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Portfolio Decomposition: Modeling Aggregate Loss (Ratio) Distributions 

Abstract 
There are two things that may be responsible for differences between the expected loss 
amount (for a contract or an entire portfolio) and the actual loss amount that is 
experienced: errors in estimating the long term average (parameter error) and random 
good or bad luck (process risk). This paper presents a method for using historical data to 
establish a model for process risk. Because the method does not require individual claim 
data, it is especially suitable for reinsurance companies for whom individual claim data 
may not be available. It can also be used when data is obtained from the aggregate policy 
year and accident year calls that are filed with rating bureaus. 

Essentially, the method treats the experience of multiple contract years as if each year 
were a random sample drawn from a single population consisting of all the outcomes that 
could have occurred, The techniques of Time Series Decomposition are used to restate 
the historical data on an "'as if current levels" basis. Decomposition is then used to 
isolate the random fluctuations (process variance). A generalization of the Central Limit 
Theorem allows a model of these fluctuations to be constructed. While derived from 
aggregate portfolio experience, the model's divisibility property allows it to be scaled 
down to accurately reflect the aggregate loss distribution of an individual contract or 
policy, 
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Portfolio Decomposition: Modeling Aggregate Loss (Ratio) Distributions 

Process variance enters the analysis of individual insurance (or reinsurance) contracts at 

two different levels: 

1. In the form of the aggregate loss distribution associated with a cohort, or portfolio, of 

similar contracts (where similar may be inclusive enough to encompass the entire 

company's book of business), and 

2. In the form of the aggregate loss distribution associated with individual contracts. 

The first application frequently arises in conjunction with the assignment of surplus that 

is necessary when modeling return on equity (ROE). The second application arises 

during the analysis of loss sensitive contract provisions. The determination of the 

necessary supporting surplus that acts as a cushion against ruin requires a knowledge of  

the aggregate loss distribution for an entire portfolio of contracts or policies, whereas an 

analysis of loss sensitive contract provisions (e.g., retrospective rating of individual 

primary company policies, swing rating which is its reinsurance equivalent, sliding scale 

contingent commissions, profit sharing agreements, contributory dividends, etc.) requires 

a knowledge of the aggregate loss distribution at the individual policy or contract level." 

There are two sources of uncertainty that may be responsible for differences between the 

estimated loss amount (for a contract or an entire portfolio) and the actual loss amount 

that is experienced. These are errors in estimating the long term mean (parameter error) 

and variation from the mean (process risk). This paper presents a method for using 
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historical data to establish a model for process risk. Because the method does not require 

individual claim data, it is especially suitable for reinsurance companies for which 

individual claim data may not be available (e.g., proportional reinsurance is often ceded 

in the form of a bordereau that displays aggregate loss and premium cessions rather than 

individual claim detail). It can also be used when data is obtained from the aggregate 

policy year and accident year calls that are filed with rating bureaus. 

The first section of  the paper presents a very simplified overview of the method. In this 

section, several very significant assumptions are made without justification or support. 

Among these assumptions are that homogenous portfolios consisting of identical 

exposure units exist and that the concept of  an exposure unit not only has meaning, but 

that these units can be counted according to some logical rule. The purpose of the first 

section is to provide a rationale for the more rigorous treatment that follows. Subsequent 

sections of  the paper deal with how to relax the assumptions that were made in the 

simplified overview. 

Throughout the paper, it is assumed that all companies conduct loss reserve adequacy 

testing and that a byproduct of  this type of analysis is the segregation o f  individual 

policies or reinsurance contracts into more or less homogenous portfolios. It is further 

assumed that all of the data that is available to the reserving actuary is also available for 

modeling aggregate loss distributions. Note that, under many circumstances, the 

aggregate loss distribution, aggregate pure premium distribution, and aggregate loss ratio 

distribution differ only by a scale transformation. Where the distinction is not significant, 

the three terms have been used almost interchangeably. 

109 



A Very Simplified Overview of the Method 

An ideal insurance (or reinsurance) portfolio consists of a large group of identical 

exposure units. Such a portfolio might consist of identical insurance policies (or 

reinsurance treaties), all covering the same period of time. If the group of policies all 

renew coverage upon expiration, the renewal portfolio can be considered as if  it were a 

second year in the life of the original portfolio ~. In an even more relaxed sense of the 

definition of a portfolio, the indistinguishable nature of the exposure units (i.e., identical) 

allows a portfolio to live from year to year, even if the particular constituents (i.e., the 

particular policyholders or ceding companies) differ from year to year. Later, the 

definition will be further relaxed to allow the number of constituents to vary from year to 

year 2. 

During each year of the portfolio's existence, the N exposure units that make up the 

portfolio will each experience a loss outcome (where "no loss" may be the most common 

outcome). The total of the loss outcomes divided by the number of exposure units is the 

pure premium outcome for the portfolio. In particular, if the loss outcome for the jth 

exposure unit during year t is given by Lj,, then the pure premium outcome for the year, 

PPr, is given by 

N 

pp,=N-'ZL,,. 
j=l 

The historical experience of a portfolio is displayed below in timeline form. 

1o I1 12 13 14 15 16 ~i,,., 

I I 0  



If the population does not change over time, the portfolio's historical experience over 

several years can be considered to be different samples, all drawn from the same 

population of  all possible outcomes. This alternative interpretation is displayed below. 

Pooulation of all Possible Loss Outcomes 
Population pure premium mean,/~ 

Population pure premium variance, o ~ 

Sarnpk) mean PPt PP2 PP3 PP, PPs PP6 

If there are N exposure units in the portfolio, then each sample is of  size N (one selected 

outcome for each exposure unit). The mean of each sample is the incurred pure premium 

for the year. 

I f N  is large, the Central Limit theorem tells us that the sample means will be distributed 

Normally with a mean equal to the population mean, ~ and with a variance equal to the 

variance of  the population, o 2, divided by N. The mean of  the historical portfolio pure 

premiums (mean of  the sample means), m, can be used as an estimate of the mean of  the 

population. The variance of  the portfolio pure premiums from year to year (variance of  

the sample means), s 2, times the number of  exposure units, N, can be used to estimate the 

population variance. 

Now consider next year's experience for a similar portfolio that consists of  M identical 

exposure units (where M is not necessarily equal to N). The portfolio pure premium (i.e., 
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the mean of a sample of  size M, drawn from the population) is a random variable. As 

long as M is large, the Central Limit Theorem can be used to estimate its distribution. 

The distribution of next year's M exposure unit portfolio pure premium will be Normal, 

with 

mean =/a  = m, 

and 

variance = aZ/M 

= IN s2VM 

= [N/M]s 2 

=S2/~M, 

where 

au= [M/N]. 

Notice that, while the historical experience was used to estimate the population mean and 

variance, the population parameters are simply abstractions. If  all that is desired is to use 

historical experience to determine the distribution of next year's pure premium, then the 

population parameters need not ever be explicitly determined. Next year's distribution 

will be Normally distributed with a mean equal to the mean of the historical means, m, 

and a variance equal to the variance of the historical pure premiums divided by the ratio 

of  the prospective portfolio size to the size of the historical portfolios. 

The remainder of this paper deals with how to relax many of the assumptions, both 

implicit and explicit, that were made above so that more realistic situations can be 

addressed. More specifically, the following assumptions must be addressed: 
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I. Exposure units can defined in such a way that portfolio size can be measured, 

2. If the population of possible outcomes is not stationary (i.e., if it changes over time), then 

there exists a transformation (i.e., a restatement of the historical exporience) that makes it 

possible to treat the population as if it were stationary, 

3. If the measure of exposure units is not stationary, then there exists a transformation (i.e., a 

restatement of the historical portfolio size) that makes it possible to treat the units as if they 

were stationary 3, 

4. The Central Limit Theorem can be generalized so that the parameters of the population can 

be estimated even if the samples are not all of the same size, 

5. There is a way in which to extend the method so that individual policy or contract aggregate 

loss distributions can be modeled even if M is too small to satisfy the requirements of the 

Central Limit Theorem, and that 

6. The method can be applied to situations in which the portfolio is not perfectly homogeneous 

(i.e., when it reflects a mixture of different outcome spaces). 

Assumptions and Issues that Must  be Addressed 

Portfolio Size: Exposure Units 

For  the proposed  me thod  to work,  it is no t  only  necessary  to have a well  defined, 

h o m o g e n e o u s  portfol io but  one mus t  also be able to measure  its size. In the overview,  

the sizes o f  the portfol ios were  measured  in te rms o f  independent  exposure  units. Clearly 

the concept  o f  an e x p o s u r e  u n i t  is an abstraction. As  such, it will not  be readily 

quantifiable for m a n y  ( i f  not  all) portfolios.  To illustrate w h y  this is true, consider  two 

different h o m o g e n e o u s  portfolios.  
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Portfolio 1 consists of basic limits liability policies covering 200,000 vehicles, each 

with exactly the same manual classification. Vehicle years is an obvious measure 

of the exposure. All else being equal, associating twice the number of exposure 

units to a second portfolio consisting of 400,000 vehicles is consistent with our 

intuitive notion of what the abstraction, "exposure," means. 

As the homogeneity condition is relaxed, vehicles with different manual 

classifications will enter the portfolio as will drivers with different driving records. 

In this case, vehicle years becomes a less obvious measure of exposure. To the 

extent that the manual rate relativities reflect the expected loss amounts, premium 

might actually be a better proxy for the more abstract concept of exposure for the 

purpose of determining the size of the "relatively" homogeneous portfolio. 

Portfolio 2 consists of 60 excess of loss medical malpractice reinsurance contracts. 

Each contract covers losses in the layer $750,000 excess of $250,000 per claim 

arising from any one of the individual policies that the primary company issues to 

small hospitals. Selecting an appropriate measure of exposure for this portfolio is 

not as straightforward as it was for Portfolio I. To the extent that the reinsurance 

contracts are identical, number of contracts might be an acceptable measure of 

exposure. If the contracts differ in the number of policies issued, policies issued or 

the number of covered physicians might be a more appropriate measure of the 

portfolio exposure, if the individual policyholders are not identical, the number of 

surgical procedures performed might be used as a measure of exposure. 

As with the automobile portfolio, as the homogeneity condition is relaxed, all of the 

proposed measures of exposure begin to lose their luster. None of the measures 

seems appropriate if different surgical specialties are covered within a portfolio. 

Again, when the portfolio is allowed to reflect a mixture of exposures, relying upon 
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actu~rially sound rates and using premium as a proxy for the more abstract "number 

of  exposure units" is reasonable. 

Three things need to be kept in mind when measuring the size o f  a portfolio. 

1. When the portfolio consists of  similar but not identical exposure units, premium may 

be a better measure of  the size of  the portfolio than the exposure base that is associated 

with pricing the underlying coverage. 

2. Because there is usually more than one candidate that can be used as a proxy for the 

size of  the portfolio and because they will not always produce the same number (e.g., 

the number of  contracts in Portfolio 2 is not necessarily equal to the number of  

policies, physicians, or surgical pro~dures), the size of  a portfolio is only a relative 

number. When determining whether the sample size, N, is large enough for the 

Central Limit theorem to be used, no absolute standard exists. This issue is addressed 

more thoroughly in another section of  the paper. 

3. If  the purpose of  measuring the size of  a portfolio is to compare R to other similarly 

distributed portfolios, restated premium (at current rate and exposure base levels) can 

be an appropriate measure of  size, even if  it is not a good measure of  exposure in any 

absolute sense. 

Portfolio Size: Reinsurance Treaty Shares 

Reinsurance treaty portfolios introduce an additional complication when size is measured 

because it is common (especially in the broker market) for several reinsurers to each take 

a proportional share of  a treaty.  For example, the reinsurer may accept 3 0 0  o f  the total 
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reinsurance premium for the layer $750,000 excess of $250,000 in return for which it 

pays only 30% of each loss in the layer. Intuitively, it is clear that a portfolio consisting 

of 25% shares of four identical and independent contracts will not have the same pure 

premium distribution as a portfolio consisting of 50% shares of two of these contracts. 

The reason is that the exposure making up the first portfolio composition reflects more 

spread. As shown in Appendix A, the variance of any share of  a single contract is the 

same as the variance of the entire contract. Appendix A also shows that the effective size 

of a reinsurance portfolio that is made up of m individual contracts is given by 

where 

o th ~. is the size of 100~ o f t h e j  contract (in units of exposure, however measured), 

is the percentage of  the reinsurer's portfolio volume contributed by the jth nj 

c o n t r a c t ,  

S j  N j  
F/j--- m 

ZS, N, 
k=l 

where Sj is the percentage share taken by the reinsurer. 

In our example, all of the contracts were the same size so Nj = N for every j .  If  

four 25% shares are taken, NporCotJo = 4N. In other words, taking equal amount.~', 
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SIC, from four independent contracts of equal size is the same thing as taking the 

same amount from a single contract that is four times the size. In the case where 

two 50% shares are taken, Noor t fo l io  = 2N. Even though both of  these situations 

produce portfolios that have the same premium, the one with twice as many 

independent contracts acts as if it were twice the size of  the other portfolio. The 

reader is encouraged to consult Appendix A concerning the effective size of  a 

reinsurance portfolio. 

Restatement to Produce a Stationary Population 

The sample mean is determined by dividing the sum of the loss outcomes by the 

number of exposure units in the portfolio. When premium is used as a proxy for 

exposure, the sample means are loss ratios. 

As a result of inflationary trends, the loss outcome (dollars of loss) corresponding 

to a particular event may depend upon when the event occurs and when the loss is 

settled. To the extent that there is such a time dependence for the portfolio under 

consideration, the experience of  successive years cannot be considered to be the 

same as multiple loss outcome samples taken from the same population. Clearly, 

the population of  possible outcomes is not stationary over time. 

The exposure base used in pricing the primary policy may also be inflation 

sensitive. For example, wages (which are inflation sensitive) are used in Workers 

Compensation, and revenues have been used to rate some liability policies. To 

the extent that the exposure base inflates at the same rate as the corresponding 
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losses, pure premium will be invariant. When such is the case, the portfolio pure 

premium outcomes from several years can be treated as sample means of  multiple 

samples drawn from a single population even i f  the distribution o f  the loss 

outcomes is time dependent. 

If the loss and exposure base inflation trends are not equal, then the pure premium 

outcomes from different years cannot be taken as the means of samples drawn 

from a single population. If premium has been selected as the measure of the size 

of the portfolio (remember, the exposure base that is used to price individual 

policies need not be adopted as the measure of portfolio exposure units), changes 

in rate level adequacy introduces another factor that can invalidate the assumption 

that the portfolio incurred loss ratios from successive years can be treated as the 

means of multiple samples drawn from a single population. 

The usual manner in which changes in rate level adequacy is addressed is by 

restating all historical data on an "as if  current levels" basis. If there is sufficient 

information available, such a restatement is the preferred course of action. If such 

a procedure could be carried out, individual losses would be trended to a common 

point in.time, the pricing exposure base would be inflated to a common point in 

time (while not necessarily the same point in time as the losses, using the same 

common time for both is logical, especially if the common time is the midpoint of 

the prospective period for which rates are being determined), and historical rates 

would be replaced by the current rate. 

Once the restatement process had been carded out, pure premiums and incurred 

loss ratios would be equally good measures of the mean of the sample, although 
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loss ratios offer more immunity to changes in the class mix than pure premiums 

do. The restatement would allow samples drawn from the portfolios of different 

years to be treated as if they were drawn from a single population. This, of 

course, is exactly what is assumed when the experience of many years is restated 

and averaged for the purpose of determining an experience based rate. 

When there is insuffÉcient information for restating the historical details (e.g., 

proportional reinsurance) or when such a process would involve a prohibitive 

m o u n t  of work, an alternative approach, based upon the techniques of time series 

decomposition, can be used (see, for example, Makridakis [1]). Time series 

decomposition is based upon the assumption that, at any time t, the portfolio loss 

ratio (or pure premium) can be expressed as the product of three functions of 

time, Tt, Ct, and Rr. In symbolic form, 

ILRt = TtxCtxRr. 

T reflects the long-term expected loss ratio trend. In insurance terms, it reflects 

the degree to which thepricing exposure base trend is exceeded by (for positive 

trend) or exceeds (for negative trend) the loss trends (both frequency and 

severity). C reflects cyclic changes in the expected loss ratio. It is in C that the 

insurance (reinsurance) pricing cycle would be reflected. R reflects the random 

fluctuations (process risk) that cause the actual incurred loss ratio to differ from 

its expected value. R has a mean equal to 1.000 (i.e., no long term deviation from 

the expected loss ratio). For a sufficiently large portfolio, R will be symmetrically 

distributed (good and bad luck of a given magnitude to be equally likely) with 

most of its weight near the expected value (large deviations from the expected are 
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much less likely than small deviations in either direction). We note that while 

none of the insurance interpretations (or the a priori notions regarding the shape 

of R as a function of t) are critical to the method of times series decomposition, 

they do form the basis of reasonableness tests to which the results must be 

subjected. 

While the usual objective of time series decomposition is to isolate the non- 

random components, TxC, the objective in the portfolio decomposition 

application is to isolate the random component and then determine its distribution. 

An example illustrates how the technique of series decomposition can be used to 

isolate Rt. 

Exhibit 1 demonstrates the method using some rather well behaved (and 

completely fictitious) data. The column of data titled "ILR" displays ultimate 

(reinsurance portfolio) incurred loss ratios for each of the 38 contract years, 1960- 

1997. While the data is fictitious, it could have been the byproduct of  a loss 

reserve adequacy test for the portfolio. In practice, some of these ultimate loss 

ratios would be estimates as of the most recent valuation date but, for now, we 

will assume that they are actual ultimate incurred loss ratios, thereby sidestepping 

the issue of potential bias introduced by the estimation process (both with respect 

to the loss ratios and their distribution). These issues will be addressed later. 

The 38 loss ratios make up a time series. Decomposition of this series begins by 

observing that the random errors tend to offset each other over time. If a moving 

average is taken over a suitably large number of years, the random fluctuations 

should cancel, leaving only the effects of trend and cycle. I f a  five year period is 
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suitably long, taking a five-year moving average of the ILR should result in a 

series of  34 T~xCt's where the time associated with each of  the five-year moving 

averages corresponds to the third year included in the moving average (e.g., the 

average of the first five years, 1960-1964, was assigned to 1962). Of ceurse, a 

five year period may not be sufficiently long to remove all of  the process 

variance, but its effect should be greatly diminisbed by taking a five year moving 

average. Note that, while a seven year moving average might result in less 

surviving process variance, it would also decrease the number of  TxC points from 

34 to 32. There is always an issue of  balance regarding the number of  points to be 

included in the moving average and the number of  points that remain for analysis 

(each additional point included in the moving average reduces the number of 

remaining points). Including more points in the moving average reduces the 

amount of  residual randomness, which is desirable; at the same time, a reduction 

in the number of moving averages reduces the ability of  the analysis to detect 

rapid, non-random, changes (i.e., there is a reduction in resolution when each 

moving average reflects a longer period of  time). 

The trend component can be isolated by fitting a trend curve to the points, T~Ct. 

In this example, the trend model, 

T~= Tl~o(1 +trend) a'196°), 

was fit to the TxC series using the method of  least square errors. The result was 

TI96o = 30.5%, 

trend = 1.96%. 
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The graph, below, displays the original data (ILR), moving average (TxC) and 

trend component (T) corresponding to the data that is displayed in Exhibit 1. 

ItJR. TxC.  a n d T  vs. Year 
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The degree to which TxC differs from the graph of T can be attributed to the 

presence of a cycle. 

Because the data for this example was generated from known functions, we can 

compare the model to "reality," something that cannot be done in practice. The 

fictitious data was generated from a trend curve, 

T~=0.30(1.020) (~t96°). 

The model overestimated the initial loss ratio and underestimated the annual 

trend. There are two reasons for these errors. First of all, the underlying cycle 

was eight years long. As a result, the 38 years did not reflect five full cycles. In 

this example, the inclusion of a partial cycle introduced a small bias toward 
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understating the long-term trend for the 38 years. Second, while the random 

component (generated by means of a random number generator) was rescaled so 

that its 38-year mean was unity, it did not have a mean of  anity over every five 

year period. As a result, there was some residual process variance left in the 

moving averages. In practice, cycles are not regular (varying in both length and 

severity) and the random variance factor cannot be expected to average to unity 

over short periods of  time. Because the model of T and C (which is nothing more 

than the moving average at time t divided by trend component at time 0 can be 

distorted by the mixing of cycle with trend and by the presence of  residnal process 

variance, both components should be subjected to a reasonableness test. 

Once a trend rate and cycle function have been selected, each of  the historical loss 

ratios can be restated to reflect a common point in time (i.e., placed at a common 

point in the cycle and trended to a common point in time). These restated loss 

ratios should differ from each other only as a result of  process variance. The 

restated loss ratios make up 34 (or 38 if C can be extrapolated) samples taken 

from the same population. For consistency, Exhibit 1 displays both the cyclic 

component and the trend component in the form of indices. The restated ILR is 

determined by multiplying each data point, 1LRt, by a restatement factor, 

(Trendlndex199z/Trendlndex~) (l O0/Cyclelndex~. 

This effectively restates each loss ratio to an "as if  1997 inflation levels" and "as 

if at the midpoint of the pricing cycle" basis. The fact that 1997 does not appear 

to be the midpoint of a pricing cycle is not important. The fact that all the loss 
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ratios are restated to a common point in the cycle and common level of inflation is 

all that is important 4. 

Restatement to Produce a Consistent Measure of  Exposure (Portfolio Size) 

Were it not for the possibility that the portfolio may have changed in actual size 

(e.g., as a result of  true growth or contraction), a restatement of the historical loss 

ratios to a common level of rate adequacy would be all that was necessary. The 

population loss ratio mean and loss ratio variance could be estimated directly 

from the restated incurred loss ratios. When there is a possibility that the 

portfolio size has changed over time (in an absolute sense), it is necessary to 

remove the impact of changing rate levels (not just rate level adequacy) and 

pricing exposure base inflation from the measurement of  the historical portfolio 

size. Once these changes in the measurement "yardstick" have been removed, 

true size changes can be determined and reflected in the parameter estimates. 

Where the sample means (loss ratios) were concerned, only the extent to which 

premiums and losses changed by different factors was relevant. In other words, 

only changes in rate level adequacy were relevant. Premiums for a portfolio can 

change even if relative rate adequacy does not. In some cases, these changes may 

be indicative of a change in the size of the underlying exposure, and in some cases 

they may not be. An example of the former would be a change in premium 

resulting from an increase in the number of identical policies written. This clearly 

reflects a change in the size of the portfolio. An example of the latter would be a 

rate change. Whether or not the rate change resulted in a change in rate level 
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adequacy, it clearly does not reflect a change in the size of the portfolio. If  

premium is selected as the proxy for exposure, then restatements reflecting more 

than rate level adequacy are necessary. 

Clearly, premiums need to be restated to reflect a common rate level before they 

can be used to measure the size of  a portfolio. Premiums can also change as a 

result of  exposure base inflation, even in the absence of  a rate change. As long as 

rate level adequacy does not slip, an increase in insured value will have no effect 

on the aggregate loss ratio distribution. Because of  this, historical premiums must 

be restated to reflect a common level of  exposure base inflation as well as a 

common rate level before they can be used as a measure of  true portfolio size. 

Ideally, historical premiums should be directly restated Unfortunately, a rate 

level history for an entire portfolio is rarely available. It is more likely, when full 

information is lacking, that more will be known concerning losses than rate 

changes or the pricing exposure base. Frequently, information regarding severity 

trends may be derived during loss reserve adequacy testing. Econometric data 

may provide additional information regarding changes in loss severity (e.g., 

Consumer Price Data or combinations of  selected indices such as the Masterson 

Indices) and frequency. Industry data may be a source of  information regarding 

frequency trends (e.g., the National Council On Compensation Insurance Annual 

Statistical Bulletin [2]). 

Once the impact of  changes in rate level adequacy has been eliminated by means 

of restatement to a common level of  rate adequacy, any remaining premium 

changes (the product of  rate and exposure changes) will reflect loss trends 
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(including law and/or benefit changes) exactly. For example, if the ratio of two 

successive TxC components is 0.90, that means that rate level adequacy has 

increased by 11.1% (i.e., 0.90 = 1/1.111). If, during the same time, inflated 20%, 

one can conclude that premiums must have increased by a total of  33.3%. Here, 

33.3% not only offsets the inflation but also results in more adequate rates. 

In more mathematical detail, let Lx and Ratex, be the Loss and Rate, for year X. 

Further, let Exposurex be the exposure base used to determine the premium during 

year X. Note that it would be very unusual for Exposurex to be anything more 

than a proxy for the true exposure. 

In terms of these variables, an 11.1% increase in rate level adequacy implies 

Lx. J(Ratex+l *Exposurex+ t ) = 0.90 * [Lx/(Ratex*Exposurex)]. 

Note that, to the extent that the actual number of exposure units change, the loss 

amount will change proportionately, leaving the rate level adequacy unchanged. 

In other words, the ratio L/Exposure is invariant to changes in the actual number 

of exposure units. Changes in rate level adequacy reflect factors that can distort 

the measurement of portfolio size (i.e., it reflects only those factors that do not 

depend upon the portfolio size). The implied change in premium (as far as rate 

level adequacy is concerned) can be attributed to two factors: changes in the rates 

themselves and those changes in the proxy used to measure exposure (i.e., the 

exposure base) that are not related to true changes in size of  the population. 
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In the example, if losses per exposure unit increase by 20%, and ,4 represents the 

unknown fractional change in the combined rate and exposure base product (that 

portion that is unrelated to true changes in the portfolio size), then 

0.90*[Lx/(Ratex*Exposurex)]= 1.20*Lx/([1 + d]Ratex*Exposurex). 

Solving for zl, 

[1+zl]=1.20/0.90 = 1.333 or a 33.3% increase. 

The conclusion is that the first 33.3% of premium increase must be attributed to 

changes other than changes in the number of exposure units (i.e., the portfolio 

size). Any remaining premium change (which might be a decrease) can be 

attributed to a change in the size of the portfolio. 

Another simple example, based upon a different set of well behaved fictitious 

data, illustrates the required restatement process. The first four columns of 

Exhibit II display hypothetical data as it might appear together with the results of 

a series decomposition of the type performed in Exhibit I. As was the case for 

Exhibit I, the new data is well behaved but no more realistic than the data 

underlying Exhibit I. It was selected to simplify the illustration of the premium 

restatement procedure. 

For each contract year, there would be a record of the historical premium (restated 

to reflect reinsurance shares, if necessary), the TxC loss ratio component, and a set 

of loss indices, {Losslndext}, that reflect both severity and frequency. It is 

assumed that such indices can be obtained. Their derivation is outside the scope 

of this paper. 

127 



Exhibit IIa displays information that could only be known to a privileged, or "all- 

knowing," observer. The additional information is disclosed only to demonstrate 

the validity o f  the restatement procedure. In particular, the privileged observer 

knows: 

• what the true historical exposure (the abstraction) was, 

• that the exposure base used to price the primary policies, while related to the true 

exposure, was inflating relative to the true exposure at a rate o f  3.0% per year  (e.g., the 

true exposure might have been products sold but dollars of sales may have been used to 

determine the premium for individual policies), 

• what the historical rates were (where the historical rate times the pricing exposure base 

equals the historical premium), and 

• that losses began as 2.75 times the true exposure and losses per exposure unit increased 

at a rate of 10% per year. 

Of  course, none of  this detail is directly disclosed by the portfolio data, only those 

columns that are displayed on Exhibit II would be known. 

As was previously discussed, changes in TxC reflect changes in rate level 

adequacy. Column (8) quantifies these annual changes. Column (10) is the factor 

necessary to restate historical premiums on an "as if  current rate level adequacy" 

basis. Similarly, Column (11) consists o f  factors that allow losses to be restated 

on an "as if  current loss levels" basis. The composite factor displayed in Column 

(12) is simply the loss factor divided by the rate level adequacy factor. Finally, 

Column (13) displays the restated historical premiums. To see that the year-to- 

year changes in restated premium mirror the percentage change in the true 

exposure, Column (13) was rescaled, making the 1960 size equal to 100.00. As 
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can be seen, all of the other entries are then equal to the true exposure. As a 

result, the relative restated premium is the same as the relative true exposure (i.e., 

for any pair of years, the ratios are the same). Changes in the true exposure are 

indicative of changes in portfolio size, N, from year to year. 

Central Limit Theorem Estimators when the Samples are of  Different Size 

It is unlikely that a given portfolio would remain constant in size over time. The 

number of policies or reinsurance contracts in a portfolio frequently change over 

time, giving rise to samples of different sizes. The Central Limit Theorem 

makes statements about the distribution of  sample means when the samples are all 

of  size N. These statements must be generalized when the samples are of  

different sizes. In particular, while the distribution of  the mean for any single 

sample of size N continues to be Normal with mean /z and variance o2/N, 

estimators of  the population mean and variance are no longer equal to the mean, 

m, and N times the variance of the sample means, Ns 2, of previously drawn 

samples when the samples are of  different sizes. 

Appendix B provides support for the following generalized estimators of  the 

population mean and variance. 

Estimat°r( p p  .,p.,~,~.,) = m' = rj~= ~ j p p  j / rj~= Ot ~ 

-1 T ! 2 

E s t i m a t o r ( V a r [ p p . , ~ . , ~ , . ] )  = N, (T-l) ~aj (pp j - m  ) . 
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Where 

ppj is the pure premium experienced by thej  ~ sample (i.e., during t h e f  h year), 

a~ is the relative size o f thef  h sample (i.e., aj = N/NI), 

T is the number of samples (i.e., the number of years), and 

Nj is the size of the first sample. 

For large sample size, the distribution of the sample mean is Normal with 

variance equal to Var[pppot~Qnon]/N. It, therefore, follows that the estimate of the 

variance of  the pure premium (i.e., the sample mean) for a sample of size N~ is 

given by 

Var [PP population ] / N l = ( T - 1 ) - ' ~ c t j ( p p j - m ' )  2 . 
j=l 

The variance of  the k th sample is NI/Nk as large, or 

Var [ p p  population ] / N k = (  T -1)- '  ~ a j ( p p  : -  m ')2 / a k , 
j~l 

Since NI/Nk=I/~. 

A Mare Realistic Example 

Exhibit III illustrates an application of the methodology to a portfolio consisting 

of similar general casualty excess of loss reinsurance treaties. Over the course of 

twenty-seven years (contract years 1969-1995) portfolio premiums have increased 

from approximately $2,000,000 to almost $100,000,000. During the same period, 

incurred loss ratios ranged from a low of less than 40% to a high in excess of 

350%. Some of this loss ratio volatility was due to process risk and some 

(perhaps most) was due to the presence of  at least two reinsurance pricing cycles. 
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Supporting Exhibit Ilia displays the actual loss ratios for the twenty-seven year 

period together with the series decomposition that allows the loss ratios to be 

restated on an "as if  common rate level adequacy" basis. The first graph displays 

the actual data, TxC component, and isolated trend component, T. 

The second graph allows for a reasonableness test of the decomposition. Rather 

than graphing C vs. Year, the graph displays the reciprocal of  C. When a soft 

market forces rate level adequacy to slip, incurred loss ratios increase. As a 

result, C moves in the opposite direction from rate levels. Graphing the reciprocal 

of  C makes the graph more intuitive. The soft reinsurance market of  the early to 

mid 1980's is clearly evident in the graph. 

Because this is a reinsurance portfolio and because the reinsurer took less than 

100% shares of most of the contracts that it wrote, its premium is not a true 

indicator of  the size of  the reinsured entities. Exhibit IIIb displays individual 

account premium detail for the 1971 contract year. During that year, 35 clients 

were reinsured. While the reinsurer earned premium equal to $2,120,969, that 

amount represented over $30,000,000 of  premium on a 100% basis. As a result of 

the manner in which the reinsurer authorized shares, the reinsurer experienced the 

same variability as if  it had reinsured a single $14,193,426 client -regardless of 

the share taken. While no supporting exhibits were prepared for the other years, 

the premium for each of  the other contract years was similarly adjusted. 

Exhibit IIIc begins with the historical premiums (after adjustment to reflect 

reinsurance shares) and concludes with historical premiums restated on an 'as if  

current rate levels" premium. Because only relative portfolio size is important, 
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the restated premiums were rescaled to make the 1971 premium equal to 1.000. 

Column (14) displays the a ' s  of  the estimator formulas. 

All of the components are brought together in Exhibit III, where the two 

estimators, m '  and Var, were determined. As previously shown, these estimators 

are the estimated mean and variance of the loss ratio distribution for a portfolio 

the size of the first one drawn; more precisely, they correspond to the size of the 

portfolio that is assigned a relative weight equal to 1.000 (i.e., liar = 

Var[1LRla=1.00]). The expected mean loss ratio is independent of portfolio size, 

and the expected variance of any portfolio of size ay (measure relative to the 

initial sample size) is given by Var/~. 

The objective of this exercise was to find the distribution of the process variance, 

R, not the distribution of the incurred loss ratios. If  each of the restated 1LR's in 

Column (4) is divided by the mean, m'  (which is nothing more than an estimate of 

the restated TxC component), the result is a column of R's. The mean is 

automatically equal to 1.000 and the variance is equal to the variance of the loss 

ratios divided by the square of  the mean loss ratio. Finding the R's from the ILR's 

is nothing more than a scale transformation. 

Exhibit III concludes with a display of the expected variance, both for the ILR 

distribution and for the corresponding R distribution, for portfolios of  various 

sizes. All of the ILR distributions are Normal with mean, m ', and the indicated 

variance, while all of the R distributions are Normal with a mean of unity and the 

indicated variance. 
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While the Normal distribution is particularly easy to use and it has an intuitive 

appeal, wanting it to work isn't evidence that it is an appropriate model. The test 

displayed in Exhibit IIId begins with the assumption that the random component, 

R, is Normally distributed with the estimated parameters. While a failure to reject 

the null hypothesis is not proof that the hypothesis is true, the result of the 22 test 

is evidence that there is no compelling reason to reject the hypothesis. 

An Alternative Model: The Gamma Distribution 

The parameters of the Normal model, tr in particular, can be adjusted to reflect 

changes in the size of a portfolio. This adjustment follows directly from the 

Central limit theorem. If try is known, then ~ is given by 

where N/Nk is the ratio of the size of the fh portfolio to the size of the k th 

portfolio. One assumption that underlies the Central Limit Theorem is that N is 

large. That the adjustment is not appropriate when Nk is very small quickly 

becomes obvious. As Nk decreases, the standard deviation of the model 

distribution becomes very large. As a result, the model allows for a significant 

probability of negative loss ratios for small portfolios (e.g., the size of a single 

account or policy). 

The more realistic example (Exhibit III) indicates that tr /=0.097 when NI = 

$224,626,501 (the restatement of $14,193,426). A typical client (e.g., #2 on 

Exhibit llIb) has approximately $550,602 of premium on a 100°,6 basis. The 
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Normal model predicts a random component, R, with a standard deviation equal 

to 0.492 (=0.097 *(14,193,426/550,602) v~ ). The probability that R will be 

negative (i.e., fall more than approximately 2.00 standard deviations below the 

mean) is 0.0212. A significant probability that an account's loss ratio will be 

negative is not a realistic expectation for most lines of business. 

There is another model that is almost Normal for large N, but whose 

reproductivity/divisibility properties allow it to scale down to the size of an 

individual account. This is particularly useful if  the model is to be derived at the 

portfolio level and applied at the individual account level. The model is the 

Gamma distribution, whose pdf is given by 

, Ix>O] 
_ a ,-le-O~;/a > 0/" F°"(x)=-r-~ x L~>o j 
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The Gamma distribution has the following properties (Hewett [3]): 

• It is divisible. That is to say that ifFu.,(x) is the appropriate model for the aggregate 

distribution of a portfolio consisting of  N independent units of  exposure, then 

F'u.,~c(x) is the appropriate model for the aggregate distribution of  a portfolio 

consisting of  M independent units of  exposure. 

• The mean ofx when x is distributed F~.r(X) is r/a from which it follows that, 

• When the mean of  the distribution is known to be unity, a = r, and 

• When x is distributed F'o.,(x), the variance of x, o ~, is r/a 2, or I/r when the mean is 

known to be unity. 

• Themodeofx ,  wbenxisdistributedF'~.,(x) isgivenby(r-lJ/awhichbecomes(r-1)/r 

when the mean is known to be unity. 

Exhibit IV displays the results o f  a 2 'z test for the Gamma distribution. It is the 

Gamma equivalent o f  Exhibit IIId. Since Rt has a mean equal to unity, 

a = r =  1/o;. 
When the estimated portfolio variance is approximately 0.097, corresponding to 

an a = 1.000 size portfolio (i.e., for the 1971 portfolio), 

a = r=10.345. 

As was the case for the Normal distribution, there is no compelling reason to 

reject the Gamma distribution. Exhibit Va discloses that for a portfolio this large, 

the Gamma distribution is almost Normal. 

As thc size o f  the portfolio is decreased to 15% o f  the original size, both models 

spreadout. T h e  Normal distribution allows a significant probability for negative 
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loss ratios whereas the mode of the Gamma shifts to the left while remaining in 

the first quadrant (see Exhibit Vb). Exhibit Vc displays the gradual shift of the 

Gamma distribution as the portfolio size becomes progressively smaller. 

The decreasing mode (the mean is always equal to unity) of  the Gamma is 

consistent with reality. That this is so can be seen by allowing the portfolio size 

to decrease to that of a few exposure units. The most frequent loss outcome for a 

single exposure unit is often "no claim," yet the expected loss for a large 

aggregation of such exposure units is rarely zero. A mean equal to unity retains 

the long term expected average outcome while acknowledging that the most likely 

outcome is something less than an average loss. It 's the possibility of extremely 

large losses that pushes the mean above the mode. 

Applications of the Methodology 

Allocation of Surplus 

Surplus provides a cushion against unanticipated events. As such, the entire 

company surplus is available to meet the company's unanticipated obligations, 

regardless of their source. Strictly speaking, surplus is indivisible and cannot be 

allocated to lines of business. At the same time, writing one additional unit of 

exposure increases the amount of surplus that is required (either as a result of Risk 

Based Capital requirements or to maintain the probability of ruin below some 

desired amount). In a sense, this additional surplus can be associated with, or 

allocated to, the particular line of business. To the extent that all lines of  business 
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do not have the same marginal surplus requirement, business decisions regarding 

the mix of  business and acceptable profit margins can be influenced by such an 

allocation of  surplus. This paper accepts the premise that, at least for the purpose 

of assisting in business decisions, surplus can be allocated to lines of  business. It 

also accepts the idea that the role of  surplus is to keep the company's probability 

of ruin below some arbitrarily selected amount. As a result, the establishment of a 

reserve-to-surplus leverage ratio for a given portfolio requires knowledge of  the 

aggregate loss distribution for the entire portfolio of contracts. 

More specifically, the actual loss ratio experience for a given portfolio can differ 

from the anticipated experience for two reasons: 

1. The anticipated result was erroneous. In other words, parameter error was 

present. 

2. The anticipated result was correct, but random bad or good luck resulted in the 

actual result being different from the anticipated result. In other words, 

process risk resulted in the unanticipated difference. 

It is the process variance, as measured by Rt, that should be reflected in the 

allocation of  surplus when determining the return on equity associated with a 

particular contract. For a given expected loss ratio, the distribution of Rt would 

determine how much surplus would be necessary to protect the company against 

ruin up to some preselected confidence level. The marginal supporting surplus 

required as a result of  introducing an additional contract would depend upon the 

additional process variance resulting from the introduction of the new contract. 

The additional process variance would depend upon the portfolio to which the 
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contract was assigned as well as the existing mix of business and any correlations 

between portfolios. 

The resulting return on equity (see Bingham [4] and Bender [5] for a discussion 

concerning how to measure ROE once surplus has been allocated) will not reflect 

the presence of potential parameter error. The appropriate reflection of parameter 

error is in selecting an ROE target. For example, an 8% ROE might be sufficient 

reward for placing the company surplus at risk if the parameters (e.g., expected 

loss ratio and payout timing) can be estimated to a high degree of certainty, 

whereas the target might increase to 15% if less credible estimates are available. 

Further discussion regarding how to measure ROE and how to select an 

appropriate target are beyond the scope of this paper. 

Evaluating Loss Sensitive Contract Provisions 

Frequently, a portfolio is made up of policies or reinsurance contracts that are 

subject to loss sensitive elements at the individual contract level. Examples of 

this would be a portfolio consisting of swing rated reinsurance treaties or 

retrospectively rated Workers Compensation policies. Because the loss sensitive 

premium is calculated for each contract separately, substituting the estimated 

ultimate loss ratio for the entire portfolio into the loss sensitive rating formula will 

not necessarily produce the best estimate of the ultimate aggregate premium (see 

Bender [6]). 

138 



Charles H. Berry ([7]) proposed a method of estimating the ultimate premium 

return for such a portfolio. Essentially, his method consists of credibility 

weighting the reported premium return ratio (to standard or subject premium) 

with  an a pr ior i  premium return ratio. Over time, more credibility is given to the 

reported ratio and less is given to the a pr ior i  ratio. Berry's a prior i  ratio is based 

on the relationship between historical aggregate portfolio loss ratios and return 

premium ratios. In his discussion of Berry's method, Roy K. Morell [8] noted a 

significant limitation to the methodology. Its success depends upon the historical 

portfolios being subject to similar rating parameters (e.g., swing maximums and 

minimums) and consisting of similar risks (i.e., exposure units). If there have 

been material changes in either, the a pr ior i  estimates will not be appropriate. 

As an alternative to using the historical relationship between aggregate loss and 

aggregate premium, the portfolio aggregate loss ratio distribution could be scaled 

down to the size of an individual contract using the divisibility property of the 

Gamma distribution. The individual contract distribution could be used to 

simulate the possible loss outcomes and to determine the corresponding return 

premium ratio together with the associated probability of occurrence for each 

contract in the current portfolio. The aggregate loss ratio and corresponding 

aggregate expected return premium ratio could serve as the a pr ior i  estimates for 

the portfolio. The Gamma Distribution could also be used to determine the 

sensitivity of the aggregate premium return to changes in the aggregate loss ratio, 

just as Table M was used by Bender [6]. 
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The results of  the sensitivity analysis would be used to develop the reported 

aggregate return premium ratio to reflect the impact of  IBNR loss. At the same 

time, the sensitivity analysis could be used to revise the a priori aggregate return 

premium ratio to reflect the additional loss ratio information. As of any valuation, 

the estimated ultimate aggregate return premium ratio would be the credibility 

weighted average of the developed return premium ratio and the revised a priori 

aggregate return premium ratio. 

For example, assume that a portfolio was rated to produce a 60% loss ratio to 

standard premium and to return 10% of standard premium in the form of 

retrospective (swing) rated premium adjustments. Further, assume that the 

expected sensitivity of  the formula is 25% (i.e., for every 100 additional points of 

loss ratio, the return premium ratio decreases by 25 percentage points) for this 

portfolio. The portfolio's reserve history might look something like Exhibit VI. 

While reserving retrospectively rated policies is beyond the scope of this paper, 

the reader is encouraged to compare the suggestion to the methodology proposed 

by Berry. 

Qualifications and Caveats 

Two of the major assumptions regarding the composition of each portfolio are 

unlikely to be strictly met in reality. These assumptions are that the units of 

exposure are identically distributed and independent. While the criteria defining 

each portfolio can be adjusted to minimize the degree to which either of these 

assumptions is not met, the cost of doing so will always be a reduction in the size 

of  the portfolio. This is an example of  the ubiquitous conflict between obtaining 
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homogeneity while maintaining a credible volume of data. Fortunately, neither of 

the assumptions has to be met in order for the methodology to be applied. To the 

extent that the assumptions are not met, parameter error may be introduced into 

the models. 

To see how parameter error arises when the exposure units are not identical 

requires only that the assumption of identically distributed random variables be 

removed from the requirements of the Central Limit Theorem. In 1901, 

Liapounov proved a more general form of the Central Limit Theorem ([9]) that 

applies when the outcomes for different exposure units are not necessarily 

identically distributed. In particular, he assumed that a set of random variables, 

{Xy}, is distributed with means {/4} (not necessarily equal) and variances {~j} 

(again, not the same for all j). 

Defining Ym the sum of the X: for a sample of size iV, as follows, 

N 

Y ~  ~ ~ . X . , .  
j=l 

Liapounov proved that the sample mean of  a finite number of  random variables, 

Y~/N, will be distributed Normally with mean, 

and variance 

N 

/a ~ = N - '  E ~ u  , 

=(.,), 
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2 2 2 

0 " ~  = j 

=/o;)/N 
where the brackets, < >  indicate taking the average of the indicated sub- 

population parameters. 

It is as if  the samples were drawn from a population of exposure units with 

identically distributed losses where the mean pure premium equals the average of 

the means of the actual distributions and where the variance of the pure premium 

equals the average of the variances of the actual distributions. For example, 

consider a portfolio consisting of 50 exposure units whose pure premiums are 

distributed with a mean of 30.00 and variance 4.00 and 75 exposure units whose 

pure premiums are distributed with a mean equal to 50.00 and variance equal to 

9.00. The 125 exposure unit portfolio will experience Normally distributed pure 

premiums with a mean equal to 42.00 ( [50"30+75"50]/125 ) and variance equal 

to 0.056 (the average variance of the popttlation,[50*4+75*9]/125 = 7, divided by 

the size of the sample, 7/125 =0.056). This is the same distribution of sample 

means that 125 identically distributed exposure units with mean 42.000 and 

variance 7.00 would have produced. 

When the historical portfolios differ in size and the exposure units are not 

identically distributed, the generalized estimators will provide the population 

average mean and variance as long as the proportion of each sub-distribution 

remains the same as the sample size changes. As long as it is the distribution of a 
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similarly distributed portfolio that is to be modeled, the mixture introduces no 

parameter error. However, if  one type of  exposure is to be modeled or i f  the 

composition of  the portfolio has changed over time, then possibility of parameter 

error must be considered. Parameter errors could be material i f  the Gamma 

distribution for a heterogeneous portfolio is sealed down to the size of an 

individual contract in the portfolio. In the case o f  an extremely heterogeneous 

portfolio, scaling down the distribution to model an the loss ratio distribution for 

individual constituent (contract, policy, or treaty) should be performed only as a 

last resort. 

To the extent that the random loss ratio fluctuations of  different exposure units 

within a single portfolio are correlated, those correlations will be reflected in the 

volatility of  the historical experience. Depending upon the application, 

correlations within a portfolio may or may not introduce parameter error. There 

will be no parameter error if  the application involves modeling the aggregate loss 

ratio distribution of  a portfolio that is similar to the portfolios that generated the 

historical data. If the application involves using the historical portfolio 

experience to model the aggregate loss ratio distribution of  a single exposure unit, 

correlations within the portfolio will result in an inappropriate model; in 

particular, the model variance may be misstated. 

Refining the criteria that define a portfolio can often significantly reduce 

correlations within a portfolio. For example, one could exclude the reflection of  

any exposure to catastrophe loss by eliminating catastrophe losses from the data 

and modeling potential catastrophe losses separately. It is common to treat 
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catastrophe losses (and the corresponding exposure) separately when testing loss 

reserve adequacy or when pricing a cohort of policies. 

Likewise, increasing the homogeneity of the portfolio might reduce correlations 

that result from the manner in which exposure was quantified. For example, a 

portfolio consisting of a mixture of $500,000 excess of $500,000 loss reinsurance 

treaties together with $2,500,000 excess of $500,000 reinsurance treaties may 

have internal correlations simply by virtue of the proxy in terms of which 

exposure units are measured. Treaties with a $2,500,000 limit clearly represent 

more exposure than those with a $500,000 limit. If multiple exposure units are 

assigned to treaties with the larger limit, correlations will be introduced (between 

the exposure units assigned to a single treaty). Forming two separate portfolios 

will allow each type of treaty to be treated as a single exposure unit. Such a 

separation is not unique to the modeling process. It might also be prudent when 

attempting to model loss development patterns. 

Even if portfolio criteria can be suitably refined without sacrificing predictive 

credibility, some sources of parameter error will remain. One significant source 

lies in the method, and another lies in the data itself. 

The methodology involved determining the random component, R, by restating 

the actual loss ratios, 1LRt, to an "as if common point in time basis" and then 

dividing the restated loss ratios by the mean of  the historical loss ratios. It was 

argued that the only reason why the restated historical loss ratios differ is the 

presence of  random fluctuations. Therefore, it followed that the division isolated 

the random component. Strictly speaking, this is true only if the restated loss 
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ratios~were divided by the population mean. The method involves dividing by an 

estimate of the population mean, not the true population mean. The estimate is, 

itself, a random variable. 

From Appendix B, we see that the estimator, m ', is Normally distributed with a 

mean equal to the population mean and a variance equal to the population 

variance divided by the size of  the super sample (N, the sum of all of  the exposure 

units when all of  the samples are combined into a single sample). The result of 

the division process is not R but rather, it is a stochastic variable, Z. Z is equal to 

the quotient of  two Normally distributed stochastic variables, the 1LR (which is 

distributed NLu, 02]) and the estimator of /J  (which is distributed N[/.t,02/N]). The 

distribution of  the quotient of  two Normally distributed variables is a Cauchy 

distribution, not a Normal distribution. For a sufficiently large number of  years 

and for sufficiently large portfolios, N will be very large and 02/N will be 

vanishingly small. As a result, the estimator for/~ can be treated as if  it were not 

a random variable. Restricting the application of  the method to eases where the 

super sample (all individual samples combined to form a single gigantic sample) 

size is very large avoids the problem of dealing with a distribution such as the 

Cauchy distribution, which does not have any moments. 

Using loss ratio estimates that arise from loss reserve adequacy tests may 

introduce an additional source of  parameter error. When the method was 

described, it was assumed that the ultimate loss ratios for each of  the historical 

years were known with certainty. In practice, some of the more recent year's loss 

ratios will be estimates as of a particular valuation date. To the extent that a Loss 
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Ratio or Bornhuetter/Ferguson methodology was used to estimate the ultimate 

loss ratios, random deviations of the more recent loss ratios from the expected 

will be tempered by the estimates. The reserving methodology automatically 

reduces the variance of  the estimates. As a result, the variance of Rt will be 

understated. On the other hand, a projection methodology could result in an 

overstatement of the true variance. Such data induced bias can be detected by 

applying the methodology to successively shorter historical periods (e.g., 1969- 

1997, 1969-1996, 1969-1995, etc.) to see if  the resulting o2 exhibits a constant 

trend. If o g consistently increases as more recent years are eliminated, then there 

is evidence that the more recent estimates may be masking the true variance. On 

the other hand, a decreasing o g would be evidence that the reserving methodology 

is introducing a misleading indication of  actual loss ratio volatility. 

Summary 

The parameters of the aggregate loss ratio distribution corresponding to a large 

portfolio of identical and independent exposure units can be determined by 

examining the historical loss experience of  portfolios made up of the same type of 

exposure units. The methodology of time series decomposition allows the 

historical experience to be restated to a common point in time, making it possible 

to consider the experience from different years to be equivalent to taking multiple 

samples from a single year. Even if the number of exposure units (i.e., the size of 

the portfolios) varies from historical portfolio to portfolio, a generalized form of 

the estimators for the population parameters, ~ and o2, make it possible to model 
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the aggregate loss distribution in terms of  a Normal distribution with size 

dependent parameters. 

While a Normal model with size dependent parameters performs satisfactorily for 

large portfolios, it does not produce a realistic distribution for smaller 

aggregations of exposure (e.g., small portfolios or individual reinsurance 

contracts). The Gamma distribution was proposed as an alternative to the Normal 

distribution for several reasons. It is approximately Normal in the limit as the 

number of independent exposure units increases without bound. For large 

portfolios, the two distributions are virtually indistinguishable, making it possible 

to smoothly make the transition from the Normal distribution produced by 

application of  the Central Limit Theorem to the almost identical Gamma 

distribution. Unlike the Normal distribution, the Gamma distribution has a 

divisibility property that allows it to be size transformed in a precise manner. 

Aside from this attractive, but purely mathematical feature of  the Gamma 

distribution, Hewitt previously reported that the Gamma distribution produces 

results that are consistent with reality, especially when compared to the Table M 

tabulation of Workers Compensation loss ratios. 
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Foot Notes 

1. Strictly speaking, the life of a portfolio of exposure units consists of  the period 

in which the exposure units are in force together with the time over which 

losses that arise from the portfolio run off. Under this definition of the life of  

a portfolio, the renewal of a group of  contracts (primary policies, reinsurance 

treaties, etc.) results in the formation of a new portfolio. In another sense, i f  

all of the contracts renew, then the new portfolio can be considered to be the 

second year of  the original portfolio. In this paper, the context will make clear 

which sense of the word "portfolio" applies. 

2. Portfolios, as defined, earmot actually change size. In more precise terms, the 

historical data consists of the experience of  many different portfolios, one for 

each of the historical contract years. I f  the same number of  identical and 

independent exposure units make up all of the portfolios, they are all of  the 

same size. If the number varies from year to year, the historical data reflects 

the historical exposure of portfolios of  different size. If the exposure units are 

indistinguishable, these different portfolios can be treated as if they were a 

single portfolio with a changing size. 

3. The second and third assumptions, while closely related, are not the same. It 

is possible for the loss outcomes to be inflation sensitive, making the 

population of possible outcomes time dependent without any corresponding 

change in the measured size of the portfolio. Conversely, an inflation 

sensitive exposure base, such as Workers Compensation Payroll, could result 

in a changing "yardstick" being used to measure portfolio size without any 
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corresponding change in the possible pure premium outcomes (e.g., Workers 

Compenstion indemnity loss pure premium for which the losses and exposure 

would both change at the same rate, leaving the ratio invariant). Because the 

two inflation sensitivities (outcomes and size) can be different, the restatement 

of  the population of  outcomes and measurement of  the portfolio size must be 

addressed separately. 

To be more precise, once the loss ratios ratios have been restated to reflect a 

common level of  rate adequacy, they may be considered to be multiple 

samples drawn from the same population. Depending on how the 

methodology is to be applied, an additional restatement to some particular 

time might be required. This restatement will involve multiplication of  all of 

the loss ratios by the same restatement factor (taking them all from cycle point 

100, and the midpoint of  1997 to the desired time and cycle point). 

Multiplying all of  the loss ratios by the same factor introduces nothing new; it 

is simply a change in scale. 
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Appendix A: Distribution of Portfolio Pure Premium, Mean and Variance 

Consider a portfolio consisting of the loss experience of many independent and 

identical exposure units. These exposure units may arise from reinsuring several 

different client companies. Let l# be the loss outcome for the l "~t exposure unit 

arising from t h e f  h client. Further, let N/be the number of independent exposure 

units arising from the j~h client. Since the exposure units are identical and 

independent, we may assume that 

E[tu]  = ~,  

and 

E[(10-/~) 21 = Var[lv] = ~ ,  

both of which will be independent of i andj. 

The loss outcome for thej ~ client is given by 

L j = l~'lo 

and the corresponding account pure premium, ppj, is given by L/A~. 

• It can be demonstrated that the expected account pure premium is equal to the 

expected pure premium of the individual exposure units,/z 

Nj 
~-Ippj] = F.[N~' Et~] 

Nj 
= N~j' ~ E[ljj] 

=/~ 
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The variance of  the account pure premium is equal to the variance of  the individual 

exposure unit pure premium divided by the number of  exposure units making up the 

account. 

Var(pp j) = Var[L J N j] : 

= N~:Var[Lj] 

Nj 
= N-j ~ ~Var[l,j] 

= trZ/ Nj 

These results confirm the notion that all clients have the same pure premium, 

regardless of size but that the larger clients have less volatility (i.e., the variance 

of the pure premiums is smaller). 

Now, suppose that only a portion, Sj, (0 < Sj _< 1) of a client's loss is reflected in 

the portfolio. In other words, for every loss l,j that is incurred, only $'jLj is 

reflected in the portfolio. The corresponding exposure contribution is given by 

SjNj. An important conclusion that can be drawn is that both the expected pure 

premium of a share and the variance of the share's pure premium are independent 

~Nj 
E[pp~] = (S j N  j)- ~ E[Sj lo] 

t g J  
= N j  ~E[I,j] 

= I~, 
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The proof is trivial, since the pure premium is independent of the share, 

and, similarly, 

Var [pp j] Far [ (S  j N  j ) - I N ~  ' = S i l o ]  

Var [N  j - I N '  
= E to] 

i * l  

2 = cr / N  j .  
Now, consider a portfolio that is made up of shares of m different contracts. The 

portfolio loss is 

~, Nj 
L = Z Y.Sjlo 

j=l i=l 

The corresponding portfolio exposure is given by 

m 
N = Y~SjNj 

j z l  

The portfolio pure premium is the ratio of the two, L/N, 

m N 

j ~ l  i=l 

PP"o"J°"° = ~ S . N .  
k=l 

The expected portfolio pure premium is 
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., N ESj etl, ] 
E[pp~,~,,ol = j'' . '" 

ES, N, 
kffil 

,, N 

- -  j = l  i = l  - -  

m 

Y~S, Nk  
k=l 

m 

Y~Sj N ?' 
- -  j= l  

m 

~ S , N ,  

= p .  

The percentage of the portfolio exposure, n, contributed by t h e f  h contract is given 

by 

S j  N j  
F/j m 

ZS~N~ 

In terms of n, the variance of the portfolio pure premium can be written as 

,. N, 
Var[pp m.soj = Var ~ ~,n f lo/~ 1 J**J~ k/ Jvjj 

y-* i=* L ~ Nil  

)=1 

= 0 , 2 1  N p o n y o t i o  
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where 

Consider two examples: 

Two identical clients each have an exposure equal to N. A reinsurance portfolio of size 'AN is 

formed in two ways. 

I. A 25% share of each contract is written. Since each contract makes up half of the portfolio, 

nt  = n~ = ½. N~rC,  j~ = 2N.  In other words, taking equal shares of two identical contracts 

produces the same variance as taking a share of a single contract for a client with twice the 

exposure. 

-i 
_ m 2 

2. A 50*4 share of a single contract is written. This produ¢~ the same amount of premium and 

exl~eted loss but, nl = 1 and n2 = 0. Therefor©, Nm,~o = N which is consistent with the fact 

that the contract variance is indepondent of the share of the contract that is taken. 

As would be expected, the portfolio variance depends not only upon how large the 

portfolio is but also the manner in which the portfolio is formed. All else being 

equal, the portfolio that is made up o f  small shares of  many large contracts will 

have a smaller pure premium variance than one of  equal size that consists o f  large 

shares of  small contracts. This is nothing more than an application o f  the concept 

of  s p r e a d .  
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Appendix B: Generalized Central Limit Theorem 

The Central Limit Theorem is appropriate for situations in which T independent 

samples, each of size N, are drawn (either with replacement or from a population 

that is so large that that act of drawing the sample has virtually no effect upon the 

probabilities affecting subsequently drawn samples). If  N is large, then the 

Central Limit Theorem states that the sample means are distributed Normally with 

a mean equal to the population mean and a variance equal to the population 

variance divided by N. 

Symbolically, 

let lj, be the ~h element in thef  h sample, 

p be the population mean, and 

o 2 be the population variance. 

In terms of the individual, independent sample elements, the mean of the jth 

sample, </>j, is given by 

N {,>,= N-' 

and the mean of the sample means is given by 

- I  T <,):T z<t), 

The variance of the sample means is given by 

1" 2 
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If N is very large, the Central Limit Theorem states that </>j is Nomudly 

distributed 

N(~ o~,'~V), 

and that </> is an unbiased estimator of/a and Ns 2 is an unbiased estimator of the 

population variance. Note that there are no restrictions regarding how the l a are 

distributed or even that they be independent (see DeGroot [9]). 

If all that is desired is to use the T samples to estimate the distribution of the mean 

of an additional sample of size M (large, but not necessarily equal to N), it is 

necessary to know neither the population variance, N nor M. Knowledge of the 

variance of the sample means, s a and the ratio of N to M is all that is necessary. 

The distribution of the mean of the T+I ~t sample will be Normal with mean/a, 

estimated by </>, and variance o~/M, estimated by s 2(N/M). 

In the Generalized version of the Central Limit Theorem, the condition that the 

sample sizes all be equal to N is relaxed. T samples of sizes {Nj}, where Nj is the 

size of the 3 ~ sample, are drawn from a population (with replacement). 

Alternatively, one can denote the size of the j t h  sample by Nja~, where a~ is the 

ratio of the size of thej~ sample to that of the first sample drawn. 

The conclusion of the Central Limit theorem is unchanged. The distribution of 

the sample mean of the T+I st sample will be distributed Normally with a mean 

equal to the population mean and a variance equal to the population variance 

divided by the size of the T+I st sample, M. This conclusion is still a statement 

relating the distribution of multiple samples of size M to statistics associated with 

157 



the entire population, but the estimators of/~ and 0 2 need to be modified when the 

historical samples are not all of the same size. 

When the samples differ in size, the estimator of the population mean becomes 

the weighted mean of  the sample means, 

(t)= ~N,(l) /£Nj 
i=i J / i=1  

, 'N, / , ,  
=~lo/~N, 

When all of the samples are the same size, all of the a ' s  are equal to one and the 

estimator becomes the same as it was for the Central Limit Theorem. 

The estimator, </>, is itself a random variable. If T samples are drawn and the 

estimator is determined, it will not be exactly the same estimator that would be 

determined if another set of T samples were drawn. As a result, </> has a 

distribution. 

If the sample sizes, Nj, are large, 

• the estimator, </>, will be Normally distribuw.A with mean p and variance 

Var({l))= o-~/~Uj 
j=| 
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• the estimator is unbiased, i.e., the expectation of  the estimator, El</>] =/u, 

and 

• the estimator has minimum variance for all estimators that are linear functions 

of the sample means. 

To prove the first assertion (that the estimator is Normally distributed with the 

indicated mean and variance), observe that the last form of the definition is simply 

a sum over all of  the observations, regardless of which sample gives rise to the 

observation. It is identical to the mean of  a single, super, sample made up of  all T 

of  the individual samples. Thought of  in that way, the conventional Central Limit 

Theorem states that the mean of  this sample of  size 

T 
N =  F~Nj 

jffil 

is distributed Normally with mean g, and variance o~/N. This proves the first 

assertion regarding </> and the other two follow immediately from the 

conventional Central Limit Theorem. 

The generalized estimator for the population variance, o ~, is given by Ns 2 

where 

s = ( T - l )  J J 
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and N is the size of the super sample (i.e., all T samples combined and considered 

as a single sample). 

Ns 2 is an unbiased estimator of o ~. To show this, begin by considering the 

expectation of a single term in the numerator, 

[~Nj(1)j 7 ]~ ENj 
E(<I>I--<I>]=E J=IT <1>I 

ZNj ENj 
1=I 1=I 

= j E Nj j -  Nj i 
2 j 2  

= j E l 

: 

k}-2 \~ .1 

where the last line follows from the fact that the expectation for all of the sample 

means are equal to ,u, hence the mean of the quantity </>r</>l is zero. 
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Cominmng, 

(< )-' << )I E l ) l - < l  : N] va~ N, l)-(l), 

Y 
= N j  N r + Var 

j t 
. =  = = 

From the Generalized Central Limit Theorem, Var(</>j) = oa/Nj so, 

N/ fY=N~=r((l) ]+ 
k j = 2  \ J /  j r 2  

T , , , , ~  ( T  Y'(T ( r  ]' 
Y.X~.ag(l)ll=o'q Y:Nj] [~-~=Nj+[ X Nj) /N, 

- - " ' ' ' )  - '  Ikj=l +] L-* -2 k,.j=2 

=04 ~ N ; / / ~  
k'J=l ] L ~ ' '  

( r ~-' ZN,-N, J/" =er N j  

2 - I  

= cr  N ,  - N /  
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While the derivation awarded special status to the first sample, any one of the 

samples could have been given special treatment. In general, then, 

The expected value of the estimator of the variance, NE(J) ,  is given by 

2 _, 

=or (T-1 N~ N. - N j 

2 

=O" 

Because the expected value of the population variance estimator is the population 

variance, the estimator is unbiased. 

The conclusion of all this is that the Central Limit Theorem can be used when 

samples of different sizes are drawn from a single population. The estimators of 

the population mean and variance are similar to those used when all samples are 

of the same size except that weighted averages must be taken. The weights are 

the sample sizes. Note that the estimators when all samples are the same size are 

special cases of the more general expressions. 
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In the case when 1 o is a loss outcome for the l *h exposure unit in t h e f  h sample, 

</>j is the. sample pure premium. In terms of  portfolio pure premiums, the estimators 

become: 

Estimat°r( p p  ~ , ~  ) = m' -= Tj~. ~ j p p  j / ~ tZ j 

E~timator(Var[ p p  ~ , ~  ]) = N s  ~ = N ,  ( T -1)- '  ~ a j ( p p  j - m ~ ') 
j-I 
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Loss Ratio Series Decomposition Exhibit I 

Year ILR 
(1) Isolated Isolated Isolated Trend Cycle Restated 

1960 29.9% TxC T C Index Index ILR 
1961 39.9% (2) 13) (4) (5) (6) (7) 
1962 38.0% 34.1% 31.7% 1.07 103.96 107.50 69.85% 
1963 32.0% 33.1% 32.3% 1.02 106.01 102.39 60.53% 
1964 30.5% 31.4% 32.9% 0.95 108.09 95.44 80.75% 
1965 25.0% 29.9% 33.6% 0.89 110.21 89.03 52.21% 
1966 31.7% 31.2% 34.2% 0.91 112.37 91.19 63.45% 
1967 30.3% 35.7% 34,9% 1.02 114.58 102.24 53.18% 
1968 38.6% 37.7% 35.6% 1.06 116.83 105.86 64.15% 
1969 52.9% 40.2% 36.3% 1.11 119.12 110.73 82.30% 
1970 34.9% 40.1% 37,0% 1.08 121.46 108.44 54.39% 
1971 44.2% 38,5% 37.7% 1.02 123.84 102.03 71.83% 
1972 30.1% 35.7% 38.5% 0.93 126.27 92.87 52.62% 
1973 30.5% 37.0% 39.2% 0.94 128.75 94.38 51.50% 
1974 39.0% 38.0% 40.0% 0.95 131.28 95.02 64.24% 
1975 41.4% 41.7% 40.8% 1.02 133.86 102.23 62.06% 
1976 49.1% 46.7% 41.6% 1.12 136.48 112.32 65.78% 
1977 48.5% 48.3% 42.4% 1.14 139.16 113.96 62.77% 
1978 55.6% 46.2% 43.2% 1.07 141.89 106.84 75.24% 
1979 47,1% 42.5% 44.1% 0.96 144.68 96.30 69.41% 
1980 30.7% 41.9% 45.0% 0.93 147.52 93.14 45.88% 
1981 30.4% 41.5% 45.8% 0.90 150.42 90.49 45.88% 
1982 45.6% 44.5% 46.7% 0.95 153.37 95.17 64.08% 
1983 53.6% 49.1% 47,7% 1.03 156.38 103.02 68.30% 
1984 62.1% 52.9% 48.6% 1.09 159.45 108.97 73.40% 
1985 53.8% 52.4% 49.5% 1.06 162.58 105.69 64.24% 
1986 49.7% 48.6% 50.5% 0.96 165.77 96.30 63.90% 
1987 42.6% 44.3% 51.5% 0.86 169.02 85.98 60.22% 
1988 35.0% 41.6% 52.5% 0.79 172.34 79.24 52.65% 
1989 40.3% 44.9% 53.5% 0.84 175,73 83.85 56.17% 
1990 40.4% 52.1% 54.6% 0.95 179.18 95,41 48.52% 
1991 66.1% 60.8% 55.7% 1.09 182.69 109.17 68.07% 
1992 78.6% 63.8% 56.8% 1.12 186.28 112.47 77.01% 
1993 78.4% 66.6% 57.9% 1.15 189.94 115.06 73.69% 
1994 55.6% 63,1% 59,0% 1.07 193.66 107.00 55.11% 
1995 54.2% 55.7% 60.2% 0.93 197.47 92.61 60.83% 
1996 48.9% 61.4% 201.34 
1997 41.5% 62.6% 205.29 

(1) Historical Data 
(2) Five year moving average of historical data 
(3) Model of trend, fit to the isolated TxC of column (2). (3) =30.5"(1.0196) lye=r~°l 
(4) Implied Cycle, TxC/-r = (2)•(3) 
(5) =100"(1.0196) (w='l~) 
(6) =1oo*(4) 
(7) =(1)year*[(5)19971(5)year]*[1001(6)year] 
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Portfol io Size Exh ib i t  II 

Contract HiatOrlC.al Isolated On Levat Factor Restated 
Year Premium TxC Losslndex ~TxC edesuacv Lsss Comossite Premium 

(1) (5) (7) (9) (8) (1 O) (11 ) (12) (13) 

1960 400.00 68.8% 100.00 1,000 1.088 34.004 31,261 12.504.46 

1961 41200 73.4% 110.00 1.068 1.019 30.913 30.351 12.504.46 
1962 424.36 78.4% 121,G0 1.068 1.019 28.102 27.591 11,706.72 
1963 437.09 83.7% 133.10 1.068 1.019 25.548 25.083 10,963.62 
1964 450.20 89.4% 146.41 1.068 1.019 23.225 22.803 10,265.94 

1965 463.71 95.5% 161.05 1.068 11019 21.114 20.730 9,612.65 

1966 477.62 102.0% 177.16 1.068 1.019 19.194 18.845 9,000.94 

1967 501.79 108.9% 194.87 1.068 1.019 17.449 17.132 8,596.71 
1968 626.98 1163% 214.36 1.068 11019 15.863 15.575 8,207.48 

1969 553.22 124.2% 235.79 1.068 1.019 14.421 14.159 7,832.98 

1970 580,57 132,7% 259.37 1,068 1.019 13,110 12.872 7,472.91 
1971 609.06 141.7% 285.31 1.068 1.019 11,918 11,701 7,126.94 

1972 638.74 151 3% 313,84 1.068 1.019 10.835 10.638 6,794.74 
1973 66~,65 161.6% 345.23 1,068 1.019 9.850 9.671 6,475.96 
1974 701.84 172.6% 379.75 1.068 1.019 8.954 8,791 6,170.24 

1975 689.40 196.6% 417.72 1.139 0.955 8.140 8.525 5,877.20 
1976 712.49 212.8% 459.50 1.082 1.005 7.400 7.364 5,246.89 

1977 73601 230.4% 505.45 1.083 1.005 6.727 6.696 4,928,10 

1978 759.97 249.5% 555.99 1.083 1.005 6.116 6.088 4,626.76 
1979 78434 270,2% 611.59 1.083 1.004 5.560 5.536 4,341.90 

1980 809.14 2927% 672.75 1,083 1.004 5.054 5.033 4,072.77 
1981 795.83 317 1% 740.02 1.083 1.004 4.595 4.577 3,642.38 

1982 781.77 343.6% 814.03 1.084 1.004 4.177 4.162 3,253.42 

1983 766.94 372.4% 895.43 1.084 1.004 3.797 3.784 2,902.16 
1984 751.32 403.8% 984.97 1.084 1.003 3.452 3.441 2,585.19 
1985 904.51 355.8% 1,083.47 0.881 1.235 3.138 2.542 2.299.38 

1986 1240.04 304,0% 1,191.82 0.854 1.273 2.853 2.241 2,778.92 

1987 1679.29 270,5% 1,311,00 0,890 1.222 2.594 2.122 3,563.72 

1988 2242.17 247.5% 1,442.10 0.915 1.188 2.358 1.984 4,449.25 
1989 2276.44 264.4% 1,586.31 1.068 1.019 2.144 2.105 4,791.03 
1990 2311.24 286.5% 1.744.94 1.083 1.004 1,949 1.941 4,486.15 

1991 207007 351.9% 1,919.43 1.228 0.886 1.772 2.000 4,140.66 

1992 2096,63 382.2% 2.111 38 1.086 1 002 1.611 1.608 3,371.44 

1993 2122,93 415.2% 2.322.52 1.086 1.001 1.464 1.462 3,104.28 
1994 214892 451.2% 2,554.77 1.087 1.001 1331 1.330 2,857.47 

1995 2206.07 490.4% 2.610.24 1,087 1.001 1.210 1.209 2,667.61 
1996 1912,86 533.3% 3,091.27 1 087 1.000 1.100 1.100 2,103.45 
1997 1934.43 580.1% 3,400.39 1.088 1.000 1.000 1.000 1,934.43 

~C 

(14) 

100.00 

100.00 
93.64 
87.68 

82.10 

76.87 
71.98 

68.75 

65.64 

62.64 

59.76 

57D0 
54.34 

51.79 
49.34 

47.00 

41.96 

39.41 
37 O0 

34.72 

32.57 
29.13 

2602 

23.21 
20.67 
16.39 

22.22 

28.50 
35.58 

38.31 

35.88 

33.11 

26.96 

24,83 

22,85 
21,33 

16.82 
1547 

Exhibit tia displays the assumptions that underlie this exhibit. Column numbers on this exhibit refer to thidr position in Exhibit Ila. 

(S) = 1.000 for 1960 arid (7)o~,~i/(7)m= for all other years Note that an increasing TxC denotes rat~ adequacy slippage. 

(10)¢urrent= (8) 19971(8)current 

(11 )current = (9) 1997/(9)current 
(12)=(11)/(10) 

(13)=(5)'(12) 
(14)=(13) times s factor that makes the first entry 100. [i.e., (14) is a rescaled version of (13) 
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Ful l  D i s c l o s u r e  Exhibit l la 

Contract Exposure 

Year 

(1) (2) 

Pricing 

Exposure Historical Historical Historical Isolated 

Base Rate Premium Loss (TxCI 

(3) (4) (5) (6) (7) 

1960 100 100.00 

1961 100 103.00 

1962 100 106.09 

1963 100 109.27 

1964 100 112.55 

1965 100 115.93 

1966 100 119,41 

1967 102 125,45 

1968 104 131 74 

1969 106 138,31 

1970 108 145.14 

1971 110 15227 

1972 112 15969 

1973 114 167,41 
1974 116 175.46 

1975 118 18384 

1976 120 192.56 

1977 122 201.65 

1978 124 211.10 

1979 126 220.94 

1980 128 231.18 

1981 124 230.68 

1982 120 229.93 

1983 116 228.94 

1984 112 227.67 

1985 108 226 13 

1986 115 248.01 

1987 126 279.88 

1988 140 320,31 

1989 138 325.21 

1990 138 33496 

1991 138 345.01 

lgg2 138 355.36 

1993 138 366.02 

1~J4 138 377 (30 

1995 140 393.94 

1996 120 34779 

1997 120 35823 

4.00 400.00 275.00 68.8% 

4.00 412.00 302.50 73.4% 

4.00 424.36 332.75 78.4% 

4.00 437,09 366,03 83.7% 

4.00 450.20 402,63 89.4% 

4 l ~  463.71 442~89 95.5% 

4.00 477.62 487.18 102.0% 

4.00 501.79 54652 108.9% 

400 526.98 613.07 116.3% 

4,00 553,22 687.34 124.2% 

4.00 58057 77034 132.7% 

4.00 609.06 86307 141.7% 

4.00 63874 966.64 151.3% 

4,00 669.65 1082.29 161.6% 

4.00 701.84 1211.40 172.6% 

3.75 689.40 1355.52 196.6% 

3,70 712,49 1516.34 212,8% 

3.65 736.01 1695.77 230.4% 

3.60 759.97 1895.93 249,5% 

3.55 784.34 2119.16 270.2% 

3.50 809.14 2368.08 292.7% 

3.45 795.83 2523.49 317.1% 

3.40 781.77 2686.29 343,6% 

3.35 76694 2856.42 372.4% 

3.30 751.32 3033 72 403.8% 

4.00 904.51 3217.91 355.8% 

5.00 1240.04 376912 304.0% 

600 1679.29 4542,61 270.5% 

7.00 2242.17 5552,08 247.6% 

7.00 2276.44 602004 264,4% 

6.90 2311.24 6622.05 286.5% 

6.00 2070.07 7284.25 351.9% 

5.90 2096.63 8012,68 382.2% 

5.80 2122.93 8813.95 415.2% 

5.70 2148.92 9695,34 451.2% 

5.60 2206.07 10819.44 490.4% 

5.50 1912.86 10201 18 533,3% 

540 193443 11221,30 580,1% 

On Lev i  Factor Restated 

ATxC Losslndex edeauacv Lou  Comlx~te Premium "N" 

(8) (9) (10) (11) (12) (13) (14) 

1.000 10000 1.088 34.004 31.261 12,504.46 100.00 

1.068 110.00 1.019 30.913 30.351 12,504.46 100.00 

1.068 121.00 1.019 28.102 27.591 11,706.72 93.64 

1.068 133.10 1.019 25.548 25083 10,963.62 67.68 

1.068 146.41 1.019 23.225 22.803 10,265.94 82.10 

1.068 161.05 1.019 21.114 20.730 9,612.65 76.87 

1.068 177.16 1.019 19.194 18.845 9,000.94 71.g6 

1.068 194.87 1.019 17.449 17.132 8,596.71 68.75 

1.068 214.36 1.019 15.863 15.575 8,207.48 65.64 

1.068 235.79 1.019 14.421 14.159 7,832.98 62.64 

1.068 2..-9.37 1.019 13.110 12.872 7,472.91 59.76 

1.068 285.31 1.019 11.918 11.701 7,126.94 57.00 

1.068 313.84 1.019 10.835 10.638 6,794.74 54.34 

1.068 345.23 1.019 9.850 9.671 6.475.96 51.79 

1.068 379.75 1.019 8.954 8.791 6,170.24 49.34 

1.139 417.72 0.955 8.140 8.525 5,877.20 47.00 

1.082 459,50 1.005 7.400 7.364 5.246.69 41.96 

1.083 505.45 1.005 6.727 6.696 4,928.10 39.41 

1.083 565.99 1.005 6.116 6.088 4,626.76 37.00 

1.083 611.69 1.004 5.560 5.536 4,341.90 34.72 

1.083 672,76 1.004 5.054 5.033 4,072.77 32.57 

1083 740,02 1.004 4,595 4.577 3,642.38 29.13 

1.084 814.03 1.004 4,177 4.162 3,253.42 26.02 

1.084 895.43 1.004 3.797 3.784 2,9(12.16 23,21 

1 084 984,97 1.003 3,452 3,441 2,585.19 20.67 

0.881 1,083.47 1.235 3.138 2.542 2,299.38 18.39 

0.854 1,191 32 1.273 2.853 2,241 2,77892 22.22 

0.890 1,311.00 1.222 2.594 2.122 3,563.72 28.50 

0.915 1,442.10 1.188 2.358 1.984 4,449.25 35.58 

1.068 1,586.31 1.019 2.144 2.105 4,791.03 38.31 

1.083 1,744.94 1.004 1.949 1.941 4,486.15 35.88 

1,228 1,91943 0.886 1.772 2.000 4,140.66 33.11 

1,086 2,111.38 1.002 1.611 1.608 3,371,44 26,96 

1.086 2,322.52 1.001 1.464 1.462 3,104.28 24.83 

1,087 2,554.77 1,001 1.331 1.330 2,857,47 22,85 

1,087 2,81024 1,001 1.210 1.209 2,667,61 21,33 

1.087 3,091 27 1.000 1.100 1,100 2,103.45 16.82 

1.088 3,400.39 1.000 1.000 1 000 1,934.43 15,47 



A p p l i c a t i o n  o f  t h e  G e n e r a l i z e d  C e n t r a l  L i m i t  T h e o r e m  

Contact Portfoao 
YIm" Pmmklm 

gJ 
1971 2,120,969 
1972 2,911,066 
1973 3,743,812 
1974 5,013,270 
1975 8,152,331 
1978 14,309,5Q1 
1977 18,575,401 
1978 21,062,760 
1979 28,171,973 
1980 25,932,066 
lg81 26,123,796 
1 ge2 23,631,441 
1 ge3 27,239,321 
1964 42,815,673 
1ge5 74,217,430 
I ge6 79,620,062 
Ig67 57,935,225 
Ig88 69,423,482 
Ige9 72,130,055 
I~I~0 69,647,663 
1~1 ~ , ~ , ~  
1~2  93,804,805 
I g~3 94,513,634 
Total 960,479,379 

Relative Restated 
Size, aj /LR VWd ILR OLR..m) Z Wfd sQFlare 

.(.Y.J (5~=¢'3~*(4) L~ ('/3 =('3)*('6~ 
1.000 ss+s3% s s . s 3 %  0.0034s 0.0034e 
0 . ~  ~+44% 56.51% 0.0o1o8 0.001o3 
0.917 7 7 + 8 1 %  71.35% 0.02278 0,02069 
0.910 87.11% 79.25% 0,05947 0,05410 
1.130 60.74% 68.64% 0,00039 0,00044 
1.438 48.75% 70.10% 0.01952 0+0287 
1.483 70.18% 104.08% 0.00557 0+00826 
1.758 56,90% 100.03% 0.00338 0.00595 
2.260 54.25% 122.59% 0.00717 0.01621 
2.205 60.83% 134.11% 0.00036 0.00079 
1.845 53.15% 98.07% 0.00918 0.016~0 
1.2g6 94.12% 121.92% 0.09859 0.12771 
1.104 95.36% 105.25% 0.10654 0.11758 
1.506 77+93% 1 t 7.39% 0.023t 2 0.03483 
1.892 34.57% 85.40% 0.07922 0.14967 
1.580 30.00~ 47.40% 0.10705 0.16914 
1.010 51.96% 52.51% 0.01154 0.01166 
1.925 59.50% 114.56% 0.00104 0,00199 
2,118 64.83% 137.31% 0.00044 0+00004 
1.910 72.05% 137.64% 0.00870 0.01662 
2.014 71.02% 143.03% 0.00690 0.01389 
1.745 76.72% 133.90% 0.01961 0.03422 
1.570 59.15% 92.86% 0.00127 0.00200 
35.57 2231.04% 0.59636 0.83655 

(2) rel icts historical cistL The first entry is the total of Column (2) on Exh~0it IIIb 
(3) is takln from Column (14) o1 Exhibit IIIc. 

Cokxnn (4) is ~le isst column on Exhibit IIIL 

Exh ib i t  III 

Estbml¢m~ when a • f.O00 1.000 ILI~ ===> Rt 
m ' :  62.7% : :=> 

vRr= 0.038 ===> 0.097 

Once the distribtdion for the incurred lo l l  ratio has been determined, the distribution for the random component 
foMow as a change of zcais. 

m' = Total (5)/TOlJ(3) 
Vmr [ILR la--l.00] = Total(7)/(number of years -1) 
VlrlRla=l+O0] = Var[ILRla=l.0OJlm 'z • 

Portfolio Estimators lot Vat at olher  a I 
Relmaled I N ~  Size, oj  Var[ILRJ Var[Rt] 

224,628,501 1+000 0.038 0.097 I 
3~,93Q,752 1 . ~  0+0~5 0.064 I 
449,253,002 2.000 0.019 00481 
561,566,253 2.500 0.015 0.03~ I 673,879,504 3.000 0.013 0.032 
786,1921754 3.500 0.011 0+o28J 

Var[ILR or Rla,)=Varl lLR or Rla=1.00}/=~ 

]67 



Loss Ratio Series Decomposition Exhibit Ilia 

O~ 
oo 

Est Uit 
Contract Loss Ratio 

Year ILR 5-year 
(1) Moving Avg Isolated Isolated Trend Cycle Restated 

1969 367.46%] TxC T C Index Index ILR 
/ 

1970 275 03%[ (2) (3) (4) (5) (6) (7) 
1971 227.32% 270.44% 252.7% 1070 89 596 107 025 56 83% 
1972 219.59% 249.81% 239.2% 1.044 84.807 104 444 5944% 
1973 262.81% 228.36% 226.4% 1009 80274 100 868 77 81% 
1974 264.32% 20518% 2143% 0 957 75 984 95 745 8711% 
1975 167.78% 186.77% 202,8% 0921 71.923 92 076 60.74% 
1976 111.40% 154.51% 1920% 0.805 68078 80.472 4875% 
1977 127 55% 122 88% 181 7% 0 676 64 440 67 615 70 18% 
1978 101.49% 120.60% 1720% 0701 60.995 70.106 56 90% 
1979 106 19% 132 36% 162 8% 0 813 57 735 81283 54 25% 
1980 156.37% 17381% 154 1% 1128 54.649 112 770 60.83% 
1981 170 17% 21649% 145 9% 1484 51729 148 389 53 15% 
1982 334.83% 24054% 1381% 1.742 48.964 174188 94 12% 
1983 314.87% 22326% 1307% 1 708 46347 170.802 95 36% 
1984 226.48% 196.51% 123 7% 1.588 43.869 158.829 77 93% 
1985 69.96% 13682% 117 1% 1 168 41 525 116 823 34 57% 
1986 36.44% 82.12% 110.9% 0.741 39.305 74 078 30.00% 
1987 36.34% 47 27% 104,9% 0 451 37.204 45051 51 98% 
1988 41.38% 4703% 99,3% 0.473 35,216 47.348 59.50% 
1989 52,24% 5449% 940% 0.580 33.334 57.964 64.83% 
1990 68.73% 6450% 890% 0725 31.552 72 486 72.05% 
1991 73,77% 70.23% 84,2% 0.834 29.866 83 377 71.02% 
1992 86 39% 76 13% 79 7% 0 955 28 269 95 489 76 72% 
1993 70.02% 80.04% 75.5% 1.061 26.758 106.052 59 15% 
1994 81,76% 71 4% 25.328 
1995 88.24% 676% 23974 

(1) Historical Data 

(2) Five year moving average of historical data 
(3) Model of trend, fit to the isolated TxC of column (2) (3) =30.5"(1 0196) lw= ~9~91 

(4) Implied Cycle, TxCfT = (2)/(3) 
(5) =100°(1 0196) (y~=r 19691 

(6) =100"(4) 

(7) =(t )year*[(5)t 997/(5)year]*1100/(6)year I 

ILR, TxC, and T vs.  Year 

400 00% • 

350.00% • 
300 00% • - 1~, 
250 00% J \ [-- ~ ' i L R  • 
20000°/° i~'<~'~,--- ~ -~-T "/-I. ":-~ . . . . . .  T x C  

15o 00% . . . . .  " ~ , ~ - ~ , ~ ,  - T i 
100.00% 
50 0O% - - - ' \ , L : - - ~ - - - -  

0 0 0 %  . . . .  ~ . . . . . . . . . . . . . . . . .  

J 

Pricing Cycle vs.  Year 

2 5 ;  . . . . . . . . .  

15 

1 

0.5 ! 

O ~ . . . . . .  . . . . . . .  , - T ] T . , " , , 

Least square error trend model: TxC = 26695"(1-0.0534) (y'19~91 



Effective Portfol io Size in 1971 

Contract Year: 1971 
Portfolio Percent Percent 100% 

Client Premium Cover Taken Basis 

1 57,803 90% 40.0% 160,565 
2 68,072 100% 12.0% 550,602 
3 62,945 100% 18.0% 349,695 
4 55~266 100% 10.0% 552,655 
5 54,678 100% 20.0% 273,389 
6 74,950 100% 10.0% 749,495 
7 73,365 100% 10.0% 733,647 
8 52,155 100% 20.0% 260,777 
9 44,847 100% 5.0% 896,948 

10 72,712 100% 10.0% 727,119 
11 71,820 100% 10.0% 718,201 
12 43,423 100% 10.0% 434,231 
13 53,135 100% 2.0% 2,656,765 
14 43,794 100% 10.0% 437,935 
15 71,257 100% 10.0% 712,568 
16 48,097 100% 20.0% 240,487 
17 50,748 100% 20.0% 253,740 
18 62,084 100% 5.0% 1,241,672 
19 70,094 85% 15.0% 549,756 
20 82,714 100% 15.0% 551,428 
21 57,830 100% 5.0% 1,156,599 
22 71,779 100% 1.0% 7,177,880 
23 63,955 100% 5.0% 1,279,091 
24 47,139 100% 10.0% 471,388 
25 48,772 100% 10.0% 487,719 
26 74,841 100% 5.0% 1,496,824 
27 74,084 100% 25.0% 296,335 
28 44,138 100% 150% 294,251 
29 43,995 100% 15.0% 293,300 
30 48,169 100% 30.0% 160,565 
31 76,883 100% 100% 768,832 
32 70,557 100% 20.0% 352,785 
33 73,538 50% 5.0% 2,941,520 
34 51,082 100% 10.0% 510,818 
35 62,250 100% 100.0% 62,250 

Total 2,120,969 5.9% 30,801,830 

Nj 

160 565 
550 602 
349 695 
552 655 
273 389 
749 495 
733 847 
280 777 
896 948 
727 119 
718 201 
434 231 

2,656,766 
437,935 
712,568 
240,487 
253,740 

1,241,672 
549,756 
551,428 

1,156,599 
7,177,880 
1,279,091 

471,388 
487,719 

1,496,824 
296,335 
294,251 
293,300 
160,585 
768,832 
352,785 

2,941,520 
510,818 
82,250 

n j  n i 2 / N j  

0,0273 4.626E-09 
0.0312 1,763E-09 
0.0297 2,519E-09 
0.0261 1.229E-09 
0.0258 2.431E-09 
0.0353 1,~E-.09 
0.0346 1.831E-09 
0.0246 2.319E-09 
0.0211 4.985E-10 
0.0343 1.616E-09 
0.0339 1.597E-09 
0.0205 9.653E-10 
0.0251 2.362E-10 
0.0206 9.735E-10 
0.0336 1.584E-09 
0.0227 2.138E-09 
0.0239 2.256E-09 
0.0293 6.9E-10 
0.0330 1.987E-09 
0.0390 2.758E-09 
0.0273 6.428E-10 
0.0338 1.596E-10 
0.0302 7.108E-10 
0.0222 1.048E-09 
0.0230 1.084E.-09 
0.0353 8.318E-10 
0.0349 4.117E-09 
0.0208 1.472E-09 
0.0207 1.467E-09 
0.0227 3.212E-09 
0.0362 1.709E-09 
0.0333 3.137E-09 
0.0347 4.087E-10 
0.0241 1.136E-09 
0.0293 1.384E-08 

7.048E-08 

N ~ m =  14,193,426 

Cofunm (1) is a client contract identitfer, it could be the contract number or the name of the clienL 

Colums (2)-(4) relate to the prwnium ceded to b~s particular reinsurance company, the percentage of the total premium 
ceded to d nwosurera in total, and the percentage of the placement that this particular reinsurer accepted. 

Column (5) = (2)/[(3)(4)]. It represents the pren#um that would have been written had f00% of the business been placed and had 

a sklgis reinsurer accepted 100% of the placemenL 

Co*Jm (6)=(5) 
Column (7) = (2)ctient/(2)total 
CokJ~ (e) = (7) 2 /(6) 
N~e~o=l/sum(8) 

Exhibit IIIb 

169 



Restated Effective Portfolio Size Exhibit IIIc 

.% 

Contract 

Year 

Nm,~,~,o Isolated 

Premium Tx.~C Losslndex •TxC Adequacy 
(1) (5) (7) (9) (8) (10) 

1971 14,193,426 270.44% 11.412 1.000 1.051 
1972 19,091,248 249.81% 14.835 0.924 1.138 
1973 24,961,300 228.36% 19.286 0.914 1.150 
1974 31,575,645 205.18% 25.072 0.898 1.170 
1975 50,319,813 186.77% 32.593 0.910 1.155 
1976 86,558,657 154.51% 40.038 0.827 1.271 
1977 110,115,274 122.88% 47.483 0.795 1.322 
1978 122,363,170 120.60% 54.928 0.981 1.071 
1979 160,390,551 132.36% 62.633 1.097 0.958 
1980 144,685,401 173.81% 69.296 1.313 0.801 
1981 142,840,047 216.49% 77.522 1.246 0.844 
1982 126,628,059 240.54% 87.333 1.111 0.946 
1983 143,041,514 223.26% 96.721 0.928 1.133 
1984 220,340,672 196.51% 103.511 0.880 1.194 
1985 374,303,495 136.82% 110.761 0.696 1.510 
1986 393,519,772 82.12% 120.196 0.600 1.751 
1987 260,616,252 47.27% 128.558 0.576 1.826 
1988 329,535,791 47.03% 136905 0.905 1.057 
1989 335,535,545 5449% 147.594 1.159 0.907 
1990 317,508,163 64.50% 158.173 1.184 0.888 
1991 386,092,174 70.23% 167.834 1.089 0.966 
1992 357,131,160 76.13% 178.354 1.084 0.970 
1993 352,633,199 80.04% 189866 1.051 1.000 

On Level Factor 
Loss Composite 

(11) (12) 
16,637 15.826 
12.799 11.246 
9.845 8.561 
7.573 6.472 
5.825 5,044 
4.742 3.732 
3.999 3,025 
3.457 3,227 
3.031 3.165 
2.740 3.423 
2.449 2,902 
2,174 2 298 
1.963 1.733 
1.834 1,536 
1.714 1,135 
1580 0.902 
1.477 0.809 
1,387 1,312 
1.286 1.418 
1.200 1 352 
1,131 1,172 
1.065 1.098 
1.000 1.000 

Restated 
N~o¢~o 

Premium 
(13) 

224,625,501 
214,697,754 
205,979,386 
204,364,734 
253,819,452 
323,011,228 
333,106,693 
394,867,336 
507,575,310 
495,208,996 
414,489,368 
290,970,632 
247,910,720 
338,395,876 
424,927,861 
354,908,674 
226,940,464 
432,472,550 
475,778,788 
429,136,831 
452,362,632 
392,039,124 
352,633,199 

(14) 
1.000 
0.956 
0,917 
0,910 
1,130 
1.438 
1.483 
1,758 
2.260 
2.205 
1.845 
1.295 
1.104 
1.596 
1,892 
1.580 
1.010 
1.925 
2.118 
1910 
2.014 
1.745 
1.570 

Column numbers on this exhibit ere consistent with those on Exhibit II 

(5) = Historical portfolio premiums, Nportfolio, reflect treaty shares The supporting detail for 1971 appears on Exhibit IIIb. 
(7) Column (2) from Exhibit Ilia 
(8) = 1.000 for 1971 and (7)¢uce~/(7)~= for all other years. Note that an increasing TxC denotes rate adequacy slippage. 

(9) Indices are consistent with Masterson Bodily Injury (other than automobile) indices 
(10)current= (8) 1993/(8)cu,'Tent 
(11 )current= (9) 1993/(9)current 
(12)=(11)/(t O) 
(13)=(5)'(12) 
(14)=(13) times a factor that makes the first entry 1 000 [i.e, (14) is a rescaled version of (13) 



X" Test  f o r  Nomml  Dis t r ibu t ion Exhibit IIId 

Contract Portfolio Adjusted 
Year s_~ OLR R, z .  

1971 1.000 56.83% 0.906 -0.302 

1972 0.956 59.44% 0.948 -0.168 

1973 0.917 77.81% 1.241 0.774 

1974 0.910 87.11% 1.389 1.251 
1975 1.130 60.74% 0.968 -0.101 

1976 1.438 48.75% 0.777 -0.716 

1977 1.483 70.18% 1.119 0.383 
1978 1.758 56.90% 0.907 -0.298 
1979 2.260 54.25% 0.865 -0.434 

1980 2.205 60.83% 0.970 -0.097 
1981 1.845 53.15% 0.847 -0.491 

1982 1.295 94.12% 1.501 1.610 
1983 1.104 95,36% 1.520 1.674 
1984 1.506 77,93% 1.242 0.780 
1985 1.892 34.57% 0.551 -1,443 
1986 1.580 30.00% 0.478 -1.678 
1987 1.010 51,98% 0.829 -0.551 
1988 1.925 59.50% 0.949 -0.165 
1989 2.118 64.83% 1.034 0.108 
1990 1,910 72,05% 1.149 0.478 

1991 2.014 71.02% 1.132 0,426 
1992 1 745 76.72% 1.223 0.718 
1993 1.570 59.15% 0.943 -0.183 

Mean 62.7% 1.000 

Variance 0.097 

Std Oev 0311 

Occun'ences vs. Z e¢~'e 

8 

2 * - - - - - -  - - -  

-2.40 -1.80 -1.20 -0.60 0.00 0.60 1.~0 1.80 2.40 

Z2  Teat 

z~ Z< = 

~ Count E,T,~r,C~ 

Midpo~ Z If N(I.000, 0.311) Count 

-2.70 -2.10 -2.40 0 

-2.10 -1.50 -1.80 I 
-1 .,SO -0.90 -1.20 3 
.0.90 -0.30 .0.60 5 

-0.30 0.30 0.00 5 
0.30 0.90 0.60 S 

0.90 1.50 1.20 3 
1.50 2,10 1.80 I 
2.10 2.70 2.40 0 

Total 23 

w~r~  ~ ~ 

0 0 . 0 0 0 " ~  
1 1.580 <= < ,  
1 1.892 1.117 1.308 
5 7.553 0.044 0.001 
7 11.861 0.458 0.21 
0 9.676 0.450 0.19i 

I 0,910 ~ . 3 2 0  O.103 

2 2.3gg ~ /  >- >= 
0 0.000 

23 30.~1 0 . ~  0 . ~  

Empid~ rcmW 
p= 1.000 
o= 0.311 

13eOm~ of fr~dom 
23 = k = # o(obwmatlm~ 

I = m = # ~ L q k n a ~ d ~  
22 = deom~ of fm~lom 

CI~'-IqUWe 

Uneoml~ed X2 = 0.422 

~ x 2 =  0.266 

Z 2 at . 95  = 3~67 
X 2 at-99- 41.40 

Z2 at.05 : 11.59 
I2 at.OI = 0.90 

Conclusion: at 95% - Fit J good ==> CANNOT REJECT null hylx~he~ds 

at 99% - Fit is good ==> CANNOT REJECT nuU hypothe~s 

' C6~ l¢ l i t  ID t i t q l ~  Im l  l l ~4~ io~  a f i ~ e r ~  l l t l l l L4~ l  I 0  I l l l l l B  I IM  



Contract Portfolio Adju¢ed 

Year Size ILR R, z,, 

1971 1.000 56.83% 0.906 -0.302 
1972 0.956 59.44% 0.948 -0.168 

1973 0.917 77.81% 1.241 0.774 

1974 0.910 87.11% 1.389 1.251 

1975 1.130 60.74% 0.968 -0.101 

1976 1.438 4875% 0.777 -0.716 

1977 1.483 70.18% 1.119 0.383 
1978 1.758 56.90% 0.907 -0.298 

1979 2.260 54.25% 0.865 -0.434 
1980 2.205 60.83% 0.970 -0.097 

1981 1.845 53.15% 0.847 -0.491 
1982 1.295 94.12% 1.501 1.610 

1983 1.104 95.36% 1.520 1.674 
1984 1.506 77.93% 1.242 0.780 
1985 1.892 34.57% 0.551 -1.443 
1986 1.580 30.00% 0.478 -1.678 

1987 1010 51.98% 0.829 -0.551 
1988 1.925 59.50% 0.949 -0.165 
1989 2.118 64.83% 1.034 0.108 
1990 1.910 7 2 0 5 %  1.149 0.478 

1991 2.014 71.02% 1.132 0.426 
1992 1.745 76.72% 1.223 0.718 
1993 1.570 59.15% 0.943 -0.183 

Mean 62.7% 1.000 
Variance 0.097 

Std Dev 0.311 

Occurrences VS. Z 

8 

6 

4 /B----  r',-,, 

-2.40 -1.80 -120 -0.60 0.00 0.60 1.20 1.80 2.40 

Empirical 

Gamma 

X 2 T e s t  f o r  s G a m m a  D i s t r i b u t i o n  

,t'2 Test 

Expected Count Empir ical  Empirtcat Uncorrected 

z> z<= Midpo~z rf,~x) Count W ~  Ch~quare 

(r=- 10.345) 

-2.70 -2.10 -2.40 0 0 0.000 
-2.10 -1.50 -1.80 1 1 1.580 ~ <= 

-150 -0.g0 -1.20 3 1 1.8~2 1.204 

-0.90 -0.30 -0.60 5 5 7.553 0.025 
-0.30 0.30 0.00 5 7 11.661 0.477 
0.30 0.90 0.60 4 6 9.576 1.107 

0.90 1.50 120 2 1 0.910 ~ 0 . 1 6 7  
1.50 2.10 1.80 1 2 2.399 / /  >= 

/ 2.10 2.70 2.40 0 0 0.000 

Total 23 23 

Cocrected" 

Chi4qum 

<= 

1.561 

0.00~ 

0.22E 
0.64( 

0.02~ 
>= 

Empirical Gamma 

mean= 1.000 
atd dev = 0.311 

r= 10.345 

D ~ r m  o 1 ~  

23 = k = # of dovenmtiom~ 
1 = m = # of est~rmted pmremeters 

22 = Q~'ees of fr~i,~,T, 

Chi--square 

Um-.orrected ;(2 = 0.593 

Corrected ;(2 = 0.402 
X 2 at.95 = 32.67 
X 2 at.99= 41.40 

;(2 at .05 = 11.59 

;(2 at .01 = 8.g0 

Conclusion: at 95% - Fit is good ==> CANNOT REJECT nuit hypothesis 

at 99% - Fit is good ==> CANNOT REJECT null hypothesis 

Exhibit IV 
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Exhibit  Vb 

w-,= 

",.4 
4~ 
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0035 
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0025 
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0 

Normal vs. Gamma at 15% of Portfolio Size 

c:; (=; 0 0 . . . .  c,i ~i ~ c,i oi ,"d oi ,.,i 
Random Component 

f. Normal 
. . . .  Gamma 

Normal  Parameters:  p =1.000, 0 .2 = 0.09710.15 

Gamma parameter:  r = 10.345 * 0.15 



Exhibit Vc 
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Gamma Distribution as a Function of Portfolio Size 
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Reserving Loss Sensitive Elements Exhibit VI 

Valuation 
Months 

Loss Ratio Return Premium Ratio 
Reported II~NR Est UIt Reported Develooed • Dr/or/ Weight 

(1) (2) (3) (4) (5) (6) (7) 
0 0.00% 60.00% 60,00% 0.00% -15.00% 10,00% 0,00 

12 25.00% 55.00% 80.00% 30.00% 16.25% 5.00% 0.05 
24 40.00% 32.00% 72,00% 25.00% 17.00% 7.00% 0,20 
36 55.00% 18.00% 73,00% 10.00% 5.50% 6.75% 0.50 
48 70.00% 4.00% 74,00% 9.00% 8.00% 6.50% 0.70 
60 70.00% 5.00% 75,00% 8.00% 6.75% 6.25% 0,80 
72 75.00% 0.00% 75.00% 8.40% 8.40% 6,25% 0,90 
84 75.00% 0.00% 75,00% 8.40% 8.40% 6,25% 1,00 

Est UIt 
(8) 

10.00% 
5.56% 
9.00% 
6.13% 
7.55% 
6.65% 
8,19% 
8.40% 

(1) From company data 
(2) Determined by means of standard /oss reserve development techniques 
(3) =(1)+(2) 
(4) From company data 
(5) =(4)-.25"(2), reflects expected 25% sensitivity to future toss development. 
(6) =10~.25*[(3)-60%], reflects expected 25% sensitivity to changes in expected aggregate loss ratio 
(7) Illustrative weights increase overtime from 0% initially to 100% by 84 months 
(8) =(7) *(5) +[1-(7)]'(e) 
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