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ABSTRACT 

Actuaries are well aware that good ratemaking and reserving involves the estimation not 

only of espected values, but also of variances. Moreover, they frequently are concerned 

with the present value of their estimates, These two matters, the statistical matter of 

estimation and the financial matter of present value, are especially important when 

actuaries evaluate self-insurance funds for workers’ compensation. This paper will 

demonstrate the usefulness of constrained least-squares estimation for these actuarial 

evaluations. and will pose some questions of general relevance to actuarial science. 

Mr. Halliwell is an Associate of the Casualty Actuarial Society and a member of the 

American Academy of Actuaries. Since June I995 he has been the Regional Actuary for 

Latin America of the Zurich Insurance Group, living in Mexico City. For two years prior 

to that he was the Chief Actuary of the Louisiana Workers’ Compensation Corporation, 

Baton Rouge, LA. And prior to that he worked at the National Council on Compensation 

Insurance in Boca Raton, FL. 
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I) Introduction 

Two matters make ratemaking and reserving for a self-insuring entity more problematic 

than they are for an insurance company, especially in regard to workers’ compensation, 

where self-insurance is common. First, self-insurers do not have the volume of 

experience that insurance companies have. Of course, the actuary for a self-insurer can 

supplement the self-insurer’s data with data from insurance companies and bureaus. 

However, most self-insuring entities believe that their experience is better than that of 

s,imilar entities who buy insurance; and hence they want to be rated and reserved on their 

own merits. Second, it is the experience of the author that ratemaking and reserving 

estimates for self-insurers are on a discounted basis. Whereas the discounting of losses is 

slowly penetrating statutory accounting, it is a commonplace of self-insurance. 

Therefore, it is much easier for an actuary’s opinion to be far wide of the mark when he is 

dealing with self-insurers. 

And the consequences of being far wide of the mark are more serious when the actuary is 

dealing with self-insurers. An insurance company must maintain a surplus deemed 

sufficient by regulators to support its written premiums. If an actuary underestimates the 

losses which have been incurred or will be incurred, the company’s surplus will diminish. 

The company is not happy; but the underestimation is not likely to consume all the 

surplus and render the company insolvent. And as for the hapless actuary, who is 

normally an employee of the insurance company -- at the worst he may be asked to find 

other employment. But with a self-insurer the situation is be different. True, the self- 
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insurer’s net worth is like the insurance company’s surplus in that it will be diminished in 

the event that the actuary underestimates. However, self-insurers are unregulated and do 

not file NAIC annual statements. If an actuary has underestimated, a thinly capitalized 

company could become bankrupt. And the actuary, who is normally a consultant of the 

self-insurer, could be sued for malpractice, a fate much worse than unemployment. 

So when an actuary is dealing with a self-insurer, he is more apt to opine far wide of the 

mark and to suffer harsher consequences. The traditional actuarial methods of 

ratemaking and reserving have sufficed for the insurance companies. These methods can 

be called deterministic in that the estimates which they produce are point estimates. But 

when dealing with self-insurers, actuaries need to furnish estimates of the variability 

about the point, and perhaps to provide rates and reserves which will be adequate to a 

suitably chosen confidence level. 

In the first of the following three sections, traditional actuarial methods are used to 

determine a pure premium for a entity self-insuring its workers’ compensation.’ Next, a 

least-squares model is constructed which is constrained by the pure premium. Predicted 

values and their variances are derived. Finally, the predictions are present valued. The 

result is a random variable representing the present value of liability, whose mean and 

variance have been estimated. By positing a loss distribution, one can reserve to any 

desired level of confidence. 



2) Estimation of the Self-Insurer’s Pure Premium 

Exhibit I presents some of the self-insurer’s data. Accident year 1994 (actually fiscal 

accident year beginning OlApt94) is known at twelve months. This means that the 

information is as of some time after 31Mar95. So the payroll for 1995 is an estimate. It 

is common in actuarial evaluations of self-insurance funds to project not only the liability 

incurred prior to the evaluation, but also the liability expected to occur within the twelve 

months following. Therefore, the functions of reserving and ratemaking are united, i.e., 

reserving is to ratemaking merely as loss incurred is to loss to be incurred. 

Paid losses are used throughout this exercise. In the actual evaluation, the author looked 

at case-incurred losses and decided that they were not suitable for a pure premium 

estimate. The benefit levels were derived from the benefit level changes found in the 

1994 NCCI Statistical Bulletin. In mid-1993 the state in question introduced a medical 

fee schedule, which was thought to reduce more than $1. I7 of benefits to around one 

dollar. 

In most actuarial work losses are put on the latest level, here I .03480. However, there is 

good reason to adjust exposures to the latest level. For one thing, aside from 

measurement error, the exposures (i.e., payroll divided by 100) are nonstochastic. But 

also, leveling the exposures allows us to keep working with the acrual losses, with the 

result that predictions of future loss payments (Exhibits IO and 13) will be at historical 
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levels. An exposure unit is not what it used to be; hence, for example, the 1988 adjusted 

payroll is higher than the unadjusted by a factor of 1.13406/1.03480, because 1995 

exposures are tamer and so it requires more of them to equal the 1988 exposures. 

It may seem backwards to put exposures, rather than losses, on level. If so, then consider 

this example: Suppose that at the beginning of year B, a medical fee schedule is 

introduced, which is supposed to reduce costs twenty percent. Year A, the previous year, 

could have a level of I .25, with year B having level I .OO. Suppose that the exposures 

($I 00’s of payroll) and losses for year A are 10,000 and $200,000 respectively. The pure 

premium of year A on its own level is $200,000/10,000 = $20.00. 

When benefit levels are calculated, the effects of a law change by injury type are 

weighted according to expected losses by injury type. Therefore, when actual losses are 

put on another level, it is assumed that these losses are distributed across injury types 

much as are the expected losses which were used in the benefit level calculation. This 

may be reasonable for a large sample of losses, such as the accident year of an insurance 

company. It is probably not reasonable for a self-insurer. If $180,000 of the $200,000 

owed to one fatality, in which a worker died instantly and the loss is for the benefit of the 

dependents, then the medical fee schedule would not affect this claim. It would be 

erroneous to say that year A’s losses would have been $160,000, if they had happened 

under year B’s conditions. The losses, being stochastic, are wedded to what actually 

happened. 



But the exposures are wedded to what might have happened, and embody expected 

values. Therefore, it is proper to say that year A’s 10,000 exposures are equal to 12,500 

of year B’s exposures, irrespective of what losses actually happened in year A. The pure 

premium on year B’s level is the same: %160,000/10,000 = $200,000/12,500 = $16.00. 

However, later we are going to set up a design matrix for a linear regression. It is correct 

to adjust the exposures, rather than the losses, in that the resulting estimate for u’ should 

reflect historical variability. 

Adjusting the exposures for benefit changes is an adjustment for a factor external to the 

self-insurer. Exhibits 2 through 5 will adjust the exposures for apparent factors internal 

to the self-insurer, viz., changes in the frequency and severity of its losses. Exhibit 2 

shows two methods for developing reported claims2 The development factors of the 

chain ladder method are weighted-averaged across all available years, e.g., 1.073 = 

(203+233+213+207+206+209)1(198+213+164+207+206+l97). The additive method 

uses a rate of newly reported claims per exposure. When it is accumulated, it produces 

claim counts @84 very close to those produced by the chain ladder method. Only in 

1994, developed from a 12’ report, is there an integral difference, and even this 

difference hardly matters in regard to claim frequency. 

The frequencies of the additive method are carried over to Exhibit 3, where a seven-point 

linear regression is found closely to fit the frequencies. It appears that exposure units are 



decreasing in frequency. If the trend continues, a 1995 exposure unit should have a 

frequency of 0.0012 claims per $100 of payroll. Therefore, if 1988 exposures had had a 

frequency of 0.0012 instead of 0.0024, there would have had to have been twice as many 

of them reasonably to produce the 203 claims that were reported. So the second 

adjustment of exposures results in exposure units constant in both benefit level and claim 

frequency. 

Exhibit 4 is similar to Exhibit 2; however, it develops paid losses and uses the twice- 

adjusted exposures. The two methods diverge significantly, and the author chose to carry 

the chain-ladder-method pure premiums to the next exhibit because they are better fitted 

by a semi-log regression. Exhibit 5 is similar to Exhibit 3, and yields the thrice and 

finally adjusted exposures. It is determined that pure premium, adjusted for frequency, is 

growing at a rate of 5.39 percent per year. Given the constant frequency, this is 

equivalent to a growth in claim severity. The regression diagnostics are not of high 

significance; but a 5.39% severity trend is reasonable. If the trend continues, the 

projected pure premium for 1995 will be $7.12 per $100 of payroll. The thrice adjusted 

exposures are, therefore, the actual exposures made to look as if they had existed under 

1995 benefit, frequency, and severity levels. 

With the adjusted exposures we apply three standard development methods in Exhibit 6 

in order to arrive at a 1995 pure premium. The chain ladder method is oblivious to 

exposure, so it is just copied from Exhibit 4. It produces a pure premium of 7.144 = 



6,863,447/960,664.75. That it is close, but not equal, to the projected 1995 pure premium 

of 7.12 is due to the fact that the severity adjustment in Exhibit 5 uses the fitted, rather 

than the actual, pure premiums. The additive method is affected by the new exposures, 

and yields a pure premium of 7.023 = 6,746,577/960,664.75. Now a payout pattern (84” 

considered for now as ultimate) can be constructed, from which the Cape Cod, or 

Stanard-Btihlmann, method3 can produce a third estimate of the pure premium, viz., 

7.101. 

The author wanted to select a conservative estimate, so he averaged the three numbers 

and added two units of their standard deviation to arrive at 7.213. There is nothing 

normative in thus making the selection. In particular, one can make no assertion as to the 

probability that 7.213 will be a rate adequate to cover losses paid within the first eighty- 

four months. This should be obvious at least with respect to what actuaries call process 

risk. However, one might think that the so-called parameter risk is captured in the 

standard deviation of 0.062. One might be tempted to argue that according to 

Chebyshev’s inequality, at least 75% of the probability must lie within two standard 

deviations of the mean. Therefore, we should be at least 75% confident that 7.213 is 

greater than the true pure premium. But this is faulty statistical inference on several 

counts: I) Chebyshev’s inequality holds for the true parameters p and d, not for 

estimates of them, 2) It is always possible that there are unused methods which would 

yield results which significantly change the estimates, and, most important, 3) the 

distinction between parameter and process risk is purely theoretical. One cannot calculate 
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confidence limits for each one separately; rather, the variance of a predicted value in a 

statistical model includes both. 

Therefore. up to this point (Exhibit 6) the actuary has developed only a pure premium. 

i.e.. an estimate of certain expected losses per unit of esposure. One could multiply this 

estimate (7.213) times the thrice adjusted exposures lo arrive at losses 084 for all 

accident years. Then one could subtract the losses paid, to arrive at losses lo be paid. 

However. there is no measure of how drastically the actual losses IO be paid might vary 

from those expected to be paid. Deriving such a measure by the use of a constrained 

least-squares model is the sub.ject of the next section. 

3) Constrained Least-Squares Estimation 

We will estimate a (7x I) vector p, representing the pure premiums of losses paid within 

the first through seventh scars. But our estimate will be constrained by our belief that the 

total pure premium, or the sum of the elements of 0, should equal 7.213. So rhe model 

whose parameters 0 and (J’ are to be estimated is: Y = Xp + e, where e - [0, crl I], subject 

to H,: RP=r. Appendix A explains these terms and derives the constrained estimator for 

p. In the present problem, the constraint that the elements of p sum to 7.213 is specified 

by having R as a (I x7) matrix of ones and r as the (I x I) matrix [7.2 131. 
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Exhibit 7 applies Appendix A to the problem. The regressor matrix XC,,,,, indicates that 

the paid loss during a given age should be proportional to the adjusted exposure. The 

constrained estimator g* is (transposed) [I.780 1.942 1.263 0.863 0.542 0.467 0.3551. 

The table below the model shows these values, along with their standard errors, t 

statistics, and significances. The standard errors are simply the square roots of the 

diagonal elements of the matrix Var[g*]. It can be seen that the standard errors increase 

with age. 

If we had not used the constraint, our estimate for l3 would have been (X’X)’ X’Y, which 

too is shown in Exhibit 7 as [I.173 I.934 1.253 0.850 0.525 0.440 0.2981, the sum of 

which is 7.073. So the constraint has caused a total increase of 2.0% in the estimate, 

which distributes by age as [ 0.4% 0.4% 0.8% 1.5% 3.3% 6.0% 19.3%]. 

This is a very important feature of constrained least-squares estimation. A constraint will 

impose a swing away from the unconstrained estimate in the path of least resistance, i.e., 

the estimate will change most where it has the highest variance. In this case, the total has 

to go from 7.073 to 7.213, or up by two percent. But most of this is achieved by 

increasing the pure premiums of the later ages, which have the highest standard errors and 

/ statistics, and have the lowest significances. This is as it ought to be. A payout pattern 

has to be calculated whenever losses are discounted. However, frequently pure premiums 

are derived from case-incurred development. It is not correct, for example, to derive a 

payout pattern where the paid-development pure premium is 1.00, to select an incurred- 
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development pure premium of 1.20, and then to assume that payouts by age will be as 

according to the paid-development pure premium, but scaled up by 20%. One should 

consider the relative uncertainty of the payouts by age, and scale accordingly. Usually 

this means that the payments at later ages will receive more scaling. 

Up to this point paid losses have been observed to the 841h month. In Exhibit 8 an attempt 

is made to project to ultimate. According to the rating bureau of the state in question, 

ninety percent of the losses should be paid by the 84” month. This implies that the pure 

premium for payments beyond the 84* month should be 0.801. This can be appended to 

g* to make it an (8x I) vector, but we need also to make Var[g*] an (8x8) matrix. The 

author had no data from which to estimate the variance of b*s4+. Since it was estimated 

from external data, it is reasonable to assume that its covariance with the other betas 

should be zero. One might argue that its variance should be great due to its great 

uncertainty. One the other hand, g*u+ represents the sum of many years of payments, 

and, though the variance of each year’s payment may be great, in the sum there is the 

possibility of cancellation. The author simply noted that g*II+ is approximately equal to 

the sum of P*R and B**, , and so took its variance to be the Var[g+, + g*J, which is 

0.136191-2*0.06894+.214445 = 0.213. 

The first page of Exhibit 9 shows the predicted values of the losses yet to be paid, i.e., 

those values which change the loss triangle into a loss rectangle (cf. Exhibit IO). Because 

all adjustments were made to the exposures, the prediction vector E[Y,]Y] = X$* is at 
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historical levels. Because there are thirty-six predictions, the variance of the predictions 

is a (36x36) matrix, and is shown on the second page of Exhibit 9. As shown in 

Appendix A, the formula for Var[Y,(Y] is X,Var[g*]Xd + &I,,. By referring back to 

Exhibit 7 one can see that the formula for Var[g*] has a o1 factor, and that a2 is 6.3~10~. 

The number of degrees of freedom in the denominator of the formula for o* is 28-7+1. 

As shown in Appendix A, each independent constraint adds a degree to this denominator, 

which serves to reduce c?. 

The elements of E[Y,]Y] are “wound around” the lower right triangle of the incremental 

table of Exhibit IO, and are accumulated in the next table. As to the bottom table of 

Exhibit IO, the standard deviation for Total 1988-1994 is the square root of the variance, 

which is the sum of all the elements in the upper left (28x28) submatrix of Var[Y,]Y]. 

The standard deviation for Total 1995 is the square root of the sum of all the elements in 

the lower right (8x8) submatrix of VarTy,]Y]. And the standard deviation of Grand Total 

is the square root of the sum of all the elements of Var[Y,]Y] itself. 

4) The Present Value of Future Losses 

Most yield curves are deceptive. When one hears, for example, that the 30-year treasury 

rate is 7.00%, this means that a 30-year treasury bond is selling at a price equal to the sum 

of its coupons and principal discounted at 7.00%. But only the final coupon and the 

principal is paid at the end of thirty years. The other coupons are received semi-annually 

13 



in the meantime. So the yield of 7.00% applies to a long stream of cash flows, and it is 

not necessarily true that a 30-year zero coupon bond should be discounted at 7.00%. 

However, the coupons and principals of bonds are atomized, or stripped, and packaged 

according to date. These are traded in a U.S. Treasury Strip market; and in investment 

periodicals, such as The Wall Street Journal and Barron’s, one can look up their yields, 

which are in effect yields on zero coupon bonds. Shown in the bottom table of Exhibit 1 I 

are strip yields as of 3 I Mar95, the evaluation date, and the derived discount factors. For 

example, 0.971 = (I .0603)“‘. The middle table of Exhibit I I assumes that payments 

within an age will on average occur midway through the age, except for payments after 

the 841h month, which are assumed to be paid at the 1021h month. These assumptions are 

merely commonsensical, do not unduly affect the outcome, and seem to be on the 

conservative side. 

Exhibit I2 shows the discounted value of the expected future losses. The “APaid” 

column is E[Y,]Y] from Exhibit 9. The “Time” and “Discount” columns come from 

Exhibit I I. For a time, t, greater than 6.5 years the discount factor is (1.0721)“. 

Therefore, the present, or discounted, value of the predicted paid losses is the product of 

the prediction and the discount factor. The discounted losses are “wound around” the 

lower right triangle of Exhibit 13. 
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Consider the “Discount” column of Exhibit I2 diagonalized to form the (36x36) matrix 

A. Then the “PV[APaid]” column can be expressed as AE[Y,]Y]. In fact, consider Y,]Y 

as a random vector, which it is. Then AY,IY is the random vector representing the 

present value of Y,IY, which we will call PV[Y,]Y]. But by basic theorems about random 

vectors, E[PV[Y,IY]] = E[AY,jY] = AEv,IY]. Moreover, Var[PV[Y,IY]] = Var[AY,IY] 

= hVarv,IY] A’. Although not shown in the exhibits, this (36x36) matrix was 

calculated. so that the numbers in the “Std Dev” column of Exhibit 13 could be 

calculated. The manner of this calculation is the same as that described in connection 

with Exhibit IO, except that the matrix used here is AVarw,IY] A’, instead of Var[Y,IY]. 

This is the correct way of discounting a random vector. The usual way is to apply a 

discount factor to the remaining expected payments of an accident year, with 

consideration of the age of the accident year. But this renders impossible the calculation 

of the variance of the discounted losses. 

Therefore, the present value of all unpaid losses incurred from 1988 to 1994, or 

incurrable in 1995, is $2,974,348, with a standard deviation of %565,639.4 The 

unbiasedness and the efficiency of least-squares estimation do not depend on the 

assumption that the error term is a normal variate. The assumption of normality is 

required only in connection with the I and F tests, on which no reliance was placed here. 

We can model the present value of all unpaid losses as a lognormal random variable with 

mean and standard deviation as given above. By the method of moments we find that the 

present value is e raised to the power of a normal random variable of mean 14.888 and 
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standard deviation of 0.188. Exhibit 14 shows confidence limits which follow therefrom. 

For example, if one wanted to be 90% confident of having enough assets on hand as of 

3 I Mar95 to make all future loss payments for claims which will have occurred on or 

before 3lMar96, then one would need $3,720,342. The reasoning is that 90% of the 

probability of a standard normal curve is below 1.282 (Z,). But our normal random 

variable Y = 14.888+0.1882. Therefore, Y, = 14.888+0.188x1.282 = 15.129. And e” I29 

= 3,720,342. 

The choice of a confidence level might be in the hands of the self-insured entity. An 

entity which had only $3,000,000 with which to fund its liabilities might press the actuary 

to opine that three million is adequate. If the actuary used traditional techniques he might 

figure thus: “I need I I5,000~8.014 = $93 1,960 for 1995 alone. According to the.chain 

ladder method (Exhibit 6), 1988-l 994 losses @84” will be $6,863,447. Since this is 90% 

of ultimate (Exhibit 8), the ultimate losses for 1988-1994 will be $7,626,052, of which 

$5,026,994 has already been paid. Thus I need $2,599,058 in reserve for l988- 1994; and 

the total with 1995 is $3,53 1,018. A reasonable 15% discount would bring this to the 

desired three million.” So a plausible argument exists for a three million dollar reserve. 

But if the actuary were to have Exhibit 14, he would realize that there is almost a 50% 

chance that the liability will be greater. Probably most actuaries would not want to opine 

“adequate” at this point, If the client persisted, at least the actuary could protect himself 

by opining that three million is adequate to cover the expected discounted loss, but that 

due to random variation, the probability of actual adequacy is less than 55%. 
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5) Conclusion 

The major point of this paper is that in self-insurance funding, where surplus may not 

exist and where discounting is common. the variance of the losses is as important as the 

expected value. The traditional techniques of loss development are unable to treat the 

variance. Statistical modeling is required, which just about means least-squares 

estimation. The traditional techniques need not be jettisoned; they can supply constraints 

to the least-squares estimation. Then the results, or the predictions, can be discounted 

without nullifying the variance estimates. Finally, the actuary can qualify his opinion 

along the [O,l] continuum of confidence level, rather.than be limited to the binary 

judgment of “adequate” or “not adequate.” 

Perhaps this is how all actuarial work ought to be, even in instances where surplus exists. 

If the liabilities of an insurance company were explicitly reserved in the aggregate to a 

sufftciently high confidence level, then the company would need little or no surplus. 

Either that, or else surplus could be redefined so as to include the “contingency reserve,” 

i.e., that amount by which the reserve exceeds the expected value of liability. This 

certainly would have far reaching implications to insurance regulation, and particularly to 

risk-based capital. 

17 



Notes 

’ The example in this paper is of individual self-insurance. Individual self-insurance of 
workers‘ compensation is permitted in all states except North Dakota and Wyoming [8. 
pp. l-51. Thirty-two states permit group self-insurance of workers’ compensation, 
whereby a number of employers (usually of similar businesses) jointly and severally pool 
their exposures. Group self-insurance is similar to individual self-insurance in that 
typically the pool is backed by little or no surplus. and reserves are discounted. In the 
event of a shortfall the members are assessed. 

’ These two methods are the first and fourth of Stanard’s methods [6, pp. 13Of.J. 

‘See Stanard [6, p. 1311 and Pntrik [5. pp. 352-3541. 

’ The self-insurers for whom the author has worked have all had per-occurrence excess 
and aggregate slop-loss reinsurance. This seems to be a legal requirement. Therefore. 
that the author evaluated the direct loss. rather than the net loss, is solely a conservative 
measure. Furthermore. with this self-insurer an attachment to a reinsurance layer was 
unlikely. 

Note also that the losses treated in this paper are esclusive of loss adjustment expense. 
Unallocated loss adjustment espense is usually a budgetary item. The author has treated 
allocated loss adjustment espensc (ALAE) as proportional to losses, assuming that the 
payout pattern is the same and that the correlation between losses and ALAE is 100 
percent. Both of these assumptions are conservative, since ALAE tends to be paid more 
slowly than losses and the variance of losses and ALAE together is maximized at a 100% 
correlation. 
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EXHIBIT 1 

Fund Data 

Year1 Agel Claims.1 Paid! APaid 
19881 121 1981 266.3541 266,354 
1988 24 203 432,926 166,572 
1988 36 203 465,255 32,329 
1988 48 203 518,865 53,610 
1988 60 203 526,989 0,124 
1988 72 203 543,913 16,924 
1988 84 203 583,022 39,109 
1989 12 213 246,981 246,981 
1989 24 233 606,361 359,380 
1989 36 234 835,377 229,016 
1989 48 234 904,916 69,539 
1989 60 234 1.023,551 118,635 
1909 72 234 1.123.843 100,292 
1990 12 164 203,178 203,178 
1990 24 213 578,946 375.768 
1990 36 213 855,563 276,617 
1990 48 213 930,475 74,912 
1990 60 213 1.016,903 86,428 
1991 12 207 395,630 395,630 
1991 24 207 656,273 260,643 
1991 36 207 823,982 167.709 
1991 48 207 1.094,674 270,692 
1992 12 206 207,698 207,698 
1992 24 206 382,313 174,615 
1992 36 206 544,953 162,640 
1993 12 197 167,681 167,681 
1993 24 209 447,859 280,178 
1994 12 120 215,740 215,740 

Adjusted to 1995 Benefit Level(OO) 

Year] Payroll1 Benefit Level1 Adj' Payroll 
19881 8.099.3861 1.134061 88.762.95 
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EXHIBIT2 

Development of Reported Claims 

Year Adj' Payroll @I2 
1988 W762.95 198 
1989 98.732.89 213 
1990 102562.07 164 
1991 108.094.36 207 
1992 114630.24 206 
1993 11EJ.4oo.19 197 
1994 112,951.32 1201 

Chain Ladder Method 

a24 @36 @48 6360 ~72 @I34 Frequency 
203 203 203 203 203 203 0.0023 
233 234 234 234 2341 234 0.0024 
213 213 213 2131 213 213 0.0021 
207 207 2071 207 207 207 0.0019 
206 2061 206 206 206 206 0.0018 
2091 209 209 209 209 209 0.0018 
129 129 129 129 129 129 0.0011 

Development Factor: 1.073 1.001 1.000 1 .ooo 1.000 1.000 

Additive Method 
Year1 Adj' Payroll1 6312 a24 @36 @48 @60 a72 czw 
19881 88.762.951 190 5 0 0 0 0 0 

3 213 20 
164 49 
207 0 
206 
197 
1201 

$I- 
Rate: 

Additive Method Accumulated 
Year1 Adj' Payroll1 6212 @24 @36 @?4r3 @SO @7i --*I- 

f 

19881 RR762951 196 203 203 203 203 20: 
234 1989 

1990 
1991 
1992 
1993 
IWA 

__,. _-._- 
90,732.09 

102,562.07 
108,094.36 
114630.24 
118.400.19 
113 951 33 

273 
164 
207 
206 

233 
213 
207 

234 
213 

197 
17nl 

207 

~-+r 
135 136 

234 
213 

%- 
209 
136 

206 
209 
136 

207 
206 
209 
136 
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EXHIBIT3 

Frequency Trend 

Year] Frequency1 Fitted 
1988) 0.00231 0.0024 

Year Payroll Adj' Payroll Claim Freq Adj' Payroll 
1988 8.099.386 88,762.95 0.0024 173.900.71 
1989 8.935838 98,732 89 0.0023 179,904.77 
1990 9.183,206 102562.07 0.0021 172.828.72 
1991 9,606.490 108.094.36 0.0019 167.339.89 
1992 10.136.257 114,830 24 0.0017 162.033.28 
1993 10.871.000 11&?,400.19 0.0016 150.847.22 
1994 11,353,832 112.951.32 0.0014 128.428.21 
1995 11,500,000 115,ooo.oo 0.0012 115.000.00 

' Adjusted to 1995 Benefit Level (00) 
2 Adjusted to 1995 Benefit and Frequency Levels (00) 
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EXHIBIT4 

Paid Loss Development 

Chain Ladder Method Chain Ladder Method 
Year Adj' Payroll Year1 Adj'Payroll( @12 @12 @24 @24 @36 @36 @I48 @I48 @SO @SO '@72 '@72 @84 Pure Prem @84 Pure Prem 
1988 19881 173.900.71 173.900.711 266,354 266,354 432,926 432,926 465,255 465,255 518.865 518.865 526,989 526,989 543,913 543,913 583.022 583.022 3.35 3.35 
1989 179.904.77 246,981 606,361 835,377 904,916 1,023,551 1,123,8431 1,204.651 204.651 6.70 6.70 
1990 172.828.72 203,178 578,946 855.563 930,475 1.016,903j 1,093.778 11172.424 1,172.424 6.78 6.78 
1991 167.339.89 395,630 656,273 823,982 1.094.674) 1,193.801 5-i 1.284,049 1.284,049 1.376.376 1.376.376 8.23 8.23 
1992 162,033.28 207,698 382,313 544,953[ 630,669 687.778 687.778 739,772 739,772 792.964 792,964 4.89 4.89 
1993 i50,847.22 167.681 447,8591 594,230 ti 687,696 687,696 749,970 749,970 806,665 806,665 864,667 864,667 5.73 5.73 
1994 128,428.21 215,7401 450,281 597,444 597,444 691,416 691,416 754,026 754,026 all.028 all.028 869,344 869,344 6.77 6.77 

Development Factor: 2.087 1.327 1.157 1.091 1.076 1.072 

Additive Method 
1 Year Adj2 Payroll 6312 a24 @36 6348 @‘30 a72 @a4 

1988 173,900.71 266,354 166,572 32,329 53,610 8,124 16,924 39,109 
1989 179.904.77 246.981 359.380 229,016 69,539 118,635 100.2921 40,459 
1990 172,828.72 203.178 375,768 276,617 74,912 86.428) 57,258 38.868 
1991 167,339.89 395,630 260,643 167,709 270.6921 67.741 55,440 37,634 
1992 162.033.28 207.698 174,615 162.6401 109,447 65,593 53.682 36,440 
1993 i50,847.22 167,681 2ao,i7al 153,015 101.892 61,065 49,976 33,924 
1994 128,428.21 215,7401 206,275 130,274 88.748 51,989 42,548 28.883 

1.500 1.606 1.014 0.675 0.405 0.331 0.225 

Additive Method Accumulated 
Year1 Adj' Payroll] @I12 a24 @36 6348 CD30 @72 @841 Pure Prem 
19881 173.900.711 266,354 432,926 465,255 518,865 526,989 543,913 583.0221 3.35 
1989 179,904.77 246,981 606,361 835,377 
1990 172,828.72 203,178 578,946 855.563 
1991 167.339.89 395,630 656,273 823.982 
1992 162.033.28 207.698 382.313 544.953 
1993 150.847.22 167.681 447,8591 600.874 702,766 763:830 813,806 847:731 5.62 
1994 128s428.21 215.7401 422,015 552,289 639,037 691,026 733,574 762,457 5.94 
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EXHIBIT 5 

Loss Trend 

Year1 Pure Preml Fitted 
19ael 3.351 5.38 

0.05622039 0.25142523 
14.9% 0.29749034 

0.87256611 5 
0.07722254 0.44250252 

Year] Payroll1 Adj' Payroll1 Adj' Payroll1 Pure Preml Adj' Payroll 
19881 8.099.3861 88,762.951 173.900.71~ 5.381 131,332.20 

' Adjusted to 1995 Benefit Level (00) 
2 Adjusted to 1995 Benefit and Frequency Levels (00) 
' Adjusted to 1995 Benefit, Frequency, and Trend Levels (00) 

5.61 
5.83 
6.06 
6.29 
6.52 
6.75 
7.12 
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vesr &if Payroll 

1966 131.332 20 
1989 141.672 24 

1390 141.677 29 

1991 142,577 99 

1992 143.265.56 
1993 136.261.75 

1964 121.65769 

Additive Melhod 

@12 @24 @I36 @46 860 @72 @64 
266.354 166.572 32.329 53.610 6.124 16.924 19.109 
246.961 359.360 229,016 68.539 118.635 100.2921 42 188 

203.176 175.768 276,617 74.912 66.4261 60.630 42.190 

395.630 260.643 167,709 270.6921 73.299 61,217 42,456 

207.696 174.615 162,640 120,526 73,663 61.520 42.669 
167.661 260.1761 171,372 116,302 71.060 59,363 41.173 

215.740~ 234,932 151.040 102,504 62,647 52,320 36.288 

Rat.3 1.773 1.926 1236 0.641 0.514 0.429 0.296 

Tolal 960.664.75 1.703.262 3.555350 4.746.074 5.554.161 6.046.037 6.460.504 6,746.577 

Pure Premium: 7.023 

Payout Ralios lo 84’ 

@I12 @24 @,36 @46 @60 @72 @64 

Chain Ladder 1.703.262 3.554.959 4.716.604 5.456.711 5.953.019 6.403.046 6.663,447 

AdMvs 1.703.262 3.555350 4.746.074 5.554.16, 6.046.037 6.460.504 6.746.577 

S”lll X406.524 7.110.310 6.462.677 ,1.012.672 ,2.00,.055 12.663.552 13.610.024 
Pap”, 25.0% 52.2% 69.5% 60.6% 66.2% 94.5% IOO.OX 

Cape Ccd (Smard-Buhlmann) Method 
K¶ar Ad,’ myroll Latest Age Later, hid Payout Payroll Nloc 

,966 131.33220 64 563,022 100.0% 131.332.20 

,666 141.672.24 72 1.123.643 94 5% 133.901.91 
1990 141.67726 60 ,.0,6.903 86 2% 124.628.26 
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EXHNT 7 

Constrained Regression 
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EXHIBIT 6 

64th to Ultimate 

Pure Premium at 64” 
Ratio to Ultimate 
Pure Premium at Ultimate 
1164+ 
Var[p84+] 
Sld[p64+] 

[)I2 
lJ24 
1136 
1148 
1~60 
p72 
P84 

According to collateral data, payments @04” are about 90% of ultimate. So: 

7.213 
90% 

6.014 
0.601 
0.213 
0.461 P WP’I 

0.044096 -0.00266 -0.00342 -0.00432 -0.00565 -0.00899 -0.01946 
-0.00286 0.050215 -0.00385 -0.00486 -0.00659 -0.01013 -0.02192 
-0.00342 -0.00365 0.059236 -0.00561 -0.00767 
-0.00432 -0.00466 -0.00561 0.073349 -0.00995 
-0.00565 -0.00859 -0.00707 -0.00995 0.095005 -0.02072 -0.04483 

-0.0153 -0.02072 0.136191 -0.06694 
-0.0331 -0.04463 -0.06694 0.214445 
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EXHIBIT9 

Predictionoflhpaid Losses 

E[Y.(Y](36xl) 
Year1 Adj' Payrollj Age1 i\Paid 
19881 131.332.201 >84( 105.254 
1989 141i672.24 84 
1989 141.872.24 >84 
1990 141.677.29 72 
1990 141.677.29 84 
199G 141.67729 .64 
1991 142.577.99 60 
1991 142.577.99 72 
1991 142.577.99 84 
1991 142.677.99 .84 
1992 143.285.58 48 
1992 143.285.58 60 
1992 143.285.58 72 
1992 143.285.58 84 
1992 143.285.58 =+4 
1993 138.261.75 36 

1993 138:261.75 72 
1993 138.261.75 El 
1993 138.261.75 =+A 
1994 121.85769 24 
1994 121.85769 36 
1994 121,85769 48 
1994 121.85769 60 
1994 121.857.69 72 
1994 121.857.69 84 
1994 121.857.69 ~64 
1995 115.000.00 12 
1995 115.000.00 24 
1995 115.00000 36 
1995 li5.000.00 48 
1995 115.000.00 60 
1995 115.000.00 72 
1995 115.000.00 64 

50.335 
113.541 

66.144 
50,337 

113,545 
77,289 
66,565 
50.657 

114.267 
123.692 

77,672 
66,895 
50.908 

114.834 
174,622 
119.355 

74,949 
64.550 
49.123 

110.808 
236,661 
153.904 
105.194 
66.057 
56.691 
43,295 
97,661 

204,739 
223,342 
145,243 

99,274 
62,339 
53,690 
40,858 

19951 115.000.00~ a841 92.1651 

PI2 p24 PI6 
X.(36x8) 
p48 P60 072 p84 p84 

131332. 
141672.2 

141672. 
141677.3 

141677.3 
141677. 

142578 
142578 

142578 
14257 

1432856 
1432856 

143285.6 
143285.6 

143285. 
138261.7 

138261.7 
138261.7 

138261.7 
1382617 

138261. 
121857.7 

121857.7 
121857.7 

121857.7 
121857.7 

1218577 
121857. 

115000 
115000 

115000 
115000 

115000 
115000 

115000 
11500 
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EXHIBIT 10 

Ultimate Losses 

Incremental 
Year1 6312 a24 @36 @48 6930 a72 co84 
19881 266,354 166,572 32,329 53,610 8,124 16,924 39,101 

I5 
r 50.337 

113,541 
113,545 
114,267 
114,834 
110,808 

97,661 
92.165 

Cumulative 
Year 6212 @24 @36 @48 @?30 a72 @84 @U 
1988 266,354 432,926 465,255 518,865 526,989 543,913 583.0221 688,276 
1989 246,981 606,361 835,377 904,916 1.023,551 1.123.8431 1.174.176 1.287.719 
1990 203.176 578,946 855,563 930,475 1,016.9031 1.083.047 1,133.384 1.246.929 
1991 395.630 656,273 823,982 1,094.674) 1,171.963 1.238.528 1,289,184 1,403.452 
1992 207,698 382,313 544,9531 668,645 746,318 813,213 884,121 978,955 

1993 167,681 447,859 622,481 741,836 016.785 881,335 930,458 1,041,266 
1994 215,7401 452,401 606,305 711,499 777,556 834,447 877,742 975,403 
1995 204,739 428,082 573,324 672,599 734,938 788,628 829,486 921,651 

ITotal 1988-1994: 
Paid1 E[Unpald]l Std Dev 

1 5.026.9941 2,595,0061 657,623 
Total 1995: 
Grand Total: 
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EXHIBIT 11 

Yield Information 

Year 
1988 
1989 

a24 

Predicted Payments 

@36 @48 @‘33 a72 @84 84+ 
1 105.254 

I 50,335 113,541 
1990 
1991 
1992 
1993 
1994 
1995 7ClA 7% 773 347 1 A5 243 99 274 62 339 53 690 A0 858 92 165 

Year I co12 a24 

Payment Time from 31Dec94 

@36 @48 @f30 a72 @84 84+ 
1.5 

0.5 2.5 
1988 
1989 
1990 1 

1991 
1992 
1993 
1994 
1995 

ITime ( 0.5 
U.S. Treasury Strip Yields as of 31Mar95 
1.5 2.5 3.5 4.5 5.5 6.5 >6.5 

I I Matunty Aug1995 Aug1996 Aug1997 Aug1998 Aug1999 Aug2000 Aug2001 Aug2002 
Yield 6.03% 6.36% 6.84% 6.99% 7.04% 7.14% 7.15% 7.21% 

Discount 1 0.971 0.912 0.848 0.789 0.736 0.684 0.638 Variable 
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EXHIBIT12 

Present Value of Unpaid Losses 

Year1 Age] Time1 APaid Discount] PV(APaid] 
19881 >841 1.51 105,2541 0.9121 95,956 
1989 84 0.5 50,335 0.971 48.883 
1989 >84 2.5 113,541 0.848 96,232 
1990 72 0.5 66,144 0.971 64,236 
1990 84 1.5 50,337 0.912 45,890 
1990 >84 3.5 113,545 0.789 89,633 
1991 60 0.5 77,289 0.971 75,059 
1991 72 1.5 66,565 0.912 60,685 
1991 64 2.5 50,657 0.848 42,934 
1991 >84 4.5 114.267 0.736 84,133 
1992 48 0.5 123,692 0.971 120,123 
1992 60 1.5 77.672 0.912 70,811 
1992 72 2.5 66,895 0.848 56,697 
1992 84 3.5 50,908 0.789 40,187 
1992 >84 5.5 114,834 0.684 78,585 
1993 36 0.5 174,622 0.971 169,584 
1993 48 1.5 119,355 0.912 108,811 
1993 60 2.5 74,949 0.848 63,523 
1993 72 3.5 64,550 0.789 50,956 
1993 84 4.5 49,123 0.736 36,168 
1993 >84 6.5 110,808 0.638 70.733 
1994 24 0.5 236,661 0.971 229,833 
1994 36 1.5 153,904 0.912 140,308 
1994 48 2.5 105,194 0.848 89,157 
1994 60 3.5 66,057 0.789 52,145 
1994 72 4.5 56,891 0.736 41.888 
1994 84 5.5 43,295 0.684 29,628 
1994 >84 7.5 97,661 0.593 57,937 
1995 12 0.5 204,739 0.971 198,832 
1995 24 1.5 223,342 0.912 203,612 
1995 36 2.5 145,243 0.848 123,100 
1995 48 3.5 99,274 0.789 78,368 
1995 60 4.5 62,339 0.736 45,899 
1995 72 5.5 53,690 0.684 36,742 
1995 84 6.5 40,858 0.638 26.081 
1995 >84 1 8.51 92,165l 0.5531 51,oooJ 
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EXHIBIT13 

DiscountedUnpaidLosses 

I YearI la12 fii124 
Incremental Losses 

rim6 fa48 riiml 6172 fiiI.94 &l+l ___. v._ v_ v.. v - v.. v- v- 
1988 1 95.956 

1989 40,003 96,232 

1990 1 64,236 45,890 89,633 
1991 

1 120,123 
1 75,059 60.685 42,934 04.133 

1992 70.811 56,697 40,107 78,505 

1993 1 169.584 108,811 63,523 50,956 36,168 70,733 

1994 1 229,833 140.308 89,157 52,145 41,808 29,628 57,937 

1995 198.832 203,612 123,100 70,360 45,899 38,742 26.081 51,000 
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EXHIBIT 14 

Lognormal Confidence Limits 

X - e”, where Y - N(r~.o’) 

WI 2,974,348 
Std[X] 565,639 
CWl 0.190 
(y 0.036 
0 0.188 
1’ 14.888 

Confidence (p)l z,] Y,I X0 
99.5%1 2.5761 15 3731 4.748.221 
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Appendix A: Constrained Least-Squares Estimation 

For another treatment of this subject see Judge [3, pp. 235-2401. If the reader needs to 

revjew matrix algebra, Judge’s Appendix A [3, pp. 919-9831 is recommended. 

The problem is to estimate g in the model Y = Xp + c, under the hypothesis, or 

constraint, H,: RP = r. Y,,,,, is observed; Xuxli) is the design, or regressor, matrix, and the 

rank of X is k. The error term e is a (txl) random vector whose mean is O(t”t) and whose 

variance is 0’1, (I, is a (txt) identity matrix). Let R be Cjxk) and of rank j. This means 

that the j rows of R, each of which is a constraint on p, are independent of each other. 

As a consequence of their being of full rank, both XX,,,,, and RR’ti,j, are nonsingular. 

This implies that {p: RP = } r IS not empty, because one solution is p = R’(RR’)“r. X’X 

and RR’ are also positive definite (Judge [3, pp. 96Of.l). j I k; otherwise, the rank of R 

could not be j. These conditions guarantee that R(X’X)“ R’(i~j) is nonsingular, so we will 

define H = (R(X’X)” R’)“. 

The object is to find the g which minimizes (Y - Xg)‘(Y - X(3) subject to the constraint 

Optimization under constraint is accomplished by the Lagrange multiplier I&,,: 
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A(/3J) = (Y - Xf3)‘(Y - Xp) + 2/l’(Rp-r) 

$=2X’XP-2XY+2R’1 

g=2(RP-r) 

For a treatment of the roles of matrix differentiation see Judge [3, pp.967-9691. A similar 

use of the Lagrange multiplier is found in Halliwell [2, Appendix A]. The optimization is 

accomplished by setting the derivatives to 0 and solving for p* and h-*: 

Xm + +R’l’ = XY 
RP*=r 

It is convenient to view this as one equation in partitioned matrices: 

[s” :][::]=[“:1 
[;;]=[y JJJ:‘] 

defined above. One can verify that this is the inverse by multiplying it by the matrix and 

coming out with an identity matrix. The value of h* does not concern us; but: 

p*=(I, -(XX)-‘R’HR)(X’X)“X’Y+(XIX)m’R’Hr 

= M(XX)-‘XY+(XX)-‘R’Hr 

The matrix M = I,-(X’X)“R’HR is important, and some of its properties need to be 

appreciated. First, RM = Ouxrj, because RM = R[I,-(XX).‘R’HR] = R - R(X’X)-‘R’HR = 
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R - K’HR = R - R = 0. Second MM = M, because MM =[I,-(X’X).‘R’HR]M = M - 

(XIX)-‘R’HRM = M - (X’X)“R’H(O) = M. This is to say that M is idempotent. Finally, 

M(X’X)-’ = (XIX)-’ - (X’X)“R’HR(X’X)-‘, which is symmetric. Therefore, M(X’X)” 

=[M(X’X)-‘1’ = (XX)-’ M’. 

As a check, RP* = R[M(X’X)“X’Y + (X’X)‘R’Hr] = 0 + R(X’X)-‘R’Hr = H-‘Hr = r. 

We will now derive the mean and the variance of p*: 

p* = M(X’X)-‘XY +(Xx)-‘R’Hr 

= M(X’X)-‘X’{X/?+e)+(XX)-‘R’Hr 

= Mp + M(X’X)“ X’e c (XX)-’ R’Hr 

= (I, -(XW)-‘R’HR)P+ M(X’X)-‘X’e+(X’X)-‘R’Hr 

=p+M(X’X)-‘X’e+(X’X)“R’Hr-(XX)-‘R’HRP 

=p+ M(X!Y)-‘X’e-(XT)-‘R’H(RP-r) 

=p+ M(X!Y)-‘X’e-(XX)-‘R’H(0) 

= fl+ M(X!Y)-‘X’e 

The simplification of the last two lines rests upon the truth of the hypothesis Ho: RP=r. In 

the remainder of the analysis the truth of H, is implicit. 

Since E[e] = 0, E[P*] = p, so p* is unbiased (given H,). Moreover, Var[p*] = 

Var[M(X’X)*‘X’e] = M(X’X)?CVar[e]X(X’X)‘M’ (cf. Judge [3 p. 42-441 and Halliwell 

[2, p. 31) = M(XX)-‘X’(o*I’)X(X’X)-‘M’ = 02M(XX)-‘X’X(X’X)“M’ = o’M(X’X)‘M’ = 

a2MM(X’X)“ = o’M(X’X)“. 
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The variance of the unconstrained estimator 0 = (XIX).‘X’Y is 02(X’X)“. So the 

difference between the two variances Var[p]-Var[p*] = o’(X’X).’ - o’M(X’X)-’ = o’(I,- 

M)(X’X)” = a2(X’X).‘R’HR(X*X)-’ > O(,.,,. The meaning of the matrix inequality is that 

the matrix before it is positive definite (cf. Judge [3 p.2391). Therefore, Var[P] > 

Var[p*]. As expected, constraining p leads to a tighter estimator. 

Let us now treat the fitted and residual vectors. The fitted vector is Ye = Xg*. The 

residual vector is e* = Y-Y* = Xb+e-XP * = e-X(/3*-p) = e-X[M(X’X)“X’e] = (I,- 

XM(X’X)“X’)e = (I,- X(X,X)-‘M’X’)e = Ne. The matrix N is both symmetric and 

idempotent; therefore, Var[e*] = Varpe] = NVar[e]N’ = 02NN’ = cr2N. The sum of the 

squared residuals is e*‘e* = e’N’Ne = e’Ne. The expectation of e’Ne will be o2 times the 

degrees of freedom. To take the expectation one must know the trace operator and its 

properties (Judge [3 pp. 926-9281). 

The trace of a matrix is a (I x 1) matrix whose element is the sum of the diagonal elements 

of the matrix. Obviously Tr[A+B] = Tr[A]+Tr[B]. But also it can be shown that as long 

as the matrices are conformable to multiplication, Tr[ABJ=Tr[BA]. Hence, 
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Tr[N] = Tr[l, - XM(X’X)-‘X’] 

= Tr[l,]- Tr[XM(X’X)-‘X’] 

= [t]- Tr[XM(X!Y)-‘X’] 

=[f]-Tr[M(X’X)-‘XX] 

=[I]-Tr[M] 

=[,I-Tr[I, -(XX)-‘R’HR] 

=[t]-[k]+Tr[(X’X)-‘R’HR] 

=[I]-[k]+Tr[R(X’X)-‘R’H] 

= [I]-[k]+ Tr[H-‘K] 

= [f]-[k]+Tr[/,] 

= [I] - [k] + [i] 
=[I-k+j] 

Therefore, 

E[e l ’ e*] = E[e’Ne] 

= E[Tr[e’Ne]] 
= E[Tr[Nee’]] 
= Tr[ E[ Nee’]] 
= Tr[NE[ee’]] 
= Tr[NVur[e]] 

= Tr[Na2f,] 

= a2Tr[N] 

=02[t-k+ j] 

The j independent constraints add j degrees of freedom. The estimator e*‘e*/(t-k+j) is, 

therefore. an unbiased estimator of 02. 

With estimates of p and a2 in hand, one can build predictions from a prediction design 

matrix X0. According to the model Y,, = Xop + e. = X$* + [e. -X”(p*-P)] = &,P* + h. b 

is an error term with mean 0. Because there is no covariance between e. and p*, Var[h] = 
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Var[eo] +Varfi,p*] = 021 + X,Var[p*] q. Hence, EflolYl = X$* and Var[Y,IY] = 

x,var[p*] x,’ + 021. 

An important property is tbe lack of covariance between p* and e*: 

Cm@*, e*] = Cov[p l -p, e*] 

= Cov[ M(X’X)-’ X’e, (I, - XM(X’X)-‘X’)e] 

= M(XIX)-‘X’Cov[e, e](l, - X(Xx)-‘M’X’) 

= CT* M(X’X)-‘X’(f, -X(X*X)-’ M’X’) 

=a’M(X’X)-IX’-dM(X’X)-‘MIX’ 

= u2 M(X’X)-’ X’ - o= MM(X’X)-’ X’ 

=a2M(X’X)-‘Xl-u2M(X’X)-‘X’ 

= o(r.r) 

Both p* and e* are linear functions of e; so if e is multivariate normal, then so too are p* 

and e* (Anderson [ 1, pp. 24-261). And there is a theorem that if two normal random 

vectors are of zero covariance, then they are independent (Anderson [I, pp. 26-291 and 

Judge [3, p. SO]). Moreover, if e is multivariate normal with variance 021,, then e*‘e*/02 

is X2-distributed with t-k+j degrees of freedom (Judge [3, p. 52]), and still independent of 

P’. This means that P *-P I N[“c,x”’ M(X’X)-‘l, w,,ere numerator md 

denominator are independent. This is a multivariate form of a f-distributed random 

vector, and the basis for tbe I test. But this test is appropriate only if the error term is 

normally distributed. 
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One statistic which may be inapplicable in a constrained model is the r2 statistic, which is 

(Y*‘Y*)/(Y’Y). By definition, Y = Y++e*. Therefore, Y’Y =( Y*+e+)‘(Y*+e*) = 

Y+‘Y*+2Y+‘e*+e*‘e*. In the unconstrained model it is guaranteed that Y*‘e* = O,,,,,, so 

Y’Y = Y*‘Y*+e*‘e*, and 0 < r2 = Y*‘Y*/ Y’Y < 1. But in a constrained model: 

y *’ e* = (**)‘e * 

=p*‘X’e* 

=p+‘XNe 

= p +’ X’(I, -X(xX)-’ M’X’)e 
= f3 *’ (X’ - M’X’)e 
= 0 *‘(I, - M’)X’e 

= p *‘(R’HR(X’X)-‘)X’e 

= (p+ M(XXm’X’e)‘R’HR(X’X)-’ X’e 

= (p’ + e’X(XX)-’ M’)R’HR(X’X)-’ X’e 

= P’R’HR(X’X)-‘X’e+e’X(X’X)-’ M’R’HR(X’X)-‘X’e 

=P’R’HR(X’X)-‘X’e+e’X(XW)m’(RM)‘(X’X)-’X’e 

= P’R’HR(X’X)m’X’e+e’X(X’X)-‘(0)‘(X’X)-’X’e 

= P’R’HR( X X)-’ X’e 

=(R/?)‘HR(XX)-‘Xk 

= r’HR(X’X)-‘X’e 

The expectation of Y*‘e* is 0; however, Y*‘e* is guaranteed to be zero if and only if its 

variance is 0. So, 

Var[Y*‘e*]=r’HR(X’X)-‘X’Vur[e]X(X’X)-’R’Hr 

= a’r’HR(X’X)- R’Hr 

= &r’HH-‘Hr 

= u”r’tfr 

Since o2 is not zero, this variance is zero if and only if r = OaX,,, which will happen if and 

only if OCrXIj E {p: Rg = r}. So if the constraint excludes the origin of the P-space, then 

the r2 statistic is inapplicable. 
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One can consider the unconstrained model as a special case of the constrained, viz., 

unconstrained as having zero constraints. Then R is (Oxk) and r is (0x1). The author 

helieves that matrices with a zero dimension can be consistently detined, though he has 

not seen the idea in print. Nonetheless. a matrix with a zero dimension has to be of rank 

zero. So R(X’X)-‘R’ is a (0x0) matrix. and one can argue that its inverse, which is H. 

exists. Then Var[Y*‘e*] is a (Ix I) matrix one of whose factors is of rank 0; and 

therefore it is of rank zero. and hence O,,.,,. In passing. note that if the number of 

constraints is zero. then M = I,. and p* = (X’X).‘X’Y, as it should. 

Appendix B will show how to transform a constrained model into an unconstrained one. 

as a result of which the r’ of the unconstrained model can he taken as the r2 of the 

constrained. 
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Appendix B: Transforming a Constrained Model 

This appendix presupposes Appendix A, and is an alternative to the constrained 

regression of Exhibit 7. 

Consider the constraint on 0: RP = r, where R is Cjxk) and of rank j, p is (kxl), and r is 

(jxl). As mentioned in Appendix A, one solution for B is R’(RR’)‘r. R’(RR’)-’ is an 

example of a generalized, or Penrose-Moore, inverse of R, and is denoted as R+ (cf. Judge 

[3, pp. 939f.l). Therefore, R(P- R’r) = RP- RR+r = r-Ijr = Oti.t,. 

From theorems of matrix rank it can be shown that all the members of (5: R< = 0) are of 

the form c=Wy, where W is (kx[k-j]) of rank k-j such that RW=O, and where y is any ([k- 

j]xl) vector. In other words, we know the existence of a one-to-one matching between 

the points of k-space which satisfy the constraint and the points of [k-j]-space. 

The transformation of the model is: 

Y=XP+e subjecttoH,:R/3=r 

Y - XR’r = X(p - R’r) + e still subject to HO 

Y - XR’r = XWy + e without consh-ainf on y 

The design matrix of the transformed model is XWo,tLI1r, necessarily of rank k-j. One 

can estimate y = ](XW)‘(XW)]“(XW)‘(Y-XR’r), and then transform back to p* = 

Wy+R’r. 
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Let us take the example of Exhibit 7, and transform it. R = [I 1 I I 1 I I] and r = 

[7.2 131. Therefore, R+r = R’(M)-‘r is a (7x I) matrix each of whose elements is 7.2 l3/7 

= 1.0304. [k-j] = [7-l] = 6, so a (7x6) matrix, W, of rank 6 is needed such that RW=O. 

Of the many suitable matrices perhaps the most simple is: 

w= 

The transformed model is: 

Y, = X,y+e 

whereY, =Y-XR’r 

and X, L28r6)= xw 

-0.1672 
:. Y(6xl) = fx, x,)-‘x, ‘! = -o,4883 ‘I I 

cr2 =($-X,y)‘(y;-X,y)l(28-6)=6.27166x109 

0.0502 -0.0038 -0.0049 
-0.0038 0.0592 -0.0058 

Var[y] 02(X,’ X,)-l 
-0.0049 -0.0058 0.0733 

= = 
-0.0066 -0.0079 -0.0099 
-0.0101 -0.0121 -0.0153 
-0.02 19 -0.0262 -0.033 1 

-I -1 -1 -1 -1 -1 

100000 
0 1 0 0 0 0 

0 0 1 0 0 0 
0 0 0 1 0 0 

000010 
000001 

-0.0066 -0.0101 -0.0219 
-0.0079 -0.0121 -0.0262 

-0.0099 -0.0153 -0.033 1 
0.0958 -0.0207 -0.0448 

-0.0207 0.1362 -0.0689 
-0.0448 -0.0689 0.2144 
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Finally, transforming back, p* = Wy + R’r = 

1.780 
1.942 
1.263 

0.863 , as agrees with Exhibit 7. One can 

0.542 
0.467 
0.355 

also verify that Var[p+] = Var[Wy] = WVar[y]w’ will agree with the Var[p*] of Exhibit 

7. 

As mentioned in Appendix A, r2 is ill defined in most constrained models, as is the case 

with the model of Exhibit 7. However, the transformed model has an r2 = [(X,y)‘(X;u)] / 

[Y,’ Y,], which is 60.7%. It seems reasonable to attribute this r2 to the untransformed 

model as well. 
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