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Abstract 
Opposition to the discounting of loss reserves is based on the 
premise that loss reserves are uncertain and insurance companies 
must retain additional funds in order to reduce the chance of 
insolvency. This paper explores the explicit calculation of a 
risk load for discounted loss reserves. Underlying 
considerations include: (1) the random nature of the claim 
settlements; (2) our ability to describe the distribution of 
actual results; and (3) how the risk load we use for loss 
reserves compares to the profit load we use for pricing 
insurance. These ideas are expressed in terms of an example: 
--orkers' compensation pension reserves. 

The research for this paper was supported by a grant from the 
Society of Actuaries upon recomendation of the Actuarial 
Education and Research Fund. 
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1. Introduction 
Should loss reserves be determined with an explicit recognition 

of risk? This question was posed by the Casualty Actuarial 

Society's Committee on the Theory of Risk at the November, 1984 

CA.5 annual meeting'. For the sake of discussion, the committee 

assumed that the answer was yes, and then proceeded to outline 

several points that should be considered in setting a risk load 

for loss reserves. 

The issue of discounting reserves is linked to the issue of risk 

loading. It could be argued that carrying reserves at the 

nominal value rather than the present (ox- discounted) value 

represents an implicit risk load. The long tailed lines have 

the most uncertain reserves and the largest difference between 

the nominal and present values. 

The discounting of loss reserves has received a lot of recent 

attention. The 1986 tax law requires that property and casualty 

insurers calculate their taxes using discounted reserves. 

However , the Loss Reserve Discounting Study Group of the 

National Association of Insurance Commissioners declared that 

,1 . . . discounting of loss reserves in not a generally accepted 

statutory accounting practice, except in regards to fixed and 

determinable payments, such as those emanating from workers' 

'The Committee on the Theory of Risk made similar 
presentations in 1985 at meetings of the Midwest Actuarial Forum 
and the Casualty Actuaries of Greater New York. Copies of the 
presentation, titled "Risk Theoretic Issues in Loss Reserving," 
are available from the Casualty Actuarial Society. 
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compensation and long-term disability claims."2 Very recently, a 

prominent actuary declared himself to be "solidly in favor of 

rcscrve discounting, unless the change would take place without 

concomitant recognition of the need for contingency reserves. f9 3 

While the Committee on the Theory of Risk discussed several 

important principles on risk loading in their presentation, they 

did not provide a unified example applying these principles. 

This paper will give such an example. 

Our goal is to calculate risk loads for workers' compensation 

pension reserves. The author considers this to be a good place 

to start for two reasons: (1) it is a line with perhaps the 

longest tail o-f reserves; and (2) much of the necessary 

mathematical work has already been done. The new textbook Actuarial 

Mathematics4 views the future lifetime o-f an individual as a random 

variable. Formulas are provided which enable one to quantify 

uncertainty in the loss reserves. 

While we are focusing on workers' compensation pension reserves, 

it is hoped that this example will be rich enough to highlight 

issues that are relevant to other lines o-f insurance. 

2s . 1 mms , Gary D., “NAIC Report ,” The Actuarial Update, August 1987. 

'Kilbourne, Frederick W. , The ActuarialReview, November 1987, p. 
11. 

4Bowcrs, N.L., Gerber, H.U., Hickman, J.C., Jones, D.L. and 
Nesbitt, C. J ., ActuarialMathematics, Society of Actuaries, 1986. 



This paper is being written in the spirit of the Committee on 

the Theory of Risk's presentation, that is to provoke 

discussion. The reader should be warned in advance that a 

number of debatable assumptions will be made. It is hoped that 

the state of the art of loss reserving will be advanced by this 

debate. 

2. Underlying Considerations 

It should be cleat- that the risk load becomes more important 

when reserves are discounted. Thus we assume that reserves are 

discounted. We shall also assume that the interest rate is 

known and fixed. While this is clearly not the case, there are 

a number of strategies available to the insurer which minimize 

the effect of varying interest rates. In addition, Wo115 argues 

that the insurance operation of an insurance company should get 

"credited for funds it provides to the investment department at 

risk free rates" and that the "difference between the amount of 

investment income and its cost of funds" is the profit earned by 

the investment department. 

We define the expected reserve as an estimate of the expectation 

of the present value of future payments to be made. 

Let n be the total number of claims which are open. Let Pit be a 

random variable denoting the payment made for the i th claim at 

5Wol1, Richard G., "Insurance Underwriting Profits: Keeping 
Score," Financial Analysisoflnsurance Companies, Casualty Actuarial Society, 
1087. 
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the tth time period. Let Pit be an estimate of the expected 

value of Pit and let 6 be the force of interest. In this case 

the expected reserve, Ti, is: 

Since Pit is 

(2.1) 
i=lt=l 

a random variable, the expected reserve may be 

different from the amount, R, necessary to pay the claims. If 

the distribution of each Pit is known, it is possible to 

calculate the distribution of the amount necessary to pay the 

claims. We shall refer to the risk created by the randomness o-f 

'it as the process risk A* Bowers, ct.A6, describes the distribution 

of R for the case of life annuities (i.e. workers' compensation 

pension reserves). 

In practice, the distribution of Pit is not known. It must be 

estimated. The uncertainty in the distribution of Pit creates an 

additional risk which we refer to as parameter risk A- There may 

be a number of ways to estimate the distribution of Pit. The 

amount of parameter risk will depend on how this distribution is 

estimated. 

The risk load in the loss reserve should reflect both process 

risk and parameter risk. 

6Actuarial Mathematics, op. cit., Chapter 5. 
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Our goal is to translate the uncertainty in the amount necessary 

to pay all claims into a risk load, which is expressed in 

dollars. We shall use utility theory as out- tool to accomplish 

this goal. The main problem with the use of utility theory is 

the selection of a utility function. Reserves at-e less subject 

to market discipline than are prices for new insurance policies. 

There may 

profitabi 1 

function. 

be strong incentives such as taxes or perceived 

ity, which may influence the choice of a utility 

It is our contention that the utility function should 

be calibrated by examining dec 

A decis.ion that is continually 

write new business with a prof 

isions that are voluntarily made. 

being made is whether or not to 

it margin that is determined by 

the marketplace. One should use utility theory to link the 

profit margin for new business to the risk load for loss 

reserves. 

It is possible that the estimates used in setting the loss 

reserve will also be used in pricing new business. For example 

a mortality table used in setting workers' compensation pension 

reserves could also be used for ratemaking. This will introduce 

a correlation between underwriting results and payments of 

existing claims. 

These considerations will be addressed below. This list of 

considerations,is not intended to be complete. 

410 



3. The Process Distribution of Pension Reserves 

Throughout this paper we will illustrate our results with a 

mortality table based on Makeham's mortality law': 

s(x) = e 
-Ax - B(cx-l)/ln(c) 

(3.1) 

where B > 0, A 2 -B and c 2 1. 

In this section we assume that the mortality table is known' with 

A = .0007, B = .00005 and c = 10e04. 

Let T be a random variable representing the future lifetime of 

an individual aged x. The cumulative distribution function of 

T, F(t) 3 is defined: 

F(t) = 1 - ss. 

If this individual is paid a pension continuously until death at 

an annual rate of 1 per year, the present value of this pension 

is: 

a- E 1Lp. 
TI 

The cumulative distribution function of z.- 
7 

terms of F(t): 

Pr{ z~, < zE, } = F(t) 

7Bowers ct. al.. op.cit. p .71 . 

(3.3) 

can be expressed in 

(3.4) 

8We are using the illustrative life table given in Appendix 
2A of Actuariaf Mathematics. 
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The density functions for T and 8- are shown in Graphs 1 and 2 
TI 

for an individual aged 40. We are assuming here, as we will 

throughout this paper, that the effective interest rate, i, is 

equal to 6%. 

Bowers &al.' gives formulas for the mean and variance of 8-. 
Tl 

For 

the sake of completeness, we repeat them here. 

Let A, denote the net single premium for a whole life insurance 

policy of 1 payable at the end of the year of death. Starting 

with A,,, = 0, we calculate A, according to the following 

recursion formula: 

Ax = vqx + v~xA,+~. (3.5) 

By assuming that deaths are uniformly distributed between 

integral ages, the net single premium for a whole life insurance 

policy payable at the moment of death becomes: 

We then have: E[zq] = +. 

(3.6) 

(3.7) 

Let 2A x denote the net single premium of a whole life insurance 

policy of 1, payable at the moment of death, and calculated with 

the force of interest 26. We then have: 

‘i b i.d . . ., Chapter 5. 
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In our example, we will be considering two groups of lives. 

Group A will consist of lives for which reserves are currently 

being held. Group A is described in the following table. 

Table 3.1 

Ass Annual Pension f Lives 

30 $10,000 24 
40 12,500 36 
50 15,000 48 
60 17,500 60 

Group B will consist of lives which are currently being insured 

h addition u those lives for which reserves are currently 

being held. The lives which are currently being insured are 

described in the following table. 

Table 3.2 

Lb32 Annual Pension f Lives PrTClaiml 

30 $10,000 1500 .002 
40 12,500 1500 .003 
50 15,000 1500 .006 
60 17,500 1500 .014 

Using Equations 3.7 and 3.8 we calculate 30,482,413 and 630,686 

as the expected value and standard deviation of the loss reserve 

for Group A. We also calculate 6,897,916 and 1,170,220 as the 

mean and standard deviation of the incurred loss for new 

business described in Table 3.2. Since losses for the lives 

described in the two tables are independent, the means and 

variances in the two tables can be summed to obtain the mean and 

the variance for Group B. The resulting mean is 37,380,329 and 

the resulting standard deviation is 1,329,353. 
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Bowers ct.al.10 uses the normal approximation to describe the 

distribution of the total loss reserve. These distributions can 

be calculated numerically by use of the Reckman-Meyers 

algorithm. Graphs 3 and 4 show the numerically calculated 

density functions for Groups A and B. The "+" marks on the 

graphs show the density functions for normal distributions with 

the same mean and variance. The normal approximation is 

apparently a good one, and thus we use it to describe the 

process distribution. 

4. Maximum Likelihood Estimation of the Mortality Table 

The distribution of the loss reserves derived above assumed that 

the distribution was known. This is clearly not the case. The 

distribution must be estimated by mortality studies. One should 

consider the method of estimation when examining the risk in 

loss reserves. For example, one should expect a different 

precision in the estimates if the fitting of the mortality table 

was done by the method of moments rather than by maximum 

likelihood estimation. Also, one should expect greater 

precision when the sample size is increased. 

In our example, we assume that the parameters of Makeham's law 

were estimated by maximum likelihood. The study was assumed to 

observe n = 1000 people starting at age to = 25 and observing 

"i.b.i.d. > Chapter 5. 

"Reckman, Philip E., and Meyers, Glenn G., "The Calculation 
of Aggregate Loss Distributions from Claim Count and Claim 
Severity Distributions," Proceedings of The Casualty Actuarial Society, 1983 . The 
companion program, CRIMCALC, written by Glenn Meyers, was used 
to perform the calculations. 
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their (integral) age of death. It is assumed that everybody 

dies by age w = 110. 

Now there are many methods of fitting mortality tables. By the 

choice of maximum likelihood as our method to estimate 

parameters, we do not necessarily mean to imply that this is the 

best way to fit mortality tables. This choice was made in order 

to take advantage of some very powerful mathematical tools which 

measure the uncertainty of our estimates. 

Let z = (A,B,c)' be a vector consisting of the parameters for 

Makeham's law. The maximum likelihood estimate, zM, of i is the 

vector which maximizes: 

L(Z) /j=j [s(t;;)-s(t+l;q"t 
t=tO 

(4.1) 

where nt is the number of deaths observed in the interval 

[t,t+1>. Hogg and Klugman12 provide methods of calculating ii,. 

Now ti, is a statistic. For given 1, the sampling distribution 

+ 
of eM has an approximate trivariate normal with mean i and 

covariance matrix X2. The probability density function, f(@,lz), 

is given by: 

e . 
f(O,lO) = 1 

(2aj3'21xI'C 

-(~,-~)'c-2&-~)/2 
(4.2) 

'2ilogg, Robert V., and Klugman, Stuart A., LossDistributions, John 
Wiley k Sons, 1984, Chapter 4.3. 

417 



The elements aij 4 (0) of the information matrix, A E CS2, are given 

by the following formulas13. 

P&j) = 
s(t;S)-s(t+l;J) 

s(t& 

W-l 
aij(Z) = n C 

t=t() 

apt(J) apt (f> 1 -. 
aei aej'p,(ii) 

(4.3) 

(4.4) 

5. The Predictive Distribution of Pension Reserves 

To summarize the previous section, we have given formulas for 

the distribution of the estimator, f,, of our mortality table 

parameter in terms of the given parameter f. This distribution 

depends upon the size of the sample, and the method of parameter 

estimation. 

What we need, however, is just the opposite, i.e. the 

distribution of f in terms of ii,. 
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A historical comment may be in order here. Our problem is very 

similar to the one addressed by the Rev. Thomas Bayes for the 

binomial distribution. Stigler14 attributes the following 

statement to Bayes. 

"Given the number of times in which an unknown event has happened 

and failed: Required the chance that the probability of its 

happening in a single trial lies between any two degrees of 

probability that can be named." 

We must go one step further. What we really need is the 

distribution of the loss reserve, R, in terms of 3,. To get 

this, we begin with the density function for the joint 

distribution of R, 7, and z,: 

f(I-JJ,) = f(rlii,t,).f(;,ii,). (5.1) 

Now R is independent of s,, and f(l,l,) = f(7,@).f(i). Thus: 

f(r,ii,f,) = f(z-@)-f(f,@).f(ii). 

The process distribution, f(x-Iii), is assumed to be normal with 

the mean and variance calculated from Equations 3.7, 3.8 and the 

information provided by Tables 3.1 and 3.2. 

The sampling distribution of the maximum likelihood estimator, 

14Stigler, Stephen M., The History of Sfatistics - The Measurement of Uncertainty 

before1900, The Belknap Press of Harvard University Press, 1987, 
p.123. 
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f(i?,lf) is given by Equation 4.2. 

Our version of "Bayes' Postulate"1s is to assume that the prior 

distribution is uniform, i.e. f(ii)rl. This reflects the view 

that one should not favor one value of z over another. The 

author concedes that this choice is debatable. Our purpose in 

this paper is merely to illustrate an example. 

The joint distribution of R and ii, is obtained by integrating out 

1. 

f(r,ii,) = ~(rll).f(ii,lii).f(~)dii 

Then: f(f,) = Tf(r,fy)dr 

0 

and the predictive density of r is given by: 

M f(. ,1,> 
f(‘lqJ = -q-$--. 

(5.3) 

(5.4) 

(5.5) 

The integrals in Equations 5.3 and 5.4 are done numerically. 

Equation 5.4 is particularly difficult since it involves a 

triple integral over an infinite region. Recall that 

f = (A,B,c)'. The method used, which is best described as "brute 

force", is outlined in the Appendix. 

15While our use of the term "Bayes' Postulate" may 
correspond to common usage, it may not be what Bayes himself 
actually assumed. See Stigler op.&, p. 127. 
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The mean and standard deviation for Group A is 29,903,274 and 

1,700,463. The mean and standard deviation for Group B is 

36,649,786 and 2,389,486. Note the marked increased in the 

standard deviation when parameter uncertainty is considered. It 

is perhaps more interesting to note that the estimates of the 

mean are lowered when parameter uncertainty is considered. 

The mean and standard deviation for the group described by Table 

2 only has mean 6,746,512 and standard deviation 1,223,232. If 

we assume independence of the reserves described by Tables 3.1 

and 3.2, we calculate a standard deviation of 2,094,724 for 

Group B by summing variances. This falls short of the variance 

calculated above. This is because the same estimate of a is used 

for the groups described by Tables 3.1 and 3.2. 

Plots of the predictive density of the reserve for Groups A and 

B are given in Graphs 6 and 6. Note that the modes are equal to 

the means of the reserve distributions when parameter 

uncertainty is not considered. 

6. Calculation of the Risk Load Using Utility Theory 

Let us consider an insurer who has reserves for expired polices 

described by Table 3.1. Assume that the insurer is considering 

three alternatives: (1) Sell the reserves; (2) Keep the reserves 

but do not write new business; and (3) Keep the reserves and 

write the new business described by Table 3.2. Alternative 2 

contains a provision for a risk load. Alternative 3 contains a 
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provision for a risk load for the loss reserve plus a risk load 

for new business which is determined b the competitive market. 

Acceptance of this alternative indicates an acceptance of the 

risk load for new business. 

Two of the three alternatives involve uncertain outcomes. We 

shall use utility theory to compare these outcomes. 

Let: 

S = surplus of the insurance company; 

RA = random variable for the reserve for Group A; 

RB = random variable for the reserve for Group B; 

i%A = expected reserve for Group A; 

R, = expected reserve for Group B; 

LA = risk load for Group A; and 

P = risk load for new business. 

Let u be a utility function. The insurer is indifferent to the 

three alternatives if: 

U(S) = Ep(S + iXA + LA - R~)]; and (6.1) 

+(S + EA + LA - itA)] = +(S + il, -I- LA + P - R,)].(6.2) 
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We shall consider utility functions of the form: 

u(x) = -e - (x/b) = (b>O and ~51). (6.3) 

This choice of utility functions is not unique. Others could be 

considered. This utility function does satisfy certain criteria 

(e.g. risk averse and decreasing risk aversion) that are 

desirable for insurance companies16. 

The Committee on the Theory of Risk17 suggests that the risk load 

could be obtained by solving Equation 6.1 for the risk load, LA. 

Our solution is a bit more involved. Our goal is to use 

information provided by the decision to compete for new business 

in the marketplace. This information should provide us with 

some hints as to which utility function to use. We would like 

to choose the risk load, LA, and utility function parameters, b 

and c, which give a simultaneous solution to Equations 6.1 and 

6.2. 

Since we have two equations with three unknowns, we will pick 

several arbitrary values of c, and solve the resulting equations 

for b and LA. The solution will be iterative. We start by 

taking an initial guess at LA. We then repeat the following 

steps until the values of b and LA converge. 

"Venter, Gary, "Utility Theory with Decreasing Risk 
Ave I‘S i on , " Proceedings of the Casualty Actuarial Society, 1983. 

17Committee on the Theory of Risk, op.& p.29. 
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L5is.sE Descrintion 

1. Solve Equation 6.2 for b. 

2. Solve Equation 6.1 for LA. 

Convergence is rapid. Numerical integration was used to 

calculate the expected values and the secant algorithm" was used 

to solve the equations. 

In our example we set the surplus equal to one half of the 

expected loss for the new business, or 3,373,256. We set the 

profit equal to 12% of the surplus, or 404,791. The 

simultaneous solutions to Equations 6.1 and 6.2 for given values 

of c appear in the following table. 

Table 6.1 

c b LA 

0.5 6,380,932 348,034 

0.6 4,042,686 376,560 

0.7 3,238,015 402,100 

0.8 2,921,056 425,562 

0.9 2,783,539 447,068 

1.0 2,726,5?7 466,740 

The linking of Equations 6.1 and 6.2 severely limits the 

subjective element in choosing the parameters of out- utility 

function. The risk load, LA, is confined to a relatively narrow 

range. The main determinant of this range is the profit loading 

which is in turn determined by market pressures. The decision 

to compete is a real decision made by company management. 

l*Burden, Richard L., and Faires, J. Douglas, NumericalAnalysis, 
3rd Edition, Prindle, Weber & Schmidt, 1985, p. 47. 
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It was mentioned in the introduction that carrying reserves at 

their nominal value represented an implicit risk load. We now 

compare this implicit risk load with the explicit risk load 

calculated above. The amounts reported here represent the mean 

of the predictive distribution (Equation 5.5). The "implicit 

risk load" is the difference between the predictive mean and 

expected loss reserve, 29,903,274, for Group A. We also 

consider the interest rate of 3.5% which many regulators allow 

companies to use for discounting workers' compensation pension 

reserves. 

Table 6.2 

Interest Rate Predictive Mean Implicit Risk Load 

3.5% 39,158,882 9,255,608 

0.0 64,425,775 34,522,501 

7. Discussion 

This paper has presented an example of how one might approach 

the problem of calculating risk loads for loss reserves. This 

being an example, we took great latitude in our assumptions and 

methods. We believe that this example is illustrative of a 

general approach that can be taken. However there are a number 

of conceptual and technical problems that must be addressed. 

Central to this approach is that a probabilistic model for loss 

reserves must be specified. In OUI- case we assumed that the 

future lifetime on an individual is a random variable whose 

distribution is given by Makeham's mortality lawl'. It will be 
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difficult to come up with such a model which is appropriate for 

other lines of insurance. 

The reaLson for selecting a model is that the parameters of the 

model must be estimated from data. The design of the study and 

the method of estimation will determine the predictive 

distribution of the loss reserves. Jewel12' demonstrates the 

effect of study design for predicting claims which have been 

incurred but not yet reported. His methods are similar to those 

described above. 

This approach is Bayesian. Great care must be exercised in 

selecting the prior distribution. While our assumption that the 

2,s are uniformly distributed may seem innocent enough, consider 

a reparameterisation of Makeham's law. For example we could 

have 4' = (0:,0:,0j)'. One could then estimate GM, and assume that 

the 4,s are uniformly distributed. Question: would this make a 

noticeable difference in our estimation of the expected loss 

reserve, or the risk 10ad?~l 

"It is not even agreed that Makeham's law is appropriate 
for future lifetime. See London, Dick, Graduation, ACTEX 
Publications, 1985, and SurvivalModels, ACTEX Publications, 1987, for 
a description of c'-Y. er approaches to fitting mortality tables. 

2oJewell, William S., Predicting 1BNYR Events and Delays, ( In 
preparation). 

21See Box, George E.P. and Tiao, George C., Bayasianhfmncain 

Statistical Analysis, Add i son - Wes 1 ey , 1973, Ch. 1, for a discussion of the 
use of noninformative prior distributions. 
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There are computational problems with this approach. The 

dimension of the integral is equal to the number of parameters 

estimated. Actuarial models tend to have many parameters. 

Also, the integrand can be time consuming to evaluate. This is 

not an overwhelming problem. With the powerful computers that 

are available today, the problem can be solved. It would be 

nice to find a better solution. 

These are only a few of the problems that must be solved. 

The purpose of this paper is to continue the debate on risk 

loading and discounting of loss reserves. It is hoped that it 

provides a clearer view of the issues involved and an indication 

of what might be possible. 
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Appendix 

Most of the calculations in this paper can be done with 

elementary numerical analysis. This subject is well within the 

grasp of most actuaries. However, evaluating the integral in 

Equation 5.3 requires considerable effort. This appendix 

outlines the method of evaluating this integral. 

The probability distributions involve several numerical 

constants which cancel when we form the quotient in Equation 

5.5. In what follows we will indicate the omission of the 

numerical constants in the probability distributions by 

replacing the symbol n=m with "a". 

Our goal is to evaluate: 

f(r,$) = 
I 

f(rl~)*f(~,l~)*f(~)d~. (5.2) 

We have: f(r17i) o( e 
-(r-p(S))a/22(i) 

with I((;) and U'(Z) determined from Equations 3.7, 3.8 and the 

information in Tables 3.1-3.2. 

We have: f(ii,$) c( Icl-1.e 
-(3,-Z>'c-2(i,-3)/2 

with r2 = A = (aij(J)). The formula for the aij's is given by 

Equa+:on 4.4. 
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apt GO The general form of the partial derivative r is given by 
i 

,Hogg and Klugman". 

ICI-'was calculated by factoring A = LL' by Choleski's method23 and 

multiplying the diagonal elements of L. 

We chose f(O) = 1 when the restrictions of Equation 3.1 were 

satisfied and f(0) = 0 otherwise. 

Equation 5.2 can now be integrated numerically over a large 

three dimensional rectangle. The integral could be more easily 

evaluated if we had some idea how large this rectangle should 

be. We tried the following linear transformation: 

where Ci is the covariance matrix for 3 = zM. The motivation for 

this transformation was that if C was approximately constant, 

than the rectangle could be contained in a region corresponding 

to the high density region of a normal distribution, say 

-3 5 Zi 5 3 for i = 1, 2 and 3. 

It didn't work. The region looked like a tadpole with the body 

in the high density region of a normal distribution, but the 

tail extended out quite far. After considerable trial and 

22Hogg and Klugman, op.cit., p. 145. 

23Burden, Richard L., and Faires, .I. Douglas, op.&., p. 351. 
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error, we settled on the following rectangular region. 

-6 5 2, 5 3, -12 < Z, 5 6 and -40 5 Z, 5 6. 

The numerical integration was done by the trapezoidal rule with 

9 intervals along the Z1-axis, 19 intervals along the &-axis and 

45 intervals along the Z,-axis. The author feels comfortable 

with the numerical results obtained in the final answers, but 

there ought to be a better way to do this. 
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