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A b s t r a c t  

We use resampling techniques to analyze tile impact of provklers on workers' compen- 

sation costs taking into consideration inherent differences in claim populations between 

providers. Resampling techniques provide a nonparametric determination of a statistic's 

distribution and a measure of effectiveness that is not sensitive to deviations from the as- 

sumptions underlying most parametric statistical procedures. These techniques are applied 

to a subset of an extensive nationwide database of workers' compensation claims to demon- 

strate the methods. 
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1 I n t r o d u c t i o n  

A major cost saving method for the workers' COml)(,z)satiott industry is to refer injured work- 

ers' to the most cost-efFectiv(: l)rovidcr. Ofte.n, in(,flieient providers dramatical ly increase 

COSts by over treatillg or l)erforming illeffective treat lnenls  w]lich redllce tile quality of care, 

prolong the length of disability, and increase both the l)otential for l i t iga t ionand  pernia- 

nent disability. Tit,., goal of t.reatmetlt should be to return the worker to suitable gainful 

eml)loynmnt as soon as l)ossible: re(lucittg costs and increasing i)atient satisfaction. It is 

impor tant  to be able t.o coillpate medical costs and in,h.mmity costs between providers when 

deterlllillillg the. cost O~ltCOIIIC Of a workers' cot-`t[tellsati()ll (.'latin. 

\Vhen COml)aring 1)roviders, considerations must 1)e made for tit,-` differences in claim 

populations represented hv each provider. For example, we may be interested in comparing 

the total claim (:()st. for pati(mts served by providers A and 1_3. If l)rovider A services a large 

number of severe injuries, and providm" [3 services no severe injuries, then we will most likely 

conclude that  provider 13 is less exlmusive than provider A, even if the two providers are 

equivalmlt. Ther(,fore, it is difficult to identit3" the l)rovider with the lowest costs without 

accounting for inherent differences in characteristics indicative of claim severity. Throughout  

this paper: we refln to characteristics indicative of claim severity as comorbidity factors, hi 

section 3, we describe techtliqtles t.o risk adjust  the (lata so that  the comparisons are based 

on "'like to like" factors. The type of risk adjust, ment  used in this paper is also known as 

ll()rlt i;lliza t toll, 

Boots t rap resampli)~g is a relatively new statistical teclmique that  allows for nonpara- 

metric or s(,miparametri(: est imates of a s tat is t ic 's  distribution. Traditionally, statistical 

methods sought to determine analytically the distribution of a statistic. For example, the 

asymptot ic  and small sample distribution of statist ics needed to compare population means 

or variances is well known. Howe.ver, these distributional l)roperties are often rooted in 

unrcalisti(: assumptions about  the polmlation. In Section 2 we give a brief introduction to 

the. idea of rcsampliug. The idea is very straightforward aud is al)plieable to a wide vari- 

ety of situations. In addition, boots t rap  techniques allow us t,o form complicated statistics 
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that would normally have asymptotic and small sample properties that arc difficult if not 

impossible to derive. 

We apply tile basic resampling concept for comparing the distribution of ultimate claim 

cost on two populations while adjusting for inherent differences in claim severity. The sta- 

tistical methods are an extension of the methods presented in Efron & Tibshirani (1986) 

to deal with uormalized populations. We show two different techniques for comparing two 

populations while adjusting for claim characteristics that arc iudicative of the severity of a 

claim. In addiLion, we form complicated statistics for comparing the two populations that 

would normally have asymptotic distributions that are dilficult to obtain. 

Ill this paper, two examples using data fi'om HNC Insurance Solutions' Provider Corn- 
® 

t)are database are given to demonstrate how the methods can be applied to comparing 

claim costs between providers. First, it has become standard to refer injured workers to 

a provider network. It makes sense to compare providers not in a network to providers in 

a network. The outcome of profiling providers in and out of networks is outlined in sec- 

tion 4.1. The second example compares the total claim costs of one provider to a group of 

providers while accounting for the differences induced by 13 separate claim characteristics. 

This example can be found in section 4.2. 

2 Introduct ion to Resampl ing  M e t h o d s  

111 this section we give an introduction to resampling methodology. Resampling is a sim- 

ple technique that was developed to serve two basic purposes. First, resalnpling provides a 

departure from the rigid assumptions that underlie many statistical procedures. Like many 

nonparametric and semi-parametric methods, bootstrap resampling provides a framework 

that is not constrained by assumptions on the data and error distributions. Second, re- 

sampling provides a framework for estimating the distribution of very complex statistics. 

Many times, a procedure is developed for estimating nmdel parameters, but the distribution 

of the estimate is either too difficult to derive or requires unrealistic assumptions. Resam- 
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piing techniques provide a straight-forward method for determining the distribution of any 

statistic. 

Define our data as a sample of size n, X~, ..., X,,, where X can represent a vector or a 

scalar. Assume the data  arises from all nnknown distribution function F. Based on tile 

data, it is typically of interest to estimate a population parameter. We can usually denote 

a population parameter as a function of tile distribution fimction, O = O(F).  For example, 

the population mean is defined as 

e(F) = f ,,,ZF(.,,). (2.~) 

Analogously, we can define a corresponding estimate of that  parameter as O(F') = O(Xi, 

..., X~) = O, where ,~" represents the empirical distribution flmction. For an estimate of the 

population mean, we would use the sample mean 

o(F) = f ,,d~(,O = _1 ~ x,. (~.2) 
71, i =  l 

Often times, the distribution of O(F') is difficult if not impossible to obtain. In these situa- 

tions, we can use repeated samples from the original data set to obtain the distribution of 

o(_~). 
Let XI "), ..., X,({ ) represent a simple random sample taken with replaccment from the 

original data X1, ..., X, .  Using the data set XI "), ..., X!~ °) we can obtain an estimate of the 

population parameter @ with O(XI "), ..., X,({)). The estimate of ® using this procedure is a 

single bootstrap estimate and XI *), ..., X~ ") is known as a bootstrap sample. 

In order to obtain an estimate for the distribution of ~(F') ,  we must take repeated 

bootstrap samples. Denote the U h bootstrap sample by XI k), ..., X (~1 and thc corresponding 

estimate of the population parameter O by O(-~ Ik)) = (~(k). Repeat the procedure and obtain 

/3 bootstrap samples. From the B samples we obtain a set of estimates for the parameter 

@, {~(l), ..-, O(B)}. The distribution of the parameter estimate e can be estimated with 

1 B 
F6(x) = ~ ~ I(E) (k) _< x), (2.3) 

k=l 
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where I 0 is the indicator fimction defined as 

1 Aistrue } 
1(.4) = . (2.4) 

0 A is false 

The estimate for the distribution of e in equation 2.3 allows us to obtain the mean and 

standard deviattion of our statistic as well a~s any other relevant measures. The parameter es- 

timate is often taken to be the mean of this distribution. A p-value for testing the hypothesis 

H0 : O = @0 versus a two-sided alternative can be obtained as 

p = 2 n ' i a ( F d e o )  , 1 - P d O o ) ) .  (_9.5) 

Another way to test this hypothesis is by constructing a 95% confidence interval 

[ [ '~ '  (0.025), .f '~' (0.975)]. (2.6) 

If this interval contains the point O0, we woukl not reject H0 : O = Oo. The t, wo methods 

are equivalent if the distribution of O is symmctric. 

The introduction to bootstrap resampling methods given in this section is not meant to 

be exhaustive. We are simply providing the foundation of resampling techniques so t, hat we 

may develop nmthods for comparing l)roviders while controlling for comorbidity factors. For 

further reference to this topic, consult Efron & Tibshirani (1986), Efron (1982), and Efron & 

Tibshirani (1993) . For an insurance application see Derrig, Ostaszewski & Rempala (1998). 

3 Resampling Techniques for Comparing Two Popula- 

tions 

In this section, we present two applications of tile general bootstrap technique for comparing 

two populations in tile l)resence of covariates. The methods presented can be used in many 

analysis situations, but we restrict our attention to comparing the effectiveness of providers 

in lowering the cost of workers' compensation insurance claims. 
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Assume  there are two dis t inct  popula t ions  we arc interested in compar ing.  Let the 

cost of a claim, C, fi'om the two popula t ions  have dis t r ibut ion funct ions  Ft(c) and F,2(c) 

respectively. Define Z = t if we are in populat ion one and Z = 2 if we are in populat ion 

two. We can rewrite the dis t r ibut ion of claim costs condit ional  on Z as F(elz  = 1) = Ft(c) 

and  F(c[z = 2) = F2(c). Fur ther  a s sume  tha t  there is a set of ex t raneous  variables in these 

popula t ions  tha t  influence the u l t imate  claim cost. Denote this set of claim characterist ics 

by X = {X i ,  ..., Xp}.  We present  two me t hods  to compare  the  d is t r ibut ion of claim costs in 

the  two popula t ions  while removing the  effects of the  ext raneous  variables. 

3 . 1  M e t h o d  1:  N o r m a l i z e d  C o m p a r i s o n s  f o r  T w o  P o p u l a t i o n s  

The  first me thod  of comparison a s sumes  very little abou t  the s t ruc tu re  of tile data ,  but  

requires X to consist  of categorical variablcs cxclusively. Techniques  for normalizing pop- 

ulat ions are used to account  for the differences in tile d is t r ibut ion of X.  The  first step in 

doing normalized compar isons  is to write the dis t r ibut ion of claim costs  for populat ion one 

ad jus ted  for the d is t r ibut ion of X in popula t ion  two. This  d is t r ibut ion is wri t ten 

R 

F(2~(CIZ = 1) = ~ F ( C I Z  = 1, ,\" = x , ) P ( X  = z ,  lZ = 2). (3.1) 
i=1 

where R is the number  of different possible values the vector X can represent.  If we havc 

5 categorical variables with 3 levels each, then there will be R = 35 = 243 possible com- 

binations.  Due to this l imitat ion,  the  me t hods  in this section are l imited to only a few 

covariates. The  superscr ip t  (2) is added to the  dis t r ibut ion fimction to indicate tha t  it has 

been normalized to the dis t r ibut ion of X in populat ion two. The  corresponding dis t r ibut ion 

function for popula t ion  two is 

R 

F ( C I Z  = 2) = ~ F ( C I Z  = 2, X = x , ) P ( X  = x, lZ = 2). (3.2) 
i=1 
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3.1.1 Comparing Two Population Means 

A simple comparison that  can be made on the two populations is a comt)arison of means. 

Wc woukl compare 

its 2) = [ uF(2)(d,,IZ = 1) (3.3) 
J 

to  

= f~F(a~Iz  = 2). (3.4) It2 

A comparison of tile two populations can be made using the boots t rap  distr ibution of the 

statist ic e ( F )  = (9 = ILl s) - Its. 

Assume that  we have a sample of da ta  from population one, (Ci, Xl) i ,  i = 1, ..., n t ,  and 

a sample of da ta  from pol)ulation two, (C2, X2)i, i = 1, ..., n2. To make the comparison of 

these populat ions we woukl resample from each populat ion B times. Let the k th boots t rap  

sample be denoted as (ChX, ) Ik ) , i  = 1 .....  nt and (C2, X2)I~),i = 1 .....  nu. To obtain an 

est imate of 19 we would need to es t imate  F ( C I Z  = 1 , X  = z J ,  F ( C I Z  = 2, X = x~), and 

P ( X  = x i l Z  = 2). Est imates of each of these flmctions can be obtained with 

k(*)( , , Iz  = ~, x = ~) = E,%, I(cI~ ) _< - ,  x}~ ) = ~) ,  (3.5) 

k(~: ) (u lZ = 2, X = x)  = Z ; ~ t  l(C~(~ ) _< u, X2(~ ) = x ) ,  (3.6) 
~i=1 

a n d  
n2 

P(%\" = xlZ = ~) = -1  E I ( , \ '~ )  = ~). (3.7) 
?12 i=  1 

For each boots t rap  sample, the est imates  in equations 3.5, 3.6, and 3.7 can be used to obtain 

an es t imate  of E)(~) with 

= ~E,~, f u f i ' ( k ) ( d u l Z  = 1 , X  = x i ) lS (k ) (X  = x, IZ = 2) 

R - Ei=,  fu la (k ) (du l  z ---- 2, X = z i ) P t k ) ( X  = x i l Z  = 2). 
(3.8) 

This equation reduces to 
R 

6 (~) = ~ C'U n~'/ - C2, (3.9) 
j = l  7~2 
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where C,'~j is the mean cost of sample one for the j th  category of the vector X and n2j is the 

number of observations in sarnplc 2 for tile jth category of the vector X. 

Using the B bootstrap estimates of e(k), we can obtain the distribution of e using 

equation 2.3. In addition, confidence intervals and tests of hypothesis can be constructed 

using tile methods described at the end of Section 2. 

3.1.2 Comparing Two Populations Percentiles 

Since tile bootstrap procedure is very flexible with respect to the form of the statistic, we 

can estimate the distribution of statistics that may otherwise be very difficult to estimate. 

One example is found when comparing two population percentiles. For example, we may be 

interested in comparing normalized distribution fimctions from equations 3.1 and 3.2 for a 

percentile p. The statistic for this comparison is 

e(F)  = (F(2))-'(pIZ = 1) - F-t(plg = 2) (3.10) 

The k th bootstrap estimate of (9 = O(F) is obtained from tile eqvations 

R 

P(zk}(ClZ  = 1) = ~ k ( k~ (C lZ  = 1, X = x~)P(k~(X = z ,  IZ = 2), (3.11) 
i = l  

and 
R 

Pc~)(ClZ  = 2) = ~ Pc~)(ClZ  = 2, x = x , ) P ( ~ C X  = :~,lZ = 2), (3.12) 
i=1 

where tile estimates indicated on the right-hand side of equations 3.11 and 3.12 are found 

from equations 3.5, 3.6, and 3.7. Combining equations 3.11 and 3.12 the k th bootstrap 

estimate of O is 

6 ¢~) = (P(~))-'(~l z = 1) - F - ' ( p l  z = 2). (3.13) 

Using the /3 bootstrap estimates of 6 (~), we can obtain the distribution of E) using 

equation 2.3. With this distribution, confidence intervals and tests of hypothesis can be 

constructed using the methods described at the end of Section 2. 

276 



3.2 Method 2: Bootstrapping Linear Regression 

In this section, methods  for boots t rapping ill a linear regression model are used to control for 

both continuous and categorical variables within tile covariatc vector X.  We only provide 

an overview of the topic, for a more detailed description see Freedman (1981) and Freedman 

& Peters (1984). Tile techniques used ill this section assume that  the log of the claim cost 

in the population follows a linear model 

log(c) = a + " / I (Z  = 2) + X'f3 + e = R 'q  + e, (3.14) 

where e is random error term with distribution function F, R = (1 , I (Z  = 2 ) ,X ' ) '  is a 

p + 2 dimensional vector of covariates, and T! = (a, %/3') '  is a p + 2 dimensional vector of 

parameters.  

We can est imate 7/ with the s tandard least-sq!lares estimate.  Since we do not want to 

disturb the distribution of X in each population, we rcsample from the set of residuals 

ei = log(ci) - R'i~,i = 1, . . . ,n .  Denote thc k th boots t rap  sample of tile residuals with 

{el k) ..... elan)}. 'The corresponding boots t rap sample of c,, i = 1 ..... ,t is found with (e×p(RVj+ 
c~k)), ..., exp(R',,/~+e~))}. Using this setup we allow tile distribution of X to remain constant  

and wc reconstruct thc boots t rapped values of ci from the residuals. 

With B boots t rap sample obtainc(l from the above procedure, an est imate of 7/ from 

the k th boots t rap samplc is the least squares est imate fi'om the regression of {exp(R'l~ + 

el ~:)) ..... cxp(R~,,~ + t i l l )} on {Rl ..... R,,}.  Denote tile k th boots t rap est imate of '/ as ~(a). 

From tile B boots t rap  est imates of 71 we can est imate tile distr ibution of i! using equation 2.3. 

Confidence intcrvals and tests of hypothesis call be constructed using the methods described 

at the end of Section 2. 

4 Comparing Providers with Resampling Methods 

To demonstra te  tile use of the preceding resampling methods,  we give two examples that  
@ 

analyze subsets of HNC Insurance Solutions' Providcr Compare Database. Tile first 
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example compares the quantiles of providers in one network to all other providers while 

controlling for claim severity. Tile second example uses boots t rap  regression techniques to 

compare one provider to all other  providers wbile controlling for 13 variables. 

4.1 Example 1: Comparing Quantiles 

In order to measure tile effectiveness of a network of providers, we compare the median, 

sevcnty-lifth percentile, and ninety-fifth percentile to all otber  providers outside of the net- 

work. To control for tile severity of a claim, a .grouping of ICD9 code and NCCI injury 

tyl)e are used. We singled out one network of providers from the rest of the providers and 

measured the effectiveness of that  network in lowering the total  cost of a workers compen- 

sation claim. We refi~r to tile providers in the network of interest as "Network A" and the 

remaining providers as "Other Providers" 

The distribution of claim costs in tile "Other Providers" grou I> in each sample generated 

in the boots t rap  process is normalized to the distribution of claim severity in "Network A" 

as outline(I ill section 3.1.2. We computed the median, 75 th percentile, and 95 th percentile 

front tile distribution determined by each boots t rap  sample. Figures 1, 2, and 3 show the 

boots t rap  distributions for tile median, 75 th percentile, and 95 th percentile respectively. 

Tile upl)er left-hand corners of Figures 1, 2, and 3 show a histogram representing the 

distribution of tilt.' median, 75 th percentile, and 95 th percentile respectively as calculated from 

each boots t rap  saml)le of tile claim costs ill the "Other Providers" grouI>. The upper right- 

hand corners of each figure demonst ra te  the same statistic as calculated on the "Network A" 

providers. The lower-left hand corner of Figures 1, 2, and 3 shows the boots t rap distribution 

of the difference between the "Network A" group and the "Other Providers" group for the 

median, 75 th percentile, and 95 u~ percentile respectively. 

From tim graphs shown in Figures 1, 2, and 3, we can conclude that  tile providers in 

Network A have significantly lower median claim costs. However, upon closer inspection, 

the difl'ercnce of 75 th and 95 th percentiles are not significant at the 0.05 Type I error rate 

level. Looking at tim distributions,  we can see a trend of the two populations towards one 
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anotl,er as we approach tile 95 th percentile. This finding implies that Network A may not 

be as effective on the more severe claims. 

4 .2  E x a m p l e  2: B o o t s t r a p  R e g r e s s i o n  T e c h n i q u e s  f o r  C o m p a r i n g  

O n e  P r o v i d e r  to  Al l  O t h e r  P r o v i d e r s  

This example is based oll specific client feedback about a suspicious provider. We will identify 

the suspicious provider as Z. Using data from our workers' compensation provider database, 

lost time claims where provider Z is listed as tile primary provider have mean indemnity costs 

of $10,317. Tile combined sample without provider Z produces a mean indemnity cost of 

$7,228. The unadjusted estimate of tim increase in indemnity costs associated with provider 

Z is 100%(10317-7228)/7228=42.7%. 

A model for the natural logarithm of total indemnity cost regressed against thirteen 

claim characteristics and the provider Z dummy variable (1 if provider Z, 0 otherwise) was 

identified through a standard variable selection/model building process. Predictor variables 

included body part, nature of accident, cause of accident, industry class code, age, gender, 

injury type, and a reduction of ICD9 code that indicates body region and injury severity 

through a ten level variable. Wc used a bootstrap regression techniqne as outlined in section 

3.2 to compute tile distribution of tlle parameter estimate associated with provider Z. Figure 

4 shows a histogram representing the bootstrap distribution of tile parameter estimate. 

Using tile bootstrap hypothesis testing strategy developed in this paper in section 2, we 

determined that the one-sided p-value for a test of no significant difference between provider 

Z and all other providers ill the database was approximately 0.15. The mean increase in 

indemnity cost associated with provider Z is 54.5%, and tile median increase is 53.8%. The 

unadjusted statistics suggest that provider Z produces 42.7% higher indemnity outcomes 

than the renmining providers as a group. With p=0.15 we have only marginal evidence of an 

effect and would not reject our null hypothesis using traditional significance levels of 0.05, 

and 0.10. Nonetheless, the bootstrap results provide more compelling evidence that provider 

Z is worth watching compare d to standard, unadjusted statistics. 
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5 Examples Using Simulated Data 

Since the methods demonstrated in the last section were applied to proprietary data, we will 

show additional cxamples in this section that utilizc a randomly generated data set that can 

be found in Appendix A. The data set was generated from the linear regression equation 

Y = 5 + 1.0Z + 1.SG + e, (5.1) 

where Z is a random deviate from a normal distribution with mean 5 and variance 1 and 

represents a continuous covariate, G is a Bernoulli random variable with the probability of 

success equal to 0.5, and e is a random error term with mean 0 and variance 1. The random 

variables Z, G, and e were generated independently. In addition a categorical variable, C, 

was generated from a binomial distribution with two trials and a probability of success equal 

to 0.5. The variable C was generated independently of all variables. A listing of the data 

can be found in Appendix A. This equation basically represents two straight line equations 

betwcen Y and Z with a slope of one and an additive error term. The Equation for Group 

0 is Y=5+Z and the equation for Group 1 is Y=6.5+Z. 

5 .1  E x a m p l e  1: C o m p a r i n g  t h e  M e d i a n s  o f  T w o  G r o u p s  

Using the same techniques applied to the data sets in Section 4, we compare the medians 

of the two groups defined by G. We use C in this example as the normalization variable. 

We used 500 bootstrap samples to compare the medians of group 0 and group 1. Table 1 

represents the sample and bootstrap estimates of the medians normalized for C. In addition, 

the standard deviation of the bootstrap estimates is also given. Figure 5 shows a histogram 

of the difference in medians for each bootstrap sample. From the histogram we can conclude 

that there is a statistically significant difference between Group 0 and Group 1 since no 

bootstrap sample had a difference less than or equal to zero. This is consistent with the 

model given by equation 5.1 that was used in generating the sample. The mean difference is 

11.576-9.901=1.675 which compares to the difference in means of 1.5 represented in equation 

5.1. 
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Group 

0 

1 

Table 1: Results from $inmlated Data 

Raw Sample  M e a n  B o o t s t r a p  Mean B o o t s t r a p  Std.  Dev. 

9.893 9.901 0.232 

11.659 11.576 0.137 

5 . 2  E x a m p l e  2: B o o t s t r a p p i n g  R e g r e s s i o n  

Following the techniques presented in section 3.2, we fit the regression cquation 

E(~"IG, C, Z) =/30 +/3,G +/3.J(C = O) +/3.~/(C -- l) +/3.,Z (5.2) 

to the simulated data listed in Appendix A. Table 2 shows the estimatcs from the initial 

model fit to the whole data set. We took 200 bootstrap samples from the residuals to generate 

the bootstrap samples as describes in Section 3.2. [:or consistency, we present a histogram 

of the bootstrap estimates for/3~ in figure 6, the estimated effect of the binary variable G. 

From the histogram, we can conclude that there is a statistically significant difference in Y 

between Group 0 and Group 1 since none of the bootstrap estimates were less than or equal 

to zero. This histogram is similar to the results presented in Section 4.2 on provider, where 

G=I represents a provider with higher cost claims and G=0 refers to a provider with lower 

cost claims. The mean bootstrap estimate of/31 is 1.577 and the standard deviation is 0.181. 

This is in the same range to the least squares estimatcs that are shown in Table 2. To make 

stronger statements on  how these quantities relate, a simulation study would be needed. 

Table 2: Regression Results from Simulated Data 

P a r a m e t e r  E s t i m a t e  Std.  Err. 

/30 ,1.984 0.366 

/3~ 1.625 0.142 

,02 -0.049 0.202 

/33 0.083 0.178 

/34 0.985 0.069 
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6 C o n c l u s i o n s  

We have demonstrated how bootstrap techniques are applicable to comparing providers in 

workers compensation insurance. The methods outlined in this paper provide a powerful 

set of tools for assessing tile effectiveness of individual providers or a group of providers. 

The examples presented in section 3 are only a few methods that can be constructed using 

bootstrap techniques. Since the distribntion of any statistic is attainable using resampling 

methods, it is possible to construct a wide range of meaningfid tests about our populations. 

From the examples presented, we can deternfine the effectiveness of subsets of providers 

while controlling for various comorbidity factors. While the methods presented here are 

the most effective methods for retrospective study, a word of caution is in order. If we are 

unable to represent all of the comorbidity variables, it is possible to show a difference between 

providers that can be explained from unaccounted for comorbidity variables. For example, 

suppose factor A is present in provider X 20% of the time and factor A is present in provider 

Y 60% of the time. If the presence of factor A is associated with higher elaim costs, then 

factor A is a comorbidity factor. Even if provider X and Y perform equally, if we do not take 

factor A into account in the analysis, we will likely show that provider X is less expensive 

than provider Y. This example shows the importance of considering all comorbidity factors 

in the analysis. 

One way to avoid incorrect assessment in the analysis of providers is to randomly assign 

claims to providers to create a balance of the claim characteristics between the two samples. 

This type of study design requires earefid planning and execution. Since random assignment 

is often impractical or costly, the methods in this paper should be used to best account for 

the differences that may exist. 
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A Appendix 

The following data set was randomly generated 11sin~ the lnethods described in section 5. 
Y G Z Y C Z Y G C Z Y G C Z Y G C Z 

6.68 0 2.6,1 7.65 3.73 8.10 0 5.56 8.25 0 3.14 8 .39  0 0 4.79 

8.61 0 2,91 8.63 2 13 9,33 0 5.15 9.38 0 4.20 9.41 0 0 4.20 
I 

9.,12 I 0 ,I.07 0..12 4.13 9.,18 0 5 .86 9.56 0 4.38 9.58 0 0 4.83 

9.68 0 .I,99 9.79 4.69 9.89 0 4.20 9.94 0 5.17 9.95 0 0 5 .15 

IO.O.I 0 .I..15 10.10 ,I.85 10.21 0 5.38 10.46 0 6.32 10.70 0 0 6.24 

10.8,1 I 0 5.56 11.06 6.83 11.21 6.10 11.42 0 6.00 12.10 0 0 5.86 
I 

I2.13 0 7.10 12.98 7.28 6.30 3.08 6.33 1 :1.42 6.38 0 3.54 

6.41 0 3.13 6.77 3.87 7.93 ,I.71 8.08 1 :1.44 8.32 0 5.17 
i 

8.34 [ 0 5.68 8.59 ,I.15 8.72 3.25 8.89 1 4.80 8.91 0 3.66 
I 

8.93 0 5.30 9.04 3.59 9.05 4.7,1 9.17 1 4.76 9.22 0 5.41 

9.,17 O ,I.34 9 50 5.95 9.52 5.02 9.53 1 5.28 9.68 0 5.05 

9.73 0 5.30 9.75 ,I.18 9.82 5.35 9.86 I ,I.22 9.94 0 5.22 

10.03 0 5.22 10.16 6.27 10 18 5.54 10.22 1 .1.85 10.28 0 5.83 

[O.,tO 0 5..59 10..16 5.24 10..16 5.09 10.63 1 5.10 10.65 0 5.50 

10.70 0 5 8.1 10.70 3.45 10.72 ,1.18 10.79 1 5.10 10.83 O 5.59 

10.95 O 6. I0  11.02 5.67 11.08 5.44 1 [ .21 1 5 .13 11.26 0 ,I.43 

l 1.29 0 6.70 11.38 ,1.86 I 1.61 6.56 11.70 1 5.79 I 1.73 0 6.85 

12 O0 O ,I.76 12.28 5.95 12.31 5.16 12..15 I 6 ,05 12.78 0 6.28 

13.00 0 6.16 7.69 3.81 8.22 3.59 8.52  2 3.98 8.53 0 3.32 

8.63 0 ,I.70 8.67 3.37 8.71 2 ,I.07 8.90 2 6.08 9.05 0 4.81 

9.1-I 0 3.85 9.38 3.8.1 9.81 2 5.14 9.88 2 4.71 9 .90  0 4.81 

10.17 I 0 4 .29 10.18 5.34 10.22 2 ,1.70 10.30 2 5.00  10.66 0 5.93 

10.69 0 6.90 10.74 5.14 I 1.79 2 5.96 11.79 2 4.90 12.72 0 6.94 

9.00 I 4.08 9.86 3.73 9.97 0 4.64 I0 .10 0 3.,19 10.,I,1 3 .65 

10.47 I I 4 .10 10.49 5.~9 10.62 0 ,I.34 10.89 0 5 .50  11.32 0 4.43 

I 1.66 l ,I.81 I I 68 ,I.77 11.97 0 5.33 12.21 0 5.28 12.30 5.76 

1"2.31 I 5.47 12.,19 6.5,1 13.05 0 6.55 13.51 0 5.85 14.65 5.99 

9,03 , 1 3.61 9.25 2.99 9.39 1 4.85 9.,17 1 3.96 9.52 4.96 

9.99 1 2.9,1 10.44 3.9,1 10.58 1 3.51 10.74 1 5.53 10.75 4.24 

10.80 1 5 ,15  11.06 ,1,68 I 1.09 1 5.11 11.22 t 3.32 I 1.26 5.40 

11.26 1 .1.22 11.29 3..13 [ 1.33 1 ,1.00 11,59 I 4 .37 11.67 5.46 
I 

1[.68 1 4.78 11.75 5.64 11.97 1 6.69 I 11.99 1 5.01 11.99 3,98 

12.05 t 5..1[ 12.08 6.01 12.12 I 5 .92 ~ 12.13 I 6.84 12.42 5.40 

12.50 I 5.03 12.50 6.12 12.62 1 6.66 I 12.76 1 5,67 12.83 4.39 
i 

12.95 1 6.55 13.03 ,1.81 13.2,1 1 6..16 ] 13 53 1 7.10 14.20 7.17 

1-1.39 1 6.53 1.1..16 7.94 I ,I .67 I 5.44 15.38 1 6.56 9.78 3.80 

9.85 1 2 5.14 9,93 4.89 10.23 2 4.57 I 10.57 2 4.09 10.79 4.31 

10.79 I 2 4.91 10.96 73.88 11.05 2 6.15 11.13 2 5 16 11.19 4.76 

11.32 t 2 5.35 1 I..13 4.49 I 1.78 2 4.69 11.98 2 4.55 11.99 5.84 

12.13 I '2 5.29 12.15 4.24 12.25 2 5.3,1 12.44 2 5.50 13.70 5.35 
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Figure 1: Bootstrap distribution of the Median Claim Cost in Network A and in Other 

Providers and Bootstrap Distribution of the Difference of Medians 
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Figure 2: Bootstrap distribution of the "75 th Percentile of Claim Costs in Network A and in 

Other Providers and Bootstrap Distribution of the Difference of 75 th Percentiles 
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Figure 3: Bootstrap distribution of the 95 th Percentile of Claim Costs in Network A. and in 

Other Providers and Bootstrap Distribution of the Difference of 95 th Percentiles 

i i o o o  l e n t o  l a ~ o o  L I , i o  i~ooo  l l ~ D  ~ o o  i ~ , ~ m  i ~ l ~ m  

~Q 

J 

i i l l ,  
l l d * o  l l l o l  Z2~O. L i l l n  I ~ o *  I ~ O l  SHOO IS~OO 14ZOO ~I ,OO 1 7 I l l  

I I|_ 
• J ~ 0 6  - 2 1 ~ ,  - I O 0 1  - h i t 0  - , I m  101  Z~00 ~ 0 , ,  n . *  

287 



Figure 4: Bootstrap distribution of Regression Coefficient IVlcasuring tile Relative Changc 

in Log-Cost for Provider Z versus all other Providers 
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Figure 5: Bootstrap distribution for the Difference of Medians for Group=0 and Group=l 
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Figure 6: Bootstr~q/distribution of R{'gression Cootticicnt for Sitlmlm.cd Data 
~0 

70 

60 

09 
9. 
O. 

E 50' 

o9 

CL 

40' 
O 

"5 
$ 
-Q 3o 
E 

z 

20 

1.425 1 455 1.485 1.515 1.545 1.575 1.605 

Estimated Effect of G 
1.635 1.665 1.695 

290 


