
Pitfalls in the Probability of Ruin Type Risk 
Management 

Jonathan Evans, FCAS, MAAA 

501 



Pitfalls in the Probability of Ruin Type Risk Management 

Jonalhan Evans, FCAS, MAAA 

Abstract 

Funding levels for many insurance and financial risk entities are often set to achieve a certain 
low probability of ruin. Specific real world examples which utilize the same essential 
methodology include: funding self insurance at a certain percentile of aggregate losses, Value at 
Risk (VAR) funding of investment banks, return period or PML funding of property catastrophe 
exposures, and probability of ruin through stochastic modeling commonly used in Europe as in 
Daykin (1994). We use the concepts of probability of ruin, return period, and percentile 
interchangeably in this paper. Butsic (1992) has pointed out that these analyses neglect to 
consider the se'~erity of insolvency. This paper addresses a somewhat related issue. Probability 
of ruin may often be inconsistent with many other reasonable risk management criteria. For 
example, combining two independent risks may produce a required funding level at a 1% 
probability of ruin which is actually higher than the sum of the separate 1% probability of ruin 
funding levels for each of the risks. Use of this criterion tbr risk management may lead to the 
nonsensical result of discouraging risk sharing between independent risks. We examine several 
examples of this phenomenon and how it may lead Io undesirable risk management strategies. 

Homeowners  Insurance, a Trivial Real World Example 

A single house generally has a 90 'l' percentile loss'in a given year of 0. ttowever, a portfolio of 
1,000,000 houses will invariably have a 9() 'h percentile loss in a given year much greater than 0. 
So the 90 'h percentile of the combined risks is greater than the sum of the 90 'h percentiles of the 
separate risks, lfa homeowner wishes to minimize his q0 'h percentile loss (or perhaps even 99 'h 
percentile loss) he should buy no insurance at all, since the premium itself guarantees a 90 'h 
percentile loss greater than 0. Equivalently, a large insurance group should lbrm a separate 
member company for each policy, so as to keep the 90 'h percentile losses at 0. 

We can find tri'~ial examples of this phenomenon at arbilrarily high percemilcs less than t00%, 
or equivalently arbitmril,,, small probabilities of ruin greater than 0% [See Appendix Theorem 
1). 

How Can This Happen ? 

Many people are stunned by this result. They are properly taught to think of pooling or sharing 
of risk as a way of reducing or managing risk. This is always tree if risk is measured by standard 
deviation. Two separate risks, whatever their correlation, will always have a total standard 
deviation less than or equal to the sum of their separate standard deviations, l lowever, certain 
percentile type measurements may be greater for a combination than the sum of the separate 
parts, even for very. high percentiles. It is important to note that the Normal distribution does nol 
exhibit this phenomenon (See Appendix Theorem 2). 
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A Symmetric Example 

This phenomenon is not just a characteristic of skewed distributions. It can also happen for some 
symmetric distributions. Consider the sum or convolution, XI + X2 of two identical and 
independent copies of the random variables X, as follows: 

X Probability Xl + X2 Probability 
1 20O/o I 2 4% I 
0 60% I 1 24% I 

-1 2o% I o ~ % 1  

I -1 24% I 
-2 4% I 

The 75 Ih percentile of XI and X2 separately is clearly O, but the 75 th percentile of X1 + X2 is 1. 

Lognormal Example 

It can also happen for smooth continuous distributions with only one local maximum. For an 
example using continuous loss distributions, consider two independent risks with simulated 
(65,000 iterations) lognormal distributions XI and X2: 

Percentiles 

mean 
CV 

sigma 
mu 

99% 
95% 
90% 
85% 
8O% 
75% 
7O% 
65% 
60% 
55% 
52% 

Xl X2 Xl +X2 
100,000 300,000 400,000 

300% 200% 168 °~ Difference Between 
1.51743 1.26864 NA Percentile of Sum and 

10.36163 11.80682 N~ Sum of Percentiles 
1,085,317 2,550,976 

389,469 1,066,725 
225,804 678,361 
154,968 499.047 
113,881 388.787 
88.751 315.419 
70,837 260,696 
57,266 218,513 
46,875 185,408 
36,724 157,213 
34,419 143,000 

2,896,718 
1,313,245 

871,090 
664,510 
537,483 
445,164 
379,135 
326,772 
284,290 
247,084 
228,476 

-739,575 
-142,95E 
-33.076 
10,495 
34,815 
40.994 
47.602 
50,994 
52,007 
51,147 
51,057 

Although at the 90  th percentile we see a combined percentile less than the sum of the separate 
percentiles, as high as the 85 th percentile the combined value is larger, 
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Self Insured ~'orkers Compensation, Frequency/Severity Example 

We can extend the Iognormal example to a real world frequency/severity process. Consider two 
large factories whose workers compensation risks are independent. The factories are considering 
pooling their self insured workers compensation. State law requires that self insured workers 
compensation be funded at the 75 th percentile of gross loss before required per occurrence excess 
coverage. Let Factory I have a claim seventy distribution equal to the first lognormal from the 
previous example and a Poisson claim frequency distribution with a mean of 2.1. Let Factory 2 
have the second Iognormal from the previous example for its severity and a Poisson claim 
frequency with mean of 1.2. A typical result from 65,000 sirnulations is: 

Aggregate 
Loss 

Percenti les 

Poisson Frequency 

$evehty mean 
Severity CV 

sigma 
mu 
99% 
95% 
90% 
85% 
60% 
75% 
70% 
65% 
60% 
65% 
52% 

Factory 1 Factor]/2 
21 12 

100,000 300,000 
300% 200% 

1 51743 126864 
10 36163 1180682 

1.822.088 3,226.341 
786,388 1,465,536 
499.407 947.544 
368,077 693.410 
286,534 533.505 
230,766 417.824 
187.598 330.133 
154.029 260,452 
126.295 205.706 
104,266 159,913 
92.662 135,263 

Factor~ 1 + Factory; 
3," 

172,727 
257 2~ 

N~ 
N~ 

3.804.187 
1.906,977 
1,322,473 
1 035,558 

842276 
700 176 
592,035 
503,291 
429,314 
367,566 
334,483 

Difference Between 
Percentile of  Sum and 

Sum of Percentiles 
-1,244,242 

-344,947 
-124.478 

-25.929 
22,236 
51.585 
74.304 
88,810 
97.313 

103.387 
106.558 

The factories choose not to pool their risk, since doing so would require a net additional 
contribution of $51,585 to their self insurance fund, even though the higher percentiles lor the 
pooled risk are much less than the sum of the parts. 

Property Catastrophe Example 

The phenomenon can also happen with portfolios of property catastrophe exposures. Consider 
two such portfolios. One is for risks exposed to California earthquakes and the other is exposed 
to Atlantic Hurricanes. Catastrophe modelers typically calculate Poisson frequencies lbr loss 
events of different sizes. These events are sorted in descending order and frequencies are 
accumulated to give a Poisson frequency of an event of a given size or greater. The return period 
of these losses is defined as the inverse of this cumulative frequency. Portfolios are then 
evaluated by the size of loss for a given return period, or "PML". Since these two perils are 
independent and Poisson we can add the separate frequencies to get frequencies for a combined 
Poisson distributed portfolio. 
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IncrlN~ntlbl Frl~ulmclF Cumulllllvll FreCluenc Y a! LDvel and Above Approximalm Retucn Periods 

~lze of Losl Atlantic Clllh>rnia Atlanq k: Clllforrda Atl lnl ic Cmllfornla 
Eveht Hurricane Esrthqua4~ Combined Huntcane Emrthquake Combined Hurrlcane Earthquake Cocnbined 

100,0~,00O 00100 00100 00200 00100 00~00 00200 100 100 50 
80,000,~ 0 0~0O 00100 0 02OO 0 02O0 002O0 0 04OO 50 50 25 
20,OO0,1~Q 0 0200 0 0L:O0 00400 00400 0 0400 00800 25 25 13 
10,000,I~B ~ 0 0600 0 0600 0 1200 0 1000 01000 02000 10 10 5 

Although there are differences between the meanings of frequency and the probability of one or 
more events in a year, for low frequencies these numbers are essentially the same. So a 100 year 
return period event has approximately a 1% probability of occuring one or more times in a year. 
By combining the portfolio we get a 25 year retum period loss which is greater than the sum of 
the 2 separate 25 year loss events. However at the 50 year return period we get a combined loss 
less than the sum of the separate losses. If credit rating agencies, catastrophe reinsurers, and 
regulators evaluate companies based on the 25 year return period it does not make sense to 
combine these risks. 

A Related Example: "The Reinsurance Broker's Gimmick" 

A reinsurance salesman may propose the following scheme: 

"Randomly select half of your property catastrophe policies. Cede 100% of these. You will be 
ceding half of your premiums and losses, but my assistant - a world renowned statistician and 
catastrophe management expert - will show you that your 100 year PML will decrease by 60% or 
more. This is an excellent, cost effective way to manage your Cat risk." 

Policies spread throughout Florida or California overall may have a low average correlation for a 
given hurricane or earthquake event. This is because a given event in either state is relatively 
localized inside of the state. When viewed from the perspective of two randomly split portfolios 
recombined this situation may exhibit a similar pattern to the previous example which used a 
Florida portfolio and a California portfolio. So in exchange for 50% of the premium the 100 
year loss may come down by 60% or more, but what the salesman and his brilliant assistant 
neglect to mention is that the 200 year loss may come down by only 40% or less. 

Stochastic Simulation Example 

A European investor spends 200 million German Marks to capitalize an insurance company to 
underwrite maintenance, warranty, and recall insurance for a large European auto manufacturer 
over a 5 year period. Expected annual losses for routine claims are 1 billion German Marks, 
with a coefficient of variation of 10%. Investment income exactly offsets underwriting 
expenses, the risk load is 5% (reduced to 4% after the first year) of routine expected losses, 
premium is collected and losses are paid annually, and only autos sold and owned in Europe are 
covered. The investor runs into difficulty after an actuary working for European Union officials 
models 10,000 stochastic simulations of the company with a Gamma distribution (Billions of 
Marks are Gamma distributed with Alpha =100, Beta = 0.01) for routine annual claims and a 1% 
chance in any year that there will be a large model recall costing 2 billion Marks. The actuary 
discovers that the company has a 12.1% chance of bankruptcy over the course of its 5 year 
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operation. European Union officials state that the absolute maximum probability of bankruptcy 
they will accept is 10%. 

Fortunately, the European investor has a cousin who works as an investment banker on Wall 
Street in New York and is quite expert at engineering financial derivatives. The cousin proposes 
to offer annual aggregate loss reinsurance coverage for 400 million Marks xs 1, 100 million 
Marks. In exchange the investor will cede 2.4% of premium and agree to assume the costs for 
North American owned autos also in the event of a recall, which his cousin had previously 
agreed to insure. The cost of the North American autos covered in the event of a recall will be 
another 2 billion Marks. When the actuary adjusts his model for the new reinsurance derivative, 
he generates a ruin probability of 9.4% The officials concede and the deal is finalized. Some 
key simulation results are: 

Liquidation Loss Before Net Liquidation Loss After 
Percentiles Financial Engineering Deal Financial Engineering Deal 

99% -1.779 -3828 
95% -0.162 -0.053 
90% -0.020 0,000 
80% 0.000 0.000 
70% 0.000 0.000 
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Sample Simulation (Billions of Marks): 

Year I Year 2 Year 3 Year 4 Year 5 
Beginning Surplus 0200 0 107 0 059 0 135 0203 
Premium 10;50 1040 1040 1 040 1 040 
Losses 1 143 1 088 0964 0 972 0 999 
CM Loss 0 0 0 0 0 
Ending Surplus 0 107 0 059 0 135 0 203 0 244 

Liquidat ion Loss Before 
Flnanc~al Engineering Deal 0130(] 

Net Beginn ing Surplus 0200 0 125 0052 0103 0146 
Ceded Premium 0 025 0 025 0025 0 025 0025 
Ceded Losses 0 043 0 000 0000 0 000 0000 
Assumed Cal LOSS 0 0 0 0 0 
Nat Ending Surplus 0 125 0 052 0 103 0 146 0162 

Net L iquidat ion L o i s  After 
Financial Engineelqng Deal 

What the officials did not consider was that the expected policyholder deficit or expected value 
of insolvency, which the actuary's model generated, was 84 million Marks before the 
reinsurance derivative and 167 million Marks after the reinsurance derivative. This is the 
expected cost to the auto manufacturer (or government guarantor) due to the insurer's default. 
The default cost has doubled because even though the probability of default has decreased 
modestly the average cost of default has risen dramatically. 

Probability of ruin simulations and analyses, which do not include other risk measurements, are 
particularly likely to miss the dangers of exotic reinsurance agreements or financial derivatives. 
With the growing use of Value at Risk (VAR) by investment bankers to analyze derivatives this 
danger may also be present in banking. A somewhat mitigating factor is that many VAR 
calculations estimate a variance and then use a Normal distribution to get a percentile. The 
Normal distribution is not in itself vulnerable to this inconsistency with regard to percentiles 
versus standard deviations (See Appendix Theorem 2). The Normal distribution is also 
generally not vulnerable to inconsistencies between percentile type measures and expected 
policyholder deficit type measures, see Butsic (1992). 

Two Possible Defenses of Probability of Ruin Type Methods 

There is a strong case for a minimum probability threshold for risk management. A reasonable 
value judgement may be that events which have less than a 1 in 1,000,000 chance of happening 
should simply be ignored. It may be ridiculous for routine decisions to be based on worst 
possible outcomes. Similarly, perhaps some people would say that we can allow the I in 50 
chance event to be worse in exchange for lowering the 1 in 25 chance event. 

A second related argument arises if real world entities such as regulators, reinsurance markets, or 
credit rating agencies are fixed on a certain percentile level for things like pricing reinsurance, 
setting capital requirements, and assigning credit ratings. If this is the case, then a risk manager 
or insurance executive may still find the optimal strategy to be based on percentile type 
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measures. That is to say, a single player in the market place may not be wise to ignore existing 
standards. 

Possible Solution 

Fixing either a ccrtain tolerable probability of ruin or minimizmg the probability of a loss of a 
certain magnitude allows tbr undesirable results, primarily because it ignores other levels of 
probability or time horizon. The optimal strategy may change dramatically tbr different levels of 
probability or time horizon. Standard Deviation considers all levels of probability but may give 
unreasonable ',','eight to large rare events. A possible compromise is to introduce another 
measure which covers many or all levels of probability,qoss size. For example, a utility function 
with decreasing weight for less probable levels of loss could bc used to weight the magnitude of 
ruin at various levels of probability. 

Conclusion 

Probability of ruin type calculations are pervasive throughout insurance and finance, ltowever, 
their use as a standard for setting risk based capital requirements or as a selection criterion for 
comparing different risk management strategies may lead to nonsensical and undesirable 
consequences. In some cases this is obvious, such as when it implies that homeowners should 
not buy any insurance since doing so would increase their 9 0  th percentile losses. Other cases are 
more subtle, such as the case where randomly ceding halfofa portfolio of catastrophe exposed 
property risks reduces a 100 year PML by more than half, even though this reduces the 250 year 
and higher PMLs by less than half. Any application of probability of ruin type methods to risk 
management should be accompanied by consideration of ahemative measurements of risk. 
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Appendix  

Theorem 1 

For any "percentile" f such  that 0 < f <  1 there exist 2 independent nonnegative random 
variables such that the f percentile o f  their sum is greater than the sum of  the f pereentiles o f  
each o f  the random variables. 

Proof f"Fliooing 2 weighted Coins"): 

Let XI be a random variable with a probability ofbeing 0 equal to fand  a probability o f  being 1 
equal to 1 - f .  Let X2 be a random variable identical to and independent o f  X 1. 

The f percentiles o f  Xl  and X2 are both equal to O. 

Prob( Xl + X2 > 0) = 
Prob(Xl  > 0  OR X 2 > 0 ) =  
Prob(Xl > 0) + Prob(X2 > 0) - Prob(Xl > 0 AND X2 >0). 

Independence implies 

Prob(X1 > 0 AND X2 > 0) = Prob(X1 > 0) *Prob(X2 > 0). 

So, Prob( XI  + X 2  > 0) = 2  * (1 - f ) -  (1 -f)^2 

Since 0 < f < 1 we also know 0 < 1- f < 1 

Therefore (1 - f )  ^ 2 < ! - f and 2 * (I-f) - (l-f)^2 > 1 - f 

So the Prob( Xl  + X2 > 0 ) >  1 - f  

QED 

Theorem 2 

The Normal distribution does not demonstrate the phenomenon in Theorem 1. 

Proof: 

Consider two independent normal distributions: 

XI = Normal(Meanl, Sigmal) and 
X2 = Normal(Mean2, Sigma2) 
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It immediately follows that 

XI + X2 = Normal(Meanl + Mean2, SigmaTotal). 

For any percentile there exists a unique constant k, such that for any normal distribution the 
value o f  that percentile is equal to mean + k Sigma. So we have the following percentile values: 

Risk Value at Percentile 
XI Meanl + k Sigmal 
X2 Mean2 + k Sigma2 
XI + X2 Meanl + Mean2 + k SigmaTotal 

Si.~maTotal is always less than or equal to Sigmal + Sigma2. For percentiles greater than the 
50 ~ , k > 0. So for percentiles greater than the 50 th percentile the value of  X1 + X2 is always less 
than or equal to the sum of  the corresponding percentile values for X 1 and X2. 
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