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AESRWX?: 

Actuariesareoften cnr&mhdwi.thmnflictingdataandinf-tion. In 
trerdanalysis,ordinaqleastsquaresregression~~eedonotallaw 
for the in-m of any extraneous information, wnflia or not. 
Credibi.litymethcdshavebeenproFosedtosolvethis shortcomiqbuthave 
net been widely aaaqtsd. 

mi.spaperdisassstheuseofan -tricte&niqge,kmwnasmixed 
eshticn, to inaxporate prior infcmatian directly into the 
specificationofthetredmdel. !me resultant parameter estimates are 
credibility weighted estimates. Kixedl%%kimationgoesorlestepfurther 
byg~~ateststatistictotestthe~ibilityofthedataard 
theccmiplementinfo~tion. ?mefforth2lekeenmadetQkeeptheoryalM 
notation to aminimm, enqhasizing practical applicatian of the 
technique. 
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Iheprdjlen atHad. Inmnyaqectsofacbarial analysis, theactuary 

nust measure an u.r&rlying trend in order to rake a projection. Examples 

include ra+xmakbg and forezastimg. In trend analysis, actuaries are often 

faced with data that is not sufficiently credible. Alternatively, actuaries 

are often facedwithvarious - of information (data or otherwise), each 

seemingly plausible and perhaps even credible, that yield different trend 

estimates. Further, the actuary is not well equipped when rigorous 

statistical or numerical estimates of trend disagree with a miori beliefs. 

ordinaqleast squares regression is the technique most often used in 

trend analysis. Standard regression models provide a wealth of statistics to 

IIESUE gocdness of fit. Ekgression models do not, hcwever, tell the actuary 

how credible the resultant lx-end estimate is. Nor can regression models 

incorpxate conflicting pieces of information directly into the specification 

ofatrendmdel. 

lh Props& Solution. In 1961, Theil and Goldberger [8] faced a similar 

problem in the estimation of price elasticities. Theil and Goldberger note 

that when a model pmvides estimated parameters that are counter intuitive, 

the mcdel is mzst often changed or discarded. If intuition (or, more 

generally, any alternative information) is so strong, they arque that it is 

mre logical to incorporate the alternative information into the estimation 
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Theil ard Goldbeqerpropose a gfxmalized least squares technique that 
. dxectly incorporates alternative information in the form of linear 

constraints to ovE?rccme the shorkmings of standard regression analysis. The 

solutionthey fouWlresults inparameter estimates (trend parameters in our 

case) that are in fact credibility weighted parameters where the credibility 

weights are determimd based on the relative error variances frm the original 

al-d col@ement estimates. In a later paper Theil [7] proposes a test 

statisticto measure the cmpatibility of the complement information. 

*paWP- an application of Theil-Goldberger mixed estimation 

to the calculation of t.rex%. After a review of current credibility 

tehniques as applied to trends, this paper discusses the formulation of the 

mixed estimation model, and offers some examples of the application of the 

methcdolcgy in practice. l%roucjmutthis paper an atteqthas been made to 

mvethemme serious mathenmtics to the appendix and concentrate on concepts 

andexamples inthebodyofthepaper. 

ANcxmRvmuofmmasAPPI;CEDtoPiEND 

Thereareanmberofexanplesoftre&prcmdmes utilizing credibility, 

both in practice and in literature. Deqite the exarrrples, credibility as 

applied to trend has notkeenwidely used. Follchng is a brief survey of a 

fewoftheexaxplestheauthorshave found. 

Iso. The Insumxe Services Office uses a credibility routine in its 

trend analysis for private Passenger auto [2]. IS0startswiththreeyears of 

paid data for claims costs and six years of data for frequency. Value are 
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ca.laLated on a rolling four quarter basis to eliminate seasomlity. An 

sqmnential model is fit to the frequency and severity data on both a 

countrywide anda statewidebasis. State trends are crfxdibility weighted with 

countrywide. State credibility for a given coverage is has& on the nuker of 

claim intheyeare inthemost recent quarter. A classical credibility 

approach is used with full credibility assumed at 10,623 claims for each 

coverage. Partial credibility is tabular andbased on the square root rule. 

Wei~~trendest~~arecappedatcertain~~rnax~. 

The IS0 technique is notthemst theoretically appealing. It relegates 

credibility to a component in a series of mechanical decision rules. 

Fiuth-re, classical credibility is usually held in lower regard than 

Bayesian a-pprcaches. On the other hand, the IS0 method has the advantage of 

simplicity in application. 

Nax. The National Council on Compensation lkuraxe uses a credibility 

procedure in conjunction with trend factors for adjusted loss ratios [5]. The 

NCCItrmdproc&ure has undergone change over the past few years. 

Previously, credibility was assigned based on the Spearmn D-statistic. 

Cumentlycredibilityis assignedbased onthemgnitude of the standard error 

of the regression as a percent of the projected point. Nl credibility 

exists when this quantity is less than or equal to .0006. This statxbrd 

presumably leads to a 90% probability that the actual loss ratio will be 

within 6% of the projection. A square xmt rule is used for partial 

credibility. For medical benefits, the balance of the credibility is assigned 

tothecountrywidetrend. For inddty, thecmpl-tisunity. 

'Ihe NCCI n-ethcdology retains the classical approach adopted by ISO. 

Here, hmever, full credibility is based on what amunts to the width of a 
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ccnfidence intemal rather than an arbilxary mmker of claims. The above 

methodissimilarin~turetooneproposedbyGaryVenter. 

Venter. In his paper, Y3ssical Fartial Credibility with Application to 

Tk-er~Y~ [lo], Mr. Venter rightly identifies classical partial credibilities as 

nothingmore than the ratio of twoconfidence intervals. For example, if we 

wish to be within 5% (desired confidence interval width) of the true 

projection 90% of the time and our regression yields a 90% confidence interval 

width that is 10% of our projected point, the partial credibility is 50% 

(5%/10%). In this way, as venter points out, volume is only iqm-tant in as 

muchas itaffectsthegocdmss of fit of the regression line. 

Venter~sizechnigue issin@e inapplicationaridhas ag-reaterthemetical 

a*. It's main disadvantages stem from its classical credibility approach, 

disadvantages en- ted by Mr. Venter himself. In this, like all classical 

approaches, the greatest downfall is the degree of subjective judgemnt 

required. In addition, credibility is only meaningful in reference to a 

project&point, ratherthantheurkderlyingtrmd. 

van Slyke, In an article that actually preceded Venter's, O.E. Van 

Slyke authored Tredibility-Weighted Trerd FactorP [9]. van SlYke'S naper 

presents a Bayesian formula for the partial credibility of a trend factor. 

Partial credibility is calculated based on the relative variance between 

alternative estimates. In the example given the competing models are tread 

and no trend (average). If we let Va be the variance of the straight average 

ardVtbe thevarianceof the projected point, thepartialcredibility of the 

trend estimate is: 
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The abave formula has the greatest theoretifxl appeal of all examples 

p-here. It is unfortunate that this work has not been widely used in 

practice. Wewillshawthattheabavefonmilaisthesanreastheonea~~ 

in this paper, with the exception that we will replace Va with a variance 

from an alternative trend Mel (Van Slyke hints at, but stops short of, 

formulating the above for the case where the alternative model is another 

estimate of trend) andVtwiththe regressionerrorvarian~. 

Our fommlation will be done in the context of, and in reference to, an 

econmetric model rather than an actuarial one. Mixed estimtion will extend 

credibility procedures by incorpo~tiq the complement information, 

statistical or otherwise, directly into the specification of the trend nxzdel. 

The procedure will transcend currmtcredibility~ques by testing the 

cmpatibility of the cmplement information. 

DJzVEmmofMMED-m 

m-. In econometric analysis, it is not un ccmmmn that a 

regression equation yields results whi& axe not consistent with _a priori 

expzctations. The 3 priori expectations may be derived from theoretical 

considerations. For example, when a demand function is estimated, economic 

theory rquires that the sum of all price and income elasticities must be 

!zero. Also, we expect that price elasticities of demard are negative, and 

income elasticities are positive. 
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Alternatively, prior expectations my aat3e from previous statistical 

andlysis or another hdeperdent sample of information. For example, a prior 

statistical analysis may pruvide an estimate of the coefficients of a 

prcduction function. a a m study, we may have two samples of 

absenrations. Since both samples prwide inform&ion on price elasticities, 

it is logical to specify the model such that both samples contribute 

simultaneouslytotheesti.mtionprocess. 

Conventional regression analysis does not allow alte3mative information 

to be inaxpora~ into the model. Yet, the existence of the 2 priori 

information is precisely the reason that the regression results may be 

rejected, or the alternative information mst be rejected in light of the new 

sa@edata. 

Mixed estimation is a generalized regression technique, pioneered by 

Theil and Goldberger, that provides an intuitive cr&ibility weightirq, or 

mld%l, of alternative information. Theil and Goldberger's work is an 

extension of the work done by INrbin [1], which proposed an approach for 

poolingtheseriesandcross sectional data. 

Following is a brief description of the mixed estimation process. 'Ihe 

reader is referred to Appendices A and B which sufmarize Ordinary and 

Gene.ralized Least Squares, in matrix notation. 

Mode3 Specification. A.. we have sample of observations which satisfy 

the followhq linear relationship: 

where y= n xlvector of the dependentvariable, 
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X = n x k matrix of explanatory variables (k < n), 

p=kxlvectorofparameterstobe&imated, 

u=nx1vectorofresiduals 

such that E(u) = 0 and E(uu') = n. Note that the above assumptions are 

identical to the assuqytions of Generalized Least Squares (GLS) mcdel as 

defined in AppmIix B. 

Additional information on p is available. This alternative, or 

extraneous information my be of the form of statistical data, or simply an _a 

priori &in&f2 of p and my be stated in the form of linear restrictions as: 

r=I@+v 

whererisagxlvector,Risagxkmtrix,aridvisagxlvectorsuch 

that E(v) = 0 and E(w') = C. 

To estimate p, we can use the sample information alone, in which case the 

GLS estimator (AppendixB) isthebestlinearunbiased estimate. However, the 

sample and extranems information may be combined from the beginning by 

qecifyingthemadelas: 

I:1 = [:I f3 ‘RI 
E 1111 = 0 ard E[;l' u' v' ] = 1 ;] . 
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Themixed estimate of p is obtained by applying GIS to the above model and 

providesthefollmi.ngkstlinearunbias&esthte: 

a"= [ X'n-lX + RiC-k]-l[XW-$ + R1xW1r] . (1) 

The fomula for the mixed estimate can be simplified if we make some 

additional assumptions. If we assume that the u's are mkually independent 

with a cam3nvarianceau2 andthevts aremutually indeperdentwitha ccmnmn 

variance ~7~'~ then E(uu') = n = u;I an3 E(w') = C = ~$1 - The mixed 

estimator, a", then sinplifies to: 

a”= I (J-&’ 1 Wx)+Wuv2 1 (R’R) l~lE~~/~~ 1 W'Y)+(~/U; 1 (R’r) 1 - (2) 

In fomula (2) it can be seen thatthemix& estimator is weighting together 

the ccanpments of two regressions with weights equal to the inverse of their 

respectiveemorvariarkxs. 

If there is only a single piece of extmneous information, such as an _a 

priori opinion of p,, thefirstel~tofp,thenthemixedestimatebecomes 

p”= [ X’X + au2 

"V2 

1 o... 

0 o... 

. . 

. . 

. . 

0 o... 

. 
0: 

0 

. 

. 

. 

0, 

ID1[ X'y + au* (3) 
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Fomula (3) highlights the fact that alternative information need not be 

statisticaldata. A miori estimtes of p, and uvz could be derived frm any 

source. In an mle of estimatingprice elasticities in theirpaper, Theil 

and Goldbeqer [S] use the point estimtes of price elasticities and 

assmiatedvariances fm a prior study as the alternative information. 

aonfiQnz -. The Theil~ldbeqer mixed estimator has an 

intuitively appealing graphical depiction. But first, a digression on 

reyressionparameterconEidence intenmlsis inotier. 

Inasimple regression of y = a + bx + e, we can calculate the confidence 

intervalsammdaandbbyz 

a +/- t n-2, (1-cx/2)sa ' and 

b +'- %l-2,(1*/2)% ' 

where saz = su* [(l/n) + x*/X(x-Z)*] , ard 

* % = spqx-zy . 

Statisticians and actuaries are trained to know that, because of the 

cuvariance between a and b, the joint confidence region is more efficient than 

the above rectangle. The joint confidence region is actually an ellipse as 

&mm on the bottom of Exhibit 1. 'Ihe size of the ellipse is determined by 

the desired confidence level. 'Ihe set of all joint confidence regions is a 
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Exhibit 1 
Regression Confidence intervals 

PARAMETER CONFIDENCE INTERVALS 

JOINT CONFIDENCE INTERVALS 
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series of cmcentric ellipses. For further details on joint confidence 

regions, cf., [7]. 

In the case of mixed estimation, if we perform two separate regressions 

on the qle data and the alternative information, we would have two sets of 

concentricellipses. The solution for p", the mixed estimate, turns out to be 

apointon thelccus of tangenciesketween the joint confidence ellipses from 

the sari@@@ and alternative regressions. The specific point on the locus of 

tangenciesdependsonthexelativevariances b&weentherqressions. 

The graphical solution descrikd above is demonstrated through examples 

laterinthispaper. 

creaibility. Under the assumptions presen ted in this section, the mixed 

estimator is equivalent to giving weight to the sample and extraneous 

informtion in proportion to the inverse of the variances. The credibility of 

the sample information is 

Cl/a,2 1 (4) 

Formula (4) is equivalent to Van Slykels formulation except it 1) substitutes 

thevariance of the extraneous information for the variance of the straight 

average, and 2) isqressed intemsofemorvariances rather than a 

variance of a projected point. 

In the formulations of p" arx3 2, we rely on uu* and CT~'. However, in 

practice these quantities are rarely knmn. Where the true variance 

P===-are-8 the unbiased estimators su' and sv* (respectively) are 

substituted. 
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since s’ = C(y-$)*/(n-k) = SSF/(n-k), we can sinplify the above 

expression for z tolooknkxelikethe Bayesian formula actuaries areuscdto. 

Let the subscripts We denote values frum the original regression and W1 

denoteValUes fxumthealternative. Then 

Ifthen umeratoranddenrhna tor are both multiplied by SSEu, 

(5) 

Here we have an expression for credibility in the form N/N+K, where ltNtt is 

equal to the number of degrees of freedm in the original regression (n-ft), 

and WC' is equal to the ratio of the sums of squared errors from the two 

regressions weighted by the dqrees of freedom frum the alternative. 

Formula (5) is consistent with ~~CWTI properties of credibility: 1) z is 

between zelm and one, 2) z j.rxmws with N and SSEv (variance of the 

aanplmt), and 3) z decreases with SSEu (variance of data). 

Manipulating formula (5) yield5 m insight into practical 

considerationswhenusingmixedestirt\ation. Considerthecasewhere~=kv= 

k, then by dividing numerator and denominator by (n-k), 
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Note that the relative sample sizes, n and g, will affect the assigned 

credibility directly as well as thrcugh the relative goodness of fit. For 

-@e, if n is substantially 1a.rge.r than g, z will be relatively larger, 

Hmever, if g is selected egual to n, credibility is solely ceterus oaribus. 

a fmction of the relative error variances. 

A major advantage of the mixed estimation p rocedureis thatnotonlydoes 

it implicitly meld together alternative sets of information, but is also 

provides a test of whether the two sets of information are cmpatible. To 

test the null hypothesis that the sample and extsaneous information are 

cmpatible, Theil [S] proposed the following test statistic: 

r = (r-$)'[suzR(XIX)-%' + Cl-+-R,6) , 

where 8 is the OLS estimate of the sample information, and suz istheestimate 

of cu. Theil sh~~that7isdistributedaschi-~ewithgdegrees of 

freedom. If 7 exceeds the selectedChi-sqare critical value, the sample and 

extraneous information are hot cmpatible, ard the mixed estimate should not 

be conputed. 

In the simplified case of formla (2), 

T = (r4&[suzR(X%)-~t + ovzI]-l(r-R&. (7) 
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Tketeststatisticequipe theactuary, forthe firsttime, with atcol for 

testing what allDun% to wle gocdness of fit" between the o&em& data and 

theaa@emntofcredibility. 

ExmmZl: B -aDATA 

Inthis examplewe- seekingtoidentifytheunderlyiqannual average 

trend in average severity in State X for a homeown ers rati indication. We 

have State X severity data available to us as &mm in Append& C, Sheet 1. 

Since State X sevexity has a quarterly seasonality, we fit the following 

regression equation using ordinary least squares: 

Average scv -sy = ,W,(-1 + k’,D, + S,D, + B,D,) 
I 

where D2r D3, and D4 are m variables for second, third, and fourth 

qtnrkcs respectively. The equation is linearizedby taking the logs of both 

sides. 

The average annual trend is calculated to be 9.5% (e4pl-l) for State X, a 

trend we believe high based on -ledge of countqwide trends. A similar 

analysis of countrywide trends yielded a annual rate of change of 3.7% 

(Pspendix C, Sheet 2). Ratherthandisregardthehightrendfigureasa fluke 

or presume instead that it the only possible answer, TheilGoldtxxyer mixed 

estimation is used to incorporate the available countrywide data into the 

specification of cur state trend model. Tc keep this example simple, we will 

assums that for k&h the state and the countrywide regression, E[~u~]~~~I ard 

E[w']=0~~1, respectively. 
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Since we are primarily interested inthetrendpxamatercalculatedby 

the mixed estimator, we have chosen to neutralize the seasonality and 

differences in intercepts (magnitude) betweenStateXandcountrywideby first 

deseasonalizingthedata andthen indexingthedeseaso nalized severitiesAt 

the first point. mnalizing is accmplishedusing factors based on $2, 

$3, and e?4 calculated in Append&C, sheets land 2. Regressions are new 

fit to the adjusted severity indices for State X (Sheet 3) and the countrywide 

(Sheet 4). Themcdelineachcasewas: 

which is linearized by taking the logs of both sides. Note that the trend 
A 

estimates (e 4p-l) from both regressions are the same as the original 

regressions, but we can naw focus on fewer parameters in our mixed estimation. 

'IhemixedestinratoristhencdlculatedusingforrmiLa (2). 

The matrix manipulations can look intimidating, but formula (2) - 

achLallybecdlculatedinLlJnrSusing/RANGETRANSPOSE,/DATAMATRM~PLY, 

and/= MATRMm. ~canalsobecalculatedas 

ry A 
p = z(p from original regress ion) + (1-z)(i from alternative regression) 

using the credibility formula (4). 

Append&C, Sheet5 shoxsthemixedestimtionparmeters. Theestimated 

tx-ed is found to be 4.7%. Sheet5 also shc~~thegraphicalinterpretationof 

the solution. The graph shows two sets of two concentric ellipses, one 

correspoxxling to the original regression, one to the alternative. The mixed 

estimte lies onthelocus oftangenciesbetweenal1suchconcentric ellipses. 

186 



The precise point on the locus is determimd by the relative regression error 

variances, hence, credibility. 

Note that credibility was never explicitly calculated in this example. 

No values of p or k needed to he defined. The only need for actuarial. 

judgement was in the selection of the complement information. Credibility can 

be mlculated with formula (4): 

w”,’ 1 = (l/0.003) = 16.8% . 

wuz 1 + (l/=$) (l/0.003) + (l/0.0006) 

Credibility can alsobebackedoutgiventheabareparameterestifiates. 

(9.5%)(Z) + (3.7%)(1-Z) = 4.7% 

or z = 16.8%. 

Actuarial judgment is always reguired in the selection of a complement 

of credibility. This is inherent in credibility procedures. The advantage of 

mixed estimation over other procedures is the ability to statistically test 

the judgenent employed. By calculating Theills test statistic, the actuary 

can rigorously test the cmpatibility of the complement information. using 

formula (7), in this example the value of r = 12.6, g is equal to 15. The 

critical value of Chi-sguared at the 95% confidence level is 25. Since 12.6 < 

25, we cannot reject the hypothesis that the alternative information, 

(countrywide severity) is aviablecmplenenttothedata (stab severity). 

This example n&es an interesting point as regards the cmpatibility 

test. The test is one of axqatibtity not eqality. A statistician would 

lcckatthe joint confidence internals shown on Sheet5 (cont.) of Appendix C 
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anlamcludethatthetwosetsof regression parameters are different at the 

appropriate level of confidence (since the ellipses do not intersect). We, as 

actuaries, cmclude only that we cannot reject the pcssibility that the 

alternative information is a viable cmplement. 

mmlwrE2:~isan~C~ 

The importance of the test of compatibility is highlighted by this 

-le. Recdllthatifwerejectthehypothesisthatoursampledataandthe 

altermtive information are ccnnpatible, the mix& estimation procedure should 

notbeemploye3. 

Our goal in this example is to determine the long term trend in the 

severity of claims for physicians and surgeons professional liability. The 

data sample cmsists of countrywide severity at basic limits, developed to an 

ultimate basis, for notice years 1979 to 1988. As shown on-ix D, Sheet 

1, the severities are b&x& to 1.000 for 1979, and the following regression 

lineisestimlted: 

ln(severiQ index) =cr+p(time) 

wherelnisthe~tural(basee)lcgarithm. The resultbq annualtrem2 is 

10.2%. 

For the alternative information, we consider related Ccnsumer Price 

Indices. TheAllMedical Care 1lx.m ir&xwas selected,which reflects 

charges inpricel~els for dcctors fees,hospital rocmcharges, &drug and 
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prescription ccsts. The CPI i.rdex has been adjustfd to set 1979 equal to 

1.000. Both the data sample and the alternative information have been indexed 

at 1979 sc that the resulting parameter estimates of the intercept are of 

similar magnitude5. The follawingmxlel isthenestimted: 

ln(cPIindex) =a+/3(time), 

ard the resulting estimated annual trend is 8.2% as shm on Append& D, 

sheet2. 

Before moving on to the mixed estimator, we first consider the test of 

ccmpatibility of the two scuxes of information. After fittirq the two 

individual regression lines, we have all the data needed to cmpute the 

compatibility statistic, 7 (formula (7)). Given the trend estimates are 

similar, 10.2% and 8.2%, we might expect the test to indicate ccmpatibility. 

Hmaver, as shown onthekcttcm ofApper&x D, Sheet3, 7 iscalculatedto be 

30.0, which is greater than the CM-square critical value of 18.3 at a 95% 

confidence level. In this example, the hypothesis that the 81 irdexis an 

acceptable alternative soums of information for estimatiq long term trends 

for doctcrsq n&ical malpractice severity is rejected. The mixed estimate 

should not bs calculated, i.e., the CPI index is not a statistically 

appropriate ccmplement. 

Themajorfactorleadingtotheconclusiontorejectmqzatibilityisthe 

smallerrcrvariauces in both mcdels. Even though the estimated trends are 

similar, the two 95% confidence ellipses are sufficiently mall such that we 

conclude that the CPI index will net pmvide a trend estinxke compatible with 

cursa@edata. 
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Rejection of compatibility in this example is consistent with the 

non-intuitive result provided by the mixed estimate. Using mixed estimation 

would ixply credibility of only 

for our sample data of doctors' severity and a credibility weighted trehd 

estimate of 8.9%, even though the model provides a gmd fit for our sample 

data. We could wnclude that is appropriate to give our sample data full 

credibility and disregard the alternative information, or search for another 

colnp1ement. 

Mixed estimation should not be used without computing the compatibility 

statistic, because mixed estimation will produce a credibility weighted trend 

estinlatefrolntwosources of information, regardless of whether the sources 

arerelated. 

Mixed estimation was developed by Tbeil and G&dberger as a generalized 

regression te&nigue to allow alternative sources of inform&ion to be 

incorporated simultaneously into the mdel specification and estimation 

PrQ=e=- Mixed estimtion can be used anytime that regression analysis is 

the indicated approach to the analysis. E&cause it is a very general 

prcce&re the formula for trend credibility can be generalized beyond the 

regression wntext for use with any type of prior information. 

This econometrictoolis r eccmmmded for use in the actuarial task of 

estimating trend and the credibility of trend. In its application to trerd, 
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mixedest~ti~prwidesadvantagesover~oftheprocedur es currently in 

use. UnliketheIso,NccI,andotherclassicdiQ-edibilityapproaches,mixed 

estimation does not require an arbitrary full credibility standxdto be 

specified. Instead, the credibility -lied by mixed estimation is 

proportionaltothe inverseofthevariances of the regression lines, which is 

intuitivelyappf3Gngaxlanalogoustoanempirical Bayesianapproach. 

An integral part of the mixed estimation prccess, the test of 

compatibility, is perhape the most significant advantage of the procedure. 

Mixed estimation, or any other PIXC&UPZ, will never replace the actwxial 

judgem?ntxquired in selects the cm@ementof the credibility. However, 

tied estimation is the only method developed to date that provides the 

actuary with the ability to test whether the inform&ion selected as the 

ccnnplement of the credibility is appmpriatetotheproblemathand. 
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Thisappemlixprcwides asmnary, in matrix notation, of the assumptions, 

paramster estimates, an3 properties of ordinary least squares (OLS) 

estimators. Ihepurposeistopmvideanoutlineofsignificantreflllts. For 

derivation or mathematical proof of a particular fonmla, the reader is 

direc&dtooneofthereferences [31, E43, or VI. 

Asslmptions. A linear relationship exists between a variable y and k 

explanatory variables x1, x2, . . . xk, with a disturban~ tern u. We have a 

randam sanple of n observations of the y and x's. Ourlinearmodelcanbe 

compactly stat& inn-&rixnotationas: 

y=xp+u 

where y=annxlvectorofthedependentvariable 

X=annxkmatrixofthe~lanatoryvariables 

p=akxlvectoroftheparameterstobeestimated 

u=annxlvectorofresiduals. 

Toestimate thevectorp, we needsme assmnptions abouthowthe observations 

inthesamplehavebeengenera ted. -that.: 

1. Iheresidualsare indeper&ntlyardidenticallydistributedwithmean 

0 and variance azu: 
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ECU] = 0 and 

Var(u] = E[uu'] = uu*I 

WI isannxnidentitymatrix. This means the resicluals are 

ac (have cmstantvari.ame)arrlarepairwiseuncorrelated. 

2. !the x’s are no-* lc a&hence are itde~entofthe residuals: 

E(X'u) = 0 

Inrepmted sampling, ths sole source of variation in the y vector is the 

variationintheuvector,andthepropertiesofourestimatorsandtestsare 

conditianal upon X. 

3. !me x's are linearly irdependent: 

rank(X'X)=mnkX=k ad 

(x%)-l f3ests. 

menmherofoksen5tions- thenumlmTofparameterstobee.stimated 

anlmexactlimarrelatians e.xid&tweenanyofthsva.riables inX. 

OIS -ti.cm. Let~denoteakxlvectorofestimatesoftheelements 

of $. Given cmr rardm sanqle of n absenrations, 

y=xp+u I 
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whereu isannxlvectorofresiduals. Iheprincipleofleast squares 

-tiPby xninimizirgu'u (thesumofthesquaredresi~s) ardproduces 

P_ tiesofaLsEstimatazh Undertheabveassuqtions,$is thebest 

lirmrunbiasedestimatorof$. 

1. Bybestestimator,we-gisthe minimumvari- estimator of p. 

Thevarianceof$i.sgivenby 

va& = cru’(x%)-l - 

1tcanbeshcFdnthatthisquantiyissndl1erthanthevarianc= of any other 

linear unbiased estindor of p. 

2. Simz (X8X)-% is a matrix of constants, the elements of $ are 

linear -ons of y. 

1. $ is unbiased because E($] = 8. 

. Si.gIlif~Tests&- -. lb derive tests of 

significance arid amfiderce intervals for p, we assume that the residuals, u, 
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are rmmnlly distributed. With this additional assumption, it can be shcwn 

thattheIlx%hml likelihoodestimateofBis~~enttothe0ISestimate. 

1. Irdividual regression coefficient. Totest thesignificxnce of an 

ixlividualpara.mteresti.mte, the follcwingteststatistic 

t = t&i 
1 Wx)' (e'e)/(rr-k) 

hasthetdi&rihtionwith(n-k)degreesoffreedom. The 

100(1~) per cent amfidence interval for B fi given by 

2. Morethanone regressian coefficient. Whenweconsiderallparameter 

estimates~ether, the followingteststatistic 

has the F distribution with k am3 (n-k) degrees of freedom. The 100(1-a) per 

cent confidence region for $ is given by 

Forvle, inatweparambr model, the abme equation prmides a 100(1-a) 

percentell.ipticalaxfidemeregion. 
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. V-Of~ . 

1. HePity. Iheresiduals,u,donothavewmtantvariance. 
/r 

Theregmssionpammter estimates, ~,arestillunbiased,buttwoproblems 

arise. First, 2 is no longer an efficient (minimm varm) estimator. 
A 

slzcond,theestjmatesofthevar- of pi are biased. Generalized least 

squares (see Apprdix B) can provide more efficient estimators when 

heterosceaasticity ccmrs. 

2. Serial CorrelatiM. The residuals, u, are not indeperdakly 

disMlxrted . Ihe v of serial correlation are the same as for 

heterosceaasticity: $ is still unbiased, but it is not efficient, ax-d the 

estimatedvarianceofBisbiasedandlikelytobegreatly~~~.This 

will result in R', t, at-d F statistics that tend to be exagge?z&?d. A 

ccammlyusedtest forserial ax-relation is theDxbin-Watsontest. 

3. E(X'u) = 0. The residuals and the independent variables are 

correlated. TheO~estirratori:isru,longeranunbiasedestimatorofP . 

4. IW.timlljnearity. Tke independent variables, X, are not linearly 

indemt. Ifanwactlinearde~ existsamongtwoormxeofthe 

xi's, the OIS estimator C is ixgdxsible to determine because (X*X)-l does not 

exist. When some ofthex's areveryhighlycmrelated, the precision of the 

irdividualparawterestimates~~~~~becausethevarianceof~isvery 
A 

large- A~ianlinewith~R'butinsignificanttstatisticsforPis 

a -resultduetomlti~llimarity. 
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h 
5. Residuals are not rtomally distributed. 0Lsplxduces$thatstillis 

thebestlinear unbiasedestimatorof~, butallthetests ofsignificanceare 

not valid. 
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Inthe develqment OftheOLS estimatort in-A, one of the 

a.ssm@ions was that the residuals, u, have constant variance atxi are not 

autocorrelated: 

E&u') = u/I . 

Letusncrwrelaxai.sa23su@ionandinstead-that 

E&U') = Sl 

~nisasymmetricpositivedefinitematrixofordern,whichdefinesthe 

variancesanda2variances oftheresiduals. The Generalized Ieast Squares 

(GE) esti.mtcrof$ isgivenby 

Thevari.axeofthisestimtorisgivenby 

AsmentionedinPppeniixA,itcanbeshumthat 
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when E&u') = n instead of up. Given n, the usual significance testsand 

amfL3emein~sfor$canbe~~aswell. 
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APPENDIX C 
Data and Statistical Analysis for Example 1 

Sheet 1: Average Homeowners Severity for State X 

[xl Matrix 
Time Q2 Q3 44 

Date Index Dummy Dummy Dummy 

86 1 1 0 0 1,374 7.225 
3 2 0 1 0 1,122 7.023 
4 3 0 0 1 1,274 7.150 

86 4 0 0 0 1,918 7.559 
2 5 1 0 0 1,414 7.254 
3 6 0 1 0 1,158 7.055 
4 7 0 0 1 1,357 7.213 

87 8 0 0 0 1,805 7.498 
2 9 1 0 0 1,590 7.371 
3 10 0 1 0 1,219 7.106 
4 11 0 0 1 1,767 7.477 

88 12 0 0 0 2,014 7.608 
2 13 1 0 0 1,835 7.515 
3 14 0 1 0 1,444 7.275 
4 15 0 0 1 1,733 7.457 

[y] Vector 
Actual In[Sev.] Fitted Fitted 
Sev. lYl [yj Actual @I 

7.206 1,347 0.019 
6.979 1,074 0.044 
7.189 1,324 (0.039) 
7.465 1,745 0.095 
7.296 1,475 (0.042) 
7.069 1,175 (0.015) 
7.279 1,450 (0.066) 
7.555 1,910 (0.057) 
7.387 1,614 (0.015) 
7.160 1,287 (0.054) 
7.370 1,587 0.108 
7.645 2,091 (0.038) 
7.477 1,767 0.038 
7.250 1,409 0.025 
7.460 1,737 (0.003) 

ave= 0.000 
s.d.= 0.004 

t= 0.000 

Model: Severity = exp{Xb} + u', or In[Severity] = y = I0 + u 
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APPENDIX C 
Data and Statistical Analysis for Example 1 

Sheet 1: Average Homeowners Severity for State X (cant) 

ZlCQ 

zow 

1.900 

1.800 

1.700 

1.400 

1.500 

1.200 

1.100 

ORIGINAL REGRESSION 

202 



APPENDIX C 
Data and Statistical Analysis for Example 1 
Sheet 2: Average Homeowners Severity for Total United States 

[A] Matrix 
Time Q2 Q3 04 

Date Index Dummy Dummy Dummy 

85 1 1 0 0 1,490 7.307 
3 2 0 1 0 1,557 7.350 
4 3 0 0 1 1,563 7.354 

86 4 0 0 0 1,407 7.249 
2 5 1 0 0 1,484 7.302 
3 6 0 1 0 1,751 7.468 
4 7 0 0 1 1,634 7.399 

87 8 0 0 0 1,407 7.250 
2 9 1 0 0 1,610 7.384 
3 10 0 1 0 1,682 7.427 
4 11 0 0 1 1,646 7.406 

88 12 0 0 0 1,460 7.286 
2 13 1 0 0 1,694 7.435 
3 14 0 1 0 1,752 7.468 
4 15 0 0 1 1,779 7.484 

[r] Vector 
Actual lnpev.1 
Sev, VI 

Fitted Fitted 
[r] Actual Iel 

7.302 1,483 0.005 
7.374 1,593 (0.023) 
7.366 1,565 (0.001) 
7.225 1,373 0.024 
7.339 1,538 (0.036) 
7.410 1,653 0.058 
7.392 1,623 0.006 
7.262 1,425 (0.012) 
7.375 1,596 0.009 
7.447 1,715 (0.019) 
7.429 1,684 (0.023) 
7.298 1,478 (0.012) 
7.412 1,656 0.023 
7.484 1.779 (0.015) 
7.466 1,747 0.018 

ave= 0.000 
s.d.= 0.002 

t= 0.000 

Model: Severity=exp{Rb} +v',or In[Severity]=r=Rb+v 
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APPENDIX C 
Data and Statistical Analysis for Example 1 
Sheet 2: Average Homeowners Severity for Total United States (cant) 

ALTERNATIVE REGRESSION 
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APPENDIX C 
Data and Statistical Analysis for Example 1 

Sheet3: Average HomeownersSeverityfor StateX, tieseasonalized and indexed 

Date 
WI 

Time Index M W Index 

85 1 1.000 0.000 (0.019) 0.981 
3 2 1.048 0.047 0.003 1.003 
4 3 0.987 (0.0131 0.026 1.026 

86 4 1.154 0.143 0.048 1.050 
2 5 1.029 0.029 0.071 1.074 
3 6 1.082 0.079 0.094 1.098 
4 7 1.051 0.050 0.116 1.123 

87 8 1.085 0.082 0.139 1.149 
2 9 1.158 0.146 0.161 1.175 
3 to 1.139 0.730 0.184 1.202 
4 11 1.369 0.314 0.207 1.230 

88 12 1.211 0.191 0.229 1.258 
2 13 1.336 0.290 0.252 1.286 
3 14 1.349 0.299 0.274 1.316 
4 15 1.342 0.295 0.297 1.346 

[y]Vector 
In[lndex] Fitted Fitted 

I4 

0.019 
0.044 

(0.039) 
0.095 

(0.042) 
(0.015) 
(0.066) 
(0.057) 
(0.015) 
(0.054) 
0.108 

(0.038) 
0.038 
0.025 
0.000 

ave= 0.000 
s.d.= 0.004 

t= 0.047 
Model: Severity= exp{Xb} +u’,or In[Severity]=y=Xb +u 
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APPENDIX C 
Data and Statistical Analysis for Example 1 

Sheet 3: Average Homeowners Severity for State X. Desaascmalized and Indexed (cant) 

ORIGINAL REGRESSION - DESEASONALIZEO 
1.400 

1.m 

1.3a 

g :: 

f 1.1% 

l.,co 

1.0s 

1.c-n 

206 



APPENDIX C 
Data and Statistical Analysis for Example 1 

Sheet4: Average HomeownersSeverityforTotal UnitedStates.Deseasonalitedandlndexed 

Date 
14 

Time Index IfI 

85 1 1.000 0.000 
3 2 0.981 (0.019: 
4 3 1.012 0.012 

86 4 1.048 0.047 
2 5 0.996 (0.0041 
3 6 1.104 0.099 
4 7 1.058 0.056 

87 8 1.048 0.047 
2 9 1.080 0.077 
3 10 1.060 0.058 
4 11 1.066 0.064 

88 12 1.087 0.084 
2 13 1.136 0.128 
3 14 1.104 0.099 
4 15 1.152 0.141 

[r] Vector 
In(lndex] Fitted Fitted 

Model: Severity=exp{Rb} +v',or In(Severity]=r=Rb+v 

[r] Actual 14 

(0.005) 0.995 0.005 
0.004 1.004 (0.023) 
0.014 1.014 (0.001) 
0.023 1.023 0.024 
0.032 1.032 (0.036) 
0.041 1.042 0.058 
0.050 1.051 0.006 
0.059 1.061 (0.012) 
0.069 1.071 0.009 
0.078 1.081 (0.019) 
0.087 1.091 (0.023) 
0.096 1.101 (0.012) 
0.105 1.111 0.023 
0.114 1.121 (0.015) 
0.124 1.132 0.018 

ave= (0.000) 
s.d.= 0.002 

t= (0.000) 
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APPENDIX C 
Data and Statistical Analysis for Example 1 

Sheet 4: Average Homeowners Severity for Total United States, Deseasonalized and Indexed 
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APPENDIX C 
Data and Statistical Analysis for Example 1 

Sheet 5: Mixed Estimation 

JOINT CONFIDENCE ELLIPSES 
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APPENDIX C APPENDIX C 
Data and Statistical Analysis for Example 1 Data and Statistical Analysis for Example 1 

Sheet 5: Mixed Estimation (cant) Sheet 5: Mixed Estimation (cant) 

JOINT CONFIDENCE ELLIPSES JOINT CONFIDENCE ELLIPSES 
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Date 
Ixl 

Time Actual Index IYI 

1979 1 16,429 1.000 0.000 
1980 2 18,145 1.104 0.099 
1981 3 21,301 1.297 0.260 
1982 4 22,312 1.358 0.306 
1983 5 24,089 1.466 0.383 
1984 6 25,091 1.527 0.423 
1985 7 28,962 1.763 0.567 
1986 8 34,150 2.079 0.732 
1987 9 37,019 2.253 0.812 
1988 10 39,298 2.392 0.872 

APPENDIX D 
Data and Statistical Analysis for Example 2 

Sheetl: Countrywide Doctor Professional LkbilitySeverity,lndexed 

[y]Vector Fitted Fitted 

IYl Index 14 

0.008 1.008 (0.008) 
0.106 1.111 (0.006) 
0.203 1.225 0.057 
0.300 1.350 0.006 
0.397 1.487 (0.014) 
0.494 1.639 (0.071) 
0.591 1.806 (0.024) 
0.688 1.990 0.043 
0.785 2.193 0.027 
0.882 2.417 (0.010) 

ave= 0.000 
s.d.= 0.004 

t= 0.000 

Model: Severity=exp{W] +u’,orIn[Severityj=y=Xb+u 
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APPENDIX D 
Data and Statistical Analysis for Example 2 

Sheet 1: Countrywide Doctor Professional Liability Severity, Indexed (cant) 
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Date 
PI 

Time 
Ir]Vec 

Index Id 

1979 1 1.000 0.000 
1980 2 1.109 0.103 
1981 3 1.229 0.206 
1982 4 1.371 0.316 
1983 5 1.491 0.399 
1984 6 1.583 0.459 
1985 7 1.681 0.519 
1986 a 1.807 0.592 
1987 9 1.927 0.656 
1988 10 2.052 0.719 

APPENDIX D 
Data and Statistical Analysis for Example 2 

Sheet2: Consumer PriceIndex.AllMedicai CareItems,lndexed 

$01 Fitted Fitted 

VI Actual 14 

0.044 1.045 (0.044) 
0.123 1.130 (0.019) 
0.201 1.223 0.005 
0.279 1.322 0.036 
0.358 1.430 0.042 
0.436 1.547 0.023 
0.515 1.673 0.005 
0.593 1.809 (0.001) 
0.671 1,957 (0.015) 
0.750 2.117 (0.031) 

ave= 0.000 
s.d.= 0.003 

t= 0.000 

Model: lndex=exp{Rb} +v’,orln[lndex]=r=Rb+v 

213 



APPENDIX D 
Data and Statistical Analysis for Example 2 

Sheet 2: Consumer Price Index, All Medical Care Items, Indexed (cant) 
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APPENDIX D 
Data and Statistical Analysis for Example 2 

Sheet 3: Mixed Estimation 
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APPENDIX D 
Data and Statistical Analysis for Example 2 

Sheet 3: Mixed Estimation (cant) 
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