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Abstract 

Multifractals are mathematical generalizations of fractals, objects displaying "fractional 
dimension," "scale invariance," and "self-similarity.'" Many natural phenomena, inclu- 
ding some of considerable interest to the casualty actuary (meteorological conditions, 
population distribution, financial time series), have been found to be well-represented by 
(random) multifractals. In part II of this paper, we show how to fit multifractal models in 
the context of one-dimensional time series. We also present original research on the 
multifractality of interest rate time series and the inadequacy of some state-of-the-art 
diffusion models in capturing that multifractality. 

Introduction 
In the accompanying part I paper, we introduced the ideas of fractal point sets and 
multifractal fields. We showed that those mathematical constructs are applicable to a 
wide range of natural phenomena, many of which are of considerable interest to the 
casualty actuary. We showed how to analyze sample data from multidimensional random 
fields, detect and measure multifractal behavior, fit a "universal" model, and use that 
model to simulate independent realizations from the underlying process. In particular, we 
discussed synthetic geocoding and the simulation of non-hurricane atmospheric perils. 

The theory of self-similar random time series is more fully developed than the general 
multidimensional case. In this part II paper, we focus on time series analysis and financial 
applications. We present some additional theoretical machinery here and discuss 
applications to weather derivatives and financial modeling. 

Time Series 

Introduction to Multifractal Time Series Analysis; Structure Function 

Financial and geophysical time series feature a large range of time scales and they are 
governed by strongly non-linear processes; this suggests the possible applicability of 
scaling (multifractal) models. We consider a random process X(t) defined on the time 

segment [0, 7"]. The process X(t) has variously represented exchange rates, interest rates, 
temperature and precipitation in our work. 

As in the two-dimensional case, scale invariance is most readily tested by computing 
P(k), the power spectrum ofX(t). In the case of a one-dimensional time series, standard 
techniques of spectral (Fourier) analysis are available in many off-the-shelf statistical and 
mathematical packages, including Microsoft EXCEL. 

For a scaling process, one expects power law behavior: 
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P(k)  oc k -p (1) 

over a large range of  wave-numbers k (inverse of  time). I f / 3 <  1, the process is stationary 

in the most accepted sense of  the word [I], that is, X(t) is statistically invariant by 
translation in t. If  1 < / 3 <  3, the process is non-stationary but has stationary increments 
and, in particular, the small-scale gradient (derivative or first difference) process will be 
stationary. Introducing the Hurst exponent H (0 < H < 1), a parameter describing the 

degree of  stationarity of X(t), we can express the exponent /3as follows: 

,8 = 2 H  + 1 (2) 

We can demonstrate a wide range of  self-similar processes by changing the Hurst 
exponent: Brownian motion (H = 0.5, /3  = 2), an "anti-persistent" fractional Brownian 
motion (0 < H < 0.5, 1 < /3  < 2), and "persistent" fractional Brownian motion (0.5 < H < 

1, 2 < / 3 <  3). This is the class of  additive models. The last has become popular for 
modeling financial time series. 

Most of  financial and geophysical time series demonstrate non-stationary behavior. This 
creates major complications if power spectrum analysis is the only available tool. It is 
well known [2] that knowledge of /3  alone is insufficient to distinguish radically different 
types of  statistical behavior (the phenomena of"spectral  ambiguity"). It is not so difficult 
to construct two processes with identical power spectra - one additive and sufficiently 
smooth, and the other one multiplicative with a high degree of  intermittency. But such 
cases can be resolved with the help of  multifractal analysis, which can be viewed as an 
extension in the time domain of  scale-invariant spectral analysis. 

An appealing statistical characteristic to use in exploring time series is the structure 
function. Structure function analysis of  processes with stationary increments consists o f  
studying the scaling behavior of  non-overlapping fluctuations AX~ (t) = [ X (t+ r) - X (t) [ 
for different time increments r. One estimates the statistical moments  of  these 
fluctuations, which - assuming both scaling (1) and statistical translational invarianee in 
t ime (i.e., the property of  stationarity increments) depend only on the time increment r 
in a scaling way: 

E(AXr( t )q)  ~ E(AXT )~-~J (3) 

where E( AXr q) is a constant ( T is the fixed largest t ime scale), q > 0 is the order o f  the 
moment,  and ( ( q )  is the scale invariant structure function. The expectation E( AXf( t )q) 
is assumed finite for q in an interval [0, q,,~ ). The structure funetion ( ( q )  is a focal 
concept in the one-dimensional theory ofmultifraetals.  

We examine some properties of  ( ( q ) .  By definition, we have ( ( 0 )  = 0. Davis A. c ta l .  
[1] show that ( ( q )  will be concave: dZ((q) /dq 2 < 0. This is sufficient to define a 
"hierarchy of  exponents" using ~"(q): 
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((q) 
H(q)  - (4) 

q 

It can also be shown that H (q) is a non-increasing function. The second moment is linked 
to the exponent fl as follows: 

f l  = 1 + ( ( 2 )  = 2H(2)  + 1 (5) 

Obtaining _d" (q) or, equivalently, H (q) is the goal o f  structure function analysis. A 
process with a constant H (q) function could be classified as "monoffactal" or 
"monoaffine"; in the case o f  decreasing H (q), multiffactal or "multiaffine." 

Additive processes can be shown to have linear ( ( q )  or constant H (q). For Brownian 
motion we have: 

(aM (q) = q- (6) 
2 

For fractional Brownian motion (the fractional integration of  order h of  a Gaussian 
noise): 

(Frl~C(q)=q(h--½ ) (7) 

Note that Brownian motion corresponds to h - 1 (an ordinary integral o f  Gaussian white 
noise, which gives H =: ½ in Fourier space). 

In the case of  the more exotic "L6vy flight" (additive processes with L6vy noise) the 
behavior of  ( ( q )  is still linear. In this case, there is a L6vy index c~ ( 0 _< a _< 2 ), which 
characterizes the divergence of  the moments of  the L6vy noise. In general ( ( q )  diverges 
for q > ct, but for finite samples we obtain the following ( ( q )  function for a L6vy flight 
o f  index a: 

(t.,t (q) = q (8) 
O~ 

for q < a, and ((q) - 1 for q > a. 

We thus see that observing non-linearity o f  an empirical ~ (,71 function is a solid 
argument against the validity of  an additive model. Below, we will show strong signs o f  
curvature in the behavior o f  some empirical if(q) functions for financial time series. 

The generic multifractal processes (non-linear, non-additive) could be modeled by 
multiplicative cascades. The central part o f  a multiplicative cascades is the generator 
(MCG, discussed in the part 1 paper) which should be represented by some infinitely 
divisible probability distribution. Using *'canonical representation" (the Ldvy-Khinchine 
representation) for infinitely divisible random variables, and argmnents similar to those 
for the K(q) function for the general D-dimensional case. wc c~btain the following 
"universal form" for the structure function o f a  non-stationa~' process: 

( ( q ) = q H -  CI 
a _ l ( q "  - q )  (9) 
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where H = ~1)  the same as (2), CI is a parameter with the same role as in equation (31) 
of part I, and a is the Lrvy index. 

Analogous considerations could guide us to modify part I 's equation (31) to express the 
K(q) function for a non-conservative field: 

f CI 
:~LS_~(q -q) a . l  K(q)+qH (10) 

[ Clqlog(q) a = 1 

where the H parameter is the degree of  non-stationarity of the process. In other words, 
first bring the field to a state of stationarity (by fractional differentiation, i.e., power-law 
filtering in Fourier space or a small-scale gradient transformation) to eliminate the linear 
part qH, and then proceed with the analysis as for conservative fields. 

To summarize, the basic steps are: 

1. Examine the data for evidence of intermittency and self-similarity; this could be 
accomplished by studying the power spectrum. 

2. Establish the status of  multifractality (or monofractality) and qualitatively 
characterize the system under investigation; for this, we use the structure function. 

3. Fit model parameters to the universal form of~'(q). 

4. Simulate, using multiplicative cascade techniques based on the universal form of the 
generator. 

5. Apply, including, possibly, drawing inferences about the underlying process. 

A Growing Crisis in Financial Time Series Modeling? 

There is a growing awareness among researchers that the existing "classical" models 
cannot accommodate some essential properties underlying financial phenomena. The 
accumulation of a tremendous amount of highly reliable data from the financial markets 
around the world reveals distinctive characteristics of  financial time series that had 
previously been overlooked because of  lack of data. Some of the most important features 
are: 

• scaling or self-similarity (at different time scales); 

• long-term memory or persistency; 

• volatility clustering; 

• hyperbolic or "Paretian" tails. 
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To compensate for the consequences of these characteristics, the number of parameters in 
the "classical" models has been increasing over time. If this continues unchecked, it 
could make models unstable and decrease their predictive power. 

We distinguish two major classes of models in use by practitioners today: continuous 
time stochastic diffusion models ("diffusion models") and discrete time series models 
("discrete models"). 

Diffusion models build on the well-understood theory of Brownian motion. The 
development of stochastic calculus (particular It6 integrals) and the theory of martingales 
created the essential mathematical apparatus for equilibrium theory. The assumption of 
arbitrage free pricing (rule of one price) has a very elegant mathematical interpretation as 
a change of stochastic measure and the transformation to a risk-neutral stochastic process. 

Application of diffusion models is a crucial element in the valuation of a wide variety of 
financial instruments (derivatives, swaps, structured products, etc). Researchers have, 
however, long recognized major discrepancies between models based on Brownian 
motion and actual financial data, including long-term memory, volatility clustering and 
fat tails. To resolve these problems some extensions of diffusion models were offered. 
Often, this means introducing more stochastic factors, creating so-called multi-factor 
models. 

Modem discrete models extend classical auto-regressive (AR) moving average (MA) 
models with recent advances in the parameterization of time-conditional density 
functions. These include ARCH, GARCH, PGARCH, etc. Discrete models have been 
partially successful in compensating for lack of long-term memory, volatility clustering 
and fat tails, but at the cost of an increasing number of parameters and structural 
equations. Using appropriate diagnostic techniques one can demonstrate that the 
statistical properties of discrete models (viz., self-similarity of moments, long-term 
memory, etc.) are essentially the same as for Brownian motion. 

There is a third class of models, in little use by practitioners, but familiar to academics. 
This group constitutes the so-called additive models, including fractional Brownian 
motion, Lrvy flight and truncated Lrvy flight models. These models can replicate m o n o -  

fractal structure of underlying processes - their corresponding structure functions g" (q) 
(7), (8) are linear - but they cannot produce multifractal (nonlinear) behavior. 

Case Study: Foreign Exchange 

Here, we present an example of the application of multifractal analysis to exchange rate 
modeling, substantially following Schmidt, F. [3]. Figure 1 represents the exchange rate 
time series (US$/GDM spot rate 1975 - 1990 weekly observations) and Figure 2 the 
corresponding logarithmic changes in exchange rate. 

Figure 3 represents a power spectrum analysis (in log-log space) of the FX time series. 
Visual inspection, and the close fit of the regression line, supports the hypothesis of 
scale-invariant behavior. The power spectrum obeys a power law (Equation l ). The slope 

I A similar "Ptolemaic crisis" afflicted meteorological precipitation modehng in the 1980s. See, e.g., the 
Water Resources Research special issue on Mesoscale Precipitation Fields, August 1985. 
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of the straight line is the parameter fl; here equal to 1.592. This value suggests the 
underlying process may be non-stationary but with stationary increments. 

An important application of multifractal analysis is to characterize all order moments for 
the validation of a scaling model. The appropriate tool to do this for the particular case of 
a time series is structure function analysis. 

To apply the structure function method, we rewrite the equation (3) in logarithmic form: 

Iog[E(AX~(t)q)]=log[E(AXrq)]+((q){Iog(r)-log(T)} (11) 

The expectation E (AX~ ( t )q )  is estimated by the so-called partition function 

f(~r(t)q)=-l~laXAt)l q (12) 

(see Fisher, A. et al. [4]). We then plot log[E(AX~(t)q)] against log(r)  for various values 

o fq  and various values of r. Linearity of  these plots for given values o fq  indicates self- 
similarity. Linearity could be checked by visual inspection or by some more sophisticated 
techniques (e.g., significance test t'or higher-order regression terms). The slope of the 
line, estimated by least squares regression, gives an estimate of the scaling function ( (q )  
for that particular q. 

The structure function, mapping q to its slope, is depicted in Figure 4. Here, we also draw 
an envelope of  two straight lines corresponding to Brownian motion (slope 0.5) and 
fractional Brownian motion (slope 0.6), respectively. The non-linear shape of  the 
empirical curve is the signature of multifractality. 

Having established the existence of multifractality in the data, we can move to the next 
step - fitting parameters. In the case of  one dimensional (time series) field, we use 
equation (9) to find universal parameters. For FX data, the universal parameters are: H = 
0.532, ct = 1.985, CI = 0.035. 

Case Study: Interest Rates 

In this section, we present an original analysis of US interest rates. We use weekly 
observations of 3-month Treasury Bill Yield Rates (1/5/1962 - 3/31/1995). Figure 5 
represents the interest rate time series and Figure 6 the corresponding logarithmic 
changes in interest rate from one period to the next. 

We start with the power spectrum in Figure 7. Visual inspection and regression confirm ~ 
the hypothesis of scaling behavior with corresponding 1~eir = 1.893. The value of  ,Beir 
indicates that this interest rate series might be modeled by a non-stationary process with 
stationary increments. 

Figure 8 represents the ( ( q )  curve for interest rates with the same Brownian motion and 
fractional Brownian motion lines that we used for the FX analysis overlaid on the graph 
for reference. Again, the signature of multifractality is clearly present in the data. We 
obtain the following universal values: H = 0.612, a = 1.492, C1 = 0.095. These values 
could be used to simulate interest rates by applying a multiplicative cascade technique. 
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Andersen-Lund is Not Multifractal  

We present an original analysis of  the three-factor Anderson-Lund model of interest rates 
and show that even this model, with its highly complex structural equations and difficult 
fitting techniques, cannot replicate key features of empirical interest rate data. 

The general form of the diffusion model Vetzal, K. [5] is 

d X  = l ~ ( X , t ) - d t  + c r ( X , t ) ,  d W  (13) 

where X is the (possibly vector) random variable evolving over time, p. is a (possibly 
vector) function describing the instantaneous rate of  change of X at a point in time, and ~r 
is a (possibly matrix) function describing the instantaneous impact of changes in the 
(possibly vector) Gaussian random walk W, i.e. dW is a (are independent) Gaussian 
random variable(s). In the multidimensional case, the dimension of X does not 
necessarily equal the dimension of W. For interest rate models, one of the elements of X 
will represent the short rate of interest. 

The primary purpose of  these models has been to develop arbitrage-free prices of illiquid 
bonds, interest rate derivatives, etc., so the primary consideration has been fidelity in 
reproducing available market data, in particular, yield curves. However, obtaining 
realistic depictions of the objective behavior of the short rate (the historical evolution of 
the short rate over time) has been an important secondary consideration. It is this tension 
between the desire for analytical tractability on the one hand and realism on the other that 
has driven the development of ever more sophisticated models. 

The simplest such model is Merton [6]: 

dr, = tg .d t  + c r . d W  (14) 

where rt is the interest rate at time t, 8 is the average growth rate of the process, and cr is 
a volatility scale parameter. 

Perhaps the most sophisticated of the analytically tractable models is the Cox-Ingersoll- 
Ross (CIR) model [7]: 

dr, = ~ ¢ . ( 8 - r , ) d t  +o- .r ,  ~ z . d W  (15) 

where t¢ is the mean reversion constant and 8 is the global mean of the process. CIR adds 
realism to the Merton model by introducing mean reversion and volatility that is 
functionally dependent on the level of the rate. 

Visual analysis of the interest rate time series graphs (as well as statistical diagnostics) 
reveals several distinctive features to US interest rates that cannot be accommodated by 
the CIR model. 

1. Local trends in interest rate movements, indicating a changing mean to which the 
process reverts. 

2. Heteroscedasticity that is not simply a function of the level of the rates. 

3. Volatility clustering. 
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To address these limitations of CIR and previous models, Andersen and Lund [8] intro- 
duced the following (analytically intractable) three-factor model: 

dr, = lq . (It, - r, )d t  + or,. r, r . d W ~  (16) 

d Ioga~ = t¢ 2 . ( a  - logo',2)dt + ~ .dW2. , (17) 

d/z, =pc 3 . ( O -  / z , )d t  + ~2 . ,u~  .dW3, , (18) 

where rt is the interest rate at time t, ~ is the (unobserved) volatility, ~ is the 
(unobserved) local mean of  the process, kl, k~, k3 are mean reversion constants, 0 is the 
global mean of the process, a is the global mean of the log-volatility process, y, ~l, ~2 are 
parameters, and Wi.t ,  W2,t, W3.t are independent Gaussian random variables. Equation 
(16) can be seen as a generalization of the CIR model with unknown parameter y instead 
of ½, and the fixed mean and volatility terms being replaced by endogenous variables 
evolving through their own diffusions (Equations 17 and 18). 

The Andersen-Lund model represents the most realistic diffusion model we are currently 
aware of. The price of  its realism is the need for substantial computing power. To fit the 
parameters, Andersen and Lund use the so-called Efficient Method of Moments 
procedure Gallant and Tauchen [9], which is an iterative method involving many simu- 
lations of the diffusion process. Calculation of yield curves similarly requires many 
simulation cycles, as there is no (known) closed-form solution. 

Just how realistic is it? Figure 9 shows a 5,000-quarter simulation of interest rates using 
the A-L model with their recommended parameters. Figure 10 is the corresponding 
logarithmic changes in interest rate. A visual comparison of these graphs with the 
corresponding empirical interest rate graphs, and  a cursory statistical examination of 
same, seems to validate the A-L approach to modeling interest rate time series. We will 
demonstrate that a deeper analysis of the scaling properties of all moments (not just the 
first and second) reveals fundamental differences between the A-L simulation and the 
empirical data. The simulated A-L data does not exhibit the multifractality that real 
interest rates possess. 

Figure 11 shows the power spectrum function of the simulated time series out of the A-L 

model. Here, the parameter fl~ir = 1.772, which is fairly close to the value obtained for the 
empirical data. The power spectrum, however, represents second moment statistics only. 
Its slope is not sufficient to validate a particular scaling model: it gives only partial 
information about the statistics of the process. One would need full knowledge of  the 
probability distribution of the process or, equivalently, all of its statistical moments (not 
just second order) for a full validation. 

Figure 12 represents the ~'(q) curve for the A-L simulated interest rate series, with the 
usual Brownian motion and fractional Brownian motion lines drawn for reference. 
Visual inspection and statistical testing indicate that the structure function of  the data 
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simulated by the A-L model and that of Brownian motion are nearly identical; the 
stochastic process underlying the A-L model appears to be monofractal .  2 

The fundamental difference in scaling behavior revealed by the structure function 
comparison could lead to qualitatively different time series behavior. The universal 
parameters fit to the empirical process in the previous section indicate that the underlying 
mechanism should have a multiplicative cascade structure with (approximate) Lrvy 
generator, rather than an additive process of information accumulation (Brownian motion 
type). Paraphrasing Mtiller et al. [10], the large scale volatility predicts small scale 
volatility much better than the other way around. This behavior can be compared to the 
energy flux in hydrodynamic turbulence, which cascades from large scales to smaller 
ones, not vice-versa. 

Conclusions 

In the companion part 1 paper, we introduced the ideas of fractal point sets and 
multifractal fields. We showed that while those mathematical constructs are rather 
bizarre from a traditional point of view (e.g., theory of smooth, differentiable functions), 
they nonetheless have applicability to a wide range of natural phenomena, many of which 
are of considerable interest to the casualty actuary. We showed how to analyze sample 
data from multidimensional random fields, detect scaling through the use of the power 
spectrum, detect and measure multifractal behavior by the trace moments and double 
trace moments techniques, fit a "universal" model to the trace moments function K(q), 
and use that model to simulate independent realizations from the underlying process by a 
multiplicative cascade. In particular, we discussed synthetic geocoding and the 
simulation of  hail and tornadoes. 

In this part II paper, we showed how to analyze time series through the structure function, 
and showed particular examples of foreign exchange and interest rate time series. We 
discussed the variety of time series models in use by practitioners and theoreticians and 
showed how even state-of-the-art diffusion models are not able to adequately reflect the 
multifractal behavior of  real financial time series. 

The field of stochastic modeling is constantly growing and evolving, so the term 
"Copernican revolution" might be too strong to describe the advent of multiplicative 
cascade modeling. Nonetheless, multifractals have clearly taken hold in the realm of 
geophysical and meteorological modeling, and it seems clear that they will eventually 
find ~heir place in the world of financial models, as well. However, there are still 
numerous open questions, such as how to implement arbitrage-free pricing, that need to 
be answered before multifractal models can replace diffusion models as explanations of 
market pricing mechanisms. 

2 Theoretical arguments suggest monofractality for any additive models, Schraidt [3]. 
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Figure 1: US$/GDM Exchange rate time series
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Figure 2: Logarithmic changes of Figure 1
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Figure 3: Power spectrum of FX data (log-log)
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Figure 4: Structure Function Curve for FX
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Figure 5: 3-mo T-Bill rates
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Figure 6: Logarithmic changes of Figure 5



Figure 7: Power spectrum of interest rate
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Figure 8: Structure Function for Interest Rate
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Figure 9: 5,000 simulated interest rates
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Figure 10: Logarithmic changes of Figure 9
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Figure 11: Power spectrum of simulated interest rate
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Figure 12: Structure Function for simulated interest rate
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