows are 
broadly matched. 

• It distorts profit recognition. 
• Booking undiscounted reserves may provide grounds for accounting arbitrage. 

Fair value proponents, and others in favor of moving to a discounted basis for insurance 
liabilities, would argue that moving to a discounted basis for loss reserves, etc., removes or at 
least substantially reduces: 

• The inconsistency between the valuation basis of assets and liabilities, to the extent assets 
are either at market or at some version of cost (which is effectively an historic market 
value). 
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• The inconsistency between enterprises writing different classes of  business where the 
economic value of two reserves shown at the same amount may be substantially different. 

• The conservative bias that may be implicit in undiscounted liability values. 

They would argue that the profits reported on a discounted basis would be a better (more 
relevant) reflection of an enterprise's earnings for a period. The use of a fair value liability 
valuation (in conjunction with holding assets as market) will put assets and liabilities on a 
consistent footing, so that changes in the values of assets and changes in the discounted value of 
liabilities broadly mirror each other when interest rates change, so long as liabilities and assets 
are matched. This will eliminate that part of the interest rate volatility that does not reflect 
economic change for the insurance enterprise. Further, fair value proponents would maintain 
that the balance sheet values calculated on a discounted basis better discern between different 
enterprises; that is they are more relevant, and do not contain conservative biases; that is they are 
neutral. 

Fair value proponents would also argue that well thought out presentation in the income 
statement matching of investment return and the unwinding of the discount could do much to 
mitigate the potential confusion that may be suffered by some users as a result of moving to a 
discounted basis for loss reserves. 

Others who oppose the introduction of discounted amounts would argue that liability values 
currently reported by insurers reflect two offsetting biases, i.e., lack of provision for future 
investment income and optimistic evaluation of ultimate settlement values (resulting in insurance 
liabilities that they believe are already implicitly discounted). The introduction of explicit 
discounting would remove one of the two biases. However, valuing loss reserves at discounted 
values without addressing the second bias would probably be a disservice to all users as it would 
overstate available capital and overstate profitability. 

Further such observers might argue that if fair values are assessed by direct comparison to exit 
prices available in the reinsurance market, there is a danger that values substantially different 
from the net present value of the cost to the enterprise of running off liabilities may be recorded. 
Substantial overvaluations are possible when there is a hard reinsurance market. Substantial 
undervaluations are possible when there is a soft reinsurance market, precisely the time at which 
such valuations cause regulators most concern. 

The use of discounted liabilities will not necessarily result in more or less reliable estimates than 
the undiscounted ones. Discounting techniques are well understood and generally introduce little 
additional subjectivity into the liability valuation process. When the uncertainties are 
concentrated in the tail, discounting of  the reserves may even reduce the uncertainty in the 
estimated liability value. In this task force's opinion, fair valueaccounting in practice may not 
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significantly alter the ineonsisteuey between different company's  accounts due to variations in 
r~ - rve  strength. 

Essentially similar arguments apply to the introduction o f  discounting for the estimates o f  other 
insurers' liabilities or assets 

Fair value adjustment - risk margins 
(as applied to loss and expenses reserves, reinsurers" share o f  loss reserves and unearned 
premium reserves.) 

Fair value proponents would argue that discounting in conjunction with adding risk margins to 
liabilities provides the best basis for profit recognition. The profit on the book of  business will 
emerge as the associated risk expires. 

This approach has the drawback that it is a difficult concept to grasp and may confuse amateur 
(and some professional) users o f  accounts. Clear disclosure of  the risk adjustment may help such 
u s e r s .  

The lack of market depth in the exchange of insurance liabilities between enterprises makes a 
direct market assessment o f  the price for the risk margin impossible in most instances. Risk 
adjustments derived from methods that use industry-wide data to derive industry level ri~k 
adjustments may not succeed in producing financial information that can be used to distinguish 
between one insurance enterprise and its peers. In addition market-based information will be 
impossible to obtain in countries that do not have significant stock markets, or that have 
integrated financial service industries where the major insurance carriers also have banking and 
securities interests within one quoted vehicle. 

Other enterprise-specific risk measures can to a greater or lesser extent be criticized as requiring 
significant subjective input. Proponents of  such methods would argue such judgrnent calls are 
inherent in arriving at other accounting measures such as the bad debt adjustment to trade 
receivables in manufacturers' balance sheets. 

This is an area where standard setters may well be faced with determining a trade off between 
reliable (less subjective) and relevant measures. 

If there is a wide range of acceptable methods for calculating fair value adjustment this may well 
lead to a greater spread o f  the range of  acceptable "values" for the various elements o f  financial 
statements. Accounting/actuarial guidance is likely in practice to increase the consistency o f  the 
calculation of  the risk margin. 
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The introduction of  subjective elements into fair value assessments also means that there is 
additional scope for managing (or manipulating) financial results. Methods that reduce the scope 
for subjectivity in the assessment, such as an IRR model using regulatory capital, curtail the 
scope for inconsistency between different insurance enterprises (but, possibly, at the expenses of  
relevance, see above). More company specific methods may result in greater scope for 
inconsistency (the scope might well in practice be reduced by accounting or actuarial guidance). 

The task force suspects however that the increase in inconsistency due to differences in the basis 
on which fair values are calculated are likely to be of second order compared to differences in 
the strength of  company's  loss reserves. 

Opponents of  risk margins would argue that a risk margin for insurance liabilities cannot be 
reliably determined, so that (per FASBs Concepts Statement No. 7, paragraph 62) discounted 
values with no risk adjustment should be used. Others would argue that undiscounted values 
would be preferable to discounted values without risk adjustments, which they would contend, 
could grossly understate a company's  liabilities. 

F a i r  value  ad ius tmen t  - To reserves a n d  creditors to reflect  a compan  V's own credit  standing. 

This is the most contentious of the fair value adjustments, and is separately discussed in section 
H. 

T~a~n 

The extent of  the link between taxes and the financial statements of  enterprises varies between 
different countries. Where the calculation of  taxable profits is substantially based on the profit 
disclosed in the enterprise's general purpose (i.e., GAAP) financial statements, it is certainly 
possible that at least some companies may suffer a greater burden of  taxation. It is possible this 
may be mitigated to some extent by the recognition for tax purposes of  some allowance (i.e., risk 
margin) for the uncertainty in estimated claim liabilities. In the U.S., the explicit recognition of  
risk margins may cause them to be removed from allowed claim liability deduction, thereby 
increasing federal income taxes unless the margins are allowed by the IRS as a part of  the 
liabilities' economic value. If the reserves are currently reported at expected value, the risk 
margins would have no impact on taxes (if the margins are accounted for as an asset) but would 
restrict the disposable income. 
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CAS Task Force on Fair Value Liabilities 
White Paper on Fair Valuing Property/Casualty Insurance Liabilities 

Section H ~ Credit Standing and Fair Value Liabilities 

A highly controversial proposed adjustment to estimated cash flows in the determination o f  fair 
value liabilities is the impact of  the entity's (or obligor's) own credit standing. Under some 
proposals, the weaker the obligor's financial situation, the lower the fair value of  their liabilities 
would be. This adjustment would recognize that a financially weak company would be less 
likely to satisfy its obligations in full than a financially strong company. 

This issue may not be material for most insurers, as it is very difficult for an insurer to be both 
viable and of  questionable financial health. Companies viewed to be strong financially have 
historically experienced very small rates of  default. 56 Therefore, the concern and controversy 
surrounding this issue is focused largely on its impact on troubled companies. 

This section of the white paper presents the arguments for each side of  the issue, without stating 
an overall preference. It also discusses the issues associated with estimating, implementing and 
presenting liabilities that reflect the obligor's credit standing. 

This section is organized as follows: 
• Arguments for reflecting credit standing in fair valuing liabilities. 
• Arguments against reflecting credit standing in fair valuing liabilities. 
• Methods for estimating this effect. 
• Presentation issues. 
• Implementation issues. 

Arguments for rellectine credit standin~ in fair valuin~ liabilitie& 

• Credit risk is reflected in the fair value of  assets, and the assets and liabilities should be 
valued consistently. 

• The public debt of  a company has a market value, and that market value reflects the 
debtor's credit standing. Hence, requiring a company to report their publicly issued debt 
(a liability for them) at market value leads to requiring them to reflect their own credit 
standing when valuing a liability. The alternative, not requiring a company to report such 
debt at market value, would allow a company to manipulate its earnings by buying back 
existing debt or issuing new debt. 

• If public debt is to he held at a fair value that reflects credit standing, then all liabilities 
should be reported at a fair value that reflects credit standing. This is the argument FASB 
made in their Concepts Statement Number 7, paragraph 85. 

• Parties owed money by a company of  questionable solvency will frequently settle for less 
than the stated amount of  the obligation, due to the risk of  possibly getting much less if  
that company (i.e., the obligor) goes insolvent. In other words, reflecting an entity's own 

ss One year default rates for debt rated A or above (by Moody's) were less than 0.1%, for 1983-1999. Ten-year 
default rates for the same rating category were less than 4%, for 1920-1999. Source: January 2000 report by 
Moody's on Corporate Bond defaults from 1920-1999. 
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credit standing in valuing its liabilities reflects the true market cost to settle those 
liabilities. 
The obligor's credit standing is easily measurable, at least in those jurisdictions where 
established rating agencies exist. 
Due to limited liability, the owners' interest (e.g., as reflected in share price) of  a 
company can never go below zero. Thus, the fair value of its equity is always greater 
than or equal to zero. If the fair value o f  the equity is greater than or equal to zero, and 
the fair value of the assets is less than the contractual "full value" liabilities, then the fair 
value of the liabilities must be less than this "full value." 

Arfuments a£ainst rellecting credit standine in fair valuin£ liabilities. 

• There is no active market for such liabilities; hence there is no reliable way of  measuring 
this adjustment for credit standing. 

• Users of  financial statements could be misled as to the financial strength of weak 
companies. 

• A liability valuation that reflects the liability holder's credit standing would not be 
relevant to a potential "buyer" of  the liability. In the insurance situation, and possibly 
other situations, the buyer would not be able to enforce the same credit standing discount 
on the obligee. The obligee would view the prior liability holder's credit standing as 
totally irrelevant. Hence, the buyer would also view the credit standing of  the liability 
seller as irrelevant to the liability's market value. 

• An obligor's financial statements that included a reduction in the fair value of its 
liabilities due to the obligor's credit standing would not be relevant to creditors. 

• An insurance company's principal product is its promise to pay. In return for cash up- 
front, an insurance company sells a promise to pay in the event of  a specified 
contingency. If an insurer attempts to pay less than the full initial promise, due to its 
weakened credit standing, it is in effect abandoning its franchise. In fact, a troubled 
company that is trying to remain a going concern will do all it can to pay the full amount, 
in an attempt to retain its franchise. As such, reflection of  credit standing in the 
estimation of  fair value liabilities is counter to going-concern accounting, and is relevant 
only to liquidation accounting for a runoffbusiness. (The party trying to collect from a 
troubled company is also arguably negotiating under duress. As such, any settlement 
amount they would arrive at would not meet the definition of  "fair value.") 

• If credit standing is reflected in liability valuation, then favorable business results could 
cause a drop in earnings, due to an improved credit standing increasing the fair value of  
liabilities. Likewise, unfavorable results that lead to a drop in credit standing could result 
in earnings improvement. This is counterintuitive and noninformative. 

• It does not make sense to reflect credit standing in the value of  liabilities without also 
reflecting the impact of  credit standing on intangibles. A company with a worsening 
credit standing may see the fair value of its liabilities decrease, but it would also see the 
fair value o f  various intangibles, such as franchise value, decrease. In fact, the existence 
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of  the intangible franchise value helps keep insurers from increasing their operational risk 
in order to increase shareholder value at the expense of  policyholders. Therefore, while 
the fair value of  a company's liabilities may be decreasing as credit standing decreases, it 
is offset by an item not to be reflected in the fair value accounting standards as currently 
proposed by the FASB and IASC. If intangibles are not to be estimated nor reflected in a 
fair value standard, then the impact of  credit standing on the liabilities should not be 
reflected. 
Credit standing is (usually) an attribute of  the corporate whole, not the individual 
business segments. Hence, business segment reporting could be complicated drastically 
by this approach, as the segment results would not add to the corporate whole without an 
overall credit standing adjustment. 
To the extent that the credit standing adjustment is based on the obligor's judgment, a 
potential moral and ethical dilemma exists. Management may be forced to state the 
probability that it won't pay its obligations at the same time that it may be professing 
before customers, partners, capital providers, etc. its integrity, financial soundness and 
full intent to meet all obligations. 
If an entity's own credit standing is reflected in valuing their liabilities, and the valuation 
considers the reduced amounts their policyholders may be willing to accept as claim 
settlement, some companies may be motivated to employ unreasonably optimistic 
assumptions in setting their reserve levels. Troubled companies may be incented to 
anticipate that claim settlements will be resolved on extremely favorable terms and hence 
record an inappropriate reserve. 

Methods for estimating the impact o f  credit standing on liabilities, i f  included in the fair value 
definition. 

Our task force was able to envision several methods that might be used to estimate this credit 
risk adjustment. Four such methods are listed here. It is important to note that, to our 
knowledge, none of  these methods have actually been used to estimate the fair value o f  liability 
default for property-liability insurers in any practical setting. The first three methods are 
discussed in more detail in the appendix, including examples. 

Method I - Implied Option Value 

The reflection of  credit standing in the valuation of fair value liabilities (i.e., the "credit risk 
adjustment") involves estimating the expected fair value of  liability default. In the finance 
literature, the default value has been shown as equivalent to a put option on the insurer's assets. 57 

57 Cummins, J. David, 1988, Risk-Based Premiums for Insurance Guaranty Funds, Journal of Finance, September, 
43: 823-838. Also. 
Doherty, Nell A. and James R. Garven, 1986, Price Regulation in Propeay-Liahility Insurance: A Contingent- 
Claims Approach, Journal of Finance, December, 41:103 I-1050. Also, 
Den-ig, Richard A, 1989, Solvency Levels and Risk Loadings Appropriate for Fully Guaranteed~Property-Liability 
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Thus, the theory underlying the credit risk adjustment (in the insurance context) is that the fair 
value o f  owners '  equity is increased by the value of  the option implicitly given to the equity 
owners by the policyholders, l f tbe  liabilities are measured without the credit risk adjustment, 
then the fair value o f tbe  owners '  equity is understated. 

The implied option value can be determined by the method of  Ronn and Verma ~s, which is used 
in the Allen, Cummins and Phillips analysis)  9 Under this method, the market value of  the firm's 
assets is first estimated. Then the implied volatility of  the firm's market value is estimated from 
the Black-Scholes formula for the value of  the equity owners '  call option. 6° Other inputs 
required for this estimation are the undiscounted liability value, the average time until payment 
of  the liabilities and the risk-free interest rate. 

Once the above inputs are obtained, the default value is determined by applying the Black- 
Scholes option model with a set time to expiration and an exercise price equal to the expected 
liability value at the end of tbe  same time horizon. The call option is valued relative to the asset 
market value. The Appendix provides an example of  the calculation. 

Advantages 
• For publicly traded insurers, this approach can provide results using an insurer's own 

data. 
• The method is relatively straightforward in terms of  the complexity of  the calculation. 
• The method has been used to measure default risk for both insurance firms and banks. It 

is well known in the finance literature. 

Disadvantages 
• This method can only be done for publicly traded companies. 
• It is difficult to carve out the properly/casualty pieces of  firms that have non- 

property/casualty business segments. 
• The method is sensitive to variations in input values. 
• The method relies on accounting value of  liabilities. This presents problems with 

measuring reserve adequacy. 
• It ignores side guarantees or implicit guarantees, such as that from a majority owner with 

a reputation to uphold. Such an entity cannot afford to walk away without losing brand- 
name value. It also ignores the side guarantee arising from an insurance guaranty fund. 

Insurance Contracts: A Financial View, Financial Models of Insurance Solvency, J D. Cummins and R. A. Derrig 
eds., Kluwer Academic Publishers, Boston, 303-354. Also, 
Butsic, Robert P., 1994, "Solvency Measurement for Property-Liability Risk-Based Capital Applications", Journal 
of Risk and Insurance, 61: 656-690. 
58 Ronn, Ehun 1., and Avinash K Verma, 1986, Pricing Risk-Adjusted Deposit Insurance: An Option-Based Model, 
Journal of Finance, 41 (4): 871-895. 
s9 Allen, Franklin, J. David Cummins and Richard D. Phillips, 1998, "Financial Pricing of Insurance in a Multiple 
Line Insurance Company", Journal of Risk and Insurance, 1998, volume 65, pp. 597-636. 
6o Black, Fischer and Myron Scholes, 1973, The pricing of Options and Corporate Liabilities. Joumat of Political 
Economy, May-June, 81: 637-659. 
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• It may ignore the relative credit-worthiness for different lines or entities within the 
corporate total, if they have separate publicly traded securities. 
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Method 2 - Stochastic modeline using Dynamic Financial Analysis (DFA) 

Stochastic modeling is frequently used in Dynamic Financial Analysis to model insurance 
company operations. The process typically involves modeling assets, liabilities and future 
income from the runoff of reserves as well as new business. Key variables driving outcomes are 
modeled using probability distributions. 61 In addition to projections of future cash flows, 
stochastic DFA models can produce Statutory and GAAP balance sheets and income statements. 

DFA models attempt to incorporate the dynamics of the insurance business by including 
interactions between the different variables. Some DFA models also attempt to model the 
underwriting cycle. 

Among the outputs of stochastic DFA models are probability distributions of future surplus. 
They can be used to compute the expected policyholder deficit (the expected cost of default), or 
the average amount of unpaid liabilities, should the company experience insolvency in the future. 
Insolvency would be deemed to have occurred whenever the company's surplus dropped below a 
pre-specified level. 

Advantages 
• The method is insurer-specific. 
• The method can be applied to all insurers. 
• A comprehensive DFA model can better incorporate important company-specific risk 

factors than the other methods. 
° Many companies currently use these models to make strategic business decisions. A great 

deal of research effort has recently been devoted to their development. 

Disadvantages 
• Good DFA models tend to be complex and are therefore labor-intensive and expensive. 

(However, if an insurer already has such a model, adapting it to estimate credit risk may 
require little additional cost.) 

• DFA models are designed to work offofdata. They may not reflect risks that are not in 
the historical data. 

• Not all insurers currently have these models, since their management has determined that 
they are not worth the cost. Insurers would need the models to be tailored to the unique 
features of their business. 

• There is presently not enough expertise available to construct a suitable DFA model for 
each insurer. 

• The models may not produce comparable results for similar companies, due to different 
model structures and parameter assumptions. 

• The ability of these models to reliably estimate insolvency probabilities is not universally 
accepted. Many believe that these models are stronger at estimating the normal variation 

6t This is a feature of stochastic DFA models, but not necessarily all DFA models. 
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resulting from the current processes, and not the shocks and paradigm shifts that may be 
more likely to be the cause of  an insolvency. Therefore, they may not be reliable when 
applied to the stronger companies (although these companies are not expected to have a 
material credit-standing adjustment). 
It may be impractical to model insolvency for large, multinational or multi-industry 
conglomerates. 
Business and legal problems may exist for companies estimating their own probability of  
reneging on their obligations, either directly or through a DFA model estimate. 
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Method 3 - Incorporate historic default histories bV credit rating from oublic ratine agencies. 

This method would use publicly available historic default rates by credit rating, based on the 
entity's current credit rating from A. M. Best, S&P, Moody's or some other public rating service. 
At least one of these rating services (Moody's) publishes historic default rates by credit rating, 
for a one year and multiple-year horizon, by year and averaged over several decades. These 
default rates would allow determination of the expected default rate -- some other method would 
have to be used to determine the risk premium associated with this expected value. 

Advantages 
• Simple to use and explain, when using the expected cost of default from the public data. 
• Requires little direct analytical cost to the insurer. 
• Avoids an entity having to estimate its own probability of reneging on promises. 

Disadvantages 
• Ambiguity would exist if the various public ratings are not consistent. For example, it is 

common for the ratings from Moody's and S&P to differ. This would add judgment to 
the process and potential manipulation. 

• Not all companies are rated. 
• A single rating may exist for the enterprise (such as a group rating), that may not be 

appropriate for a particular group member or a line of business. 
• Would require default history for a given rating. These may not be available from some 

rating agencies. 
• Requires ratings to be consistently applied over time. This may not be the case, as rating 

methodologies change over time. 
• Ratings may exist for debt, but not for all other liabilities. This problem could be 

compounded by the existence of guaranty funds, particularly where those guarantees vary 
by state and line. 

Method 4 - Utilize credit risk-based spreads observable in public debt. 

This method would utilize observed interest rate spreads on public debt to quantify the credit risk 
adjustment. Public debt has no amount risk, other than default risk, and no timing risk (absent 
call provisions). Hence, it can be used to isolate the market's pricing of credit risk. The discount 
that the market places on a dollar owed at time X, given a credit rating of Y, compared to the 
same market value for a dollar owed at time X by the U.S. government, quantifies the credit risk 
adjustment for a time horizon of X, rating of Y. 

Ideally, this would be done based on the market value for each company's publicly held, 
noncallable debt. lfnot available, then public debt of companies with a similar credit standing 
(as measured by a public rating agency) could be used instead. 
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It may also be possible to use the developing market for credit derivatives rather than public debt 
in applying this approach. 

Advantages 
• Relatively simple to use and explain. 
• Requires little direct analytical cost to the insurer. 
• Avoids an entity having to estimate its own probability of  reneging on promises. 
• Consistent with credit risk adjustment for public debt issued by the same entity. 
• Relies heavily on market-based values rather than internal estimates. 

Disadvantages 
• Requires information on a range of  public debt instruments that may not exist for all 

companies. The entity may not have any actively traded public debt, or may not have a 
broad enough range of  noncallable public debt to handle all the time horizons of interest. 

• Where reliance is made on other entities' public debt with similar credit standings, it 
requires a determination of  whether or when another entity has a similar credit standing. 
This adds additional judgment and estimation to the method. 

• Debt holders credit risk is not perfectly aligned with policyholder credit risk. Due to the 
different priorities of  creditors in a bankruptcy or insolvency proceeding, the amount 
recoverable under a bankruptcy could be drastically different for policyholders as 
opposed to debt holders. In addition, since debt is frequently at the holding company 
level, it is possible that the bankruptcy administrator could arrange for a buyer to take 
over the insurance operation such that the policyholders would be made "whole", at the 
expense of the debt holders. 

• Does not allow for guaranty funds or other side guarantees not applicable to public debt. 
These guaranty funds and side guarantees can also vary by state and line, further 
distancing the public debt information from the task at hand. 

• The public debt may only exist for the enterprise (e.g., parent or holding company), 
which may include many other businesses and operations besides the insurance operation. 
The net credit risk may actually vary drastically by operation, so that the enterprise's 
public debt credit risk is not indicative of  the insurance operation credit risk. 

• To the extent that the observed debt is callable, this could distort the application of  
observable spreads to liability credit standing adjustments. 

• Observed spreads versus U.S. Treasuries could include factors other than credit risk, such 
as relative liquidity. 

Presentation issues. 
The following are a few presentation issues surrounding the reflection of  credit standing in the 
fair value of liabilities, assuming that such a reflection is made. 

• Historical loss development  - Should historical loss development include the impact of  
changing credit ratings (of the liability holder)? Choices are to include this impact, to 
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exclude this impact, or include this impact but separately disclose this impact. 

Curren t  ba lance  shee t  impac t  - The task force generally agreed that the current impact of  
credit standing reflection on the balance sheet should be disclosed, so as to provide useful 
information for those interested in the total legal obligations of the entity. 

I m p a c t  on i ncome  - Should the impact of  credit standing reflection be separately disclosed 
when reporting period earnings? 

I m p a c t  on s egmen t  results  - Most financial statements include various types of"segment" 
disclosures, i.e., disclosures about certain business or operating segments of  the business. 
Current U.S. statutory reporting also includes many disclosures by product or line-of- 
business. Where a corporation's debt is held principally at the holding company corporate 
level, and not at the segment or operating level, it many not be appropriate to reflect credit 
standing adjustments in business or operating segment results, in such a case, credit standing 
adjustments would be reported only at the total corporate level, as an overall adjustment to 
the business segment "pieces." Alternatively, credit standing could be incorporated at the 
business-segment level, at the cost of  potentially misstating the earnings or value of  the 
business segment. 

If reported at the business-segment level, credit standing adjustments could distort reported 
business-segment results in another way. Consider the case where most debt is at the holding 
company level, the total corporate credit standing is weak, and the principal cause is a single 
business unit. If credit standing is reported at a detail level, operating earnings of the 
stronger business units would be impacted by the results of  the unrelated, poorly performing 
unit. Worsening results in that poorly performing unit could lead to improved earnings (due 
to reduction in liability valuations) for the stronger units, while improving results for the 
poorly performing unit could cause lower earnings for the stronger units. 

l m ~ l f m g n t a t i o n  issues. The following are some possible implementation issues associated with 
reflection of credit standing in fair value estimates. 

• Mul t ip le  credit  s tandings,  - It is possible for the different entities in a corporate whole to 
have different credit standings. For example, it is conceivable that the flagship of a quota 
share pool may be weaker than one of the quota share pool members. In such a case, it may 
be difficult to quantify all the differences, especially if all the publicly available data 
regarding credit standing is applicable only for the pool flagship. 

• Incorporat ing  credit  s tanding  ad ius tments  when  mult iple risk ad ius tmen t  methods  are 
u s e d .  - Section D discussed several different methods for estimating the fair value risk 
adjustment. It is possible a single company would find itself using different methods for 
different lines. It may be difficult to incorporate the chosen credit standing adjustment 
consistently into the results o f  these various methods. 
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• C o n s i s t e n t  t r e a t m e n t  w h e r e  o f f s e t s  e x i s t .  - Some liabilities have corresponding offsets, 
recorded either as assets, contraliabilities, or even as other liabilities. Examples include 
accrued retro premiums for retrospectively rated business, deductible recoverables, and 
contingent commissions. I fa  liability is valued in a manner that reflects the obligor's credit 
standing, then the valuation of  offsets for that liability should also be impacted in a consistent 
manner. This may not be a simple task, and may materially complicate the estimation 
process for both the direct liability and the offsets. 

• G u a r a n t y  l ' u n d  r e l l e c t i o n .  - The credit standing adjustment of  a liability could be materially 
impacted by any guaranty fund (or similar) protection. The rationale is that the party owed 
money (e.g., a claimant) may be unwilling to consider lowering their cash settlement 
demands despite the financial weakness of  the obligor, to the extent that there is backup 
protection provided by a guaranty fund. Guaranty funds do not exist for all lines nor in all 
states. They typically provide less than full protection (e.g., many funds cap the benefits, and 
may pay claims only after significant delays). As such, proper reflection of guaranty fund 
impacts may be very difficult, especially for a writer of  multiple products in multiple states. 

• M a n a g e m e n t  d i l e m m a s  - It may be difficult for management to value its liabilities reflecting 
less than full contractual obligations, at the same time it is making assurances and promises 
to consumers and creditors, especially when the impact of  thecredit standing is significant. 

• A u d i t o r  d i l e m m a s  - Whoever audits a company reporting fair value liabilities lowered for 
credit standing impacts may find itself in the same position as a rating agency. That is, it 
may be forced to quantify the likelihood of  client solvency when auditing their financial 
statements. This may be outside their normal expertise, and could open up additional areas 
o f  auditor liability. 
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CAS Task Force on Fair Value Liabilities 
White Paper on Fair Valuing Property/Casualty Insurance Liabilities 

Section I - Professional Readiness 

Previous sections of this white paper have discussed what fair valuing means, what 
methods can be used to accomplish it, and what theoretical and practical issues must be 
dealt with in order to implement the fair valuing of  insurance liabilities. This section 
discusses what the actuarial profession needs to do to prepare for its role in this process. 
Evaluating what casualty actuaries need to do to prepare for fair valuing insurance 
liabilities requires addressing the following four issues: 

• Do actuaries currently have a theoretical understanding of fair value concepts 
adequate to estimate liabilities under a fair value standard? 

• Are models currently available that can be used by actuaries to estimate fair value 
liabilities? 

* Are actuaries prepared to implement these models and make these estimates in 
practice? 

- What steps can the profession take to aid individual actuaries in implementing 
effective processes for fair valuation of insurance liabilities for their companies or 
their clients? 

Note that professional readiness for this task should be evaluated relative to a 
hypothetical implementation date sometime in the future. Fair valuing insurance 
liabilities is not currently required of  insurers in the United States, and we assume that 
initiation of such a requirement would be accompanied by a reasonable implementation 
period. 

Adequate theoretical understanding and appropriate models 

The analysis done by the task force and presented in the preceding sections demonstrates 
that actuaries have the theoretical understanding needed to implement fair valuing of  
insurance liabilities. We have identified a number of  models that are available and 
appropriate for actuaries to use in estimating fair value liabilities. No issues have been 
identified that are not susceptible of  actuarial estimation. 

A, biliW to make estimates in practice 

As noted above, fair valuing insurance liabilities is not a current requirement for most 
insurers in the United States. Therefore, actuaries generally have not established the 
systems and procedures that would be required to efficiently support fair valuation of 
liabilities for the financial reporting process. However, casualty actuaries performing 
insurance pricing and corporate financial functions have used many of  the fair value 
models that have been identified in prior sections of  this white paper, and the task force 
believes that this precedent demonstrates that actuaries can estimate fair value liabilities 
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in practice. 

The task force has identified a number of issues concerning fair value that require 
clarification prior to implementation. The task force presumes that many of these issues 
wil l be clarified later in the accounting standards development process. The task force 
also presumes that a reasonable period will be provided for implementation of any new 
accounting standard requiring fair valuing insurance liabilities. Given those assumptions, 
the task force believes that actuaries will be able to develop and use models that provide 
efficient and effective estimates of the fair value of insurance liabilities in accordance 
with those new accounting standards. 

Steps the profession can take 

The task force believes that there are a number o f  steps that can and should be taken by 
the actuarial profession to aid individual practitioners if fair value accounting for 
insurance liabilities is adopted for U.S. GAAP or statutory accounting. Depending on the 
course of  future accounting standards developments, the same may be true if the IASC 
adopts fair value accounting for insurance liabilities. 

!. You hold in your hands the first step, a white paper that discusses fair valuation of  
insurance liabilities for general or property/casualty insurers. The task force hopes 
this document will aid accounting standards setters in developing higher quality 
standards for insurers. The task force also hopes this document will be a starting 
point for casualty actuaries seeking both to better understand the issues underlying 
fair value accounting and to plan what methods to use in fair valuing insurer liabilities 
for their own companies or clients. 

2. The actuarial profession should continue its active participation in the ongoing 
discussions of  fair value accounting for insurers. As is evident from the prior sections 
of  this white paper, fair value accounting is a complex issue, and actuaries should 
continue to provide active assistance to accounting standards setters in order to insure 
that the adopted standards are of  high quality and are practical to implement. 

3. The profession should seize any opportunities to broaden the numbers of  actuaries 
engaged in the discussion of  fair value accounting. CAS meetings and the Casualty 
Loss Reserve Seminar (CLRS) are the most obvious opportunities to discuss these 
concepts with more casualty actuaries. Publication of  this white paper in the CAS 
Forum, on the CAS web site, and in other appropriate public forums should also be 
encouraged. 

4. Once an accounting standard setting organization adopts fair valuing for insurance 
liabilities, a practice note designed to highlight the issues that practicing actuaries 
may wish to consider in implementing that standard should be produced as soon as 
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possible. Practice notes are designed to provide helpful information quickly, so they 
do not go through the due process required of  a new Actuarial Standard of Practice 
(ASOP). Accordingly, neither are they authoritative for actuaries. In addition to 
being published, any such practice note should be presented at the CLRS and at CAS 
meetings. 

5. Finally, the task force believes that issues will arise during implementation that have 
not been anticipated in advance. Initially these should be handled through updates to 
the practice note. Once some experience has been accumulated, there may be need 
for consideration of a new or revised ASOP. The task force has not identified any 
need for a new or revised ASOP at this time and believes it is better to defer 
developing any such standard until actual practice under a fair value accounting 
standard has had a chance to develop. Premature development of  an ASOP may 
mean that unanticipated but important issues are not addressed in the ASOP. Also, an 
ASOP developed too soon may tend to impede the development of  good practice by 
requiring more justification for estimation methods not yet contemplated during the 
drafting of  the ASOP. 
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CAS Task Force on Fair Value Liabilities 
White Paper on Fair Valuing Property/Casualty Insurance Liabilities 

Section J - Summary and observations 

This white paper has discussed many of the major issues involved in fair value 
accounting as applied to insurance liabilities. While the focus has been on 
property/casualty insurance liabilities, many of  the issues are also applicable to other 
insurance liabilities. 

In brief, some are the major findings of  this paper include: 
• N e w  t a s k  - Generally, fair value accounting rules have not yet been applied to 

property/casualty insurance liabilities. Therefore, implementation of  fair value 
accounting would likely result in unforeseen consequences and a learning curve 
for those charged with implementing the new rules. (One way to address this 
issue may be to field test a fair value accounting system before full 
implementation, possibly via footnote disclosure.) 

• M o r e  w o r k  - Implementation of  fair value accounting for these liabilities would 
be an increase in workload for those setting the liabilities. New systems and 
procedures would have to be set up, and additional estimation variables would 
have to be monitored. 

• M o r e  a s s u m p t i o n s  - Fair value accounting would increase the number of  
subjective assumptions required for most property/casualty reserving. The impact 
of  these additional assumptions, however, may still be of  second order importance 
when compared to the variability across companies in the (undiscounted, pre-risk 
adjustment) expected loss estimates. 

• M u l t i p l e  m e t h o d s  - A critical component in fair value estimation is estimation of 
the risk margin, or risk adjustment. There are several methods that can be used to 
estimate these risk adjustments. Each method has advantages and disadvantages, 
and, depending on the variation in liabilities to be estimated, the use of multiple 
methods may be necessary. 

• Can be done - No issues have been identified that are not susceptible of  actuarial 
estimation. 

• N o t  w i t h o u t  c o n c e r n s  - As mentioned previously, problems would undoubtedly 
occur during any initial implementation of fair value accounting. 

• E v o l u t i o n a r y  p r o c e s s  - Familiarity, expertise and available methods for 
estimation of  fair value liabilities should grow over time, once fair value 
accounting for insurance liabilities is implemented. Many of  the initial estimation 
problems should diminish over time. 

• P r e s e n t a t i o n  and Implementation i s s u e s ,  i n  a d d i t i o n  t o  e s t i m a t i o n  i s s u e s  - There 
are issues besides strict estimation issues that actuaries (and accountants) will 
have to deal with. These include questions as to how historic loss development 
should be presented in a fair value paradigm, and whether the lack of "value 
additivity" is an advantage or disadvantage of an estimation method. 

• A l t e r n a t i v e s  e x i s t  - There are other accounting paradigms besides the fair value 
paradigm focused on by this white paper. Some of these alternatives contain 
several of  the advantages sought by fair value proponents, but at a smaller cost (in 
resources, subjectivity.) Each alternative also brings its own disadvantages, hence 
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there is no clear "fight" answer. The selection of any financial accounting 
paradigm is at least partially a value judgement, not a pure scientific exercise. 
Reflection o f  credit standing is a controversial issue - There are arguments for 
and against the reflection of credit standing in fair value estimates of insurance 
liabilities. The task force has consciously avoided taking a position on this issue. 
Instead we have attempted to present both sides in a clear, objective fashion. 

The task force chair wishes to thank all involved with this project for the tremendous 
amount of work done in a short period of time. In approximately six months, the task 
force team (with the help of key contributors) produced what I believe to be an excellent 
workproduct, one that hopefully will be a major contribution to the profession's 
understanding of the fair value issue. Thank you, once again. 

Casualty Actuarial Task Force on Fair Value Liabilities 
December 1999 - August 2000 members 

Ralph Blanchard (chair) Sarah Krutov 
Bob Butsic Mike McCarter 
Catherine Cresswell Gary Nickerson 
Louise Francis Stewart Sawyer 
Aaron Halpert Ernest Wilson 
Phil Heckman Bryan Young 
Gerry Kirschner 

(other contributors: David Appel, Paul Brehm, Roger Hayne, Ga D, Josephson, 
Joe Lebens, Steve Lowe, Glenn Meyers, Elizabeth Smith, Pat Teufi'l, Ga D, Venter, 
American Academy o f  Actuaries - Committee on Proper~ and Liability Financial 
Reporting ) 
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Appendix 1: CAPM Method 

This appendix presents an example of  computing a risk-adjusted discount rate using 
CAPM. 

In its simplest form, the approach used in Massachusetts assumes that the equity beta for 
insurance companies is a weighted average of  an asset beta and an underwriting beta. 
The underwriting beta can therefore be backed into from the equity beta and the asset 
beta. 

here 

~1, is the equity beta for insurance companies, or alternatively for an individual insurer 
/~A is the beta for insurance company assets 

is the beta for insurance company underwriting profits 
k is the funds generating coefficient, and represents the lag between the receipt of  
premium and the average payout of  losses in a given line 
s is a leverage ratio 

Since 

13, C °v(r"rM) 
Var(rM) 

or the equity beta is the covariance between the company's  stock return and the overall 
market return divided by the variance of  the overall market return. It can be measured 
by regressing historical P&C insurance company stock returns on a return index such as 
the S&P 500 Index. Similarly, flA can be measured by evaluating the mix of investments 
in insurance company portfolios. The beta for each asset category, such as corporate 
bonds, stocks, real estate is determined. The overall asset beta is a weighted average of  
the betas of  the individual assets, where the weights are the market values of  the assets. 

Example: 
Assume detailed research using computerized tapes of  security returns such as tnose 
available from CRISP concluded that 13c for the insurance industry is 1.0 and flA for the 
insurance industry is 0.15. By examining company premium and loss cash flow patterns, 
it has been determined that k is 2. The leverage ratio s is assumed to equal 2. The 
underwriting Beta is 

0. =/L-(~+l)#. 
$ 
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or fly = .5"(1. - (2"2+1). 15) = .125 

Once flvhas been determined overall for the P&C industry, an approach to deriving the 
beta for a particular line is to assume that the only factor affecting the covariance of a 
given line's losses with the market is the duration of its liabilities: 

So if the average duration in a given line is 2, its beta is -2".125= -.25 

In order to derive the risk-adjusted rate, the risk free rate and the market risk premium are 
needed. Assume the current risk free rate is 6% and the market risk premium (i.e., the 
excess of the market return over the risk free return) is 9%. Then the risk-adjusted rate is: 

rL=rl + EL(r . - r l )  

or rL = .06 - .25 * (.09) = .06 - .0225 =.0375 

An alternative approach to computing the underwriting beta is to regress accounting 
underwriting returns in a line of business on stock market returns. The method suffers 
from the weakness that the reported underwriting returns often contain values for the 
liabilities that have been smoothed over the underwriting cycle, thus depressing their 
variability. 
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Appendix 2: IRR Method 

All balance sheet values are at fair value. Thus, the liability value at each evaluation date 
must  be calculated using a risk-adjusted interest rate. Since we are trying to find this 
value, it is an input that is iterated until the IRR equals the desired ROE. (This is easily 
done using the "Goal Seek" function in an Excel spreadsheet.) 

The present value of  the income taxes is a l iability under a true economic valuation 
method. However, in the FASB and IASC proposals, it is not included. I The basis for this 
calculation is found in Butsic (Butsic, 2000). To a close approximation, the PV of  income 
taxes equals the present value o f  the tax on investment income from capital, divided by 1 
minus the tax rate. The PV is taken at an after-tax risk-free rate. 

Exhibit  A2 shows an example of  the risk adjustment calculation, using the IRR method, 
for a l iability whose payments extend for three periods. 

Note that the present value of income taxes is not the same as the deferred tax liability. For example, the 
present value of income taxes includes the PV of taxes on future underwriting and investment income 
generat~ by the policy cash flows. 
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Exhibit A2 
Calculation of Risk Adjustment Using Internal Rate of Return Modal 

Fixed Inputs 
1 Risk-free rate 
2 Expected investment return 
3 Income tax rata 
4 Equity beta 
5 market risk premium 
6 Capital/reserve 
7 Loss& LAE 
8 
9 Calculated values 
10 Requ,'ed ROE 
11 Risk-adjusted yield 
12 After-tax risk- free rata 
13 Premium 
14 
15 Iterative input 
16 Risk adjustment 
17 
18 Balance sheet, at fair value [ 
19 
20 Assets 
21 Investments, before dividend 
22 Investments, after dividend 
23 
24 LJab#ities 
25 Loss & LAE 
26 income tax liability 
27 Capital. before dividend 
28 Capital after div (required amount) 
29 
30 Income 
31 Underwriting income 
32 Investment income 

Loss & LAIE cash flow patterns 
0.060 
0.080 Proportion 
0.350 Time of Total 
0.800 0 0.000 
0.090 1 0.500 
0.500 2 0.300 

1000.00 3 0.200 
Total 1.000 

0.1320 
0.0346 
0.0390 
968,75 

0.0254 

Time I 
0 1 2 3 

960.14 1016.12 469 .03  110.55 
1432.21 725.53  292.97 0.00 

944.15 476.81 193.31 0.00 
24.60 10.31 3.01 0.00 
0.00 531.00 272.71 110.55 

472.07 238.41 96.66 0.00 

24.60 -32 .67  -16.50 -669 
114.58 58.04 23.44 

33 Net income, pretax 24.60 81.91 41.54 16,75 
34 Inv income, capital (risk-adjusted) 
35 
36 Insurance Cash Flows 
37 Premium 
38 Loss & LAE 
39 Income tax 
4O 
41 Income tax, capital (risk-adjusted) 
42 
43 Capital flow (dividend) 
44 
45 Internal rate ofre~um 

28.32 14.30 5,80 

968~75 0.00 0.00 0.00 
0.00 -500,00 -300.00 -200.00 

-8.61 -28 .67  -14.54 -5.86 

9.91 5.01 2,03 

472,07 -292.59 -176.06 -110.55 

13.20% 
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N o t e s  to Exhibit A2 

Rows (Note that "RI" denotes Row 1, "R2" denotes Row 2, etc.): 

1. Rate for portfolio of U. S. Treasury securities having same expected cash flows as the 
losses. 

2. Expected return for the insurer's investment portfolio. Note that the yield on a bond is 
not an expected return. The yield must by adjusted to eliminate expected default. 
Municipal bond yields are adjusted to reflect the implied return as if they were hlly 
taxable. 

3. Statutory income tax rate on taxable income. 
4. Estimates can be obtained from Value Line, Yahoo Finance or other services. 
5. Estimates are commonly available in rate filings (e.g., Massachusetts). 
6. All-lines value an be estimated by adjusting historical industry reserve values to 

present value and adding back the after-tax discount to GAAP equity. See Butsic 
(1999) for an example. For individual lines, a capital allocation method can be used, 
such as Myers and Read (1999). 

7. An arbitrary round number used to illustrate the method. 

10. R1 + (R4 x R5). 
I I .  R1 - Rl6. 
12.(l R3) x R l  
13. R25 + R26 (at time 0). 

16. This value is iterated until the IRR (Row 45) equals RI0. 

21. 1122 (Prior Year) + R37 + R38 + R39. 
22. R21 + R43. 

25. Present value of negative R38 using interest rate Rl 1. 
26, Present value of R41 using interest rate R12. Result is divided by (l R3). 
27. (R6, capital/reserve) x R25. 
28. R27 + R43. 

31. Time 0: R37. R25. Time I to 3: - R I  1 x R25 (Prior Year). 
32. (R22, Prior Year) x R2. 
33. R31 + R32. 
34. (R28, Prior Year) x RI. 

37. RI3. 
38. R7 x payment pattern in Rows 4 though 7. 
39. R3 x R33. 

41. R3 x R34. 

43. R28 - R27 

45. Internal rate of return on Row 43 cash flows. 
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Appendix 3: Single Period RAD model 

All balance sheet values are at fair value. 

The discussion of  the income tax liability is the same as in Appendix 2. 

Here, there is no iteration needed, since the risk adjustment is derived directly from the 
equations relating the variables to each other. Butsic (2000) derives this result. 

The formula is 

[R-r I] _ri)[l+c l + r /  1 = 

where the variables are: 

z risk adjustment to the risk-free rate 
c capital as a ratio to the fair value of the liability 
R required rate of  return on capital (ROE) 
r~ expected return on assets (includes bond yields net of  expected default) 

r I risk-free rate 

t income tax rate 

Although the risk adjustment can be calculated directly from the above formula, we have 
provided Exhibit A3, which shows that the risk adjustment in fact produces the required 
ROE and internal rate of  return. The format of  Exhibit A3 is similar to that of  Exhibit A2. 
However, only a single time period is needed. 

Note that exhibits A2 and A3 give slightly different results for the risk adjustment. This is 
because capital is needed for both asset and liability risk. In a multiple period model, the 
relationship between the assets and loss reserve fair value is not strictly proportional. This 
creates a small discrepancy. 
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Exhibit A3 
Calculation of Risk Adjustment Using Single Period ROE Model 

Fixed Inputs 
1 Risk-free rate 0.060 
2 Expected investment return 0.080 
3 Income tax rate 0.350 
4 Equity beta 0.800 
5 market dsk premium 0.090 
6 Capital/reserve 0.500 
7 Loss & LAE 1000.00 
8 
9 Calculated values 
10 Required ROE 0.1320 
11 Risk-adjusted yield 0.0348 
12 After-tax risk-free rate 0.0390 
13 
14 Premium 981.38 
15 Risk adjustment 0.02518 
16 
17 Balance sheet, at fair value Time 
18 0 
19 Assets 
20 Investments. before dividend 976.12 
21 Investments, after dividend 1459.30 
22 
23 Liabilities 
24 Loss & LAE 966.35 
25 Income tax liaNlity 15.02 
26 Capital, before dividend 0,00 
27 Capital after div (required amount) 483.18 
28 
29 Income 
30 Underwriting income 15.02 
31 Investment income 

546.96 
0.00 

0.00 
0.00 

546.96 
0.00 

-33.65 
116.74 

32 Net income r pretax 15.02 83.10 
33 Inv income, capital (risk-adjusted) 28.99 
34 
35 Insurance Cash Flows 
36 Premium 981.38 0,00 
37 Loss & LAE 0.00 -1000.00 
38 Income tax -5.26 -29.08 
39 
40 Income tax, capital (risk-adjusted) 10.15 
41 
42 Capital flow (dividend) 483.18 -546.96 
43 
44 ROE 13.29% 
45 
46 Internal rate of return 13.20% 
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Notes to Exhibit A3 

Rows (Note that "RI"  denotes Row 1, "R2" denotes Row 2, etc.): 

1. Rate for portfolio of  U. S. Treasury securities having same expected cash flows as the 
losses. 

2. Expected return for the insurer's investment portfolio. Note that the yield on a bond is 
not an expected return. The yield must by adjusted to eliminate expected default. 
Municipal bond yields are adjusted to reflect the implied return as if they were fully 
taxable. 

3. Statutory income tax rate on taxable income. 
4. Estimates can be obtained from Value Line, Yahoo Finance or other services. 
5. Estimates are commonly available in rate filings (e.g., Massachusetts). 
6. All-lines value an be estimated by adjusting historical industry reserve values to 

present value and adding back the after-tax discount to GAAP equity. See Butsic 
(1999) for an example. For individual lines, a capital allocation method can be used, 
such as Myers and Read (1999). 

7. An arbitrary round number used to illustrate the method. 

10. RI + (R4 x R5). 
I I .  R 1 - R I 5  
12. (1 -- R3) x RI 

14. R24 + R25 (at time 0). 
15. R6 x (RI0 - RI )  / (1 - R3) - (R2 - RI )  x [1 + R6 x (1 + RI)  / ( I+RI2)] .  

20. R21 (Prior Year) + R36 + R37 + R38. 
21. R20 + R42. 

24. Present value of  R7 using interest rate RI 1. 
25. Present value of  R40 using interest rate R12. Result is divided by (1 - R3). 
26. Time 0: 0; Time 1:R20 - R24 - R25. 
27. R6 x R24. 

30. Time 0:R36 - R24. Time i: - RI ! x R24 (Prior Year). 
31. (R21, Prior Year) x R2. 
32. R30 + R31. 
33. (R27, Prior Year) x RI.  

36. R14. 
37. Time 0: 0. Time 1: - R7. 
38. R3 x R32. 

40. R3 x R33. 

42. R27 - R26 

44. (R26, Time 1) / (R27, Time 0) - 1. 

46. Internal rate of  return on Row 42 cash flows. 
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Appendix 4: Using Underwriting Data 

This appendix describes Butsic's procedure for computing risk adjusted discount rates. 
The following relationship is used for the computation. 

C = P ( I+ i )  ~ - E(I+i )  " - L ( I + i A ) "  

~/la_ere- 
C is the cash flow on a policy and can be thought of as the present value of the 

profits, both underwriting and investment income, on the policy, 
P is the policy premium, 
E is expenses and dividends on the policy, 
L is the losses and adjustment expenses, 
_u is the average duration of the premium, or the average lag between the 

inception of the policy and the collection of premium, 
w is the average duration of  the expenses, 
t is the average duration of  the liabilities. 
i is the risk free rate of return 
ia is the risk adjusted rate of return 

This formula says that the present value cash flow or present value profit on a group of 
policies is equal to the present value of the premium minus the present value of the 
components of expenses minus the present value of losses. Premiums and expenses are 
discounted at the risk free rate. Each item is discounted for a time period equal to its 
duration, or the time difference between inception of the policy or accident period and 
expiration ofall cash flows associated with the item. Losses are discounted at the risk- 
adjusted rate. Underwriting data in ratio form, i.e., expense ratios, loss ratios, etc. can be 
plugged into the formula. When that is done, P enters the formula as 1, since the ratios 
are to premium. 

In ratio form this formula would be: 

c = 1(1 + i )  - u  - e(l + i )  - w  - I(1 + i A )-t 

c is the ratio of present value profit to premium 
e is the expense ratio, including dividends to policyholder 
I is the loss ratio 

550  



Using as a starting point the rate of  return on surplus, where the surplus supporting a 
group of  policies is assumed to be eV, , ,  or  the  leverage ratio times the average discounted 
reserve, Butsic (Bustic, 1988) derived the following simplified expression for the risk 
adjustment: 

Z = e ( R - i )  = ( I + i ) C / V , , ,  , 

where: 
Z is the risk adjustment to the interest rate or the percentage amount to be subtracted 
from the risk free rate = e(R - ,) 
C and i are as defined above 
V,, is the average discounted reserve for the period 

V,~ is generally taken as the average of  the discounted unpaid liabilities at the beginning 
of the accident or policy period (typically 100% of  the policy losses) and the discounted 
unpaid liabilities at the end of  the period. In general, this would be equal to 100% plus 
the percentage of  losses unpaid at the end of  the period (one year if annual data is used) 
divided by 2. The discount rate is the risk-adjusted rate. If V,~ is computed as a ratio to 
premium, then published loss ratios are discounted and used in the denominator. 

To complete the calculation, the quantity c, or the ratio o f  discounted profit to premium 
should be multiplied by (1 + i) and divided by v,, (V,,, in ratio form). To derive initial 
estimates of  the risk adjustment, it is necessary to start with a guess as to the value o f  the 
risk adjustment to the discount rate in order to obtain a value for discounted liabilities. 

The following is an example of  the computation of  the risk adjustment using this 
method. It is necessary to start with a guess for the risk adjustment and then perform 
the calculation iteratively until it converges on a solution. This example is based on 
data m Butsic's (1988) paper. 

Parameter assumptions 
Interest Rate Rt 0,0972 
Fraction of losses OS after 1 year 0.591 
Initial Risk Adjustment 0.044 

Variable Nominal Value Duration Discounted Value 
1 Loss&LAE 0.767 2.300 0.681 
2 Premium 1.000 0.250 0.977 
3 UW Expense 0.268 0.250 0.262 
4 Pot Dividends 0.016 2,250 0,013 
5 Average Liabilities 0.610 1.800 0.556 
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Calculation 
6 Premium-Expenses Discounted 

(2) - (3)- (4) 0.702 
7 Premiums-Expenses-Losses Disc 0.021 

(6)-(1) 
8 c*(1+1) 0.024 

(7)'(1,1) 
9 Z=C*(I+I)Nm 0.042 

(8)/(s) 

An addit ive risk load 
An addit ive or dollar risk load can be computed from the same data. The formula for the 
computation of  a risk load is: 

c = p ( l  + i )  - u  - e(l  + i )  - w  - 1(1 + i) - t  

r l  - -  c / l ( l  + i )  - t  

Where r l  is the additive risk load and i is the risk free interest rate. 
An example  is shown below: 

Parameter assumptions 
Ilnterest Rate Rf 0.09721 

Variable Nominal Value Duration Discounted Value 
1 Loss&LAE 0.767 2.300 0.620 
2 Premium 1.000 0.250 0.977 
3 UW Expense 0.268 0.250 0.262 
4 Pol Dividends 0.016 2.250 0.013 

Calculation 
5 Premium-Expenses Discounted 

(2)- (3) - (4) 0.702 
6 C =Premiums-Expenses-Losses Disc 0.063 

(5)-(1) 
7 C/PV(Losses) 0.133 

(6)/(1) 
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Appendix 5: The Tax Effect 

More recent work by Butsic (Butsic, 2000) has examined the effect of  taxes on the risk 
adjusted discount rates and insurance premium. Butsic argued that, due to double 
taxation of  corporate income, there is a tax effect from stockholder supplied funds. 
Stockholder funds are the equity supplied by the stockholder to support the policy. In the 
formulas above, stockholder supplied funds are denoted by E and taken to be the ratio of  

e to the present value of losses V = L(I + i A)-r . For a one period policy an amount E is 

invested at the risk free rate i, an amount Ei o f  income is earned, but because it is taxed at 
the rate t, the after tax income is E ,( 1 - t). The reduced investment income on equity will 
be insufficient to supply the amount needed to achieve the target return. In order for the 
company to earn its target after tax return, the amount lost to taxes must be included in 
the premium. However, the underwriting profit on this amount will also be taxed. The 
amount that must be added to premium to compensate for this tax effect is: 

E/t 

( i - t ) [ l + i ( 1 - t ) ]  

This is the tax effect for a one period policy if the discount rate for taxes is the same as 
the discount rate for pricing the policy, i.e., the risk adjusted discount rate. Butsic shows 
that there is an additional tax effect under the current tax law, where losses are discounted 
at a higher rate than the risk adjusted rate. There is also a premium collection tax effect, 
due to lags between the writing and collecting of premium. This is because some 
premium is taxed before it is collected. Butsic developed an approximation for all of  
these effects taken together, as well as the multiperiod nature of  cash flows into the 
following adjustment to the risk adjusted discount rate: 

i A" = i - e ( 1 - t ) ( r  r - i ) ,where  
iA' is the tax and risk adjusted rate, 
e is a leverage ratio, 
t is the tax rate, 
rr is the pre tax return on equity. 

This is the effective rate used to discount losses to derive economic premium. The tax 
effect acts like an addition to the pure risk adjustment. Since premiums as stated in 
aggregate industry data already reflect this tax effect, no adjustment is needed for the risk 
adjusted discount rate used for pricing. However, for discounting liabilities, it may be 
desirable to segregate the tax adjustment from the pure risk adjustment, since the tax 
effect really represents a separate tax liability. Using the formula above, as well as the 
formula for determining the pure risk adjustment to the discount rate the two effects 
could be segregated. One would need to have an estimate of  the total pre tax return on 
equity. 
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Appendix 6: Using Alggregate Probability Distributions 

This example uses the Collective Risk Model to compute a risk load. It represents only 
one of  the many approaches based on aggregate probability distributions. This is in order 
to keep the illustration simple. 

The approach is based on the following model for risk load: 

• Risk Load = ~. SD[Loss] or Risk Load =~. Var[Loss], 

Therefore, in order or compute a risk load, two quantities are needed: ~. and Var[Loss], 
since SD(Loss) = Var[Loss] In. The following algorithm from Meyers (Meyers, 1994) 
will be used to compute the variance of aggregate losses. 

The Model: 

1. Assume claim volume has an unconditional Poisson distribution. 

2. Assume the Poisson parameter, n (the claim distribution mean), varies from 
risk to risk. 

3. Select a random variable X from a distribution with mean I and variance c. 

4. Select the claim count, K, at random from a Poisson distribution with mean xn, 

where the random variable X is multiplied by the random Poisson mean n. 

The Variability of Insurer Losses 

5. Select occurrence severities, Z~, Z2, .., ZK, at random from a distribution with 
mean 1/and variance o ~. 

6. The total loss is given by: 

X 

The expected occurrence count is n ( i.e. El( Z n] = E[n] = n). n is used as a measure of 
exposure. 
When there is no parameter uncertainty in the claim count distribution c = O, 

Var[xl = n (/,,2 + ¢~), 
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and variance is a linear function o f  exposures. 

When there is parameter uncertainty: 

var[x] = , ,  + , ~ v .  

where 
, , = ~ + o  ~) 

and 
v =  c ~  2 

nu  is the process risk and nZv is the parameter risk. 

For example, assume an insurer writes two lines of  business. The expected claim volume 
for the first line is 10,000 and the expected claim volume for the second line is 20,000. 
The parameter c for the first line is 0.01 and for the second line is 0.005. Let the severity 
for line 1 be lognormal with a mean of $10,000 and volatility parameter (the standard 
deviation of  the logs of losses) equal to 1.25 and the severity for line 2 be Iognormal with 
severity of  $20,000 and volatility equal to 2. Applying the formula above for the 
variance o f  aggregate losses, we fred that the variance for line 1 is 1.05x 10 t4 and the 
variance of  line two is 1.24 x l0 ts and the sum of  the variances for the two lines is ! .34 x 
10 tS. The standard deviation is $36,627,257. 

One approach to determining the multiplier )1. would be to select the multiplier ISO uses 
in its increased limits rate filings. In the increased limits rate filings, ~. is applied to the 
variance of  losses and is on the order of  107.(Meyers, 1998) 

In recent actuarial literature, the probability of  rain has been used to determine the 
multipliers of  SD(loss)or Var(Loss). (Kreps 1998, Meyers 1998, Philbrick, 1994). The 
probability o f  ruin or expected policyholder deficit is used to compute the amount of  
surplus required to support the liabilities. To keep the illustration simple, we use the 
probability o f  ruin approach. However, the expected policyholder deficit or tail value at 
risk (which is similar to expected policyholder deficit) approaches better reflect the 
current literature on computing risk loads. Suppose the company wishes to be 99.9% sure 
that it has sufficient surplus to pay the liabilities, ignoring investment income, the 
company will require surplus of  3.1 times the standard deviation of losses, if one assumes 
that losses are normally distributed. 2 In order to complete the calculation, we need to 
know the company's required return on equity, re. This can be determined by examining 
historical return data for the P&C insurance industry. Then the required risk margin for 
one year is re x 3.1x 36,627,257. For instance, if re is 10% then the risk margin is 

2 If one assumes that aggregate losses are lognormally distributed, then the company needs approximately 
e (z33"~)* the expected losses as sugphut, where ,06 is the volatility parameter, derived from the rne~ and 
variance of the distribution.. 
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1 !,354,450 or about 2.0% of  expected losses. In this example, the parameter lambda is 
equal to 3.1 re. The result computed above could be converted into a risk margin for 
discounted losses by applying the 2% to losses discounted at the risk free rate. This 
would require the assumption that the risks o f  investment income on the assets supporting 
the losses being less than expected is much less than the risk that losses will be greater 
than expected. When the assets supporting the liabilities are primarily invested in high 
quality bonds, this assumption is probably reasonable. (see D'Arcy el. al., 1997) 

Philbrick in his paper commissioned by the CAS "Accounting for Risk Margins" had a 
slightly different approach to determining the risk margin. Philbrick's formula for risk 
margin, given a total surplus requirement S, (i.e. 3.1" standard deviation in this example), 
a rate o f  return on equity re and a risk free rate i is: 

R M  = ( r , - i ) x S  
l+r ,  

This is a risk margin for discounted losses not undiscounted losses.. The formula above 
assumes that some of  the required return on surplus is obtained from investing the surplus 
at the risk free rate. i f  i = 5%, and re = 10% the risk margin in this illustration would be 
$5,161,113. 

in this example, it should be noted that the majority of  the standard deviation is due to 
parameter risk, as process risk for such large claim volumes is minimal. However, only 
parameter risk for claims volumes has been incorporated. A more complete model would 
incorporate parameter risk for the severity distribution. This risk parameter has been 
denoted the "mixing parameter" in the actuarial literature. The algorithm for 
incorporating this variance into the measure of  aggregate loss variance is as follows: 

1 - 5. Follow steps 1 through 5 above, describing the selection of frequency and 
severity parameters for a distribution 
6. Select a random variable B from a distribution with mean 1 and variance b. 

7. The total loss is given by: 

X = Z,~_I Z , /B  

The variance reflecting the mixing parameter is given by: 

v a r [ x l = . ( l + b ) ( u  ~ + o~)+.~(b+~+b~)**  ~. 
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Procedures for estimating b and c are provided by Meyers and Schenker. The procedures 
use the means and variances of  the claim count and the loss distribution to compute b and 
c. The parameter b can also be ~,iewed as the uncertainty contributed to the total estimate 
of  losses due to uncertainty in the trend and development factors. Methods for measuring 
the variance due to development are presented by Hayne, Venter and Mack. Regression 
statistics containing information about the variances of  trend factors are published in ISO 
circulars and can be developed from internal data. To continue our example, we will 
assume that the b parameter for line 1 is 0.02 and for line 2 is 0.05. Then the standard 
deviation of aggregate losses is $95,663,174. The risk load using Philbrick's formula is 
$13,479,811 or 2.7% of  expected undiscounted losses. The load is intended to be applied 
to discounted liabilities where liabilities are discounted at the risk free rate. Thus if 
losses take one year to pay out the risk margin is 2.8% of the present value of  liabilities. 

The above risk load is consistent with liabilities that expire in one year. When losses 
take more than one year to pay, Philbrick uses the following formula to derive a risk load. 

_ ( r , - i ) S  

This formula can be applied to liabilities of  any maturity. Where S i is the surplus 
requirement for outstanding liabilities as of  yearj. In the above example if losses pay out 
evenly over 3 years then the risk margin is $20,693,737or 4.6% of  he discounted 
liabilities. The calculation is shown below. 

(1) (2) (3) (4) (5) 
Surplus 

t .227*PV(OS Losses) l/(l+r(e)^t (3)*(2) (r(e)-.05)*(4) 
0 219,965,641 1.000 219,965,641 10,998,282 
1 146,643,760 0.909 133,312,510 6,665,625 
2 73,321,880 0.826 60,596,595 3,029,830 

20,693,737 

The computation above assumes that the relative variability of  the liabilities remains 
constant as the liabilities mature. As this may not be the case, refinements to the measure 
of variability by age of  liability may be desirable. One approach to modeling the 
uncertainty in reserves would derive measures of  variability from observed loss 
development variability. This is the approach used by Zenwirth, Mack and Hayne. 
Another approach, consistent with how risk base capital is computed, would measure 
historic reserve development for P&C companies for a line of business from Schedule P. 
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Appendix 7: Direct Estimation of Market Values 

Below we illustrate how to estimate the risk adjustment to the interest rate for a single 
firm, based on empirical data. 

Assume that the market value of assets is 1400 and the book (undiscounted) value of the 
liabilities is 1000. Both of these values are available from the insurer's published 
financial statements. Also, assume that using the Ronn-Verma method (see the discussion 
in the Credit Risk Appendix), the estimated market value of the firm's equity is 500 and 
that the value of the expected default (the credit risk adjustment) is 10. The market value 
of the equity adjusted to exclude default is 510. 

The discounted risk adjusted liabilities equals the market value of the assets minus the 
market value of the equity or 900 = 1400 - 500. The implied market value of the 
liabilities adjusted for default equals the market value of the assets minus the market 
value of the equity adjusted for default, or 890 = 1400 - 510. 

Assume that the risk-free interest rate applicable to valuing the insurer's expected 
liability payments is 6% and that the liability payment pattern is 10% per year for 10 
years (paid at the end of each year). The present value of the liabilities at the risk-free rate 
is 730. Thus, the risk margin, expressed in dollars is 160 = 890 - 730. Alternatively, the 
interest rate that gives a present value of 890 using the above payment pattern is 2.18%. 
This value implies a risk adjustment of 3.82%. 

The following discussion provides an example of the Ronn and Verma method. 

Let A be the market value of assets, L the market value of liabilities and o" the volatility 
of the asset/liability ratio. The formula for the owners' equity, where there is a possibility 
of default, is the call option with expiration in one year: 

(1) E = A .  N ( d ) -  L .  N ( d - t r ) ,  

where d = ln(A / L) / cr + ty / 2 and N ( d )  is the standard normal distribution evaluated at 

d. 

Notice that equity value with no default is simply E, = A - L. For an insurer with 

stochastic assets and liabilities, o'~, the volatility of the equity, is related to the 

asset/liability volatility by 

(2) tre = N ( d ) A t r  / E . 
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Equations ( ! )  and (2) are solved simultaneously to get E and o' .  

The expected default value equals E - E , ,  or the derived market value o f  the equity 

minus the equity value with .no default. 

The method is easily demonstrated with a numerical example. Assume that A = 130, L = 
100 and cre = 0.5. Solving the simultaneous equations gives E = 40.057 and cr = 0.117. 

Therefore, the value of  the expected default is 

0.057 = 40.057 - 40.000. 

For an insurer, the market value of  assets is readily determined from the published 
balance sheet. Discounting the reserves at a risk-free rate can approximate the market 
value of  liabilities. The equity volatility can be estimated by analyzing the insurer's stock 
price over a recent time frame, as done by Allen, Cummins and Phillips. 
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Appendix  8: Distr ibution T r a n s f o r m  Method 

Assume expected claim counts for a policy equal 100 and ground up severities follow a 
Pareto distribution: 

F(x) = l-[b/(b+x)] ~ for x>0. 

Therefore G(x)= [b/(b+x)] ~ 

E[X]=b/(q-I) 
E(aggregate loss) = 100" E[X] 

For the transformation r, G(x) = [b/(b + x)] q" . 

If the market risk premium is 10% then risk loaded premiums equal: 

b b 
100 1.1 = l O 0 - -  

q-I  qr-I 

This expression can be solves for r: 

r=[(q-1)/i.l+l]/q= (q+O.l)/l.lq. 

l fq were 2, r would be 0.95. 

Expected values for higher layers could be computed by replacing q with qr in the Pareto 
distribution and using the Pareto formula for limited expected value to price the excess 
layers.: 

Limited Expected Value function= E[Xj~l_Lb/(b+x)j,-, ~ .  .r  r .  ~ ~ E(X, x) = 

In the above example, a transformation was applied only to the severity distribution. 
However, with a little more work, the transformation could be applied to both the 
frequency and severity distribution. 

For instance the formula for the transformed mean of a Poisson distribution with a mean 
of 100 and transformation parameter r is: 
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y_((eZ°°F(j) - r ( j ,  lOO))/r( j ) )  ~ 
J 

This formula could be combined with the formula for the transformed severity 
distribution to produce a risk loaded mean. 
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Appendix 9: Credit Risk 

The Time Horizon Problem 

In general, long-tail liabilities are subject to greater default risk than are short-tail 
liabilities. To see why this is so, assume that an ongoing insurer has a 1% chance of  
insolvency each year. The insurer has two lines of business: line A has claims that are 
paid in one year and line B has claims that are paid in five years. The probability of a 
claim from line A not being paid in full is 1%. Assuming that each year's insolvency 
potential is independent of the other years, the probability of a claim from line B not 
being fully paid is 4.9% = 1 - (1 - 0.01) s , or about 5 times as great as for line A. 

An insurance firm's owners normally make capital decisions at an approximate annual 
frequency, so to truly measure the long-term value of the potential default, it is necessary 
to consider the future capital flows as well as the current level of capital. (However, note 
that the fair value accounting proposals purposely ignore future transactions that are not 
based on current contractual obligations.) The complexity due to future capital flows 
(which are contingent on future company results and market conditions) makes the 
estimation of credit risk extremely difficult. 

To make the credit risk adjustment calculation more tractable, it is customary to assume 
an annual time horizon and that future insolvencies have the same probability as for the 
current one-year horizon. For longer-term liabilities, one can further assume that the 
insolvency probabilities are independent year-to year and then determine the overall 
expected default by a formula suggested by the above 5-year calculation: 

D=t)~[1-w,( l -p)-w:( l - .p)  2 - . . . - w . ( l - p )  ~] ~_ D,[w,+2w 2+. . .+nw~].  
P 

Here, D~ is the fair value of the expected default for the one-year horizon, p is the one- 

year insolvency probability and the weight w, is the expected proportion of loss paid in 

year i (the weights sum to 1 ). Using the approximation above, the fair value over an n 
year time horizon of a company's option to default can be expressed as a function of its 

• one year default value. 

It should be noted that the published research relating to bond default rates does not 
support the assumption that annual default rates over the life of a bond are independent 
and identically distributed. That is, for many categories of bonds, the default rate during 
the third and fourth year is higher than the default rate during the first and second years 
after issuance. If the assumption of independent and identically distributed default rates 
is inappropriate for bonds, it may be inappropriate for some of the companies issuing 
bonds (i.e. insurance companies) and therefore the approximations in the above formula 
would not be appropriate. 
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A related technical issue that must be addressed in calculating the credit risk adjustment 
is the length of  the time horizon over which defaults are recognized. At one extreme, it 
may be argued the applicable horizon is unlimited. Insurers are obliged to pay claims 
occurring during the contractual coverage period, no matter how long the reporting and 
settlement processes take. On the other hand, solvency monitoring and financial reports 
have a quarterly or annual cycle. Also, it is important to recognize that capital funding 
and withdrawal decisions are made with an approximate quarterly or annual cycle. An 
approach that often makes the solution easier to derive is to assume that one may view 
the time horizon as being a fairly short duration. According to this view, if the company 
is examined over short increments such as one year, corrective action is applied and 
insolvency over a longer term is avoided. The task force considers this view to be 
controversial. The alternative view is that insurance liabilities are often obligations with 
relatively long time horizons, and these longer horizons need to be considered when 
evaluating the companies' option to default on its obligations. 

In the numerical examples below, we have determined the annual fair value o f  default. 
The extension to longer-duration liabilities is straightforward, using the above formula, if 
one assumes the formula to be appropriate. If one assumes the formula to be 
inappropriate, many of the methods below can be modified to adjuste for the longer time 
horizon of  insurance liabilities. 

Numerical Examples of Credit Risk Adjustment Estimation Methods 

1. Implied Option Value: Example 

The following (until #2, the DFA example), is a repeat of  a few pages ago immediately 
following Appendix 7, 

The following discussion provides an example of the Ronn and Verma method. 

Let A be the market value o f  assets, L the market value of liabilities and o" the volatility 
of  the asset/liability ratio. The formula for the owners' equity, where there is a possibility 
of  default, is the call option with expiration in one year: 

(1) E=A.N(d) -L .N(d-~r ) ,  

where d = ln(A/L)/cr  + cr /2  and N(d) is the standard normal distribution evaluated at 

d. 

Notice that equity value with no default is simply E, = A - L .  For an insurer with 

stochastic assets and liabilities, o'n, the volatility of  the equity, is related to the 

asset/liability volatility by 
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(2) cr E = N(d)Atr/E. 

Equations (1) and (2) are solved simultaneously to get E and a .  

The expected default value equals E -  E, ,  or the derived market value of the equity 

minus the equity value with no default. 

The method is easily demonstrated with a numerical example. Assume that A = 130, L = 
100 and o" e = 0.5. Solving the simultaneous equations gives E = 40.057 and cr = 0.117. 

Therefore, the value of the expected default is 

0.057 = 40.057 - 40.000. 

For an insurer, the market value of assets is readily determined from the published 
balance sheet. Discounting the reserves at a risk-free rate can approximate the market 
value of liabilities. The equity volatility can be estimated by analyzing the insurer's stock 
price over a recent time frame, as done by Allen, Cummins and Phillips. 

2. Dynamic Financial Analysis: Example 

An insurer has initial liabilities of $100 million, measured at fair value, but under the 
assumption that all contractual obligations will be paid. Assume that the DFA model has 
been run using 10,000 simulations. The time horizon is one year. Wc examine all 
observations where the terminal fair value (before default) of liabilities exceeds the 
market value of the assets. Suppose that there are 22 of them, with a total deficit (liability 
minus asset value) of $660 million. The average default amount per simulation is $0.066 
million. 

The expected terminal fair value is then discounted at a risk-adjusted interest rate to get 
the fair value of the credit risk adjustment, With a 4% risk-adjusted interest rate, for 
example, the fair value of the default is $0.063 million = 0.066/1.04. Thus, the fair value 
of the liabilities, adjusted for credit risk, is $99.94 million ($100 million - $.06 million. 
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3. Rating Agency Method: Example 

This example shows how the table of  default ratios might look, i fa  one-year time horizon 
approach was used. Alternatively, a matrix o f  default ratios by rating and lag year could 
be used, similar to those available from Moody's (e.g., Moody's January 2000 report titled 
"Historical Default Rates of  Corporate Bond Issuers, 1920-1999"). Here the ratings are 
the current A. M. Best categories. The values in the table below are purely hypothetical. 

Rating 

A++ 

Annual Expected 
Default Ratio (Raw 
Results) 

0.000% 

Annual Expected 
Default Ratio 
(Adjusted.) 

0.001% 
A+ 0.000% 0.004% 
A 0.013% 0.010% 
A- 0.043% 0.050% 
B++ 0.122% 0.100% 
B+ 0.155% 0.150% 
B 0.432% 0.300% 
B- 0.619% 0.500% 
C++ 0.653% 0.800% 
C+ 1.221% 1.000% 
C 1.554% 1.500% 
C- 2.221% 2.000% 
D [ 4.689% 5.000% 

i 

E 13.658% 15.000% 

The raw results would be based on historical insolvency data. A simulation model or a 
closed-form model could be applied to a large sample of  companies within each rating 
group to produce the adjusted results. These results might be further adjusted to ensure 
that a higher rating had a corresponding lower default expectation. 

To show how the above table would be applied, assume that an insurer has initial 
liabilities of  $100 million. These are measured at fair value, but under the assumption that 
all contractual obligations will be paid. Assume also that the insurer has an A- Best 's 
rating. The expected default is 0.05% of $100 million, or $50,000. 

The expected terminal fair value is then discounted at a risk-adjusted interest rate to get 
the fair value of  the credit risk adjustment. With a 4% risk-adjusted interest rate, for 
example, the fair value of  the default is $48,100 = 50,000/1.04. Thus, the fair value o f  the 
liabilities, adjusted for credit risk, is $99.95 million. 
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Determining the Change in Mean Duration Due 
to a Shift in the Hazard Rate Function 
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Abstract: 

From a major worm event (such as a military action) to a seemingly minor detail (such 
as the use o f  a new plastic washer in a faucet design) change must be accounted for  when 
collecting, interpreting and analyzing data. Indeed the intervention itself may be the 
focus o f  the study. Theoretically, the best way to model some interventions, especially 
time-dependent ones, is via the hazard function. On the other hand, it may be necessary 
to translate into simpler concepts in order to answer practical questions. The average 
duration, for  example, may have well-understood relationships with costs, making it the 
best choice for  presenting the result. 

For example, Shuan Wang [3] discusses deforming the hazard function by a constant 
multiplicative factor--proportional hazard transform--as a way to price risk load, with 
the mean playing the role o f  the pure loss premium. 

This paper investigates how a shift in the hazard rate impacts the mean. The primary 
focus o f  the discussion is the case o f  bounded hazard rate functions o f  finite support. A 
formal framework is defined for that case and a practical calculation is described for  
measuring the impact on the mean duration o f  any deformation o f  the hazard function. 
The primary tool is the Cox Proportional Hazard model Several formal results are 
derived and concrete illustrations o f  the calculation are provided in an Appendix, using 
the SAS implementation. The paper establishes that the method can be applied in a very 
general context and, in particular, to deformations which are not globally proportional 
shifts. Indeed the method demands no assumed form for either the survival distribution 
or the deformation. The discussion begins with a case study that illustrates the 
application o f  these ideas to assess the cost impact o f  a TPA referral program. 
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Introduction 

Recall that the survival function, S(t), is just the probability of surviving to maturity time 
t and that the hazard function, h(0, is the rate of failure at time t. We assume some 
general familiarity with these concepts in this discussion--they are introduced formally 
in Section II. While both functions equally well determine a model of survivorship, the 
survival function is the more common and the hazard function the more arcane. Often 
though, the best way to model a change in circumstances, especially a time-dependent 
intervention, is via the hazard function. On the other hand, it may be necessary to 
translate into simpler concepts in order to answer practical questions. The average 
duration, for example, may have a well-understood relationship with costs which makes it 
the best choice for presenting the result. 

For example, Shuan Wang [3] discusses deforming the hazard function by a constant 
multiplicative factor--proportional hazard transform--as a way to price risk load, with 
the mean playing the role of the pure loss premium. 

This paper investigates how a shift in the hazard rate impacts the mean. The primary 
focus of the discussion is the case of bounded hazard rate functions of finite support. A 
formal framework is defined for that ease and a practical calculation is described for 
measuring the impact on the mean duration of any deformation of the hazard function. 
The primary tool is the Cox Proportional Hazard model (see [1]). Several formal results 
are derived and concrete illustrations of the calculation are provided in an Appendix, 
using the Statistical Analysis System [SAS] implementation (c.f. [1]) of the Cox model. 
The paper establishes that the method can be applied in a very general context and, in 
particular, to deformations which are not globally proportional shifts. Indeed, the method 
demands no assumed form for either the survival distribution or the deformation. 

The paper begins with a case study that illustrates how these ideas were used to assess the 
cost impact of a Third Party Administrator (TPA) referral program. While this paper has 
a distinctly theoretical focus, the best way to explain the basic concepts is through a real 
world example. Indeed, most of the ideas are a direct consequence of attempts to achieve 
a better understanding of the case study outlined in Section I. The study illustrates that 
for most practieal issues it is sufficient to determine the mean duration to failure via 
numerical integration. For many purposes, there is little need to invoke the more esoteric 
results developed in the subsequent sections. Still, the example illustrates the potential 
value of building a survivorship model whose hazard structure is designed to 
accommodate the issues under consideration. Among the technical results of the paper is 
a description of just such a survivorship model. While the discussion of the case study is 
largely self-contained for anyone generally familiar with the terminology of survivorship 
models, the discussion does make an occasional reference to the notation and 
observations developed in the subsequent sections. 

Section II introduces the notation and formal set-up. The language shifts from rather 
discursive to decidedly technical. Section III discusses some well known examples. The 
remainder of the paper is devoted to several technical findings on how duration is 
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impacted by a hazard shift. Specifically, Section IV discusses the case of  finite support 
that is the case of  primary interest. Section V considers how to combine ha7ards of  finite 
support into more complex models suited to empirical d~t~ and the kind of  investigation 
described in the case study. 
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Section I: A Case Study 

Consider the following situation (while the data is based on a real world study, some 
liberties are taken in this discussion; in particular, the thought process, as described, 
follows hindsight more than foresight). The context is workers compensation (WC) 
insurance. We are required to assess whether a third party claims administrator (TPA) is 
saving money for two of its clients that have been selectively referring a portion of their 
WC claims over to be managed by the TPA. These clients are both large multi-state 
employers that are "self-insured" inasmuch as they do not purchase a WC insurance 
policy. The medical bills and loss of wages benefits are the direct responsibility of the 
employers and each has built internal systems to process their WC claims. The data 
captured by these systems is designed for administering claims, however, rather than for 
analytical use. As such, the data is comparatively crude relative to claim data of  
insurance companies or TPA's. They do, however, capture the date and jurisdiction of 
the injury, a summary of payments made to date, as well as if and when the claim is 
settled. There are, however, no "case reserves" available nor are there sufficient details, 
such as impairment rating or diagnosis, to adequately assess the severity of the claim. 

Over the past few years, the employers have selectively farmed out the more complex 
claims to the TPA. The TPA has its own claim data on the cases referred to it and there 
is sufficient overlap to identify common claims within the TPA and the employer files. 
Moreover, the TPA files are more like insurance carrier data files and contain 
considerably more information, including the date of the referral, impairment ratings, 
claimant demographics and other claim characteristics. 

A major problem is referral selection bias. The selection process itself is not well defined, 
even within an employer. Also, when the TPA first entered the picture, a greater 
percentage of  referred claims were older, outstanding cases. Simply comparing the 
average cost per case of referred versus retained cases would not yield any meaningful 
information. Indeed, the selection process refers claims that are more expensive. Not 
only does this result in a higher severity for the referred cases, it renders the retained 
cases less severe over time. In such a circumstance, no matter how successful the TPA is 
in reducing costs, its mean cost per case will be comparatively high. 

One fact that stood out for both employers is that the percentage of cases that closed 
within one year had more than doubled since the TPA became involved. Also, the 
referral rate shot up dramatically, suggesting that the TPA is, at some pragmatic level, 
viewed as being effective. Of course, that could also be the effect of imposed cost 
reductions on the staffthe employer is now willing to maintain for WC claims handling, 
given the money spent on the TPA. 

Another complicating issue is that the benefits that will be paid on some WC claims are 
paid out over many years. Without any consistent reserves it is very problematic to fred 
comparable data. The challenge here is to make an assessment using the currently 
available payment data. 
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Without the presence of case reserves or enough claim characteristics to grade the 
severity of the claims, conventional actuarial approaches do not work well. As noted, the 
employer data, being collected largely for administrative purposes, did include the key 
dates of  injury and settlement. This, combined with what was noted in regard to claim 
closure rates, suggested an approach based on survival analysis. In this context, a "life" 
corresponds with a claim, beginning at the date of injury and "failing" at claim 
settlement. Information on unsettled (open) claims is then "right censored". It was 
hoped that the survival analysis models would enable us to deal with censored data, since 
there were no ease reserves available for that purpose. 

Merging the TPA data together with the employer claim data, we built a data set that 
included an indicator of referral and, where so indicated, the date of referral. Other 
covariates captured are: 

Explanatory Variables Used in the Proportional Hazard Duration Models 
Description Variable Name(s) 

Indicator of  which of the two employers the EMPL2 
claimant worked for 
Indicators of the year of the injury (year 1992 as AY93,AY94 
base) 
Indicator whether a medical fee schedule applies in i MF01 
the state of jurisdiction 
Indicator whether employer choice of physician EC01 
applies in the state of jurisdiction 
Indicator whether the nature of the injury is a sprain 1 NOI_SPR 
or strain (subjective) J 
Indicator whether the nature of the injury is a cut or NOI_CUT 
laceration (objective) 
Indicator whether the claim was referred to the TPA TPA 
Time dependent indicator whether the claim was 
referred to the TPA 

TxTPA = 0 prior to TPA referral 
TxTPA =1 after TPA referral. 

The x refers to 3 time frames of 
referral from date of injury: 

x=l within ]st 6 months 
x=2 within 2 "0 6 months 
x=3 after 1 year 

A claim survivorship model was constructed from this data. As defined in later sections 
in a formal way, the conceptual base of the model is a "hazard" function. The model 
assumes that the various explanatory variables impact the hazard function as a 
proportional shift, i.e., multiplication by a constant proportionality factor. Such 
survivorship models are referred to as proportional hazard models. Referral to the TPA is 
an exception in as much as it is captured as a so-called "time-dependent" intervention. 
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Instead of a constant value for the explanatory variable, the TPA referral indicator is 
allowed to take on two values so as to be able to capture into the model the time frame of  
referral (=0 prior to referral, =1 afterward). The proportional adjustment factor 
associated with TPA referral confirmed the expectation that referral was associated with a 
greater hazard, i.e., shortened claim duration. While the effect on the hazard was 
measured, the assignment demanded that it be translated into savings. In order to do that, 
it was necessary to convert the result back into factors related to claim costs. Whence the 
basic question of this paper: how to translate a change in hazard into a change in (mean) 
duration. 

The task is to assess the cost impact of the TPA program, but that is not clearly defined. 
Due to the limited time frame of the data, the lack of case reserves or multiple loss 
valuations, it was clear that the "ultimate" cost impact could not be assessed using the 
available data, at least not directly. Also, ''ultimate cost impact" is a more complicated 
notion than what the clients were after. We interpreted the task more simply: since we 
had the actual payments made on TPA referred cases, what we needed to measure is 
hypothetical: what would the payments on those claims have been without use of the 
TPA? 

There is a catch, however. Consider a simplified case: the "original" payout pattern is $1 
per day for 100 days on all claims. Assume that the referral to the TPA results in a single 
$100 payment on the first day. A little thought will convince the reader that at any point 
in time, ignoring discounting and the prospect that the business fails, the TPA will appear 
more costly. The comparison will not be fair unless it takes into account the unpaid 
balance: no matter how simply you frame the issue, reserves cannot be completely 
ignored. 

The data included payment and duration, so there were ways available to translate a 
change in mean duration to dollars. Our choice was to use the non-referred claims to 
build a regression model in which the dependent variable is (log of) the benefits paid to 
date. The explanatory variables would include available claim characteristics together 
with the (log of) the payment duration. The characteristics (such as employer, accident 
year, jurisdiction or nature of injury, as above, together with perhaps additional 
covariates if  available like age, wage, gender, part of body) are assumed independent of 
TPA referral and their mean values over the TPA-referred claims are readily determined. 
The only missing piece is the duration variable. Again, the question reduces to the topic 
of this paper: determining the impact on the mean duration. 

The Cox proportional hazard model is well suited to this context. The model was run on 
pooled TPA-referred and non-referred data, with TPA-referral included among the 
explanatory variables in the model. This captures TPA-referral as a deformation of  the 
hazard function and the methods of the paper can be applied to finish the job. Appendix 2 
provides output that details the calculations. 

The case study, however, illustrates an additional complexity. More precisely, the TPA- 
referral was incorporated into the Cox proportional hazard model as a time-dependent 
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intervention (both the date of injury and date of referral being available). Also, as in the 
paper, the deformation of the hazard function was modeled as a combination of 
proportional shifts over three time intervals, as shown in the following table (refer to 
Appendix 2, page 5 of  the listing): 

Time Period I 

1 ~ 6 months 
2 r~ 6 months 

Hazard Ratio ~o, 

1.424 
1.203 

After 1 year 1.122 

The pattern of the hazard ratios supports the TPA's contention that its early intervention 
is more cost effective. Indeed, TPA intervention has its greatest, and most statistically 
significant, impact during the first six months. Although not critical to this context, that 
was an important finding of the study. 

The difference in the values of  the hazard ratios suggests that not only is it appropriate to 
model TPA referral as a time-dependent intervention, it is also appropriate to mitigate the 
global proportional hazard assumption by specializing to several time intervals. This is a 
very direct approach to that issue; the technical discussion of the subsequent sections 
follows that approach. An alternative way to mitigate that assumption--the one in fact 
used in the study report--is to group the TPA intervention by the lag time to referral. 
That formulation produces similar results and more directly supports the greater impact 
of early intervention. Conceptually, it is easy to regard TPA-referral within a few days of 
the injury as being an essentially different intervention than referral after several months. 

The remainder of this discussion is somewhat more technical and makes reference to 
some of the notation and results presented in the subsequent sections of the paper. 

The SAS PHREG procedure is used not only to estimate the three proportional hazard 
ratios ~0,. It optionally outputs paired values (t,S(t))ofa "baseline" survival function 

S(t) at time t as well. We chose to determine a baseline survival function, S(t), 
corresponding to the value of 0 for all eovariates in the model. In particular, it applies to 
the ease of non-referral as defined by the vanishing of the TPA-referral indicator variable. 
Observe that for the purpose of determining the baseline survival, only the non-time 
dependent TPA-referral indicator is used, since the baseline option is not available in the 
presence of time-dependent interventions. 

This baseline survival function provides the expected duration distribution for the non- 
referred claims at the formal value 0 for the other explanatory variables in the model. 
Because referral is captured as a time dependent intervention, the deformation of the 
hazard function is itself dependent on the lag time to referral of the individual claims. 
Consequently, no single survival function of the form Sa(t) (see Section II) can suffice to 
measure the impact on mean duration. This presents a somewhat more complicated 
situation than that considered in this paper. 
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To deal with this, let x represent a TPA-referred claim and f l  = fl(x) be the proportional 
~azurd ratio associated to x by the model, which therefore includes the factor ~ = ¢~(x) 
for the TPA-referral as a time-dependent intervention. Let D(x) represent the claim 

duration function; recall that we seek a hypothetical alternative/)(x) which associates 

what the duration would have been had x not been referred. Letting S, ,S ,  denote, 

respectively, the survival curves for x with and without referral, and a = a(x)the lag time 
to TPA-referral, we have the following picture: 

a D(x) b(x) 

The idea is adjust duration so as to hold "maturity" constant. It follows from 
observations in Section II that: 

-P I s~(o t < a ~;,(t)~s(t)" and S~(t)=[~,(t),~(~t),_, t>_at 

It follows, taking the ( ~ / ~  root, that: 

Sx(D(x)) ~ Sx(D(x)) ¢~, S(D(x)) ,~ (S(D(x)))¢'S(ct) '-~' 

Since the baseline survival curve S(t)is known, this provides a way to determine 

/~(x) for any TPA-referred claim x. The methods described in the paper can now be 
invoked to estimate what the mean payment duration of those claims would have been 
had they not been referred. Again, the details of the calculation can be found in Appendix 
2. The following table summarizes the ffmdings in the ease study (pages 10 and 15 oftbe 
listing): 
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Assumption Mean Duration 

As Referred to TPA 0.737 years 
(actual) 

No Referral 0.826 years 
(hypothetical) 

Note that the application of the logic used to define D(x) v-~ D(x) becomes somewhat 

problematic when crossing a boundary of the time intervals used to define the ~ .  That is 
another reason that, in the study, we chose to partition the TPA-intervention by layer of 
referral lag a = a(x). 

Finally, these mean duration figures can be plugged into the cost models and translated 
into dollar savings attributable to TPA-referral. This case study is included to illustrate a 
non-traditional application of survival analysis to an insurance problem, emphasizing the 
power that manipulating the hazard function can bring to the analysis. The remainder of 
the paper develops a formal context in which this can be done. The focus is on formal 
relationships between the more "arcane" changes in haTard and the more "presentable" 
effect on mean duration. 
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Section II: Basic Terminology and Notation 

Let ~+  denote the set ofnonnegat ive  real numbers. Let h(t) denote a function from 

some subinterval Z _q ~+ to 91 ÷ . The set X is called the support. We assume 

throughout that h(t) is (Lebesgue) integrable on Z and that 0 ¢ ~ is in the closure o f  the 

support. Any such h : ~ - - - ~ } ~ +  can be viewed as a hazard rate function and survival 

analysis associates the following three functions: 
s 

g : ~- . .9 .9{  + where g(t) = Ih(s)ds 
t ~ g(t) 0 

s :  X--~[O,1] w h e r e  S ( t )  = e - ' ( ' )  

f ~ S(O 

f : ~...9,~1~ + where f ( t )  = - ~  = h(t)S(t) 
t ~ / ( t)  

As is customary, we refer to S(t) as the survival function, f (t) as the probability density 
function [PDF] and t as time. We also let T denote the random variable for the 

distribution of  survival times and g = Er(T ) the mean duration. When we axiom h(t) 
with a subscript, superscript, etc., we make the convention that these associated functions 
all follow suit. There are many well-known relationships and interpretations o f  these 
functions---refer to Allison[l  ] for a particularly succinct discussion which also discusses 
the SAS implementation of  the Cox proportional hazard model. 

Provided f is differentiable at t, it is readily determined whether the hazard rate is 
increasing or decreasing at t : 

af 
- -  2 

dh = dt + h 2; h is decreasing at t ¢~, df  < _ f "  
dt S dt S 

In particular, it is a necessary---but by no means sufficient--condit ion that the density be 
decreasing in order for the hazard to be decreasing. 

We are concerned with what  happens when h(t) is changed or "shifted" in some fashion. 
This paper deals particularly with proportional shifts as the Cox model provides a viable 
way to measure that type of  shift (c.f.[2]). More precisely, we are interested in shills of  
the form: 

d /=  d/(a,qo) for a,~p >- 0 where 6(h)  = h,~ is defined as h~ (t) = ~ h(t) t <_ a 
t ~ ( t )  t > a 
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The following are immediate consequences of this definition and our notational 
conventions: 

s a t )  = 

g(t) t < ct 

g(ct) + ¢(g(t)  - g(a))  

= (1 - ¢~)g(a) + q~g'(t) t > a 

~S(t) t < a 
S,( t )  = ( S(a),_~ S( t ) ,  t > ct 

I f ( t )  t "; at 

['LS(a)J f ( t )  t > o r  

We are particularly interested in the effect that such a shift has on mean duration, which 
is formally captured in the function: 

A(h;ot ,  q~):9t  + - )  91 + 
.u t-~ a J (ad~)  

While at first these shifts may seem restrictive, one of the main results of this paper is to 
show that the ability to measure these shifts is sufficient for handling very general 
problems. In facL it will be shown that even when dealing with time-dependent 
interventions one can generally make do with the ability to handle the case ~t = O, in 

which case we make the common identification d/(O,~) = ¢~ of scalar multiplication with 
the scalar itself. Accordingly, we have 

h , ( t )  = ¢ph(t), S , ( t )  = S(t)* and fg ( t )  = cpS(t)*-' f ( t )  for  all q~ > O,t ~ ~. 

Section III illustrates this notation in the case of two of the (infinite support) distributions 
commonly used in survival analysis. However, we choose to deal exclusively with the 
case of  hazard functions with finite support in the remainder of the paper. Section IV 
discusses the additional assumptions, notation and conventions applicable specifically to 
fmite support haTnrd functions and presents some examples. Section V discusses 
decomposing and combining finite support hazards and presents the main result: a 
formula for calculating the effect on mean duration of a shift in the hazard rate function. 
We also provide two appendices that detail the calculations referenced in the paper using 
SAS and, in particular, illustrate how the SAS proportional baTards model procedure 
(PHREG) can be used to do all the heavy lifting. 
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S e c t i o n  III: F a m i l i a r  E x a m p l e s  

In this section we illustrate our notation with some distributions with infinite support 
= (0,oo) which have found common application in survival analysis. The first three are 

selected to present straightforward illustrations of  the notation and concepts and for those 
we only consider the case a = 0 (recall the identification d~(0,q0 = ~) .  We begin with 
the simplest example of  a hazard function: 

Example III.l.  Constant hazard function: Let h(t) =- 1, then: 

h , ( t )=q~  g c ( t ) = ¢  S,( t )=e -~ f , ( t ) = c ~ e  -~ 
*0 

1 
and a straightforward integration by parts yields A(0,~0) =/~¢ S~te-¢dt = 

Example III.2. Increasing hazard function: Let h(t) = t ,  then: 

~ t  2 - - -  2 

h , ( t )=¢ t  g¢(t)= 2 S¢( t )=e 2 f¢ ( t )=¢te  

The motivated reader may readily verify, via another integration by parts and exploiting 
the symmetry of  the normal PDF, that: 

clO _ _  

A(0,~)=/z~, = S~2e 2 dr= ff 
0 

Example III.3. Decreasing hazard function: Let h(t) = 1 ~ '  then: 

h ¢ ( t ) =  g¢(t)=q~ln(l+t)  S ,  ( t )  = (l + t ) ,  f ¢ ( t ) =  ( l + t ) ¢ , ,  

In this case, integration by parts together with l 'Hospital 's  rule gives: 

oo co 

A(O,~) = bt,, j ~t dt = . dt . 1 
= J - - -  h m  - I 

o ( l + t )  ~ '+l  o ( l + t )  ~ t - ~  ~o(1 + t) *- 

in which the right hand side limits both exist for ¢ > 1 . For ¢ = ! the right hand side 

diverges to + 0% whence/~¢ ~ ~t is infinite for ¢ ~ I. This illustrates that a proportional 

increase in the hazard function can reduce an infinite mean duration to a finite number  
and, conversely, that a proportional decrease can make a finite mean duration become 
infinite. 

The next example describes one of  the most popular survival distributions, often defined 
via its PDF: 

Example Ill.4. Weibulll density with parameters a,b > O. In this example, define 
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f (a ,b , 'O = am"b- l  e -a t '  

then (see, e.g. [2] Hogg-Klugman, pp. 231-232) 

S ( t )  -at* b-I = e ; h(t) = abt  ; and I t -  
I 

ba ~ 
This distribution conforms to a proportional hazard model, indeed: 

f ~ ( a , b ; t )  = f ( f aa ,  b;t) ,  

S~,( t )  = e -~at , h ~ ( t )  = f~abt b-I  a n d  /2¢p - 1 I 

b(~) ~ ~,~ 
t 

Letting F(u)F(a;  t) = Is a-le-'ds define the incomplete gamma function (as in [2], p. 
0 

217), we leave to the reader the verification that for the Weibull density: 

A(a,  b; ct, q~) = ~U6Ca,q, ) 

=a lt--~--)[lt--~--;aa ) + e  ~p L,- . t~ ;~<,  ;j 

1 b = 2 this When ct = 0, a = b = 1 this reduces to Example III. ! ; when a = 0, a = 2 '  

reduces to Example I11.2. 

Example III.5. Pareto density with parameters  a ,b  > 0. In this example, define 

f ( a ,  b; t )  = a b  a ( b  + t )  -a-' 
then (see, e.g. [21, pp. 222-223) 

a andfor a > l  / ~ = - -  S ( t )  = , h ( t )  = b + t a - 1 

This distribution conforms to a proportional hazard model, indeed: 

f ¢ ( a , b ; t )  = f (epa,  b;t) ,  

S e ( t ) =  ~--~ ,h~( t )=  t andfor q~a>l, /~e q ~ - I  

We again leave to the reader the verification that for the Pareto denisty: 
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A(a,b;ct, qO =/.~6~,.~) 

-a-1 kb--g-gJCg:-i--~J ~b-7-d~J ~,~-I-U 

When a = 0, a = b = 1 this reduces to Example III.3. 

The last two examples are suggestive of the common approach to performing calculations 
in survival analysis: fu'st, we select a form for the distribution, then we fit parameters to 
the data. Finally, we calculate whatever statistics are needed using formulas specific to 
that distribution (e.g. as found in [2]). This paper suggests the expediency of  a simpler 

more empirical approach to calculating/~s that avoids making any assumptions as to the 
form of the distribution as well as any parameter estimation. Also, we can use the 
method with time-dependent interventions and it is especially easy to do in practice. 
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Section IV: Hazard with Finite Support 

Most survival analysis discussions use distributions whose natural support is the set of 
positive real numbers, as in the previous section. The impetus for this work came from 
insurance, particularly claims analysis. Although actuaries customarily employ the usual 
collection of survival distributions-with their infinite supports-in practical applications 
claim duration is subject to limits. Moreover, the specific structure of  the very far "tail" is 
either intrinsically unknowable, irrelevant, or both. Accordingly, this study focuses on 
the situation in which the data is limited to a finite time interval. 

As described in the case study section, the insurance problem prompting this 
investigation arose in the line of workers compensation insurance. A very small 
percentage of  those claims involve pension benefits that can continue for decades. Even 
the best insurance data bases, however, rarely track a coherent set of losses for more than 
10 annual evaluations. That study concerned the implementation of a new program and 
the available data consisted of a one snapshot evaluation of claims captured into various 
automated systems. The data typically went back only four years and even the most 
matured cohort included a high percentage of open ("right censored") cases. 

In this section we introduce the assumptions and notation for our case of  interest: support 
Z = (0,1]. We make the assumption that h(t) is piecewise continuous. Observe that g(t)  

andS(t) are both continuous on [0,1], the former nondecreasing and the latter 

nonincreasing. Let p = S(I), 0 < p < 1. The distribution T has a point mass of 
probability p at { 1 }. We will make extensive use of the following: 

Proposition IV.l: For any positive integer n," 

1 1 
E(T" )  = nJt"-  S( t )dt .  

0 

Proof" The proof is really just the integration by parts the diligent reader would have 
done a few times already in the previous section: 

u = - S ( t )  d u = f ( t ) d t ;  v = t "  d v = n t " - I d t  
1 1 I 

E(T" )  = I t"  f (t)dt + p = lvdu  + p = uv]lo - Iudv + p 
0 0 0 

I I I 

= - t " S ( t ) ~  + n l t" - IS( t )d t  + p = - p  + n j t " - lS ( t )d t  + p = n l t" - IS( t )d t  
0 0 0 

completing the proof. 

Letting a2 denote the variance ofT,  the following two corollaries are apparent: 
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Coro l la ry  IV. l :  
I 

i) 14 = IS(t)dt 
O 

I 

ii) Iz 2 +~r 2 = 2 ~tS(t)dt 
o 

Coro l la ry  IV.2: 
a I 

A(a, ¢,) = i~, = ~ S(t)dt + S(al'-* ~ S(tl" dt 
0 a 

I 

In particular, observe that i~  = [S(t)¢dt.  It is intuitively clear that increasing the 
0 

decreases the mean duration, i.e., that A = P6 is a decreasing function o f  q~. A bit 
more thought  should convince the reader that A = g6 is an increasing function of  a for 

> 1 and decreasing for q~ < 1. Since g(t) is increasing, the following result fo rma l i z~  
this: 

Proposition IV.2: 

OA I 
i) -~a = ( ~ - l ) f ( a ) S ( a ) - $  ~S(t)~ dt 

' 1" ii) ~ g(a) IS(t)¢ dt - lg(t)S(t)$ dt 
L a a J 

Proof: i) From Corollary IV.2, the fundamental theorem of  calculus and the product rule 
for differentiation: 

8A 0 ~ i a ~, 

oa a Lo 1 J 

= S(a)  - S(a)  + (1 - ~)S(a)  -~'/(a)I S(t) ~' dt 
1 

I 

= (q~ - I )S (a ) -c f (a ) lS ( t )¢d t  
a 

fi) Obscrvc that: 
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$6 ( t )  = f s ( t )  ~ . .  t < ol 

[ S ( a )  -* S ( t ) "  t > a 

OS 
m ~  

0 t ~ a  

) 
- s(t)~ (l~(S(a))s(,~) '-~') t ~ 

Noting that our assumptions enable us to differentiate under the integral, and recalling 
that g( t)  = - l n ( S ( t ) ) ,  we find that: 

aA a S~ ( t )d t  = dt = -S (c t ) l - •  S( t )  ~ g ( t ) d t  - g ( a )  S ( t )  ¢' dt 
Oq~ Oq~ o O~ a 

which completes the proof. 

The graph ofA = 126 is a tent with a single "pole" of unit height at the origin, a front wall 
of infinite length and constant height 12 and a back wall of decreasing height: 

A(0,0) = I and Va, q~ _> 0, A(1,q~) = A(a,l) = 12 

12 { ! / ~  ~ ~ . ~ . . . ~ ( 0 ' 0 ' 1 )  z = ~(a,~,) 

Since g(t )  is nondecreasing, we clearly have: 
I | 

- in(p)12 = g(I)12 ~ Ig( t )S( t )dt  and 12 = I t f ( t )d t  + p > p 
o 0 
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The following refines this: 
I 

L e m m a  IV. l :  - ln(p)/J  + p - I~ >- fg(t)S(t)dt 
0 

Proof. Set 

I 

u =g(t)  du =h(t)dt; v= ~S(w)dw dv=S( t )d t  
o 

I t ~1 I t 

~g(t)S(t)dt = g(t) ~oS(W)dWJo - ~h(t) ~S(w)dwdt 
o o o 

l I S ( w )  
< - I n ( p ) / d - ~ f ( t ) S l d w d t  as >l f o r w < t  

0 0 S(t) 
1 

= - I n ( p ) / t  - Sf(t)tdt = - I n ( p ) ~  - ( / t  - p). 
0 

Applying the l emma to the hazard function h a (t) : 

O >  ~A a=O i = _ g ( t ) S ( t ) ~ d t  > / ~ ( 1  + ~p I n ( p ) )  - p "  

which formally confirms how A(a ,~) f la t tens  as ~ -~  oo. On the other hand, observe 

that i f  h(a) > 0 for some a > O, then, 

g ( t ) > O  f o r t > a ~ S ( t ) < l  f o r t > a  
I a 

=:' l i m / ~ e  = i i m  A ( O , o ) =  l im fS(t)~' dt <- Idt = a 

While the effect o f  an increase (decrease) o f  the hazard function clearly has  the opposite 
affect on the mean  duration, the effect on the variance is unclear. Indeed, the reader can 
use Corollary IV.1 to verify that: 

l im t r ¢ =  lim tr_ = 0 

Before we discuss some examples,  we note the following integration formula, in which 

5 8 9  



I 
F(a)F(b)  

B(a ,  b) = Ix°-I (1 - x )  b-I dx = 
0 F ( a  + b) 

functions. 

V a, b > 0 , the usual beta and g a m m a  

Lemma IV.2: For a ,c  > - l , b  > 0 

~t'(I -tb)~ dt = 
0 b 

Proof: Letting x = t b ::> dx = btb-tdt, then 

1 
~ta(l _ t b )c dt = 1 it o-b+, (1 - t~)Cbt (b-') dt 
0 O0 

1 ' (  ' ho-b÷t 
=~tx~; (l-xyax 

1 ' - - - 1  

as claimed. 

We next present some examples.  The first, while especially simple, will play a major role 
in later findings. 

Example IV.1. Constant hazard function, let h(t) m 1, 0 < t < 1. Then, as in Example III.1, 
we have: 

h ~ ( t ) = ¢ ;  g g ( t ) = q ~ ;  S , ( t ) = e - ~ ;  f~,(t)=q~e -~  

and we observe that 

1 
Pv = S~,(1) = e -~' = p~', where p = Pl = - 

e 

More generally, for 0 < a < 1, we find: 
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{~ t e [O,a] 
h 6 (t) = t e [at,l] 

t t a [O,a] 

g a ( t ) =  q~( t -a )+a  t e [ a , I ]  

Sa( t )=  { e -t t ~[O,a] 
pa  e-~,(t-a) t e [a,1] 

1 ct I p a + P t ~ ( l _ p ~ O ( , _ a ) )  
A(ct, q~) = la a = ~Sa(t)dt = ~e-t dt + p a Ie-~'(t-a) dt = 1-  

0 0 a 

1 - p ~  
In particular, we find that A(0,~) = ~9 = . We will make considerable use o f  this 

~a 
example in later sections where we deal with combining hazards and show how to use the 
Cox Proportional Hazard model to approximate any hazard o f  finite support by a step 
function. 

Example IV.2. Increasing hazard function, select p ~ [0,1], and define 

f ( t )  = I - p, t ~ [0,1]; then: 

l ~ p  
S ( t ) =  l - ( l -  p ) t  and h( t )  = 

1 - (1 - p ) t  
This is an example o f  an increasing haTard that is not a proportional hazard model. We 
note that h(t) is defined and continuous on [0,1] for p > 0,  while the ease p = 0 is 

t 
reminiscent o f  the infinite support case via the transformation t ~ ~ .  Finally, we 

t + l  
note that the case p = 1 ~ S(t) -= 1 is o f  little interest, so we require p < 1. 

We leave to the reader the straightforward verification that in this case: 

(1 - p ) a  2 p ' "  (1 - (1 - p)ct)'-" - (1 - (1 - p)ct) 2 
A ( a , ¢ )  = g6 = a 

2 OP + 1Xp - l) 
In particular, 

1 - p ~ l  
/.t~, = (q~+ l)(l - p )  

For the special case p = 0,  the formulas simplify considerably and we have: 
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i 
/~" q~+l and S , ( t ) = ( i - t )  P 

1~,2 + c r  2 = 2 i t ( l _ t ) g d t  = 2F(2)F(q~ + I ) F ( ~  + 3) = 
0 

2=  ~P 
::~ O', (q~+ l)2(~p + 2 ) 

(~ + 2)(~ + 1) 

In this case, 

tr = - - ;  ~ = t r c : ~ t p ~  1, 
12 

and the variance is maximized exactly when ~ = - - ,  giving a specific illustration o f  

the relationship between a proportional shift in the hazard and the variance. 

The next example is a simple way to define a new hazard function from an old one. 

Example IV.3. Reversed hazard function, let h(t) be any hazard function o f  finite support 

and define h(t) = h(1 - t ) ,  then clearly 

(/~)~(t) = t p h ( 1 - t ) =  ( ~ ' ) ( t )  for every (p > 0 

which shows that the reverse o f  a proportional hazard model is also one. Clearly, the 
reverse o f  an increasing (decreasing) hazard function is decreasing (increasing) and 

= h .  Letting u = 1 - t ,  we find that 

I I - t  

~g(s)ds = - lh(u)du = g(I) - g(l - t) ~(t) 
0 I 

p =  p; g(t)  p . ~f dt 

The reverse of  Example IV.I is, o f  course, again Example IV.I. The reverse o f  Example 

IV.2 is a decreasing hazard function with survival function P and mean 
1 - ( l  - p ) ( l  - t )  

p in (p )  

p - 1  

The next example is another simple way to define a new hazard function from an old one. 

Example IV.4. Complement hazard function, let h(t) be any hazard function of  finite 

support such that f ( t )  < !, 0 < t < 1, and define J-(t) = ! - f ( t ) ,  then 

5 9 2  



t ! 

/~(t) = I - I)7"(s)ds = 1 -,~(1 - f ( s ) ) d s  = 1 - t  + (l - S ( t ) )  : 2 - t  - S ( t )  
0 0 

b = 1 - p ;  i , ( t )  = l - / ( t )  
2 - t - S ( t )  

We again clearly have f ( t )  = f ( t )  ; the picture is: 

.?(t) 
Area  = p ] 

Area  = I -p  

Example IV.5: Modi f i ed  Beta densi ty  wi th  p aram e te r s  a, b, c, p . Assume 
a , c  > - i ,  b > O, O <_ p < l and def ine  

b ( 1 -  p ) t  ° ( l - t b ) c  

f ( a , b , c , p ; t ) =  B ( ~ _ l , c  + 1) 

Then, clearly, f ( t )  > 0, when 0 < t < ! and the above lemma implies that 
I 

S f ( a , b , c , p ; t ) d t  = 1 - p 
0 

The binomial theorem enables us to write: 
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a + l  ~ ' -  j f(a'b'c'p;t)=B(~_,c+l),.o ~k f 

When c is an integer, the reduction formula for the Gamma function gives: 

c! b'" c! 

l~I(a~+ bJ + 1 ~ (-Ia+bj+ 1 
j-o~, b ) .o  

from which we find that for c an integer: 
c 

b(l - p ) [ I  (a + bj + 1) 
f (a ,b ,c ,p ; t )=  j--o ~ ( : ~  

• k - - -O 

c 

( 1 -  P ) l - I ( a  + bJ + l) ~ ( ,=o l)kt °+" 

¢ c 

j = k  

which expressesJ(t) and S(t) as polynomials. When ac * 0, f( t)  = 0 ~ t E {0,1}. In fact, 
it is readily verified that f( t)  is positive on (0,1) with a unique maximum at 

I 

t = ~ " [ a | i .  It follows that the hazard function in this example is generally 
~,a+cb) 

["]-shaped. The following picture illustrates this: 
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h(t) 

a=b=l, c = 4 , p = l / ~ ~  

0 t 
The final example is a slight variation of  the previous one. 

Example IV.6: Assume a,c > -1, b > 0, 0 < p < i and define 

f(a,b,c, p;t) = b( l  - p ) ( l  - t ° ( l  - t~) ") 

Again f(t) >_ 0, when 0 _< t < 1 and the above lemma implies that 
I ff(a,b,c,p;t)dt = 1 - p .  In this case, the hazard function is generally U - s h a p e d .  The 
0 

following picture illusU'ates this: 

h(O 

711//~b=l'c=l/g'2~ 

0 t 

In the event that a particular shape of  the hazard function is required, the last two 
examples provide candidates for parameter estimation. The following section argues 
that, for most purposes, a simple step function is preferable, from both the conceptual and 
computational perspectives. 

This section concludes with two results. The first is one more observation on the 
difference/z - / . t~ .  The second revisits how for a finite haTard the survival function is a 

convenient  device for computing moments,  in this case relating it with the moment  
generating function. 
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In Example IV.2, note that 

p+l  p¢+l  - 1  
p-/ . t¢ = 2 (~o + l)(p- I) 

1 l p [  1-p22 +p¢+lq~+l-l]j 

The following generalizes this: 

Proposition IV.3: Assume f( t ) is  continuous on (0,1), then 
V~>0,  0 < a < l ,  3 ( e ( a , 1 )  suchthat 

i _ ( p ] 2  ( p  ],v+,_l] 

f ( ( ) (u - ,u ,~ )  = p, 2 k.P,~ ) ~,~-~ ./ ~ ~o + 1 where Pa = S(a). 

Proof'. 
I a I 

I.t - I.t~ = fS(t) - S a (t)dt = fS(t) - S(t)dt + fS(t) - S(ot)'-" S(t)* dt 
0 0 a 

I 

= f S ( t ) -  p.~-~S(t)*dt 
ct  

Consider first the case ,u =/J,~. Observe that 

S(t)-Pal-*S(t)¢{ <0_0 q~>lcP';l 

It follows, therefore, by continuity and the preceding equation, that /.t = P6 would forge 

S( t ) -  p~l-'S(t)P = 0 Vt • (at,l) 

Now if p = p~, then the right hand side is clearly 0 and the result holds. So consider the 
ease /z = 1.t6, p~ < p.  We then have both: 

p -  p,,'-~'p* = lira {S(t)-  p~'-~'S(t)* }= lim {0} = 0 
t--)l I--.I.l 

I-~, ~,{<0 q~<l 
and P - P a  P >0 q~>l 

596 



which clearly forces ¢~ = 1. The result again follows since ¢~ = 1 makes the right hand 
side O. 

The upshot is that we may now assume that /z  * #6- Becausefis continuous and does not 

change sign, the generalized intermediate value theorem for integrals ~ ~ (  ~ (a,1) such 
that 

I I 
f ( O ~ S ( t ) - p ~ ' - * S ( t ) ' d t =  f ( S ( t ) - p . t - o S ( t > ' ~ ( t ) d t ,  f ( ( ) > O  

a a 

Noting that dS = - f  (t)dt; t = a ~ S ( t )  = p~; t = I c~ S ( t )  = p .  With the change of 
variable we have: 

f (O( / . t - / . t6 )  = i ( S ( t ) - p a l - C ' S ( t ) v ~ ( t ) d t = P ] ( s - p a l - ' S ' ~ S  
a p 

S 2 I-e) S q~-I ]P° Pa 2 patp+l p 2  pq)+l 
= - - j - - P a  - ~+----"~Jp = 2 -pal-qs qg+l 2 +pal-~° q)+l  

'-(I \P,~ ) = pa  2 " ~ + 
2 ~+1 

which completes the proof. 

I 
Proposition IV.4. M r (x)  = 1 + x Se "S ( t ) d t  

o 

Proof: By definition: 

I 

M r ( x  ) = E(e ~r ) = [. e~t f ( t)dt  + pe  ~ 
0 

Under our assumptions, we can interchange summation with integration, whence: 
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1 

M r ( x )  - p e  ~ = l e ' ~ f ( t ) d t  
0 

t ® [xt~ k 
-- 

*° x k l  k 
= ~ --if, I t  f ( t ) d t  

k:O K: 0 
i q o x k  1 k l 

= I f ( o a t  + z X ~ k f t  - S ( t ) d t  - p ]  
o ~ . ~  k! L o J 

k - I  f l  ..~] 
= i - p + x ~ I t k - ~ S ( t ) c t t  - 

k m ,  K - ~ L o  

0o r I x k - l t  k-I "1 :,-,,+,,z/j f.-"" 
I=IL. 0 qt#l--1)~ j k=l k! 

.,, r 1 k k "1 = X k 
= l + = x / I  x - t -  S ( t ) d t l -  

,:oLo k~ j s'~oT.' 
rl  ® (xt  ~k "] 

= ] + = / I ] E  ~'/--LZ--S(t)dtl - p e  ~ 
Lo*:o k! j 
i 

= 1 + x[ .e~ 'S( t )d t  - pe=. 
0 
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Section V: Combining Finite Support Hazard Functions 

We continue with the notation and assumptions o f  the previous section. Consider first 

the case o f  two hazard functions, h 1 (t) and/11 (t) . If  these represent independent causes 

o f  failure, then their sum h~ + h 2 provides the corresponding hazard function. In this 
ease, we clearly have: 

1 

g = g l  + g 2 ;  S=StS2 ;  f = S t f 2  + f l S 2 ;  / t =  ~Sl(t)S2(t)dt, 
0 

and we can readily generalize this to the case of  compounding together any finite number 
o f  hazards. 

Consider the case o f  adding a constant hazard, i.e., the case h2(t ) --- a > 0.  While this will 
clearly decrease the mean duration to failure, the issue is by how much. From Example 

IV.l ,  we have S2(t ) = e - " ,  and from Proposition IV.4 we find: 

1 t 1 - Mr, ( - a )  
(-a) = 1 - a  fe-°'S,(t)dt = l - a f S , ( t ) S 2 ( t ) d t  =1-a/ . t  ::~ Mr, /.t 

o" 0 ~ a 
While adding hazards is formally very simple, this suggests that the effect o f  the mean 
duration can become complicated in even the simplest contexts. Moreover, the more 
useful and challenging task would be to reverse this process: to decompose a compound 
hazard into mutually independent hazards. Fortunately, our needs are much less 
demanding. 

In this section we detail a very simple and straightforward way to combine hazard 
functions. This provides the framework needed to exploit the Cox Proportional hazard 
model to approximate hazard functions with step functions. The approach also fits in 
well within the context o f  time-dependent interventions. 

Begin with a finite support hazard function h(t) and let {0 = a 0 < a~ <... < a ,  = 1} be a 

partition of  [0,1] into n subintervals. We can readily decomposeh(t)  into n finite support 
hazard functions: 

h,(t)=h(a,_, +t(ct~-a,_,)) O<t <_l,i=l,2,...,n 

Fortunately, this process is readily reversed, i.e. given an ordered set o f n  finite support 

hazard functions {h,(t), i = 1,2,...,n} together with a partition {0 = a 0 < a m < ... < a ,  = I} 
o f  [0,1 ] into n subintervals, we define their gauntlet hazard function on [0,1 ] by 

h(t) = {hl,h 2 ..... hn; 0 = cr 0 < a L < ... < a n = l}(t) = h~ where a~_ 1 < t < ot~ 

We observe that when theh~, i = 1,2,...,n are all constant hazard functions 

(h~(t) m q~ = h, , ,  i = 1,2,...,n from Example IV.l)  their gauntlet hazard function is a step 
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function. Conversely, any hazard step function is the gauntlet of  constant hazard 
functions in an essentially unique way. 

The interpretation is straightforward. As suggested by the name, we can think of  the 
hazards being lined up in sequence, much like a gauntlet. Survival becomes a matter of  
passing successively through the hazards, in sequence. A concern arises when any 

p~ = 0, i < n ,  since failure is assured during the corresponding interval, rendering the rest 
of  the gauntlet essentially moot and introduces a singularity in the hazard function. As 
was noted before, the case p=0 is akin to infinite support hazards. In general, the 

i 
probability of  surviving the i-th interval of  the gauntlet hazard is I - I  p ,  • 

k=l 

From these definitions, combined with our notational conventions, we have: 

" 

g(t )= E ( a  k - c t , _ , ) g k ( l ) + ( a  , -a,_,)g i t - a '  l wherea',_, <_t < a  
k=l 

i-i a~- . . . .  [ t _ G ~ _ l  ",,=, - . . . .  
S(t) = I - [  P~ S , ]  / where  ai_ t _< t < a 

* = l  \ a~ - a i _  I ) 

I n a,  n i - I  , _ t Z i _  I | 
la = lS(t)dt = E IS(t) dt = Z I-I Pk I S i l - - !  dt 

0 i = l a , ,  i = l k = l  a_,  ~,O~i - a i - I  } 

n i - I  a , - - a ,  ~ I 

= Z l-IPk (a, -a i_ l ) lS i (u )  a'-a'-' du 
i= l  k= l  0 

n i - I  a~-a ,_ ,  

= Z l - I  pk - 
i=1 k=l 

It is instructive to note two special cases of  this formula for/z : 

i 
Case 1: Assume the partition is uniform, that is, a t  = - then the formula becomes: 

r/ 
i 

.---:E[I-Ip, ,), 

Case 2: Assume the hazard is constant on all the intervals (step function). Then by 
Example IV. 1, 

6 0 0  



h,-= ~, = ( . , ) o _  .... = 
and the formula becomes 

1 - e ¢'{a'-''-a') 

~,(~,-a,_,) ' 

.=~p. ~ -~,,)(.,)., . . . .  

. . . . . . . . . .  --,, x( l - e "  ....... ' '~  
= X r I e  /~, _ [ ~ , ( ~ _ ~ _ , ) )  

- "  - ~ e  ;~" ......... ( 1 -  e"f ~. ...... "~ ) / 

Finally, when both apply, in the case of a step function with uniform partition, the 
formula simplifies to: 

I t-s ( _ ¢~._L 

# = ~-'~e 1 - e  

i=1 ~ i  

In the example below, we consider how to make use of this, given a set of empirical 
observations. The formulas suggest that it may prove useful to approximate the hazard 
function by a step function. In that regard, notice that the natural choice for q~, ~ h, ( t )  is 
the average value of the hazard function over the ith interval. This, in turn, is readily 
determined from the survival function: 

1 '~' . , j .  g ( c t l ) - g ( o  6 ,)  f h ( , , u ,  . . . .  _ _ l n ( S ( a , _ , ) ) - l n ( S ( ~ , ) )  
J 

O/i -- ~ i - I  a~_ I ~ i  -- a i - I  ~ t  -- O~i-I 

We conclude with a simple example that illustrates how, despite the awkwardness of the 
formulas, the calculations can be quite simple in practice. 

Example V. 1 Let h o (t) -~ 1, for 0 < t < 1 be the constant unit hazard function and 

6 =  8 ( 1 , 2 ) o  8 (-~-,~-)bethecompositeofthetwoshifts .  Consider the harard 

step function defined from: 
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h(t) = (ho),(t) = fl I 0 ~ t  <-~ 

2_<t< 

SAS was used to simulate two survival data sets One and Two, conforming to the hazard 

functions h 0 and h , respectively. The PDFs are readily determined from earlier 
examples and were used to perform the simulations (refer to Appendix l for details). A 
survival function was produced from Two. An excerpt of the output is provided below 
(page l0 of  the listing), 

t s(t) g(t) 
0 1 0 

0.71665 0.33317,/1~3 

~3 0.36770 1.00048~- 1 

1 0 .26359  1.33335~ ~33 

The estimation of the hazard function h(t) from the survival function is: 

t ~ [ 0 , / ] ,  h(t).~ g(l//33)-g(O) / - 0  
/ - 0  -- / --I 

'4 t ~ [ / , 2 ~ 3  ], h(t).~ / = 2  

4 
- - - - 1  

, ~  t N , i i ,  h(,) ~ ~ - :  i 
/ 

The simple average of an upper and a lower Riemann sum of the survival function over 
[0,1 ] (equivalent to the trapezoidal rules since the survival function is monotonically 
decreasing) was used to estimate the mean duration to failure to be 0.56193 (page 16 of 
the listing): 

I~ = iS(t)dt ~ 0.56193 
o 

Compare this with the value determined using the above formula: 
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¢~ = ~3 = I, ~ = 2 : 

/ a=  1 - e  ~ + e  -~ + e  -T~ l - e  -~ 

= 0.562077 

Finally, data set Two observations were flagged and pooled with set One survival data. 
The SAS PHREG procedure was then run on the combined data set with the flagged data 
modeled as a time-dependent intervention applicable to the middle interval. The PHREG 
procedure produced a hazard ratio of 2.000 (page 4 of  the listing) for that intervention, 
illustrating how the Cox proportional hazard model can be used to approximate a hazard 
function by a step function. By the same token, it illustrates how that procedure may 
provide the means to unpack this process. More precisely, the procedure results may 
reveal a change in hazard as (approximated by) a combination of shifts like the ones 

1 2 2 1 
considered here: 8 = 8 ( 3 ' ) o 8 ( ~- ,  ~-)  . From that, the results of this paper 

can be used to translate this into the effect on the mean time to failure. 
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APPENDIX 1 

I ~ S L O G  I 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  ; 

4 OPTIONS MPRINT LS-131 PS~59 NOCENTER; 

5 *OPTIONS OBS - I00; 

6 DATA ZERO; 

7 INPUT Z; 

8 CARDS; 

NOTE: The data set WORK.ZERO has 1 observations and 1 variables. 

10 

11 DATA ONE;SET ZERO; 

12 KEEP T CLOSED SHOCK; 

13 RETAIN COUNT; 

14 IF N - I; 

15 CLOSED - I; 

16 SHOCK - 0; 

1 7  COUNT - 0; 

18 DO I - I TO 1000; 

19 T - 1/1000; 

20 DO J - 1 TO ROUND(50*EXP(-T),I); 

21 COUNT ÷ I;0UTPUT;END;END; 

22 T - 1;P = EXP{-1); 

23 CLOSED = 0; 

24 DO J - 1 TO (P/(1-P))*COUNT; 

25 OUTPUT;END; 

NOTE: The data set WORK.ONE has 49980 observations and 3 variables. 

26 DATA TWO;SET ZERO; 

27 KEEP T CLOSED SHOCK; 

28 RETAIN COUNT; 

29 IF N = I; 

30 CLOSED - I; 

31 SHOCK ~ 1 ; 
32 COUNT R 0; 

33 DO I i 1 TO 333; 

34 T- 1/1000; 

35 DO J - I TO ROL~TD(50*EXP(-T),I); 

36 COUNT + I;OUTPUT;END;END; 

37 DO I - 334 TO 666; 

38 T - 1/1000; 
39 DO J = 1 TO RODND(100*EXP(-2*T + 1/3),1); 

40 COUNT + 1;OUTPUT;END;END; 

41 DO I - 667 TO I000; 

42 T = 1/1000; 

43 DO J = 1 TO ROUND(50*EXP(-T - 1/3),1); 

44 COUNT + 1;OUTPUT;END;END; 

45 T = l;P - EXP(-4/3); 

46 CLOSED - 0; 

47 DO J = I TO (P/(l-P) ) *COUNT; 

48 OUTPUT;END; 

NOTE: The data set WORK.TWO has 49956 observations and 3 variables. 
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49 
SO 

DATA THREE; SET ONE TWO; 
TITLE 'PHREG PAPER:TEST'; 

NOTE: The data set WORK.THREE has 99936 observations and 3 variables. 

51 PROC PHREG SIMPLE DATA=THREE; 

52 MODEL T'CLOSED(0)- SHOCK /CORRB COVB; 

R~YfE: The PROCEDURE PHREG printed pages I-2. 

53 

54 

55 

56 

57 

S8 

59 

60 

61 

62 

63 

64 

65 

66 

67 
68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 
79 

80 

81 

82 

83 

84 

85 

$6 

87 

88 

89 

90 

91 

92 

93 

PROC PHR~ SIMPLE DATA=I~[REE; 

MODEL T.CLOSED(0)= TSHOCK /CORRB COVB; 

IF 2/3 >- T > 1/3 T ~  TSHOCK - SHOCK;ELSE TSHOCK = 0; 

%MACRO MEANDUR; 

PROC PHREG SIMPLE DATA=ZDATA; 
MODEL T.CLOSED(0}= /CORRB COVB; 
BASELINE OUT=B~E SURVIVAL=S; 

DATA BASE;SET BASE END . EOF; 

IF _N_ = 1 THEN DO;T - 0;S - 1;OUTPUT;END; 

IF T • 1 TEEN OUTPUT; 

IF EOF OR T >= 1 THEN DO;T = 1;OUTPUT;END; 

PROC SORT NODUP DATA = BASE; BY T; 

DATA SUBBASE;SET BASE; 

IF ABS(T - 0) < .01 OR 

ABS(T - 1/3) • .01 OR 
ABS(T - 2/3) < .01 OR 

ABS(T - 1) < .01; 

G = -LOG(S) ; 

PROC PRINT DATA=SUBBASE; 

DATA MEAN;SET BASE END=EOF;KEEP UPPER T~)WER MEAN; 

KEEP UPPER LOWER MEAN; 

RETAIN UPPER LOWER OLD_S OLD_T; 

IF _N = 1 THEN DO; 

OLD_T = 0 ; 

UPPER ~ 0; 

LONER = 0 ;  
OLD_S = i; 
END; 

D = T - OLDT; 

IF D > 0 THEN DO; 

UPPER + D*OLD_S; 

LOWER + D'S; 

END; 

OLD_T - T; 

OLD_S = S; 
IF EOF THEN DO; 

MEAN = (UPPER + LOWER)/2;OUTPUT; 

END; 

PROC PRINT DATA = MEAN; 

%MEND MEANDUR; 

DATA ZDATA;SET ONE; 

NOTE: The PROCEDURE PHREG printed pages 3-4. 

IRYFE: The PROCEDDRE PHREG used 3001K. 

94 

95 
TITLE 'PHREG PAPER:TEST BASE ONE'; 

%MEANDUR; 

mOTE: T he  d a t a  s e t  WORK.ZDATA h a s  4 9 9 8 0  o b s e r v a t i o n s  a n d  3 v a r i a b l e s .  
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MPRINT(MEANDUR): PROC PHREG SIMPLE DATA-ZDATA; 
MPRINT(MEANDUR): MODEL T'CLOSED(0)- /CORRB COVB; 

MPRINT(MEANDUR): BASELINE OUT=BASE SURVIVAL-S; 

NOTE: There are no explanatory variables in the MODEL statement. 

NOTE: The data set WORE.BASE has 1001 observations and 2 variables. 

NOTE: The PROCEDURE PHREG printed page 5. 

MPRINT(MEANDUR): DATA BASE; 

MPRINT(MEANDUR) : SET BASE END - EOF; 

MPRINT(MEANDUR) : IF N = 1 THEN DO; 

MPRINT(MEANDUR) : T = 0; 

MPRINT(MEANDUR) : S = I; 

MPRINT (MEANDUR) : OUTPUT; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDUR) : IF T < 1 THEN OUTPUT; 

MPRINT(M~UR) : IF EOF OR T >= 1 THEN DO; 

MPRINT (MEANDUR) : T = 1; 

MPRINT (MEANDUR) : OUTPUT; 

MPRINT (MEANDUR) : END; 

NOTE: The data set WORK.BASE has 1002 observations and 2 variables. 

MPRINT(MEANDUR): PROC SORT NODUP DATA = BASE: 

MPRINT(MEANDUR): BY T; 

NOTE: 1 duplicate observations were deleted. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 
MPRINT(MEANDUR): DATA SUBBASE; 

MPRINT(MEANDUR): SET BASE; 

MPRINT(MEANDUR): IF ABS(T - 0) < .01 OR ABS(T - 1/3) < .01 OR ASS(T - 2/3) < 
01 OR ABS(T - I) < .01; 

MPRINT(MEANDUR): G = -LOG(S); 

NOTE: The data set WORK.SUBBASE has 60 observations and 3 variables. 

MPRINT(MEANDUR): PROC PRINT DATA=SUBBASE; 

NOTE: The PROCEDURE PRINT printed pages 6-7. 

MPRINT(MEANDUR} : DATA MEAN; 

MPRINT(MEANDUR) : SET BASE END=EOF; 

MPRINT(MEANDUR) : KEEP UPPER LOWER MEAN; 

MPRINT(MEANDUR) : RETAIN UPPER LOWER 0LD_S OLDT; 

MPRINT(MEANDUR) : IF N = 1 THEN DO; 

MPRINT(MEANDUR) : OLD T - 0; 

MPRINT(MEANDUR) : UPPER = 0; 

MPRINT(MEANDUR) : LOWER = 0; 

MPRINT(MEANDUR) : OLD S m 1; 

MPRINT (MEANDUR) : END; 

MPRINT[MEANDUR) : D = T - OLD_T; 

MPRINT(MEANDUR) : IF D > 0 THEN DO; 

MPRINT(MF2%NDUR) : UPPER + D*OLD_S; 
MPRINT(MEANDUR) : LOWER + D'S; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDUR) : OLD_T = T; 

MPRINT(MEANDUR) : OLD S = S; 

MPRINT(MEANDUR) : IF EOF THEN DO; 

MPRINT (MEANDUR) : MEAN - (UPPER + LOWER)/2 ; 

MPRINT (MEANDUR) : OUTPUT; 
MPRINT (MEANDUR) : END; 
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NOTI~: The data set WORK.MEAN has 1 observations and 3 variables. 

MPRINT(MEANDUR): PROC PRINT DATA - MEAN; 

NOTE: The PROCEDURE PRINT printed page 8. 

96 DATA ZDATA;SET TWO; 

97 TITLE 'PHREG PAPER:TEST BASE TWO'; 

98 %MEANDUR; 

NOTE: The data set WORK.ZDATA has 49956 observations and 3 variables. 

MPRINT(MEANDUR}: PROC PHREG SIMPLE DATA-ZDATA; 

MPRINT(MEANDUR): MODEL T'CLOSED(0)- /CORRB COVB; 

MPRINT(MEANDUR}: BASELINE OUT-BASE SURVIVAL-S; 

NOTE: There are no explanatory variables in the MODEL statement. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 
NOTE: The PROCEDURE PHREG printed page 9. 

MPRINT(MEANDUR): DATA B~E; 

MPRINT(MEANDUR} : SET BASE END ffi EOF; 

MPRINT(MEANDUR) : IF N - 1 THEN DO; 

MPRINT(MEANDUR) : T ffi 0; 

MPRINT(MEANDUR) : S ~ 1; 

MPRINT ( MEANDUR ) : OUTPUT; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDLTR) : IF T < 1 THEN OUTPUT; 

MPRINT(MEANDUR) : IF EOF OR T >ffi 1 THEN DO; 

MPRINT(MEANDUR) : T - 1; 

MPRINT (MEANDUR) : OUTPUT; 

MPRINT (MEANDUR) : E N D ;  

NOTE: The data set 
MPRINT(MEANDUR): 

MPRINT(MEANDUR): 

WORK.BASE has 1002 observations and 2 vari3bles. 
PROC SORT NODUP DATA ffi BASE; 

BY T; 

NOTE: HOST sort chosen, but SAS sort recommended. 

NOTE: I duplicate observations were deleted. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 
MPRINT(MEANDUR) : DATA SUBBASE; 

MPRINT(MEANDUR) : SET BASE; 

MPRINT(MEANDUR) : IF ABS(T - 0) < .01 OR ABS(T - 1/3} < .01 OR ABS(T - 2/3) < 

01 OR ABS(T - 1) < .01; 

MPRINT(MEANDUR) : G ffi -LOG(S) ; 

NOTE:  The data set WORK.SUBBASE has 60 observations and 3 variables. 

MPRINT(MEANDUR) : PROC PRINT DATA=SUBBASE; 

NOTE : The PROCEDURE 

MPRINT (MEANDUR) : 

MPRINT (MEANDUR) : 

MPRINT (MEANDUR) : 

MPRINT (MEANDLTR) : 

MPRINT (MEANDUR) : 

MPRINT (MEANDUR) : 

M P R I N T  ( M I ~ T D U R )  : 
MPRINT ( IH[E~rDUR) : 

MPRINT (MEANDUR) : 

MPRINT (MEANDUR) : 

/(PRINT (MEANDUR) : 

PRINT printed pages 10-11. 

DATA MEAN; 

SET BASE ENDsEOF; 

KEEP UPPER LOWER MEAN; 

RETAIN UPPER LOWER 0LD_S OLD_T; 
IF N ffi 1 THEN DO; 

0LD_T = 0; 
UPPER ffi 0; 

LOWER - 0; 

OLD_S - 1; 

END; 

D = T - OLD3, 
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MPRINT(MEANDUR): 

MPRINT(MF2%NDUR): 

MPRINT(MEANDUR): 

MPRINT(M]F~qNDL*R}: 

MPRINT(MEANDUR): 

MPRINT(MEANDUR): 

MPRINT(MF-~%NDUR): 

MPRINT (MEANDUR) : 

MPRINT {MEANDUR} : 

MPRINT (MEANDUR) : 

IF D > 0 THEN DO; 

UPPER + D*OLD_S; 

LOWER + D-S; 

END; 

OLD_T - T; 

OLD S - S; 

IF EOF THEN DO; 

MEAN - (UPPER + LOWER)/2; 

OUTPUT; 

END; 

NOTE: The data set WORK.MEAN has 1 observations and 3 variables. 

MPRINT(MEANDUR): PROC PRINT DATA = MEAN; 

NOTE: The PROCEDURE PRINT printed page 12. 

99 
1 0 0  
1 0 1  

DATA ZDATA;SET THREE; 

TITLE 'PHREG PA/~ER:TEST BASE TEREE'; 

%MEANDUR; 

NOTE: The data set WORK.ZDATA has 99936 observations and 3 variables. 

MPRINT(MF~UR): PROC PEREG SIMPLE DATA=ZDATA; 

MPRINT(MEANDUR): MODEL T'CLOSED(0)- /CORRB COVB; 

MPRINT(MEANDUR): BASELINE OUT=BASE SURVIVAL-S; 

NOTE: There are no explanatory variables in the MODEL statement. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 

NOTE: The PROCEDURE PHREG printed page 13. 

MPRINT(MEANDUR) : DATA BASE; 

MPRINT(MEANDUR) : SET BASE END = EOF; 
MPRINT(MEANDUR) : IF N - 1 THEN DO; 

MPRINT(MEANDUR) : T - 0; 

MPRINT(MEANDUR) : S - I; 
MPRINT (ME~/~TDUR) : OUTPUT; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDUR) : IF T • 1 THEN OUTPUT; 

MPRINT(MEANDUR) : IF EOF OR T >= 1 TEEN DO; 

MPRINT(MEANDUR) : T = 1; 

MPRINT (MEANDUR) : OUTPUT; 
MPRINT (MEANDUR) : END; 

NOTE: The data set WORK.BASE has 1002 observations and 2 variables. 

MPRINT(MEANDUR) : PROC SORT NODUP DATA - BASE; 

MPRINT(MEANDUR) : BY T; 

NOTE: 1 duplicate observations were deleted. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 

MPRINT (MEA//DUR) : DATA SUBBASE; 

NPRINT(MEANDUR) : SET BASE; 

MPRINT(MEANDUR) : IF ABS(T - 0) < .01 OR ABS(T - 1/3) < .01 OR ABS(T - 2/3) • 

01 OR ABS(T - 1) < .01; 
MPRINT(MEANDUR) : O - -LOG(S) ; 
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NOTE: The data set WORK.SUBBASE has 60 observations and 3 variables. 

MPRINT(MEANDUR): PROC PRINT DATA=SUBBASE; 

NOTE: The PROCEDURE PRINT printed pages 14-15. 
MPRINT(MEANDUR): DATA MEAN; 

NPRINT(MEANDUR) : SET BASE END=EOF; 

NPRINT(MEANDUR) : KEEP UPPER LOWER MEAN; 

MPRINT(MEANDUR) : KEEP UPPER LOWER MEAN; 

MPRINT(MEANDUR) : RETAIN UPPER LOWER OLD_S OLD_T; 
MPRINT(MEANDUR) : IF N = 1 THEN DO; 

MPRINT(MEANDUR) : OLD T = 0; 

NPRINT(MEANDUR) : UPPER = 0; 

MPRINT(MEANDUR) : LOWER = 0; 

MPRINT(MEANDUR) : OLD S = 1; 

MPRINT (MEANDUR) : END. 

MPRINT(MEANDUR) : D = T - OLD_T; 

MPRINT{MEANDUR) : IF D > 0 THEN DO; 

MPRINT{MEANDUR) : UPPER + D*OLD_S; 
MPRINT(MEANDUR) : LOWER + D'S; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDUR) : OLD T - T; 

MPRINT(MEANDUR) : OLD S = S; 

MPRINT(MEANDUR) : IP EOF THEN DO; 

MPRINT(MEANDUR) : MEAN = (UPPER + LOWER)/2; 
MPRINT (MEANDUR) : OUTPUT; 

MPRINT (MEANDUR } : END; 

NOTE: The data set WORK.MEAN has I observations and 3 variables. 

MPRINT(MEANDUR) : PROC PRINT DATA = MEAN; 

MOTE: The PROCEDURE PRINT printed page 16. 
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LIBTING 

PHREG P~I~ER:TEST 

The PHREG Procedure 

Data Set: WORK.THREE 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

page 1 

Percent 
Total Event Censored Censored 

99936 68382 31554 31.57 

Simple Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation 

SHOCK 99936 0.49988 0.50000 

Minimum 

0 

Maximum 

1.00000 
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PHREG PAPER:TEST 

The PHREG Procedure 

Criterion 

-2 LOG L 
Score 
Wald 

page 2 

Testing Global Null Hypothesis: BETA=0 

Without With 
Covariates Covariates Model Chi-Square 

1510536.08 1509248.84 1287.233 with 1 DF (p=0.0001} 
1290.337 with 1 DF (p=0.0001} 
1282.328 with 1 DF (p=0.0001} 

Analysis of Maximum Likelihood Estimates 

Variable DF 

SHOCK 1 

Estimated Covariance Matrix 

SHOCK 

SHOCK 0.0000591043 

Estimated Correlation Matrix 

SHOCK 

SHOCK 1.000000000 

Parameter Standard Wald Pr • 

Estimate Error Chi-Square Chi-Square 

0.275302 0.00769 1282 0.0001 

Risk 
Ratio 

1.317 

612 



PHREG PAPER:TEST page 3 

The PHREG Procedure 

Data Set: WORK.THREE 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

99936 68382 31554 31.57 

Simple Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation Minimum Maximum 

TSHOCK 99936 0.17425 0.37933 0 1.00000 

WARNING: Simple statistics listed for the time-dependent explanatory variables 
have limited value. 
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PHREG PAPER:TEST page 4 

The PHREG Procedure 

Testing Global Null Hypothesis: BETA=0 

Without with 
Criterion Covariates Covariates Model Chi-Souare 

-2 LOG L 
Score 
Nald 

1510536.08 1507331.64 3204.433 with 1 DF (p-0.0001) 
3197.243 with 1 DF (p=0.0001) 
3073.086 with 1 DF (p=0.0001) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr • 

Variable DF Estimate Error Chi-Square Chi-Square 

TSHOCK 1 0.693074 0°01250 3073 0.0001 

Estimated Covariance Matrix 

TSHOCK 

TSHOCK 0.0001563092 

Estimated Correlation Matrix 

TSHOCK 

TSHOCK 1.000000000 

PHREG PAPER:TEST page 5 

The PHREG Procedure 

Data Set: WORK.ZDATA 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

49980 31594 18386 36.79 

NOTE: There are no explanatory varlables in thl8 model. 

-2 LOG L - 657271.7 

Risk 
Ratio 

2 . 0 0 0  

614 



PHREG PAPER: TEST BASE ONE 

oBs T S G 

1 0 .000  1.00000 0.00000  
2 0.001 0.99900 0.00100 
3 0 .002 0.99800 0.00200  
4 0.003 0.99700 0.00301 
5 0.004 0.99600 0.00401 

6 0.005 0.99500 0.00501 
7 0.006 0.99600 0.00602 

0 0.007 0.59300 0.00703 
9 0 .008 0.99200 0 .00804 

I0 0.009 0.99100 0.00904 
11 0.324 0.72327 0.32397 
12 0.325 0.72255 0.32697 
13 0.326 0.72183 0.32597 
14 0.327 0.72111 0.32697 
15 0.328 0.72039 0.32797 
16 0,329 0.71967 0.32897 
17 0.330 0.71895 0.32997 
18 0.331 0.71823 0.33097 
19 0.332 0.71751 0.33197 
20 0.333 0.71679 0.33298 
21 0.334 0.71607 0.33398 
22 0,335 0.71535 0.33499 

23 0,336 0,71463 0.33600 
24 0.337 0.71391 0.33700 

25 0.338 0,71319 0.33801 
26 0.339 0.71247 0.33902 
27 0.340 0.71174 0.34004 
28 0.341 0.71102 0.34105 
28 0.342 0.71030 0.34206 
30 0.363 0.70960 0.34305 
31 0.657 0.51845 0.65692 
32 0.658 0.51793 0.65792 
33 0.659 0.51761 0.65893 
34 0.660 0.51689 0.65993 
35 0.661 0.51637 0.66094 
36 0.662 0.51585 0.66195 
37 0.663 0.51533 0.66256 
38 0.664 0.51481 0.66397 
39 0.665 0.51429 0.66498 

40 0.665 0.51377 0.66599 
41 0.667 0.51325 0.66700 
42 0.668 0.51273 0.66802 
63 0.669 0.51220 0.66903 
44 0.670 0.51168 0.67005 
45 0.671 0.51116 0.67106 
46 0.672 0.51064 0.67208 
47 0.673 0.51012 0.67310 
60 0.674 0.50962 0.67408 
69 0.675 0.50912 0.67505 
50 0.676 0.50862 0.67605 
51 0.991 0.37117 0.99110 
52 0.992 0.37079 0.99212 
53 0.993 0.37041 0.99315 
54 0 . 9 9 4  0.37003 0.59410 
55 0.995 0.36967 0.99515 
56 0.996 0.36931 0.99612 
57 0.997 0.36895 0.99710 
58 0 . 9 9 8  0.36859 0.99808 

59 0 . 9 9 9  0.36823 0.95905 
60 1.000 0.36787 1.00003 

pages 6-7 
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PHREG PAPER: TEST BASE ONE 

OBS UPPER LOWER 

1 0.63244 0.63180 

MEAN 

0.63212 

page 8 

PHREG PAPER: TEST BASE TWO page 9 

The PHREG Procedure 

Data Set: WORK.ZDATA 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

49956 36788 13168 26.36 
NOTE: There are no explanatory variables in this model. 

-2 LOG L - 757604.6 
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P H R E G  

OBS 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 
31 
32 
33 
34 
35 
36 
37  
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4 0  
49 
50 
51 
52 
53 
64 
5 5  
56 
97 
5 8  
59 
60 

P A P E R  : 

T 
0 . 0 0 0  
0 . 0 0 1  
0 . 0 0 2  
0 . 0 0 3  
0 . 0 0 4  
0 . 0 0 5  
0 . 0 0 6  
0 . 0 0 7  
0,008 
0 . 0 0 9  
0 . 3 2 4  
0 . 3 2 S  
0 . 3 2 6  
0 . 3 2 7  
0 . 3 2 8  
0 . 3 2 9  
0 . 3 3 0  
0 . 3 3 1  
0 . 3 3 2  
0 . 3 3 3  
0 . 3 3 4  
0 . 3 3 5  
0 . 3 3 6  
0 . 3 3 7  
0 . 3 3 8  
0 . 3 3 9  
0.340 
0.341 
0.342 
0.343 
0.657 
0.658 
0.659 
0.660 
0.661 
0.662 
0.663 
0.664 
0.665 
0.666 
0.667 
0 . 6 6 8  
0 . 6 6 9  
0 . 6 7 0  
0.671 
0.672 
0.673 
0,674 
0.675 
0 . 6 7 6  
0.991 
0 . 9 9 2  
0 . 9 9 3  
0 . 9 9 4  
0 . 9 9 5  
0 . 9 9 6  
0.997 
0 . 9 9 8  
0 . 9 9 9  
1 . 0 0 0  

TEST BASE 

S 
1 . 0 0 0 0 0  
0 . 9 9 9 0 0  
0 . 9 9 8 0 0  
0 . 9 9 7 0 0  
0 . 9 9 6 0 0  
0 . 9 9 5 0 0  
0 . 9 9 3 9 9  
0 . 9 9 2 9 9  
0 . 9 9 1 9 9  
0.99099 
0.72314 
0 . 7 2 2 4 2  
0,72170 
0 . 7 2 0 9 7  
0 . 7 2 0 2 5  
0.71953 
0 . 7 1 8 8 1  
0.71809 
0.71737 
0,71665 
0.71521 
0 , 7 1 3 7 9  
0.71237 
0.71095 
0.70952 
0.70810 
0.70668 
0.70526 
0.70386 
0.70246 
0.37473 
0.37399 
0.37325 
0.37251 
0.37177 
0.37103 
0.37029 
0.36955 
0.36880 
0.36806 
0.36770 
0.36734 
0,36698 
0.36662 
0.36626 
0.36690 
0,36554 
0.36518 
0.36482 
0.36446 
0.26593 
0.26567 
0.26541 
0.26515 
0.26489 
0.26463 
0.26437 
0.26411 
0.26385 
0.26359 

TWO 

G 
0 . 0 0 0 0 0  
0 . 0 0 1 0 0  
0 . 0 0 2 0 0  
0 . 0 0 3 0 1  
0 . 0 0 4 0 1  
0 . 0 0 5 0 2  
0 . 0 0 6 0 2  
0 . 0 0 7 0 3  
0 . 0 0 8 0 4  
0 . 0 0 9 0 5  
0 . 3 2 4 1 6  
0.32515 
0.32615 
0,32715 
0 . 3 2 8 1 5  
0.32915 
0.33015 
0.33116 
0.33216 
0.33317 
0.33518 
0.33717 
0.33916 
0.34116 
0.34316 
0.34517 
0.34717 
0.34919 
0.35110 
0.35317 
0 . 9 8 1 5 5  
0 . 9 8 3 5 3  
0 , 9 8 5 5 1  
0 . 9 8 7 5 0  
0 . 9 8 9 4 9  
0 . 9 9 1 4 8  
0 . 9 9 3 4 8  
0 . 9 9 5 4 0  
0.99749 
0.99950 
1.00048 
1.00146 
1 , 0 0 2 4 4  
1.00342 
1.00441 
1.00539 
1.00637 
1.00736 
1.00835 
1.00934 
1.32451 
1.32549 
1.32647 
1.32765 
1.32043 
1.32941 
1 . 3 3 0 4 0  
1.33138 
1 . 3 3 2 3 7  
1 . 3 3 3 3 5  

p a g e s  1 0 - 1 1  
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PHREG PAPER: TEST BASETWO 

OBS UPPER LOWER 

1 0.56229 0.56156 

MEAN 

0. 56193 

page 12 

PHREG PAPER: TEST BASE THREE page 13 

The PHREG Procedure 

Data Set: WORK.ZDATA 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 

Total Event Censored Censored 

99936 68382 31554 31.57 

NOTE: There are no explanatory variables in this model. 

-2 LOG L - 1510536 

618 



PI~REG PAPER: TEST BASE THREE 

OBS T 8 G 
1 0 . 0 0 0  1 . 0 0 0 0 0  0 . 0 0 0 0 0  
2 0 . 0 0 1  0 . 9 9 9 0 0  0 . 0 0 1 0 0  
3 0 .  002 0.  99800 0 .  00200  
4 0 . 0 0 3  0 . 9 9 7 0 0  0 . 0 0 3 0 1  
5 0 . 0 0 4  0 . 9 9 6 0 0  0 . 0 0 4 0 1  
6 0 . 0 0 S  0 . 9 9 5 0 0  0 . 0 0 5 0 2  
7 0 .  006 0 .  99400  0 .  00602 
8 0 . 0 0 7  0 . 9 9 3 0 0  0 . 0 0 7 0 3  
9 0 . 0 0 8  0 . 9 9 1 9 9  0 . 0 0 8 0 4  

10 0 . 0 0 9  0 . 9 9 0 9 9  0 . 0 0 9 0 5  
11 0 , 3 2 4  0 . 7 2 3 2 0  0 . 3 2 4 0 7  
12 0 .  325 0 .  72248 0 .  32506  
13 0 . 3 2 6  0 . 7 2 1 7 6  0 . 3 2 6 0 6  
14 0.327 0.72106 0.32706 
15 0.328 0.72032 0.32806 
16 0.329 0.71960 0.32906 
17 0 . 3 3 0  0 . 7 1 8 8 8  0 . 3 3 0 0 6  
18 0.331 0.71816 0.33106 
19 0.332 0,71746 0.33207 
20 0.333 0.71672 0.33307 
21 0 . 3 3 4  0.71564 0.33450 
22 0.335 0.71457 0.33608 
23 0,336 0 . 71350 0.  33758 
24 0 . 3 3 7  0 . 7 1 2 4 3  0 . 3 3 9 0 8  
25 0 . 3 3 8  0 . 7 1 1 3 6  0 . 3 4 0 5 8  
26 0 . 3 3 9  0 . 7 1 0 2 8  0 . 3 4 2 0 9  
27  0 . 3 4 0  0 . 7 0 9 2 1  0 . 3 4 3 8 0  
28 0 . 3 4 1  0 . 7 0 8 1 4  0 , 3 4 5 1 1  
29 0.342 0,70708 0.34661 
30 0 . 3 4 3  0 . 7 0 6 0 3  0 . 3 4 8 0 9  
31 0.657 0.44661 0 . 8 0 6 0 8  
3~ 0 . 6 5 8  0 . 4 4 5 9 8  0 . 0 0 7 4 9  
33 0 . 6 5 9  0 . 6 4 5 3 5  0 . 8 0 8 9 1  
34 0.660 0.84471 0.81032 
35 0.661 0.44400 0.81174 
36 0.662 0.44345 0.81316 
37 0.663 0.44202 0.81458 
30 0.664 0.44219 0,81601 
39 0.665 0.44156 0.81744 
40 0.666 0.44093 0.81806 
41 0.667 0 . 6 4 0 4 9  0.81986 
42 0 . 6 6 8  0 . 4 4 0 0 5  0 . 8 2 0 8 6  
43 0 . 6 6 9  0 . 4 3 9 6 1  0 . 8 2 1 8 6  
44 0 . 6 7 0  0~43917  0 . 8 2 2 8 7  
45 0 . 6 7 1  0 . 4 3 8 7 3  0 . 8 2 3 8 7  
46 0 . 6 7 2  0 , 4 3 8 2 9  0 . 8 2 6 8 7  
47 0 . 6 7 3  0 . 4 3 7 8 5  0 . 8 2 5 8 8  
48 0.674 0.43742 0.82886 
89 0,675 0.43699 0.02705 
60 0.676 0.43686 0 . 0 2 8 8 3  
81 0 . 9 9 1  0 . 3 1 8 5 6  1 . 1 4 3 9 3  
52 0.992 0.31824 1.14494 
53 0.993 0.31792 1.14594 
56 0 , 9 9 4  0.31760 1.14695 
55 0.995 0.31729 1.14793 
56 0 . 9 9 6  0.31698 1.14891 
S 7 0 . 9 9 7  0.31667 1.14909 
$8 0 , 9 9 8  0 . 3 1 6 3 6  1 . 1 5 0 8 7  
$9  0 . 9 9 9  0 . 3 1 6 0 5  1 . 1 5 1 8 5  
60 1 . 0 0 0  0 . 3 1 5 7 4  1 . 1 5 2 8 3  

PHREG PAPER: TEST BASE THREE 

OBS UPPER LOWER 

1 0 . 5 9 7 3 7  0 . 5 9 6 6 9  

M E A N  

0 .  5 9 7 0 3  

p a g e s  1 4 - 1 5  

p a g e  1 6  
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APPENDIX 2 

8ASLOG, 

350 ****************************************************************** 
351 ***BEGIN CODE FOR CASE STUDY **CT******************************** 

352 %MACRO VLIST; 

353 EMPL2 

354 AY93-AY94 

355 MF01 EC01 

356 NOI SPR NOI CUT 

357 %MEND VLIST; 

NOTE: The data set WORK.ONE has 12512 observations and I00 variables. 

358 DATA ONE;SET ONE; 

359 KEEP T CLOSED01 TPA LAG2TPA %VLIST ; 

MPRINT(VLIST): EMPL2 AY93-AY94 MF01 EC01 NOI_SPR NOICUT 

360 *CREATE BASELINE SURVIVAL FUNCTION FOR VANISHING COVARIATES'; 

361 *TPA IS NON TIME-DEPENDENT REFERRAL VARIABLE'; 

362 TITLE 'PROPORTIONAL HAZARD MODEL FOR BASELINE'; 

NOTE: The data set WORK.ONE has 12512 observations and 11 variables. 

363 PROC SORT DATAwONE;BY TPA; 

NOTE: The data set WORK.ONE has 12512 observations and 11 variables. 

364 DATA INRISK; 

365 INPUT %VLIST TPA; 
MPRINT(VLIST): EMPL2 AY93-AY94 MF01 EC01 NOI SPR NOI CUT 

366 CAR/)S; 

NOTE: The data set WORK.INRISK has 1 observations and 8 variables. 

368 t 
369 PROC PHREG SIMPLE DATA=ONE; 

370 MODEL T'CLOSED01(0)- %VLIST TPA; 

MPRINT(VLIST): EMPL2 AY93-AY94 MF01 EC01 NOI SPR NOI CUT 

371 

NOTE: The 
NOTE: The 

372 

NOTE: The 

373 

NOTE: The 

374 

375 

376 

377 

NOTE: The 

378 

379 

BASELINE COVARIATES=INRISK OUT:EASE SURVIVAL=S / NOMEAN; 

data set WORK.BASE has 958 observations and 10 variables. 

PROCEDURE PHREG printed pages 1-2. 

DATA BASE;SET BASE;KEEP T S;IF T > 0; 

data set WORK.BASE has 957 observations and 2 variables. 

PROC SORT DATA = BASE; BY T; 

data set WORK.BASE has 957 observations and 2 variables. 

DATA BASE;SET BASE END = EOF; 

IF N - 1 THEN DO;T = 0;S = I;OUTPUT;F~; 

IF T < 1 THEN OUTPUT; 

IF EOF OR T >= 1 THEN DO;T w 1;OUTPUT;END; 

data set WORK.BASE has 959 observations and 2 variables. 

PROC SORT NODUP DATA - BASE; BY T; 

*CAPTURE BASELINE SURVIVAL FUNCTION ON [0,1] TO ARRAY TABLE'; 

NOTE: The data set WORK.BASE has 958 observations and 2 variables. 
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380 DATA BASE;SET BASE END-EOF; 

381 ARRAY MATT(I) TI-TI000; 

382 ARRAY MATS(I},SI-S1000; 

383 KEEP TI-TI000 SI-S1000; 

384 RETAIN TI-TI000 SI-SI000; 

385 I = MIN(_N_,1000); 

386 MATT m T; 

387 MATS = S; 

388 IF EOF THEN DO; 

389 DO I = N + 1 TO I000; 

390 MATT = I; 

391 MATS = 0; 

392 END; 

393 OUTPUT; 

394 END; 

395 *RUN PROPOTIONAL HAZARD MODEL'; 

396 *TXPA X=I,2,3 ARE TIME-DEPENDENT REFERRAL VARIABLES'; 
397 TITLE 'PROPORTIONAL HAZARD MODEL WITH TIME DEPENDENT REFERRAL'; 

NOTE: The data set WORK.BASE has 1 observations and 2000 variables. 

398 PROC PHREG SIMPLE DATA-ONE OUTEST=PARMS; 

399 MODEL T*CLOSED01(0)m %VLIST 

MPRINT(VLIST): EMPL2 AY93-AY94 MF01 EC01 NOI_SPR NOI_CUT 

400 

401 

402 

403 

404 

405 

406 
407 

NOTE: The 

NOTE: The 

TITPA T2TPA T3TPA; 

IF TPA=I & T >= LAG2TPA THEN TTPA~I;ELSE TTPA = 0; 

IF 1/6 • T THEN TITPA-TTPA;ELSE TITPA = 0; 

IF I/3 • T >= 1/6 THEN T2TPA=TTPA;ELSE T2TPA'= 0; 

IF T >- 1/3 THEN T3TPA=TTPA;ELSE T3TPA = 0; 

*DETERMINE PHImREFERRAL RISK RATIO BY TLAYER; 

TITLE 'HAZARD RATIO PHI BY TIME LAYER'; 

DATA PAP/MS;SET PARMS; 

data set WORK.PARMS has 1 observations and 14 variables. 

PROCEDURE PHREG printed pages 3-4. 

408 
409 

410 

411 

KEEP TLAYER PHI; 
TLAYER - 1;PHI = EXP(TITPA);OUTPUT; 

TLAYER - 2;PHI = EXP(T2TPA);OUTPUT; 

TLAYER m 3;PHI = EXP(T3TPA);OUTPUT; 

NOTE: The data set WORK.PAP/MS has 3 observations and 2 variables. 

412 PROC PRINT DATA ffi PARMS; 

NOTE: The PROCEDURE PRINT printed page 5. 

413 DATA ONE;SET ONE; 
414 IF 1/6 • T THEN TLAYER = I; 

415 ELSE 

416 IF 1/3 • T >- 1/6 THEN TLAYER - 2; 

417 ELSE 

418 TLAYER - 3; 

NOTE: The data set WORK.ONE has 12512 observations and 12 variables. 

419 PROC SORT DATAzONE ;BY TLAYER; 

NOTE: The data set WORK.ONE has 12512 observations and 12 variables. 

420 PROC SORT DATA-PARMS;BY TLAYER; 
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NOTE: The data set WORK.PARMS has 3 observations and 2 variables. 

421 DATA ONE;MERGE ONE(IN-INO} PARMS(IN-INP);BY TLAYER; 

422 IF INO & INP; 

NOTE: The data set WORK.ONE has 12512 observations and 13 variables. 

423 PROC SORT DATA~ONE; BY TPA; 

424 *USE PHI AND BASELINE SURVIVAL ARRAY TO ADJUST T; 

NOTE: The data set WORK.ONE has 12512 observations and 13 variables. 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

DATA ONE;SET ONE; 

RETAIN TI-TI000 SI-SI000; 

ARRAY MATT(I) TI - TI000; 

ARRAY MATS(I) $1 - SI000; 

DROP T1-T1000 $1-$1000; 

IF N -1 THEN SET BASE; 

IF (TPA - 1) & (T < 1) THEN DO; 

ALPHA ~ LAG2TPA; 

LOOKUP - 0;I = i; 

DO WHILE(LOOKUP = 0); 

LHT - MATT;LHS i MATS ; 

I + I;RHT s MATT;RHS - MATS; 

IF LHT <= ALPHA <. RHT THEN DO; 

S_ALPHA - LHS + ( (ALPHA - LHT) / (RHT - LHT) ) * (RHS - LHS) ; 

LOOKUP ffi i; 

END; 

END ; 

LOOKUP = 0;I = I; 

DO WHILE(LOOKUP - 0); 

LHT = MATT;LHS - MATS; 

I + I;RHT - MATT;RHS ~ MATS; 

IF LHT <= T <= RHT THEN DO; 

S_T = LHS + ((T - LHT)/(RHT - LHT))*(RHS - LHS); 

LOOKUP = 1 ; 

END; 

END; 

S ADJT = (S_T**PHI} * {SALPHA** (1-PHI)) ; 

LOOKUP = 0;I - I; 

DO WHILE(LOOKUP - 0); 

LHT - MATT;LHS - MATS; 

I + I;RHT - MATT;RHS - MATS; 

IF LHS >= S_ADJT >= RHS THEN DO; 

ADJT . RHT + ((S_ADJT - RHS)/(LHS - RHS))*(LHT - RHT); 

LOOKUP = I; 

END; 

END; 

END; 

ELSE DO; 

ADJT = T; 

END; 

• USE PHREG TO MAKE SURVIVAL FUNCTION AT MEANS FOR ACTUAL DURATION T; 

TITLE 'ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS'; 

NOTE: The data set WORK.ONE has 12512 observations and 24 variables. 

467 PROC PHREG SIMPLE DATA-ONE;BY TPA; 

468 MODEL T-CLOSED01 (0}- %VLIST; 

MPEINT(VLIST) : EMPL2 AY93-AY94 MF01 EC01 NOI_SPR NOI_CUT 

469 BASELINE OUT-BASE SURVIVAL-S; 
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NOTE: The data set WORK.BASE has 1325 observations and 10 variables. 

NOTE: The PROCEDURE PHREG printed pages 6-9. 

470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

480 

481 

482 

483 

484 

485 

486 

DATA MEAN;SET BASE;BY TPA;KEEP TPA UPPER LOWER MEAN; 

RETAIN UPPER LOWER OLD T OLD_S; 

IF FIRST.TPA THEN DO; 

UPPER = 0 ; 

LOWER = 0; 

OLD T = 0; 

OLD S = 1; 

END; 

IF OLD T < 

UPPER + 

LOWER + 

END; 

OLD T = 

OLD S = 

IF 

T THEN DO; 

(T - OLD_T)*OLD_S; 

(T - OLD_T)*S; 

T; 

S; 

LAST.TPA THEN DO; 

MEAN = (UPPER + LOWER)/2;OUTPUT; 

END; 

NOTE: The data set WORK.MEAN has 2 observations and 4 variables. 

487 DATA MEAN;SET MEAN;*CONVERT TO YEARS; 

488 UPPER = 3*UPPER; 

489 LOWER = 3*LOWER; 

490 MEAN = 3*MEAN; 

NOTE: The data set WORK.MEAN has 2 observations and 4 variables. 

491 PROC PRINT DATA = MEAN; 
492 *USE PHREG TO MAKE SURVIVAL FUNCTION AT MEANS FOR ADJUSTED DURATION; 

NOTE: The PROCEDURE PRINT printed page I0. 

493 PROC PHREG SIMPLE DATA=ONE;BY TPA; 

494 MODEL ADJT*CLOSED01(0)= %VLIST; 
MPRINT(gqSIST): EMPL2 AY93-AY94 MFOI EC01 NOI_SPR NOI_CUT 

495 BASELINE OUT=BASE SURVIVAL=S; 
496 TITLE 'ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS'; 

NOTE: The data set WORK.BASE has 2311 observations and i0 variables. 

NOTE: The PROCEDURE PHBEG printed pages 11-14. 

497 

498 

499 

DATA BASE; 
SET BASE;*RENAME ADJT TO BE SIMPLY T AS ABOVE; 

T = ADJT; 

NOTE: The data set WORK.BASE has 2311 observations and II variables. 

500 DATA MEAN;SET BASE;~Y TPA;KEEP TPA UPPER LOWER MEAN; 

501 RETAIN UPPER LOWER OLD T OLD_S; 

502 IF FIRST.TPA THEN DO; 

503 UPPER = 0; 

504 LOWER = 0; 

505 OLD T = 0; 

506 OLD S = 1; 

507 END; 

508 IF OLD T < T THEN DO; 

509 UPPER + (T - OLD_T)*OLD_S; 

623 



510 LOWER + (T - OLD_T)*S; 

511 END; 

512 OLD T s T; 

513 OLD_S - S; 

514 IF LAST.TPA THEN DO; 

515 MEAN - (UPPER + LOWER)/2;OUTPUT; 

516 END; 

NOTE: The data set WORK.MEAN has 2 observations and 4 variables. 

517 DATA MEAN;SET MEAN;*CONVERT TO YEARS; 

518 UPPER = 3*UPPER; 

519 LOWER ~ 3*LOWER; 

520 MEAN = 3*ME~; 

NOTE: The data set WORK.MEAN has 2 observations and 4 variables. 

521 PROC PRINT DATA - MEAN; 

NOTE: The PROCEDURE PRINT printed page 15. 
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SAB LISTI~* 

PROPORTIONAL HAZARD MODEL FOR BASELINE 
The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: T 
Censoring Variable: CLOSED01 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

page 1 

Total 

12512 

Summary of the Number of 
Event and Censored Values 

Percent 
Event Censored Censored 

9961 2551 20.39 

Simple Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation 

EMPL2 12512 0.10526 0.30690 
AY93 12512 0.33840 0.47318 
AY94 12512 0.33048 0.47041 
MF01 12512 0.57297 0.49467 
EC01 12512 0.56138 0.49624 
NOI_SPR 12512 0.68782 0.46340 
NOI_CUT 12512 0.24680 0.43117 
TPA 12512 0.17927 0.38359 

Minimum 

0 
0 
0 
0 
0 
0 
0 
0 

Maximum 

1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1.00000 
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1.00000 
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PROPORTIONAL HAZARD MODEL FOR BASELINE page 2 

The PHREG Procedure 

Testing Global Null Hypothesis: BETA=0 

Without With 

Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 

Score 

Wald 

171122.136 170068.900 1053.235 with 6 DF (p=0.0001) 

1052.856 with 8 DF (p=0.0001) 

1034.622 with 8 DF (p=0.0001) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr • 

Variable DF Estimate Error Chi-Square Chi-Square 

EMPL2 1 -0.275576 0.03598 58.67093 0.0001 

AY93 1 0.347298 0.02421 205.72217 0.0001 

AY94 1 0.591461 0.03204 340.80216 0.0001 

MF01 1 -0.208174 0.02216 88.26442 0.0001 

EC01 1 0.245834 0.02227 121.89395 0.0001 

NOI SPR 1 0.140682 0.04307 10.66704 0.0011 

NOICUT 1 0.186939 0.04580 16.65742 0.0001 

TPA 1 0.134552 0.03398 35.68328 0.0001 

Risk 

Ratio 

0.759 

1.415 

1.807 

0.812 

1.279 

1. 151 

1.206 

1. 144 
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HAZARD RATIO PHI BY TIME LAYER page 3 

The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: T 
Censoring Variable: CLOSED01 

Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

12512 9961 2551 20.39 

Simple Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation Minimum 

EMPL2 12512 0.10526 0.30690 0 
AY93 12512 0.33840 0.47318 0 
AY94 12512 0.33048 0.47041 0 
MF01 12512 0.57297 0.49467 0 
EC01 12512 0.56138 0.49624 0 
NOI SPR 12512 0.68782 0.46340 0 
NOI CUT 12512 0.24680 0.43117 0 
TITPA 12512 0.09407 0.29194 0 
T2TPA 12512 0.06554 0.24748 0 
T3TPA 12512 0.01966 0.13884 0 

WARNING: Simple statistics listed for the time-dependent explanatory 

h a v e  l i m i t e d  v a l u e .  

Maximum 

1 . 0 0 0 0 0  
1.00000 
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1.00000 
1.00000 
1.00000 
1.00000 

variables 
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HAZARD RATIO PHI BY TIME LAYER page 4 

The PHREG Procedure 

Testing Global Null Hypothesis: BETA=0 

Without With 
Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 

Score 
Wald 

171122.136 170012.885 1109.251 with i0 DF (p=0.0001) 
1125.216 with i0 DF (p=0.0001) 
1101.663 with I0 DF (p-0.0001) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald 
Variable DF Estimate Error Chi-Square 

Pr > 
Chi-Square 

EMPL2 1 -0.276409 0.03598 
AY93 1 0.343170 0.02424 
AY94 1 0.535551 0.03216 
MF01 1 -0.207791 0.02216 
EC01 1 0.245800 0.02227 
NOI SPR 1 0.143863 0.04308 
NOI_CUT 1 0.189546 0.04581 
TITPA 1 0.353487 0.04301 
T2TPA 1 0.184415 0.05265 
T3TPA 1 0.114674 0.10755 

Risk 
Ratio 

59.00264 0.0001 0.759 
200.35078 0.0001 1.409 
277.34071 0.0001 1.708 
87.95253 0.0001 0.812 

121.79944 0.0001 1.279 
11.15294 0.0008 1.155 
17.11765 0.0001 1.209 
67.54561 0.0001 1.424 
12.26748 0.0005 1.203 
1.13683 0.2863 1.122 

HAZARD RATIO PHI BY TIME LAYER 

OES TLAYER PHI 

1 1 1.42402 
2 2 1.20251 
3 3 1.12151 

page 5 
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ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS page 6 

TPA-0 

The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: T 
Censoring Variable: CLOSED01 
Censoring Value(s): O 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

10269 8544 1725 16.80 

Simple Statistics for Explanatory Variables 

Total Sample 

Variable N Mean 

Standard 
Deviation Minimum 

EMPL2 10269 0.11014 
AY93 10269 0.38631 
AY94 10269 0.21180 
MF01 10269 0.57162 
EC01 10269 0.56062 
NOI SPR 10269 0.68410 
NOI CUT 10269 0.25280 

0.31308 0 
0.48693 0 
0.40861 0 
0.49487 0 
0.49634 0 
0.46490 0 
0.43464 0 

Maximum 

1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
l. OOOO0 
1.00000 
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ACTUR~L MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

TPA-0 

~ne PHREG Procedure 

Criterion 

-2 LOG L 
Score 
Wald 

page 7 

Testing Global Null Hypothesis: BETA=0 

Without With 
CovariateB Covariates Model Chi-Square 

143854.615 143106.464 748.151 with 7 DF (p-0.0001} 
743.549 with 7 DF (p=0.0001) 
733.247 with 7 DF (p=0.0001) 

Variable 

EMPL2 
AY93 
AY94 
MF01 
ECOI 
~ o x  s p R  
NOICIYr 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr • Risk 
DF Estimate Error Chi-Square Chi-Square Ratio 

1 -0.289695 0.03776 58.86290 0.0001 0.748 
1 0.341809 0.02451 194.49158 0.0001 1.407 
1 0.573640 0.03373 289.16531 0.0001 1.775 
1 -0.195073 0.02391 66.55687 0.0001 0.823 
1 0.230103 0.02395 92.26850 0.0001 1.259 
1 0.149435 0.04673 10.22562 0.0014 1.161 
1 0.211587 0.04956 18.22332 0.0001 1.236 
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ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS page 8 

TPA~ 1 

The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: T 
Censoring Variable: CLOSED01 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

2243 1417 826 36.83 

Simple Statistics for Explanatory Variables 

Total Sample 

Variable N Mean 
Standard 

Deviation 

EMPL2 2243 0.08292 
AY93 2243 0.11904 
AY94 2243 0.87383 
MF01 2243 0.57914 
EC01 2243 0.56487 
NOI SPR 2243 0.70486 
NOI CUT 2243 0.21935 

0.27583 
0.32390 
0.33212 
0.49381 
0.49588 
0.45621 
0.41390 

Minimum Maximum 

1.00000 
1.00000 
1,00000 
1.00000 
1.00000 
1.00000 
1.00000 
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ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

TPA-1 

The PHREG Procedure 

Criterion 

-2 LOG L 

Score 
Wald 

page 9 

Testing Global Null Hypothesis: BETA=0 

Without With 

Covariates Covariates Model Chi-Square 

19580.571 19429.633 150.938 with 7 DF (p=0.0001) 

138.667 with 7 DF (p=0.0001) 
131.971 with 7 DF (p=0.0001} 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald 

Variable DF Estimate Error Chi-Square 

EMPL2 1 -0.033574 0.11954 0.07888 

AY93 1 1.451228 0.38774 14.00880 

AY94 1 1.734945 0.38948 19.84265 

MF01 1 -0.281972 0.05898 22.85722 
EC01 1 0.342128 0.06101 31.44825 

NOI_SPR 1 0.091231 9.11133 0.67149 

NOI_CUT 1 0.033698 0.12062 0.07805 

Pr • 

Chi-Square 

0.7788 

0 . 0 0 0 2  
0.0001 
0.0001 

0.0001 

0.4125 

0.7800 

ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

OBS TPA UPPER LOWER MEAN 

1 0 1.02820 1.02542 1.02681 

2 1 0.74414 0.73050 0.73732 

page 10 

Risk 

Ratio 

0. 967 

4.268 

5.669 
0.754 

1.408 

I . 096 

1.034 
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ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS page II 
TPA-0 

The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: ADJT 
Censoring Variable: CLOSED01 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

10269 8544 1728 16.80 

Simple Statistics for Explanatory Variables 

Total Sample 

Variable N Mean 
Standard 

Deviation Minimum 

EMPL2 10269 0.11014 0.31308 
AY93 10269 0.38631 0.48693 
AY94 10269 0.21180 0.40861 
MF01 10269 0.57162 0.49487 

EC01 10269 0.56062 0.49634 
NOI SPR 10269 0.68410 0.46490 
NOI_CUT 10269 0.25280 0.43464 

Maximum 

! . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . O O O 0 0  
1 . 0 0 0 0 0  
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ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

TPA-0 

The PHREG Procedure 

Criterion 

-2 LOG L 

Score 
Wald 

page 12 

Testing Global Null Hypothesis: BETA=0 

Without With 

Covariates Covariates Model Chi-Square 

143854.615 143106.464 748.151 with 7 DF (p=0.0001) 

743.549 with 7 DF (p=0.0001) 
733.247 with 7 DF (p=0.0001) 

Variable 

EMPL2 

AY93 

AY94 

MF01 

EC01 

NOI SPR 

N0I CUT 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > 

DF Estimate Error Chi-Square Chi-Square 

1 -0.289695 0.03776 58.86290 0.0001 

1 0.341809 0.02451 194.49158 0.0001 

1 0.573640 0.03373 289.16531 0.0001 

1 -0.195073 0.02391 66.55687 0.0001 

1 0.230103 0.02395 92.26850 0.0001 

1 0.149435 0.04673 10.22562 0.0014 

1 0.211587 0.04956 18.22332 0.0001 

Risk 

Ratio 

0.748 

1.407 
1.775 

0.823 

1.259 

1.161 

1.236 
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ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS page 13 

TPA-I 

The PHREG Procedure 

Data Set: WORK.0NE 
Dependent Variable: ADJT 
Censoring Variable: CLOSED01 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Total 

2243 

Summary of the Number of 
Event and Censored Values 

Percent 
Event Censored Censored 

1417 826 36.83 

Simpie Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation 

EMPL2 2243 0.08292 0.27583 
AY93 2243 0.11904 0.32390 
AY94 2243 0.87383 0.33212 
MF01 2243 0.57914 0.49381 
EC01 2243 0.56487 0.49588 
NOI_SPR 2243 0.70486 0.45621 
NOI_CUT 2243 0.21935 0.41390 

Minimum Maximum 

1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
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ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS page 14 

TPAJl 

The PHREG Procedure 

Testing Global Null Hypothesis: BETA=0 

Without With 

Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 
Score 
Wald 

19564.220 19414.420 149.800 with 7 DF (p=0.0001) 
137.480 with 7 DF (p=0.0001) 
130.785 with 7 DF (p=0.0001) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > 
Variable DF Estimate Error Chi-Square Chi-Square 

EMPL2 1 -0.027966 9.11955 0.05472 0.8150 
AY93 1 1,456546 0.38758 14.12275 0.0002 
AY94 1 1,738075 0.38932 19.93071 0.0001 
MF01 1 -0.281598 0.05895 22.81847 0.0001 
EC01 1 0.339608 0.06097 31.02579 0.0001 
NOI_SPR 1 0.089939 0.11134 0.65252 0.4192 
NO~_CUT 1 0,033703 0.12061 0.07808 0.7799 

Risk 
Ratio 

0.972 

4.291 
5.686 
0.755 
1.404 
1.094 
1.034 

ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

OBS TPA UPPER LOWER MEAN 

1 0 1.02820 1.02542 1.02681 
2 1 0.83222 0.81883 0.82552 

page 15 
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Modeling Multi-Dimensional Survival with 
Hazard Vector Fields 

Daniel R. Corro 
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Abstract: 

Traditional survival analysis deals with functions of  one variable, "'time. " This paper 
explains the case o f  multiple and interacting aging metrics by introducing the notion o f  a 
hazard vector fieid This approach is shown to provide a more general framework than 
traditional survival analysis, including the ability to model multi-dimensional censored 
data~ A simple example illustrates how Green's Theorem in the plane applies to evaluate 
and even to theoretically optimize a course of  action~ One evident apph'cation is to the 
evaluation and promulgation of  claim administration protocols. 

Keywords: survival, vector field, ~.-,.,d. grsdiem, line integral 
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Introduction 

Although survival analysis has long recognized the need to account for different causes 
of death or failure, it recognizes only one way of measuring age. Consequently, survival 
f u n c t i o ~ v e n  "select" survival functions--are functions ofone variable, typically 
denoted "t" and interpreted as "time". This paper explains the need to study observed 
lives from multiple perspectives. For example, a vehicle may burn several different types 
of fuel with varying and inter-related consumption patterns. The ability to determine 
whether a particular trip is possible and if so to find an efficient route may be best 
approached as a multi-dimensional problem. That is, it may not always be practical or 
revealing to reduce survival into functions of a single variable. 

This work evolved from studying workers compensation insurance claims data and the 
motivation comes from that context. A quick claim resolution may not achieve a cost- 
effective result for either the insurer or the injured worker. A useful measure of "age" 
for the insurer may be the paid to date benefit cost of the claim while for the claimant the 
most important metric is likely his or her lost income. Traditional survival analysis can 
be helpful here, especially in dealing with open claims, i.e., "right-censored" data (c.f. 
[2], [4]). Simply taking "t" in the sui'vival analysis models to be paid loss can yield 
useful reserve estimates (c.f. [4]). workers compensation claims typically involve both 
medical and wage replacement benefits. Each is expected to follow a distinctive payment 
pattern that need not be independent of the other. Indeed, that inter-relationship may 
prove to be a key cost driver. This paper illustrates how a multi-dimensional survival 
model can reveal those inter-relationships and their cost implications. 

Consider, for instance, an issue from the ongoing debate over claim administration 
protocols. In the workers compensation context, is it better to pursue aggressive medical 
treatment quickly in an effort to minimize time lost from work, or is it more efficient to 
spend those resources another way, such as providing job retraining. Clearly the answer 
may vary tremendously based on the nature of the injury, the age of  the worker, the 
applicable benefit provisions, and a myriad of other considerations. 

The main conceptual result of this paper is that traditional survival analysis can be 
inherently limiting. This is established formally by showing that it is not always possible 
to define a survival function. The first section of the paper presents a generalization of 
the survival function to a function of several variables. Many of the basic formulas of  
survival analysis are readily generalized. The next section discusses censored data and 
shows how this can introduce new complications in the multi-dimensional context. The 
concept of a hazard vector field is defined and shown to provide a more general 
framework than traditional survival analysis. In particular, this framework is capable of  
dealing with multi-dimensional censored data. It is shown that the existence of a survival 
function conforms exactly to the "conservative force field" ofcisssical physics. A simple 
example illustrates how Green's Theorem in the plane applies to comparing and even 
optimizing paths of action, e.g., as in evaluating claim administration protocols. 
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The concepts introduced in this paper may lead to the ability to help identify optimum 
claim handling practices. As noted in the section on further research, much additional 
work is required to test this approach. Some work that uses this approach to study the 
resolution pattern ofworkers compensation back strains shows some promise but is very 
preliminary. The examples presented here are only numeric illustrations; many have no 
practical application and some details are left to the reader. Those wishing additional 
details on the numerical examples or on the application to back strain cases may contact 
the author. 

Section I: Basic Terminology and Notation 

Let ~+ denote the set ofnormegative real numbers and ~ n  denote n-dimensional space. 

For any a = (a I ..... a ,  ) • 9 t ' ,  3 ,  = {(x~...., x, ) Ix, > a I , 1 < i < n }; in particular, let 

3 = 30 denote the "positive quadrant." We regard 9~ n as a model for "space-time" in 
which each coordinate represents an aging metric. The most natural case is when n= 1 
and the metric is time. For insurance applications, metrics to keep in mind would be 
cumulative payments or accumulation of  some other quantity associated with claim 
resolution (e.g. xl = time from injury, xz = indemnity paid to date, x3 = medical paid to 
date, x4 = ALAE paid to date, etc.). We regard :3 as all possible "failures" or "deaths", all 
of  whose lives begin at the origin. More generally, ~3° represents the possible future 

(failure) values subsequent to attaining the point a • ~R n. Clearly b e 3a  ¢::' 3b c 3a .  

Begin with a continuous probability density function (PDF) of "failures": 

f :  ~3..--~ ~ + I f = l .  
3 

It is natural to define a survival function as the probability of  subsequent failure: 

3 

Observe tha t fand  S uniquely determine one another; indeed, from the fundamental 
theorem of calculus: 

OnS 
f = (-If 

Ox~...ax,, " 
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For b E ~a, define fo (b) = f ( b ) .  This defines a PDF on ~1 a ill which the origin has been 
s(a) 

shifted to a and which has survival function s a (b) = ~ the conditional probability 
S(a) ' 

assuming survival to a. 

Let X b e  the random variable with P D F f a n d  sample space ~. Because ~ is closed under 
vector addition (it is an additive semigroup), it is natural to consider the expression: 

/z = E ( X )  = Z f ( x ) x  
x ~ J  

as a candidate "expected failure vector". More generally, for a E 3 this suggests that the 
expected failure vector for survival beyond a be expressed as: 

p(a)= Zfa(X)(x-a) 
XE~[. 

This infinite weighted sum, properly interpreted as a limit, can be found (when finite) via 

integration. Let x i : 91 n ~ 91 denote the u s ~  coordinate projection functions and 

{ci = (0,...0,1,0,...0) I 1 ~ i < n} the usual set of  coordinate unit vectors. Continuity and 
linearity imply: 

/J. / P ( a )  = i~ = x ~ ( f a ( x X x - a ) )  ei 
I 

S ( a ) ~ , l k o ,  o 

The following integration result is a straightforward integration by parts: 
oo 

Lemma: For any continuous function g : 91+ ~ 91+, b ~ 91 + with Jg(t)dt < oo 

0 

t - b ) g ( t ) d t  = g ( w ) d w d t  
b b t  

P r o o f  Let  b < c ~ 91+. Then we have: 
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c c  c 

bt b 
C 

t 

du = - g ( t ) d t i  

v = t - b  

d r = d r  

c F c l c c  
= [ u v ] ~ -  ~ v d u :  ( t - b ) f g ( w ) d w  + ~ ( t - b ) g ( t ) d t  

b L t ]b b 
C 

= S(t - b)g( t )  dt 
b 

and the lemma follows by letting c --) oo. 

Define n functions: 

o o  oo  

gl(t) = ~... ~f(t,x2 ..... xn)dx2..dx n 
12 2 Q . 

QO oo 

g n ( t )  = ~... I f (x l  ..... Xn_l,t)dXl..X~n_l 
a I a . _  I 

Invoking the above lemma and rearranging the order of integration (Fubini's Theorem): 

p ( a ) =  t - a i ) g ~ ( t ) d t  e, 

which implies that this candidate for expected survival vector can be determined from 
conditional survival parallel to the coordinate axes. Note that p : ~ -) ~ is a vector field 
and that: 
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It = p(O) = S ( t ¢ i ) d t  ci 
i=lk 0 ) 

Recall that for n=l the hazard function h can be defined as h(t) = f ! t !  or equivalently as 
S(t) 

h= d(In(S(t))) 
- - - - - - - ~ .  While the first definition readily generalizes to define the hazard 

function h=-~  : 3 ~ 9~ + for any n, it is the second that is of greater interest. Given a 

survival function S on ~ the corresponding hazard vector f ield is defined as: 

,7 = r t s  : z ~ z q(x) =-V( ln (S(x) )~  x e 

where v denotes the gradient operator. 

For any a ~ ~ ,  a life path o f  a is a continuous function C :[0,1]-~ 3 satisfying: 

C(O) = 0 

c(1) = a 

0 ~ t ~ u ~ 1 ~ C(u)  e 3c ( t )  

The latter condition simply means that the path pmgres~s into the furore. Note that for 

any a e ~3 and life path C of a, we have: 
-~[~ 

~q = - ln(S(C(I)) )+ In(S(C(O))) = - ln(S(a))  ~ S(a)  = e c 
c 

We will, as is often done, occasionally confuse a path C with its image {C(t)}, implicitly 
exploiting independence of the line integral to path parameterization. 

The traditional language of life contingencies refers to hazard as a "force of mortality". 
Of course, "force" is inherently a vector concept and the latter expression relates the 
force of failure r/with the probability of survival S. This has a natural appeal as it relates 
survival to the amount of"work" done traversing a hazardous life path. It gives the term 
"life work" a new twist and suggests an almost Aristotelian concept of life-giving energy. 
The existence of a survival function, as defined here, corresponds to the case when the 
amount of work is independent of the path, analogous to a potential function measuring 
energy loss in classical physics. 

We conclude this section with some simple examples for n=2, in which case we revert to 
the more conventional xy.plane notation. 

Example 1: Let (a, b) e ~ be a vector in the positive quadrant. The exponential survival 
function with parameter vector (ag b) is defined as: 
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S(x,y)=e -ax-by f(x,y)=abS(x,y) h(x,y)=ab 

Note that this models the case of constant expected survival, p(x,y) = (! ,1),  and 

constant hazard field ~x,.v) = (a,b). 

The generalization of  Example ! to n>2 is clear. It is not surprising that the expected 
survival vector is constant exactly when the hazard field is constant. The inverse 
relationship between the two in that event, ft. p = , ,  has an added geometric appeal since 
survival is "global" while hazard is "local" (See [3] for a more systematic discussion of 
the relationship between hazard and expected survival.) 

Example 2: After a constant vector field (Example 1), the next simplest vector field is 

rt(x, y) = c(x, y) for some constant c ~ ~R ÷ . 

For this case. 

_c(x'+Y ~ ) 
S(x,y)=e " 2 /, f(x,y)=c2xyS(x,y), h(x,y)=c2xy 

We leave to the reader the verification that: 

, v T -  

where *(x) = d '  Ie 2 a~ is the standard normal cumulative density function. 
¥ ~ _® 

Example 3: Suppose r ,T,g define another hazard field, survival, and PDF, respectively. 
Then r/+r has survival function the product STand PDF: 

= S(X, y ) g ( x , , ) + T ( x ,  y) f (x ,  y)+ f f ( t ,  y)dt ~g(x,t)dt + I f (x , t )dt  Ig(t, y>dt> O. 
x y y x 

Combining these examples, the "fn'st degree equation" hazard field 

rl(x, y) = (a, b) + c(x, y) 
- + x 2 + Y  2 

When n=l.  a hazard function h(t) is often viewed as belonging to a one-parameter family 

{ch(t) I c ~ ~+} of"proportional b a i r d "  functions ([2] considers the mean survival over 
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such a family). A proportional shift h(t) ~ ch(t), c ~ ~+ in the hazard function 

corresponds to exponentiation of the survival function S(t)  ~ S(t)  c . The next 
example shows that this concept becomes more complicated in higher dimensions. 

Example 4: The function S(x ,y)  = e -(~+Ixy+I) is a survival function with PDF 

f ( x ,  y) = (xy + x+y)S(x, y) and hazard field r/(x, y) = (y + 1, x + 1). Letting T = ~]S, 
we let the reader verify that T is not a survival function, as defined here, since it would 
have PDF: 

.((x + l)(y + 1) 1 e-(X+lXy+l) 4 ~)<0 
for (x,y) sufficiently near the origin. 

Section II: Censored data and Path Dependence 

To make the discussion seem more concrete, let y measure wage replacement benefits 
and x medical benefits awarded on a workers compensation claim. For convenience, 
normalize costs so that the interval [0,2] covers the range of feasible amounts. Consider 
the following table of survival data: 

Survival Data 
y Status 

1 0 Open 
1 1 Closed 
2 2 Closed 

Total 

Count 
378 
393 
229 

1,000 

In this context "failure" means claim closure, as that corresponds to the end of  the life of  
a claim. Cases open when the information is collected are regarded as censored. The 
reported values of x and y represent medical and indemnity paid to date figures at that 
evaluation. For closed cases, the final incurred costs are reported. Consistent with the 
assumed unit of payment, no case survives beyond (2,2). 

Let P~ denote the probability of survival from point a to point b. The task is to determine 

the probability of survival from (0,0) to the point (I,1) = p(l.i) • (o.o)" Note that there are no 

po.o) = p(o,,) _ ,  Since observed closures f rom (0,0) to (1,0) or to (0,1), so we must have • (o,o) • (o,o) - "  

there arc 393 failures at (1,1) among 1000 cases, none censored at (0, l ) ,  we f ind that 

p((u> 1000 = 393 = 0.607 Taking into account the censoring at (1,0), however, implies 
°"~ = 1 ~  

= p(t.o)p0.0 this p(o,0p(u) = 0.607 > 0.368 = "(o.o) • (,.o), that -o.o)P°'u 1000-378-3931000_378 =0.368. Since ,(o.o)-(o.i) 
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illustrates how censored data leads to a problem determining a probability of  survival 
SO,I)  from (0,0) to (1,1). 

The component functions of a hazard vector field r/determined from a survival function 
S are readily expressed in terms o r s  and the P D F f  For example when n=2 we have: 

~ x , y )  = ( p ( x , y ) , Q ( x , y ) )  = - V ( h a ( S ( x , y ) )  

"~f(x,v)dv lf(u,y)a,, 

' = S ( x , y )  ' S ( x , y )  

in which the common denominator S(x,y) measures the probability of  survival to (x,y) and 
the numerators the observed "marginal failures" subsequent to (x,y). 

In the ease of  censored data, consider a decomposition: 

f (x ,Y)= fo(x,Y)+ ~(x,Y) 
into censored and uncensored observations. Consistent with how (fight) censored data is 
handled in survival analysis when n=l, it is natural to consider 

,7,(x,y) -- (~(~,y),O.,(x,y)) =l." s~x,y ~ , ~ ~ 

\ 
in which the numerators measure only observed failures. 

Example 5: Begin with: 

1 
S ( x , y )  = 

(x + 1)0, + 1) 

f (x,Y) = ['(x + l~y + l)] 2 = S(x, Y) 2 

'I ' l )  
rl(x,y ) = (P(x,y),Q(x, y)) = -~ (x + 1) 2 (y + 1) ' ( x  + 1)(.y + i) 2 

and decompose ~x,y) as:  
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l + x + y  
f0 ( x , y )  = (x + 1) 3 (3' + 1) 3 

f l  ( x ,y )  = xy 
(x + 1) 3 (y  + 1) 3 

(~fi(x,v)dv ~(u,y)du 
rlI(x'Y)=(PJ(x'Y)'Q'(x'Y))=IY S~x,y) ,x S~x,y) 

k 

( x(2y + 1) (2x + 1)__y ) 
[, 2(x  + 1) 2 (y  + 1) ' 2(x + 1)0 '  + 1) 2 ) 

= OPI OQ~=(~2Y)f(x,y ) 
Oy ox 

It follows that the vector field/71 does not have a potential function and in particular does 

not have the form - V In S I for any survival function S]. This points out the need to 
generalize our definitions, as is done in the next section. 

Section III:  Definition o f  the General ized Survival  Model  

Let F = {C°[  a ~ 3 ;  Co a life path  for  a}, r / :  3 --~ ~ a continuous vector field. 

The corresponding generalized survival function S : F ~ 91 + is determined from 

S ( C . )  = e c. 

The pair r/, S is referred to as a generalized survival model on 5.  

Observe that if  q,s  and z,T are generalized survival models, then so is a r l + b y , S a T  b , for 

any a,b e ~1 +. In particular, this generalized survival formulation captures situations that 
cannot be modeled with PDF's ,  from both this formal arithmetic perspective and as 
regards the ability to relate survival with choice of  life path. 

O f  course, even for n= l ,  any continuous function h :91 + ~ .91 ÷ can formally define a 

-ih(w)a~ 
survival function as S(t) = e o but setting f(t) = h(t)S(t) need not yield a 

continuous PDF, as considered here. Indeed, S f (t) dt = 1 - p w h e r e  P = lira S ( t )  can 
o t-~0 

be greater than 0. In that case it is easy to augtmmtf(t) by a point  mass o fp robab i l i t yp  
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to achieve a mixed PDF based model. For n>l,  the relationship between path 
dependence and the existence of a PDF based model lies somewhat deeper. 

Also, for n=l ,  the haTard is interpreted as the instantaneous rate of  failure. Consider now 
the case n=2. Following standard convention, express the hazard field as 
rl(x,y) = (P(x ,y) ,Q(x,y))and assume also that P and Q are continuously differentiable. 
Note that for any t>O, any life path of(a+t,b) passing through (a,b) has the form 

C + D, where C is a life path of (a,b) and D, (s) = (a + s, b), 0 < s < t .  It follows that the 
conditional probability of survival from (a,b) to (a+t, b) is uniquely determined as: 

L 

e-2 ~ _ S (C  + D)  _ A t )  
S(63 

The mean rate of failurea(t) per horizontal unit along D, is also independent of the 
choice of  C : 

(s(c)-l.)S<C) 1 
a ( t )  = ~, s(-c) ) l-p(t) 

t t 

using the fact that the curve D, is parameterized by arc length. 

We are interested in the instantaneous horizontal rate of failure at (a,b), which is just the 
limit: 

a = l i m  a(t) = - l i m  p(t)- p ( O )  = dp 
t-,O t--*O t - 0 dt It=0 

On the other hand: 

-40  
p( t )  = e o, 

(a+t,b) 
- l n p ( / )  = ~rl= S P ( a + x , b ) d x + Q ( a + x , b ) d y  

19, ( a,b ) 

t 
-- fp ( ,~  + s , b ) ~  

0 

since dy=0 along D,. First differentiating by t and then letting t --> 0 : 

k ( _ * / :  e<o +,,b) , , :  
p(t)  ~, at j 

We conclude that: 

P(a,b)=instantaneous rate of  failure per horizontal age unit at (a,b) 
Q(a,b)--instantaneous rate of failure per vertical age unit at (a,b). 

This is readily generalized to higher dimensions and provides a means to calculate the 

component functions of the haTm'd vector field. Clearly the hazard vector field 
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determines a generalized survival function. This discussion shows the converse: a 

generalized survival function determines conditional probability, whence failure rates 
parallel to the coordinate axes, which in turn determine a hazard vector field. 

For any n and a ¢ 3 ,  define the curve Da,i. t (s) = a + s6i, 0 < s ~ t, I < i < n . The 
above discussion on failure rate noted that conditional survival parallel to a coordinate 
axis is independent of choice of path and the discussion in Section I then suggests the 
following definition for the expected survival vector 

p ( a ) =  ~ '~ /S  e ...... d t l c  i for  a ~ 3 
) 

When n=2 and q(x, y) = (P(x, y), Q(x, y)) the reader can readily verify that 
t f 

p(a,b)=(~e-~oP(a+s,b)ds ~-~Q(a,b+s)ds 
at, Je ° dt)  

o o 
t i 

-[P(s,b)ds ~ -~Q(a,s)ds 
= (  je  ; dt, Je z dr) 

a b 

Note that for c>a: 

i f I 

e d t=  d t+ Ie • dt 
a a c 

e r 

C 

i 

C 

f i 

a C 

~ (c, b)+ p(c ,  b) ~ ~(a,b)+p(a,b) 

and by symmetry, for d>b: 

(c, d)  + p ( c , d )  ~ 3(c,b)+p(c,b) c g(a,b)+p(a,b) 
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The corresponding result for n=l is a special case of tin2 and the case n>2 is a 
straightforward induction using the case rm2. In general, we have: 

b ~ 3 a ~ b + p ( b )  ~ 3a+p(a) 

This is intuitively what one would expect and has implications to the task of determining 
a hazard vector field approximating empirical data (c.f. [3]). 

Again, the section concludes with an example: 

Example 6: Consider the vector field 

~(x ,y )  = 

and consider the following line segment paths: 

C, from (0,0) to (1,0) 

C 2 from (0,0) to (0,1) 

C 3 from (I,0) to (1,1) 

c ,  from (o,1) to (l,l) 

C, from (0,0) to (1,1) 

Observe that, with the usual notational conventions, C~ + C 3 ,C 2 + 6"4 and C s can be 
taken as life paths for the point (1,1). For example, 

0,o) 2 
~c,~= J Y__a~+x~a~ y=0,~=0 

(o,o) 2 

I 

=~0a~+x2(0)=0 ~ S ( C l ) = l  
0 

The reader can readily verify the following observations: 

S(C 2) = 1 

S(Ct + C3 ) = 1 ~ 0.368 
e 

S(C2 + C4 ) = S(C5 ) = ~ 1  ~ 0.607, 

which may explain the rather odd choices for the survival data in the previous section. 
Note also that 

650 



Clearly, a hazard vector field 1(x, y) = (P(x. y), Q(x, y)) and the corresponding expected 

survival vector field q(x, y) should be “inversely related” in some sense. In this 
example, as in Example 1, their component functions are found to be multiplicative 
inverses of each other. The interested reader can verify that this is characteristic of the 

c.asewhenr=+ ap do=O(c.f. [3]). 

Section IV: An Application of Green’s Theorem in the Plane 

Again consider the case w2 and let (a, b) E 3 be a point in the positive quadrant with 
life paths C and D. We are interested in comparing S(C) with S(D). The case of most 
interest is when (a,!~) is the “first” point beyond the origin at which the life paths meet 
and so assume tinther that C lies beneath D in the rectangle [0, a] x [0, b] . The picture 
is: 

We are interested in comparing the probabilities of failumkurvival over the two paths. 
As in the previous section, express the hazard field as rl(x,y) = (P(x,y),Q(x,y)) and assume 
P and Q are continuously differentiable. Under these conditions, C-D is a closed curve 
enclosing a simply comucted region R. Green’s themem, a topic coverod in most 
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advanced calculus courses, relates the line integral over the boundary with an integral 
over the enclosed region. In this ease, it states that: 

ff OQ op 47= = 
C D C-D 

OQ OP 
Letting r(x, y) 

Ox Oy 
that: 

In particular, 

-sometimes called the "rotation" of r/ at (x,y)---it follows 

S ( D )  = e a S ( C )  where  a = Sfr 
R 

r ( x , y )  ~ 0 on R ~ S (D)  >_ S (C)  

r ( x , y )  < 0 on R ~ S (D)  < S (C)  
with strict inequality holding when r does not vanish on R. Clearly, the function r(x,y) is 
key to the task of identifying paths of least or greatest resistance, i.e., optimum paths for 
failure or survival. 

Example 6 (Continued): Here r(x, y) = 2 x -  y and as before the focus stays on survival 

to the point (a,b) = (1,1). All life paths are contained within the unit square where the sign 

of r is depicted below: 

(Ouo) 

+ 

(U) 
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The picture suggests considering the life path defined as: 

I (t,2t) 
G(t) = 

0 I t 5 ; 

(t,l) + I t s 1 

The reader can readily verifydirectly or using Green-that: 

,4” = 6 a S(C6) = e-; = .659 
4 

Consider a deformation of C6 H C6 downward that would invade the region for which 

r>O. Taking C;6 = C, C, = D in the above, we find that S(C6) > S(C6). On the other 

hand, any deformation of C6 H C6 upward would invade the region for which HO. 

Taking C6 = D, C6 = C in the above, we find that s(C6) > S(?6 ). It follows that the life 
path c6 provides the maximum probability of survival to (1,l). A similar argument 
shows that the life path C, + c3 provides the minimum probability of survival to (1,l). 
Finally, consider, as in Section II, the interpretation when values of x and,y represent 
medical and indemnity benefits paid to date. Subject to this hazard function, the path 
Cl + C3 (which corresponds to the “sports medicine” approach of first focusing all 
resources to medical care) maximizes the probability of claim resolution at (1,l). 

It is apparent from the example that optimal paths can be expected to trace along 
solutions to r(x,y)=O and the boundary of the rectangle. Observe that in the interpretation 
of Example 6, time was not included among the coordinates. Instead, time was relegated 
to the role of parameter of life paths. That is appropriate provided the focus is more on 
costs than on their specific timing. If, for example, it is desired to estimate expected time 
to failure, it would make sense to include time among the coordinates and look 
particularly at the expected survival vector component in that direction. Similarly, if the 
timing of payments is at issue, such as with claim administration protocols, it is natural to 
explicitly include time as a coordinate in the model. Given the way data is collected, 
time stamped payment information is the most natural source for capturing a life path and 
time is the most natural parameter. 

Green’s theorem comes neatly into play when considering alternative paths for getting to 
the same place, i.e., when resources are already allocated and it is a question of 
optimizing their effect on claim resolution. Logically prior to this, of course, is the issue 
of allocating resources, as illustrated in yet another revisit to the example: 
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ExJmple 6 (Continued): Suppose we have fixed resources p > 0and we consider the 

portion a ~ [0,1] to be speni on medical. Clearly this involves considering life paths to the 

linex + y = ft.  So let C,,.p denote the linear life path from (0,0) to (afl,(I - a )p ) .  We 

leave to the reader the verification that: 

y(/2, f l )  = #T] = (Of--O~3)/~ 3 

c.,, 6 

any fl > 0, y(a, p) has a relative maximum at a = J 1  and so allocating It follows that for 

that portion of every dollar to medical would follow along the straight path 

?+,Ii 
that maximizes the probability of resolving the claim. 

There is also the converse issue, suppose you are confronted with a claim that requires a 
certain amount of work to close, how can you minimize the cost outlay? This related 
allocation problem is illustrated in our final revisit to the example: 

Example 6 (Concluded): Suppose we have a fixed amount of work ]7 > 0 needed to 
close a claim and we wish to find a life path that requires the least possible total 
payment x + y.  We simplify the problem and only consider straight-line solutions and let 

at denote the slope. Let C° denote the linear life path from (0,0) to (a, aa) .  The reader 
can verify that our constraint translates into: 

(,+2 y°, 

and that the outlay a + a~ais minimized when a = ~ -  1. We find that in the most cost- 

• effective solution, the (constant) portion spent on medical = ~ is independent of the 

fixed amount of work fl required to close the claim. 

We conclude this section with a formulation of Green's theorem suitable for comparing 

survival along any two life paths C and D of (a, b) e ~3. For any x ~ [0, a] let 

/;x = {(x, t) l t ~ [0, b]} be the vertical line segment above x. Our assumptions imply that: 

L x 17 O = {(x, t) I t ¢ [d l(x), d 2(x)] } 

Lx NC = {(x,t) l t ~ [q(x),c2(x)]} 
And we may define: 

- i  d2(x)<cl(x) 
~(x,y)= + c2(x)<dl(x) 

otherwise 
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Pictorially, 8 is 1 when C lies below D and - i  when D lies below C, in effect flagging 
the two possible orientations the life paths can traverse around the region R they enclose. 
All life paths to (a,O lie in the closed rectangle [0, a] × [0, b] and the path: 

~(t) _1 I 
- ,  ~ t < 1 ( 2 a ( t - _ ) , b )  -~ _ 

is the "top" top life path. Let 

Rm = simply connected region enclosed by C-C 

R 2 = simply connected region enclosed by D-C 

R=(R, UR2)-(R, NR2) 
By Green's theorem: 

C- D C-C D-C: R, R, R 

S(D) = eaS(C) where a = ~Sr 
R 

This provides a general comparison formula that is amenable to numeric evaluation. In 
practice, though, a simple chart of the sign of r(x,y) over the applicable rectangle is the 
best starting point. The key, therefore, to identifying optimal paths is a representation of 
r/that yields a sufficiently accurate picture ofr. 

Section V: Further  Research 

The question remains how to determine a hazard field from empirical data. One simple 
approach is to restrict the domain of the function to regions over which the hJ,7~rd vector 
is assumed constant and then approximate it by estimating the coordinate failure rates. 
For this, traditional survival analysis methods suffice. SAS, for example, is well suited 
since its survival analysis procedures can be performed over cells of data and its time 
variable can be set to measure changes parallel to the coordinate variables (see [1]). 
General curve fitting techniques can then be used to paste the pieces together. Clearly a 
more systematic approach, especially a computer algorithm, would be useful. An 
alternative is to first estimate the'expected survival vector field p --which is more 
straightforward in concept--and then "invert" that field in some fashion to derive the 
hazard vector field r/(this is considered in [3]). 

A generalized survival model can be used to assign a case reserve "vector". Unlike 
traditional reserve formulas, the vector would account for the interaction of component 
cost liabilities. Properly formulated, it would provide integrated benchmarks for both the 
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prospective duration and various dollar costs of a claim. Note that the definition of 
expected survival vector field presented here is strictly prospective. It would be 
interesting to see whether the theory can yield a "tangent reserve vector" (or higher 
derivative vectors) defined on life paths and sensitive to the prior history of the claim. 

It would also be interesting and potentially very valuable to determine whether an insurer 
has any tendency to follow paths of"greatest or least resistance" in resolving cases. The 
ability to identify optimum paths might eventually yield valuable information on 
protocols for case management. Example 6 is indicative of how to exploit Green's 
Theorem in such an investigation, not to mention first semester calculus. 

Example 4 illustrates that the concept of a proportional hazard relationship becomes more 
complicated in higher dimensions. Indeed, the concept itself can be blown up n2-fold 
from scalar to matrix multiplication. Further research is needed to determine what 
concepts work best. The Cox proportional hazard model (see [1]) is the standard tool for 
relating explanatory variables ("eovariates") with the hazard function. Because each 
component along a life path implies essentially the same failure sequence, the Cox model 
will typically associate the same covariate proportional shift irrespective of which 
coordinate xi is chosen as the time t variable. Alternatively, a parameter for the life path 
could be used as time t. As a result, the Cox model can be used in this context but only 
with the understanding that the proportional effect is assumed to be uniform over all 
values of all components. By the same token, so-called "time dependent" interventions 
can also be analyzed using the Cox model provided the intervention is consistently 
defined among the n components. This should not be a problem with time-stamped data 
where time is used to parameterize the life paths. 

Of particular value would be a generalization of the Cox model approach that avoids such 
strong "inter-dimensional" assumptions on constant proportionality. The ideal solution 
would be the ability to model covariate impact on the hazard vector field via pre or post 
multiplication by a constant matrix. Presumably, determining the "best" such matrix 
would involve constructing appropriate maximum likelihood functions. The discussion 
in Section 111, however, suggests that this may not be straightforward. 

Sometimes all of ~ may exceed the "natural" sample space for a particular problem. A 
subset (e.g. manifold as in [5]) might be more appropriate and the "Stokes type" theorems 
may prove useful in that context, analogous to the use of Green's theorem in the simple 
example discussed here. Applications of "advanced calculus" have traditionally been the 
purview of physicists and engineers, not actuaries. Use of multivariate survival models 
may help level that playing field. 
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Surplus Allocation: 

A DFA Application 

Kevin J. Olsen 

A B S T R A C T  

Surplus allocation has been requested from actuaries many times over the years. There 

are those who feel surplus allocation of  any sort is incomprehensible. Since actuaries are 

asked to allocate surplus, we need to ensure the processes being used are sound. It is 

such a request from upper management that sent the author looking for the methods 

employed by others and pondering what additional methods could be constructed. This 

paper reviews reserve and duration based allocation methods and then ventures into 

devising an alternative method based on variation. A brief discussion is also included on 

what surplus amount should be used. 
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PURPOSE 

The purpose of  this paper is to share methods for surplus allocation with others, receive 

feedback on these methods, and promote further development. The author is a company 

actuary in the pursuit of answers for management. This project was begun to answer a 

question presented by the company's CFO. The questions raised were non-actuarially 

based but needed to be answered by someone with a financial understanding. Given the 

company's surplus, what is the optimal distribution of surplus by line of business? This 

will allow tracking, calculating, and determining profitability of each line of business on 

its own. 
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I N T R O D U C T I O N  

This paper will review and analyze three methods of allocating surplus. The methods can 

be used to distribute current surplus by line of business. This is desired for many reasons 

including pricing activities, determining ROE by line of  business, figuring premium-to 

surplus ratios by line of business, and distributing investment income to line of business. 

Although many ways have been discussed to allocate surplus, there is no single standard 

accepted by everybody. California Proposition 103 used the proportion of loss and 

unearned premium reserve to allocate surplus. It has been suggested that surplus being 

used for pricing purposes should be allocated based on one's favorite risk load formula I. 

Other methods include allocating surplus in proportion to loss reserves, in proportion to 

duration, or based on the coefficient of variation in loss ratios. This paper will start with 

the simpler methods and venture into a variance-based method. The methods will discuss 

allocation by reserves, duration, and variation. 

Keep in mind the allocation of surplus to line of business will not mean line of business 

independence, because the total amount of the surplus is still there to support the 

company as a whole. The standard deviation of the enterprise surplus or operating gain 

will always be less than the sum of the standard deviations by line of business, due to less 

than perfect correlation between the lines of business. 

Suggested by Glenn G. Meyers via the CASNET. 
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M E T H O D S  

REVIEW OF SURPLUS 

What is the purpose of surplus? Surplus is there for two purposes 1) to support insurance 

company operations and 2) to support other activities. The surplus allocation for the 

purposes of  this paper deals with supporting insurance company operations. This is an 

amount necessary to cover risks such as the variation in liabilities at a point in time, as 

well as prepare for future needs. From a statutory view, as the company grows the 

expenses are realized immediately, while the premiums are earned over the course of the 

policy. If the company accelerates its growth, there will be a reduction of surplus to 

cover the current expenses. From a going-concern basis, the future liabilities also need to 

be considered in the surplus allocation. 

"Surplus [exists to] protect the insurer against several types of  risk. Asset risk is 
the risk that financial assets will depreciate (e.g., bonds will default or stock 
prices will drop). Pricing risk is the risk that at policy expiration, incurred losses 
and expenses will be greater than expected. Reserving risk is the risk that loss 
reserves will not cover ultimate loss payments. Assotdiability mismatch risk is 
the risk that changes in interest rates will affect the market value of certain assets, 
such as bonds, differently than that of liabilities. Catastrophe risk is the risk that 
unforeseen losses, such as hurricanes or earthquakes, will depress the return 
realized by the insurer. Reinsurance risk is the risk that reinsurance recoverables 
will not be collected. Credit risk is the risk that agents will not remit premium 
balances or that insureds will not remit accrued retrospective premiums." [5] 
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RESERVE METHOD 

Distributing surplus based on loss reserves and unearned premium reserves may be the 

easiest method. Allocating surplus according to the volume of business per line is a 

logical choice since surplus is committed when the policy is written and released when 

the loss is paid. If it is a stable book of  business, the loss reserves and unearned premium 

reserves will remain relatively constant from year to year. California's proposition 103 

used this method to allocate surplus to line of  business for their calculations. 

This method matches available surplus to line of business in proportion to reserves held. 

There are no tricky calculations or multiple iterations. The necessary information can be 

found in the annual actuarial report or the annual statement. 

The method begins by listing the ultimate loss reserves needed by line of business and 

summing them for the enterprise. The same is done for the unearned premium reserve. 

These are shown in columns I and 2 of Table 1 below, while the sum is shown in column 

3. For each line of business, take the respective reserve sum and divide by the enterprise 

sum. This gives the distribution of reserves by line of business, which can be applied to 

surplus. (See Table 1 or Exhibit 1 .) Enterprise surplus can then be multiplied by the 

corresponding percentages to get the amount of surplus by line of  business. 
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Table 1 

(1) (2) (3) (4) (5) 
Loss Unearned 
Reserves Premium Sum Dist. Surplus 
(O00's) (O00's) (O00's) (O00's) 

Homeowners 66,900 27,277 94,177 7.3% 36,500 
Personal Auto Liability 385,914 44,801 430,715 3 3 . 5 %  167,500 
Personal Auto Phys Dam 37,426 41,044 78,470 6.1% 30,500 
Commercial Auto Liability 112,318 6 , 0 9 3  118,411 9 .2% 46,000 
Commercial Auto Phys Dam 3 , 5 9 9  2,218 5,817 0.5% 2,500 
CPP Liability 141,808 51 ,320  193,128 15.0"/ .  75,000 
CPP Property Damage 63,106 68 ,577  131,683 1 0 . 2 %  51,000 
Other Liability 3,725 7,565 11,290 0.9% 4,500 
Umbrella 1,394 316 1,710 0.1% 500 
Workers Compensatton 146,415 74 ,058  220,473 1 7 . 2 %  86,000 

Enterprise 962,607 323,269 1,285,876 100.0% 500,000 

The reserve method is a quick and easy method to use, but there are several 

disadvantages to using this method. It does not consider the length o f  the reserve pay-out 

tail, adjustments in the reserve payment pattern, or the time value o f  money. All o f  these 

can cause variations or unexpected results, the precise thing surplus is there to cover. 

This is a static method. The distribution is determined based on an expected value at a 

point in time and does not consider future changes in the distribution by line o f  business. 

The reserve method o f  allocation considers only the pricing and reserving risks. Larger 

amounts o f  surplus are allocated to the lines o f  business holding larger reserves. This 

method ignores the five other significant areas o f  variability referenced above in 

determining the surplus allocation. These five neglected risks include asset risk, asset- 

liability mismatch risk, catastrophe risk, reinsurance risk, and credit risk. 
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For more information on different reserve based methods reference "An Evaluation of  

Surplus Methods Underlying Risk Based Capital Calculations" by Michael Miller and 

Jerry Rapp (1992 Discussion Paper Program, Vol. 1). 

DURATION METHOD 

Many people on the CAS web site and CASNET touted duration as a means to allocate 

surplus. Duration allocation is perceived to be superior to loss and unearned premium 

reserve allocation since duration considers payment pattern changes and interest rate 

changes in the duration calculation. Longer tail lines receive relatively more surplus to 

cover the larger potential volatility in the payment pattern. 

Duration is a time value weighted pay-out length. In other words, duration is a weighted 

average term to completion where the years are weighted by the present value of the 

related cash flows. [6] 

Duration = 

I1 

Z [ ( t . C F t ) / ( l + y ) t ]  
t = l  

[ CF,/(l +y)'] 
t = l  

CF t  = Cash Flow in year t 
y = yield to maturity 
t = year of cash flow 
n = number of years to maturity 
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Duration Example 

Table 2 

(1) (2) (3) (4) 
(2) x (3) 

Present Weighted 
Calendar Projected Value PV 

.Year Paid Year ~ 6.5% ~ 6.5% 
1997 350,000 0.5 339,151 169,576 
1998 210,000 i .5 191,071 286,607 
1999 60,000 2.5 51,260 128,150 
2000 20,000 3.5 16,044 56,153 
2001 7,500 4.5 5,649 25,421 

Total 647,500 603,175 665,907 

Macaulay Duration = 665,907 / 603,175 = 1.1 04 

Modified Duration = 1.104/1.065 = 1.0366 

Table 2 gives an example of  a duration calculation. Column 1 is the amount projected to 

be paid in each calendar year. This includes payments from all accident years 1997 and 

prior. Column 2 shows that the duration is being examined from the beginning of 1997 

since the average payment is expected to be paid halfway through the year, assuming 

that in any calendar year the payments are uniform. The present value of  column 1 at 

6.5% is shown in column 3, while column 4 is (2) times (3). Column 4 gives a weighted 

present value based on the length until payment. The Macaulay duration is the sum of 

column 4 divided by the sum of column 3. The Modified duration is the Macaulay 

duration divided by 1 plus the interest rate used. 
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The duration method can be applied using a Dynamic Financial Analysis (DFA) model 

that incorporates changing discount rates, payment patterns, and inflation amounts by 

iteration in the calculation. Dynamo2 is an Excel based model developed by the actuarial 

consulting firm of Miller, Rapp, Herbers & Terry (MRH&T) used by the author. Further 

description of  the model can be found in Appendix A. 

The DFA model needed some programming additions to capture and calculate the 

necessary components for duration. Appendix B lays out the changes made to generate 

the payments by accident year and calendar year and to generate the interest rate. 

With the necessary information obtained, formulas were inserted in the DFA model to 

calculate duration as shown in the example above. A sample iteration of this duration 

process for the homeowners line of business is shown in Exhibit 2. After the DFA ran 

1,000 iterations (maximizing computing capacity), durations were selected equal to the 

means of the 1,000 durations by line of  business. 

Table 3 below shows the process of the duration method. Determining a distribution of  

surplus begins by normalizing the duration by line of  business with the enterprise 

duration. Each line of business duration in column l is divided by the enterprise 

duration. Multiplying the resulting relativities in column 2 by the inverse of  the 

company's premium-to-surplus ratio changes the relativities to the amount of  surplus 

needed per dollar of premium. The next step is to apply the appropriate premium from 

column 4 to each line of business to arrive at the estimated surplus in column 5. From 
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here a distribution m a y  be determined by, dividing line o f  business  estimated surplus by 

the enterprise surplus. The resulting distribution in column 6 canl theffbe used to spr.ead 

the real surplus to line o f  business.  This method is also outlined in Exhibit  3. 

Table 3 

( i )  (2) (3) (4) (5) (6) (7) 
Est. 

Avg. Surplus- Premium Stnglus Surplus 
Duration Relativity to-Prem (000S) (000s) Dist. (000's) 

Homeowners 1.8677 0.8309 0.4985 54,553 27,197 5.8% 29,000 
Personal Auto Liab 2.0180 0.8978 0.5387 179 ,204  96,531 20.5% 102,500 
Personal Auto Phys Dam 0.9251 • 0.4115 0.2469 164,175 40,539 8.6% 43;000 
Comm'l Auto Liab 2.5823 1 .1488  0.6893 24,370 16 ,798  3.6% 18,000 
Comm'l Auto Phys Dam 1.3161 0.5855 0.3513 8,872 3,117 0.7% 3,500 
C'PP Liab 3.2253 1.4349 0.8609 102,640 88,367 18.7% 93,500 
C'PP Property 1.7051 . 0.7586 0.4551 137 ,154  62,424 13.2% 66,000 
Other Liability 2.2799 1 .0143  0.6086 15,130 9,208 1.9% 9,500 
Umbrella 2.2278 0.9911 0.5947 631 375 0.1% 500 
WorkersComp 3.2076 1.4270 0.8562 148,116 126,817 26.9% 134,500" 

Enterprise 2.2478 1.0000 834,844 471,373 100% 500,1)00 

Prem / Surplm = 1.67 (Assumed) 2 
Surplus / Prem =' 1 / (Prem / Surplus) = 0.60 

(2) = (1) / [ (I) Enterprise] 
(3) = (2) * 0.60 
(5) = (3) * (4) 
(7) = 500,000 * (6) 

In this presentation the Macaulay duration was used. The question may  come up as to 

why  use the Macaulay duration and not the Modified duration. Since this method deal§ 

with relative duration by  dividing each line o f  business  by the enterprise duration, it does 

2 The correct premium to surplus ratio'is assumed to be 1.67. 
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not matter which one is used. If the modified duration were used, then all the durations 

would be divided by the same factor maintaining the same relativities between them: 

In addition to the advantages listed above, there are a few disadvantages to using the 

duration method to allocate surplus. The duration method distributes surplus based on 

projected ultimate losses for past years and the payment pattern for those years. From 

that point of view, using duration has a run-offview point. It allocates surplus to lines of  

business in relation to how those lines will run-off and in relation to current premium 

volume. This covers the vulnerability to greater variation in the longer payout lines of  

business. This is a static view of business at a point in time. It does not consider future 

growth or changes in the mix of business going forward. For a company that plans on 

continuing to write business and grow, this might not be the best option. Surplus needs to 

be allocated for future premium growth. For statutory accounting, the expenses of  

writing policies are recognized immediately, while the premiums are earned over the 

course of the policies. This is why companies with accelerated growth may see surplus 

decline (statutory surplus, not market value surplus). "Rapid premium growth precedes 

nearly all ofthe major failures. Rapid growth is not harmful, per se. However, rapid 

premium growth reduces the margin for error in the operation of  insurers." [4] 

Additional surplus is needed to cover the reduced margin of  error for growing lines of  

business. 

The duration method does a better job than the reserve method of  considering the risks 

surplus is to protect against. The lines of business with longer pay-out patterns have 
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higher durations. Here duration is a proxy for the riskiness of the long tail lines. Longer 

tailed lines are exposed to more interest rate and payment pattern changes incorporated in 

reserving risk, asset risk, and asset-liability mismatch risk. By using duration as a proxy, 

this allocation method covers these risks. Again, four risks surplus is to protect against 

are not even considered by this method (pricing risk, catastrophe risk, reinsurance risk, 

and credit risk). 

Keep in mind that even though this model considers variation in the payment pattem, 

judicial or legislative changes that could effect payments are not considered. Such 

changes would create greater variability, but are difficult if  not impossible to predict. 

These types of  changes can not be foreseen on any method presented here. 

VARIATION METHOD 

The variation method is one that the author developed while working with the DFA 

model and trying to answer the CFO's questions. It is a forward-looking method on what 

may happen. Loss reserves are already set up to cover losses that have occurred. Surplus 

exists for unexpected events or variations from the norm. This method uses standard 

deviations on a comparable basis among lines of business to distribute surplus. 

The variation method uses the calendar year operating gain by line of business from each 

iteration of the DFA, calculated by adding net underwriting profit to the investment 

return during the calendar year. To calculate such information, additions needed to be 
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made to the DFA spreadsheet to capture interest earned by line of  business. This is 

described in Appendix C. 

Following the steps described in Appendix C, the investment return by line of  business to 

be included in the operating profit was derived as the amount of  reserves available for 

investment times the rate of  return for the appropriate year. The calendar year net 

operating profit was calculated by adding this investment return and the calendar year net 

underwriting profit by line of business. 

The next step was to compare the variation between lines of business. Using the variance 

of operating profit alone would give results that are difficult to compare between lines of  

business. Each line of  business variance would be based on differing amounts of 

premium and number of policies. To put all lines of business on a comparable basis the 

operating gain needed to be normalized before determining the variance. 

The net operating gain was divided by the net written premium for that line of business. 

This ratio is a unit of  measure with the dollar units canceling out. This put all lines of 

business on a net operating gain per dollar of net written premium basis before the 

variance was determined. 

As the steps of the variation method calculation are described, reference will be made to 

the portions of Exhibit 4 discussed in the text. Exhibit 4 shows this method laid out in its 

entirety. By capturing the operating gain by line of business for each calendar year, the 
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@Risk software calculates the standard deviation of each line and year over the 1,000 

iterations. 

Table 4 shows the results of  the simulation. Columns (1) through (5) are the standard 

deviations of net operating gain per dollar of  net written premium. This information was 

generated by the DFA model and @Risk. Appendix D lays out the credibility weightings 

of  these standard deviations. 

Table 4 

Standard Deviation of  Net Operating Gain 
Per Dollar of Net Written Premium 

(1) (2) (3) (4) (5) 

1999 2000 2001 2o02 
Home 0.4532 2.2769 0.6970 0.6594 0.4550 
PAutoLiab 0.1574 0.1235 0.14,61 0.1395 0.1536 
PAutoPhysDam 0.1199 0.9526 0.2524 0.2326 0.1184 
C Auto Liab 1.3752 1.4673 1.6137 1.6697 1.7350 
C Auto Phys Dam 0.4705 2.3967 0.7265 0.6892 0.5526 
CPP Liab 0.0575 0.0646 0.1012 0.0772 0.0841 
CPP Prop 0.5931 4.5416 1.1913 1.0898 0.5455 
OtherLiab 0.1688 0.2055 0.2183 0.2339 0.2391 
Other Liab- Umbrella 0.8574 0.9288 1.1948 1.2197 1.3292 
WorkersComp 0.1308 0.1456 0.1748 0.1856 0.2019 

Personal 0.1255 0.7125 0.2001 0.1830 0.1159 
Commercial 0.2088 1.4789 0.3995 0.3605 0.2009 
EnterlmSe O. 1544 1.1122 0.2955 0.2666 0.1367 

Table 5 below shows the remaining steps to determine the surplus allocation of  the 

variation method. Dividing the credibility weighted standard deviations (Table 8, column 

12, Appendix D) by the average standard deviation of the enterprise (Table 8, column 13, 

Appendix D) normalizes the credibility-weighted standard deviations. Multiplying the 
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resulting relativities by the inverse of  the company's premium-to-surplus ratio changes 

the relativities to the amount of  surplus needed per dollar of  premium. The next step is to 

apply the appropriate premium to each line of  business to arrive at the estimated surplus 

(column 17 = (15) * (16)). Appropriate premium could include the year-end premium by 

line of  business or the first year's projected premium. From here a distribution may be 

determined by dividing line of  business estimated surplus by the enterprise estimated 

surplus. The resulting distribution in column 18 can then be used to spread the real 

surplus to line of  business. 

Table 5 

(12) (14) (15) (16) (17) (18) (19) 
Credibility Est. 
Weighted Surplus- Premium Surplus Surplus 
Std Dee Relativity to-Prem (000s) (000s) Dist. (000s) 

Homeowners 0.8621 2.1932 
Personal Auto Liab 0.1441 0.3665 
Personal Auto Phys Dam 0.3569 0.9079 
Comm'l Auto Liab 1.5628 3.9757 
Comm'l Auto Phys Dam 0.9035 2.2985 
CPP Liab 0.0770 0.1959 
CPP Property 1.0756 2.7363 
Other Liability 0.2133 0.5427 
Umbrella 1.0980 2.7933 
Workers Comp 0.1680 0.4273 

1.3133 54,553 71,645 13.0% 65,000 
0.2195 179,204 39,331 7.1% 35,500 
0.5436 164,175 89,252 16.2% 81,000 
2.3807 24,370 58,017 10.5% 52,500 
1.3763 8,872 12,221 2.2% 11,000 
0.1173 102,640 12,041 2.2% 11,000 
1.6385 137,154 224,728 40.8% 204,000 
0.3250 15,130 4,917 0.9% 4,500 
1.6727 631 1,055 0.2% 1,000 
0.2559 148,116 37,899 6.9% 34,500 

Enterprise 0.3931 1.0000 834,844 551,095 100% 500,000 

Prem / Surplus = 1.67 (assumed) J 
Surplus / Prem = 1 / (Prem / Surplus) = 0.60 

(15) =(14) * 0.60 
(17) = (15) * (16) 

3 The correct prenuum to surplus ratio is assumed to be 1.67. 
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The distribution created by the variation method may raise some questions. Why is it that 

the property and physical damage coverages receive more surplus based on this method? 

The property and physical damage coverages are subject to catastrophes and therefore 

more variation from year to year. The variation is a result of both the frequency and the 

severity of catastrophes. The liability lines have the potential for high single occurrence 

pay-outs by policy, but the number of these are relatively consistent from year to year. 

The law of  large numbers makes predicting the result for this line of business more 

consistent. 

An example to look at is the amount of surplus allocated to Commercial Auto Physical 

Damage (CAPD) and CPP Liability (CPP Liab). As can be seen in Table 5, both of these 

lines are allocated $11,000,000 surplus, whereas the premium for CPP Liab is 11.5 times 

as large as that for CAPD. In CPP Liab, the law of large numbers helps smooth results, 

while CAPD is subject to catastrophes. The reinsurance in place also underlies these 

results. 

Both liability and property lines of business for smaller companies are affected by 

variations in large losses from year to year. The author did not test which lines of 

business had more variability in large losses, attributing the major variations between 

lines of  business to catastrophes. Changing reinsurance agreements or types of business 

written could reduce the impact of  catastrophe losses. 
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This method contains many of the characteristics that are desired from a surplus 

allocation method. The length and amount of the tail are considered with varying 

payment patterns, incorporating reserving risk. The DFA model varies interest rates to 

include asset risk into the considerations. The varying interest rate is brought into the 

operating gain through the investment income. Using operating gains also reflects 

pricing risk by including variability of loss ratios embedded in the operating return and 

catastrophe risk by including simulated catastrophes in the underwriting results. The 

impact of  asset-liability mismatch risk is included by varying the interest rates in the 

model as well as varying the ultimate loss and payment patterns included in the operating 

gains. The DFA model does not consider reinsurance risk or credit risk, but these could 

be incorporated based on distributions of uncollectability. Reinsurance risk may be 

considered negligible depending on the reinsurers' A.M. Best ratings. 

This method goes beyond the first two methods and looks to the future. This is a going- 

concern method, which tries to reveal what the distribution by line of  business should be 

going forward. To do this it incorporates the company's growth plans by line of  business 

and the variability by line of business based on the growth plans and past experience. If  

the company is going to cut rates to grow more, then this is included in the variation in 

net operating gain per dollar of net written premium and figured into the standard 

deviation. Most company changes in growth, mix of business, or type of  business are 

reflected in the operating gains as long as the DFA model is set up appropriately to reflect 

these changes. 
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Non-catastrophe reinsurance levels also influence the variability by line of business. On 

a net of  reinsurance basis, as the threshold for excess of loss coverage is reduced, the 

variability of results also declines. "[A]ny risk which lowers the aggregate Exposure 

Ratio o f  the portfolio has added capacity to the portfolio."[9] The exposure ratio is the 

coefficient of  variation (standard deviation / mean). As the variability decreases, the 

level of  surplus needed for the line o f  business decreases freeing up surplus for other 

u s e s .  

C O M P A R I S I O N  OF M E T H O D S  

The three different methods presented givewidely varying results as can be seen in 

Table 6 below. 

Table 6 

(l) (2) (3) (4) 

Reserve D ura t i on  Variation 
Method M e t h o d  Method  Driving Risks 

Homeowners 7.3% 5.8% 13.0% Catastrophe risk 
Personal Auto Liability 33.5% 20.5% 7.1% Pricing & Interest Rate 
Personal Auto Phys Dam 6.1% 8.6% 16.2% Catastrophe risk 
Commercial Auto Liability 9.2% 3.6% 10.5% Pricing & Interest Risk 
Commercial Auto Phys Dam 0.5% 0.7% 2.2% Catastrophe risk 
CPP Liability 15.0% 18.7% 2.2% Pricing & Interest Risk 
CPP Property Damage 10.2% 13.2% 40.8% Catastrophe risk 
Other Liability 0.9% 1.9% 0.9% Pricing & Interest Risk 
Umbrella 0.1% 0.1% 0.2% Pricing & Reinsurance 
Workers Compensation 17.2% 26.9% 6.9% Pricing & Interest Rate 

Enterprise 100.0% 100.0% 100.0% Catastrophe & Pricing risk 
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These variations are the result of  the reasoning behind the methods. Looking at personal 

auto liability, the loss reserve method in column (1) allocates 33.5% to this line, whereas, 

the duration method apportions 20.5% and the variation method only 7.1%. The personal 

auto liability line of  business has a consistent amount of losses every year and consistent 

sales growth producing higher reserves held. The reserve method reflects this explicitly. 

The duration method analysis notes that the payout pattern is weighted heavily to the 

earlier years. This does not allow much time for adverse development. The variation 

method looks at the reserves and the payout pattern, but also considers that from year to 

year the loss ratios are consistent. The ultimate personal auto liability losses can be 

reasonably estimated from year to year without much variation from expected. Therefore 

less surplus would be needed for unforeseen circumstances. 

The homeowners line of business is another good example. With the payouts being quick 

and settlements rather fast, the level of  reserves carried is relatively low. The reserve 

method looks only at the carried reserves to determine the allocation (7.3%). The 

duration method considers that the pay-out pattern is relatively short meaning less surplus 

is necessary (5.8%). Yet when losses are compared from year to year there is greater 

variation due to catastrophes. The surplus necessary to cover these greater variations is 

13.0%. 

The driving risks affecting surplus differs for each line of  business. For example, 

catastrophes have more of  an impact on property lines than liability coverages. There are 
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certain sets of risks for each line of  business that maintain significant influence on results. 

These driving risks are listed in column 4 of  Table 6. 
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S U R P L U S  

What overall amount of surplus should be used? All of the methods discussed above 

allocate a stated surplus amount. There are a few different methods to determine how 

much surplus is to be distributed. 

ACTUAL 

The most straightforward method would be to use the company's actual surplus as of 

year-end. This amount would then be distributed back to line of business based on the 

method of choice. A few problems with this method would be if  the company was over 

capitalized (under capitalized). If  this were the ease than too much (little) would be 

allocated. As stated toward the beginning of  the paper, surplus is there to support 

insurance operations as well as other activities. The surplus to allocate should be the 

amount supporting the insurance operations. 

Actual surplus also has many definitions to consider. If allocating actual surplus, is it 

market value, statutory value, or GAAP value? Should equity in the unearned premium 

reserve or the discounted amount from the loss reserve discount factor be included? 
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PREMIUM-SURPLUS RATIO 

A second method pegs the surplus at a certain premium to surplus ratio (P/S). There are a 

variety of reasons and justifications for selecting a certain P/S ratio. The P/S ratio could 

be selected by management's desire not to exceed a certain P/S ratio, say 2:1. It could be 

pegged to match a certain peer group in the industry. A word of  caution: P/S ratios can 

be manipulated from company to company. 

OPERATING GAIN DISTRIBUTION 

The amount of surplus needed by a company is based on its aversion to risk. Assume that 

a company's risk manager determines that they want to be 95% confident that the surplus 

doesn't decrease, or 90% confident the surplus decreases by no more than 10%. To do 

this the company would need to generate a distribution of the change in surplus for the 

year. Another alternative would be to use operating gain for the year. In both of these 

distributions the desired confidence level amount is found by referencing (1.00 

confidence level) corresponding to the cumulative percentages for the distribution. By 

choosing the corresponding amount from the distribution, it can be used to determine the 

desired amount of surplus for the company. 

The net operating gains from the DFA model iterations used in the allocation larocess can 

be captured and set into a distribution. Using the example from above, the goal would be 

90°/, confidence that surplus would decrease at most 10% in the given year. From the 
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1,000 iterations, the Enterprise operating gain for 1998 was captured with the resulting 

distribution shown in Table 7. 

Table 7 

Partial Distribution of Operating Gain 

Enterprise 
Operating Gain 
1998 

5 % Perc= (71,619,600) 
10% Perc= (50,000,000) 
15% Perc= (32,521,600) 
20% Pert = (! 0,258,950) 
25% Perc = ( 763,150) 
30% Pert = 12,859,600 
35% Perc = 38,245,700 
40% Perc = 60,052,150 
45% Pert = 84,517,300 

This is a portion of the full distribution that increases in 5% increments up to 95%. This 

table communicates for example that 5% of the operating gain samples are less than 

$(71,619,600) and that 30% of the samples are less than $12,859,600. At a 90°/, 

confidence level $(50,000,000) is the operating gain. Similarly at a 95% confidence level 

the gain is $(71,619,000). 

At the 90% confidence level, surplus would be decreasing at most $50,000,000 in the 

year. If the company started with only $50,000,000 this would not be a pleasant 

outcome. So a second constraint is necessary, that is 'what is the maximum proportion of  

surplus the company management is willing to lose in any year?' For example, 
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management is willing to risk a decrease to be at most 10% of starting surplus. In other 

words, the $(50,000,000) would equal (0.10) times the needed surplus. The surplus 

needed would be calculated as follows: 

$(50,000,000) / (0.10)= $500,000,000 surplus needed 

The calculated surplus is the theoretical amount needed to support business as a going- 

coneem under the stated constraints. This amount should be used in the ROE and pricing 

calculations. Comparing this surplus to the enterprise surplus may indicate a redundancy 

or deficiency. If  the calculated surplus is less than the company surplus, the redundancy 

isn't necessarily excess to squander. The total enterprise surplus may need to be 

maintained for statutory or regulatory purposes. 

RUIN WITH ROE MEASURES 

Many insurance companies are being evaluated from a financial viewpoint. The question 

that comes up is the level of ROE that the company wants to target. The level of surplus 

affects this ROE measure. Lower surplus translates into a higher leverage ratio 

increasing the potential ROE while generating a greater chance of ruin. To reduce the 

chance of ruin more surplus would be held, reducing the ROE. This puts the insurance 

company in a precarious position. 
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With the DFA model it is possible to test out different levels of surplus. One can begin 

with a certain level of surplus, capturing the appropriate values for ROE and ending 

surplus. Different levels of surplus translate into differing ROE averages. 

Accompanying each ROE average is a probability of ruin distribution. An optimization 

then has to be made on the risk and return trade off. 
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C O N C L U S I O N  

As the line between the financial industry and the insurance industry blurs, actuaries are 

becoming the financial leaders in the insurance industry. From a financial perspective 

there is a strong desire to allocate surplus to measure, track, and rate performance on a 

line of  business basis. There are many ways to allocate surplus once the overall needed 

surplus amount is determined. Of the methods presented, the variation method 

incorporates the most characteristics desired from a surplus allocation method. However, 

this is just the starting point for others to build upon and to improve. 
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Distribution by Reserves 

(1) (2) (3) (4) (5) 
L o s s  Unearned Estimated 

Reserves Premium= Sum Distribution Sumlus 

Homeowners 66,900,470 27,277,000 94,177,470 
P Auto Liab 385,914,100 44,801,000 430,715,100 
P Auto Phys Dam 37,426,200 41,044,000 78,470,200 
C Auto l_iab 112,318,300 6,093,000 118,411,300 
C Auto Phys Dam 3,599,136 2,218,000 5,817,136 
CPP Liab 141,808,400 51,320,000 193,128,400 
CPP Prop 63,105,810 68,577,000 131,682,810 
Other Liab 3,725,144 7,565,000 11,290,t44 
Other Liab - Umbrella 1 ,394 ,024  3 1 6 , 0 0 0  1,710,024 
Workers Comp 146,415,200 74,056,000 220,473,200 

Personal 490,240,770 113,122,000 603,362,770 
Commercial 472,366,014 210,147,000 682,513,014 
Enterprise 962,606,784 323,269,000 1,285,875,784 

(1) Year end 1997 Net Loss Reserves 
(2) Year end 1997 Uneamed Premium 
(4) (3) / Enterprise (3) 
(5) (4) * Enterprise (5) 

Reserves 

7.3% 
33.5% 
6.1% 
9.2% 
0.5% 

15.0% 
10.2% 
0.9% 
0.1% 

17.2% 

46.9% 
53.1% 

100.0% 

36,619,972 
167,479,280 
30,512,356 
46,043,055 

2,26i ,935 
75,096,056 
51,203,550 
4,390,060 

664,926 
85,778,809 

234,611,608 
265,388,392 
500,000,000 

Exhibit 1 
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Exhibit 2 

DURATION CALCULATION 

C 
a 
I 

d 
a 
r 

C# 

r 

Line of Busineea: Homeowners 

1~7 
1998 
1999 
2O0O 
2001 
2002 
2003 
2OO4 
2OO5 
20O6 
2007 
2OO8 
2OO9 
~10 
~11 
~12 
~13 
~14 
~15 
~16 
~17 
~18 
~19 
~20 
2021 

Accident Years 

(1) (2) (3) (4) (S) (9) (7) (8) (9) (10) (11) 

U ) n  11.i~ ~ l n 2  ~ I ~ H  1 ~  ~ 1 ~ 7  Total 

2,671 1,005,428 1,24S,769 1,235,685 1,468,734 4,55,4.592 9,874,726 10,488,831 31,928,154 48,079,825 109,887,415 
1,071,315 2,672,012 1,972,956 1,901,699 4,189,929 7,045.897 7.282,894 35,960,250 83.542.241 145,639,193 

983,868 36,768 652,113 4,388,283 1,g02,007 5,579,526 2.659,516 15,570,392 37,330,497 69,102,970 
36,833 996,306 716,188 2,585,618 4,265.356 1,372,445 8,610,860 12,484,401 31,068.007 

306,002 104,284 551,020 951,525 2,545,685 2,007,813 6,180,550 12.646,879 
739.430 585,785 1,066,333 1,142,832 1,595,912 

1,268,525 26,357 2,154.525 1,437,799 1,631,019 
26,357 5,142,536 43 ,174  308,906 

2,153.695 21 ,587  576,838 
1.248,852 2 1 , 5 8 7  55,009 

784,585 55,O09 
532.565 
235,252 

102,661 5,232,953 
6,518,225 
5,520,973 
2,752,120 
1,322,448 

839,594 
532,565 
235,252 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

(1) - (10) Calculated in the DFA 
(11) Sum of columns (I) through (10) 
(12) Year of payment assuming uniform over a given year 
(13) (11) I [ ( 1 + interest rate) ^ (12) ] 
(14) (13) ° (12) 
(15) Total (14)/Total (13) 
(16) (15) / (1 + interest rate) 

(15) Macaulay Duration 

(16) Modified Duration 

(12) (13) (14) 
Present Weighted 

~a~ VJtut 
&53% 

0.5 106,466,259 53,233,129 
1.5 132,455,615 198,683,422 
2.5 58,995,230 147,488,074 
3.5 24,897,839 87,142,436 
4.5 9,513,924 42,812,659 
5.6 3,695,313 20,324,222 
6.5 4,320,777 25,085,049 
7.5 3,435,391 25,765,432 
8.5 1,607,519 13,663,907 
9.5 725,0oj8 6,888.409 

10 .5  432 ,130  4,537,362 
11.5 257 ,303  2,958,989 
1 2 . 5  106 ,693  1.333,657 
13.5 0 0 
14.5 0 0 
15.5 0 0 
16.5 0 0 
17.5 0 0 
18.5 0 0 
19.5 0 0 
20.5 0 0 
21.5 0 0 
22.5 0 0 
23.5 0 0 
24.5 0 0 

346,909,087 632,916,747 

1.8244 

1,7126 



D u r a t i o n  D i s t r i b u t i o n  

Exhibit 3 

Duration 
Duration Relativity (S/P) Premium Estimated Split 

Suq~us 
(1) (2) (3) (4) (5) (6) 

Homeowners 1.8698 0.8023 0.4814 54,552,830 26,261,991 5.4% 
P Auto Liab 2.0946 0.8988 0.5393 179,204,200 96,644,215 19.7% 
P Auto Phys Dam 1.2064 0.5177 0.3106 164,174,860 50,994,823 10.4% 
C Auto Liab 2.5792 1.1068 0.6641 24,369,986 16,183,090 3.3% 
C Auto Phys Dam 1.4776 0.6340 0.3804 8,872,202 3,375,212 0.7% 
CPP Liab 3.2283 1.3853 0.8312 102,639,868 85,311,534 17.4% 
CPP Prop 1.8037 0.7740 0.4644 137,153,660 63,692,602 13.0% 
Other Liab 2.6794 1.1498 0.6899 15,129,588 10,437,285 2.1% 
Other Liab - Umbrella 2.6639 1.1431 0.6859 630,543 432,473 0.1% 
Workers Comp 3.6035 1.5463 0,9278 148,116,140 137,419,704 26.0% 

Personal 1.8861 0.8093 397,931,890 173,901,029 36.4% 
Commercial 2.7944 1,1991 436,911,987 316,851,898 64.6% 
Enterprise 2.3304 1.0000 834,843,877 490,752,928 

Adjusted 
Surplus P/S 

(7) (8) 
Homeowners 26,756,836 2.0388 
P Auto Liab 98,465,245 1.6200 
P Auto Phys Dam 51,955,699 3.1599 
C Auto Liab 16,488,021 1.4780 
C Auto Phys Dam 3,438,810 2.5800 
CPP Liab 86,919,027 1.1809 
CPP Prop 64,892,737 2.1135 
Other Liab 10,633,951 1.4228 
Other Liab - Umbrella 440,622 1.4310 
Workers Comp 140,009,051 1.0579 

Personal 177,177,781 2.2459 
Commercial 322,822,219 1.3534 
Enterprise 500,000,000 1.6697 

(1) Duration 
(2) Line Duration / Enterprise Duration 
(3) (2)" Surplus/Premium ratio of 0.60 = (1/1,6697) 
(4) Premium 
(5) (3) ' (4) = (Surplus/Premium) * (Premium) = Estimated Surplus 
(6) (5) / (Enterprise 5) 
(7) (6)* Enterprise 

By Line: [ (5) / Consumer or Commerical (5) ] * Consumer or Commercial (7) 
(8) (4)/(7) 
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Variation Distribution 

O~lnlJng C-4m pro" $ WP 
~andan~ D e ~ o ~  

Home 
P ALIIO I~a~ 
p Amo P h ~  Dam 
C Amo Uab 
C AU~ Phys Oam 
CPP LWo 
C~P Prop 

Lwb 
CIEt~ Limb - Umbrella 
W o m ~  Comp 

P~eon~ 
C,m~mero~ 
E n W ~ e  

V~ue 

Be[ween V~'~ar~e 

H~ane 
P Aom Ltab 
P Amo Phys Dern 
C AUtO Lleb 
C Auto P~ys Dam 
C~P Limb 
CPP P . ~  

Uab 
O~'W I,lab - ~ 
Wod, mnm Comp 

(1) (2) (3) (4) (5) 

0.4532 2.2769 0.6970 0.8594 04550 
0.1574 0.1235 0.1461 0.13~ 0.1536 
0~11~ 0.~ 0.2524 0.2326 0.11M 
1~3752 1.4673 1.8137 1,8897 1 7350 
0.4705 2.3967 0.~28~ 0.8892 05526 
0.0575 0,0646 0.1012 0.0772 00841 
0.6931 4.5415 1.1913 1.080~ 0.~ 
0.1688 02055 0,2183 0.2339 0.2391 
0.~574 09288 1,1948 1.2197 1.32~Q 
0.13(~ 0.1456 0.1748 0 . 1 ~  0.2019 

0A25S 0.7125 0.2001 0~1830 0 1150 
0.20e8 1.4789 0.39~6 0.3805 0.2009 (13) 
0.1544 1.1122 0.2955 0.21~ 0.1367 03931 

0.4384 1.3103 0.6316 0.6197 0.5415 

01571 1.8391 0.2640 02702 0.270~ 

O0~r=Ung G~n per $ WP (12) 
(11) C,,re~alty Welgh~l  St=nd='d 

07601 Home 0.8621 
0,9~9 P Auto Lmb 0.1441 
0.9418 P Aulo Phys Dem 03560 
0.�eg I C Auto L ~  1.5628 
07541 C AUtO Phys Darn 0.g03~ 
0.99S9 CPP Llab O.OTTO 
0.4155 CPP Pra~ 1.0750 
0.999~ ( ~ L ~ b  02133 
0.97~1 OIher Liab. Umbr ia  1 0~0  
0ggg6 Workees Comp 01(]80 

O ~  Gltn per 6 WP (S~ Ol~ m~o)" 
C m d e ~ / W W u h ~ I  Slandard 0m~a,o~ (Sur~,~Pmn re,o) Pmm~,n 

(14) (15) (16) 
2.1032 13133 54.552.816 

P Auto I Jab 0.3665 0.2t05 179,199,580 
P Auto Phys I;~m 0.9079 0~436 164.176,060 
C ~ Lmb 3.9757 2.3807 24,369,g~6 
C Auto Phys Own 2 .2~e~5 1.3763 8,$?2,197 
CPP Lktb 0.1959 0.1173 102.630.824 
CPP Prop 2.7363 t.6385 137,153.600 
Olrmr ~ 0.5,427 0.3250 15,129.588 

t.J~b - Unlbm0a 2.7933 1.6727 630.538 
Comp 0.4273 0.2559 148.116.220 

Coneum~ 39?,928.456 
I~mslbJm/Sur~us re4]io 1 67 C43mme~:t~ 436,911,953 

Enterprise 834.840.409 
Sumk~Prw~um rz=,~o 080 (ozsumed) 

Esb~ated S L , ~  Pt5 
S ,~u~  
(17) (15] (19) (20) 

71.644.576 13,0% 65,002,064 0.8392 
P ~11o t.~0 39.331,270 71% 35.684,679 5.0218 
P Auto Pt~s Dam 89,251,941 152% 80.076.065 2.0274 
C AUlO LiaO 58,01 ?,003 10 5% 5,?..637 . ~ g  0A,630 
C ~ Phys Dam 12.2t 1.073 2.2% 11,078,926 0.8006 
CPP Lklb 12,040,077 2.2~ 10.924.328 9.3055 

I ~  224.72~ .029 40.8% 203.892,415 0.5727 
~ 4~016.523 0.9% 4.460.688 3.3918 

( ~ e r  Llab - Umbrella 1,054.573 0.2% 056.86"g 0,6589 
W~'kee~ ~ 3T,81~.882 ~ 9% 34,365.077 4 3075 

(19) 
20(I.227.787 36.33% 161.863.708 

C O ~  350.866.839 53 67% 318.338.202 
E ~  551,094,626 500.000.1X~ 

21905 
1 3725 
1 6697 

Exhibi t  4 

(s) (7) (10] 

0.9083 0.4784 1.5015 
0.1440 0.0001 0 (~04 
0.3352 0 0ge4 0.3088 
1.5722 0.0175 00550 
0.9671 6.6195 1.8302 
0.076~ 0OO02 0.0007 
1 50~.3 22411 7.0333 
02131 00006 0.0G20 
1 1E~0 00328 0.1028 
01677 00007 0.0021 

(e) 
0.71~¢3 

0.3186 

N o t e s :  

(1) - (5) Starx~d Davlaeom d OperNng 
gain per Oo0w ot Wdt~n Prllmlum 

(6} - Mmm of ~ by line of buJnue  
(7) - vzmmce ol year= by rune of bus~xm.t 
(8) - M ~ n  o f  (6) 
(g] - Vwtsnce of ~ V i k m  (el 
(10)- (7)/10) 
[ 11 ) -n l ( n  + K ) = Z  ~t~st~ n = # OF )q~,= 
[12)- (6)" ( t l )  + (6)" (t -(11)) 
(13) - MIm~ O~ F-nim�dse 
(14) - (12) / (13)  

(15) - (14) ° imieoied i l u l l duMpnm~ mJo 
(16) - Ylmr end ltl07 Pmtmum 
(17)- (15)" (18) 
(10) - (17")1 ~ (17) 
(19] - [16) • EnWpdze (19) 
(20) - [16) / (19) 
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D F A  M O D E L  U S E D  

Appendix A 

The following includes excerpts from the papers "Building a Public Access PC-Based 

DFA Model" (1997 CAS Summer Forum, Vol.2) [2] and "Using the Public Access DFA 

Model: A case Study" (1998 CAS Summer Forum) [3]. Both papers are used with the 

permission of the papers' authors. 

The Dynamic Financial Analysis (DFA) model used in this paper is a public access 

model. The actuarial consulting firm Miller, Rapp, Herbers & Terry (MRH&T) 

created Dynamo2. Dynamo2 is Excel based enabling the user to create calculations as 

needed. 

Each iteration of the model starts with detailed underwriting and financial data showing 

the historical and current positions of the company. It randomly selects values for 4,387 

stochastic variables, calculates the effect on the company of each of these selected values, 

and produces summary financial statements of the company for the next five years based 

on the combined effect of the random variables and other deterministic factors. 

The model consists of several different modules, each of which calculates a component of  

the model indications. Separate modules are included for investments, catastrophes, 
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underwriting, taxation, interest rates, and loss reserve development. The number of lines 

of business can be expanded or contracted to fit the needs of the user. The model used 

allows for ten different lines of business: 

• Homeowners CPP - Liability 

• Private Passenger Auto Liability CPP - Property 

• Private Passenger Auto Phys. Dam. Other Liability 

• Commercial Auto Liability Umbrella 

• Commercial Auto Phys. Dam. Workers Compensation 

For each line of business, the underwriting gain or loss is calculated separately for: 1) 

new business, 2) 1st renewal business and 3) 2nd and subsequent renewals. This division 

is provided to reflect the aging phenomenon, in which loss experience improves with the 

length of time a policyholder has been with a company. These three categories are then 

added to calculate underwriting results on a direct, ceded, and net basis. 

The values for each simulation are shared among the different modules. Thus, if the 

random number generator produces a high value for the short term interest rate, this high 

interest rate is used in the investment module as well as the underwriting module. 

Similarly, a high value for catastrophes in the catastrophe module carries through to the 

reinsurance and underwriting modules. 
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The primary risks that are reflected in the model are: 

• Pricing risk Catastrpohe risk 

• Loss reserve development risk Investment risk 

CAVEATS OF THE MODEL 

Some factors, having a potentially significant impact on results, are omitted from the 

model because, in the opinion of the authors, they are beyond the scope of an actuarial 

analysis. For example, fraud by managers is a leading cause of  insurance insolvency. 

Whether fraud is likely to occur (or is currently occurring) at a particular insurer, is not 

something an actuary is qualified to ascertain. Thus, any financial effects from 

fraudulent behavior are simply omitted from the model. Other examples of omitted 

factors that definitely could have a significant effect on insurance operations include a 

change in the tax code, repeal of the McCarran-Ferguson Act, a major shift in the 

application of a legal doctrine or the risk of a line of  business being socialized by a state, 

province, or federal government. Thus, the range of possible outcomes from operating an 

insurance company is actually greater than a DFA model would indicate; the model is 

designed to account only for the risks that can be realistically quantified. 

The values used as input in the model are derived from past experience and current 

operational plans. To the extent that something happens in the future that is completely 
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out of line with past events, the model will be inaccurate. For example, the size of a 

specific catastrophe is based on a lognormal distribution with the parameter values based 

on experience over the period 1949 - 1995 (adjusted for inflation). However, if this 

process had been used just prior to 1992, the chance of two events occurring within the 

next 2 ½ years, both of which exceeded the largest previous loss by a factor of more than 

2, would have been extremely small. However, Hurricane Andrew caused $15.5 billion 

in losses in August of 1992 and the Northridge earthquake caused $12.5 billion in insured 

losses in January 1994. The largest insured loss prior to that was Hurricane Hugo, which 

had caused $4.2 billion in losses in 1989. Also, if changes in any operations occur, then 

the results would not be valid. 

The DFA model encompasses catastrophes, which have a significant impact on the 

property lines of business. The liability lines of business are more influenced by changes 

in public attitudes, and legislative or judicial changes. These changes are difficult if not 

impossible to model accurately. The variation method considers these to the extent that 

they are captured in historical data and variations. 

The number of years used may affect the credibility of results. The DFA model results 

have a compounding effect from year to year (e.g., the first year results are used in the 

second year, the second year results are used in the third year, and so on). With nominal 

growth assumptions, this will result in larger variation for the more distant years. If 

ample simulations are run, then the distant years' variation becomes more stable. 
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When a significant legislative or judicial change occurs, the model should be adjusted to 

reflect such changes. The surplus allocation process should be run once again to 

incorporate these changes. 

MODEL USAGE 

Before relying on a DFA model for any purpose the user must be comfortable with the 

inputs and the outputs. This includes using it to allocate surplus. 
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Duration Adjustments to the DFA Model 

Appendix B 

The assumption was made that all payments would be made by the end of the twenty-first 

year for each accident year, however in the original model only five calendar years of 

payments were calculated for each accident year. These payments needed to be extended 

to twenty years past the last projected accident year. Extended payments were produced 

in the same fashion as done by the model for the first five years. 

After projecting how much is going to be paid from each accident year for any calendar 

year, these payments are summed across all accident years for the appropriate calendar 

year. This generates projected calendar year paid amounts as in column 1 of Table 2. 

The total column in Exhibit 2 also shows calendar year paid amounts. 

A discount rate was needed to find the present value of these calculations. The discount 

rate used came from the first year's projected investment information of the model. 

Dividends, coupon payments, and interest were summed and divided by the average book 

value amount invested in stocks, bonds, and cash over the year. This avoids both realized 

and unrealized capital gains or losses. By calculating a DFA discount rate, it allows the 

interest rate to vary with the projected economic conditions for each iteration. 
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For calculating present values, a uniform payment pattern during each year was assumed, 

giving an average payment mid-way through the year. 
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Appendix C 

Investment Return Adjustments to the DFA Model 

To capture interest earned by line of  business, adjustments had to be made to the DFA 

model. 

The pay-out rate of reserves was determined from the payment patterns already 

mentioned. The percentage of reserves available for investment over the course of the 

year is: 

[ { ( I - P P T ) + ( I - P P T + ~ ) }  / 2 ] / ( I - P P T )  

Where: PP = Payment Pattern (Cumulative % Paid) 
T = Beginning of Calendar Year 
T+ 1 = End of Calendar Year 

The division by 2 in the formula assumes the payment of reserves is made 
uniformly over the calendar year. 

This calculation is done for each Calendar Year / Accident Year 
combination needed. 

Using the above calculation, the amount available for investment was found by 

multiplying the percentage of reserves available by the appropriate reserves. 
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[ [ { (1 - PPT ) + ( 1 - PPT+I ) } / 2 ] / ( 1 - PPT ) ] * R e s e r v e s  

Where : When Calendar Year = Accident Year 
Reserves = Reserves at the end o f  the Calendar Year 

Otherwise 
Reserves = Reserves at the beginning o f  the Calendar Year 

Example: For a given line o f  business and accident year, 20% o f  the losses had 

been paid by the beginning o f  the current calendar year and 40% paid by the end. 

The year began with $5,000,000 in reserves for this particular line and accident 

year. 

The amount available for investment is [ { (1-.20) + (1 -.40) }/2]/(1-.20) = 0,875. 

In other words, 87.5% o f  the beginning o f  the year reserves are available for 

investment over the course o f  the year, or $5,000,000 * .875 = $4,375,000. 

The method o f  calculating the rate o f  return used for this method was based on the market 

value return. The ending market value o f  the stocks, bonds, and cash were added to the 

sum o f  dividends, coupon payments, and interest received. The resulting amount was 

divided by the sum o f  the beginning market value o f  the stocks, bonds, and cash. A 

different rate o f  return was determined for each calendar year. 
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Credibility Weightings 

In the Variation Method 

Appendix D 

Even after running 1,000 iterations, the information is not necessarily fully credible since 

this calculation deals with the standard deviation. The model itself should be fully 

credible, but the standard deviation deals with the number of samplings. If enough 

iterations are run, the standard deviations should be relatively stable from year to year. 

Due to computing limitations, only 1,000 iterations were run, which lacks full credibility. 

Table 8 below lays out the credibility weighting of the standard deviations. Applying the 

Btihlmann credibility across the years and between the lines with the use of columns 6 

through 10, credibility is determined by line of  business and displayed in column 11. 

This process is shown explicitly in Exhibit 4. Giving credibility weight to the expected 

value for a line of business over the years (column 6) and the complement to the average 

of  the expected values for all lines of business (column 8) results in a credibility weighted 

standard deviation of net operating gain per dollar of net written premium (column 12), 

This is the main factor in helping determine the distribution of surplus. The rest of the 

steps are similar to those used in the duration method. The B~lhlmann credibility is 

further described in Appendix E. 
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Honl~ 
P Auto Liab 
P Auto Phys Dam 
C Auto Liab 
C Auto Phys Dam 
CPP Liab 
CPP Prop 
Other Liab 
Other Liab - Umbrella 
Workers Comp 

Personal 
Commercial 
Enterprise 

Expected Value ( 

B¢lwecn Variance 5 

T a b l e  8 

S t a n d a r d  D e v i a t i o n  o f  N e t  O p e r a t i n g  G a i n  

P e r  D o l l a r  o f  N e t  W r i t t e n  P r e m i u m  

(I) (2) (3) (4) (5) (6) (7) 
Expected Within 

1998 199.~9 20.0.0.0.0.0.0.0~0 200..__! 2002 Value Variance 
0.4532 2.2769 0.6970 0.6594 0,4550 0.9083 0.4784 
0.1574 0.1235 0.1461 0,1395 0,1536 0.1440 0.0001 
0.1199 0.9526 0,2524 0.2326 0.1184 0.3352 0.0984 
1.3752 1.4673 1.6137 1.6697 13350 1.5722 0.0175 
0.4705 2.3967 0.7265 0.6892 0.5526 0.9671 0.5195 
0.0575 0,0646 0.1012 0.0772 0.0841 0.0769 0.0002 
0,5931 4.5416 1.1913 1.0898 05455 1.5923 2.2411 
0.1688 0.2055 0.2183 0.2339 0.2391 0.2131 0.0006 
0.8574 0.9288 1.1948 1.2197 1.3292 1.1060 0.0328 
0.1308 0,1456 0.1748 0.1856 0.2019 0.1677 0.0007 

0.1255 0.7125 0.2001 0.1830 0.1159 
0.2088 1.4789 0.3995 0.3605 0.2009 
0.1544 I.II22 0.2955 0.2666 0.1367 

(8) 
0.4384 1.3103 0.6316 0.6197 0.5415 0.7083 

(9) 
0.1571 1.8391 0.2649 0.2702 0.2798 0.3186 

(13) 
0.3931 

(10) 
K 
F~;tO~ 
1.5015 
0.0004 
0.3088 
0.0550 
1.6302 
0.0007 
7.0333 
0,0020 
O. 1028 
0.0021 

(6) = average of ( I )  to (5) 

(i i) (12) 
Cred. Wtd. 

Credibility Std Deviations 
Home 0.7691 0.8621 
P Auto Liab 0.9999 0.144 I 
P Auto Phys Dam 0.9418 0.3569 
P Auto Liab 0.9891 1.5628 
C Auto Phys Dam 0.7541 0.9035 
CPP Liab 0.9999 0.0770 
CPP Prop 0.4155 1.0756 
Other Liab 0.9996 0.2133 
Other Liab - Umbrella 0.9798 1.0980 
Workers Comp 0.9996 O. 1680 

* The expected value is a straight average o f  the individual line o f  business data points, 

s The between variance is the sum o f  the squared differences between the line o f  business data point and the 
expected value all divided by the number o f  lines o f  business. 
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B I ] I H L M A N N  C R E D I B I L I T Y  

Appendix E 

Blthlmann credibility is based on the formula n / (n + K ) = Z 

Where: n is the number  o f  observations 

K is the within variance / between variance 

Z is the crebtbility factor 

The within variance is calculated within the same class or line o f  business  across years or 

periods. In this application it would be the variance for a cerlain line o f  business over the 

5 year period. 

n 

Z ( X1 - X )z 
i = l  

n 

Xi is an individual observation 

X is the average observation within the line o f  business  

n is the 5 years 

The between variance is calculated within the same year but across lines o f  business.  

m 

Z ( Yi - Y )2 
i = l  

ITI 

Yi is an individual observation in the year 

Y is the average observation for the year over all lines o f  
business  

m is the number  o f  lines o f  business  which is equal to 10 in 
our application 
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