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ANALYSIS OF LOSS DEVELOPMENT PATTERNS 

USING INFINITELY DECOMPDSAi3LE 

PERCENT OF ULTIMATE CURVES 

by Dr. I. Robbin and Mr. David Homer 

Abstract 

We model loss development by starting with percent of ultimate 
curves which explicitly depend on the underlying pattern of exposure 
accumulation. We express such curves in general as a convolution of 
a “generating” function with an iiexposure4V density function. Such 
curves are decomposable with respect to exposures, where 
decomposability means, for instance, that an accident year curve is 
expressible as the weighted average of four appropriately shifted 
translates of the related accident quarter curve. 

This approach is theoretically attractive and leads to several 
useful results. The most important area of practical aoolication is 
fitting, interpolating, and. extrapolating age-to-age ‘factors. An 
essential point to note is that it is trivial to start with a 
parametric’ percent of ultimate curve and use it to calculate 
age-to-age factors, but the opposite derivation is not so simple. 

Another area of application is in converting development patterns 
from one type of exposure period to another. As a natural 
consequence of our formulation, we are able to derive error terms 
for the usual “average date of loss? approximation and to generalize 
the approximation so that it is valid even at immature ages. 
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ANALYSIS OF LOSS DEVELOPMENT PATTERNS USING INFINITELY 

DECOMPOSABLE PERCENT OF ULTIMATE CURVES 

I. INTRODUCTION 

Though loss development patterns can be described in terms 

of age-to-age factors or percent of ultimate values, we 

begin modelling loss development patterns by starting with 

the percent of ultimate representation. The reason for this 

is simple enough. Though development patterns can be 

expressed in terms of percent of ultimate values or age-to- 

age factors, it is easier to derive the latter from the 

former than vice versa. For example, if the age-to-age 

factor from age t to t+l is given by the formula, AAt = l+t-', 

it is not immediately obvious that the percent of ultimate at 

age 1 is roughly 27%. In contrast, if the percent of 

ultimate at age t is given by the formula, Pt = l-(l+t) -2 
, 

it is trivial to calculate that the first age-to-age factor 

is 1.185. 

We further refine our model of loss development patterns by 

explicitly considering underlying exposures. In particular, 

we demand that our percent of ultimate curves be 

decomposable with respect to underlying exposures. What 

this means, for example, is that an accident year curve 

ought to be expressible as the average of four translates of 
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an accident quarter curve. By continuing on with the 

process of decomposition, we arrive at the notion of an 

infinitely decomposable curve. Thus, as our accident year 

curve was a weighting of shifted versions of our accident 

quarter curve, so should our accident quarter curve be 

obtained by composition of translates of an accident month 

curve, and so on. We end up talking about the percent of 

ultimate curve for an exposure of “infinitesimal” duration. 

This is the same notion described by Philbrick in his 1986 

Discussion Paper, t’Reserve Review of a Reinsurance Company", 

when he writes about development with respect to a "single 

exposure point”. In our formulation, we aim to express the 

percent of ultimate curve for the exposures in question as 

an exposure weighted sum of translates of a “generating” 

curve. This approach is mathematically equivalent to 

Philbrick’s, even though his equations contain shifted 

“exposure weight" terms. 

The mathematically sophisticated reader will observe that 

the “weighted sum of translates” idea is nothing more than 

convolution. Thus a convenient way to express an infinitely 

decomposable curve is as a convolution integral. The 

fundamental percent of ultimate convolution formula is given 

in II. The formula represents percent of ultimate 

development as a convolution of two functions. One function 

describes the exposures under consideration. The other 

function, called the generating pattern, describes how 
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losses oevelop on an exposure of "infinitesimal" duration. 

In words, the percent of ultimate at time t is expressed as 

a sum, over all times s, of the amount of incremental 

exposure at time s multiplied by the development of that 

exposure, aged a duration of length, t-s. 

The most important practical use of the convolution 

representation of percent of ultimate is in the fitting, 

interpolation and extrapolation of loss development 

factors. Starting with a percent of ultimate pattern, one 

can easily calculate associated age-to-age and 

age-to-ultimate factors. The generating pattern may be 

chosen from a family of parametric functions to thus obtain 

parametrically dependent loss development factors. 

In section III, a methodology is presented for fitting given 

age-to-age factors. The procedure involves calculating the 

empirical percent of loss in each time interval relative to 

the percentage reported at the most mature age available. 

These interval percentages of the truncated percent of 

ultimate curve are then fitted by minimizing a weighted 

chi-sauare statistic. 

The advantage in such an algorithm is that, once the fit is 

obtained, it is a simple matter to remove the truncation 

point and then compute the 'tail factor’ (extrapolate), or 



calculate age-to-ultimate factors at intermediate ages 

(interpolate). This follows easily because one starts with 

a percent of ultimate curve that can be evaluated at any 

age. If one does not posit this but instead begins fitting 

with an arbitrary parametric age-to-age factor curve, then 

both extrapolation and interpolation involve some 

complication. In effect, one must back out the implicit 

percent of ultimate curve after the fact. 

Another area of application is in converting development 

patterns from one exposure period basis to another. An 

immediately accessible result is that one can derive error 

terms for the usual “average date of loss" approximation in 

which, for instance, policy year development is estimated as 

accident year development evaluated six months earlier. A 

generalized “average date of 10s~~’ approximation is 

presented in section IV, The generalization allows 

approximation at immature evaluation times, for which the 

usual approximation breaks down. 

The generalization can be thought of as a two-step process. 

First, we must find an appropriate time at which to evaluate 

our approximating curve. We use an evaluation date such 

that the elapsed time from the conditional average date of 

loss to the evaluation date is the same as corresponding 

elapsed time differential for the exposures being 

approximated. The second step is to factor in the relative 

amount of exposure accumulation. 
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For example, as of the end of one year, the conditional 

average date of loss for a policy year is 8 months. Thus 

the elapsed time from the conditional average date of loss 

to the evaluation date is 4 months. Now an accident year at 

8 months has a conditional average oate of loss which is 4 

months; also producing an elapsed time differential of 4 

months. As of the end of one year, 50% of the policy year 

exposure has accumulated, while 2/3 of the accident year 

exposure has accumulated as of 8 months. Thus we 

approximate policy year as of one year by an accident year 

as of 8 months, times 75% (.5/(2/3)). 

Our underlying conceptual approach is in accord with 

Philbrick’s, and we feel it provides an intuitively sound 

basis for modelling development patterns. We believe the 

applications presented demonstrate the practical value of 

the approach. Improvement in application techniques is 

likely in the future. 
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II. CDNVCLUTIDN EXPRESSION OF PERCENT OF ULTIMATE 

We will describe loss development here in terms of percent 

of ultimate curves. We will first need notation to describe 

exposure accumulation and the dependence of loss development 

on the exposures. We define G(t) as the fraction of 

ultimate exposure that has accumulated as of time t. 

Assuming that the exposures begin at time zero and terminate 

at time, U, we have G(0) = 0, G(U) = 1, and G(t) is positive 

but less than unity for any positive t less that U. We 

define g(t) = G’(t), here assuming that G is piecewise 

differentiable. We call g the density of ultimate loss 

exposure and assume that g is piecewise continuous. We also 

define the exposure date random variable, T, by regarding G 

as its cumulative distribution function. 

The "g" functions for comnon accident and policy periods may 

be readily derived under the usual uniformity assumptions. 

11.1. Exposure Densities Under Uniformity Assumptions 

0 Accident Year g(t) = 1 for D<t<l 

0 Accident Quarter g(t) = 4 for 04tc1/4 

0 Policy L’ear g(t) = t for act< 1 

g(t) = 2-t for 1<t<2 

0 Policy Quarter g(t) = 4t for o<t<1/4 

g(t) = 1 for l/4( IX 1 

g(t) = 5-4t for 1ct< 5/4 

(Here it is assumed that t is measured in years.) 



Now that we have shown that exposure periods of interest may 

be designated by ultimate loss accumulation functions, we 

proceed to define development patterns with respect to such 

functions. Let FG(t) be the expected fraction of ultimate 

loss developed as of time t on ultimate loss exposures which 

accumulate as specified by G. 

Now we assume the existence of a continuous function, F, 

sclch that one unit of ultimate loss incurred at exactly 

time, s, will develop, as of time, t, to a value, F(t-s), 

dependent only on the elapsed time from exposure, t-s. Then 

we may write: 

11.2. Convolution Representation Formula 

t 
KG(t) = 

s 
F(t-s) g(s)ds 

0 

This is the fundamental convolution formula representation 

of percent of ultimate loss development. Observe that we 

explicitly denote the dependence of a development patern on 

the exposures by using the subscript “G”. This 

distinguishes the resulting pattern, FG, from the 

“generating” pattern, F, which carries no subscript. “F” 

may be interpreted as the development pattern for an 

exposure of infinitesimal duration. F is somewhat more 
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general than a cumulative distribution. In particular, we 

could allow "F" that go above unity, since loss development 

patterns sometimes exhibit such behavior. 

Before presenting a few particular examples, we will show 

that the convolution formula automatically yields 

decomposable percent of ultimate curves. First we must 

mathematically define oecomposition. 

11.3. Decomposition 

A decomposition of a random variable, T, is a set of 

mutually exclusive random variables [Tl, T2, . . . . Tn] along 

with a set of weights [wl, w2, . . . . w,l summing to 

unity such that T = zwiTi. 

If G is the cumulative distribution of T and if Gi is the 

cumulative distribution of T i, it follows that G = 
fi 

w.G.. 
11 

From this expression for the cumulative distribution it can 

be immediately proved that the convolution formula yields 

decomposable curves. 

11.4. The Convolution Formula Yields Decomposable Curves 

Let T be an exposure date random variable with exposure 

beginning at time, zero, and terminating at time, U. If 
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Tl, . . . . Tn is any collection of positive, mutually 

exclusive, random variables so that T = z wiTi for some 

positive weights, wi; then 

( i) FG(t) = swi FG (t) 
i 

In particular, if Gi(t) = Hi(t - (i-l)U/n) where the 

Hi are cumulative distributions corresponding to exposures 

beginning at zero and terminating at U/n, then 

( ii) F Ct.1 G = wi FH.(t - (i-l)U/n) 
1 

Observe that in II.Ll.(ii), we have achieved an expression 

for percent of ultimate as the weighted sum of translates. 

Turning now to particular examples, consider an exposure 

density which is uniform over a period of duration k. 

Percent of ultimate formulas for exponential and Pareto 

curves may then be derived. 

11.5. Examples 

Exponential and Pareto Development for Accident Period of 

Duration k. 
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( i) Exponential 

F(t) = 1 - ewbt 

For t< k 

FG(t) = [t - (l-embt)/b] / k 

For t> k 

FE(t) = 1 - Kbt(ekb-l)/(b'k) 

( ii) Pareto 

F(t) = 1 - (B/t+B)’ 

For t< k 

F&f = Ct )I / k 

For t) k 

FG(t) = 1 

These formulas may be readily verified by working out the 

appropriate integrals using g(t) = l/k for OL tL k. 
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Turning to another example, we had mentioned that the 

percent of ultimate curve could go above unity. This could 

be modelled by constructing a generating curve as a weighted 

sum of two tractable generating curves if we allow one of 

the weights to be negative. For example, with two related 

exponentials, we could fashion such a curve. 

11.6. Example 

- Weighting Two Related Exponentials to Form a Curve that 

Could Exceed Unity. 

F(t) = (l+a) Fl(t) -a F*(t) 

where 

Fl(t) = 1 - ewbt 

F2(t) = 1 - eSrbt 

and 

,Iall and 'lb*' are non-negative parameters and 

V” is between zero and one. 

In the case of uniform accident year exposure, we would have 

For t 5 1 

FG(t) = (l+a) (t-cl-e -bt)/b) 

- a(t - (l-embrt)/br) 
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For t >l 

FG(t) = 1 - (l+a) eSbt (eb-l)/br 

+ a e-brt(ebr-l)/br 

Finally, we give another example using the exponential 

generating function to construct policy year percent of 

ultimate curves. 

11.7. Policy Year Percent of Ultimate From Exponential Generating 

Pattern 

For t 6.1 

FG(t) = K(t) 

FG(t) = K(t) - 2 K(t-1) 

For t >2 

FG(t) = K(t) - 2 K(t-1) + K(t-2) 

where 

1 t t2 ,-bt 

K(t) = - - - + ; - 2 
b2 b 

To provide some feel for these curves, we have computed 

percent of ultimate values using various parameters. These 

figures are shown in Exhibit I. 
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III. SMOOTHING, EXTRAPOLATION, AND INTERPOLATION OF LOSS DEVELOP- 
MENT PATTERNS 

Typically, the actuary is given a series of age-to-age 

factors obtained from a triangle of data. From these 

8’empirical” factors, the actuary would like to derive 

age-to-ultimate factors at the given ages and sometimes also 

at intermediate ages. In this section, we discuss how the 

convolution representation approach can be applied to 

smooth, extrapolate, and interpolate loss development 

patterns. 

we begin by observing that convolution representation 

provides a formula for evaluating percent of ultimate at any 

desired age; and, by taking multiplicative inverses, age-to- 

ultimate factors at any desired age can readily be 

obtained. Age-to-age factors for given ages are likewise 

easy to compute starting with a percent of ultimate pattern. 

If we allow parametrically dependent generating patterns, we 

would thus have at our disposal parametrically dependent 

age-to-age and age-to-ultimate factors. Thus, if had a 

fitting procedure to select the parameter which best 

describes the data, there would be no problem in computing 

age-to-ultimate factors at any desired age. 
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Before discussing the critical details involved in fitting 

the data, it is worth noting how this strategy contrasts 

with other procedures. Under the procedure described by 

Sherman (‘Extrapolating Smoothing, and Interpolating 

Development Factors’, Richard E. Sherman, PCAS, 1985), one 

fits a parametric age-to-age factor curve against the given 

age-to-age data. While excellent fits are obtained in many 

cases, the extrapolation of a “tail factor” and the interpo- 

lation of factors at intermediate ages is not trivial. 

Though extrapolation may be tractable with particular curves 

and interpolation accomplished by resort to iterative 

schemes, it is much more convenient to eliminate these 

additional complications altogether. 

Turning now to the mathematical exposition of our strategy, ’ 

we suppose that age-to-age factors, AAi, are given where 

i= 12 , ,..,k and AAi applies to loss development from age 

i to i+l. We do not assume AAk is unity. In other words, 

losses are not necessarily at ultimate at age k+l. 

From these empirical age-to-age factors, we calculate 

age-to-most-mature-age factors, percent of truncated 

ultimate values, and resultant interval percentage values. 
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111.1. Age-to-Most-Mature-Age Factors 
Percent of Truncated Ultimates 
Interval Percentages of Truncated Ultimate 
- Derived From Given Age-to-Age Factors 

( i) AMi Age-to-Most-Mature-Age Factor 

AMi = AAiAAi+l...AAk i=1,2 ,a--, k 

( ii) Pi Percent of Truncated Ultimate 

'i = l/AMi 1=1,2,...,k 

PO =o 

'k+l = 1 

(iii) Ri Interval Percentage 

Ri = Pi - PiTl i=1,2,...,k+l 

We will next fit the interval percentage numbers. First we 

suppose that a parametrically dependent generating curve has 

been chosen. We write it as F(tle). From it we derive the 

percent of ultimate curve FG(tlQ) using the convolution 

formula. 

We define the percent of truncated ultimate curve: 

111.2. Percent of Truncated Ultimate from Convolution Formula 

FG(tlB;k+l) = F,(tl8)/F,(k+llR) 

FG(t18;k+l) = 1 for tLk+l 

Finally we calculate interval percentages from the 

convolution formula. 
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111.3. Interval Percentages from Convolution Formula 

H(ilf3) = FG(i18;k+l) - FG(i-ll@;k+l) 

Note that in this defintion we have omitted the explicit 

dependence of H on the exposures G and the truncation point 

k + 1. This is done in the interests of notational brevity. 

The fit of the H(ile) against the Ri could be aone in 

various ways. While a maximum likelihood approach would be 

most satisfying, we were not able to implement such an 

algorithm at this time. Instead, we were able to achieve 

fairly good results by minimizing a weighted Chi-square 

statistic. 

111.4. Weighted Chi-Square 

k+l 

x2 = 2 wi [(Ri - H(il@))2/H(ile)l 

i=l 

Generalized least squares fitting routines, such as the 

Marquardt algorithm, can be easily adapted to minimizing 

this statistic. For the weights, we have found that a 

decreasing series slightly improves fit to the earliest 

factors without appreciably harming fit to the later factors. 

The weighting can be regarded as an embellishment since even 

uniform weights yield reasonable results. 
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The following example should clarify the procedure we have 

described. 

111.5. Example 

Accident Year 

Age-to-Age 
Factor 

Age (Data) 

i AAi 
- 

1 2.22 3.025 33.1 33.1 
2 i.25 1.363 73.4 40.3 

3 1.09 1.090 91.7 18.3 
4 -- 1.000 100.0 8.3 

Age-to- Truncated Truncated 
Most. Mature Percent of Interval 
Age Factor Ultimate Percentage 

T ‘i Ri 

Exponential Generating Curve - Parameter b 

For i = 1, 2, 3 

FG(ilb;4) = (1 - eSib(eb-l)/b)/D 

where 

D = (1 - e-4b(eb-l)/b) 

Thus 

H(llb) = (1 - eeb(eb-l)/b)/D 

H(21b) = (e 
-b 

- e -2b)(eb - l)/(b*D) 

H(31b) = (e-2b - e-3b)(eb - l)/(b.D) 

H(4lb) = (e-3b - e-4b)(eb - l)/(b*D) 
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We use a numerical routine to find that the CM-square 

error is minimized when b = .198 

we applied these procedures to the Workers' Compensation 

data in Sherman’s paper using a two parameter pareto 

generating curve. Ftesults are shown in Exhibit 2. Fits 

somewhat inferior to those with Sherman’s three parameter 

inverse power curve would be expected because our curve 

has one less parameter. Thus the quality of our fits 

appears to be relatively good. Note that we are 

immediately able to obtain a “tail factor” and 

age-to-ultimate factors by quarter. 
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IV. AVERAGE DATE OF LOSS APPROXIMATION METHOD 

The average date of loss transformation method is a well 

known methoa for approximating the loss development pattern 

for one type of exposure given the loss development pattern 

for another type of exposure. An example in common practice 

is the use of accident year development to estimate policy 

year development. Ive will derive a generalization of this 

method and use the convolution integral to put precise 

boundaries on the error. 

To begin the mathematical development, we use the exposure 

date random variable, T, to define: 

IV.1. Definition of Conditional Average Date of LOSS and 
Conditional Variance of Date of Loss 

Let T be the exposure date random variable corresponding to 

G. For positive t define 

( i) Conditional Mean 

m(t) = E[TITctl q [ j sg(s)dsl + G(t) 

0 
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(ii) Conditional Variance 

v(t) = E[(T-m(t))21Tst] = [ 
I 

(s-m(t))2g(s)dsl i G(t) 

0 

Note that for t greater than U, we have m(t) = m(U) and 

v(t) = v(U). Since m(U) is the mean and v(U) is the 

variance of the distribution defined by G, we often write 

simply "rntt and "v" to condense notation. 

To describe the usual average date of loss approximation, 

suppose there are two types of exposures described by the 

cumulative distributions, G and G*, respectively. Let F(s) 

be the underlying generating pattern and let FG(s) and 

FG*(s) be the resulting percent-of-ultimate functions. 

Other quantities derived from G* will also carry a 

superscript 'l*ll. The average date of loss approximation can 

be expressed as:’ 
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IV.2. Usual Average Date of Loss Approximation 

FG(t) = FGy(t + m* - m) + h 

where h is an error term. 

This formula is an attempt to equate development between 

different exposure types by adjusting the time of evaluation. 

Accordingly policy year development is estimated by accident 

year development from a half year earlier (m* - m = l/2 - 1 

= -l/2). The adjustment works well for sufficiently large 

evaluation times though the error bounds are generally not 

known. Furthermore, the approximation breaks down for 

immature evaluations. We propose to refine the 

approximation by generalizing the evaluation time adjustment 

and by factoring in the relative accumulation of exposure. 

Before presenting our generalized approximation formula we 

will define the needed evaluation time adjustment. 

IV.3. Evaluation Time Adjustment Function 

Let j(t) (if it exists) be the function which solves 

j(t) - m* (j(t)) = t - m(t) 
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Since the function, r*(j) = j - m*(j), is continuous, has a 

minimum of zero, and is unbounded, it follows that at least 

one *'jt* exists to solve the defining equation for each 

particular t. Unfortunately, this "j*l need not always be 

unique and thus j(t) is well-defined when G*(t) exceeds 

g*(t)*r*(t). This happens in most situations encountered in 

practice. In certain cases j(t) may be determined 

explicitly. In other cases it may be found using fixed 

point techniques. 

IV.4. Example: j(t) for Policy Year Approximation by Accident 

Year. 

When approximating policy year development with accident 

year development; G = Gpy, G* = GAY, it can be shown 

that: 

i 

2 (t - m(t)) t(m(t) + l/2 
j(t) = 

(t +$ - m(t)) t>m(t) + l/2 

Note that when t 2, we have j(t) = t - l/2, which is the 

adjustment used in the usual approximation. 

To facilitate our derivation of the generalized 

approximation we expand FG(t) using a Taylor series. 
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IV.5. Taylor Expansion of FG(t) 

Lema 

Suppose the generating pattern, F(t), is second order 

differentiable. Then 

FG(t) = G(t) ( F(t - m(t)) + F*'(c) v(t) ) 
2 

where 

max(0, t-U) 6 C C_ t 

Proof 

By definition 

t 
( i) FG(t) = 

5 
g(s) F(t-s)ds 

0 

Using a Taylor .-eries, expand F(t-s) around t-m(t) to three 

terms to obtain 

F"(c')(m(t)-s)2 
( ii) F(t-s)=F(t-m(t)) + F'(t-m(t))(m(t)-s) + 

2 

where cl is between t-s and t-a. The Lemma follows directly 

by substituting (ii) into (i). The existence and boundaries 

on c are obtained via the Mean Value Theorem. 

Armed with this expansion and our earlier definitions, we 

present our generalized average date of loss approximation. 
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IV.6. Generalized Average Date of Loss Approximation 

FG+(j(t)) 
G(t) 

+ k 
G*(j(t)) 

where the error term, 

k = G(t) (F"(c) v(t) - F"(c*) v*(j(t))) 
2 

Proof 

Using Lemma IV.5. we rewrite FG(t) and FG(j(t)) 

( i) FG(t) = G(t) (F(t-m(t)) - F"(c)2v(t) ) 

( ii) FGx(j(t))=G*(j(t)) + F"(c*) i*(j(t)) 
1 

Multiplying (ii> by G(t)/G*(j(t)) and subtracting from (i) 

we obtain the generalized approximation with error term k. 

111 

An example of the approximation technique is shown in 

Exhibit 3. Policy year development is approximated by 

accident year development using the generalized average date 

of loss technique. The policy year and accident year are 

both derived from an underlying exponential development 

pattern. We can thus compare the approximation against the 

true answer. Such comparison demonstrates that the 
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generalization works rather well. Also shown is the usual 

approximation and its breakdown at immature ages. 

Finally, it should be noted that real world applications 

would entail approximation of accident year development at 

intermediate ages (8 months, for example). If one had a 

generating curve consistent with the given accident year 

development, such interpolation would be trivial. However, 

it would also be unnecessary since one could just as easily 

derive policy year development from the convolution 

formula. Thus the generalized formula is probably useful in 

solving practical problems only when one wants a quick 

estimate without going through the trouble of finding an 

appropriate underlying generating pattern. Nonetheless, the 

generalized formula aids our intuitive understanding of what 

is happening at immature ages. Further the error bounds are 

useful if one is willing to make a few assumptions, and can 

likely be refine? with further research. 
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V. CONCLUSION 

While both the generalized average date of loss 

approximation and the loss development factor analysis 

technique could be improved, they are nonetheless useful 

even at this stage. The relative ease with which they were 

derived is evidence of the value of the convolution 

representation. Perhaps the most important point is that 

models based on a percent of ultimate curve and which 

incorporate exposures are models with a solid and 

intuitively reasonable conceptual foundation. Research 

using models of this sort is likely to yield additional 

results and refinements in the future. 
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Exhibit 1 Sheet 1 

Me 
(Years) 

.5 8.3 5.8 3.0 

1.0 29.7 21.3 11.5 

1.5 51.7 38.7 21.9 

2.0 66.8 52.3 31.1 

2.5 77.2 62.8 39.2 

3.0 84.3 71.1 46.3 

3.5 89.2 77.5 52.6 

4.0 92.6 82.4 58.2 

4.5 94.9 86.3 63.1 

5.0 96.5 89.4 67.5 

6.0 98.4 93.5 74.7 

7.0 99.2 96.1 80.3 

8.0 99.6 97.6 84.6 

9.0 99.8 98.6 88.0 

10.0 99.9 99.1 90.7 

Example 

Accident Year 

Percent of Ultimate 

Exponential Generating Function 

Percent of Ultimate 

Exponential Parameter 
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Exhibit 1 Sheet 2 

Age 
(Years) 

.50 1.4 1.0 0.5 

1.00 10.5 7.4 3.9 

1.50 29.7 21.6 11.8 

2.00 50.5 38.1 21.7 

2.50 66.0 51.8 30.9 

3.00 16.6 62.4 39.0 

3.50 83.9 70.8 46.2 

4.00 89.0 77.2 52.5 

4.50 92.4 82.3 58.1 

5.00 94.8 86.2 63.0 

6.00 97.5 91.6 71.2 

7.00 98.8 94.9 77.6 

8.00 99.5 96.9 82.5 

9.00 99.7 98.1 86.4 

10.00 99.9 98.9 89.4 

Example 

Policy Year 

Percent of Ultimate 

Exponential Generating Function 

Percent of Ultimate 

Exponential Parameter 
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Exhibit 1 Sheet 3 

Age 
(Years) 

.5 10.5 5.7 3.0 

1.0 36.0 20.8 11.4 

1.5 60.0 37.3 21.4 

2.0 74.4 49.8 30.2 

2.5 83.3 59.5 37.8 

3.0 88.9 67.0 44.4 

3.5 92.6 72.9 50.2 

4.0 94.9 77.6 55.3 

4.5 96.5 81.3 59.7 

5.0 97.5 84.3 63.7 

6.0 98.7 88.8 70.3 

7.0 99.3 91.8 75.5 

8.0 99.6 93.9 79.6 

9.0 99.8 95.4 83.0 

10.0 99.9 96.4 85.7 

Example 

Accident Year 

Percent of Ultimate 

Pareto Generating Function 

Percent of Ultimate 

Pareto Parameters 
0 10 10 20 

L - 10 5 5 - __ 
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Exhibit 1 Sheet 4 

Example 

Accident Year 

Percent of Ultimate 

Double Exponential Generating Function 

F(t) = (l+a) (l-eebt) -a (l-embrt) 

Parameters 

a = .3 

b= 2 

r = .45 

Age 
(Years) 

.5 
1.0 
1.5 
2.0 
2 
3:; 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

Percent of 
Ultimate 

21.0 
63.6 
91.9 

loo.4 
102.3 
102.2 
101.7 
101.2 
100.8 
lOil.5 
100.2 
loo.1 
100.04 
100.01 
100.00 
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Year of 
Development 

2:l 

3:2 

4:3 

5:4 

6:s 

7~6 

8:7 

9:8 

10:9 

11:lO 

12:ll 

Tail Factor 

Exhibit 2 Sheet 1 

Accident Year 

Age-to-Age Loss Development Factors 

Actual 

1.920 

1.228 

1.098 

1.051 

1.036 

1.025 

1.019 

1.014 

1.011 

1.009 

1.008 

Sherman 
Three 

Parameter 
Inverse 

Power Fit 

Two 
Parameter 

Pareto Fit 
(Even Weight) 

Two 
Parameter 

Pareto Fit 
(Decreasing 

Weight) 

1.889 1.983 1.973 

1.224 1.210 1.208 

1.100 1.096 1.095 

1.056 1.055 1.055 

1.036 1.036 1.036 

1.025 1.025 1.025 
1.018 1.019 1.019 

1.014 1.014 l.Oi5 
1.011 1.011 1.012 

1.009 1.009 1.009 

1.008 1.008 1.008 

1.076 1.080 1.086 

Two Parameter Pareto 

F(tlB,P) = 1 - (B/(t+E))Q 

Fit Parameters 

Even Decreasing 
Weights Weights 

8 4.75 4.49 
Q 1.10 1.05 

Oecreasing Weights 

Wi = c(13-iI i = 1, 2, . . . . 12 

where c is a normalizing constant 
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Exhibit 2 

Interpolation 

Estimated 

Age-to-Ultimate 

Factors by Quarter 

Time 
(Years) 

Pareto Pareto 
"Even Weights 'VIecreasing Weights" 

Fit Fit 

1.00 3.375 3.376 

1.25 2.495 2.500 

1.50 2.089 2.096 

1.75 1.855 1.863 

2.M) 1.703 1.712 

Sheet 2 
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Exhibit 3 Sheet 1 

Accident Year and Policy Year 

Loss Development Comparison 

Accident Year 

VI* Interval si(t) - G*(t) 

(-(-@,O) 0 0 

( O,l) 1 t 

(1, Jo 1 0 1 

m+(t) 

t/2 

l/2 

vt(t) 

t2/12 

l/12 

Policy Year 

“t” Interval go G(t) m(t) v(t) 

c-m, 0) 0 0 

(O,l) t t2/2 2t/3 t2/18 

(1, 2) 2-t L-((t-2$/2) (l/3+(t-l)(l-(t-1)2/3))/G(t) 

(2,@9 1 0 1 1 l/6 
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Usual Average Date of Loss Approximation 

usual Actual 
t FA’f(t) Fpy(t) Approximation Error 

.25 

.50 

.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

.0288 

.I065 

.2224 

.3679 

.50?7 
-6166 
.7014 
.7675 
.818g 
.859o 
.8902 
.9145 

.0024 

.0185 

.0589 

.1321 

.2398 

.3649 

.4897 

.600i 

.6888 

.7576 

.8113 

.a530 

.oooo 

.oooo 

.0288 
1065 

12224 
.3679 
.507-i 
-6166 
.7014 
-7675 
.818q 
.a590 

.0024 

.0185 

.0301 

.0256 

.0175 
-.002q 
-.0180 
-.0162 
-.0126 
-.0098 
-.0076 
-.0060 
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t 

.25 .0024 

.50 .0185 

.75 .0589 
1.00 .1321 
1.25 .2398 
1.50 .3649 
1.75 .w97 
2.00 .6004 
2125 .6888 
2.50 .7576 
2.75 .8113 
3.00 .8530 

Exhibit 3 Sheet 4 

Generalized Average Date of Loss Approximation 

by(t) j(t) 

Theoretical 
Error 

Generalized Actual upper lower 
Approximation Error bound bound 

.5000 

.6667 

.8913 
1.0952 
1.2769 
1.5000 
1.7500 
2.0000 
2.2500 
2.5000 

.0025 

.0187 

.0599 

.1351 

.2431 

.3721 

.5045 

.6166 

.7014 

.7675 

.818g 

.859o 

.oooo 
-.0002 
-.OOlO 
- .oozg 
-.0032 
-.0072 
-. 0148 
-. 0162 
-.0126 
-.oog8 
-.0076 
-. 0060 

.OOOl 

.ooog 
-0041 
.0152 
-0218 
.0181 
.0140 
.0109 
.0085 
.0066 
.0051 

.oooo 
-.0005 
-.0026 
-.0091 
-.0203 
-.0385 
-.0608 
-.0740 
-.0577 
-.0449 
-.0350 
-.0272 
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