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Abstract

We use resampling techniques to analyze the impact of providers on workers’ compen-
sation costs taking into consideration inherent differences in claimn populations between
providers. Resampling technigues provide a nonparametric determination of a statistic’s
distribution and a measure of effectiveness that is not sensitive to deviations from the as-
sumptions underlying most parametric statistical procedures. These techniques are applied
to a subset of an extensive nationwide database of workers’ compensation claims to demon-

strate the methods.
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1 Introduction

A major cost saving method for the workers’ compensation industry is to refer injured work-
ers’ to the most cost-cffective provider. Often, inefficient providers dramatically increase
costs by over treating or performing ineffective treatments which reduce the quality of care,
prolong the length of disability, and increase both the potential for litigation and perma-
nent disability. The goal of treatment should be to return the worker to suitable gainful
emploviient as soon as possible, reducing costs and increasing patient satisfaction. It is
important to be able to compare medical costs and indemuity costs between providers when
determining the cost onteome of a workers’ compensation claim.

When comparing providers, considerations must be made for the differences in claim
populations represented by cach provider. For example, we may be interested in comparing
the total claim cost for patients served by providers A and B. If provider A services a large
number of severe injuries. and provider B services no severe injuries, then we will most tikely
conclude that provider B ix less expensive than provider A, cven if the two providers are
cquivalent. Therefore, it is difficult to identify the provider with the lowest costs without
accounting for inherent differences in characteristics indicative of claim severity. Throughout
this paper, we refer to characteristics indicative of claim severity as comorbidity factors. In
section 3, we describe techniques to risk adjust the data so that the comparisons are based
on “like to like™ factors. The type of risk adjustment used in this paper is also known as
normalization.

Bootstrap resampling is a relatively new statistical technique that allows for nonpara-
metric or semiparametric estimates of a statistic’s distribution.  Traditionally, statistical
methods sought to determine analytically the distribution of a statistic. For example, the
asymptotic and small sample distribution of statistics needed to compare population means
or variances is well known,  However, these distributional properties are often rooted in
unrealistic asstinptions abont the population. In Section 2 we give a brief introduction to
the idea of resampling. The idea is very straightforward and is applicable to a wide vari-

ety of sitnations. In addition, bootstrap techniques allow us to form complicated statistics
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that would normally have asymptotic and small sample properties that are difficult if not
impossible to derive.

We apply the basic resampling concept for comparing the distribution of ultimate claim
cost on two populations while adjusting for inherent differences in claim severity. The sta-
tistical methods are an extension of the methods presented in Efron & Tibshirani (1986)
to deal with normalized populations. We show two different techniques for comparing two
populations while adjusting for claim characteristics that are indicative of the severity of a
claim. In addition, we form complicated statistics for comparing the two populations that
would normally have asymptotic distributions that are difficult to obtain.

In this paper, two examples using data from HNC Insurance Solutions’ Provider Com-
pare ® databasc are given to demonstrate how the methods can be applied to comparing
claim costs between providers. First, it has become standard to refer injured workers to
a provider network. It makes sense to compare providers not in a network to providers in
a network. The outcome of profiling providers in and out of networks is outlined in sec-
tion 4.1. The second example compares I;he total claim costs of one provider to a group of
providers while accounting for the differences induced by 13 separate claim characteristics.

This example can be found in section 4.2.

2 Introduction to Resampling Methods

In this section we give an introduction to resampling methodology. Resampling is a sim-
ple technigue that was developed to serve two basic purposes. First, resampling provides a
departure from the rigid assumptions that underlic many statistical procedures. Like many
nonparametric and semi-parametric methods, bootstrap resampling provides a framework
that is not constrained by assumptions on the data and error distributions. Second, re-
sampling provides a framework for estimating the distribution of very complex statistics.
Many times, a procedure is developed for estimating model parameters, but the distribution

of the estimate is either too difficult to derive or requires unrealistic assumptions. Resam-
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pling techniques provide a straight-forward method for determining the distribution of any
statistic.

Define our data as a sample of size n, X\, ..., X,,, where X can represent a vector or a
scalar. Assumne the data arises from an unknown distribution function F'. Based on the
data, it is typically of interest to estimate a population parameter. We can usually denote
a population parameter as a function of the distribution function, © = ©(F). For example,

the population mean is defined as
O(F) = [udF(u). (2.1)

Analogously, we can define a corresponding estimate of that parameter as ©(F) = O(X,,
vy Xp) = O, where F represents the empirical distribution function. For an estimate of the
population mean, we would use the sample mean
R A 12

o(F) = / wdf(u) = ;\ (2.2)
Often times, the distribution of G(F) is difficult if not impossible to obtain. In these situa-
tions, we can use repeated samples from the original data set to obtain the distribution of
O(F).

Let Xl('),..., X{") represent a simple random sample taken with replacement from the
original data X, ..., X,. Using the data set X\, .., X{" we can obtain an estimate of the
population parameter © with G)(X,('), oy X{). The estimate of © using this procedure is a
single bootstrap estimate and Xf‘), e X,(l') is known as a bootstrap sample.

[n order to obtain an estimate for the distribution of ©(F), we must take repcated

(k), -.» X{¥) and the corresponding

bootstrap samples. Denote the &*" bootstrap sample by X
estimate of the population parameter © by @(F“‘)) = OW). Repeat the procedure and obtain
B bootstrap samples. From the B samples we obtain a set of estimates for the parameter

O, {6, ...,6B)}. The distribution of the parameter estimate © can be estimated with

ZBj I(6® < x) (2.3)

Bal
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where () is the indicator function defined as

1 Alistrue
I(4) = . (2.4)

0 Aisfalse
The estimate for the distribution of © in equation 2.3 alows us to obtain the mean and
standard deviation of our statistic as well as any other rclevant measures. The parameter es-

timate is often taken to be the inecan of this distribution. A p-value for testing the hypothesis

Hy : © = Oy versus a two-sided alternative can be obtained as

p =2min(F5(0y),1 = F5(0y)). (2.

no
[l
~—

Another way to test this hypothesis is by constructing a 95% confidence intervat
[F5'(0.025), F5'(0.975)). (2.6)

If this interval contains the point ©g, we would not reject Hy : © = ©y. The two methods
are equivalent if the distribution of © is symmetric.

The introduction to bootstrap resampling methods given in this section is not meant to
be exhaustive. We are simply providing the foundation of resampling techniques so that we
may develop methods for comparing providers while controlling for comorbidity factors. For
further reference to this topic, consult Efron & Tibshirani (1986), Efron (1982), and Efron &

Tibshirani {(1993) . For an insurance application see Derrig, Ostaszewski & Rempala (1998).

3 Resampling Techniques for Comparing Two Popula-
tions

In this section, we present two applications of the general bootstrap technique for comparing
two populations in the presence of covariates. The methods presented can be used in many
analysis situations, but we restrict our attention to comparing the effectiveness of providers

in lowering the cost of workers’ compensation insurance claims.
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Assume there are two distinet populations we are interested in comparing. Let the
cost of a claim, C, from the two populations have distribution functions Fi(c) and F,(c)
respectively. Define Z = 1 if we are in population one and Z = 2 if we are in population
two. We can rewrite the distribution of claim costs conditional on Z as F(c|z = 1) = Fi(c)
and F(c]z = 2) = F3(c). Further assumc that there is a sct of extraneous variables in these
populations that influence the ultimate claim cost. Denote this set of claim characteristics
by X = {X,..., Xp}. We present two methods to compare the distribution of claim costs in

the two populations while removing the effects of the extraneous variables.

3.1 Method 1: Normalized Comparisons for Two Populations

The first method of comparison assumes very little about the structure of the data, but
requires X' to consist of categorical variables exclusively. Techniques for normalizing pop-
ulations are used to account for the differences in the distribution of X. The first step in
doing normalized comparisons is to writc the distribution of claim costs for population one

adjusted for the distribution of X in population two. This distribution is written
R
FACIZ=1)=YF(C|Z=1,X =2)P(X = x;]Z = 2). (3.1)
t=1

where R is the number of different possible values the vector X can represent. If we have
5 categorical variables with 3 levels each, then there will be R = 3° = 243 possible com-
binations. Due to this limitation, the methods in this section are limited to only a few
covariates. The superscript (2) is added to the distribution function to indicate that it has
been normalized to the distribution of A" in population two. The corresponding distribution
function for population two is
R
F(Clz2=2)=) F(C|Z=2,X=2,)P(X =z;|Z =2). (3.2)

i=1
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3.1.1 Comparing Two Population Means

A simple comparison that can be made on the two populations is a comparison of means.
We would compare
1 = / wF®(du|Z = 1) (3.3)
to
g = / wF(dulZ = 2). (3.4)
A comparison of the two populations can be made using the bootstrap distribution of the
statistic O(F) = © = u?’ - U.
Assume that we have a sample of data from population one, (C,, X,);,%t = 1,...,ny, and
a sample of data from population two, (Ca, X3)i,7 = 1,...,n,. To make the comparison of
these populations we would resample from each population B timmes. Let the 4" bootstrap
sample be denoted as (Cl,,\’l)sk),i =1,..,n and (Cg,l\’r_,)gk),i =1,...,n9. To obtain an
estimate of © we would need to estimate F(C|Z = 1,X = x;), F(C|Z = 2,X = z;), and

P(X ==x;|Z = 2). Estimates of each of these functions can be obtained with

s I(Ch <u, XE =)

F® ()7 =1, X =2) = . 3.5
. ) i I(XP = 1) @3)
. n2 B < X = g
F(k)(ulz =2 XN = :E) — T3 I(Cy < (1:)1 2i 3)’ (36)
YR Xy =1)
and
POX =aZ=2) = LS 1(X® = a). (3.7)

2 =]
For cach bootstrap sample, the estimates in equations 3.5, 3.6, and 3.7 can be used to obtain

an estimate of O with

oW = TR [uF®(dy|Z =1,X = 2)PH(X = 2,|Z = 2)

. N (3.8)
TR fuF®du|Z =2, X = 2)P¥(X = 1,|Z = 2).
This equation reduces to
- R - 3 -
oW =3 CU% -Gy, (3.9)
= ™
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where C'lj is the mean cost of sample one for the j'" category of the vector X and ny; is the
number of observations in sample 2 for the j*" category of the vector X.

Using the B bootstrap estimates of ©® we can obtain the distribution of 6 using
equation 2.3. In addition, confidence intervals and tests of hypothesis can be constructed

using the methods described at the end of Section 2.

3.1.2 Comparing Two Populations Percentiles

Since the bootstrap procedure is very flexible with respect to the form of the statistic, we
can estimate the distribution of statistics that may otherwise be very difficult to estimate.
One example is found when comparing two population percentiles. For example, we may be
interested in comparing normalized distribution functions from equations 3.1 and 3.2 for a

percentile p. The statistic for this comparison is
O(F) = (F®)~ (p|Z = 1)~ F~' (4|2 = ) (3.10)
The k' bootstrap cstimate of © = ©(F) is obtained from the equations
- R - ~
FOCIz=1) =Y F®C|Z=1,X =2)PP(X = z,|Z = 2), (3.11)
i=l

and
R
FE(CI1Z=2)=Y F®C|Z=2,X = 2)PP(X = 1,|Z = 2), (3.12)

where the estimates indicated on the right-hand side of equations 3.11 and 3.12 are found

from cquations 3.5, 3.6, and 3.7. Combining equations 3.11 and 3.12 the k'" bootstrap
estimate of © is

OF = (FOYy-'(plZ =1) - F~'(p|Z = 2). (3.13)

Using the B bootstrap estimates of &%), we can obtain the distribution of & using

equation 2.3. With this distribution, confidence intervals and tests of hypothesis can be

constructed using the methods described at the end of Section 2.
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3.2 Method 2: Bootstrapping Linear Regression

In this section, methods for bootstrapping in a linear regression model are used to control for
both continuous and categorical variables within the covariate vector X'. We only provide
an overview of the topic, for a more detailed description see Freedman (1981) and Freedman
& Peters (1984). The techniques used in this section assume that the log of the claim cost

in the population follows a linear model
log(c) =a+v/[(Z=2)+X'8+e=R'n+e, (3.14)

where ¢ is random error term with distribution function F, R = (1,/(Z = 2),X') is a
p + 2 dimensional vector of covariates, and 71 = («,v,8)" is a p + 2 dimensional vector of
parameters.

We can estimate 77 with the standard least-squares estimate. Since we do not want to
disturb the distribution of X in each population, we resample from the set of residuals
e; = log(c;) — Rin,i = 1,..,n. Denote the &M bootstrap sample of the residuals with
{e(,k), oo, €9}, The corresponding bootstrap sample of ¢,, & = 1, ..., n is found with {exp(R}73+
esk)), o exp( R +el)}. Using this setup we allow the distribution of X to remain constant
and we reconstruct the bootstrapped values of ¢; from the residuals.

With B bootstrap sample obtained from the above procedure, an estimate of 7 from
the k'™ bootstrap sample is the least squares estimate from the regression of {exp(R|7) +
e, L exp(R,A + e} on {Ry,..., R,}. Denote the k™ bootstrap estimate of 7 as %),
From the B bootstrap estimates of 7 we can estimate the distribution of 7 using equation 2.3.
Confidence intervals and tests of hypothesis can be constructed using the methods described

at the end of Section 2.

4 Comparing Providers with Resampling Methods

To demonstrate the use of the preceding resampling methods, we give two examples that

analyze subsets of HNC Insurance Solutions’ Provider Compare ® Database. The first
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example compares the quantiles of providers in one network to all other providers while
controlling for claim severity. The second example uses bootstrap regression techniques to

compare one provider to all other providers while controlling for 13 variables.

4.1 Example 1: Comparing Quantiles

In order to measure the effectivencss of a network of providers, we compare the median,
seventy-fifth percentile, and ninety-fifth percentile to all other providers outside of the net-
work. To control for the severity of a claim, a-grouping of ICD9 code and NCCI injury
type are used. We singled out one network of providers from the rest of the providers and
measured the effectiveness of that network in lowering the total cost of a workers compen-
sation claim. We refer to the providers in the network of interest as “Network A” and the
remaining providers as “Other Providers”

The distribution of claim costs in the *Other Providers” group in each sample generated
in the bootstrap process is normalized to the distribution of claim severity in “Network A"
as outlined in section 3.1.2. We computed the median, 75'0 percentile, and 95*" percentile
from the distribution determined by cach bootstrap sample. Figures 1, 2, and 3 show the
bootstrap distributions for the median, 75'F percentile, and 95" percentile respectively.

The upper left-hand corners of Figures 1, 2, and 3 show a histogram representing the
distribution of the median, 75" percentile, and 95 percentile respectively as calculated from
each bootstrap sample of the claim costs in the “Other Providers” group. The upper right-
hand corners of each figure demonstrate the same statistic as calculated on the “Network A”
providers. The lower-left hand corner of Figures 1, 2, and 3 shows the bootstrap distribution
of the difference between the “Network A” group and the “Other Providers” group for the

median, 75*" percentile, and 95"
)

percentile respectively.
From the graphs shown in Figures 1, 2, and 3, we can conclude that the providers in
Network A have significantly lower median claim costs. However, upon closer inspection,

=th

the difference of 75™ and 95 percentiles are not significant at the 0.05 Type I error rate

level. Looking at the distributions, we can see a trend of the two populations towards one

278




another as we approach the 95" percentile. This finding implics that Network A may not

be as effective on the more severe claims.

4.2 Example 2: Bootstrap Regression Techniques for Comparing

One Provider to All Other Providers

This example is based on specific client feedback about a suspicious provider. We will identify
the suspicious provider as Z. Using data from our workers’ compensation provider database,
lost time claims where provider Z is listed as the primary provider have mean indemnity costs
of $10,317. The combined sample without provider Z produces a mean indemnity cost of
$7,228. The unadjusted estimate of the increase in indemnity costs associated with provider
Z is 100%(10317-7228)/7228=42 7%.

A model for the natural logarithm of total indemnity cost regressed against thirteen
claim characteristics and the provider Z dummy variable (1 if provider Z, 0 otherwise) was
identificd through a standard variable sclection/model building process. Predictor variables
included body part, nature of accident, cause of accident, industry class code, age, gender,
injury type, and a reduction of ICD9 code that indicates body region and injury severity
through a ten level variable. We used a bootstrap regression technique as outlined in section
3.2 to compute the distribution of the parameter estimate associated with provider Z. Figure
4 shows a histogram representing the bootstrap distribution of the parameter estuinate.

Using the bootstrap hypothesis testing strategy developed in this paper in section 2, we
determined that the one-sided p-value for a test of no significant difference between provider
Z and all other providers in the database was approximately 0.15. The mean increase in
indemnity cost associated with provider Z is 54.5%, and the median increase is 53.8%. The
unadjusted statistics suggest that provider Z produces 42.7% higher indemnity outcomes
than the remaining providers as a group. With p=0.15 we have only marginal evidence of an
effect and would not reject our null hypothesis using traditional significance levels of 0.05,
and 0.10. Nonetheless, the bootstrap results provide more compelling evidence that provider

Z is worth watching compared to standard, unadjusted statistics.
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5 Examples Using Simulated Data

Since the methods demonstrated in the last section were applied to proprictary data, we will
show additional examples in this section that utilize a randomly generated data set that can

be found in Appendix A. The data set was generated from the linear regression equation
Y =54+10Z +1.5G +¢, (5.1)

where Z is a random deviate from a normal distribution with mean 5 and variance 1 and
represents a continuous covariate, G is a Bernoulli random variable with the probability of
success equal to 0.5, and ¢ is a random error term with mean 0 and variance 1. The random
variables Z, G, and ¢ were generated independently. In addition a categorical variable, C,
was generated from a binomial distribution with two trials and a probability of success equal
to 0.5. The variable C was generated independently of all variables. A listing of the data
can be found in Appendix A. This equation basically represents two straight line equations
between Y and Z with a slope of one and an additive error term. The Equation for Group

0 is Y=5+Z and the equation for Group 1 is Y=6.5+2.

5.1 Example 1: Comparing the Medians of Two Groups

Using the same techniques applied to the data sets in Section 4, we compare the medians
of the two groups defined by G. We use C in this example as the normalization variable.
We used 500 bootstrap samples to compare the medians of group 0 and group 1. Table 1
represents the sample and bootstrap estimates of the medians normalized for C. In addition,
the standard deviation of the bootstrap estimates is also given. Figure 5 shows a histogram
of the difference in medians for each bootstrap sample. From the histogram we can conclude
that there is a statistically significant difference between Group 0 and Group 1 since no
bootstrap sample had a difference less than or equal to zero. This is consistent with the
model given by equation 5.1 that was used in generating the sample. The mean difference is
11.576-9.901=1.675 which compares to the difference in means of 1.5 represented in equation

5.1,
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Table 1: Res

ults from Simulated Data

Group | Raw Sample Mean

Bootstrap Mean | Bootstrap Std. Dev.

0 9.893

9.901

0.232

1 11.659

11.576

0.137

5.2 Example 2: Bootstrapping Regression

Following the techniques presented in section 3.2, we fit the regression cquation

E(Y|G.C,Z) = Bo+B.G + Bl (C =0) + I(C =1) + 5,2

(52)

to the simulated data listed in Appendix A. Table 2 shows the estimnates from the initial

model fit to the whole data set. We took 200 bootstrap samples from the residuals to generate

the bootstrap samples as describes in Section 3.2. For consistency, we present a histogram

of the bootstrap estimates for 3, in figure 6, the cstimated effect of the binary variable G.

From the histogram, we can conclude that there is a statistically significant difference in Y

between Group 0 and Group 1 since none of the bootstrap estimates were less than or equal

to zero. This histogram is similar to the results presented in Section 4.2 on provider, where

G=1 represents a provider with higher cost claims and G=0 refers to a provider with lower

cost claims. The mean bootstrap estimate of 8, is 1.577 and the standard deviation is 0.181.

This is in the same range to the least squares estimates that are shown in Table 2. To make

stronger statements on how these quantitics relate, a simulation study would be needed.

Table 2: Regression Results fromn Simulated Data

Parameter | Estimate | Std. Err.
Bo 4.984 0.366
B 1.625 0.142
B2 -0.049 0.202
B3 0.083 0.178
B4 0.985 0.069
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6 Conclusions

We have demonstrated how bootstrap techniques are applicable to comparing providers in
workers compensation insurance. The methods outl-inc(l in this paper provide a powerful
set of tools for assessing the effectiveness of individual providers or a group of providers.
The examples presented in section 3 are only a few methods that can be constructed using
bootstrap techniques. Since the distribution of any statistic is attainable using resampling
methods, it is possible to construct a wide range of meaningful tests about our populations.

From the examples presented, we can determine the effectiveness of subsets of providers
while controlling for various comorbidity factors. While the methods presented here are
the most effective methods for retrospective study, a word of caution is in order. If we are
unable to represent all of the comorbidity variables, it is possible to show a difference between
providers that can be explained from unaccounted for comorbidity variables. For example,
suppose factor A is present in provider X 20% of the time and factor A is present in provider
Y 60% of the time. If the presence of factor A is associated with higher claim costs, then
factor A is a comorbidity factor. Even if provider X and Y perform equally, if we do not take
factor A into account in the analysis, we will likely show that provider X is less expensive .
than provider Y. This example shows the importance of considering all comorbidity factors
in the analysis.

One way to avoid incorrect assessment in the analysis of providers is to randomly assign
claims to providers to create a balance of the claim characteristics between the two samples.
This type of study design requires careful planning and execution. Since random assignment
is often impractical or costly, the methods in this paper should be used to best account for

the differences that may exist.
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A Appendix

The following data set was randomly generated using the methods described in section 5.
Y Gglel z |y Glc|l z [x Glclz ||[v clc] z [~ Gilcl| z
6.58 0 0 2.64 7.65 0 0 3.73 8.10 0 0 5.56 8.25 0 3.14 8.39 0 0 4.79
86t Jolof2o 863 [0 o 21393 }o|o]|s15]938 [olofaz]oar [o]o]a2
942 [ oo ]a07 {942 [o]o 413048 [ofo|s8s{ 95 [o]o]aas|oss [o]o]uass
968 |0 [0 {400 [f970 [ oo 4090|980 |ofo[4a2 {9 [ofe|si7]oos [o]o]s1s
1001 [ 0 |0 [445] 1000 0|0 | 4851021 |00 [53] 1046]0] 0632 1070]07]0]s24
1084 | o [0 [556 [ 1106 |0 o683 ofo]erofnde]o]oleooljr210]0]0]sse
1243 [ o { o [7i0][ 1208 [ o[ o {72630 [of1[308] 633 [o{1 342638 [0]1[354
64t Lo [3mflesr Jo[ 1387703 o1 [an{sos [ofji1[aaa]sse [ofi]s1r
8.34 0 1 5.68 8.39 0 1 4.15 8.72 0 H 3.25 8.89 0 1 4.80 8.91 0 1 3.66
893 [of 1 {530 904 [ o1 [359[00s [o[1[araforr Jo[1[asfo22 [o]1[s5an
947 [ o [ 1 431 {os0 [ o1 595952 {o]1]|502]95 [oj1 |52 o068 |[0]1][505
973 [ o |1 |s30fom [o] v {48 [os2 [ o1 [s35(oss [o]t]aze]oss [o]i]s2
1003 [ o [ 1 522 [ 1006 {0 |1 |62z 1018 0 [1 |55 1022f{o [t [ass]1028[0]1 563
10.40 0 1 5.59 1016 0 1 5.24 10.46 0 1 5.09 10.63 [1] 1 5.10 10.65 1] 1 5.50
1070 [ o [ 1 [s84[{rom0 [ o[ v {3502 ] o1 ]asftom]of1]si0]108]0[1]s5
10.95 [ 0 [ 1 [610 [ 1102 [0 [ [ [567 [f 108 {0 (1 [Sad 1020 {0 [1 [513[ 1126 [0 [1 [ 443
29 o1 [eroffnas ol [ass e ol i ]ess|[nnzo]of1|srennmfo]1[sass
1200 [ o [ 1 [are [[ 1228 o [ v [sos [ i2at o]t | saefizas] o] 1 [60s {1278} o] |62
13.00 G 1 6.16 7.60 0 2 3.81 8.22 0 2 3.59 8.52 1) 2 3.98 8.53 a 2 3.32
863 | o2 [aroftaer [o[2{asrflan [o]2]qa07]890 Jo[2]508]005 jo]2][am
914 |0 | 2 |385][938 [o|2|38i|[9s [o[2]saloss [o{2]annoo [o[2]4m
1017 [ 0 | 2 |20 [Jroas{ o[ 2] s3aff w22 o] 2] 41000 o] 2]500]1066]0]2]50
1060 | 0|2 690 fworafo2]smaffuselol2]s0]fjunmlo|2l401272]0]2]604
9.00 | 1o 408 98 |1 |of37a)ioor |1 {0 46410001 |0 [349f 1044]1 ]|0]365
1047 | 1|0 Jaas [Jioao [ 1 To]saofros2] v Jo]aaaflios] v Jo]ssoflnia2]1 [o}4e
vwes [ 1o |asfues |1 [ofarr e i Jolsasfiea]|1fo]s2s|1230]1|o]5s7s
12.31 1 0 547 12,19 1 0 6.51 13.05 i 0 6.55 13.51 i 0 5.85 14.55 1 ] 5.99
003 | 1] v 36 [Jous Ty [ v 299 Tose [ vy Jass|oav [ 11 ]396)as2 [1]1]49
009 [ v {1 [2oaffroas ] v [ v 3o fress | v {1 [astwora| v 11 |553] 10731 |1 }4u
080 | 1|1 [543 106 | 1 |1 [aeuoe 1 [ ]sn Jueefa [t]sa2] 2|1 ]1]540
wee |1 e ooy s us ] i Jaco s f o Jaarfner ] 1|1 ] 546
11.68 1 1 4.78 11.75 1 1 5.64 11.97 1 1 5.60 11.99 1 s 5.01 11.99 1 1 3.98
1205 | t | v |54t [fr2os [ v [ feor rzaz [ o [ o [ se2 iz [ 1 [esa [rza2 ] v |1 | 540
1250 | 1] 1 [ 503 () 250 | v v [ea2f)izea | 1 [ 1 ] 6o [l aawe | 1 [ 1] 567 1283 ] 1 | 1|49
1205 | 1] 1 |eas || wos [t [ v fasi [fusza v [ v {eas [ 3ss| i [ u7ao a0t v]]7ar
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Figure 1: Bootstrap distribution of the Median Claim Cost in Network A and in Other

Providers and Bootstrap Distribution of the Difference of Medians

Modian Claim Cost(Other Providers)
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Figure 2: Bootstrap distribution of the 75" Percentile of Claim Costs in Network A and in

Other Providers and Bootstrap Distribution of the Difference of 75" Percentiles
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Figure 3: Bootstrap distribution of the 95" Percentile of Claim Costs in Network A and in

Other Providers and Bootstrap Distribution of the Difference of 95" Percentiles
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Figure 4: Bootstrap distribution of Regression Cocfficient Measuring the Relative Change

in Log-Cost for Provider Z versus all other Providers
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Figure 5: Bootstrap distribution for the Difference of Medians for Group=0 and Group=1
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Figure 6: Bootstrap distribution of Regression Cocflicient for Simmlated Data
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