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Abstract: 
This paper will introduce the neural network technique of analyzing data as a 
generalization of more familiar linear models such as linear regression. The reader is 
introduced to the traditional explanation of neural networks as being modeled on the 
functioning of neurons in the brain. Then a comparison is made of the structure and 
function of neural networks to that of linear models that the reader is more familiar with. 
The paper will then show that backpropagation neural networks with a single hidden 
layer are universal function approximators. The paper will also compare neural networks 
to procedures such as Factor Analysis which perform dimension reduction. The 
application of both the neural network method and classical statistical procedures to 
insurance problems such as the prediction of frequencies and severities is illustrated. 

One key criticism of neural networks is that they are a "black box". Data goes into the 
"black box" and a prediction comes out of it, but the nature of the relationship between 
independent and dependent variables is usually not revealed.. Several methods for 
interpreting the results of a neural network analysis, including a procedure for visualizing 
the form of the fitted function will be presented. 
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Neural Networks Demystified 

Introduction 

Artificial neural networks are the intriguing new high tech tool for finding hidden gems 
in data. They belong to a broader category o f techniques for analyzing data known as data 
mining. Other widely used tools include decision trees, genetic algorithms, regression 
splines and clustering. Data mining techniques are used to find patterns in data. 
Typically the data sets are large, i.e. have many records and many predictor variables. 
The number of records is typically at least in the tens of thousands and the number of  
independent variables is often in the hundreds. Data mining techniques, including neural 
networks, have been applied to portfolio selection, credit scoring, fraud detection and 
market research. When data mining tools are presented with data containing complex 
relationships they can be trained to identify the relationships. An advantage they have 
over classical statistical models used to analyze data, such as regression and ANOVA, is 
that they can fit data where the relation between independent and dependent variables is 
nonlinear and where the specific form of the nonlinear relationship is unknown. 

Artificial neural networks (hereafter referred to as neural networks) share the advantages 
just described with the many other data mining tools. However, neural networks have a 
longer history of research and application. As a result, their value in modeling data has 
been more extensively studied and better established in the literature (Potts, 2000). 
Moreover, sometimes they have advantages over other data mining tools. For instance, 
decisions trees, a method of splitting data into homogenous clusters with similar expected 
values for the dependent variable, are often less effective when the predictor variables are 
continuous than when they are categorical. I Neural networks work well with both 
categorical and continuous variables. 

Neural Networks are among the more glamorous of the data mining techniques. They 
originated in the artificial intelligence discipline where they are often portrayed as a brain 
in a computer. Neural networks are designed to incorporate key features of neurons in 
the brain and to process data in a manner analogous to the human brain. Much of the 
terminology used to describe and explain neural networks is borrowed from biology. 
Many other data mining techniques, such as decision trees and regression splines were 
developed by statisticians and are described in the literature as computationally intensive 
generalizations of classical linear models. Classical linear models assume that the 
functional relationship between the independent variables and the dependent variable is 
linear. Classical modeling also allows linear relationship that result from a 
transformation of dependent or independent variables, so some nonlinear relationships 
can be approximated. Neural networks and other data mining techniques do not require 
that the relationships between predictor and dependent variables be linear (whether or not 
the variables are transformed). 

Salford System's course on Advanced CART, October 15, 1999. 
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The various data mining tools differ in their approach to approximating nonlinear 
functions and complex data structures. Neural networks use a series of neurons in what is 
known as the hidden layer that apply nonlinear activation functions to approximate 
complex functions in the data. The details are discussed in the body of this paper. As the 
focus of this paper is neural networks, the other data mining techniques will not be 
discussed further. 

Despite their advantages, many statisticians and actuaries are reluctant to embrace neural 
networks. One reason is that they are a "black box". Because of the complexity of the 
functions used in the neural network approximations, neural network software typically 
does not supply the user with information about the nature of the relationship between 
predictor and target variables. The output of a neural network is a predicted value and 
some goodness of fit statistics. However, the functional form of the relationship between 
independent and dependent variables is not made explicit. In addition, the strength of the 
relationship between dependent and independent variables, i.e., the importance of each 
variable, is also often not revealed. Classical models as well as other popular data mining 
~echniques, such as decision trees, supply the user with a functional description or map of 
the relationships. 

This paper seeks to open that black box and show what is happening inside the neural 
networks. While some of the artificial intelligence terminology and description of neural 
networks will be presented, this paper's approach is predominantly from the statistical 
perspective. The similarity between neural networks and regression will be shown. This 
paper will compare and contrast how neural networks and classical modeling techniques 
deal with three specific modeling challenges: 1) nonlinear functions, 2) correlated data 
and 3) interactions. How the output of neural networks can be used to better understand 
the relationships in the data will then be demonstrated. 

Tvoes of Neural Networks 
A number of different kinds of neural networks exist. This paper will discuss 
feedforward neural networks with one hidden layer. A feedforward neural network is a 
network where the signal is passed from an input layer of neurons through a hidden layer 
to an output layer of neurons. The function of the hidden layer is to process the 
information from the input layer. The hidden layer is denoted as hidden because it 
contains neither input nor output data and the output of the hidden layer generally 
remains unknown to the user. A feedforward neural network can have more than one 
hidden layer. However such networks are not common. The feedforward network with 
one hidden layer is one of the most popular kinds of neural networks. It is historically 
one of the older neural network techniques. As a result, its effectiveness has been 
established and software for applying it is widely available. The feedforward neural 
network discussed in this paper is known as a Multilayer Perceptron (MLP). The MLP is 
a feedforward network which uses supervised learning. The other popular kinds of 
feedforward networks often incorporate unsupervised learning into the training. A 
network that is trained using supervised learning is presented with a target variable and 
fits a function which can be used to predict the target variable. Alternatively, it may 
classify records into levels of the target variable when the target variable is categorical. 
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This is analogous to the use of such statistical procedures as regression and logistic 
regression for prediction and classification. A network trained using unsupervised 
learning does not have a target variable. The network finds characteristics in the data, 
which can be used to group similar records together. This is analogous to cluster analysis 
in classical statistics. This paper will discuss only the former kind of  network, and the 
discussion will be limited to a feedforward MLP neural network with one hidden layer. 
This paper will primarily present applications of this model to continuous rather than 
discrete data, but the latter application will also be discussed. 

Structure of a Feedforward Neural Network 

Figure I displays the structure o f a  feedforward neural network with one hidden layer. 
The first layer contains the input nodes. Input nodes represent the actual data used to fit a 
model to the dependent variable and each node is a separate independent variable. These 
are connected to another layer of neurons called the hidden layer or hidden nodes, which 
modifies the data. The nodes in the hidden layer connect to the output layer. The output 
layer represents the target or dependent variable(s). It is common for networks to have 
only one target variable, or output node, but there can be more. An example would be a 
classification problem where the target variable can fall" into one of  a number of  
categories. Sometimes each of the categories is represented as a separate output node. 

As can be seen from the Figure 1, each node in the input layer connects to each node in 
the hidden layer and each node in the hidden layer connects to each node in the output 
layer. 

Figure 1 

Three Layer Feedforward Neural Network 

Inpul Hidden Ouq~t 
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This structure is viewed in the artificial intelligence literature as analogous to that o f  
biological neurons. The arrows leading to a node are like the axons leading to a neuron. 
Like the axons, they carry a signal to the neuron or node. The arrows leading away from 
a node are like the dendrites of  a neuron, and they carry a signal away from a neuron or 
node. The neurons of  a brain have far more complex interactions than those displayed in 
the diagram, however the developers of  neural networks view neural networks as 
abstracting the most relevant features o f  neurons in the human brain. 

Neural networks "learn" by adjusting the strength of  the signal coming from nodes in the 
previous layer connecting to it. As the neural network better learns how to predict the 
target value from the input pattern, each o f  the connections between the input neurons 
and the hidden or intermediate neurons and between the intermediate neurons and the 
output neurons increases or decreases in strength. A function called a threshold or 
activation function modifies the signal coming into the hidden layer nodes. In the early 
days o f  neural networks, this function produced a value o f  I or 0, depending on whether 
the signal from the prior layer exceeded a threshold value. Thus, the node or neuron 
would only "fire" if the signal exceeded the threshold, a process thought to be similar to 
that o f  a neuron. It is now known that biological neurons are more complicated than 
previously believed. A simple all or none rule does not describe the behavior o f  
biological neurons, Currently, activation functions are typically sigmoid in shape and can 
take on any value between 0 and 1 or between -1 and 1, depending on the particular 
function chosen. The modified signal is then output to the output layer nodes, which also 
apply activation functions. Thus, the information about the pattern being learned is 
encoded in the signals carried to and from the nodes. These signals map a relationship 
between the input nodes or the data and the output nodes or dependent variable. 

Examole 1: Simple Example o f  Fitting a Nonlinear Function 
A simple example will be used to illustrate how neural networks pcrtbma nonlinear 
function approximations. This example will provide detail about the activation functions 
in the hidden and output layers to facilitate an understanding of  how neural networks 
work. 

In this example the true relationship between an input variable X and an output variable 
Y is exponential and is o f  the following form: 

X 

Y = e :  +~: 

Where: 
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- N(0,75) 

X - N(12,.5) 
and N (It, o) is understood to denote the Normal probability distribution with parameters 
It, the mean o f  the distribution and o, the standard deviation o f  the distribution. 

A sample o f  one hundred observations o f  X and Y was simulated. A scatterplot o f  the X 
and Y observations is shown in Figure 2. It is not clear from the scatterplot that the 
relationship between X and Y is nonlinear. The scatterplot in Figure 3 displays the "true" 
curve for Y as well as the random X and Y values. 

Figure 2 
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Figure 3 
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A simple neural network with one hidden layer was fit to the simulated data. In order to 
compare neural networks to classical models, a regression curve was also fit. The result 
o f  that fit will be discussed after the presentation o f  the neural network results. The 
structure o f  this neural network is shown in Figure 4. 

Figure 4 
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As neural networks go, this is a relatively simple network with one input node. In 
biological neurons, electrochemical signals pass between neurons. In neural network 
analysis, the signal between neurons is simulated by software, which applies weights to 
the input nodes (data) and then applies an activation function to the weights. 

Neuron signal of  the biological neuron system --) Node weights o f  neural networks 

The weights are used to compute a linear sum of  the independent variables. Let Y denote 
the weighted sum: 

Y = w o + w~ * X~ + w 2 X  2... + w X ,  

The activation function is applied to the weighted sum and is typically a sigmoid 
function. The most common of  the sigmoid functions is the logistic function: 

1 
f ( Y )  - 

i + e  -r 

The logistic function takes on values in the range 0 to 1. Figures 5 displays a typical 
logistic curve. This curve is centered at an X value of  0, (i.e., the constant w0 is 0). Note 
that this function has an inflection point at an X value o f  0 and f (x)  value of .5 ,  where it 
shifts from a convex to a concave curve. Also note that the slope is steepest at the 
inflection point where small changes in the value of  X can produce large changes in the 
value of  the function. The curve becomes relatively flat as X approaches both ! and -1.  

Figure 5 
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Another sigmoid function often used in neural networks is the hyperbolic tangent 
function which takes on values between -1 and 1: 

e r _ e  - v  

f ( Y )  e r + e  -r  

In this paper, the logistic function will be used as the activation function. The Multilayer 
Perceptron is a multilayer feedforward neural network with a sigmoid activation function. 

The logistic function is applied to the weighted input. In this example, there is only one 
input, therefore the activation function is: 

1 
h = f ( X ;  wo, w I ) = f ( w  0 + W l X  ) = 1 + e -tw°" +WlX ) 

This gives the value or activation level of the node in the hidden layer. Weights are then 
applied to the hidden node: 

w2 +w3h 

The weights w0 and wz are like the constants in a regression and the weights wm and w3 
are like the coefficients in a regression. An activation function is then applied to this 
"signal" coming from the hidden layer: 

1 
o = f ( h ;  w 2 , w 3 )  = 1 + e -(w~ +w3h) 

The output function o for this particular neural network with one input node and one 
hidden node can be represented as a double application of the logistic function: 

f ( f ( X ;  Wo, w, ); w~, w, ) 
- (w l  +w4 i÷  e ,.o,,1 ~" l + e  

It will be shown later in this paper that the use of sigrnoid activation functions on the 
weighted input variables, along with the second application of a sigmoid, function by the 
output node is what gives the MLP the ability to approximate nonlinear functions. 

One other operation is applied to the data when fitting the curve: normalization. The 
dependent variable X is normalized. Normalization is used in statistics to minimize the 
impact of  the scale of the independent variables on the fitted model. Thus, a variable 
with values ranging from 0 to 500,000 does not prevail over variables with values 
ranging from 0 to 10, merely because the former variable has a much larger scale. 
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Various software products will perform different normalization procedures. The software 
used to fit the networks in this paper normalizes the data to have values in the range 0 to 
1. This is accomplished by subtracting a constant from each observation and dividing by 
a scale factor. It is common for the constant to equal the minimum observed value for X 
in the data and for the scale factor to equal the range of the observed values (the 
maximum minus the minimum). Note also that the output function takes on values 
between 0 and 1 while Y takes on values between -oo and +oo (although for all practical 
purposes, the probability of negative values for the data in this particular example is nil). 
In order to produce predicted values the output, o, must be renormalized by multiplying 
by a scale factor (the range of  Y in our example) and adding a constant (the minimum 
observed Y in this example). 

Fitting the Curve 
The process of finding the best set of weights for the neural network is referred to as 
training or learning. The approach used by most commercial software to estimate the 
weights is backpropagation. Each time the network cycles through the training data, it 
produces a predicted value for the target variable. This value is compared to the actual 
value for the target variable and an error is computed for each observation. The errors are 
"fed back" through the network and new weights are computed to reduce the overall 
error. Despite the neural network terminology, the training process is actually a 
statistical optimization procedure. Typically, the procedure minimizes the sum of  the 
squared residuals: 

M i n ( E ( Y  - 17) 2 ) 

Warner and Misra (Warner and Misra, 1996) point out that neural network analysis is in 
many ways like linear regression, which can be used to fit a curve to data. Regression 
coefficients are solved for by minimizing the squared deviations between actual 
observations on a target variable and the fitted value. In the case of linear regression, the 
curve is a straight line. Unlike linear regression, the relationship between the predicted 
and target variable in a neural network is nonlinear, therefore a closed form solution to 
the minimization problem does not exist. In order to minimize the loss function, a 
numerical technique such as gradient descent (which is similar to backpropagation) is 
used. Traditional statistical procedures such as nonlinear regression, or the solver in 
Excel use an approach similar to neural networks to estimate the parameters of  nonlinear 
functions. A brief description of  the procedure is as follows: 

1. Initialize the neural network model using an initial set of weights (usually 
randomly chosen). Use the initialized model to compute a fitted value for an 
observation. 

2. Use the difference between the fitted and actual value on the target variable to 
compute the error. 
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3. Change the weights by a small amount that will move them in the direction of a 
smaller error 

• This involves multiplying the error by the partial derivative of the 
function being minimized with respect to the weights. This is because 
the partial derivative gives the rate of change with respect to the 
weights. This is then multiplied by a factor representing the "learning 
rate" which controls how quickly the weights change. Since the 
function being approximated involves logistic functions of tbe weights 
of the output and hidden layers, multiple applications of the chain rule 
are needed. While the derivatives are a little messy to compute, it is 
straightforward to incorporate them into software for fitting neural 
networks. 

4. Continue the process until no further significant reduction in the squared error can 
be obtained 

Further details are beyond the scope of this paper. However, more detailed information is 
supplied by some authors (Warner and Misra, 1996, Smith, 1996). The manuals of a 
number of  statistical packages (SAS Institute, 1988) provide an excellent introduction to 
several numerical methods used to fit nonlinear functions. 

Fitting, the Neural Network 
For the more ambitious readers who wish to create their own program for fitting neural 
networks, Smith (Smith, 1996) provides an Appendix with computer code for 
constructing a backpropagation neural network. A chapter in the book computes the 
derivatives mentioned above, which are incorporated into the computer code. 

However, the assumption for the purposes of this paper is that the overwhelming majority 
of readers will use a commercial sottware package when fitting neural networks. Many 
hours of development by advanced specialists underlie these tools. Appendix 1 discusses 
some of  the software options available for doing neural network analysis. 

The Fitted Curve: 
The parameters fitted by the neural network are shown in Table 1. 

Table 1 
WO Wl 

Input Node to Hidden Node -3.088 3.607 
Hidden Node to Output Node -1.592 5.281 
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To produce the fitted curve from these coefficients, the following procedure must be 
used: 

1. Normalize each xi by subtracting the minimum observed value 2 and dividing by the 
scale coefficient equal to the maximum observed X minus the minimum observed X. 
The normalized values will be denoted X*. 

2. Determine the minimum observed value for Y and the scale coefficient for y3. 
3. For each normalized observation x*~ compute 

1 
h (  x *i ) = ! + e - I -3"088+ j 

4. For each h (x'i) compute 

1 
o ( h ( x * i ) )  1 + e  -~-Isg~,5281h~x'" 

Compute the estimated value for each yi by multiplying the normalized value from 
the output layer in step 4 by the Y scale coefficient and adding the Y constant. This 
value is the neural network's predicted value for Yi. 

Table 2 displays the calculation for the first 10 observations in the sample. 

2 10.88 in this example. The scale parameter is 2.28 
3 In this exlmple the Y minimum was 111.78 ~ the scale parameter was 697.04 
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Table 2 

(1) (2) (3) (4) (5) (8) (7) (8) 
Input Pattern Weighted X 

X Y Normalized X Input Logistic(Wt X) Weighted Node 2 Logistic Rescaled Predicted 
((1)-10.88)12.28 -3,088*3.607"(3) ll(l*exp(-(4))) -1.5916+5.2814"(5) 1/(l+exp(-(6))) 697.04"(7)+111.78 

t~ 

12.16 665.0 0.5613 -1.0634 0.2567 -0.2361 0.4413 419.4 
11.72 344.6 0.3704 -1,7518 0.1478 -0.6109 0,3077 326.3 
11.39 281.7 0.2225 -2.2854 0,0923 -1.1039 0.2490 285.3 
12.02 423.9 0.4999 -1.2850 0.2167 -0.4471 0,3900 383.7 
12.63 519.4 0.7679 -0.3184 0.4211 0,6323 0,5530 566.9 
11.19 366.7 0,1359 -2.5978 0.0693 -1.2257 0,2269 270.0 
13.06 697.2 0.9581 0.3678 0.5909 1 5294 0,8219 684.7 
11,57 368.6 0,3011 -2.0020 0.1190 -0,9631 0.2763 304.3 
11,73 423.6 0.3709 -1.7501 0.1480 -0.8098 0.3079 326.4 

1,05 221.4 0.0763 -2.8128 0.0566 -1.2925 0.2154 261,9 



Figure 6 provides a look under the hood at the neural network's fitted functions. The 
graph shows the output of  the hidden layer node and the output layer node after 
application of  the logistic function. The outputs of each node are an exponential-like 
curve, but the output node curve is displaced upwards by about .2 from the hidden node 
curve. Figure 7 displays the final result of  the neural network fitting exercise: a graph of  
the fitted and "true" values of  the dependent variables versus the input variable. 

Figure 6 
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It is natural to compare this fitted value to that obtained from fitting a linear regression to 
the data. Two scenarios were used in fitting the linear regression. First, a simple straight 
line was fit, since the nonlinear nature of the relationship may not be apparent to the 
analyst. Since Y is an exponential function of X, the log transformation is a natural 
transformation for Y. However, because the error term in this relationship is additive, not 
multiplicative, applying the log transformation to Y produces a regression equation which 
is not strictly linear in both X and the error term: 

B x B X 

Y = A e  2 +oo__~ln(Y)=ln(Ae 2 + 6 ) = I n ( Y ) = l n ( A ) + B X + E  
2 

Nonetheless, the log transformation should provide a better approximation to the true 
curve than fitting a straight line to the data. The regression using the log of Y as the 
dependent variable will be referred to as the exponential regression. It should be noted 
that the nonlinear relationship in this example could be fit using a nonlinear regression 
procedure which would address the concern about the log transform not producing a 
relationship which is linear in both X and c. The purpose here, however, is to keep the 
exposition simple and use techniques that the reader is familiar with. 

The table below presents the goodness of fit results for both regressions and the neural 
network. Most neural network software allows the user to hold out a portion of the 
sample for testing. This is because most modeling procedures fit the sample data better 
than they fit new observations presented to the model which were not in the sample. Both 
the neural network and the regression models were fit to the first 80 observations and 
then tested on the next 20. The mean of the squared errors for the sample and the test 
data is shown in Table 3 

Table 3 
Method Sample MSE Test MSE 
Linear Regression 4,766 8,795 
Exponential Regression 4,422 7,537 
Neural Network 4,928 6,930 

As expected, all models fit the sample data better than they fit the test data. This table 
indicates that both of  the regressions fit the sample data better than the neural network 
did, but the neural network fit the test data better than the regressions did. 

The results of this simple example suggest that the exponential regression and the neural 
network with one hidden node are fairly similar in their predictive accuracy. In general, 
one would not use a neural network for this simple situation where there is only one 
predictor variable, and a simple transformation of one of the variables produces a curve 
which is a reasonably good approximation to the actual data. In addition, if the true 
function for the curve were known by the analyst, a nonlinear regression technique would 
probably provide the best fit to the data. However, in actual applications, the functional 
form of  the relationship between the independent and dependent variable is often not 
known. 
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A graphical comparison of the fitted curves frGm the regressions, the neural network and 
the "true" values is shown ,in Figure 8. 

Figu re 8 

Fitted versus True Y for Various Mode ls  
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The graph indicates that both the exponential regression and the neural network model 
provide a reasonably good fit to the data. 

The Io~,istic function revisited 
The two parameters of the logistic function give it a lot of flexibility in approximating 
nonlinear curves. Figure 9 presents logistic curves for various values of the coefficient 
w). The coefficient controls the steepness of the curve and how quickly it approached its 
maximum and minimum values of 1 and -1. Coefficients with absolute values less than 
or equal to 1 produce curves which are straight lines. Figure 10 presents the effect of  
varying w0 on logistic curves. 
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Figure 9 

Logistic Function for Various Values of wl I 
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Varying the values o f  w0 while holding wL constant shifts the curve right or left. A great 
variety o f  shapes can be obtained by varying the constant and coefficients o f  the logistic 
functions. A sample o f  some o f  the shapes is shown in Figure I I. Note that the X values 
on the graph are limited to the range o f  O to 1, since this is what the neural networks use. 
In the previous example the combination o f  shifting the curve and adjusting the steepness 
coefficient was used to define a curve that is exponential in shape in the region between 0 
and 1. 

Constant=2 
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Using Neural Networks to Fit a Complex Nonlinear Function: 

To facilitate a clear introduction to neural networks and how they work, the first example 
in this paper was intentionally simple. The next example is a somewhat more complicated 
CHIVe .  

Example 2: A more complex curve 
The function to be fit in this example is o f  the following form: 

f(X) = In(X) + sin(6Xs) 

X - U(500,5000) 

e - N(0,.2) 

Note that U denotes the uniform distribution, and 500 and 5,000 are the lower and upper 
ends o f  the range o f  the distribution. 

A scatterplot o f  200 random values for Y along with the "true" curve are shown in Figure 
12 

Figure 12 

Scatterplot  o f  Y = s in(X/675)+ ln(X)  + e 

! 

X 

This is a more complicated function to fit than the previous exponential function. It 
contains two "humps" where the curve changes direction. To illustrate how neural 
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networks approximate functions, the data was fit using neural networks of different sizes. 
The results from fitting this curve using two hidden nodes will be described first. Table 4 
displays the weights obtained from training for the two hidden nodes. W0 denotes the 
constant and Wi denotes the coefficient applied to the input data. The result of  applying 
these weights to the input data and then applying the logistic function is the values for the 
hidden nodes. 

Table 4 
W0 WI 

Node i -4.107 7.986 
Node 2 6.549 -7.989 

A plot of  the logistic functions for the two intermediate nodes is shown below (Figure 
13). The curve for Node 1 is S shaped, has values near 0 for low values of  X and 
increases to values near 1 for high values of X. The curve for Node 2 is concave 
downward, has a value of I for low values of X and declines to about .2 at high values of 
X. 

Figure 13 
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Table 5 presents the fitted weight~ connecting the hidden layer to the output layer: 

Table 5 
W0 Wl 
6.154 -3.0501 

W2 
-6.427 
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Table 6 presents a sample of applying these weights to several selected observations from 
the training data to which the curve was fit. The table shows that the combination of the 
values for the two hidden node curves, weighted by the coefficients above produces a 
curve which is like a sine curve with an upward trend. At tow values of X (about 500), 
the value of node 1 is low and node 2 is high. When these are weighted together, and the 
logistic function is applied, a moderately low value is produced. At values of X around 
3,000, the values of both nodes 1 and 2 are relatively high. Since the coefficients of both 
nodes are negative, when they are weighted together, the value of the output function 
declines. At high values of X, the value of node 1 is high, but the value ofnode 2 is low. 
When the weight for node 1 is applied (-3.05) and is summed with the constant the 
value of the output node reduced by about 3. When the weight for node 2 (-6.43) is 
applied to the low output of node 2 (about .2) and the result is summed with the constant 
and the first node, the output node value is reduced by about 1 rcsulting in a weighted 
hidden node output of  about 2. After the application of the logistic function the value of  
the output node is relatively high, i.e. near 1. Since the coefficient of  node 1 has a lower 
absolute value, the overall result is a high value for the output function. Figure 14 
presents a graph showing the values of the hidden nodes, the weighted hidden nodes 
(after the weights are applied to the hidden layer output but betbre the logistic function is 
applied) and the value ofthe output node (after the logistic function is applied to the 
weighted hidden node values). The figure shows how the application of the logistic 
function to the weighted output of the two hidden layer nodes produccs a highly 
nonlinear curve. 

Table 6 
Computation of Predicted Values for Selected Values of X 

(3) (4) 
((1)-508)/4994 

X Normalized X Output of Output of 
Node 1 I Node 2 

508.48 0.00 0.016 0.999 
1,503.00 0.22 0.088 0.992 
3,013.40 0.56 0.596 0.890 
4,994.80 1.00 0.980 0.1901 

(5) (6) (7) 
6.15- l / ( l+exp(- 6.52+3.56 
3.05"(3)- (5)) "(6) 
6.43*(4) 
Weighted Output Predicted 
Hidden Node Y 
Node Logistic 
Output ,Function , 

-0.323 0.420 7.889 
-0.498 0.378 7.752 
-1.392 0.199 7.169 
1.937 0.874 9.369 

Figure 15 shows the fitted curve and the "true" curve for the two node neural network 
just described. One can conclude that the fitted curve, although producing a highly 
nonlinear curve, does a relatively poor job of  fitting the curve for low values of X. It 
turns out that adding an additional hidden node significantly improves the fit of the curve. 
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Figure 14 
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Table 7 displays the weights connecting the hidden node to the output node for the 
network with 3 hidden nodes. Various aspects of the hidden layer are displayed in Figure 
16. In Figure 16, the graph labeled "Weighted Output of Hidden Node" displays the 
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result of applying the Table 7 weights obtained from the training data to the output from 
the hidden nodes. The combination of weights, when applied to the three nodes produces 
a result which first increases, then decreases, then increases again. When the logistic 
function is applied to this output, the output is mapped into the range 0 to I and the curve 
appears to become a little steeper. The result is a curve that looks like a sine function 
with an increasing trend. Figure 17 displays the fitted curve, along with the "'true" Y 
value. 

Weight 0 
-4.2126 

Table 7 
Weight 1 
6.8466 

Weight 2 
-7.999 

Weight 3 
~6.0722 
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Figure 17 
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It is clear that the three node neural network provides a considerably better fit than the 
two node network. One of the features of neural networks which affects the quality of 
the fit and which the user must often experiment with is the number of hidden nodes. If 
too many hidden nodes are used, it is possible that the model will be overparameterized. 
However, an insufficient number of nodes could be responsible for a poor approximation 
of the function. 

This particular example has been used to illustrate an important feature of neural 
networks: the multilayer perceptron neural network with one hidden layer is a universal 
function approximator. Theoretically, with a sufficient number of nodes in the hidden 
layer, any nonlinear function can be approximated. In an actual application on data 
containing random noise as well as a pattern, it can sometimes be difficult to accurately 
approximate a curve no matter how many hidden nodes there are. This is a limitation that 
neural networks share with classical statistical procedures. 

Neural networks are only one approach to approximating nonlinear functions. A number 
of other procedures can also be used for function approximation. A conventional 
statistical approach to fitting a curve to a nonlinear function when the form of the 
function is unknown is to fit a polynomial regression: 

Y =a+blX+b2X2 . . .+bnX n 

th Using polynomial regression, the function is approximated with an n degree polynomial. 
Higher order polynomials are used to approximate more complex functions. In many 
situations polynomial approximation provides a good fit to the data. Another advanced 
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method for approximating nonlinear functions is to fit regression splines. Regression 
splines fit piecewise polynomials to the data. The fitted polynomials are constrained to 
have second derivatives at each breakpoint; hence a smooth curve is produced. 
Regression splines are an example ofcontemporary data mining tools and will not be 
discussed further in this paper. Another function approximator that actuaries have some 
familiarty with is the Fourier transform which uses combinations of sine and cosine 
functions to approximate curves. Among actuaries, their use has been primarily to 
approximate aggregate loss distributions. Heckman and Meyers (Heckman and Meyers, 
1983) popularized this application. 

In this paper, since neural networks are being compared to classical statistical procedures, 
the use of polynomial regression to approximate the curve will be illustrated. Figure 18 
shows the result of fitting a 4 th degree polynomial curve to the data from Example 2, 
This is the polynomial curve which produced the best fit to the data. It can be concluded 
from Figure 18 that the polynomial curve produces a good fit to the data. This is not 
surprising given that using a Taylor series approximation both the sine function and log 
function can be approximated relatively accurately by a series of polynomials, 

Figure 18 allows the comparison of both the Neural Network and Regression fitted 
values. It can be seen from this graph that both the neural network and regression 
provide a reasonable fit to the curve. 

Figure 18 
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While these two models appear to have similar fits to the simulated nonlinear data, the 
regression slightly outperformed the neural network in goodness of  fit tests. The r 2 for the 
regression was higher for both training (.993 versus .986) and test (.98 versus .94) data. 

Correlated Variables and Dimension Reduction 

The previous sections discussed how neural networks approximate functions of a variety 
of shapes and the role the hidden layer plays in the approximation. Another task 
performed by the hidden layer of neural networks will be discussed in this section: 
dimension reduction. 

Data used for financial analysis in insurance often contains variables that are correlated. 
An example would be the age of a worker and the worker's average weekly wage, as 
older workers tend to earn more. Education is another variable which is likely to be 
correlated with the worker's income. All of these variables will probably influence 
Workers Compensation indemnity payments. It could be difficult to isolate the effect of 
the individual variables because of the correlation between the variables. Another 
example is the economic factors that drive insurance inflation, such as inflation in wages 
and inflation in the medical care. For instance, analysis of monthly Bureau of Labor 
Statistics data for hourly wages and the medical care component of the CPI from January 
of 1994 through May of 2000 suggest these two time series have a (negative) correlation 
of about .9 (See Figure l 9). Other measures of economic inflation can be expected to 
show similarly high correlations. 

Figure 19 
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Suppose one wanted to combine all the demographic factors related to income level or all 
the economic factors driving insurance inflation into a single index in order to create a 
simpler model which captured most of the predictive ability of the individual data series. 
Reducing many factors to one is referred to as dimension reduction. In classical 
statistics, two similar techniques for performing dimension reduction are Factor Analysis 
and Principal Components Analysis. Both of these techniques take a number of 
correlated variables and reduce them to fewer variables which retain most of the 
explanatory power of the original variables. 

The assumptions underlying Factor Analysis will be covered first. Assume the values on 
three observed variables are all "caused" by a single factor plus a factor unique to each 
variable. Also assume that the relationships between the factors and the variables are 
linear. Such a relationship is diagrammed in Figure 20, where F1 denotes the common 
factor, U1, U2 and U3 the unique factors and X1, X2 and X3 the variables. The causal 
factor FI is not observed. Only the variables X1, X2 and X3 are observed. Each of the 
unique factors is independent of the other unique factors, thus any observed correlations 
between the variables is strictly a result of their relation to the causal factor F 1. 

F i g u r e  2 0  

One Factor Model 

///•,X 1 " -  - UI 

j ~  

FU" * X 2 ,  - U2 

~ 3  * U3 

For instance, assume an unobserved factor, social inflation, is one of the drivers of  
increases in claims costs. This factor reflects the sentiments of large segments of the 
population towards defendants in civil litigation and towards insurance companies as 
intermediaries in liability claims. Although it cannot be observed or measured, some of 
its effects can be observed. Examples are the change over time in the percentage of 
claims being litigated, increases in jury awards and perhaps an index of the litigation 
environment in each state created by a team of lawyers and claims adjusters. In the social 
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sciences it is common to use Factor Analysis to measure social and psychological 
concepts that cannot be directly observed but which can influence the outcomes of  
variables that can be directly observed. Sometimes the observed variables are indices or 
scales obtained from survey questions. 

The social inflation scenario might be diagrammed as follows: 

Figure 21 
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In scenarios such as this one, values for the observed variables might be used to obtain 
estimates for the unobserved factor. One feature of  the data that is used to estimate the 
factor is the correlations between the observed variables: If there is a strong relationship 
between the factor and the variables, the variables will be highly correlated. If  the 
relationship between the factor and only two of the variables is strong, but the 
relationship with the third variable is weak, then only the two variables will have a high 
correlation. The highly correlated variables will be more important in estimating the 
unobserved factor. A result of Factor Analysis is an estimate of the factor (FI) for each 
of  the observations. The F1 obtained for each observation is a linear combination of  the 
values for the three variable for the observation. Since the values for the variables will 
differ from record to record, so will the values for the estimated factor. 

Principal Components Analysis is in many ways similar to Factor Analysis. It assumes 
that a set of variables can be described by a smaller set of  factors which are linear 
combinations of the variables. The correlation matrix for the variables is used to estimate 
these factors. However, Principal Components Analysis makes no assumption about a 
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causal relationship between the factors and the variables. It simply tries to find the 
factors or components  which seem to explain most  o f  the variance in the data, Thus both 
Factor Analysis  and Principal Components  Analysis  produce a result of  the form: 

= w~X~ + ~,v,_X:...+ w ) (  

where 

i is an estimate o f  the index or factor being constructed 
Xi ..X, are the observed variables used to construct the index 
w~ ..w, are the ~ eights applied to the variables 

An example o f  creating an index from observed variables is combining observations 
related to lit igiousness and the legal environment  to produce a social inflation index. 
Another example is combining economic inflationary variables to construct an economic 
inflation index for a line o f  business,  a Factor analysis or Principal Components  Analysis 
can be used to do this. Somet imes the values observed on ~ ariabtes are the result o f  or 
"caused" by more than one underlying factor. The Factor Analysis and Principal 
Components  approach can be generalized to find multiple factors or radices, when the 
obsers'ed variables are the result of  more than one unobserved factor 

One can then use these indices in further analyses and discard the original variables. 
Using this approach, the analyst achieves a reduction in the number  of  variables used to 
model thc data and can construct a more parsimonious model. 

- S .  

Factor Analysts  ts an example of  a more general class o f  models known as Latent 
Variable Models. For instance, observed values on categorical variables may also be the 
result o f  unobserved factors. It would be difficult to use Factor Analysis  to estimate the 
underlying factors because it requires data from continuous variables, thus an alternative 
procedure is required. While a discussion o f  such procedures is beyond lhe scope o f  this 
paper, the procedures do exist. 

It is informative to examine the similarities between Factor Analysis  and Principal 
Components  Analysis  and neural networks. Figure 22 diagrams lhc relationship between 
input variables, a single unobserved factor and the dependent variable. In the scenario 
diagrammed,  the input variables are used to derive a single predictive index (FI)  and the 
index is used to predict the dependent variable. Figure 23 diagrams the neural network 
being applied to the same data. Instead o f  a factor or index, the neural network has a 
hidden layer with a single node. The Factor Analysis  index is a weighted linear 
combination o f  the input variables, while in the typical MLP ncural network, the hidden 
layer is a weighted nonlinear combination o f  the input variables. The dcpcndent variable 
is a linear function o f  the Factor in the case o f  Factor Analysis  and Principal Components  
Analysis and (possibly) a non linear function o f  the hidden layer in the case o f  the MLP. 
Thus,  both procedures can be viewed as performing dimension reduction. In the casc o f  

In fact Maslerson created such indices for the Property and Casualty lines m the 1960s, 
s Principal Componenls, because it does not have an underlying causal facrm is nol a lalenr variable model 

282  



neural networks, the hidden layer performs the dimension reduction. Since it is 
performed using nonlinear functions, it can be applied where nonlinear relationships 
exist. 

Example 3: Dimension reduction 
Both Factor Analysis and neural networks will be fit to data where the underlying 
relationship between a set of independent variables and a dependent variable is driven by 
an underlying unobserved factor. An underlying causal factor, F a c t o r l ,  is generated 
from a normal distribution: 

F a c t o r l  ~ N(1.05,.025) 

On average this factor produces a 5% inflation rate. To make this example concrete 
F a c t o r l  will represent the economic factor driving the inflationary results in a line of 
business, say Workers Compensation. F a c t o r l  drives the observed values on three 
simulated economic variables, Wage Inflation, Medical Inflation and Benefit Level 
Inflation. Although unrealistic, in order to keep this example simple it was assumed that 
no factor other than the economic factor contributes to the value of these variables and 
the relationship of  the factors to the variables is approximately linear. 

Figure 22 
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Figure 23 
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Also, to keep the example simple it was assumed that one economic factor drives 
Workers Compensation results. A more realistic scenario would separately model the 
indemnity and medical components of  Workers Compensation claim severity. The 
economic variables are modeled as followsr: 

l n ( W a g e l n f l a t i o n )  = .7 * ln(  F a c t o r l )  + e 

e -  N(0,.005) 

In( M e d i c a l l n f i a t i o n  ) = 1.3 * In( F a c t o r l  ) + e 

e -  N(0,.01) 

I n ( B e n e f i t  _ l e v e l  _ t r e n d )  = .5 * ln(  F a c t o r l  ) + e 

e ~ N(0,.005) 

Two hundred fi~y records of  the unobserved economic inflation factor and observed 
inflation variables were simulated. Each record represented one of  50 states for one of  5 
years. Thus, in the simulation, inflation varied by state and by year. The annual inflation 
rate variables were converted into cumulative inflationary measures (or indices). For each 
state, the cumulative product of  that year's factor and that year's observed inflation 

6 Note that the according to Taylor's theorem the natural log of a variable whose value is close to one is 
approximately equal to 1 minus the vartable's value, i.e., ln(l+x) ~ x. Thus, the economic variables are, to 
a close approximatton, linear functions of the factor. 
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measures (the random observed variables) were computed. For example the cumulative 
unobserved economic factor is computed as: 

t 
C u m f a c t o r l  t = [1 F a c t o r l  k 

k=l 

A base severity, intended to represent the average severity over all claims for the line of 
business for each state for each of the 5 years was generated from a lognormal 
distribution. 7 To incorporate inflation into the simulation, the severity for a given state 
for a given year was computed as the product of  the simulated base severity and the 
cumulative value for the simulated (unobserved) inflation factor for its state. Thus, in 
this simplified scenario, only one factor, an economic factor is responsible for the 
variation over time and between states in average severity. The parameters for these 
variables were selected to make a solution using Factor Analysis or Principal 
Components Analysis straightforward and are not based on an analysis of real insurance 
data. This data therefore had significantly less variance than would be observed in actual 
insurance data. 

Note that the correlations between ihe variables is very" high. All correlations between the 
variables are at least .9. This means that the problem of multicollineariy exists in this 
data set. That is, each variable is nearly identical to the others, adjusting for a constant 
multiplier, so typical regression procedures have difficulty estimating the parameters of  
the relationship between the independent variables and severity. Dimension reduction 
methods such as Factor Analysis and Principal Components Analysis address this 
problem by reducing the three inflation variables to one, the estimated factor or index. 

Factor Analysis was performed on variables that were standardized. Most Factor 
Analysis software standardizes the variables used in the analysis by subtracting the mean 
and dividing by the standard deviation of  each series. The coefficients linking the 
variables to the factor are called loadings. That is: 

Xl  = bt Factor1 
X2 = b2 Factorl 
X3 = b3 Factorl 

Where Xl ,  X2 and X3 are the three observed variables, Factorl is the single underlying 
factor and b~, b2 and b3 are the Ioadings. 

In the case of Factor Analysis the Ioadings are the coefficients linking a standardized 
factor to the standardized dependent variables, not the variables in their original scale. 
Also, when there is only one factor, the loadings also represent the estimated correlations 
between the factor and each variable. The loadings produced by the Factor Analysis 
procedure are shown in Table 8. 

7 This distribution will have an average of 5,000 the fwst year (after application of the inflationary factor for 
year I). Also In(Severity) ~ N(8.47,.05) 
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Table 8 
Variable Loading Weights 
Wage Inflation Index .985 .395 
Medical Inflation Index .988 .498 
Benefit Level Inflation Index .947 .113 

Table 8 indicates that all the variables have a high loading on the factor, and thus all are 
likely to be important in the estimation of an economic index. An index value was 
estimated for each record using a weighted sum of the three economic variables. The 
weights used by the Factor Analysis procedure to compute the index are shown in Table 
8. Note that these weights (within rounding error) sum to 1. The new index was then 
used as a dependent variable to predict each state's severity for each year. The 
regression model was of the form: 

Index =.395 (Wage Inflation)+.498(Medical Inflation)+. 113(Benefit Level Inflation) 

S e v e r i t y  = a + b * I n d e x  + e 

where 

S e v e r i t y  is the simulated severity 
I n d e x  is the estimated inflation Index from the Factor Analysis procedure 
e is a random error term 

The results of the regression will be discussed below where they are compared to those of  
the neural network. 

The simple neural network diagramed in Figure 23 with three inputs and one hidden node 
was used to predict a severity for each state and year. Figure 24 displays the relationship 
between the output of the hidden layer and each of the predictor variables. The hidden 
node has a linear relationship with each of the independent variables, but is negatively 
correlated with each of the variables. The relationship between the neural network 
predicted value and the independent variables is shown in Figure 25. This relationship is 
linear and positively sloped. The relationship between the unobserved inflation factor 
driving the observed variables and the predicted values is shown in Figure 26. This 
relationship is positively sloped and nearly linear. Thus, the neural network has produced 
a curve which is approximately the same form as the "true" underlying relationship. 
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Figure 24 
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F i g u r e  25 
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Intervretin~ the Neural Network Model 
With Factor Analysis, a tool is provided for assessing the influence of a variable on a 
Factor and therefore on the final predicted value. The tool is the factor Ioadings which 
show the strength of the relationship between the observed variable and the underlying 
factor. The Ioadings can be used to rank each variable's importance. In addition, the 
weights used to construct the index s reveal the relationship between the independent 
variables and the predicted value (in this case the predicted value for severity). 

Because of the more complicated functions involved in neural network analysis, 
interpretation of the variables is more challenging. One approach (Potts, 1999) is to 
examine the weight connecting the input variables to the hidden layer. Those which are 
closest to zero are least important. A variable is deemed unimportant only ifaU of these 
connections are near zero. Table 9 displays the values for the weights connecting the 
input layer to the hidden layer. Using this procedure, no variable in this example would 
be deemed "unimportant". This procedure is typically used to eliminate variables from a 
model, not to quantify their impact on the outcome. While it was observed above that 
application of  these weights resulted in a network that has an approximate linear 
relationship with the predictor variables, the weights are relatively uninformative for 
determining the influence of  the variables on the fitted values. 

Table 9: Factor Example Parameters 
Wo Wl W2 W3 
2.549 -2.802 -3.010 0.662 

Another approach to assessing the predictor variables' importance is to compute a 
sensitivity for each variable (Potts, 1999). The sensitivity is a measure of  how much the 
predicted value's error increases when the variables are excluded from the model one at a 
time. However, instead of actually excluding variables, they are fixed at a constant value. 
The sensitivity is computed as follows: 

1. Hold one of the variables constant; say at its mean or median value. 
2. Apply the fitted neural network to the data with the selected variable held 

constant. 
3. Compute the squared errors for each observation produced by these modified 

fitted values. 
4. Compute the average of the squared errors and compare ~t to the average squared 

error of  the full model. 
5. Repeat this procedure for each variable used by the neural network. The 

sensitivity is the percentage reduction in the error of the full model, compared to 
the model excluding the variable in question. 

6. If desired, the variables can be ranked based on their sensitivities. 

s This would be computed as the product of each variable's weight on the factor limes the coefficient of  the 
factor in a linear regression on the dependent variable (.85 in this example). 
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Since the same set of parameters is used to compute the sensitivities, this procedure does 
not require the user to refit the model each time a variable's importance is being 
evaluated, The following table presents the sensitivities of the neural network model 
fitted to the factor data. 

Table 10 
Sensitivities of Variables in Factor Example 
Benefit Level 23.6% 
Medical Inflation 33.1% 
Wage Inflation 6.0% 

According to the sensitivities, Medical Inflation is the most important variable followed 
by Benefit Level and Wage Inflation is the least important. This contrasts with the 
importance rankings of Benefit Level and Wage Inflation in the Factor Analysis, where 
Wage Inflation was a more important variable than Benefit Level. Note that these are the 
sensitivities for the particular neural network fit. A different initial starting point for the 
network or a different number of hidden nodes could result in a model with different 
sensitivities. 

Figure 27 shows the actual and fitted values for the neural network and Factor Analysis 
predicted models. This figure displays the fitted values compared to actual randomly 
generated severities (on the left) and to "true" expected severities on the right. The x-axis 
of the graph is the "true" cumulative inflation factor, as the severities arc a linear 
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function of the factor. However, it should be noted that when working with real data, 
information on an unobserved variable would not be available. 

The predicted neural network values appear to be more jagged than the Factor Analysis 
predicted values. This jaggedness may reflect a weakness of neural networks: over 
fitting. Sometimes neural networks do not generalize as well as classical linear models, 
and fit some of the noise or randomness in the data rather than the actual patterns. 
Looking at the graph on the right showing both predicted values as well as the "true" 
value, the Factor Analysis model appears to be a better fit as it has less dispersion around 
the "true" value. Although the neural network fit an approximately linear model to the 
data, the Factor Analysis model performed better on the data used in this example. The 
Factor Analysis model explained 73% of the variance in the training data compared to 
71% explained by the neural network model and 45% of the variance in the test data 
compared to 32% for the neural network. Since the relationships between the independent 
and dependent variables in this example are approximately linear, this is another instance 
of a situation where a classical linear model would be preferred over a more complicated 
neural network procedure. 

Interactions 

Another common feature of data which complicates the statistical analysis is interactions. 
An interaction occurs when the impact of two variables is more or less than the sum of 
their independent impacts. For instance, in private passenger automobile insurance, the 
driver's age may interact with territory in predicting accident frequencies. When this 
happens, youthful drivers have a higher accident frequency in some territories than that 
given by multiplying the age and territory relativities. In other territories it is lower. An 
example of this is illustrated in Figure 28, which shows hypothetical c u r v e s  9 of expected 
or "true"(not actual) accident frequencies by age for each of four territories. 

The graph makes it evident that when interactions are present, the slope of the curve 
relating the dependent variable (accident frequency) to an independent variable varies 
based on the values of a third variable (territory). It can be seen from the figure that 
younger drivers have a higher frequency of accidents in territories 2 and 3 than in 
territories 1 and 4. It can also be seen that in territory 4, accident frequency is not related 
to age and the shape and slope of the curve is significantly different in Territory 1 
compared to territories 2 and 3. 

9 The curves are based on s~nulated data. However  data from the Baxter (Venebles and Ripley) automobile 
claims database was used to develop parameters for the simulation. 
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Figure 28 
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As a result of interactions, the true expected frequency cannot be accurately estimated by 
the simple product of  the territory relativity times the age relativity. The interaction of 
the two terms, age and territory, must be taken into account. In linear regression, 
interactions are estimated by adding an interaction term to the regression. For a 
regression in which the classification relativities are additive: 

Yta = B0 + (Bt * Territory) + (B=*Age) + (B= * Territory * Age) 

Vl/here: 

Y= = is either a pure premium or loss ratio for territory t and age a 
B0 = the regression constant 
Bt, Ba and Bat a re  coefficients of the Territory, Age and the Age, Territory interaction 

It is assumed in the regression model above that Territory enters the regression as a 
categorical variable. That is, if  there are N territories, N-1 dummy variables are created 
which take on values of  either I or 0, denoting whether an observation is or is not from 
each of  the territories. One territory is selected as the base territory, and a dummy 
variable is not created for it. The value for the coefficient B0 contains the estimate of  the 
impact of the base territory on the dependent variable. More complete notation for the 
regression with the dummy variables is: 

Yt~ = B0 + Btl*T1 + Bt2*T2 + Bt3 * T3 +B=*Age + Batl* Tl*Age+ Bat2* T2*Age+ Bat3* 
T3*Age 

where TI, T2 and T3 are the dummy variables with values of either I or 0 described 
above and Btl - Bt3 are the coefficients of the dummy variables and Bail-  Bat3* are 
coefficients of the age and territory interaction terms. Note that most major statistical 
packages handle the details of converting categorical variables to a series of dummy 
variables. 

The interaction term represents the product of the territory dummy variables and age. 
Using interaction terms allows the slope of the fitted line to vary by territory. A similar 
formula to that above applies if the class relativities are multiplicative rather than 
additive; however, the regression would be modeled on a log scale: 

ln(Y~ )= B*0 + (B*t * Territory) + (B 'a 'Age)  + (B'at * Territory * Age) 

where 
B*0, B' t ,  B*= and B'at are the log scale constant and coefficients of the Territory, Age 
and Age, Territory interaction. 

Examole 3: Interactions 
To illustrate the application of  both neural networks and regression techniques to data 
where interactions are present 5,000 records were randomly generated. Each record 
represents a policyholder. Each policyholder has an underlying claim propensity 
dependent on his/her simulated a g e  and territory, including interactions between these 
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two variables. The underlying claim propensity for each age and territory combination 
was that depicted above in Figure 28. For instance, in territory 4 the claim frequency is a 
fiat .12. In the other territories the claim frequency is described by a curve. The claim 
propensity served as the Poisson parameter for claims following the Poisson distribution: 

"~'6 x 

P(X = x ; 2 ~ ) =  x! e a~' 

Here k,j is the claim propensity or expected claim frequency for each age, territory 
combination. The claim propensity parameters were used to generate claims from the 
Poisson distribution for each o f  the 5,000 policyholders.l° 

Models for count data 
The claims prediction procedures described in this section apply models to data with 
discrete rather than continuous outcomes. A policy can be viewed as having two possible 
outcomes: a claim occurs or a claim does not occur. We can assign the value 1 to 
observations with a claim and 0 to observations without a claim. The probability the 
policy will have a value o f  I lies in the range 0 to 1. When modeling such variables, it is 
useful to use a model where the possible values for the dependent variable lie in this 
range. One such modeling technique is logistic regression. The target variable is the 
probability that a given policyholder will have a claim, and this probability is denoted 
p(x). The model relatingp(x) to the a vector o f  independent variables x is: 

l n ( i P  ; x ) = B  o+B~X~+...+B.X. 
- p  

where the quantity ln(p(x)/(l-p(x))) is known as the logit function. 

In general, specialized software is required to fit a logistic regression to data, since the 
logit function is not defined on individual observations when these observations can take 
on only the values 0 or 1. The modeling techniques work from the likelihood functions, 
where the likelihood function for a single observation is: 

/ ( x ,  ) = p ( x ; ) " ,  (1 - p ( x ,  ) '-  "~ ) 

I 
p(x;)  - 

Where xil. . .xi,  are the independent variables for observation i, y, is the response (either 0 
or !) and BI..B, are the coefficients o f  the independent variables in the logistic 
regression. This logistic function is similar to the activation function used by neural 
networks. However, the use o f  the logistic function in logistic regression is very different 
from its use in neural networks. In logistic regression, a transform, the logit transform, is 

m The overall distribution of drivers by age used in the simulation was based on fitting a curve to 
infoznmtion from the US Department of Transportation web site. 
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applied to a target variable modeling it directly as a function of predictor variables. After 
parameters have been fit, the function can be inverted to produce fitted frequencies. The 
logistic functions in neural networks have no such straightforward interpretation. 
Numerical techniques are required to fit logistic regression when the maximum 
likelihood technique is used. Hosmer and Lemshow (Hosmer and Lemshow, 1989) 
provide a clear but detailed description of the maximum likelihood method for fitting 
logistic regression. Despite the more complicated methods required for fitting the model, 
in many other ways, logistic regression acts like ordinary least squares regression, albeit, 
one where the response variable is binary. In particular, the logit of the response variable 
is a linear function of the independent variables. In addition interaction terms, 
polynomial terms and transforms of the independent variables can be used in the model. 

A simple approach to performing logistic regression (Hosmer and Lemshow, 1989), and 
the one which will be used for this paper, is to apply a weighted regression technique to 
aggregated data. This is done as follows: 

1. Group the policyholder's into age groups such as 16 to 20, 21 to 25, etc. 
2. Aggregate the claim counts and exposure counts (here the exposure is 

policyholders) by age group and territory. 
3. Compute the frequency for each age and territory combination by dividing the 

number of claims by the number of policyholders. 
4. Apply the logit transform to the frequencies (for logistic regression). That is 

compute Iog(p/(l-p)) where p is the claim frequency or propensity. It may be 
necessary to add a very small quantity to the frequencies before the transform is 
computed, because some of  the cells may have a frequency of 0. 

5. Compute a value for driver age in each cell. The age data has been grouped and a 
value representative of  driver ages in the cell is needed as an independent variable 
in the modeling. Candidates are the mean and median ages in the cell. The 
simplest approach is to use the midpoint of  the age interval. 

6. The policyholder count in each cell will be used as the weight in the regression. 
This has the effect of  cau~,ng the regression to behave as if the number of 
observations for e: ~h cell equals the number of policyholders. 

One of the advantages of  using the aggregated data is that some observations have more 
than one claim. That is, the observations on individual records are not strictly binary, 
since values of 2 claims and even 3 claims sometimes occur. More complicated methods 
such as multinomial logistic regression N can be used to model discrete variables with 
more than 2 categories. When the data is aggregated, all the observations of the 
dependent variable are still in the range 0 to 1 and the Iogit transform still is appropriate 
for such data. Applying the logit transform to the aggregated data avoids the need for a 
more complicated approach. No transform was applied to the data to which the neural 
network was applied, i.e., the dependent variable was the observed frequencies. The 
result of aggregating the simulated data is displayed in Figure 29. 

H A Poisson regression using Generalized Linear Models could also be used. 
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Figure 29 
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Neural Network Results 
A five node neural network was fit to the data. The weights between the input and 
hidden layers are displayed in Table 11. If we examine the weights between the input 
and the hidden nodes, no variables seem insignificant, but it is hard to determine the 
impact that each variable is having on the result. Note that weights are not produced for 
Territory 4. This is the base territory in the neural network procedure and its parameters 
are incorporated into we, the constant. 

Table 11 : Weights to Hidden Layer 
Node! N0(Constant) Neight(Age) Weight(Territory 1 ) Neight(Territory 21 Neight(Territory 3) 

t -0.01 0.18 -0.02 -0.OE 0.09 
0.3. = -0.01 -1,06 -0.73 -0.10 

-0.3( 0.21 -0.07 -0.8; 0.46 
4 -(3.0' 0.19 -0,01 -0.0~ 0.09 
5 0.56 -0.08 -0.90 -1.1( -0,98 

Interpreting the neural network is more complicated than interpreting a typical regression. 
In the previous section, it was shown that each variable's importance could be measured 
by a sensitivity. Looking at the sensitivities in Table 12, it is clear that both age and 
territory have a significant impact on the result. The magnitude of their effects seems to 
I~  roughly oqual 
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Table 12: Sensitivity of Variables in Interaction Example 
Variable Sensitivity 
Age 24% 
Territory 23% 

Neither the weights nor the sensitivities help reveal the form of the fitted function. 
However graphical techniques can be used to visualize the function fitted by the neural 
network. Since interactions are of interest, a panel graph showing the relationship 
between age and frequency for each territory can be revealing. A panel graph has panels 
displaying the plot of the dependent variable versus an independent variable for each 
value of  a third variable, or for a selected range of  values of a third variable. (Examples 
of  panel graphs have already been used in this paper in this section, to help visualize 
interactions). This approach to visualizing the functional form of the fitted curve can be 
useful when only a small number of  variables are involved. Figure 30 displays the neural 
network predicted values by age for each territory. The fitted curve for territories 2 and 3 
are a little different, even though the "true" curves are the same. The curve for territory 4 
is relatively fiat, although it has a slight upward slope. 

Figure 30 
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Re~ression fit 
Table 13 presents the fitted coefficients for the logistic regression. Interpreting these 
coefficients is more difficult than interpreting those of a linear regression, since the logit 
represents the log of the odds ratio (p/(1-p)), wherep represents the underlying true claim 
frequency. Note that as the coefficients of  the Iogit of  frequency become more positive, 
the frequencies themselves become more positive. Hence, variables with positive 
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coefficients are positively related to the dependent variable and cocfficicnts with negative 
signs are negatively related to the dependent variable. 

Table 13: Results of Regression Fit 
Variable Coefficient Significance 
Intercept -1.749 0 
Age -0.038 0.339 
Territory 1 -0.322 0.362 
Territory 2 -0.201 0.451 
Territory 3 -0.536 0.051 
Age'Territory 1 0.067 0.112 
Age*Territory 2 0031 0.321 
Age*Territory 3 0.051 0.079 

Figure 31 displays the frequencies fitted by the logistic regression. As with neural 
networks graph are useful for visualizing the function fitted by a logistic regression. A 
noticeable departure from the underlying values can be seen in the results for Territory 4. 
The fitted curve is upward sloping for Territory 4, rather than nat as the true values are. 

Figure 31 
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I rrab'a 14 I 
esults of Fits: Mean squared error 

[Training Data~est Data 
eural Network| 0.005t 0,014 
egression l 0.007] 0.016 

In this example the neural network had a better performance than the regression. Table 
14 displays the mean square errors for the training and test data for the neural network 
and the logistic regression. Overall, the neural network had a better fit to the data and did 
a better job of capturing the interaction between Age and Territory. The fitted neural 
network model explained 30 % of the variance in the training data versus 15% for the 
regression. It should be noted that neither technique fit the "true" curve as closely as the 
curves in previous examples were fit. This is a result of the noise in the data. As can be 
seen from Figure 29, the data is very noisy, i.e., there is a lot of randomness in the data 
relative to the pattern. The noise in the data obscures the pattern, and statistical 
techniques applied to the data, whether neural networks or regression will have errors in 
their estimated parameters. 

Example 5: An Example with Messy Data 

The examples used thus far were kept simple, in order to illustrate key concepts about 
how neural networks work. This example is intended to be closer to the typical situation 
where data is messy. The data in this example will have nonlinearities, interactions, 
correlated variables as well as missing observations. 

To keep the example realistic, many of the parameters of the simulated data were based 
on information in publicly available databases and the published literature. A random 
sample of 5,000 claims was simulated. The sample represents 6 years of  claims history. 
(A multiyear period was chosen, so that inflation could be incorporated into the 
example). Each claim represents a personal automobile claim severity developed to 
ultimate 12. As an alternative to using claims developed to ultimate, an analyst might use 
a database of  claims which are all at the same development age. Random claim values 
were generated from a lognormal distribution. The scale parameter, p., of the lognormal, 
(which is the mean of  the logged variables) varied with the characteristics of the claim. 
The claim characteristics in the simulation were generated by eight variables. The 
variables are summarized in Table 15. The la parameter itself has a probability 
distribution. A graph of  the distribution of the parameter in the simulated sample is 
shown in Figure 32. The parameter had a standard deviation of  approximately .38. The 
objective of the analysis is to distinguish high severity policyholders from low severity 

12 The analyst may want to use neural network or other data mining techniques to develop the data. 

299  



Figure32 

1.2 

0.8 

0.4 

0.0 
6.50 6.75 700 725 7.50 7.75 8.00 825 850 8 75 900 

MU 

J Distribution of Mu ] 

policyholders. This translates into an estimate ofp. which is as close to the "true" p as 
possible. 

Table 15 below lists the eight predictor variable used to generate the data in this example. 
These variables are not intended to serve as an exhaustive list of  predictor variables for 
the personal automobile line. Rather they are examples of the kinds of  variables one 
could incorporate into a data mining exercise. A ninth variable (labeled Bogus) has no 
causal relationship to average severity. It is included as a noise variable to test the 
statistical procedures in their effectiveness at using the data. An effective prediction 
model should be able to distinguish between meaningful variables and variables which 
have no relationship to the dependent variable. Note that in the analysis of the data, two 
of  the variables used to create the data are unavailable to the analyst as they represent 
unobserved variables (the Auto BI and Auto PD underlying inflation factors). Instead, 
six inflation indices which are correlated with the unobserved Factors are ayailable to the 
analyst for modeling. Some features of  the variables are listed below. 
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Number of 
Categories 

~,ge of Driver 
Territory 
~ge of Car 
3ar Type 
3redit Rating 
IAuto BI Inflation Factor 

Auto PD and Phys Dam Inflation Factor 

Law Change 
Bogus 

Variable Type 

Continuous 
Categorical 
Continuous 
Categorical 
Continuous 
Continuous 

Continuous 

Categorical 
Continuous 

45 

No 

Missing Data 

No 
No 
Yes 
No 
Yes 
No 

No 
No 

Table 15 
Variable 

Note that some of the data is missing for two of  the variables. Also note that a law 
change was enacted in the middle of  the experience period which lowered expected claim 
severity values by 20%. A more detailed description of the variables is provided in 
Appendix 2. 

Neural Network Analysis of Simulated Dalo 
The dependent variable for the model fitting was the log of  severity. A general rule in 
statistics is that variables which show significant skewness should be transformed to 
approximate normality before fitting is done. The log transform is a common transform 
for accomplishing this. In general, Property and Casualty severities are positively 
skewed. The data in this example have a skewness of 6.43, a relatively high skewness. 
Figure 33, a graph of the distribution of  the log of severity indicates that approximate 
normality is attained after the data is logged. 

Figure 33 
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The data was separated into a training database of 4,000 claims and a test database of 
1,000 claims. A neural network with 7 nodes in the hidden layer was run on the 4,000 
claims in the training database. As will be discussed later, this network was larger than 
the final fitted network. This network was used to rank variables in importance and 
eliminate some variables. Because the amount of variance explained by the model is 
relatively small (8%), the sensitivities were also small. Table 16 displays the results of 
the sensitivity test for each of the variables. These rankings were used initially to 
eliminate two variables from the model: Bogus, and the dummy variable for car age 
missing. Subsequent testing of the model resulted in dropping other variables. Despite 
their low sensitivities, the inflation variables were not removed. The low sensitivities 
were probably a result of the high correlations of the variables with each other. In 
addition, it was deemed necessary to include a measure of inflation in the model. Since 
the neural network's hidden layer performs dimension reduction on the inflation 
variables, in a manner analogous to Factor or Principal Components Analysis, it seemed 
appropriate to retain these variables. 

Table 16: Sensitivities of Neural 
Network 
Variable Sensitivity Rank 
Car age 9.0 1 
Age 5.3 2 
Car type 3.0 3 
Law Change 2.2 4 
Credit category 2.2 5 
Territory 2.0 6 
Credit score 1.0 7 
Medical Inflation 0,5 8 
Car age missing 0.4 9 
Hospital Inflation 0.1 10 
Wage Inflation 0,0 11 
Other Services Inflation 0.0 12 
Bogus 0.O 13 
Parts Inflation 0.0 14 
Body Inflation 0.0 15 

One danger that is always present with neural network models is overtltting. As more 
hidden layers nodes are added to the model, the fit to the data improves and the r 2 of the 
model increases. However, the model may simply be fitting the features of the training 
data, therefore its results may not generalize well to a new database. A rule of thumb for 
the number of intermediate nodes to include in a neural network is to use one half of the 
number of  variables in the model. After eliminating 2 of the variables, 13 variables 
remained in the model. The rule of  thumb would indicate that 6 or 7 nodes should be 
used. The test data was used to determine how well networks of various sizes performed 
when presented with new data. Neural networks were fit with 3, 4, 5, 6 and 7 hidden 
nodes. The fitted model was then used to predict values of claims in the test data. 
Application of the fitted model to the test data indicated that a 4 node neural network 
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provided the best model. (It produced the highest r e in the test data). The test data was 
also used to eliminate additional variables from the model. In applying the model to the 
test data it was found thai dropping the territory and credit variables improved the fit. 

Goodness of Fit 
The fitted model had an r 2 of 5%. This is a low re but not out of line with what one 
would expect with the highly random data in this example. The "true" la (true expected 
log (severity)) has a variance equal to 10% of the variance of the log of severity. Thus, if 
one had perfect knowledge of ~t, one could predict individual log(severities) with only 
10% accuracy. However, if one had perfect knowledge of  the true mean value for severity 
for each policyholder, along with knowledge of the true mean frequency for each 
policyholder, one could charge the appropriate rate for the policy, given the particular 
characteristics of the policyholder. In the aggregate, with a large number of 
policyholders, the insurance company's actual experience should come close to the 
experience predicted from the expected severities and frequencies. 

With simulated data, the "true" la for each record is known. Thus, the model's accuracy 
in predicting the true parameter can be assessed. Figure 34 plots the relationship between 
~t and the predicted values (for the log of severity). It can be seen that as the predicted 
value increases, p. increases. The correlation between the predicted values and the 
parameter mu is .7. 

i : 
I 

Figure 34 
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As a further test of the model fit, the test data was divided into quartiles and the average 
severity was computed for each quartile. A graph of the result is presented in Figure 35. 
This graph shows that the model is effective in discriminating high and low severity 
claims. One would expect an even better ability to discriminate high severity from low 
severity observations with a larger sample. This is supported by Figure 36 which 
displays the plot of"true" expected severities for each of  the quartiles versus the neural 
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network predicted values. This graph indicated that the neural network is effective in 
classifying claims into severity categories. These results suggest that neural networks 
could be used to identify the more profitable insureds (or less profitable insureds) as part 
of the underwriting process. 

Figure 35 
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In the previous example some simple graphs were used to visualize the form of the fitted 
neural network function. Visualizing the nature of the relationships between dependent 
and independent variables is more difficult when a number of variables are incorporated 
into the model. For instance, Figure 37 displays the relationship between the neural 
network predicted value and the driver's age. It is difficult to discern the relationship 
between age and the network predicted value from this graph. One reason is that the 
predicted value at a given age is the result of many other predictor variables as well as 
age. Thus, there is a great deal of dispersion of predicted values at any given age due to 
these other variables, disguising the fitted relationship between age and the dependent 
variable. 

Figure 37 
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Researchers on neural networks have been exploring methods for understanding the 
function fit by a neural network. Recently, a procedure for visualizing neural network 
fitted functions was published by Plate, Bert and Band (Plate et ai., 2000). The procedure 
is one approach to understanding the relationships being modeled by a neural network. 
Plate et al. describe their plots as Generalized Additive Model style plots. Rather than 
attempting to describe Generalized Additive Models, a technique for producing the plots 
is simply presented below. (Both Venables and Ripley and Plate et al. provide 
descriptions of Generalized Additive Models). The procedure is implemented as follows: 

I .  

2. 

Set all the variables except the one being visualized to a constant value. Means 
and medians are logical choices for the constants. 
Apply the neural network function to this dataset to produce a predicted value for 
each value of  the independent variable• Alternatively, one could choose to apply 
the neural network to a range of values for the independent variable selected to 
represent a reasonable set of values of  the variable. The other variables remain at 
the selected constant values. 

305 



3. 
4. 

Plot the relationship between the neural network predicted value and the variable. 
Plate el al. recommend scaling all the variables onto a common scale, such as 0 to 
1. This is the scale of the inputs and outputs of the logistic functions in the neural 
network. In this paper, variables remain in their original scale. 

The result of applying the above procedure is a plot of the relationship between the 
dependent variable and one of the independent variable. Multiple applications of this 
procedure to different variables in the model provides the analyst with a tool for 
understanding the functional form of the relationships between the independent and 
dependent variables. 

The visualization method was applied to the data with all variablcs set to constants except 
for driver age. The result is shown in Figure 38. From this graph we can conclude that 
the fitted function declines with driver age. Figure 39 shows a similar plot for car age. 
This function declines with car age, but then increases at older ages. 

Figure 38 
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Figure 39 

Visualization Plot of Predicted log(Severity) vs car age 
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Suppose we wanted to visualize the relationship between a predictor variable which takes 
on discrete values and the dependent variable. For instance, suppose we wanted to know 
the impact of the law change. We can create fitted values for visualizing as described 
above but instead of producing a scatterplot, we can produce a bar chart. Figure 40 
displays such a graph. On this graph, the midpoint for claims subject to the law change 
(a value of I on the graph) is about .2 units below the midpoint of claims not subject to 
the law change. This suggests that the neural network estimates the law effect at about 
20% because a .2 impact on a log scale corresponds approximately to a multiplicative 
factor of 1.2, or .8 in the case of a negative effect (Actually, the effect when converted 
from the log scale is about 22%). The estimate is therefore close to the "true" impact of 
the law change, which is a 20% reduction in claim severity. 
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Figure 40 
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The visualization procedure can also be used to evaluate the impact of inflation on the 
predicted value. All variables except the six economic inflation factors were fixed at a 
constant value while the inflation variables entered the model at their actual values. The 
predicted values are then plotted against time. Figure 41 shows that the neural network 
estimated that inflation increased by about 40% during the six year time period of the 
sample data. This corresponds roughly to an annual inflation rate of about 7%. The 
"true" inflation underlying the model was approximately 6%. 

One way to visualize two-way interactions is to allow two variables to take on their 
actual values in the fitting function while keeping the others constant. Figure 42 displays 
such a panel graph for the age and car age interaction. It appears from this graph that the 
function relating car age to the predicted variable varies with the value of driver age. 

Figure 41 
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Figure 42 
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Rem'ession Model 
A regression model was fit to the data. The dependent variable was the log o f  severity. 
Like neural networks, regression models can be subject to overfitting. The more 
variables in the model, the better the fit to the training data. However, if  the model is 
overfit it will not generalize well and will give a poor fit on new data. Stepwise 
regression is an established procedure for selecting variables for a regression model. It 
tests the variables to find the one that produces the best r z. This is added to the model. It 
continues cycling through the variables, testing variables and adding a variable each 
cycle to the model until no more significant variables can be found. Significance is 
usually determined by performing an F-test on the difference in the r 2 of  the model 
without a given variable and then with the variable. 

Stepwise regression was used to select variables to incorporate into the model. Then a 
regression on those variables was run. The variables selected were driver age, car age, a 
dummy variable for the law change and the hospital inflation factor. Note that the 
hospital inflation factor had a very high correlation with both underlying inflation factors 
(even though the factors were generated to be independent o f  each other Z 3). Thus, using 
just the one variable seems to adequately approximate inflation. On average, the increase 
in the hospital inflation index was 4.6%. Since a factor o f  1.15 (see Table 17) was 
applied to the hospital inflation factor, inflation was estimated by the regression to be a 
little over 5% per year, The regression model estimated the impact o f  the law change as a 
reduction of .3  on the log scale or about 35% as opposed to the estimate 0fabout 22% for 
the neural network. Thus, the neural network overestimated inflation a little, while the 
regression model underestimated it a little. The neural network estimate o f  the law 

~3 This may be a result of using a random walk procedure to generate both variable. Using random walk 
models, the variables simulated have high correlations with prior values in the series. 
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change effect was close to the "true" value, while the regression overestimated the 
magnitude of the effect. 

The regression found a negative relationship between driver age and severity and 
between car age and severity. An interaction coefficient between age and car age was 
also estimated to be negative. The results correspond with the overall direction of the 
"true" relationships. The results of the final regression are presented in Table 17. 

The fitted regression had a somewhat lower r 2 than the neural network model. However, 
on some goodness of fit measures, the regression performance was close to that of the 
neural network. The regression predicted values had a .65 correlation with It. versus .70 
for the neural network. As seen in Figures 43 and 44, the regression was also able to 
discriminate high severity from low severity claims with the test data. Note that neither 
model found the Bogus variable to be significant. Also, neither model used all the 
variables that were actually used to generate the data, such as territory or credit 
information. Neither technique could distinguish the effect of these variables from the 
overall background noise in the data. 

Table 17: Regression Results 
Variable Coefficient Significance 
Intercept 7.210 0 
Age -0.001 0.448 
car age -0,024 0.203 
Law -0.306 0.0001 
Hospital Inf 1.1 0,0059 
Age*car age -0.001 0.0195 
R 2 = .039 

Figure 43 
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Usin~ the model in prediction 
To estimate severities, the fitted log severities must be transformed back to their original 
scale. This is generally accomplished by applying the exponential function to the values 
predicted by the model. If  the data is approximately Iognormally distributed, as in this 
example, a simple exponential transform will understate the true value of  the predicted 
severity. The mean o f a  lognormal variable is given by: 

, z 

E ( Y ,  ) = e . . . . . .  

where 

E(Y,) is the expected value for the i th observation 
lai = the mean for i 'h observation on the log scale 
2 is the variance of  severities on a log scale 

Since ~ti and o 2 are unknown, estimates of  their values must be used. The predicted 
value from the neural network or regression is the usual choice for an estimate o f  [u.i. The 
mean square error o f  the neural network or regression can be used as an estimate o f o  2 in 
the formula above. A predicted value was computed for the claims that were used to fit 
the neural network model. A plot o f  the predicted severities versus the "true" expected 
severities is displayed in Figure 43. 
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Figure 43 
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Applying the models 
Some of the possible applications of neural networks and other modeling techniques can 
utilize predictions of claim severity. A company may want to devise an early warning 
system to screen newly reported claims for those with a high probability of developing 
into large settlements. A severity model utilizing only information available early in the 
life of a claim could be used in an early warning system. A fraud detection system could 
also be based on claim severity. One approach to fraud detection is to produce a severity 
prediction for each claim. The actual value of the claim is compared to the predicted 
value. Those with a large positive deviation from the predicted are candidates for further 
investigation. 

However, many of the underwriting applications of modeling and prediction require both 
a frequency and a severity estimate. A company may wish to prune "bad" risks from its 
portfolio, pursue "good" risks or actually use models to establish rates. For such 
applications either the loss ratio or pure premium will be the target variable of interest. 
There are two approaches to estimating the needed variable: 1 ) One can separately 
estimate frequency and severity models and combine the estimates of the two models. 
An illustration of  fitting models to frequencies was provided in Example 4 and an 
example of fitting models to severities was supplied in Example 5. 2) Alternatively, one 
can estimate a pure premium or loss ratio model directly. 

One difficulty of modeling pure premiums or loss ratios is that in some lines of business, 
such as personal lines, most of the policyholders will have no losses, since the expected 
frequency is relatively low. It is desirable to transform the data onto a scale that does not 
allow for negative values. The log transformation accomplishes this. However, since the 
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log is not defined for a value of zero it may be necessary to add a very small constant to 
the data in order to apply the log transform. 

Once a pure premium is computed, it can be converted into a rate by loading for expenses 
and profit. Alternatively, the pure premium could be ratioed to premium at current rate 
levels to produce a loss ratio. A decision could be made as to whether the predicted loss 
ratio is acceptable before underwriting a risk. Alternatively the loss ratio prediction for a 
company's portfolio of risks for a line of business can be loaded for expenses and profit 
and the insurance company can determine if a rate increase is needed. 

Summarv 
This paper has gone into some detail in describing neural networks and how they work. 
The paper has attempted to remove some of the mystery from the neural network "black 
box". The author has described neural networks as a statistical tool which minimizes the 
squared deviation between target and fitted values, much like more traditional statistical 
procedures do. Examples were provided which showed how neural networks 1) are 
universal function approximators and 2) perform dimension reduction on correlated 
predictor variables. Classical techniques can be expected to outperform neural network 
models when data is well behaved and the relationships are linear or variables can be 
transformed into variables with linear relationships. However neural networks seem to 
have an advantage over linear models when they are applied to complex nonlinear data. 
This is an advantage neural networks share with other data mining tools not discussed in 
detail in this paper. Future research might investigate how neural networks compare to 
some of these data mining tools. 

Note that the paper does not advocate abandoning classical statistical tools, but rather 
adding a new tool to the actuarial toolkit. Classical regression performed well in many of  
the examples in this paper. Some classical statistical tools such as Generalized Linear 
Models have been applied successfully to problems similar to those in this paper. (See 
Holler et al. for an example). 

A disadvantage of  neural networks is that they are a "black box". They may outperform 
classical models in certain situations, but interpreting the result is difficult because the 
nature of the relationship between dependent and target variables is not usually revealed. 
Several methods for interpreting the results of neural networks were presented. Methods 
for visualizing the form of the fitted function were also presented in this paper. 
Incorporating such procedures into neural network software should help address this 
limitation. 

313 



A p p e n d i x  1 : N e u r a l  N e t w o r k  S o f t w a r e  

Neural network software is sold at prices ranging from a couple o f  hundred dollars to 
$100,000 or more. The more expensive prices are generally associated with more 
comprehensive  data mining products, which include neural networks as one of  the 
capabilities offered. Some o f  the established vendors o f  statistical software such as SPSS 
and SAS sell the higher end data mining products 14. These products are designed to 
function on servers and networks and have the capability o f  processing huge databases. 
They also have some o f  the bells and whistles useful to the analyst in evaluating the 
function fit by the neural network, such as a computation o f  sensitivities. Both o f  these 
products allow the user  to apply a number  o f  different kinds o f  neurat networks, 
including types o f  networks not covered in this paper. 

Many o f  the less expensive products provide good fits to data when the database is not 
large. Since the examples  in this paper used modestly sized databases, an expensive 
product with a lot o f  horsepower was not required. Two of  the less expensive tools were 
used to fit the models  in this paper: a very inexpensive neural network package, 
Brainmaker,  and the S-PLUS neural network function, nnet. The Brainmaker tool has a 
couple o f  handy features. It creates a file that contains all the parameters o f  the fitted 
neural network function for the hidden and output layers. It also has the capability o f  
producing the values o f  the hidden nodes. Both o f  these features were helpful for the 
detailed examination o f  neural networks contained in this paper. However,  the 
Brainmaker  version employed in this analysis had difficulty filling networks on larger 
databases l-s, so the S-PLUS nnet function was used for the last example. The S-PLUS 
rmet function is contained in a library supplied by Venables and Ripley, rather than the 
vendors  o f  S-PLUS, but it is included in the basic S-PI,US package. This software also 
provides the fitted parameters for the hidden and output layers. (However, it does not 
provide the fitted values for the hidden nodes). Chapter 9 o f  Venables and Ripley 
describes the software and how to use it. (Venables and Ripley, 1999). 

The  commonly  used commercial  software for fitting neural networks does not 
incorporate the visualization technique used for Example 5. Plate has provided an S- 
PLUS library incorporating his visualization technique (which is similar to, but a little 
different from, the one used for this paper) in the statlib library, at 
htto://lib.stat.cmd.edu/S/. The library with the visualization software is named Ploteff. 

Numerous  other products with which the author o f  this paper has no experience are also 
available for fitting neural networks. Thus, no statement made in this paper should be 
interpreted as an endorsement o f  any particular product. 

14 The SPSS dam mining product is called Clementine. lT, e SAS product ~s called the Enterprise Miner. 
SPSS also sells an inexpensive neural network product, Neural Conncction q~e author has used Neural 
Connection on moderately sized databases and found it to be effecnve on prediction and classification 
groblems. 

It should be noted that lhe vendors of Brainmaker sell a professional version which probably performs 
better on large databases. 
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Appendix 2 

This appendix is provided for readers wishing a little more detail on the structure of the 
data in the Example 5. 

The predictor variables are: 
Driver age: Age of  the driver in years 
Car type: This is intended to represent classifications like compact, midsize, sports utility 
vehicle and luxury car. There are 4 categories. 
Car age: Age of the car in years 
Representative parameters for the Driver age, Car type and Car age and their interactions 
variables were determined from the Baxter automobile claims database 16 
Territory: Intended to represent all the territories for 1 state. There are 45 categories. 
Reasonable parameters for territory were determined after examining the Texas 
automobile database used in the Casualty Actuarial Society's ratemaking competition. 
Credit: A variable called leverage, representing the ratio o f the sum of all revolving debt 
to the sum of all revolving credit limits was used as an indicator of the creditworthiness 
of  the driver. This is a variable not typically used in ratemaking. However, some recent 
research has suggested it may be useful in predicting personal lines loss ratios. 
Monaghan (Monagahan, 2000) shows that credit history has a significant impact on 
personal automobile and homeowners' loss ratios. Monaghan discussed a number of 
possible credit indicators, which were useful in predicting loss ratios. The leverage 
variable was judgmentally selected for this model because it had high predictive accuracy 
and because parameters could be developed based on information in Monaghan's paper. 
I fa  company had access to its policyholders' credit history, it might wish to develop a 
separate credit score (perhaps using neural networks) which used the information of a 
number of credit history variables. Another credit variable was used in addition to the 
leverage ratio. People with a leverage ratio of  0 were divided into 2 categories, those 
with very low limits (< $500) and those with higher limits (>=$500). A third category 
was created for claimants with leverage greater than 0. For the purposes of illustrating 
this technique, it was assumed that the entire impact of the credit variable is on severity, 
although this is unlikely in practice. 

Automobile Bodily Injury (ABI) inflation factor and Automobile Property Damage and 
Physical Damage (APD) inflation factor: These factors drive quarterly increases in the 
bodily injury, property damage and physical damage components of average severity. 
They are unobserved factors. The ABI factor is correlated with three observed variables: 
the producer price index for hospitals, the medical services component of the consumer 
price index and an index of  average hourly earnings. The APD factor is correlated with 
three observed variables: the produce price index for automobile bodies, the producer 
price index for automobile parts and the other services component of the consumer price 
index. Bureau of Labor statistics data was reviewed when developing parameters for the 
factors and for the "observed" variables. The ABI factor was given a 60% weight and the 
APD factor was given a 40% weight in computing each claim's expected severity. 

~6 This database of Automobile claims is available as an example database in S-PLUS. Venables and 
Ripley supply the S-PLUS data for claim severities in a S-PLUS library. See Venables and Ripley, p.467. 
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Law Change: A change in the law is enacted which causes average severities to decline 
by 20% after the third year. 

Interactions: 
Table 18 shows the variables with interactions. Three o f  the variables have interactions. 
In addition some o f  the interactions are nonlinear (or piecewise linear). An example is 
the interactions between age and car age. This is a curve that has a negative slope at 
older car ages and younger driver ages, but is flat for older driver ages and younger car 
ages. The formula used for generating the interaction between age, car age and car type 
is provided below (after Table 19). In addition to these interactions, other relationships 
exist in the data, which affect the mix o f  values for the predictor variables in the data. 
Young drivers (<25 years old) are more likely not to have any credit limits (a condition 
associated with a higher average severity on the credit variable). Younger and older 
(>55) drivers are more likely to have older cars. 

Table 18 
Interactions 
Driver Age and Car Type 
Driver Age and Car Age 
Driver Age and Car Age and Car Type 

lqonlinearitie$ 
A number o f  nonlinear relationships were built into the data. The relationship between 
Age and severity follows an exponential decay (see formula below). The relationships 
between some o f  the inflation indices and the Factors generating actual claim inflation 
are nonlinear. The relationship between car age and severity is piecewise linear. That is, 
there is no effect below a threshold age, then effect increases lincarly up to a maximum 
effect and remains at that level at higher ages. 

Missin~ Data 
In our real life experience with insurance data, values are often missing on variables 
which have a significant impact on the dependent variable. To make the simulated data in 
this example more realistic, data is missing on two o f  the independent variables. Table 19 
presents information on the missing data. Two dummy variables were created with a 
value o f  0 for most o f  the observations, but a value o f  I for records with a missing value 
on car age and/or credit information. In addition, a value of  1 was recorded for car age 
and credit leverage where data was missing. These values were used in the neural 
network analysis. The average o f  each of  the variables was substituted for the missing 
data in the regression analysis. 
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Table 19 
Missing Values 
Car Age 10% of records missing information if driver age is < 25. Otherwise 5% of data 

is missing 

Credit 25% of records are missing the information if Age < 25, otherwise 20% of data is 
missing. 

The ~t parameter o f  the lognormal severity distribution was created with the following 
function: 

BFI = max(0, min(4,carage[I] - 6)) 
BF2= ( cartype[I] = 4 or cartype[I]=2) 
BF3= max(O, min(6,(carage[l] - 3))) 
BF4 = ( cartype[I] = 1 or cartype[l] = 3 or cartype[l] = 4) * BF3 

/.t [I]<-(7.953)-.05"BF1+ 2* exp(-.15*Age[I])*BF4* exp(-.15*Age[l])*BF3 -0.15 * 
BF3+ 1.5*exp(-. l 'Age[I ] )*  
BF4+log(terrfactor)+Law[l]*log(.8)+log(leverage[I]))+log(Factorl*.6) + log(Factor2*.4) 

where 

I is the index o f  the simulated observation 
BF1, BF2, BF3, BF4 are basis functions which are used to incorporate interaction 
variables and piecewise linear functions into the function for ~t. 

rt[l] is the lognormal mu parameter for the i 'h record 
Age is the driver 's age 
cartype is the car type. 
carage is the car 's  age 
terrfactor is the multiplicative factor for territory 
Law is an indicator variable, which is 0 for quarters 1 through 12 and 1 afterwards. 
leverage is the multiplicative factor for the claimant 's credit leverage 
Factorl,  Factor2 are the bodily injury and property damage inflation factors. 

The dispersion parameter o f  the lognormal, o, was 1.2. 
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