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Abstract
Traditional loss development techniques focus on estimating the expected ultimate loss but do
not generally indicate the magnitude of possible deviation from this estimate. In a variety of
circumstances, however, point reserve estimates are not sufficient. In particular, loss portfolio
transfers, commutations, novations, and reserve margin securitization all typically require an
estimate of the range of possible loss outcomes.

By adjusting a paid loss model described in Foundations of Casualty Actuarial Science to
incorporate a random fluctuation component, a stochastic differential equation model is obtained.
This model is analogous to the stock price model used to develop the Black-Scholes option
pricing formula. Furthermore, this differential equation has an explicit solution that yields
Lognormal distributed development factors similar to the Lognormal link-ratio model published by
Roger Hayne.

A slight modification to the model for undiscounted reserves provides a differential equation that
accounts for variation in both the amount and timing of loss payments. This equation does not
have an explicit solution but can be solved numerically to yield the distribution of the present
value reserve.

The opinions expressed in this article are those of the author, not
American Re-Insurance Company.

Introduction

Traditional loss development technigues focus on estimating expected ultimate losses but do not generally
indicate the magnitude of possible deviation from this estimate. Typicaily, a reasonable point-estimale reserve is
selected after evaluating the range of estimates produced by several projection techniques. Barring significant
calendar year effects, this approach is quite effective when reserves from many accident periods are combined
into a single aggregate reserve. In this case, the development on any single reserve may be offset by
development on the remaining reserves.

In a variety of circumstances, however, reserve point-estimates are insufficient. In particular, loss portfolio
transfers, commutations, novations, and reserve margin securitization often involve a single reserve.
Furthermore, these contracts are typically priced on an economic basis. Economic pricing requires valuation of
the uncertainty arising from both payment amount and timing.

By adjusting a paid loss model described in Foundations of Casualty Actuarial Science to incorporate a random
fluctuation component, a stochastic differential equation (SDE) for paid loss development is obtained. This model
is analogous to the random walk stock price model used to develop the Black-Scholes option pricing formula.
This differential equation has an explicit solution that yields Lognorma! distributed development factors similar to a
loss development model published by Roger Hayne. This distribution may be used to compute prediction
intervals for the indicated reserve, and expected adverse deviation from the carried reserve.

A slight modification to the mode! for undiscounted reserves provides a differential equation for discounted

reserves. This equation does not have an explicit solution but may be solved numerically to yield the distribution
of the present value reserve.
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Historical Motivation for Model Approach

The mode! developed here is a generalization of two models already familiar to the actuarial profession. The
most straightforward model is the Lognormal Age-to-Age Factor model developed by Roger Hayne'. This model
assumes that age-to-age factors are Lognormal distributed and uses the properties of compounded Lognormal
variates 1o project ultimate losses. As we shall see later, this is an entirely appropriate model for loss
development. Implementation of Hayne's model, however, is complicated by several limitations. ..

- Parameters are estimated for each development age using losses observed at each age. This data
becomes sparse at later development ages.

- Tail factors must be estimated.

- Two parameters must be estimated for each development age. This creates a significant potential for
over-fitting. (i.e. the mode! has so much flexibility that it is fitting parameters to the noise in the data as
well as to the underlying relationship of interest.)

These issues, however, can be addressed by uniting the Hayne mode! with the Loss Function Model detailed by
Ronald Wiser2. In this model, Wiser discusses loss rate functions that can be integrated to yield the expected
incremental paid losses during any specified period. In general differential equation form...

dP = m(t)dr (1)

...where dPis the incremental paid loss over each time dt, Pis paid losses and m(t) is the loss rate function. The
choice of loss rate function is governed by incurred and reporting patterns, timing of salvage and subrogation
recoveries, etc. In general, however, the loss rate function should tend to zero over time. Under this model, age-
to-age factors are no longer a practical necessity. Once the parameters have been estimated for the loss rate
function, however, age-to-age factors may be computed directly by. ..

IN

J‘ m(s)ds
Age-to-Age Factor(t,t;) = ﬂ“— @

J‘m(.\')d.v
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Typically, m(t) will have far fewer parameters than Hayne's model so there is less opportunity for overfitting.
Furthermore, the model already incorporates an implicit tail factor so there is no need to estimate this separately.
Note, however, that this tail factor is based solely upon the characteristics of the selected loss rate function. This
model does not address the development variability that was the crux of Hayne’s model.

The technical question becomes, then, how can we modify Equation (1) to incorporate random variation. The
statistical tool for accomplishing this is called stochastic differential equations (SDEs). SDEs allow us to write
differential equations with random coefticients or constants. These equations have found application in a variety
of engineering, biological and financial systems subject to “noisy growth”. In an insurance reserving setting, paid
loss development is an example of noisy growth.3 By assumption, losses follow a “development pattern” and it is
the actuary's charge to assess whether deviations from the development pattern are random or systematic. SDEs
are one approach for quantifying the paid loss development pattern and statistically testing deviations from that
pattern.

Unfortunately, standard Riemann integration techniques cannot be used to solve SDEs. The next section details
the basic technical apparatus required to specity and evaluate the equations used in this model. This
explanation, however, should not be taken as either a general or complete presentation of the topic.

! Roger Hayne, An Estimate of Stahstical Variation in Development Factor Methods. 1885 Proceedings of the Casualty Actuarial Society,
Volume LXXII

2 Ronald Wiser, Loss Reserving, Foundations of Casualty Actuarial Science, Third Edition

3 By contrast, incurred loss development is subject to systematic manipulation by the actuary and does not constitule noisy growth.
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Stochastic Differential Equations
The differential equation that forms the basis of this projection method is an extension of Equation (1)...

dP = u(t)Pdt + o(t)PdB, ..or... d?P = u(t)dr + o(1)dB, (3)

Here u(t) is the loss log-growth rate, dB; is a Brownian motion noise function (Brownian motion will be discussed
in further detail below) and ot) is a noise scale factor. Solving this equation for P(t) is somewhat problematic as
Pis a stochastic process rather than a normal function. Was this a Riemann integral we would make the
substitution...

G(P):ln(P):dG(P)=d—: (4)

This substitution would make the solution of Equation {3) relatively straightforward. When dealing with a
stochastic process, however, we cannot so easily use the derivative “chain-rule” to go from G(P) to dG(P). The
chain-rule for stochastic processes is given by ito's lemma.4 Without proof, a form of this lemma states. ..

Let X, be an fto process given by dX, =u(t,x)-dr +v(1,x)-dB,. Let Y, = g(1,X,)
be a twice continuously differentiable transformation of X,. Then Y, is also an Ito
process and

dY, = MHUJMLdg(t..\’)+ld‘g(t“x) vi, x) “dr+v(t,x)-dB,
dx dt 2 dx”

After applying this lemma, the log-transformation G(P) yields the following solution to Equation (3)...

AT [ '

In| =~ =j w) -~ @) dz+ja(:)dﬂ, 5)
})0 0 2 0

This model is called geometric Brownian motion and is frequently used in financial models: a famous example

being the Black-Scholes option pricing formula. How do we interpret this result in a loss development context?

The left-hand side of the equation may be interpreted as the log link-ratio between two development ages. The

log link-ratio is equal 10 a fixed component given by the integral of 4(r) —ig'l(r) over time, and a random
2
component given by the intagral of or!} over the random noise process. Although not required in theory, the fixed

integralj'(y(,) —.!_az(r) : should generally be finite to ensure a finite uitimate loss.
2
o

To understand the random component, we must first understand the basic behaviors of Brownian motion.
Brownian motion is a continuous-time random walk process. Conceptually, this is a process that generates
Normai random increments for each time increment dt and sums these increments over time. When a function
such as oft) is integrated over a Brownian motion path, we have what is called an ito integral. ito integrals have
two basic, statistical properties that we will use to understand Equation (5)S...

4 For a complete discussion of Ito’s lemma see Oksendal, Stochastic Differential E tigns, Chapter 4.
S These properties only hold for *nice” functions oft). For a complete discussion of Brownian Motion and its relationship 1o lto Integrals see
@ksendal, hastic Difterential atigns, Chapter 3.

242



Elfowws, =0 ®
Ewa(z)ds, )} =[ow)}d

From these properties we can show that the random noise process is Normal distributed, has an expected value
of zero, and a variance of Ial(t)dl 8 This yields the following distribution madel for Equation (5)...

P 1.
P_ ~ Lognormal I(u(!)—EG (r))dt, (7)

f 1

In other words, the link-ratios between any two ages are Lognormal distributed with the distribution parameters
indicated in Equation (7). Using the results of Hayne, this also implies that the paid loss development between
any two ages is also Lognormal distributed. A benefit to this approach is that once the mode! has been fit,

development factors for any time interval may be computed regardless of the increment in the underlying data.

Applying the Model

The primary steps in applying the random walk model are verifying that observed age-to-age factors are
independently, identically, Lognormal distributed; identifying appropriate functions for x(t) and o “(); and
estimating the parameters for those functions. Paid loss development data representative of non-standard,
personal auto, badily injury liability coverage is used to demonstrate the application ot this madel.

Data Diagnostics - Testing Model Assumptions

This section tests whether the data satisfies the assumptions underlying the random walk model. This is done
using the raw data and prior to any model selection or fitting. Note that a violation of the model assumptions does
not necessarily imply that the subsequent model fit will be poor. Rather, a violation of the model assumptions
means that any statistical tests based upon the model results are biased. The magnitude of that bias depends
upon the seriousness of the violation.

The data are shown in Exhibit 1. This data has not been adjusted for any changes in reporting, claim handling,
inflation, etc. so the first step is to verify that the age-to-age factors do not show any significant accident year
trends. (i.e. that within each development age, the age-to-age factors are independently, identically distributed.)
This is shown in Figure 1 below...

6 For the interested reader, this entire derivation is presented in detail in Pliska, Mathematics of Derivative Segurities, Chapter 1.
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Figure 1

Accident Period Trends in Deveiopment Factors
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Each line on this plot is the observed log age-to-age factor for a common development age. Although the early
development periods (largest development factors) exhibit a slight downward trend in the first few accident
periods, this is insignificant given the large, random fluctuations observed in later periods. Accordingly, we can
reasonably assume that the development factors at each age are independent. Note, however, that these
uncorrected trends will increase the volatility of projections made at early development ages. If these trends
could be removed through “data-leveling”, the precision of the ultimate loss projections could be greatly improved.

A Q-Q plot was used to verify that the age-to-age factors at each age are Lognormal distributed. This is shown in

Figure 2 below...
Figure 2

Log-Normal Q-Q Plot
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This plot shows the sample log age-to-age factor and the theoretical sample quantile under the Lognormal
distribution; a perfect distribution fit yields a straight line. Although this plot obscures the fit for individual
development ages, we can readily see that the Lognormal assumption is quite reasonable. At later development
ages (lower, left corner), however, the Lognormal assumption is generally poorer. There are several reasons for
this...

- Atlater ages, the small number of observations makes the data less stable.

- For small samples, the sample gquantile is a poor measure of the underlying distribution quantile.

- Atlater ages, the actual likelihood of favorable development arising from salvage and subrogation
recoveries is smaller than predicted by a Lognormal model.

The last point will be particularly important when computing reserve estimates; at later development ages, the
lower prediction limit for the required reserve may be negative. In other words, the model recognizes that
favorable development could reduce the ultimate loss below the current paid loss. This behavior is probably
inconsistent with most lines of business. Fortunately, however, the lower limit is not typically of concern when
evaluating reserve estimates.

Curve Family Selection

The next step in the modeling process is to select appropriate families of curves tfor u(t) and o’(t). This is a non-
trivial task: polynomial functions will generally not be appropriate and, consequently, standard sequential model
selection techniques cannot be used. The following procedure is presented as a practical approach for
streamlining the model selection process. Of course other more theoretically accurate, and computationally more
difficult, approaches are possible.

For this data, both (t) and o “(t) have the same restrictions imposed upon them: they must be positive,
decreasing functions that tend to zero over time. This is shown graphically in Figure 3 below. These types of
functions are generically referred to as “tail-functions”. In this example, three classes of tail function were
considered. These functions were...

)
1%
e Pl ®.1)

t 7];
o 1+ Y{E] (8.2)
at? vy (8.3)

in this example, these specific functions were selected because they encompass a wide range of tail decay rates.
In practice, a varied catalogue of tail functions may be obtained by scaling the survival function of various
statistical distributions.” The tail-functions given above correspond to the scaled tail functions for the Weibull,
Generalized Extreme Value, and Power distributions respectively. Also in order, these functions vary from lightest
to heaviest tailed. Selecting the most appropriate curve form is complicated by the fact that we cannot directly
observe the rate functions u(t) and ¢ %(t). Rather, we can only observe the integrated values of these functions
(i.e. the log age-to-age factors) as shown by the integrals on the right side of Equation (5). Furthermore, both the
rate functions and the resulting log age-to-age factors vary by orders of magnitude. These complications,
however, were exploited to develop a model selection procedure.

First, least-squares estimation was used to estimate the parameters of each curve form by fitting each curve's
integral to the mean and variance of the observed log age-to-age factors. Typically, the least-squares approach
would be inappropriate for this data because the fitted values vary by several orders of magnitude; the least-
squares approach fits parameters to the largest values and ignores the smallest values. This characteristic,
however, was used to justify the curve family selection. A curve that is fitted to the largest values and
coincidentally fits the smallest values, 100, is probably capturing the true underlying relationship in the data. By
placing the empirical and fitted log age-to-age factors on a log-plot, the curves may be evaluated at both the

7 A concise reference for statistical distributions, distribution functions, transformations, etc. is Evans et a/, Statistical Distributions.
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largest and smallest values. This is shown in Exhibit 2. Here the Generalized Extreme Value tail function
generally provides the best overall fit for both (1) and o’(t). In general. however, the same tail function need not
be selected for both components. The final parameterization of these curves is shown in Figure 3 below. ..

Integrated Value
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01000
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Parameter Estimation
The least-squares parameters used to select the tail functions are not the parameters for paid loss projection;
rather maximum likelihood estimation was used to select the parameters for the u(t) and o”(r) taif functions. The
maximumn likelihood estimation procedure allows the model to be tuned for long-term projections.

Figure 3

Empirical and Fitted Log Age-to-Age Factors
Mean and Standard Deviation by Development Interval
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Development Pariod

With the case study data in triangular form, we can use the model to project the paid losses from each
development age to the last reported value (i.e. the last diagonal in the development triangle). We can then use
the observed value, the projected value, and the projection distribution given by Equation {7) to compute a
likelihood statistic for every such projection. The final model parameters, then, are selected to maximize the
overall likelihood that the observed losses could be generated by the modeled distribution. The maximum
likelihood estimation procedure and the resulting projections are summarized in Exhibit 3 and in Figure 4 below...

Projected Cumulative Paid Loss
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In this plot, the losses at each development age are projected to the last diagonat of the development triangle.
Each line on the plot shows these projected values for a single accident period. If the mode! made perfect
projections at each development age, this plot would consist of horizontal lines. In reality, however, early
projections are relatively inaccurate but quickly converge within a few periods.

In this application, maximum-likelihood and least-squares estimation differ in one key respect. Least-squares
estimation seeks to minimize the volatility of the lefi-hand side of Figure 4 where the development factors are
largest. This creates a large potential for overfitting if there is significant noise in this immature data. Maximum-
likelihood estimation does not seek to minimize this volatility per se. Rather, maximum-likelihood seeks to ensure
that the volatility conforms to an assumed distribution. To the extent that the assumed distribution model is
correct, maximum-likelihood will also minimize volatility in the same fashion as least-squares estimation. If the
assumed model is incorrect, however, the volatility will be increased due to the bias arising from the model mis-
specification.

The parameter estimation technigque presented here was chosen for its tractability rather than its statistical
properties. In fact, the parameters produced by this procedure will be neither unbiased nor minimum variance.
More sophisticated estimation techniques incorporating censored data analysis would rectify these issues.

Model Results

By subtracting the paid-to-date losses from the projected ultimate losses, we have the indicated reserve. A first
test for the model is that the expected reserves should be consistent with the reserves indicated by traditional
actuarial analysis. These results are shown in Exhibit 4 and in Figure 5 below...

Figure 5

Comparison of Indicated, Undiscounted Reserves
{by Accident Period)
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Average Link-Ratlo Reserve Estimate

As expected the reserves indicated by traditional and SDE projection methods are simitar. Altthough not readily
apparent on the log-log plot above, the largest dollar deviation between the two methods occurs in the largest,
least mature reserves. These deviations are consistent with the volatility component of the SDE model. Under
the SDE model, large fiuctuations are likely during immature development periods. Furthermore, due to the
skewness of the Lognormal distribution, these are likely to be large upward fluctuations. This also results in farge
prediction intervals for the least mature reservas. This is the same effect that C.K. Khury modeled using an
arbitrary reserve radius G-function.8 This is depicted in Figure 6 below...

8¢k Khury, Loss Reserves: Performance Standards, 1980 Proceedings of the Casualty Actuarial Society, Volume LXVIt
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Figure 6

Expected Reserve Remaining and 95% Prediction interval
Hypothetical $1,000 Ultimate Loss
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Here the ultimate loss is $1000 but at the time the reserves are set, this amount is unknown. We can, however,
use the model to estimate the probable range of required reserves at each development age. In the plot, this is
shown as an expected reserve that declines as losses are paid out, and a prediction interval that contracts as the
ultimate loss becomes more certain.

Finally, having a distribution for the required reserve allows caiculation of the expecied value of future adverse or
favorable deviation from the selected reserve amount. The values are computed as tail expected values in the
same manner as an excess pure premium or deductible savings is computed.  In statistical terms...°

J PR s 2 Rp] 01)

Favorable Development = E[R R iR s Z R

carried reqd

Adverse Development = E|R,.,., = Ruues | Reacs < Ruvg | PR s < Rogr| 92

reqd

These results are shown in Exhibit 4 on an undiscounted basis assuming that the carried reserve is set at the
average link-ratio reserve.
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Discounted Reserves
A small modification to Equation (3) allows similar treatment of discounted (present value) reserves. To motivate
this treatment, consider a continuous annuity that pays benefits at a varying rate b, and force of interest &...10

a, =[e b -di

da, =e* b -dt

dP
Discounted loss reserves may be treated analogously it we treat the incremental loss development 7 as the
!

“benefit”. This is given by...

v e 4y
dt
dv =™ gp (10)

1 2 St —du-t
dv =| u(n -0’ 2 Py + o (1)e 'Y PdB,

...where Vis the present value loss reserve and § is the force of interest used for discounting. Unfortunately,
however, this expression does not lend itself to explicit solution in the same manner as Equation (3). Instead,
numerical methods must be employed to compute the distribution of present value reserves. These methods can
be somewhat difficult to implement.!! To continue the example from above, the expected present value reserve
and reserve volatility computed from Equation (10) are shown in Exhibit 4 and in Figure 7 below...

Figure 7

Implicit Margin in Average Link-Ratio Reserves
(Losses Discounted at 7.0% per annum Continuous Compounding)

Expected
Standard Expected Margin
Average Link- Expected Devlation of in Average
Accident Ratio Reserve Discounted SDE Dlscounted SDE Link-Ratio
Period  (Undiscounted) Reserve Reserve Reserve

1996-1 0 ]
1996-2 19,948 48,252 32.262) -28,304
1996-3 45,365 62,719 30,563 -17,354]
1996-4 122,715 128,511 52,979 -5,796|
1997-1 194,942 229,769 85414 -34,828|
1997-2 217,319 237,904 82,712 20,585
1997-3 286,525 281,997 93,894 4,527
19974 335,073 338,204 109,595 -3.131
1998-1 611,160 601,721 191,808 9,439
1998-2 1,183,357| 1,024,669 323,292 158,688
1998-3 1,666,092 1,362,136 426,181 303,956
1998-4 2,210,746 1,700,183 526,117] 510,563
1999-1 3.511,724] 2,802,555 851,006 709,169
1999-2 3.426,796| 2,805,902 824,190 620,894]
1999-3 5,729,009 4,984,688 1,385,324/ 744,321
1999-4 5,078,453 5,148,741 1,311,692 -68,288
2000-1 7,739,817 8,782,127 1,978,193] -1,042,310;
2000-2 7,914,469 11,252,088 2,196,198 -3,337,618|
2000-3 13,337,769 14,916,718 2,649,990, -1,578,929]
53,631,298 66,706,885 -3,075,587

10 Bowers ef al, Actuaria] Mathematics, Chapter 5
11 For more information on numerical solutions to stachastic integrais see Tavelia and Randall, Pricing Finangial instruments.
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As this figure makes clear the overall margin is negative, and the positive reserve margins are quite small
compared to the volatility of the underlying reserve estimates. Accordingly, there is little practical margin in the
average link ratio reserves. This is due largely to the inherent characteristics of the business presented in this
example...

- The extreme growth at early development ages makes early reserve estimates highly volatile.

- There is little development at later ages. This decreases the duration of immature reserves and
consequently, the magnitude of the implicit margin in the undiscounted reserves.

- Similarly, the magnitude of the discount margin tends to be small at later ages because the indicated
reserves are themselves small.

Lines of business characterized by protracted development with significant payments throughout the life of the
reserve should contain larger implicit margins.

Conclusions

The model presented here unites common actuarial practice with a basic financial model, and provides concrete
justification for the utility of link-ratio techniques. As presented however, this model is relatively crude and there
are several areas for enhancement and further research.

- Parameter estimation techniques with more statistically desirable properties (e.g unbiased, minimum
variance, etc.) should be employed.

- The model treats each accident period separately. ito’s lemma, however, is easily extended to
multiple dimensions. This would allow joint modeling of each accident period in the reserve, etc.
Significant research, however, would be required to understand the correlation structure between
accident periods.

- The model can only be applied to positive, non-zero paid losses. This issue cannot easily be
addressed within the geometric Brownian motion framework. For lines with a significant payment lag,
additive Brownian motion or Poisson jump (frequency-severity} process may be a more appropriate
model.

- Adjusting the model for report lag, calendar-year effects, and other sources of volatility could
significantly enhance the precision of reserve estimates made at early development ages.

- Under the geometric Brownian motion model, all random deviations persist. In other words, an
increase in the loss payment rate is always due to adverse deviation, never to accelerated claim
payment. There are other stochastic differential equations that can accommodate claim payment
volatility.

- Having a distribution for the ultimate loss allows common derivative security pricing techniques to be
applied to loss portfolio transfers, commutations, and reserve margin securitization. This is an
important area for further research if traditional insurance is to remain competitive with the capital
markets.
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Exhibit 1

Non-Standard Auto Bodily Injury Liability

Cumuiative Paid Losses
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19993 smesn|  3z4s082] 5032184  ses08s)] 12,579,071
19994 1297006 28a5528)  4.070.197] 9.148.650
20001 1a42.047] 3207.787] 71.037.604
20002 1.330 312] 9.244.782
20003 13.518.188

Log Cumulative Age-to-Age Factors
Deveiopment intervel

=) |
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19871 2884 1.059) o] 0154 R 0.094] 0093 o 1091 © osg] 0044 0025} o017] aos2] LLIE
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1998-2 2189 1.350) cest 0452 025 0104 Lt .05 0 096

19983 1.830) 0.850} 0675 0.202] 0.164] 0 087] o ca?] 0 059

19984 3.507] 1.039) 0452 0210f oo 0102] 0.062)
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1998-2 2323 0510} 0.282] 0159 01

19983 2679 o 6a] 0 439] ©309)

19994 1 zal a729f 0423
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Exhibit 2

Potential Curve Families for Rate Functions

Least-Squares Fit to Observed Log Age-to-Age Factors

Observed and Fitted Mean Log Age-to-Age Factors

-
s
& o
@
o
<
g
: 0.01
&
<
o
S
= 0.001
a
[’}
E
0.0001 .
Weibull
0.00001
& 8 ¥ 8 & 8 ®# 8 § 8 R 8 & 8 & 8 4§
(=3 o (=] - - — -~ ™~ ~N o~ o ™ ™ o” ™! - -

Log Age-to-Age Factor
Standard Deviation
(=]

4

0.001

0.0001

Development Age

Observed and Fitted Log Age-to-Age Factor
Standard Deviations

Weibull
& 8 R 8 &§ 8 B 8 & 8 © 8 &§ 8 £ 8 §
< < o -~ — - - o~ o~ o o @ o o ™ - -

Development Age

252




£5T

Exhibit 3

Results of Maximum-Liklihood Parameter Estimation

Generalized Extreme Value Tall
1 d

Fitted Log Age-to-Age Factors (from Integration of Equation 8.2 Ovaer Indicated Time Interval)

Oevelopment Intacval

(for

8.2)

[ 025 050 075 TO0 725 T50 775 200 225 250 275 300 325 350 375 400 €25 Ta
L0s0 -075 -100 125 150 175 200 225 -250 275 -3.00 -325 1350 375 -400 425 -4.50 a7
Fitted Mean 23489 1 0087 05104 02891 0.1767 01148 00782 0.0853 00403 0.0362 00231 0.0180 0.0143 ao11s 00094 0.0077 00054 0.0054
Firtad Vanance 02830 01249 00575 00276 00137 90070 0.0037 0.0020 00011 0.0006 00004 00002 0000 00001 0.0000 0.0000 00000 0.0000
Negative Log-Likelihood {trom 7) for Proj; from Age to Last Report
Age
Accidert
Period 0.25 0.50 075 100 1.25 1.50 175 2.00 225 250 275 3.00 325 350 375 400 425 475
1996-1 2.7329] 0429 0.4443) 09926 o325 o423 1257 -1.6810) to484| 22929 2eseof 2 -2 2758| .04 28751 -3 5892 -2 8833} 3T
19962 1.4637) 0.2301 05156} 03428 02511 101 c14209] 7582 20405)  22928]  2ssoof  27tve 28580 3386t -36166]  -35307]  4v8e3 I )
1996-3 0.6731 1.1926] 16969 11996] ozess] o] 1451 -1.6214) 2,034 22985 2257 -2.4505 -2 7409} atseel 21799 -42117]
19964 07689 02672} 02301 03587]  0843s| 09708] 10148l 15297 2047 204 2 ss::‘ 24383 2me7]  ase27] 3975
19974 0.6052] 02925, ong7] 04802l 07647l  060e3] 01119 023474 076808 12579 15438 -1.0429) asr77|  -assen
19972 0.6009] 1oss9] 0143  -04em 0,404} oo0oes] 04779}  1s202]  .2.0021 23463] 270371 30492]  -3433s)
19973 06122} asr21 0 04507 oeesef 1103 e8] 17« -2.0214) 2,364 28047 31802
19974 05936 0 5042} am 0 42951 0.2466) 0.2617] 2 0606] . -13996‘ -zuzj -3.0300)
19981 44221 07509) .0756] 00871 ozee2] 06767l  osess| -20005)  .2.2995)
19982 0.8801 13322] 5104 oos2| o7 2131 -1.5261 ra2ef 11127
1958-3 0.97¢ 02247, -0 1680) 0 4089} -0.8787} -1.2459) -1.6604) -2 1861
19984 1,394 0.3221 0 1508} 01227]  -0s684]  -13108] 18455
1999-1 0 7295) 0.412¢] 0 2556] 04196l  Doe7el 15164
1999.2 1.3057] 1.7855) © 3869 -0 4893] -+ 2201
19993 0.5747] 05707] 02966  -08686]
19994 +.8408] 0asss] a2
2000-1 05796 0106}
20002 0.4742]
20003 Overali Nagalive Log-Likelihood  -142 7721
NOTES

(1) Given a set of parameters and using Equation 7, we can compute the negative log-likelihood of the observed development factors. Above, the likelihoods for the development from each age to the last

reported value (i.e. the last diagonal in the development triangle) are tabulated. The values of u and o entering Equation 7 are generated by i
(2) The parameters for Equation 8.2 were generated by i

g the liksli

ing the negative log

E

8.2 over the

9 Bq

of the observed development factors.

ppropriate time period.



Exhibit 4
Indicated Reserves

Discounted and Undiscounted Basis
Undiscounted Reserves (from Equation 7)

[ @)

Aversge 5% Lower SDE #5% Upper Expecied Expected
Accident Last Recorded Unk-Ratio Favorable Adverse
Period Loss FResorve Interval Reserve Interval Deviation Deviation
1996-1 5,665,215 of
1996-2 9,042,539 19,9484 -15,082 48,783 11324 7578 36,41
1996-3 5410513 45,3654 2,972 64,126 126,153 7.344 26,105
19964 6.753,290% 122,19 25719 132,768 241,957 17.840 -27.693
19971 8.204.81¢4 194,942 €5,892 239,938 418,837] 21.902 -66,898]
1997-2 6.096.299 217,319 80.566 250,750 426 885 23272 56,703
1997-3 5,345, 4464 286.529] 104,864 299,617 503.224 34374 -47 4671
19974 4,813,607 335,073 132,821 %1776 604,475 36.570 63274
1998-1 £.465,182 611,160 242,665 647,186 1,082,941 68,850 -104 877
1998-2 8.290,5244 1.183,357| 418,009 1.106,584 1.865.212] 189147 -112.374§
1998-3 B.217,5944 1.666,092] 556,069 1.474.769 2.518.0864 317,999 -126 6764
1998-4 7.512.14% 2,210,745 690,446 1,842,303 3,205,699 508,489 -140,046¢
1999-1 8.818,8504 351,724 1,130,708 3.033.491 5.418,658 731,261 -253.028
1999-2 8.027.712] 3,426,796 1,128,044 3.026,927 5,607 2564 675,099 -275.2304
1999-3 6.850.862] 5.729.009] 2,008,387 5,346,004 10,436,596 985 589 -602.5844
1999-4 4.070,197] 5.078.453 2,085,288 5,472,294 11,586,229 650,237 -1,044,077]
2000-1 3.297.787] 7.739,817 3,533.966 9,217,365 22,403,695 901,234 -2.378.762
2000-2 1,330,312 7.914,459| 4,290,492 11,674 815 36.888 929 783.212 -4.543,557]
2000-3 180, 4004 13,337,789 4,870,474 15853918 85,6201 2,020,744 -4,536,B7:
53,631,298 60,093.412 7,980,541 -14,442,656

Discounted Ressrves and Implicit Margin In Average Link-Ratic Reserve
(from Numerical Solution of Equation 10)

3

Average Expected Margin
Link-Ratio SDE Expecied In Avarage
Accident Last Recorded Reserve Discounted Link-Ratio
Period Loss  (Undiscounted) Reserve Ressrve

1996-1 5.655,219] o,
1996-2 9.042,539] 19,9484 48,252 -28,304]
1996-3 5.410,513) 45,365/ 62,719 -17,354]
1996-4 6.753,290) 122,718 128,511 -5.796f
1997-% 8,204,816 194, 9421 229,769 34, 825
1997-2 6.098,299] 217,319 237,904 20,585
1997-3 5.345,446] 286 5254 261,997 4,527
19974 4.813,607| 335,074 338,204 A
1998-1 6,465,182 61,1604 801,721 9.439¢
1998-2 8,290,525 1,183,357 1,024,669 1586884
1998-3 8,217,594 1,666,092 1,362,136 302 9564
1998-4 7,512,141 2,210,746} 1,700,183 510,564
1999-1 8,818,850] 3.511.724] 2,802,555 709,169
1999-2 6.027.712] 3.426.7961 2.805,902 620,894
1999-3 6,850,862 5,729.009] 4,984,688 744 321
19994 4,070,197| 5,078,453 5.146,741 -68,288§
2000-1 3,297,787| 7,739,817 8.782,127 -1,042,3104
2000-2 1,330,312 7,914,469 11,252,088 -3.337.618
200C-3 80,4001 13,337.789 14,916,718 -1.578,929§
53.631.298 56,706,885 -3,075.587

NOTES

{1) Measures expected (avorable development on Average Link-Rabo reserve amount
Siveiar (0 & (08 eiimination value P[Carried Reserve>Required Reserve] * Ef{Camed Reserve-Renuirea Aeserve] Carned Raserve>Required Reserve|

{2) Measures expected advarse Savelopment on Average Link-Ratic reserve amount
Simdar 10 an excess pure premium. P{Cared Reserve<Required Raserve] * £{{Camed Resarve-Required Reserve) Carmad ReservecRequrred Aeserve)

{J) Paid losses di ec al 7 0% t s
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