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Abstract: 

When studying Worker's Compensation (WC) claim cost experience, researchers often 
prefer models that relate claim characteristics and other cost drivers to the logarithm o f  
the claim cost, rather than to the dollar cost itself. Linear models based directly on 
dollars, however, are better suited to decomposing the differences in costs observed over 
time or between claim populations. Reconciling the two methods within one analysis can 
be awkward. This led us to a new perspective: one that enables the two approaches to 
work together while preserving the most desirable features o f  each. 

The paper presents a general method for analyzing cost differences. It also illustrates the 
method in the context from whence it came: monitoring the post-reform experience o f  WC 
claim costs. 

Keywords: Workers' Compensation Insurance, reform, Oxacca decomposition, log-linear 
model, log-log model, exponential weight. 

Introduction 

Analysts are often asked to interpret the economic landscape and assess the influence of 

several exogenous or predetermined factors on one endogenous variable. An example is 

workers' compensation [WC] claim cost taken as the endogenous variable to be studied 

in reference to a list of exogenous claim characteristics and cost drivers. Models are 

associated with some sort of mathematical representation such as linear, nonlinear, 

logarithmic linear function form, etc. From the structural perspective, the coefficients (or 

derivatives, or elasticities) from the different models correspond to different 

interpretations. From the standpoint of statistical considerations, there are reasons to opt 

for one structural model over another if it enhances our ability to interpret the data. That 

model choice, however, may not prove convenient when those cost relationships are only 
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a part of a larger investigation. For example, it may be required to analyze how the 

average cost per case---not its logarithm-- has changed post-reform. This may demand 

some contortion to incorporate the model results into a picture suitable for decision- 

making. The need to fit a "round" cost model into a "square" hole within a summary 

report may lower the confidence level of those findings and raise the concern whether the 

methodology is intemally consistent. 

It is standard practice to use log-linear and log-log regression models in the analysis of 

WC claim costs. While useful for the investigation of proportional cost relationships, 

those transformed models are not well suited for predicting individual or even ,average 

dollar claim costs. Those models focus on the "geometric" mean cost while interest 

centers on the "arithmetic" average cost per case. 

On the other hand, regression equations provide a powerful computational device for 

benchmarking select sets of claim costs and for analyzing dollar cost differences into 

components associated with cost drivers. This technique, based Oxacca style 

decompositions, exploits the fact that regression equations relate the "arithmetic" mean 

cost with average levels of the cost drivers. 

This paper describes a method for changing the assigned weights of  observations in the 

determination of the logged cost model. That "exponential weight" refinement is 

designed to improve the performance of  the model after conversion back to a dollar scale. 

The derivation of  a specific reweighting formula is motivated from the basic data fitting 
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geometry of OLS regression (see [1] where the technique is tested on a large database of 

WC lost time claims). The idea is just to shil~ the log-linear regression model from its 

"geometric" to an "arithmetic" perspective that makes it consistent with the 

decomposition formula. 

The next three sections provide technical background material: (1) the use logged cost 

models, (2) Oxacca style difference equations and (3) the exponential weight. The next 

section outlines a general methodology for putting the three pieces together. This is 

illustrated in the final section that presents a case study. The case study deals with 

monitoring WC claim costs post reform and is the context from which this work evolved. 

An Appendix provides additional detail on regressions discussed in that ease study. 

The Use of Logged Cost Models 

The use of log-linear and or log-log regression models is the preferred practice for the 

analysis of workers compensation insurance claim costs. For simplicity, we refer to 

regression equations in which the dependent variable is the logarithm of a dollar cost as 

"logged cost models". The use of a logarithmic scale generally renders the cost 

distribution pattem more symmetric and less influenced by large "outlier" claims. It has 

the additional advantage of not predicting negative costs. While this typically results in 

better fits and higher R 2 values, it is well known that the attempt to reverse the 

transformation by exponentiation usually fails to yield very useful dollar cost estimates. 

Indeed, on average the figures that result are smaller--sometimes spectacularly smaller-- 

than the original costs used to construct the model. As explained in the paper, this is a 
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formal consequence o f  the geometric mean cost being less than the arithmetic mean. 

While the transformed models provide useful information on cost relationships, that 

transformation renders them o f  little value for directly predicting dollar cost estimates. 

The common sense explanation for this is that the high cost claims are effectively given 

less weight in a logged cost model. This is viewed as one o f  the prices to be paid for 

mitigating the influence o f  outlier claims. We pursue this from a simple geometric point 

o f  view rather than from the more challenging perspective o f  model specification error. 

We begin with the observation that cost data is typically presented with a "natural 

weight". This may simply be one claim one vote within a claim population or, as is oiten 

the case, a weight inferred from claim sampling procedures or other information on the 

probability o f  claim occurrence. It is key that this "natural" quality in dollar terms need 

not be preserved under transformation o f  the data. in particular, this typically occurs 

when costs are recalibrated via the log function. This suggests reweighting the data to 

offset that effect. Reweighting observations is a common practice in constructing 

regression models to temper the effect o f  outliers or more generally to deal with 

heteroscedasticity. In a subsequent section we introduce a reweighting scheme that shifts 

the focal point o f  a logged cost model so as to make it better suited to producing dollar 

cost estimates. We will show that from this weight 's  perspective, the advantages o f  the 

logged cost models can be essentially retained while generating figures more readily 

broken down into cost components. 
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Let X represent an observation, Z = Z.~ the corresponding claim cost and {X, } the 

values of a set of explanatory variables. This note considers logged cost models of the 

form: 

r = 1.~z} = Y A x ,  + ~  

where c represents the error term. The X, may be categorical or continuous and, if 

continuous, be expressed in their original scale (log-linear cost model) or transformed to 

a logarithmic scale (log-log cost model). 

On the continuous side, pre-injury wage and rate of compensation are important 

examples. Typically, dollar amounts like the pre-injury wage would be logged while that 

need not be the case for other continuous variables, such as the rate of compensation 

(periodic lost time compensation expressed as a percentage of the wage). Observe that 

the model parameter/~, does not vary with claim cost Z,  referred to as an assumption of 

constant elasticity (for X, in logged form). For example, it is common to use the full 

wage (or log thereof) so as to capture utilization effects related with total income. This is 

done even though workers compensation benefit statutes impose maximum wage 

replacement levels. Their presence, it has been argued, compromises the assumption of 

constant elasticity. There are, however, important considerations that challenge or at 

least mitigate that criticism. The point here is not to debate the issue but to simply point 

out that it is worth considering the implications on the use of the regression equation 

when {,8,} is observed to vary with Z. 

449 



The appeal of a logged cost model in this context is best seen in the case of categorical 

variables. In the simplest case, suppose that the explanatory variable 3( corresponds to a 

{yes,no} condition, taking on the respective values { 1,0}. In terms of the original cost 

z ,  the model associates an adjustment factor of  a~ = e a' . Most claim characteristics are 

better associated with such a proportional shift than to a particular dollar amount, as 

would occur if the logarithm were not used to transform the dependent variable of the 

cost model. While researchers may cite a litany of more technical considerations, it is 

primarily this observation together with the desire to avoid negative cost estimates which 

provides the strongest motivation for using logarithms to model workers compensation 

claim costs. 

As with continuous variables, there is the issue as to whether the adjustment factor 

a ,  associated with a characteristic variable changes with Z.  Consider, for example, the 

characteristic indicating whether an attorney represents the claimant. For most purposes it 

is clearly preferable to model the associated cost impact as a proportional rather than as a 

fiat loading. Again there are countervailing considerations: some state statutes regulate 

attorney fees by imposing maximums or sliding scales relative to the settlement amount. 

The expense of collecting and storing detailed information on every claim may be 

prohibitively high, so oftentimes cost analyses resort to using claim samples. The 

efficiency of the claim sampling process may be further improved through stratification. 

In the case of the Detailed Claim Information (DCI) database used in the case study 

discussed later, state specific sampling ratios are used. Also, DCI sampling rules require 
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that the claims be stratified so that the relatively simple and quickly resolved cases--for 

which many of the claim characteristics are missing or inapplicable--do not bog down the 

collection, storage and processing tasks. In this situation, a weight variable would be 

applied in deriving a cost model. In this study we abuse the notation o,(=a~v" =co.) to 

denote the weight assigned to the claim x based upon the sampling rules. In the case of 

the DCI, o9 is determined as the inverse of  the applicable state sampling ratio, 

selectively increased by a factor to account for stratification. Let F denote a claim 

sample set. The set of weights {ta Ix ~ F} (which is really a functiono~: F~[0,oo), but we 

ignore that nicety here) has the very desirable feature that, assuming the sampling is done 

correctly, the corresponding weighted arithmetic mean is an unbiased estimator of the 

average cost per case of lost time claims. Although not necessarily an integer, the value 

mx can be interpreted as the number of claims represented by the sampled claim x. 

When the set {co x } is this sampling weight, the sum W = )--leo x provides an estimate of 

the size of the lost time claim population. Making the normalization p, = a ~  converts 
W 

the weights into a probability density with the weighted mean coinciding with the 

expected claim cost: 

= ~-"o9~ W z ' '  ~'~' 

Oxacca Style Decompositions 

Suppose the claim sample is divided into n mutually disjoint subsets: 
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n 

F=UF , icj=F,,nFj=~ 

and consider a (weighted) ordinary least squares (OLS) linear model on the claim sample 

of the form: 

Y = ~_fit,4 +~_~fljXj +~ where 4(x)  = x ~ F, 
r=-I ) X E  l ~  

We are interested in analyzing the differences of Y among these subsets akin to the 

Oxacca decomposition of mean differences from linear models. Let horizontal and 

vertical bars denote, respectively, taking a (weighted) mean and restriction to a subset. In 

this context, we may express the error term as: 

C = o ¢ . I = c - ( Z 4 ) = Z ~ "  , where ~ ' ,=c .  4 
! t 

and a property of  OLS regression implies that: 

O = g = c ,  =~,r., l<_i<_n 

This leads us to Oxacca style decompositions of differences of means over the various 

subsets. Indeed, the differences c,m be itemized into "base" and "mix" components. 

Ylr,- Ylr, = (ct, - a * )  +'~-'~,,B, xj~lr - x~tr , ) 

mix 

It is important to keep in mind that these means are determined using the same weights as 

are used to determine the regression equation. 

The base difference can be interpreted as "'unexplained" in the sense that the cost model 

does not associate it with any claim characteristic other belonging to a particular subset. 
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Alternatively, it can be interpreted as the result o f  selecting a common "baseline claim", 

specified as a set o f  assumed values for the explanatory variables, and then using the cost 

model to generate two predicted costs for that same claim. The first assumes that the 

claim belongs to the first subset o f  the comparison and the second assumes it belongs to 

the second subset, all else equal. Subtracting the first predicted cost from the second 

determines the "difference in base cost" component. 

It may be useful to further itemize the mix component, since its summands are related 

with the explanatory variables o f  the model. For example, we have referred to some o f  

the explanatory variables as "claim characteristics" and to others as "cost drivers". The 

decomposition can effectively group together the set o f  marginal cost impacts associated 

with the covariates of  the cost model. 

The Exponential Weight 

As was noted above, the translation to logarithms compresses costs and has the effect o f  

making claims more "equal". In particular, the high cost claims have less influence in the 

mean. A natural correction to this is a scheme that assigns more weight to higher cost 

claims when evaluating the regression model. For example, you could make the weight 

o f  an observation proportional to its dollar cost. It turns out, however, that such a weight 

overcompensates (c.f. [ 1 ]).. 

As before, let Z denote claim cost and begin with a set {to I z • 17 o f  weighted costs from 

a claim sample of  size N. We want to determine another set o f  N weights {r~ I z ~ 17 for 
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that same cost data that behaves better under taking logs. It turns out that there is an 

essentially unique way to do th is - - re fer  to [1] for details. The first step is to sort the data 

by size o f  cost F = {z, I :, -< :,.,;1 _< i < N - 1}. Simplify the notation by letting w, = w_ and 

y, = ?. denote the corresponding weights. There is an ordered set {Z, [ 1 _< i < N} called the 

corresponding exponential weight that is uniquely determined from the conditions: 

k 

t I Z 0 ) ' 2 i  

I=I "r '  '~' = ' = ~ ; l _ < k < N  and Zy,:Z0) ,  
i=1 --t k - -  

t=l 

This just means that the exponentially weighted geometric mean equals the weighted 

arithmetic mean determined using the original weight. 

Putting the Pieces Together 

This section presents the basic methodology in a simple but generic setting. All that is 

involved is putting the pieces together from the previous three sections. As above, we 

begin with a weight {to: I = e F} and a decomposition 

n 

Let y, be the exponential weight corresponding to the weight (olr ' on the sub-sample ~. 

Combine the y, into a weight y on F so that Ylr: = L" Note that both weights w and y 

assign the same weight W, : ~-~w: = ~-~y: to each sub-sample F, 
:eE :~I, 

The weight y provides the perspective that enables logged cost models to itemize 

differences among the sub-samples. To see this, we let Y=log(Z) as above. Also let a 

bar indicate the (weighted arithmetic) mean using the weight w and a double bar the 

(weighted arithmetic) mean using the weight ?.. 

4 5 4  



We are interested in how the cost Z changes over the F,, as measured by the average cost 

per case that we denote by .-, = zqf; • Letting r,j = : '  the idea is to decompose those relative 
! 

differences in terms o f  explanatory variables. 

So construct an OLS log-linear model using the weight y : 

n 

log(Z) = Y = ) - ' a , 4  + ~-'fl, X, +E 
i=1 k 

We have arranged things so that 

Z~ z ~ ,:/ Zr..log~) 
k ~  ) w, 

+Zp, 

and, as above, there is an Oxacca style decomposition: 

k 

e ~-~' = base cost compoent factor 

eA(~-~, ,,t,-'~) = factor associated with covariate X, 

This shows how to itemize the relative cost differences, expressed in dollar terms, using 

elasticities from a logged cost model. 

The next section applies this when the claim sample is divided into four disjoint subsets. 

F. =TB, experience o f  a reform (Test) state pre-reform (Before) 

F 2 =CB, experience o f  a group o f  non-reform (Control) states pre-reform (Before) 

F 3 =TA, experience o f  a reform (Test) state post-reform (After) 

F 4 =CA, experience o f  a group o f  non-reform (Control) states post-reform (After). 
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As noted before, in that case study the covariates were grouped into two general 

categories: "claim characteristics" and "cost drivers". Those categories used to determine 

component factors associated with the explanatory variables of the log-linear cost model. 

A Case Study: Monitoring Post Reform Claim Severity 

Much of the previous discussion makes reference to this example This final section 

illustrates the concepts discussed above. Along with revisiting the methodology, it 

discusses findings of some independent interest. 

Background: NCCI post-reform monitoring (PRM) reports analyze losses in states those 

enacted major legislative reforms of their WC systems over the last decade. The reports 

attempt to gain an understanding of the effects of the reforms on the system outcomes, 

and evaluate the consistency of the outcomes with the reforms' objectives. With the 

availability of the necessary data, the post-reform monitoring reports compare the actual 

claim frequency and severity before the enactment of the laws with outcomes after. This 

section illustrates the analysis for a group of seven states (Arkansas, Connecticut, Florida, 

Georgia, Kansas, and Kentucky, Montana). These states enacted major legislative 

reforms from June I, 1993 through July 1, 1994 and each was the focus of a post-reform 

study by NCCI during 1998. The paper NCCI Post Reform Monitoring Reports [2] 

provides backgrotmd and presents findings for the same group of seven states within the 

context of post-reform cost analyses. 

Data Source: The comparison of lost-time claim severity uses data from the NCCI 

Detailed Claim Information (DCI) database. The DCI is primarily used for research, and 

456  



contains detailed information on a stratified random sample of lost time claims. In 

addition to incurred and paid claim costs, the DCI includes many claim characteristics, 

such as the part of body injured, the nature of the injury and its cause. It also includes 

indicators for attorney involvement, vocational rehabilitation; claim milestones such as 

date of injury, date of first disability payment, return to work or claim closure; as well as 

claimant demographics like age, gender, and pre-injury wage. The post reform 

monitoring studies use multivariate cost models to control the mix of injuries, claim 

characteristics and claimant demographics and to evaluate average claim costs in the pre- 

and post-reform periods. Indices for medical costs and wages are used to hold 

purchasing power constant over the two time periods. 

General Approach: The analysis compares average claim costs in the pre- and post- 

reform periods in the reform states with outcomes from a group of jurisdictions that did 

not enact major systemic reforms.I Workers compensation experience improved 

significantly during the time period considered here and that improvement was not 

confined only to states instituting statutory reforms. 

While it is impossible to exactly isolate the effectiveness of reforms from the general 

tumaround in experience, it is important to evaluate reform within that broader context. 

A simple comparison of experience before and after reform cannot achieve this. To that 

end, the analysis incorporates the experience of a "control" group of  states that did not 

enact major reforms. In comparing case severity of the "test" reform states to the non- 

Those states are : Alaska, Arizona, the District of Columbia, Idaho, Illinois, Indiana, Iowa, Louisiana, 
Maryland. Michigan, Mississippi, Missouri, South Carolina, Utah, Vermont, Virginia and Wisconsin. 
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reform states' experience, it is equally important to account for the fact that the respective 

mix of injuries can significantly influence the result. 

Average claim costs are compared between the two time periods for the reform and 

control states. For the reform states, pre- and post-reform time periods were selected 

based on the effective date of the reform law (typically, the pre-reform period ran from 

18 to 6 months before while the post-reform period ran from 6 to 18 months at~er). For 

the control group states, the pre-reform period used is June, 1992 to May, 1993 and the 

post-reform period is May, 1994 to April, 1995. Those periods were selected so that, on 

average, the injury dates would be aligned with the before and after periods in the reform 

states. Comparison of outcomes in the reform states with the non-reform states provides 

a reference to the industry trends, while still differentiating the reform and non-reform 

state experience. 

Linear and Logged Cost Models: As discussed above, it is standard practice for 

researchers to model the logarithm of cost, log(Z), when building models of claim costs. 

It is however, comparatively rare to find a justification for this beyond an exercise in 

hand waving. Chart 1 below shows the actual incurred costs for the DCI claim sample, 

arranged by increasing cost. Each "actual" point represents one percentile of the cost. 

More precisely, the data is sequenced by increasing size of claim z and then collected into 

100 subsets of approximately equal weight. Chart 1 also shows the corresponding mean 

of k,  the predicted cost using a linear cost model and a second fit using an analogous 

logged cost model. 
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Chart  1" Actua l  vs Predicted 
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Predicted costs reflect regression toward the mean. Moreover, many of the explanatory 

values used in the cost models are {0,1 }-indicator variables, which limits the range of 

predicted values. As a result, the fitted values show less variation than the actual costs. 

In particular, predicted costs understate the cost of the most expensive cases, a 

phenomenon that accounts for much of  the error of the regressions. Chart 1 illustrates 

that while this is true for both linear and logged cost models, it is especially apparent for 

the linear model. Logged cost models typically exhibit a better fit. In this case, the 

adjusted R 2 is 0.983 for the logged cost model, more than double that of the linear model, 

at 0.427. 

The graph of any (perhaps weighted) OLS linear model z = f ( x )  + e has a natural "'center 

of gravity" at the point (2,~') = (.~,f(.~)). When the same weight is used to construct a 

logged cost model log(z) = g~ (x) + 6, however, the center of gravity of the regression, 

when transformed via exponentiation back to the original dollar scale, is moved to the 

point ( i ,  exp(g, (~))) ( , ~ , e x p ( ~ ) )  where $ is recognized as the (weighted) 

geometric mean of  z.  From the above remarks, we see that the sample weight can be 

"exponentially adjusted" in such a way that, when that new weight is used, the focal point 

of the logged cost model is shifted back to the (arithmetic) average cost per case. In this 

study, the exponential weight adjustment was applied to each of the four subsets 

{CB,CA,TB,TA} identified above. Chart 2 compares the logged cost model fit using the 

sample and its corresponding exponential weight (refer to the Appendix for the logged 

cost model parameters using the exponentially adjusted weight). 
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Chart 2: Log-linear Cost Model 
Exponential vs Sample Weight 
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Again, when weight is held constant, the effect of the logarithmic scale renders high cost 

z claims less influential in an OLS model for log(Z) than in an analogous model for Z. 

The exponential weight offsets that--whence its name---by assigning greater weight to 

the higher cost claims. This, in effect, shifts the center of  gravity of the regression 

equation. Chart 2 illustrates this: while the sample weight log-linear fit is quite good 

from over 40-60 th percentile range (the geometric mean of  lost time costs is typically 

tracks with the median); the exponentially adjusted weight model fits best in the 70-90 th 

percentile range (as is typical, the arithmetic mean of lost time costs--here about 

$10,00(~-is near the 80 th percentile). The exponentially adjusted weight provides a better 

fit for high cost claims and optimizes the model fit near the value used to measure case 

severity. In this instance, the overall effect on the goodness of fit is small: use of the 

exponentially adjusted weight increases the adjusted R 2 slightly, to 0.988. 

In light of the many {0,1 }-indicator explanatory variables used in the cost models, it is 

worth recalling another advantage of logged cost models over simple linear models: most 

claim characteristics are more naturally associated with a proportional cost shift rather 

than a flat dollar loading. It should also be noted that contmuous explanatory variables 

were converted to logarithmic scale in determining the logged cost models (log-log 

model form). 

A more technical problem is that of heteroscedasticity. An important assumption of the 

classical OLS regression model z = f ( x )  + c is that the E all have the same variance. 

As with much cross-sectional data, this is problematic in the case of WC case severity. 

Indeed, more expensive cases show greater cost variability and it is likely that this affects 

462  



the variability of the residuals. The presence of heteroscedasticity has important 

implications for the interpretation and application of the cost model, especially as regards 

predictions and their confidence intervals (its presence does not, however, invalidate the 

model coefficients used here to decompose cost differences). Although few would 

believe that lost time costs actually conform to any simple linear (or log-linear) 

functional form, in the classical OLS regression sense, this is relevant in light of the use 

the model to decompose cost differences. Indeed, the conceptual basis of the 

decomposition comes from interpreting the regression equation as the tangent hyperplane 

to the graph of the cost function at the center of gravity. The model coefficients regarded 

as partial derivatives that measure the slope at that point along the axis of the 

corresponding explanatory variable. The better the choice tbr the functional form of the 

cost model, therefore, the more credible the decomposition. By the same token, when 

using regression models to analyze case severity, it is advantageous to optimize the fit at 

a center of gravity which conforms to the severity measure being used--in this case the 

(sample weighted arithmetic) average cost per case. 

Heteroscedasticity is also among the justifications cited for the use of the log 

transformation. The simplest approach to dealing with heteroscedasticity is to divide the 

observations into groups and examine the residuals for any pattern. Given the concern 

expressed above that higher cost cases are also the more variable, it is natural to again 

consider cost percentiles. Recall that in preparing Charts 1 and 2, claims were collected, 

according to size, into 100 groups of roughly equal weight. The idea here is to normalize 

the cost of each group to a common (weighted) mean of I. The lowest quartile is 

excluded in order to avoid erratic results due, at least in part, to division by comparatively 

463 



small numbers. This generates 75 subsets of similar size and scale for which we can 

compare the model residuals. Chart 3 shows the standard deviation of the residuals for 

the linear and logged cost models, determined using the sample and exponentially 

adjusted weights, respectively (the pattern for the log-linear cost model derived using the 

original sample weight is quite similar to that using the exponential adjusted weight). 

Observe that, for both models, not only does the regression equation consistently under- 

predict the highest z values, it does so in such a way as to yield relatively little variation 

in the error, as compared with the size ofz. While both models show a pattern of decline 

with increasing cost, that decline is less pronounced for the log-linear cost model. Indeed, 

while the log-linear variation measure remains mostly in the interval [1,2], the values 

from the linear model decline from 5 to nearly O. From this simple picture, then, the log- 

linear cost model shows less evidence of heteroscedasticity. 
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C h a r t  3: V a r i a t i o n  of  R e s i d u a l  
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To summarize, the case study illustrates the primary reason for using logged cost models 

is a much better fit to the data. Also, proportional cost effects are generally preferred to 

fiat dollar Ioadings. Among the other motivations for using the log transformation is the 

need to counter heteroscedasticity and outliers by making higher cost cases less 

influential in the model. While the exponential weight adjustment runs somewhat 

counter to that by shifting weight to higher cost cases, it still improves the situation as 

regards heteroscedasticity and outliers and has the major advantage of optimizing the fit 

at the point measure of  case severity. 

Cost Decomposition: The previous two sections illustrate how convenient linear models 

are for decomposing dollar differences but that log-linear cost models generally provide a 

better fit to the data and have other conceptual advantages. This purpose of this section is 

again to put the pieces together. Applying the logarithm in conjunction with an 

"exponential" transformation of the sample weight, the mean values of the logged cost 

model invert back to the original (weighted) arithmetic mean. This enables a 

decomposition of the relative difference in case severity very similar to the Oxacca style 

dollar decomposition derived using linear cost models. 

As above, the post-reform relative difference in mean cost per case among the non- 

reform states can therefore be expressed as: 

Im~c t , s t  J k 
case mix targeted cost drivers 

This is the itemization of the relative difference in lost time case severity presented in the 

PRM studies. The results for the DCI claim data is shown in Tables la and lb. 
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Table la: Components of Relative Difference: 
Post- vs Pre-Reform 

Comparison Relative Components 
Group Difference *~ Base Cost 1 Claim Mix Cost Drivers 

Control Group -4.3%* -13.3% 2.1% 6.9% 
Test Group -19.4% -18.5% 2.6% -3.6% 

• Statistically different from 0 with 95% confidence, based on a 2-tailed T-Test. 
# Relative difference of x Vs. y is determined as natural log(x/y), expressed as a 
percentage. 
SOURCE: NCCI DCI, claims evaluated 18-months after report of injury. 

Observe that for the reform states test group the cost drivers contributed to the decline in 

case severity, while those factors worked to increase costs in the non-reform states. 

Table lb: Components of Relative Difference: 
Test vs Control 

Time Relative Components 
Period Difference *j Base Cost I Claim Mix i Cost Drivers 

Pre-Reform 30.8%* 14.8% -0.1% 16.1% 
Post-Reform 15.7%* 9.6% 0.5% 5.6% 

• Statistically different from 0 with 95% confidence, based on a 2-tailed T-Test. 
# Relative difference of x Vs. y is determined as natural log(x/y), expressed as a 
percentage. 
SOURCE: NCCI DCI, claims evaluated 18-months after report of injury. 

The claim mix component is small in comparison with the other two components. This 

decomposition indicates that pre-reform cost drivers contributed a larger share to the 

higher severity of the reform states. The higher cost differential was cut in half post- 

reform and under this decomposition, targeted cost drivers account for a smaller share of 

that smaller difference. 
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Conchtsions: A number of states enacted major reforms of their workers compensation 

systems in the last decade to control rapidly increasing claim frequency and costs. The 

most common tools to address these problems were the introduction of managed care 

provisions, the imposition of stricter compensability standards and fewer incentives for 

attorney involvement. NCCI post-reform monitoring reports analyze claim frequency 

and severity in these states before and after the enactment of reforms, comparing the 

outcomes to trends in a group of non-reform states. This paper describes the method used 

to analyze the severity of lost time cases using DCI claim data. 

Factors other than the reforms, including the influence of economic cycles and secular 

trends, may have affected the outcomes. These factors may have countered the effects of 

the refolms where the observed improvements were modest. In addition, the analysis did 

not evaluate the impact of each reform provision on lost time case severity. It is likely 

that some reform measures may have greater impact than the others. For these reasons, a 

comparison of outcomes, such as a simple T-test of means, between the two periods with 

a reference to the countrywide trend provides only a limited understanding of the effects 

of the reforms on the system costs. As described here, multivariate cost models address 

this by decomposing the difference into components. A customized logged cost model is 

described and shown to possess some important technical features. That is the method 

used to prepare the PRM studies. The DCI results presented to illustrate the methodology 

indicate that cost drivers targeted by reform indeed play a different role in the reform 

states than in the non-reform control group of states. Still, those findings confirm the 
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view that factors other than those associated with claim characteristics captured in the 

DCI--like economic cycles and secular trends--may significantly influence costs. 

From the reform versus non-reform state perspective, simple cost comparisons indicate 

that the reform states maintain a significantly higher case severity. That cost differential, 

however, was halved post-reform and the multivariate analysis assigns much of that 

relative improvement in claim severity to cost drivers targeted by reform 
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APPENDIX: Regressions Discussed in the Case Study 

Dependent Variable: INCURRED COST 

Table 1. Analysis of Variance 

Analysis of Variance 

Sum of Mean 
Source DF Squares Square F Value Prob>F 

Model 
Error 
U Total 

49 1.5142475E14 3.0903009E12 
38145 2.0262767E14 5312037561.2 
38194 3.5405242E14 

581.754 0.0001 

Root MSE 72883.72631 R-square 0.42"17 
Dep Mean 8557.63163 Adj R-sq 0.4270 
C.V. 851.68104 
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Table 2. Parameter Estimates 

~ a r m t ~ r  S t a n d a d a c d  • f o r  SO:  
V a r t m b l *  O e m c r I p t x o .  DF Z l t i ~ t e  Z r ~ r  ~ r ~ r , , O  P r o b  > ITI  

TEST BEFOre SUE~&OUP 
TEST AFTER SUBGROUP 
CONTROL BEFORE SUBGROUP 
CONTROL AFTER SU~3ROUP 
EMPLOYER pAyROLL SiZE $o 
[~'[PLOYER PAYROLL SIZE $1-SI00K 
~MPLOYER pAYROLL SIZE $IOOK $1H 
EMPLOYE~ PAYROLL SIZE $1M-$10M 
CLASS IN SCHEDULE GROUP 05 ~ 
CLASS IN SCHEDULE GNOUP 07 
CL/~SS IN SCHEDULE GROUP l O  
CLASS IN SCHEDULE GROUP 12 
: i ~ . S S  IN SCHEDULE GROUP 14 
CLASS IN SCHEDULE ~ROUP 17 
CLASS IN SCH~E~LE GROUp 18 
C:AS~  [ N  SCHEDULE GROUP 20 
CLASS :N SCHEDULE G~OUP 21 
CLASS IN SCHEDULE GROUP 21 
CLASS Z~ SChEdULE G~OUP 25 
CLASS IN SCHED~JLE GROUP 26 
CLASS IN SCHEDULE ~ROUP 27 
CLASS IN SCHEDULE GROUP 33 
CLASS IN SCHEDULE GROUP 34 
CLASS IN SCHEDULE GBOHp 35 
CLASS I~ SCHE~JLE G~OVp ~ 
TRAUMATIC INJURy 
PRE-INJURED WEEKLY WAGE 
£NO"dRy AGE 
M~E C LA I M.I~T 
INJUK~D P~T  OF BODY INTEP/,I.~.L ORGANS 
INJURED pERT OF BODY HEAD 
INJURED PK~T OF BODy NECK 
INJURED pART OF BODy LOME~ BAC~ 
INO~JBED pJ~T O r  BODy UPPER BACK 
INoIJRED pART OF BODy LOWER EXTREMITy 
[NJ~JBED pKBT OF BODy UPPER EXTREmITy 
FAT~ CLAIM 
STATUS OF CLAIM IS OPEN 
WEEKLY BENEFIT 
HOSPITALIZATION INDICATOR 
SURGERY INDICATOR 
VOC~TIC~4AL REH~ILITATION BENEFITS 
CLAIMANT REPRESENTED BY AN ATTORNEy 
~ETUKN TO WORK INDICATOR 
pERMANENT TOTAL J~RD 
SCHEDULED pEBHANENT pA!RTI.~/~ AWeD 
NON-SCHEDULED pERMANENT pARTIAL AWARD 
DISFIGURE~IENT AWAPD INDICATOR 
LUMP SUM PAYMENT INDICATOR 

I -2294.367470 747576O2381 -3O69 00021 
1 .-2080.279861 689.14790226 -3.O19 O . 0 0 2 5  
1 -3001.570552 697.96546494 -4.300 0.0gol 
l 1469,061287 431,95451854 3.403 o . 0 o o ~  
1 557.942641 311.42257706 1.792 0.0732 
1 -6.767765 270.72]89656 -0.025 0.9801 
1 240.76027n 262.07125972 0.919 0.3583 

654.826~99 570.71037800 1.143 02512 
909.315255 i023.9962096 0.688 0.3745 

i 105,300221 674.23379474 0.156 0.8759 
1 -462,269804 674.63152253 -0.685 Q.4932 
1 93,132284 71315373065 0.131 0.8961 
: 1~5.409428 426.85143513 0.434 0.6640 
1 -33~910290 492,17394439 -0.~87 04924 
1 -569.8886@2 95;.460fl7475 -0.595 0,5517 
1 572.97~130 1546,8026243 0 . ] 7 0  0.1if| 
1 - 1 0 2 . 0 0 2 6 2 2  I 1 4 1 , 1 4 7 1 E 6 2  - 0 . 0 8 9  0 9 2 8 8  
l 1433.375913 IO85,8342328 i~320 O.t86a 
1 801.569fl30 654.71935952 I~224 02208 
1 1290.795104 379.540|3241 3.(01 O000~ 
I 623.471859 i173.2744182 0.531 O.5951 
l -446.411085 299.33417378 - 1 . 4 9 1  0.|359 
t 4 3 2 . 1 0 0 8 8 1  3 4 0 . 5 2 8 1 2 2 5 9  1 , 2 6 9  0 . 2 0 4 5  
1 - 6 5 4 . 3 9 7 3 0 1  3 4 3 . 0 7 3 6 1 0 1 1  - 1 . 9 0 7  0 . 0 5 6 5  
I 1034.054233 471.84163281 2.192 0.0284 
[ 8.369938 0.52696165 15.883 0.00oi 
1 52.909464 7.92956518 6,683 0 0 0 0 1  
1 1545.291364 223.90733173 6,901 0.o001 
l -4979.103718 564.72830329 8817 0.oo01 
l -373.060091 574.U4135302 -0 650 0.5158 
1 3235.541609 724,93327242 4.463 00001 
1 -795.56fl308 335,14611281 2374 00176 
l -1479.748378 601.39OO9721 -2.461 0.0139 

-2~97,935~57 337,36867599 -7.997 0.0001 
[ -3309,790946 319,1392f1384 i0,352 00001 
I l i 0 3 9 8  3 5 5 9 . 8 3 1 1 6 7 1  3 1 . 0 1 2  0 . 0 0 0 1  
1 24268 3 0 5 7 1 8 8 4 6 1 3  19.380 0.0001 
I 0 t ~ 6 5 0 2  0 , 0 ~ 4 0 3 3 9 6  2 . 7 5 6  0 . 0 0 5 8  
1 3 3 6 2 0 4 3 7 4 3  199,67950657 1 6 . 8 3 7  0.0001 
1 7044530354 266.84389548 26399 O.0QOl 
I 25215 760.93884532 3 3 . 1 3 6  0.0001 
[ 3530.486859 305.37792234 11.561 0 . 0 0 0 1  
l - 3 6 7 5  050427 204.25644599 - 1 7 . 9 9 2  O.0OOl 
I 254~6 2277.5335650 ~3+139 0.0001 
1 4859.151359 380,87552656 12.758 0.0001 
l 7546.803456 499.52747703 15.1C8 0.0001 
I 4956.894055 870,7070886~ 5.693 O.OO01 
l I0976 661.991660~0 16.580 O.OO81 

2 The classifications have been arranged into general industry divisions, designated "Schedules," and 
further subdivided into smaller "Groups" of classifications having similar or related characteristics. 
Source: Classification Codes & Statistical Codes for Workers' Compensation & Employers Liability 

Insurance, National Council on Compensation Insurance, Inc., 1997 Edition. 
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Dependent Variable: LOG OF INCURRED COST 

Table 3. Analysis of Variance 

Sum of Mean 
Source DF Squares Square F Value Prob>F 

Model 
Error 
U Total 

~9 51997071.56 1061164.7257 
38145 616255.46055 16.15560 
38194 52613327.021 

65684.008 0.0001 

Root MSE 4.01940 R-square 0.9883 
Dep Mean 9.04757 Adj R-sq 0.9883 
C.V. 44.42522 
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Table  4. P a r a m e t e r  E s l i m l e s  

e * r ~ t o r  ot~n#ar~ z f o e  a o :  
V l z * l ~ l e  ~ l c r ~ p t ~ o n  DF E t te P l r m t e ~ O  P r o b  • I T (  

TEST BEFORE S U ~ a O U P  1 ¢ . 9 3 0 J 0 3  0 0 7 9 9 4 ~ 9 1  ~ 1 6 e 9  0 . 0 0 0 1  
r ~ s T  AVTE~ StrSG~OUP : ~ . ~ 4 5 S ~ 2  0 0 ~ 1 0 ~ 1 5  5 ~ . 5 3 ¢  0 . 0 0 0 1  
CONTROL BEFOP~ SUBGROUP I 4.982400 0,07902394 60.518 0.0001 
C~TROL AFTER SUBGR~P I 4.549294 0.07995381 58.150 0,0OOl 
~PLOYER PAYROLL SIZE $0 I 0.146117 0.0215221] 6,21Z 0,0001 
EI4pLOYER pAYROLL SIZE $I-$100K ( 0.071917 0.01910374 4.205 0~0UOI 
i~4PLOYEB PAYROLL SIZE $100K-$1M 1 -0.02~990 0.01514450 -1.848 0~0646 
F~4PLOYER PAYROLL SIZE $1M-IIOM ~ -0.028072 0.01~59912 -].923 00545 
CLASS IN SCHEDULE GROUP 09 i 0.111370 003093370 3600 0.0003 
CLASS IN SCHEDUI~ GROOP 07 I -0.005698 0.06112679 -0093 rJ.9ZS~ 
CLASS IN SCHEDULE GROUP i0 1 0.010150 003?37508 O.272 0.7860 
CLASS IN SCHEDULE GROUP 12 I 0.031146 0.03685414 O845 0.3980 
CLASS IN SCHEDULE GROUP 14 1 O.07801Z 0.04032587 1.936 0.0529 
CLASS IN SCHEDULE GROUP 17 I q.0"14217 0.02269132 3.271 0.0011 
CLASS IN SCHEDULE GROUp I@ 1 0~048409 0.02663034 181@ ,9.069[ 
CLASS Z, SCHEDULE CaOUp 20 Z O.O91~8~ O.OSO4e~4? I.~2~ : ~ .o~e3  
C/~S IN SCHEDULE GROUP 21 1 0.061793 0~08~O1793 O.718 0.4725 
CLASS IN SCHEDULE G~OUP 24 i 0.020143 0.06040751 O.]33 O.'1388 
CL~S IN SCHEDULZ GBOOP 25 L 0~311|56 0,05923375 5.786 0.0001 
CLASS IN SCHEDULE GROUP 26 1 0.123215 0.03¢39618 3,%82 :3.0003 
CLASS IN SCHEDULE GROUP 27 I 0.094100 0.01950895 4.823 ~.0001 
CLASS IN SCHEDULZ GB~JP 33 l 0~o6707~ 0.0595[280 ~ 127 0.2598 
CLASS IN SCHEDULE GBOOP 34 I -0.0337@7 00168742@ 2.no2 0.045] 
CLA;~S IN SCHEDULE GROUp 35 I 0.094462 0.01862132 3.999 O.0001 
CLASS IN SCHEDULE GROGp 36 i O.017061 0.02C49899 -I 808 ~.0705 
TRAUMATIC ]NJURy 1 -U.iO9969 00238~994 -4.529 '}.0001 
pRE-IN~JRE[: WEEKLY WAGE I 0.129590 0.008147]4 ]5.9D6 O.OO0] 
[MOUSy AGE I 0~309@47 001681119 18.431 0.0001 
HALE CLAIMANT ~ 0.io5~o4 o.olz~o655 ~ o.o~o~ 
~N,TGRED pART OF BODy . INTERMAL ORG~S 1 -0.¢O4099 0,03242312 12.~63 0.0~01 
INJURED pART OF BODy . HEAD 1 -0.044888 0,03109403 I ~44 ~.~489 
IN:URE~ p~"T OF BODY . MECE 1 0.159659 0.0352324~ 4.468 O.0001 
INJURED P~T OF ~DY . LO~ BACK I -0.05U334 0.01972142 ~ 292 t 0010 
IN~JRE], pJ~T OF BODy . UPPER BACK | -0.IO8579 0.03~3432 -3144 9.0OII 
IN~)~ED pA/.r ~F SODy LO@[E.R EXTRE241TY ~ -0.2509~9 0.01801989 13927 :~ 0U01 
INJURFD p~T OF BO~Y ~ UPEB EXTREMITY 1 -£L261498 0.015913~7 -I~.461 :).00Ol 
WW~,L c ~ ; ~  Z Z.0505~ C, 0 8 ~ 6 0 2 ~  z ~ s ~  c,ooo~ 
~TATUS or C'~IM IS OPeN I I.~8766~ 0.01239017 120.068 3.000] 

HOSPITA,LIZAT;O8 INDIC&TO~ : 0.90~042 001239411 57.22O D.0001 
HURGERY |ND~CATO~ | 0.586466 0.01220345 40057 O.0OO1 
VC~ATIOI~ REI~ILITATIO~ BENEFITS l 0.808@63 0.0254W970 31 74% 0 0O01 
CLAIM]~4T P~P~ES~NT£D BY PaN ATTORNEy l 0.373587 0.U137667Z 2~.131 9.0001 
RETURN TO NORK INDICATOR 1 0.39~?40 0.01090690 -36,|67 (~ :3901 
pEKI4~ENT TOTA~ A~D 1 1.415209 O 0~22410 20,29? O.OO01 
SCHEDULED PEB/4AMENT EABTIA~L A~D I ~ , 6 4 4 8 0 9  001624483 39.&93 0.OO01 
NON-SCHEDULED pERMANENT p2~.RTIA.L AMEND I 0.783743 O.021~1263 36.930 0.0002 
DISFIGUBE~NT AMiD INDICATOR 1 0,599890 0.036~9720 16248 O.OO01 
LUMp SUM PAY~NT $NDICATOR 1 1.138939 002717348 41914 0~0OO1 

474 


