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ABSTRACT:

Actuaries are often confronted with conflicting data and information. In
trend analysis, ordinary least squares regression techniques do not allow
for the introduction of any extranecus information, conflictirng or not.
Credibility methods have been proposed to solve this shortcoming but have
not been widely accepted.

Mpaperdlscmss&stheusecfanmtrlctechmque, known as mixed
estimation, to incorporate pricr information directly into the
specification of the trernd model. The resultant parameter estimates are
credibility weighted estimates. Mixed estimation goes ane step further
by generating a test statistic to test the compatibility of the data and
the camplement information. An effort has been made to keep theory and
notation to a minimm, emphasizing practical application of the
technique.
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2An Application to the Credibility of Trend

INTRODUCTION

The Probiem at Hand. In many aspects of actuarial analysis, the actuary
must measure an underlying trend in order to make a projection. Examples
include ratemaking ard forecasting. In trend analysis, actuaries are often
faced with data that is not sufficiently credible. Alternatively, actuaries
are often faced with various sources of information (data or cotherwise), each
seemingly plausible and perhaps even credible, that yield different trend
estimates. Further, the actuary is not well equipped when rigorous
statistical or numerical estimates of trend disagree with g priori beliefs.

Ordinary least squares regression is the technique most often used in
trerd analysis. Standard regression models provide a wealth of statistics to
measure goodness of fit. Regression models do not, however, tell the actuary
how credible the resultant trerd estimate is. Nor can regression models
incorporate conflicting pieces of information directly into the specification
of a trend model.

The Proposed Solution. In 1961, Theil and Goldberger {8] faced a similar
problem in the estimation of price elasticities. Theil and Goldberger note
that when a model provides estimated parameters that are counter intuitive,
the model is most often changed or discarded. If intuition (or, more
generally, any alternative information) is so strong, they argue that it is

more logical to incorporate the alternative information into the estimation
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knowledge.
Theil and Goldberger propose a generalized least sguares technique that
directly incorporates alternative information in the form of linear

constraints to overcome the shortcomings of standard regression analysis. The
solution they found results in parameter estimates
case) that are in fact credibility weighted parameters where the credibility
weights are determined based on the relative error variances from the original
and complement estimates. 1In a later paper Theil ([7] proposes a test
statistic to measure the compatibility of the complement information.

This paper presents an application of Theil-Goldberger mixed estimation
to the calculation of trends. After a review of current credibility
techniques as applied to trends, this paper discusses the formulation of the
mixed estimation model, and offers some examples of the application of the
methodology in practice. Throughout this paper an attempt has been made to

move the more serious mathematics to the appendix and concentrate on concepts

and examples in the body of the paper.

AN OVERVIEW of CREDIBILITY as APPLIED to TREND
There are a number of examples of trend procedures utilizing credibility,
both in practice and in literature. Despite the examples, credibility as
applied to trend has not been widely used. Following is a brief survey of a

few of the examples the authors have found.

ISO. The Insurance Services Office uses a credibility routine in its
trend analysis for private passenger auto [2]. ISO starts with three years of

paid data for claims costs and six years of data for frequency. Values are
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exponential model is fit to the frequency and severity data on both a
countrywide and a statewide basis. State trends are credibility weighted with
countrywide. State credibility for a given coverage is based on the number of

claims in the year ending in the most recent quarter. A classical credibility

approach is used with full credibility assumed at 10,623 claims for each

coverage. Partial credibility is tabular and based on the square root rule.
Weighted trend estimates are capped at certain minimms and maximums.

The ISO technique is not the most theoretically appealing. It relegates
credibility to a component in a series of mechanical decision rules.
Furthermore, classical credibility is usually held in lower regard than
Bayesian approaches. ©On the other hand, the ISO method has the advantage of

simplicity in application.

NCCI. The National Council on Compensation Insurance uses a credibility
procedure in conjunction with trend factors for adjusted loss ratios [5]. The
NCCI trend procedure has undergone change over the past few years.
Previously, credibility was assigned based on the Spearman D-statistic.
Currently credibility is assigned based on the magnitude of the standard error
of the regression as a percent of the projected point. Full credibility
exists when this cquantity is less than or equal to .0006. This standard
presumably leads to a 90% probability that the actual loss ratio will be
within 6% of the projection. A square root rule is used for partial
credibility. For medical benefits, the balance of the credibility is assigned
to the countrywide trend. For indemnity, the complement is unity.

The NCCI methodology retains the classical approach adopted by ISO.

Here, however, full credibility is based on what amounts to the width of a
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method is similar in nature to one proposed by Gary Venter.

Venter. In his paper, "Classical Partial Credibility with Application to
Trend" [10], Mr. Vernter rightly identifies classical partial credibilities as
nothing more than the ratio of two confidence intervals. For example, if we
wish to be within 5% (desired confidence interval width) of the true
projection 90% of the time and our regression yields a 90% confidence interval
width that is 10% of our projected point, ﬁle partial credibility is 50%
(5%/10%). In this way, as Venter points out, volume is only important in as
much as it affects the goodness of fit of the regression line.

Venter's technique is simple in application and has a greater theoretical
appeal. It's main disadvantages stem from its classical credibility approach,
disadvantages enumerated by Mr. Venter himself. In this, like all classical
approaches, the greatest downfall is the degree of subjective Jjudgement
required. In addition, credibility is only meaningful in reference to a

projected point, rather than the underlying trend.

Van Slyke. In an article that actually preceded Venter's, O.E. Van
Slyke authored "Credibility-Weighted Trend Factors" ([9]. Van Slyke's wvaper
presents a Bayesian formula for the partial credibility of a trend factor.
Partial credibility is calculated based on the relative variance between
alternative estimates. In the example given the competing models are trend
and no trend (average). If we let v, be the variance of the straight average
and Vi be the variance of the projected point, the partial credibility of the
trend estimate is:
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(V) + (V)

The above formula has the greatest theoretical appeal of all examples

presented here. It is unfortunate that this work has not been widely used in

practice. We will show that the above formuila is the same as the one advanced

in this paper, with the exception that we will replace Va with a variance
from an alternative trend model (Van Slyke hints at, but stops short of,
formulating the above for the case where the alternative model is ancther
estimate of trend) and Ve with the regression error variance.

Our formulation will be done in the context of, and in reference to, an
econcmetric model rather than an actuarial one. Mixed estimation will extend
credibility procedures by incorporating the complement information,
statistical or otherwise, directly into the specification of the trend model.
The procedure will transcend current credibility techniques by testing the

campatibility of the complement information.

DEVELOPMENT of MIXED ESTIMATION
Background. In econometric analysis, it is not uncommon that a
regression equation yields results which are not consistent with a priori
expectations. The a priori expectations may be derived from theoretical
considerations. For example, when a demand function is estimated, economic
theory requires that the sum of all price and income elasticities must be
zero. Also, we expect that price elasticities of demand are negative, and

income elasticities are positive.
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Alternatively, pricr expectations may come from previous s
analysis or ancther independent sample of information. For example, a prior
statistical analysis may provide an estimate of the coefficients of a
production function. In a demand study, we may have two samples of

cbservations. Since both samples provide information on price elasticities,

similtanecusly to the estimation process.

Conventional regression anélysis does not allow alternative information
to be incorporated into the model. VYet, the existence of the a priori
information is precisely the reason that the regression results may be
rejected, or the alternative information must be rejected in light of the new
sample data.

Mixed estimation is a generalized regression technique, pioneered by
Theil and Goldberger, that provides an intuitive credibility weighting, or
melding, of alternative information. Theil and Goldberger's work is an
extension of the work dene by Durbin [1], which proposed an approach for
pooling time series and cross sectional data.

Following is a brief description of the mixed estimation process. The
reader is referred to Appendices A and B which summarize Ordinary and

Generalized Ieast Squares, in matrix notation.

Model Specification. Assume we have sample of observations which satisfy

the following linear relationship:
y=X¥ +u

where y = n x 1 vector of the dependent variable,
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X = n X K matrix of explanatory variables (k < n),

™
Il

k x 1 vector of parameters to be estimateq,

n x 1 vector of residuals

e
It

such that E{(u) = 0 and E(uwu') = Q. Note that the above assumptions are
identical to the assumptions of Generalized Ieast Squares (GIS) model as
defined in Appendix B.

Additional information on g is available. This alternative, or
extraneous information may be of the form of statistical data, or simply an a

priori estimate of B and may be stated in the form of linear restrictions as:
r=R8+vV

where r is a g x 1 vector, R is a g x k matrix, and v is a g x 1 vector such
that E(v) = 0 and E(wW') = Z.

To estimate B, we can use the sample information alone, in which case the
GIS estimator (Appendix B) is the best linear unbiased estimate. However, the
sample and extraneous information may be combined from the beginning by

specifying the model as:
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The mixed estimate of B is obtained by applying GIS to the above model and

provides the following best linear unbiased estimate:
~ — - - - —
F=rxox+re R Ixaly + 2y (L

The formula for the mixed estimate can be simplified if we make some
additional assumptions. If we assume that the u's are mutually independent
with a common variance o, and the v's are mrtually independent with a common
variance ovz, then E(m') = Q = oI and E(w') =Z =0T . The mixed

estimator, E’, then simplifies to:
"’ -1
B = [(1/¢7u’)(X'X)ﬂ“(l/ﬂvz ) (R'R)] [(1/Uuz ) (X'Y)+(1/0) (R'T)] - (2)

In formula (2) it can be seen that the mixed estimator is weighting together
the components of two regressions with weights equal to the inverse of their
respective error variances.

If there is only a single piece of extraneous information, such as an a

priori opinion of Bl, the first element of B, then the mixed estimate becomes

A
- _l
= ' 2 ' 2
B=[XX+0} [Lo... 07Xy +or [B]] - (3)
2 2
o [00...0 o |0
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ormila (3) ac h alternative information need not be
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statistical data. A priori estimates of Bl and ovz could be derived from any
source. In an example of estimating price elasticities in their paper, Theil
and Goldberger [8] use the point estimates of price elasticities amd

associated variances from a prior study as the alternative information.

Confidence Intervals. The Theil-Goldberger mixed estimator has an
intuitively appealing graphical depiction. But first, a digression on
regression parameter confidence intervals is in order.

In a simple regression of y = a + bx + e, we can calculate the confidence
intervals around a and b by:

a +/- tn— and

2, (1~a/2)%a '
b +/- t

-2, (1-¢/2)"b ’
where s ! = s ° ((1/n) + ¥ /2(x-X)?] , and

87 = su’/'z_.“(x-'ii)z .

Graphed in parameter space this would appear as a rectangle as shown on the
top of Exhibit 1.

Statisticians and actuaries are trained to know that, because of the
covariance between a and b, the joint confidence region is more efficient than
the above rectangle. The joint confidence region is actually an ellipse as
shown on the bottom of Exhibit 1. The size of the ellipse is determined by

the desired confidence level. The set of all joint confidence regions is a
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Regression Confidence intervals
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series of concentric ellipses. For further details
regions, c.f., [7].

In the case of mixed estimation, if we perform two separate regressions
on the sample data and the alternative information, we would have two sets of
concentric ellipses. The solution for [‘iv, the nixed estimate, turns ocut to be
a point on the locus of targencies between the joint confidence ellipses from
the sample and alternative regressions. The specific point on the locus of
tangencies depends on the relative variances between the regressions.

The graphical solution described above is demonstrated through examples

later in this paper.

Credibility. Under the assumptions presented in this section, the mixed
estimator is equivalent to giving weight to the sample and extranecus
information in proportion to the inverse of the variances. The credibility of

the sample information is

z = [1/0,}] . (4)

[(1/6}) + (1/0,)]

Formula (4) is equivalent to Van Slyke's formulation except it 1) substitutes
the variance of the extranecus information for the variance of the straight
average, and 2) is expressed in terms of error variances rather than a
variance of a projected point.

In the formulations of ‘ﬁv and z, we rely on auz and ovz . However, in
practice these quantities are rarely known. Where the true variance
parameters are unknown, the unbiased estimators su2 and sVz (respectively) are

substituted.
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Since s* = Z(y—‘)\')‘/(n—k) = SSE/(n~k), we can simplify the above
expression for z to look more like the Bayesian formula actuaries are used to.
let the subscripts "u" denote values from the original regression and "v"
dencte values from the alternative. Then

z= (n-ku) /SSEu
(k) /SSE, + (g-K,)/SSE,

If the numerator and denominator are both multiplied by SSE ,

z = (nk,) (5)
(k) + (9-K,) [SSE,/SSE,]

Here we have an expression for credibility in the form N/M+K, where "N" is
equal to the number of degrees of freedom in the original regression (n—ku) '
and "K" is equal to the ratio of the sums of squared errors from the two
regressions weighted by the degrees of freedcm from the alternative.

Formuila (5) is consistent with known properties of credibility: 1) z is
between zero and one, 2) 2z increases with N and SSEV (variance of the
camplement), and 3) z decreases with SSE, (variance of data).

Manipulating formula (5) yields some insight into practical
considerations when using mixed estimation. Consider the case where k, =k, =

k, then by dividing numerator and dencminator by (n-k),

z = 1

1+ [(g-k)/(nk)][SSE,/SSE, ]
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credibility directly as well as through the relative goodness of fit. For
example, if n is substantially larger than g, z will be relatively larger,
ceterus paribus. However, if g is selected equal to n, credibility is solely

a function of the relative error variances.

TEST of CCMPATIBITITY
A major advantage of the mixed estimation procedure is that not only does
it implicitly meld together alternative sets of information, hut is also
provides a test of whether the two sets of information are compatible. To
test the mull hypothesis that the sample and extraneous information are

campatible, Theil [8] proposed the following test statistic:
7 = (0RP) '[s2REX'X) R + 21 (eRf) (6)

where 3 is the OLS estimate of the sample information, and su2 is the estimate
of cfu2 . Theil showed that 7 is distributed as Chi-square with g degrees of
freedom. If 7 exceeds the selected Chi-square critical value, the sample and
extraneous information are not compatible, and the mixed estimate should not
be caomputed.

In the simplified case of formla (2),

r = D) (s7REO TR + 021N rRE). ™)
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The test statistic equips the actuary, for the first time, with a tool for

testing what amounts to "the goodness of fit" between the observed data and
the camplement of credibility.

EXAMPIE 1: ALTERNATIVE STATISTICAL DATA

In this example we are seeking to identify the underlying annual average
trerd in average severity in State X for a hcmecwners rate indication. We
have State X severity data available to us as shown in Appendix C, Sheet 1.
Since State X severity has a quarterly seasonality, we fit the following
regression equation using ordinary least squares:

Average Severity = aelfy(time) + B0, + 8305 + §,D,}
where D2, D3, ard D4 are dumny variables for second, third, and fourth
quarters respectively. The equation is linearized by taking the logs of both
sides.
A

The average annual trend is calculated to be 9.5% (e‘m 1-1) for State X, a
trend we believe high based on knowledge of countrywide trends. A similar
analysis of countrywide trends yielded a annual rate of change of 3.7%
(Apperdix C, Sheet 2). Rather than disregard the high trend figure as a fluke
or presume instead that it the only possible answer, Theil~Goldberger mixed
estimation is used to incorporate the available countrywide data into the
specification of our state trend model. To keep this exanple simple, we will
assume that for both the state and the countrywide regression, E[uu']=c *I and

E[wv! ]=crvz I, respectively.

185



Since we are primarily interested in the trend parameter calculated by
the mixed estimator, we have chosen to neutralize the seascnality and
differences in intercepts (magnitude) between State X and countrywide by first
deseasonalizing the data ard then indexing the deseasonalized severitiesAto
the first point. Deseasonalizing is accomplished using factors based on & 2,
eﬁ3, ard eﬁt} calculated in Appendix C, Sheets 1 and 2. Regressions are now
fit to the adjusted severity indices for State X (Sheet 3) and the countrywide

(Sheet 4). The model in each case was:
Severity Index = aep(t.ime)

which is li_neaArized by taking the logs of both sides. Note that the trend
estimates (e4ﬂ -1) from both regressions are the same as the original
regressions, but we can now focus on fewer parameters in our mixed estimation.
The mixed estimator is then calculated using formula (2).

The matrix manipulations can look intimidating, but formula (2) can
actually ke calculated in IOTUS using /RANGE TRANSPOSE, /DATA MATRIX MULTIPLY,

ov
and /DATA MATRIX INVERT. £ can also be calculated as
~ A A
B = z(B from original regression) + (1-2z) (8 from alternative regressicn)

using the credibility formula (4).

Apperdix C, Sheet 5 shows the mixed estimation parameters. The estimated
trend is fourd to be 4.7%. Sheet 5 also shows the graphical interpretation of
the solution. The graph shows two sets of two concentric ellipses, one
corresponding to the original regression, one to the alternative. The mixed

estimate lies on the locus of tangencies between all such concentric ellipses.
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variances, hence, credibility.

Note that credibility was never explicitly calculated in this example.
No values of p or k needed to be defined. The only need for actuarial
judgement was in the selection of the complement information. Credibility can
be calculated with formula (4):

(1/s) = (1/0.003) = 16.8% .

(/s?) + (1/s)) (1/0.003) + (1/0.0006)

Credibility can also be backed ocut given the above parameter estimates.

(9.5%) (Z) + (3.7%) (1-2) = 4.7%

or Z = 16.8%.

Actuarial judgement is always required in the selection of a complement
of credibility. This is inherent in credibility procedures. The advantage of
mixed estimation over other procedures is the ability to statistically test
the judgement employed. By calculating Theil's test statistic, the actuary
can rigorously test the compatibility of the complement information. Using
formula (7), in this example the value of 7 = 12.6, g is equal to 15. The
critical value of Chi-squared at the 95% confidence level is 25. Since 12.6 <
25, we camnot reject the hypothesis that the alternative information,
(countrywide severity) is a viable complement to the data (state severity).

This example makes an interesting point as regards the compatibility
test. The test is one of compatibility not egquality. A statistician would

look at the joint confidence intervals shown on Sheet 5 (cont.) of Appendix C
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arnd conclude that the two sets of regression parameters are different at the
appropriate level of confidence (since the ellipses do not intersect). We, as
actuaries, conclude only that we cannot reject the possibility that the

alternative information is a viable camplement.

EXAMPIE 2: ALTERNATIVE is an ECONOMIC INDEX

The importance of the test of compatibility is highlighted by this
example. Recall that if we reject the hypothesis that ocur sample data and the
alternative information are compatible, the mixed estimation procedure should
not be employed.

Our goal in this example is to determine the long term trend in the
severity of claims for physicians and surgeons professional liability. The
data sample consists of countrywide severity at basic limits, developed to an
ultimate basis, for notice years 1979 to 1988. As shown on Appendix D, Sheet
1, the severities are indexed to 1.000 for 1979, and the following regression

line is estimated:

In(severity index) = a + B(time)

where 1In is the natural (base e) logarithm. The resulting annual trend is
10.2%.

For the alternative information, we consider related Consumer Price
Indices. The All Medical Care Items index was selected, which reflects

changes in price levels for doctors fees, hospital room charges, and drug and
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prescription costs. The CPI index has been adjusted to set 1979 equal to
1.000. Both the data sample and the alternative information have been indexed
at 1979 so that the resulting parameter estimates of the intercept are of

similar magnitudes. The following model is then estimated:

In(CPI index) = a + B(time) ,

and the resulting estimated annual trend is 8.2% as shown on Appendix D,
Sheet 2.

Before moving on to the mixed estimator, we first consider the test of
compatibility of the two sources of information. After fitting the two
individual regression lines, we have all the data needed to compute the
compatibility statistic, 7 (formula (7)). Given the trend estimates are
similar, 10.2% and 8.2%, we might expect the test to imdicate compatibility.
However, as shown on the bottom of Appendix D, Sheet 3, 7 is calculated to be
30.0, which is greater than the Chi-square critical value of 18.3 at a 95%
confidence level. In this example, the hypothesis that the CPT index is an
acceptable alternative source of information for estimating long term trends
for doctors' medical malpractice severity is rejected. The mixed estimate
should not be calculated, i.e., the CPI index is not a statistically
appropriate complement.

The major factor leading to the conclusion to reject compatibility is the
small error variances in both models. Even though the estimated trends are
similar, the two 95% confidence ellipses are sufficiently small such that we
conclude that the CPTI index will not provide a trend estimate compatible with

our sample data.
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Rejection of compatibility in this example is consistent with the
non—intuitive result provided by the mixed estimate. Using mixed estimation

would imply credibility of only

[l

(1/s?) 37.5%

(I/sy) + (/s,)

for our sample data of doctors' severity and a credibility weighted trend
estimate of 8.9%, even though the model provides a good fit for our sample
data. We could conclude that is appropriate to give our sample data full
credibility and disregard the alternative information, or search for ancther
conplement.

Mixed estimation should not be used without computing the compatibility
statistic, because mixed estimation will produce a credibility weighted trend
estimate from two sources of information, regardless of whether the sources

are related.

SUMMARY

Mixed estimation was developed by Theil and Goldberger as a generalized
regression technique to allow altermative sources of information to be
incorporated simultanecusly into the model specification and estimation
process. Mixed estimation can be used anytime that regression analysis is
the imdicated approach to the analysis. Because it is a very general
procedure the formula for trend credibility can be generalized beyond the
regression context for use with any type of prior information.

This econometric tool is recommended for use in the actuarial task of

estimating trend and the credibility of trend. In its application to trend,
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mixed estimation provides advantages over some of the procedures currently in
use. Unlike the ISO, NCCI, and other classical credibility approaches, mixed
estimation does not require an arbitrary full credibility standard to be
specified. 1Instead, the credibility implied by mixed estimation is

proportional to the inverse of the variances of the regression lines, which is

An integral part of the mixed estimation process, the test of
compatibility, is perhaps the most significant advantage of the procedure.
Mixed estimation, or any other procedure, will never replace the actuarial
judgement required in selecting the complement of the credibility. However,
mixed estimation is the only method developed to date that provides the
actuary with the ability to test whether the information selected as the

complement of the credibility is appropriate to the problem at hand.
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ACYTNULA A

CRDINARY IFAST SQUARES

This appendix provides a summary, in matrix notation, of the assumptions,
parameter estimates, and properties of ordinary least squares (OIS)
estimators. The purpose is to provide an outline of significant results. For
derivation or mathematical proof of a particular formula, the reader is

directed to one of the references [3], [4], or [5].

Assumptions. A linear relationship exists between a variable y and k
explanatory variables Xyr Xy oeee % with a disturbance term u. We have a
random sample of n observations of the y and x's. Our linear model can be

conpactly stated in matrix notation as:

y=X+u

where y = an n x 1 vector of the dependent variable

X = an n x k matrix of the explanatory variables
8 = a k x 1 vector of the parameters to be estimated
u = an n x 1 vector of residuals.

To estimate the vector B, we need some assumptions about how the observations

in the sample have been generated. Assume that:

1. The residuals are independently and identically distributed with mean
0 and variance o? @

193



Eul] =0 anmd

Varfu] = Efu’] = ou']:

where I is an n x n identity matrix. This means the residuals are

homoscedastic (have constant variance) and are pairwise uncorrelated.
2. The x's are nonstochastic and hence are independent of the residuals:
E(X'u) = 0
In repeated sampling, the sole source of variation in the y vector is the
variation in the u vector, and the properties of our estimators and tests are
corditional wpon X.

3. The x's are linearly independent:

rank (X'X) =rank X =k ard
x'X) T exists.

The rumber of cbservations exceeds the mumber of parameters to be estimated

ard no exact linear relations exist between any of the variables in X.

CIS Estimation. Let B dencte a k x 1 vector of estimates of the elements

of B. Given cur random sample of n cbservations,

y=x+u ,
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where u is an n x 1 vector of residuals. The principle of least squares

estimates § by minimizing u'u (the sum of the squared residuals) and produces

B =0y .

Properties of OIS Estimators. Under the above assumptions, /[; is the best
linear unbiased estimator of B.

1. By best estimator, wemeanlﬁ is the minimm variance estimator of B.

The variance of/B\ is given by
A . -1
Var{g] = ¢ "(X'X) ~ .

It can be shown that this quantity is smaller than the variance of any other

linear unbiased estimator of B.

. - . . N
2. Since (X'X) lX' is a matrix of constants, the elements of B are

linear functions of y.

3. /B\ is unbiased because E[g] = f.

Significance Tests and Oonfidence Intervals. To derive tests of
significance ard confidence intervals for B, we assume that the residuals, u,
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are normally distributed. With this additicnal assumption, it can be shown

that the maximum likelihood estimate of B is equivalent to the OLS estimate.

1. Individual regression coefficient. To test the significance of an
individual parameter estimate, the following test statistic

N
t= (B-B)
xX'%) " (e'e)/ (nk)

has the t distribution with (n-k) degrees of freedam. The
100{1-a) per cent confidence interval for B is given by

A -
B /=t 4 (1-ay2) XD lete)y/mx) .

2. More than one regression coefficient. When we consider all parameter
estimates together, the following test statistic

A N
F = (B-B) * (B-B)/k
x'%) Le'e)/ (nk)

has the F distribution with k and (n-k) degrees of freedam. The 100(1-a) per

cent confidence regicn for B is given by

A -~
B4/~ B e (1mayz) X0 '@/ (07K)

For example, in a two parameter model, the above equation provides a 100(1-a)
per cent elliptical confidence region.

196



1. Heteroscedasticity. The residuals, u, do not have constant variance.
The regression parameter estimates, Q, are still unbiased, but two problems
arise. First, /B is no longer an efficient (minimm variance) estimator.
Secord, the estimates of the variances of (f;i are biased. Generalized least
squares (see Apperdix B) can provide more efficient estimators when

heteroscedasticity occurs.

2. Serial Correlation. The residuals, u, are not independently
distributed. The consequences of serial correlation are the same as for
hetercscedasticity: £ is still urbiased, but it is not efficient, and the
estimated variance of B is biased and likely to be greatly understated. This
will result in R?*, t, and F statistics that tend to be exaggerated. A

camonly used test for serial correlation is the Durbin-Watson test.

3. E(X'u) = 0. The residuals ard the independent variables are

A
correlated. The OLS estimator B is no longer an unbiased estimator of §

4., Multicollinearity. The independent variables, X, are not linearly
indeperdent. If an exact linear dependence exists among two or more of the
x;'s, the OLS estimator 's\ is impossible to determine because (X'X) © does not
exist. When same of the x's are very highly correlated, the precision of the
individual parameter estimates deteriorates because the variance of /6\ is very
large. A regression line with high R* but insignificant t statistics forlg is
a cammeon result due to multicollinearity.
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S. Residuals are not normally distributed. OLS produces 'ﬁ‘ that still is
the best linear unbiased estimator of B, but all the tests of significance are
not valid.
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A
In the development of the OIS estimator B in Appendix A, one of the
assumptions was that the residuals, u, have constant variance and are not
auto correlated:
"y = 2
E(m') %, I.
Iet us now relax this assumption and instead assume that
E(wm') =2
where Q is a symmetric positive definite matrix of order n, which defines the
variances and covariances of the residuals. The Generalized least Squares
(GLS) estimator of B is given by
A S IC R |
Biars) = &9 0eaTy) .
The variance of this estimator is given by
A -
Var = g*(X'n .
(B qsy] = o*(X'0 )

As mentioned in Apperdix A, it can be shown that

A A
Var{g (GIS)] < var{p (OIS)] .
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APPENDIXC
Data and Statistical Analysis for Example 1

Sheet 1: Average Homeowners Severity for State X

[X] Matrix

Time Q2 Q3 Q4
Index Dummy Dummy Dummy
1 1 0 0
2 0 1 0
3 0 0 1
4 0 0 o
5 1 1] 0
6 0 1 0
7 0 0 1
8 0 0 0
9 1 0 0
10 0 1 1]
11 0 0 1
12 0 0 0
13 1 0 0
14 0 1 0
15 0 0 1

Model:

ly] Vector
Actual In[Sev.]
Sev. {yl
1,374 | 7.225
1,122 | 7.023
1,274 | 7.150
1,918 | 7.559
1,414 | 7.254
1,158 | 7.055
1,357 | 7.213
1,805 | 7.498
1,580 | 7.371
1,219 | 7.106
1,767 | 7.477
2,014 | 7.608
1,835 ] 7.515
1,444 | 7.275
1,733 | 7.457

Severity = exp{Xb} + ', or In[Severity] =y=Xb+u
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Fitted
fyl

7.206
6.979
7.189
7.465
7.296
7.069
7.279
7.585
7.387
7.160
7.370
7.645
7.477
7.250
7.460

Fitted
Actual

1,347
1,074
1,324
1,745
1,475
1,175
1,450
1,910
1,614
1,287
1,587
2,001
1,767
1,409
1,737

ave=
s.d.=

t=

fel

0.019
0.044
(0.039)
0.095
(0.042)
{0.015)
(0.066)
(0.057)
(0.015)
(0.054)
0.108
(0.038)
0.038
0.025
(0.003)

0.000
0.004
0.000
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APPENDIX C

Data and Statistical Analysis for Example 1
Sheet 1: Average Homeowners Severity for State X (cont)

ORIGINAL REGRESSION
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APPENDIX C
Data and Statistical Analysis for Example 1

Sheet 2: Average Homeowners Severity for Total United States

{R] Matrix
Time Q2 Q3 Q4
Index Dummy Dummy Dummy
1 1 0 o
2 0 1 0
3 0 o] 1
4 0 0 0
5 1 0 0
6 0 1 0
7 0 0 1
8 o 0 ]
9 1 0 0
10 0 1 0
11 0 0 1
12 0 0 0
13 1 0 0
14 0 1 0
15 0 0 1
Model:

[r] Vector

Actual In{Sev.}
Sev. [rl
1,490 | 7.307
1,857 | 7.350
1,563 | 7.354
1,407 | 7.249
1,484 | 7.302
1,751 | 7.468
1,634 | 7.399
1,407 | 7.250
1,610 | 7.384
1,682 | 7.427
1,646 | 7.406
1,460 | 7.286
1,694 | 7.435
1,752 | 7.468
1,779 | 7.484

Severity = exp{Rb} + V', or In[Severityj=r=Rb+v
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Fitted
Il

7.302
7.374
7.356
7.225
7.339
7.410
7.392
7.262
7.375
7.447
7.429
7.298
7.412
7.484
7.466

Fitted
Actual

1,483
1,593
1,565
1,373
1,638
1,653
1,623
1,425
1,596
1,715
1,684
1,478
1,656
1,779
1,747
ave=
s.d.=

t

le]

0.005
{0.023)
(0.001)
0.024
(0.036)
0.058
0.006
(0.012)
0.003
(0.019)
(0.023)
(0.012)
0.023
(0.015)
0.018

0.000
0.002
0.000



APPENDIX C
Data and Statistical Analysis for Example 1

Sheet 2: Average Homeowners Severity for Total United States (cont)

ALTERNATIVE REGRESSION
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APPENDIX C
Data and Statistical Analysis for Example 1

Sheet 3: Average Homeowners Severity for State X, Dese#sonalized and Indexed

[yl Vector
X1 In[index] Fitted Fitted

Date Time Index vl Iyl Index fe]

85 1 1.000 | 0.000 (0.019) 0.981 0.019

3 2 1.048 | 0.047 0.003 1.003 0.044
4 3 0.987 | (0.013) 0.026 1.026 (0.039)

86 4 1.154 | 0.143 0.048 1.050 0.095
2 5 1.029 | 0.029 0.071 1.G74 (0.042)
3 6 1.082 | 0.079 0.094 1.098 (0.015)
4 7 1.051 | 0.050 0.116 1.123 (0.066)
87 8 1.085 | 0.082 0.139 1.149 (0.057)
2 9 1.158 | 0.146 0.161 1.175 (0.015)
3 10 1.139 | 0.130 0.184 1.202 {0.054)

4 1 1.363 | 0.314 0.207 1.230 0.108
88 12 1.211 | 0191 0.229 1.258 (0.038)
2 13 1.336 | 0.290 0.252 1.286 0.038

3 14 1.349 | 0.299 0.274 1.316 0.025

4 15 1.342 | 0.295 0.297 1.346 0.000

ave= 0.000

s.d.= 0.004

t= 0.047

Model: Severity = exp{Xb} + u’, or In[Severityj=y=Xb+u
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APPENDIX C

Data and Statistical Analysis for Example 1
Sheet 3: Average Homeowners Severity for State X, Deseasonalized and Indexed (cont)

ORIGINAL REGRESSION — DESEASONALIZED
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APPENDIX C
Data and Statistical Analysis for Example 1

Sheet 4: Average Homeowners Severity for Total United States, Deseasonalized and Indexed

{r] Vector
[R] In{index]  Fitted Fitted

Date Time index ir} irf] Actuai iel
85 1 1.000 | 0.000 | (0.005) 0.995 0.005
3 2 0.981 | (0.019)] 0.004 1.004 (0.023)
4 3 1.012 | 0.012 0.014 1.014 (0.001)
86 4 1.048 | 0.047 0.023 1.023 0.024
2 5 0.996 | (0.004)| 0.032 1.032 (0.036)
3 6 1.104 | 0.099 0.041 1.042 0.058
4 7 1.088 | 0.056 0.050 1.051 0.006
87 8 1.048 | 0.047 0.059 1.061 (0.012)
2 9 1.080 i 0.077 0.069 1.071 0.009
3 10 1.060 | 0.058 0.078 1.081 (0.019)
4 ihi 1.066 | 0.064 0.087 1.091 (0.023)
88 12 1.087 | 0.084 | 0.096 1.101 0.012)
2 13 1.136 | 0.128 0.105 1.111 '0.023
3 14 1.104 | 0.099 0.114 1.121 (0.015)
4 15 1.152 | 0.141 0.124 1.132 0.018
ave= (0.000)

s.d.= 0.002
t= (0.000)

Model: Severity = exp{Rb} + V', or In[Severity]=r=Rb+v
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Data and Statistical Analysis for Example 1
Sheet 4: Average Homeowners Severity for Total United States, Deseasonalized and Indexed

ALTERNATIVE REGRESSION — DESEASONAUZED
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Trend Parameter

APPENDIXC

Data and Statistical Analysis for Example 1
Sheet 5: Mixed Estimation

JOINT CONFIDENCE ELLIPSES
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Trend Parameter

APPENDIX C

Data and Statistical Analysis for Example 1
Sheet 5: Mixed Estimation (cont)

JOINT CONFIDENCE ELLIPSES
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APPENDIXD
Data and Statistical Analysis for Example 2

Sheet 1: Countrywide Doctor Professional Liability Severity, Indexed

X]
Date Time

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

OWERNOG A LON -

-

Model: Severity = exp(Xb} + u’, or In[Severityj=y=Xb +u

Actual

16,429
18,145
21,301
22,312
24,089
25,091
28,962
34,150
37,019
39,298

ly] Vector
Index vl
1.000 | 0.000
1.104 | 0.099
1.297 i 0.260
1.358 | 0.306
1.466 | 0.383
1.527 | 0.423
1.763 | 0.567
2.079 | 0.732
2.253 | 0.812
2,392 | 0.872

Fostatistic . -
Durbin-Watson [d]

‘Trend exp{[trend]}
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Fitted
iyl

0.008
0.106
0.203
0.300
0.397
0.494
0.591
0.688
0.785
0.882

Fitted
Index

1.008
1.111
1.225
1.350
1.487
1.639
1.806
1.990
2.193
2.417

aves
s.d.=

[e]

(0.008)
(0.006)
0.057
0.006
(0.014)
(0.071)
(0.024)
0.043
0.027
(0.010)

0.000
0.004
0.000
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APPENDIX D
Data and Statistical Analysis for Example 2

Sheet 1: Countrywide Doctor Professional Liability Severity, Indexed (cont)

ORIGINAL REGRESSION
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APPENDIX D

Data and Statistical Analysis for Example 2
Sheet 2: Consumer Price Index, All Medical Care ltems, Indexed

[R] [r] Vector Fitted Fitted
Date Time Index [rl [r] Actual le]
1979 1 1.000 | 0.000 0.044 1.045 (0.044)
1980 2 1.109 | 0.103 0.123 1.130 (0.019)
1981 3 1.229 | 0.206 0.201 1.223 0.005
1982 4 1.371 | 0.316 0.279 1.322 0.036
1983 5 1.491 | 0.399 0.358 1.430 0.042
1984 6 1.583 | 0.459 0.436 1.547 0.023
1985 7 1.681 | 0.519 0.515 1.673 0.005
1986 8 1.807 | 0.592 0.593 1.809 (0.001)
1987 9 1.927 | 0.656 0.671 1.957 (0.015)
1988 10 2,052 0.719 0.750 2117 (0.031)
ave= 0.000
s.d.= 0.003

t= 0.000

Model: Index = exp{Rb} + V', orin{index] =r=Rb + v
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Data and Statistical Analysis for Example 2
Sheet 2: Consumer Price Index, All Medical Care Items, Indexed (cont)

ALTERNATIVE REGRESSION
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Trend Porameler

APPENDIXD

Data and Statistical Analysis for Example 2
Sheet 3: Mixed Estimation
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Data and Statistical Analysis for Example 2
Sheet 3: Mixed Estimation (cont)

JOINT CONFIDENCE ELLIPSES
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