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A b s t r a c t  

This  paper  presents a d y n a m i c  method  to es t imate  fair value insur- 
ance l iabi l i t ies  for the whole book (with separate  but  correlated lines ) 
of business.  The model  s tudies  the aggregate  l iabi l i ty  wi thou t  assum- 
ing independence of ind iv idua l  losses. A non- t radi t ional  aI)proach is 
proposed which es t imates  the fair wdue l iabil i ty based on a st,)ehas/ic 
model  of ind iv idual  losses. Using the cont ingent  claim analysis ,  the 
fair value l iabi l i ty  are app rox ima ted  by solving a par t i a l  differential  
equ~ttion. Para lne ters  es t imat ion ,  correlat ions lneasurement  and ap- 
plic~ttions of tile model  are also discussed in the s t u d y  C,,mt~alisons of 
the proposed method  to tile ex i s t ing  methods  arc given fi)r appl ica t ion  
purpose.  
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1. I n t r o d u c t i o n  

This study addresses the evaluation of insurance liabilities on a fair value 
basis. The fair value of liabilities is, as stated in the white paper by the Ca- 
sualty Actuarial Society's Task Force on Fair Value Liabilities: "the fair value 
of the market value, if a sufficiently active market exists, OR an estimated 
market value, otherwise"(CAS 2000). 

Fair value estimates of insurance liability reflect expected cash flows, the 
time value of money and an adjustment for risk. Over last fifteen years, 
many methods for estimating the fair value of property/casualty insurance 
liabilities has been introduced. All of these methods have their own advan- 
tages and disadvantages as summarized in the Casualty Actuarial Society's 
Task Force white paper (CAS 2000). Among various methods, there are two 
major approaches used to compute risk loads for the fair value liability that 
are represented in the literatures: the finance approach and the actuarial ap- 
proach. The classical finance approach, is used in such methods as C A P M  ( 
D'Arcy and Doherty (1988), Fairley (1987), Feldblum (1990), Mahler (1998), 
and Myers and Cohn (1987)), the internal rate of return ( Cummins (1990)), 
the single-period risk-adjusted discount method ( Butsic (1988), and D'Arcy 
(1988)), the method based on underwriting data (Myers and Cohn (1987)), 
and the direct estimation of market values method (Allen, Cummins and 
Philips (1998), Ronn and Verma (1986)). The finance approach evaluates 
systematic risk by measuring the correlation between insurance companies 
returns from underwriting and market returns on its shareholder's equity. 

The traditional actuarial approach is to use the aggregate probability 
distribution-based risk loads for the market risk adjustment of the liabilities. 
The actuarial based methods often explicitly incorporate process (diversi- 
fiable) and parameter (nondiversifiable) risk components into the risk load 
formulas. For a multiple line insurance company, liability (includes aggregate 
claim and expenses, taxes, et.c.) analysis estimates the total random losses 
for a book of insurance product line by studying possible aggregate claim 
distributions. Such distributions are probability distributions of the total 
dollar amount of loss under one or more insurance policies. They combine 
the separate effects of the underlying frequency and severity distributions. 
Assuming families of distributions (e.g. lognormals or shifted gammas) such 
that if each separate distribution is a member of these families, a closed 
form and elegant solution is possible. These methods can also be used to 
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value unearned premium reserve and incurred but not reported reserves. (See 
Beard, Pesonen and Pentik/finen (1984), Bhlmann (1970), Embrechts (1995), 
Hayne (1989), Heckman and Meyers (1983), Heckman (1999), Kreps (1990 
and 1998), Meyers and Nathaniel (1983), Meyers (1991, 1994 and 1998), 
Panjer (1992), Philbrick (1994), Wang (1997)). 

Among all the existing methods, this approach is most widely used in 
actuarial practice and it continues to develop. The method can be used with 
company-specific data and can be used by line to reflect unique line of busi- 
ness risks. As indicated in the Casualty Actuarial Society's Task Force white 
paper, there are some unsolved problems associated with this approach such 
as measuring correlations of lines or segments of the business with other seg- 
ments, e s t imat ing /ca l ib ra t ing  model parameters, and establishing a guide- 
line for the  applications of available methods. This paper presents a dynamic 
method to estimate the fair value of insurance liabilities for the whole book 
(with separate but correlated multiple lines) of business. The model studies 
the aggregate liability without assuming independent individual losses based 
on a non-tradit ional  version of the collective risk theory. A new approach 
is proposed which estimates the fair value of insurer's liability based on a 
stochastic model of individual losses. To reflect the changing of the aggre- 
gate liability over time, a continuous model is presented using contingency 
claim analysis. By using the contingent claim analysis, the fair value liablity 
are approximated by solving a partial differential equation. Parameters es- 
t imation, correlations measurement and applications of the model are also 
discussed in the study. 

The paper is organized as follows: The mathematical  model for fair value 
of liability is presented in the next section. Several applications of the model 
and case studies are presented in Section 3. In the following section, the  
comparison of the new method to the existing methods will be addressed. 
Section 5 summarizes and concludes the paper. 

2. Theory 

This section presents the mathematical  model for the valuation of fair value 
liability. To reflect the changing of the aggregate liability over time, a con- 
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tinuous model is presented using contingency claim analysis. We begin with 
the simplest case, where it is assumed that  correlation among the classes 
of business are all a result of one underlying force (risk source) tha t  affects 
different classes. 

2 . 1  M o n o - l i n e  o f  B u s i n e s s  

For a specific line of business and a specifific accident year t, we define 
{X(t),  t >_ 0}, as the instantaneous ulltimate loss (includes claim, expenses 
and taxes) process, and {L(t), t > 0}, as the aggregate of fair value liability 
process over the period of [0, t] . 

Assume the instantaneous loss amount X (t)dt between time t and time t + dt 
is described by a general stochastic process of the form: 

dX = p(t, X)dt + a( t ,X)dW (2.1) 

where # is the drift of X , W is a standard Brownian motion (Wiener pro- 
cess), 
and the local volatility a is a deterministic function that may depend on both 
the loss X and the time t. 

Over the time period [0,T], the aggregate of fair value liability L(T) is de- 
fined by the equation 

L(T) -- X ( ( ) e - r ~  + F(X(T))e - r r ,  

where r is the discount rate (see Section 3.1 for the detail discussion), and F 
is assumed to be a continuous terminal function. 

Remark: In many cases, there may be some delay in claims: information 
might not be available until the end of the evaluation period (time T). There- 
fore, in our definition, F is introduced, as a function of X(T),  to reflect situ- 
ations like this. Notice tha t  if F is the zero function, the definition above is 
the same as the conventional definition for the present value of the aggregate 
loss. Notice also, that  it is possible for X(t) to be negative, reflecting the  
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release of reserves upon  dea ths  of annui tants .  Similarly, the aggregate of fair 
value l iabil i ty over [0, t], L(t) ,  is defined as 

L(t)  = fot X(~)e-r¢d~ + F ( X ( t ) ) e  -~t . 

Remark:  T h e  claim reserve process is R(t)  = L(t)  - C where C is e i ther  
the claims paid to date  or the  case incurred claims to date.  Since C is a 
known value, so we focus our analysis  on L iu this paper.  

Next, we define the  funct ion u(t ,  x) as the expected present  value of the  
fair value l iabi l i ty  over [0,t], 

u ( t , z )  = E[L( t )  IX(O ) = z] (2.2) 

where x = X(0 ) .  

Remark:  T h e  funct ion u ( t , x )  is the  condit ional  expecta t ional  of the ag- 
gragate  of fair value liability, condi t ioned by X(0)  = x. When  t = T, u(T,  x )  
is the  expected present  value of the  fair value l iabili ty over [0, T]. 

T H E O R E M  1 Suppose that a and # satisfy the linear growth condition 

Ip ( t , z ) l  2 + l a ( t , x ) l  2 _< K2(1 + Izl 2) (2.3) 

for  every O <_ t < cx3, x E R , 

IF(x)I  _ K2(1 + Ixl 2) 

for  every :r E R,  where K is a positive constant; and 

suppose that u(t ,  x) is continuous and is of class Ct,2([0, T] x R). Then 
the expected present  value of  the fa i r  value liability u ( t , x )  can be calculated 
by solving the fol lowing Cauchy problem 

1 2 
ut = ~a  u = = + p u = - r u + x ;  in[O,T)  x R (2.4) 

and 
u ( 0 , z )  = F ( z ) ;  x e R (2.5) 
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as well as the polynomial growth condition: 

~axo<_, lu(t,:~-)l < M(1 + Izl2'~); x E R (2.6) 

for  some M > O, q >_ 1 . 

P r o o f  This is a special case of Theorem 2, when d = 1. See the proof of  
Theorem 2. 

In the following examples,  we consider several simple applicat ions of The-  
orem 1. 

E X A M P L E  1 

We first consider a mono-line liability reserve with the amount  of cash flows 
being certain: the instantaneous loss amount  X ( t ) d t  satisfy d X  = #oXdt ,  
where #0 is a constant .  

Therefore #(t ,  X)  = #0X, and cr = 0 in equation (2.1). We also ignore 
the investment income, i.e. 7" = 0. Furthemore,  we assume F ( x )  = O. 

According to equation (2.2), given that  x = X(0),  the expected present  
value of the fair value liability" is 

f0' fot u(t , :~)  = E[  X(~)d~fX(O) = x] = ( ze"°¢)a~  -- k ( e  " ° ' -  1). 
#o 

The following figure (Figure 1) provides a graphic view of X ( t )  and u(t,  x )  
in this example. 
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Figure 1. Tile expected fair value liability u(t,x) ( ' + + + ' )  v.s. the 
individual claims X(t) ( '--,). 
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u ( t ,  x )  satisfies 

u t = xe ~ot, 

1 pot 
tt x = - - e  

Po 

Uxx ~ O. 

It follows tha t  

~ r2 uxz  + ,uuz - r u  4- x = 0 + # o X u z  - 0 4- x = IzoX~zz 4- x = u t ,  

and 
~(0,  x) = 0 = F( : r ) .  

Therefore,  Equation (2.4) and (2.5) hold. 
Accoording to Theorem 1, the fair value liability can be es t imated by 

solving the  partial  differential equations: 

and 

E X A M P L E  2 

U t = ,tIOZU x 4- X ,  

u(O, z )  = O. 

Consider a mono line liability reserve with uncertain cash flows: 
# = 0, a = 1 in Equat ion (2.1). 
In this case, we have d X  = d W .  

Furthemore,  ignore investment income (r = O) and assume F ( x )  = Fo,  a 

constant  function. 

According to Equat ion (2.2), 

/0' u ( t , x ) = E [  W({)@ + F o l X ( O ) = x ]  = x t + F o .  

It. is easy to see tha t  
ut = x, u =  = O, and u(O,x) = F0. 
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1 Therefore ,  u(t,z)  satisfies ut = iuz~ + x and  a(O,z) = Fo which are 
Equa t i ons  (2.4) and  (2.5) when r = ~ = 0, cr = 1. 

Accoord ing  to T heo rem 1, the  fair value liability can be e s t ima ted  by 
solving t he  part ial  differential equations:  

1 
~2 t ~ ~ t l z x  -r- .~', 

and  
~(o ,  z )  - .~;. 

E X A M P L E  3 

Cons ider  a monol ine  liability reserve with uncer ta in  cash  flows, when 
# = 0 ,  a = l  and r = 0. 

Let  F(x)  be a bounded  and cont inuous funct ion,  and consider  a special  
ease of Equa t ion  (2.2): 

fo 
t 

u(t, :r) = E[ W(~) d~ + F(W(t ) ) IX(0)  = x] = zt + E[F(x + W(t))]  

Firs t ,  

u(t,x) = xt + F(y)p( t ;x ,y)dy,  
oo 

where 

p(t;x,g) = ~ e  

is the  t r ans i t i on  densi ty  of the  one-dimensional  Brownian f ami ly  

T h e n  ~(t, x) satisfies Equa t ions  (2.5): 

u(0, x) = lira u(t, y) = F (z ) .  
t--*O,y--*x 
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Next, one can varifies that  

/? f? ut = x +  F(y)pt( t ;z ,y)dy = x +  F(y)p,~(t;x ,y)dy.  
o o  c ~  

Therefore 
1 

U t ~ X -t- ~ Z/.xz ~ 

which is Equation (2.4) when u(t, x) = st  + f_~  F(y) p(t; x, y)dy (see the 
proof of Theorem 2 as to why (2.4) reduces to ut = ½u~x + x in this case). 

Accoording to Theorem 1, the fair value liability can be estimated by 
solving the partial differential equations: 

1 
U t ~ ~ U z z  -F X~ 

and 
u(0, x) = lim u(t,y) = F(x). 

t --*0,y--*z 

2 . 2  M u l t i - l i n e  o f  B u s i n e s s  

In general, the correlation among the lines of business might be a result of 
several underlying forces tha t  affect different classes in different ways. For 
example, risk sources might include economic inflation, judicial climate, to r t  
reform, property catastrophes, health of the economy, and rate levels. 

We now discuss multiple line business with correlated risk by generalizing 
the results in Sectin 2.1. 
For a class of business consisting of n lines, we define 

z m ( t )  , 
x ( t )  = ( ~ : ( ' ~ ( t ) , x ~ ( t ) , . . . , z l ~ ) ( t ) )  T = z ~ ( t )  

as the instantaneous loss process at time t, t >_ 0. 

Assume the loss amount X(t)  at time t is described by a n-dimensional 
stochastic process of the form: 

d 

dx (') = #i(t, X)dt + ~ ,  ai,j(t, X)dWj  (2.7) 
j = l  
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for i = 1 , 2 , . . . , n ,  where 

, = (,x(t, x) ,#2( t ,x) , . . .  , , , ( t , x ) )  
is the dr i f t  of X ,  

W is a d-dimensional  Wiener  process, 

and the  local volatility ° = (a,j(t,X)) is a n-by-d matr ix  tha t  may de- 
pend on bo th  the  claim X and the t ime t. 

Next,  let L ( t ) , t  > 0, be the present value of aggregate fair value liability 
over the  per iod of [0, t], defined as 

L(t) = fo x(O(~))e-'¢d~ + F(~_, x(')(t))e -~', 
i = l  i 

and let u(t, X) = EX[L] be the expected value of the fair value liability 

given t h a t  X = X(0).  

As a general  case of one risk source (equation (2.2)), u(t, X) is defined as 

,(~ u(t,X) = E l f  ° , x(O(())e-T¢d~+ F(~~i x(O(t))e-~tlX=X(O)] (2.8) 

where X = (z ¢t) (0), x(2)(O), . . -  , x(")(O)) is the vector of losses at t ime 0 from 
the  n risk sources. 
Let a ( t , X )  = (aij(t,X)) be a n x n matr ix  defined as a(t,X) = aar: 

d 

%(t, x )  = • o,,dt, x )  o~,~(t, x),  
k = l  

i : l  

and 

Au =-- ~1 a~k(t,X), ux,x~ + ~  .i(t, X) ux. (2.9) 
~ , k : l  i = l  
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T H E O R E M  2 Suppose that a and p satisfy the linear growth condition 

Ilk(t, X)ll 2 + tlo(t, X)ll 2 __ K2(1 + IlXll 2) (2.10) 

for every O < t < ¢o, x E R '~, 

IF(X)J < K2(1 + liXll =) 
for every x ~ R, 
where K is a positive constant; and assume that u(t, X)  is continuous, and 
is of class C1'2([0, T] x Rn). 
Then 
u ( t , X )  satisfies the Cauchy problem 

ut = A u - r u + g ( X ) ;  in[O,T) x R ~ (2.11) 

and 
u(O,X) = F(g(X));  X • R" (2.12) 

as well as the polynomial growth condition: 

max0<, lu(t,X)l < M(1 + IlXll=o);X ¢ R ~ (2.13) 

for some M :> 0, r /> 1. 

The proof of the Theorem 2 is given in Appendix 1. 
Theorem 2 indicates that an estimate for the fair value insurance liability 

could be obtained by solving a partial differential equation (2.11)-(2.12). 

The model presented here is a dynamic model: the fair value liability 
can be evaluated in a multi-period setting. Consider a sequence of t ime 
periods: [0, Tt], [TI,T2] . . . .  , [Tk-h Tk] and apply our model in every one of 
the k periods, a system of partial differential equations like (2.11) - (2.12) 
can be solved sequentially for the valuation of the fair value liability over the 
k periods. 

Finally to conclude the section, we present a mathematical formula for 
the solution of partial differential equation (2.11)-(2.12). 
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2.3 T h e o r e t i c a l  s o l u t i o n  

To derive a closed-form solution, several conditions are introduced. 

First, let us define 
(i) Uniform ellipticity: There exists a positive constant 6 such that 

n 

ai,k(t,x) rh~k >_ ~ll~ll ~ (214) 
i , k = l  

holds for every r/E R a and (t, x) E [0, oo) x R d. 

(ii) Boundedness: 
The functions ai,k(t,x) and tti(t,x) are bounded in [0, T] x R d. 

(iii) H61der continuity: 
The functions ai.k(t, x) and pi(t, x) are H6Ider-continuous in [0,T] x R e. 

T H E O R E M  3 Under the conditions (i)-(iii) and (2.10), ut = A u -  ru has 
a unique fundamental solution G(t, x; r, ~); 
the solution of equations (2.11)-(2.12) is 

u ( t ,X )  = .f,~ G( t ,X ;O ,£ )F(g (X)  )d~ 

+ (2.15) 

The proof of the Theorem 3 is given in Appendix 2. Theorem 3 provides 
a theoretical basis for the solution of equations (2.11)-(2.12) In practice, 
however, numerical solution of equations (2.11)-(2.12) should be seeked for 
any fair value liability valuation. 
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3. Applications 

In this section, we consider the implementation issues of the model presented 
in previous section and its applications. 

3.1 D i s c o u n t  R a t e  

We start with discussion on the discount rate, r, used in defining fair value 
liability process 

~0 t n n 
L(t) = (y~ z(O(())e-~d( + F ( ~ ,  z('l(t))e -~. (3.1) 

i= l  i 

The discount rate is the interest rate at which the investment funds earn 
interest. The simplest way to implement the model is to use the risk-free 
interest rate as the discount rate r. Although the risk-adjusted rate is not  
used directly, the estimated fair value liability u(t, X)  is risk adjusted. The  
equation (2.11) is risk adjusted since its coefficients includes the eovariance 
matrix a(t, X)  (see the definition of A in equation (2.9)). 

The discount rate r can also be risk-adjusted as 

r = r y  + rr 

by assuming that  the short rate R(t) follows process 

dR(t) = rR(t)dt + an( t ,R)dW 

where 7r is the market risk premium and an is the local volatility of R(t). 
There are many literatures in finance and economics on valuation and hedge 
of interest rate risk. Examples inlcude Duffle (1992), Hull (2000), Heath, 
Jarrow and Morton (1992). 

3 . 2  P a r a m e t e r  E s t i m a t i o n  

In order to solve equations (2.11) - (2.12), the parameters {tt~, i = 1 , . . . ,  n; } 
and {ai,k, i, k = 1 , . . . ,  n} in Equation (2.11) need to be selected first. Simula- 
tion techenique are the methods most widely used today by actuaries to solve 
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this problem. Recent advance in computing technology has significantly in- 
creased the accuracy and reduced the cost of the simulation. Patel and Raws 
(1999) presented a simulation approach in reserve valuation. As far as the 
data used for the simulation, we recommend a weighted average of simulation 
base on public data and company-specific data. 

3 . 3  C a s e  S t u d i e s  

We now show some numerical examples of estimating fair value liability by 
solving equation (2 .11 ) -  (2.12) in case studies. 

Case S tudy  of Mono-line Business 

We first consider a mono-tine liability reserve with uncertain ca.sh flows: as- 
suming the instantaneous loss amount X(t)dt satisfy 

dX = O.08dt + 2dW. 

Assume that  the investment return is 4% (r = 4%) and F ( X )  = X 15. 
Using Theorem 1, we calculated the fair value liability by solving Equation 
(2.4) and (2.5). We used finite differences method to solve (2.4)and(2.5) nu- 
merically. The estimated fair value liability with different initial individual 
loss levels are given in Figure 2. 

Next, we consider a mono-line liability paid out over a longer period of t ime 
has higher uncertainty: 

instead of constant volatility, we consider varying volatility: 
assuming the instantaneous loss amount X(t)dt satisfy 

dX = O.08dt + a(t) = 2V'l + tdW. 

with all the other parameters remaining unchanged. 

Figure 3 presents the computed values of fair value liability in this case. 

Our estimates show that  the fiar value liability with nonconstant  volatil- 
it3' is more sensitive to the initial claim levels. Figure 4 makes a comparison 
of the two situations. 

168 



.~ 5000 

~4000 
Cr~ 
Cb 

~3ooo 

"R 
? 
:='2000 

1000 

0 
20 

i J i i i 

30 40 50 60 70 
x-axis: initial individual claim levels 

80 

Figure  2. The  expected fair va]ue liability with variance cr = 2.0. 
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Case Study  of Multi- l ine Business 

A s s u m e  an  insurer writes two lines of business  with uncer ta in  cashflows. 
Let the  loss process be: 

X = (X(1)(t),X(21(t)), 

A s s u m e  X~l)(t) represent  a proper ty  reserve with drift  p = 0.08 and  local 
volati l i ty of  a = 2. A s s u m e  X(2)(t) represent  a liability reserve with dr i f t  
# = 0.1 and  local volati l i ty of cr -- 5. Assume the  correlat ion between the  
proper ty  reserve and the  liabili ty reserve be 1.5. 

Therefore  the  drift  # and  the  covarance ma t r ix  or(t, X)  are 

. ( t ,  x )  = ( !~ ). 

2 1;5 
o ( t , x )  : ( 1.~ ) 

Let t h e  d i scount  rate r emain  at  4% and the  funct ion  F be defined as 

F ( X )  = ((xIl/)3 + (xI2~)l~)~. 

Using T h e o r e m  2 in Sect ion 2.2, we calculated the  fair value liability by 
solving E q u a t i o n s  (2.11), (2.12). 

Again ,  we used a finite difference me thod  to calculate  the  es t ima ted  fair  
value liability. Figure 5 shows the computed  values of the  fair value liability. 
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Next, we checked how different levels of the correlation affect the es- 
timated liabilities. As indicated in Table 1 , our estimates show that, in 
majority of cases, the fair value liability are lower when the loss claims be- 
tween the lines of business are less correlated. 

Table I. Expected Fair Value Liability 

(xl,x2) ~12=0  a12=0.5  a12=1.5  

(5, 5) 290.8 291.4 303.0 
(5, 10) 330.4 332.7 372.9 
(5, 15) 404.5 409.1 463.5 
(5, 18) 434.6 434.4 427.6 
(10, 5) 1956.9 1927.4 1657.5 
(10, 10) 1908.7 1993.1 1565.11 
(10, 15) 2171.7 2205.5 2438.1 
(10, 18) 2283.8 2346.1 2902.2 
(15, 5) 6687.2 6675.2 6583.5 
(15, 10) 7134.8 7179.2 7540.8 
(15, 15) 6903.7 6904.1 6947.6 
(15, 18) 6845.7 6835.2 6759.6 

Table 1 also shows that, for a fixed level of covariance, the calculated fair 
value liability increase as the initial loss amounts increase. 

Finally, we considered the case when volatility varied with time. Assume 
all the other parameters remain the same and let 

.o8 1,/iG-t .5 
~(t,x) =( .s 2(.s +t)~ ) 

The estimated liabilities are shown in Figure 6. 
The comparision of the estimated fair value liability (when the initial 

risk 1 claim level is x=9) between the constant volatility and non-constant 
volatility is shown in Figure 7. 
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3 .4  A p p l i c a t i o n s  in  R e i n s u r a n c e  

hi Section 2, a new method is provided for the estimation of the expected 
fair value liability without assutniug independence of the individual losses. 
There are a number of applications of the method other than estimating fair 
value insurance liability. In the following, we discuss the applications of our 
method in reinsurance. 

First we consider tile problem of calculating stop-loss premiums. 

Let p be tile stop-loss premimn, K be the cap. and L the fair value lia- 
bility as defined m section 2.1: 

L( t )  = fot X ( { ) e - " ~ d ~  + F ( X ( t ) ) e  Ft 

Assume L follows 

dL( t )  = p ( t , L ) d t  + v( t ,  L l d W  (3.2) 

At time T, the benefit is max{0, L ( T )  - I ( }  - (L - h')  +, 

Define v(t, L) = E[e - ' ( 'r- t)  (L  - K )  + IL(O) = L], 
where r is the risk-free interest rate. 

Then the fair value of the stop-loss premium should be p = v(0, L). Using 
the analogue of Theorem 2 in Section 2, v(t, L) is soh'ed from the following: 

vt = ~ V2Z'LL + pVL -- rv,  (3.3) 

v(O, L) = ( L -  A') +. (3.4) 

Remark: Note that  the above, partial differential equation is different from 
the Black-Scholes' partial differential equation or its type. Since L is not 
tradable, there is no risk neutral measure, Therefore p can' t  be replaced by 
a riskfl'ee rate ill equation (3.3). 
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Remark: In theory', p can be calculated flora equat ions (3.3) - (3.4). Hox~'ever, 
there is no explicit formula to es t imate  p and u w i t h o u t  a s suming  t h e  i n d e -  
pendence or some specific form of the dependence o f  the indiv idual  clai~ns. 
One can, however, use the solution of (2.11)-(2.12) a s  an e s t ima te  of/o. 

In the following, we show a numerical example of ca lcula t ing  the  s top - toss  
premiums,  p = U(0, S), and assume there is one r isk  source. 

Recall tha t  in the Case Study of Mono-line Business ,  where we cons ide r  
a mono-line liability reserve with uncertain cash flows: assuming the  i n s t a n -  
taneous loss amount  X(t )d t  satisfy" 

d X  = 0.08dr + 2dW. 

Assume that  the investment  re turn is 4% (7" = 4%) and F ( X )  = X 15. 
Assume the initial individual claim is Zo = 30.8. Using the  es t imet tes  

calculated in Section 3.3 as an approximat ion fo r  p: p = 178.4952. \Vo 
solved Equat ions  (3.3) and (3.4) numerically. For the  stop-loss cap /k" = 160, 
the stop-loss premiums calculated based on different  aggregate  claim levels 
are given in Figure 8. 

We again looked at the case that  the liability cash flows are more  uncer-  
tian. Figure 9 compares  the stop-loss premiums with  cons tant  volat i l i ty and  
varying volatility. 

Finally, we tested how much change in stop-loss premium is due to t i le 
change of the value of p which is presented in Figure  10. 
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Another application in reinsurance is the valuation of CATS index op- 
tions. The price of a Catastrophe Insurance Futures and options (CATS) 
could be estimated using this approach. For a detailed discussion, see Guo 
(2000). 

4. D i s c u s s i o n  of the  M e t h o d  

In this section, we provide our view on the comparision between our method 
and the existing methods. 

Our method provides a direct estimation of fair value liability. It used 
a combination of th.e financial approach aud the actuarial approach. Unlike 
the method of Allen, Cummins and Phillips (1998), our method considers 
the impact of a particular company at issue or even specific lines of busi- 
ness of the company. It doesn't  rely on the CAPM model, which may not 
accurately predict returns for insurance firms and no need to estimate the 
underwriting betas. There is a component of risk-adjusted discount method 
in our approach when tile discount rate 7 in Equation (2.11) is risk-adjusted. 
The derivation of our method start with study individual loss risk process 
like actuarial distribution-based risk loads methods. Instead of calculating 
the risk loadhowever, our method estimate the risk-loaded fair value liability 
directly using the contigent-claim analysis in modern financial theory. Fi- 
nally, the application of our method in valuation of stop-loss premium and 
CATS premium might provide some connection to the method of using the 
reinsurance market to estimate the fair value of liabilities. 

5. S u m m a r y  

This study provided a new dynamic method to estimate ElL(T)], the ex- 
pected fair value liability for a multiple line business. 
The paper adopted the contingent claim analysis in modern finance theory 
to model the aggregate fair value liability for multiple lines of business. An 
important feature of the method is to concentrate on calculating the risk- 
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loaded expectation of the aggregate liability instead of a t tempting to find 
tile actual liability distribution in a complicated economic environment. The 
fair value liability was derived by solving a partial differential equation. Fi- 
nite difference method was used to obtain the numerical solution as shown 
in the examples. The dynamic feature of the method make it possible to 
evaluate the fair value liability over the multiple periods by solving a sys- 
tem of partial differential equations sequentially. The effects of non-constant 
variance matr ix on the liability estimate were discussed in the numerical ex- 
amples. The paper also addressed some applications of the method including 
the evaluation of stop-loss premiums among others. The paper presents only 
the preliminary result of our study. A case study for the implementation of 
the new method and the comparison of other existing methods is under the 
way. Future research areas include creating a highly efficient and flexible sim- 
ulation algorithm for the parameter estimation; deriving more accurate and 
stable numerical method for the partial differential equation; estimating the 
fair value liability with a stochastic interest rate process {r( t) ,0 < t < T}; 
and extending the loss process to a more general risk process including a 
jump process, etc. 
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6. Appendix  1 

This appendix presents the proof for the Theorem 2 in Sectin 2. 

T h e o r e m  2 

Suppose that cr and p satisfy the linear growth condition 

[lp(t ,X)ll  ~ + il~,(t,X)lL ~ </t'~(1 + lIXll ~) (6,1) 

for ever),O<_t < o c ,  z E  R ~, 

I F ( X ) I  <_ I~'2(1 + I[Xll 2) 

for every x E R, 
where K is a positive constant; and assume that u(t, X) is continuous, and 
is of class C1'2([0, r ]  x R"). 
Then 
u(t, X) satisfies the Cauchy problem 

ut = A u - r u + g ( X . ) ;  i n [ O , T )  x R '~ (6.2) 

and 
u ( O , X )  : F ( 9 ( X ) ) ;  X e R n (6.3) 

as well as the polynomial growth condition: 

maxo(, lu(t,X)[ < M(1 + ]IXII2");X • R '~ (6.4) 

for some M > 0, z /> 1. 

P R O O F  

Suppose v is a solution of (6.2) - (6.3). XVe apply the It5 lemma and 
integration by parts to the process 
v ( t  - ~, X~)e-T¢; ~ ~ [0, t], in conjunction with (2.11): 

d 

d[v( t  - ~, X~)e -Tel = e - r ( [ - g ( X ¢ ) d (  + ~ ,  v~, (t - ~, X¢)cr,dIV(Q]. 
i = l  
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Let Tn =- i n ] { ~  >_ O; IlXell ~ n); 
we obtain 

fO tA rn ~(t, x )  -- E [p (a (x ) )~ - "  ~.>olX(O) = XI+E[ 9(X(~))~-~d~IX(0) = X] 

+E[v (T . ,X~ . ) e  . . . .  l{r.<t)JX(O) = X] (6.5) 
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7. Appendix  2 

This  append ix  presents  the  proof for the  Theorem 3 in Sectin 2. 

T h e o r e m  3 Under  the  condit ions (i)-(iii) and (2.10), ut = Au - ru has  
a unique fundamen ta l  solution G(t, x; r, ~); 
the  solut ion of equa t ion  (2.11)-(2.12) is 

u(t, X)  = / n ,  G(t, X; O, ~ )F(g (X)  ) d~ 

+/oo'/R. G(t, x; (7.1) 

P R O O F  

Under  the  condi t ions  (i)-(iii), there is a fundamenta l  solution G(t, x : r, ~) of 

ut = A u - r u ;  m[0 ,  T)  × R" (7.2) 

and  
u(O,X) = F ( X ) ;  X e R" (7.3) 

(see Fr iedman (1975, pp l41 ,  148 and Pr iedman (1964) Chap te r  I). For fixed 
(T,~) E (0,T]  × R d, the  funct ion G(t ,x  : r ,~ )  is of class C l a ( (0 ,  T] × R d) and  

u ( t , X )  = fR" G( t ,X;O,~)F(X)d~  

satisfies (7.2) - (7.3). We recall from Theorem 2 tha t  the solut ion of (7.2) - 
(7.3), w i th  r = 0, is given by 

u( t ,X )  = E[F(X(t))IX(O ) = x] 

This  leads to the conclusion tha t  any fundamenta l  solution G(t, x : r ,  ( )  is 
also the  t rans i t ion  probabi l i ty  density for the  process X;  i.e,, 

P[X(T)IX( t  ) = z e A] = f G( t , x :  r,~)d~; 0 5_ t < r <_ T. 
d,4 
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In particular, under the condition (2.10), this fundamental solution is unique, 
and 

~z(t,.¥) = E ( ~  .r(i)(~))e-r(d~ + F(~x(i)(t))e-rtlx=X(O)] , 
/ t 

the solution to equation (2.11) and (2.12) now takes the form 

u(t, X ) =  fnd G(t,X;O,~)F(g(X))d~ + fa' fn~ G(t,X'.'r,~)g(X)d~dr. 
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