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Abstract

The intent of this paper is to present an introduction to Collective Risk Theory for the first
time reader and considerations in applying that theory to estimale variability in loss reserves, It
beging with a brief introduction to the basic concepts of Collective Risk Theory along with a
survey of some of the techniques developed to date to estimale the aggregate distribution of
losses. With this framework, descriptions of some applications to loss reserves are discussed,
with atiention paid to the assumptions inherent in those methods and some problems that arise
in applying this theory to reserves. Of note are questions that are not directly addressed by
this model, in particular, parameter uncertainty. Included is a bibliography which, it is hoped, will
lead the interested reader further into the applications to date.



APPLICATION OF COLLECTIVE RISK THEORY TO ESTIMATE

VARIABILITY IN LOSS RESERVES

1. Iniroduction

The question of the amount of variability inherent in loss reserve estimates has gained more
notice in recent years. In fact, in Principles 3 and 4 of the final exposure draft statement of

principles for loss and loss adjustment expense liabilities the Committee on Reserves states,

3. The uncertainty inherent in the loss or loss adjustment expense reserving
process will produce a range of actuarially sound reserves. The true value of the
liability for losses or loss adjustment expenses at any valuation date can be
known cnly when all atiendant claims have been settled.

4 The determination of the most appropriate estimate within a range of
actuarially sound reserves requires consideration of both the relative likelihood of
estimates within the range and the financial reporting context in which the reserve
estimate will be presented. [1]
Quantification of the variability in reserve estimates will thus be useful in the determination
mentioned in Principle 4. In addition knowledge of the statistical distribution of reserves is also
useful in discussing the impact of reserve discounting on insurer capacity and solidity. One
author has already cited this as a favorable result of discounting in thal it would "(i)ncrease the
statutory capacity of the insurance industry. Statutory surplus would increase as loss reserve
liabilities were reduced.” [2] However, simply discounting reserves will not necessarily increase
financial strength or capacily. Rather, a better measure of that capacity is probably the ability
of surplus to ensure solvency. Without knowledge of the variability of the reserve estimates, the
assessment of the strength of a given level of surplus, and hence capacity, probably cannol be

made accurately.

There are several techniques which are available to assess the financial solidity of a given
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amount of surplus.  Methods that have be I Tor thiz purpose include "confidence limit"

with a rabher comprehensive model of the

approaches, Ruin Theory, and Utility Theory

operations of an insurer (see {3] and [4] for thiz | tion). In each case, however, their

applicalion requires an estimate of the statistical distribution of the reserves.

The intent of this paper is to discuss the framework of Collective Risk Theory as one approach

No prior exposure Lo

that can be used lo estimale the sialistical distribulion of r

starting place for the reader who wants to pursue this subject further

£ The Collective Risk Model

The basic collective risk model approaches the question of the distribution of tobtal reserves oy

the Interaction between the

modeling the claim process faced by an insurer. It
distribution of the number of claimis and the distribution{s] of the individua! claims by calculating

T

loss {or reserve] T as the sum

1. The number of claims N is randomly selecied, and

2. Each of the claims X, X,, .., Xy is randemly selected from claim size distribution{s).

There is a significant amount of literature which addresses ihis model and ils applications lo
casualty insurance. The primary source is probabiy the text by Beard, Penbikdinen and Pesonen
[5] Other complete texis dealing with Collective Risk Theory and ibs applications are those by

Bihlmann {8], Borch [7] and Seal [8]  The papers by RBorch {9] and Penlikiinen [10] aiso
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consider this model from a fairly broad point of view.

There are some useful properties of the distribution of T under rather broad assumptions. In

particular, if:

1. The number of claims N has moments:
v = E(N) and

v; = E[(N-v)] for i = 2, 3, and 4,

2. All claims are drawn from the same population with moments:
x = E(X) and

x, = B[(X-x)'] for i = 2, 3 and 4,

3. All claims X, and the number of claims N are all independent.

Then the first four moments of the random variable T exist and are given by:

(22) E(T) = vx,

(23) E[{T-E(T)}’] = xov + x%v,,

(2.4) E[{T-E(T)}®] = xgv + 3x,xv, + x*vg, and
{2.5) E[{T-E(T)}*] = xqv + 8x,7(vo—v+v?) + 4xxav, +

Bx2xy(Ve+VV,) + Xv,

Comparable formulae for higher moments can alsc be derived if the corresponding moments of
the claim count and size distributions exist. The paper by Mayerson, Jones and Bowers [11]

gives a derivation of these formulae.
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These facts can and should be used to test the reasonableness of any approximation to the
distribution of T. In fact, one of the methods used to approximate that distribution relies on

these relationships.

8. Approzimaiions of the Distribution of T

There have been many approaches used in estimating the distribution of T, given distributions
for the number of claims, N, and the size of those claims. These methods can be broadly
grouped into 3 classes:

1. Monte Carlo Simulation,

2. Approximate Distributions, and

3. Analytic Approximation,

8.1 Monte Carlo Simulstion

Probably the most flexible of these approaches is that of Monte Carlo simulation. The idea is
simple and directly follows the basic Collective Risk Model above. Simply stated, the Monte
Carlo simulation algorithm is composed of five steps:

1. Randomly select the number of claims N from the claim count distribution.

2. Randomly select N claims, X,, X,, .., Xy from the claim size distribution.

3. Calculate one observation from the distribution of T by the sum X, + X, + .. + Xj.

4. Repeat steps 1 through 3 "several” times.

5. Estimate the distribution of T using the poinls generated in this manner,
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size distribution can be continuous.
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urance or accident years can also
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o sufficiently close.
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One final con
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ry to achieve a desired jev
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This approach is described in [eard, Pentikiinen
and Bowers [11] and by Palrik and John [13],

seem to be sufficiently skewed for many casua
transformalion of the variabie T which is hoped
transformation can be carried oul to include sev

application in {11] stops at the third moment

(3.2.1)




approximate 100e percentile of the distribution of T. Here

m, = B(T)
m;* = E[{T-E(T))’]
my = E[{T-E(T)}*}/m,*

mg = E[{T'E(Tl}‘]/m;

Using formulae (2.2) through (2.5), the various moments of T can be found from those of the
claim count and size distributions. The various percentiles of the aggregate distribution can then

be approximated.

A similar approach is followed by Venter in [14]. In that paper transformations of the Beta and
Gamma distributions are suggested as forms for the distribution of aggregate losses. The
Gamma distribution is also suggested on page 12! of Beard, Pentikdinen and Pesonen, [5].
Again, matching of moments are used to estimate the parameters of the distribution.

Pentikdinen [15], Lau {16] and Philbrick [17] also present approaches based on distribution fitting,

The benefit of this approach is its relative simplicity and, once the moments are calculated, the
ease with which the percentiles of the aggregate distribution can be approximated. It does
require, however, that the form of the distribution be assumed and there are no readily available

tests of how well the distribution used fits the actual distribution of T.
8.8 Analytic Approsimation

A third category of approximations of the distribution of T attempls to analytically calculate

that distribution. This approach generally looks at the distribution of T as the sum:
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(331} F(t) = ¥ P(N=n) Fp(t)

n=0
where P(N=n} is the probability of n claims and F, (i} is the probability that the sum of n claims
will be less than t. The functions F, (i) can then be calculated in terms of the probability
density function of the individual claim size distribution. In the discrete case, for example, if

F(x) is given by:

then F,(x) will be given by:

F,(200) = 036
F,(400) = 0.84
F,{(600) = 1.00

Since there are only two oulcomes of the original distribution, a loss of 100 with probability 6
and a loss of 300 with probability 4, the only possible outcomes for the sum are 200 (two losses
at 100 each), 400 {(one loss at 100 and and one at 300) and 600 (two losses at 300 each). The
resulting distribution is called the convolution of the probability density funciion {p.df}
underlying F with itself. More generally, in the continuous case, if f(x) and g(y) are pd.f’s for

independent random variables X and Y, then the sum Z = X+Y has the pdf. given by

(832) (*e)a) = f f(x)gla-x)dx

which is called the convolution of f and g. Similar to multiplication define ™™ iteratively by:

0 = ¢
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f'r = P forn =1 0

Then F,(x) can be written in terms of ["* as

X
(333) Folx) = [ £"(z2)da

If now the p.d.f. of the claim size distribution is f(x] then combining (33.1) and (3.3.3) the p.d.f.
underlying the distribution of T can be written as

(3.3.4) h(t) = ¥ P(N=n) f™™(1)
n=0

These formulae hold under rather broad condilions which guarantee that the sum converges and
the various ['%(x) exist. If one is willing to place some restrictions on the distribution of claim

counts, N, then (3.3.4) can be further simplified.

A common approach is to consider the characteristic function {or Fourier transform) of the

probability density function of the claim size distribution

(335) I = Blexp(itX)]

where i is the imaginary unit. Under rather broad regularity and integrability conditions on f,
this function exists and is "unique"  Thus if the characteristic function is known then,
theoretically at least, the underlying distribution function can be found. A useful property of the

characteristic function is that:

(336) Cli*e]t) = CliNtClelt)



if { and g are independent p.df’s. Thus, under conditions sufficient for the sums to exist,

o0

{33.7) Clh](t) = ¥ P(N=n) C[f]t)"
n=0

If N is further assumed to have a Poisson distribution with mean v, ie.
P(N=n) = ¢ "v"/nl

then C[h](t) can be written as

ClhJ(t) = X e v ClI(t)" /n!
n=0
which reduces to
(338) Clh](t) = exp{v(C[F]t} - 1)}.

Heckman and Meyers [18] present an algorithm which "inverts" this characteristic function. They
only require that the cumulative density function for the distribution of claims by size be a finite
step function. Since any (reasonable] cumulative density function can be approximaled as
closely as desired by such step functions, conceptually the algorithm they developed should be

applicable in any situation.

They also relax the above condition that the claim count distribution be Poisson, with variance
and mean equal Their algorithm also applies to the cases when that distribution is binomial
{with variance less than the mean) and negative binomial {with variance greater than the mean).

Also included in their algorithm is a provision for the uncertainty in parameter estimates in the
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choices of the distributions.

They also provide computer code which for that algorithm. The algorithm is computationally
rather efficient and can eastly be run on a microcomputer with a mathematical co—processor in a
reasonable amount of time. In short, Heckman and Meyers provide a very valuable tool to
estimate the distribution of T, and, for a very wide range of cases, effectively solve that

problem.

Another approach to this problem was taken by Panjer [19] and by Sundt and Jewell [20]. In
the simplest case, assuming the claim count distribution is Poisson and the pdf. of the claim
size distribution is discrete and evaluated at equally spaced points, there is a recursive formula
which leads Lo a direct calculation of the distribution of T. Work continues in this area, see, for

example Willmot [21].

{. Apphcations in Loss Reserves

It is interesting to note that the majority of the references listed so far either deal with Risk
Theory on its own or in relationship to various aspects of ratemaking. There have been some
recent papers dealing with risks and uncertainty in loss reserve estimates (see [3], [4], [22], [23],
and [24]) but we have been unable to find any which deal directly with considerations which

enter with the application of this model to the estimation of variability in loss reserves.

The model of the insurance process provided by Collective Risk Theory seems a natural tool to
apply in evaluating the degree of uncertainty in loss reserve estimates. If, for example, under
the independence hypotheses listed in section 2, the distribution of open and IBNR claims (N) is
known and the distribution of the size of those claims {X) is also known, the methods outlined in

section 3 all provide ways to estimate the distribution of total reserves (T).
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One approach used at this point takes the actuary’s best estimate of ultimate claim counts and
losses as an estimate the expected number of claims E(N) and average claim size E(X).

Statistical distributions are then selected for each of these quantities.

If the Poisson is chosen as a model of the claim count distribution then the only parameter to
estimate is its mean. Other distributions, such as the binomial and negative binomial, allow for
the variance of N to differ from its mean, These are "well behaved" and can be easily

accommodated in the algorithm described in [18].

The claim size distribution is usually assumed to be more complex. Common choices include the
lognormal, Pareto, and a transformed Gamma, among others. An ad hoc approach is to select
the distribution to be used, assume that its mean corresponds with the average claim size derived
by the actuary’s best estimate, and then select the other parameter(s) either judgmentally or
based on characteristics of the line under evaluation. This may be all that can be done in
situations where data for further analysis is lacking. If sufficient data is available, however, the
techniques described by Hogg and Klugman [25] provide powerful itools to select the "proper”

distributions.

To better model the distribution of reserves for an insurer or self-insured, accident (reporti, or
policy} years are often considered separately, with separate distributions of claim counts and
claim sizes for each year. This has the benefit of preserving differences in relative maturity and
maintaining greater homogeneity of claims within each year. The distribution of total reserves
can be calculated using convolutions of the distributions for individual years if the various years
are assumed to be stochastically independent. The salgorithm in [18] allows for such convolution.

One "short— cui" sometimes taken is to approximate the 95'" percentile, for example, of the

287



distribution of total reserves by the sum of the 95" percentiles of the distributions of reserves
for various accident years. A bit of reflection leads to the conclusion that this assumes that

the various distributions are perfectly correlated with each other.

There are many possible approaches that can be used to estimate the distributions and resulting

reserve variability estimates. What follows here is a discussion of only one possible approach.

This refinement considers the distribution of reserves for an accident year as the combination of
the distributions of reserves in three categories; case reserves, development reserves and IBNR
reserves. In this discussion we consider reserves for reopened claims in the IBNR category.
This approach allows closer modeling of the various components of the reserves. These three

components also have respectively increasing uncertainty, summarnized in the following table:

Counts Amounts
Case Reserves Certain Certain
Development Reserves Certain Uncertain
IBNR Reserves Uncertain Uncertain

4.1 Drstributions for Reporied Clasms —— One Approach

If we group the first two categories, the case and development reserves, then the statistical
uncertainty lies only in the variation of claim sizes, since the number of the claims is known.
Given an estimate of the claim size distribution, methods presented in Section 2 could be applied

to estimate the distribution of these reserves.

The current distribution of open and reperted claims may provide some knowledge of this
distribution. For more mature years, one could consider the relationship between the distribution
of claims at this stage of development with the "ultimate" distribution of those same claims and

incorporate 1t, with the current distribution, to estimaie the ultimate distribution of claims.

288



As an example of one possible approach, lel us assume that the lognormal is an appropriate
model for the distribution of X, the claim size random variable. Then Z=In{X) has a normal
distribution, and the lognormal can be completely parameterized by the mean m and variance s?

of Z. We select this parameterization for the distribution of X,

It then follows (see, for example, p. 38 of [26]) that maximum likelihood estimators for m and s*

are obtained from the sample mean and variance of the values In(X;} where X, are observed

claims. As in the normal case, the sample variance, using the number of sample points as the

denominator, is a biased estimate for s° so a denominalor of n-1 is used to estimate s?.

Suppose, for example, that we are trying to estimate the claim size distribution for open and
reported claims for accident year 1984 as of December 31, 1987. That accident year is currently

48 months from the beginning of 1984,

We can calculate the estimators mys and s.° of the m and s? parameters for reported claims

for "mature” accident years at 48 months of development. We can also calculate the estimators

my)y and sy’ for the distribution of ultimate values of those same claims. Using regression we

can find constants which best fit

(411] My = a3 + bm48 and

(4.12) Sun’ = ¢ + dsge’

for the “mature" years. These parameters, along with the estimators m*,; and s*,,2 for the
current distribution of claims for accident year 1984 as of December 31, 1987 yield the following

estimates of the parameters for the ultimate distribubion of currently reported and open claims
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for accident year 1984:

(4.13) m*,, = a + bm*,, and

(414] S*““2 =C + dS*452.

At this point other analyses, for example usual reserve estimation techniques, could be used to
modify these parameters to reflect the results of those projections. It is a property of the

lognormal distribution that the coefficient of variation (ratio of the standard deviation to the

(4.L5) cv.? = exp(s?)-1.

Thus, adjustments made to the m*,;, parameter will affect the mean of the final distribution but
nol its relative variation, as measured by the coefficient of variation. This technique does,
however, have the benefit of incorporating information regarding the current distribution of open

and reported claims in deriving the estimate for the ultimate distribution of those claims.

4.8 Distrsbutsons for [BNE Reserves —— One Approach

For estimating the distribution of IBNR reserves, both the claim counts and severity are
uncertain. The parameters for the claim size distribution could be considered in light of the
ultimate value of claims for more "mature" years which were reported after 48 months.
Consideration of the trend in those costs could also be considered in selecting the distribution of

claim sizes.

One approach to estimating the distribution of claim counts would be to assume it is Poisson
and estimate the expected number of IBNR claims using usual actuarial projection methods.

Another approach, similar to that used by Weissner [27], considers the reporiing emergence as a
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statistical distribution with known data truncated from above. Maximum likelihood estimators
are then used to estimate the parameters of that distribution. A benefit of this approach is that

it can result in estimates of both the mean and variance of the claim count distribution.

Given these distribution estimates, an estimate of the distribution of IBNR reserves for accident
year 1984 as of December 31, 1987 can then be obtained. If it is assumed that this distribution
and the distribution of reserves for reported claims are stochastically independent then an

estimate of the distribution of total reserves can be made by convoluting these two distributions,

The assumption of independence may not be too restrictive in this case. As of December 31,
1987, reported and IBNR claims form two distinct populations. Ii is unlikely that fluctuations in
the loss amounts for a fixed number of known claims will lead to fluctuations in the amounts, or
counts, of claims yet to be reported. This does not, however, address the question of parameter

estimation for these populations and the potential interrelationships there.

4.8 Combinaison of Years

The above calculations lead to an estimate of the distribution of total reserves for a single
accident year, in this case 1984, Though not explicitly stated, in practice they would probably be
calculated for a single coverage or line of insurance. For a multiple line company, however, the

distribution of total reserves, for all lines and for all years, is of concern.

If one assumes that the distributions for the various lines of business and accident years are all
stochastically independent, the distribution of total reserves could be estimated by convoluting
the distributicns for individual lines and accident years. In some situaiions the assumption of

independence may not be too restrictive.
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In other situations, however, the reserve distributions for various lines may not be independent;
for example in the bodily injury and property damage portions of automobile liability coverage,
some correlation may sometimes be expected, especially in the distributions of the number of

claims.

There has been some activity in extending the Collective Risk Model to include such interrelated
events. Cummins and Wiltbank in [28] and [29] consider multivariate models for claim count and
size distributions. These models can be thought of as considering the distribution of claims
arising from potentially different, but not independent perils. The paper in {28] specifically

addresses the automobile liability situation noted above.

5. Other Areas of Uncertamnty

The applications discussed thus far have only addressed one area of uncertainty, the statistical

"noise" inherent in the insurance process, assuming that all distribubions are correct. Not yet

addressed are other areas of unceriainty regarding the loss reserve estimates, such as:

1. How close are the selected parameters to the "real" parameters?

2. Are the distributions used in the model correct?

3. Is the Collective Risk Model the right one to use?

None of these questions have been answered yet, nor has the uncertainty they imply been
incorporated In the estimated distribution of reserves. The first question, that regarding
parameter uncertainty, is sufficiently significant as to be the topic of a paper by Meyers and
Schenker [30] In some situations, the variation due io parameter uncertainty can outweigh the

variation from the pure Collective Risk Model itself. Needless to say, this should be recognized

292



in any application of the Collective Risk Model.

Also recognizing the importance of parameter uncertainty, Patrik and John in [13] reserve the
term "Collective Risk Model" to a generalization of what we present here. That generalization
recognizes parameter uncertainty by considering the parameters themselves as randomly drawn

from some probability space.

Often parameter uncertainty is recognizéd by "expanding" the variability of the component claim
count or size distributions. If data is lacking, such judgmental approaches may be all that is

possible.

The possible approaches included in sections 41 and 42 lend themselves for inclusion of
parameter uncertainty. In the claim size distribution estimates for reported claims, the parameter

m*,, is estimated using linear regression. Usual regression theory leads to the conclusion that

the variance of m*,;, can be expressed as:
(5.1) s = (n-2)SE%/(n—4)

where n is the number of points used in estimating the fit in section 4.1 and SE; is the standard

error of the forecast given the observed value for m*,s.

We now assume that the claim size distribution is lognormal with parameters m* and s*,;,?
where m* is now unknown but having a normal distribution with mean m*,;; and variance s> In
this case, the final claim size distribution will again be lognormal with parameters m*,;, and

s*tou? + s Thus, the uncerlainty regarding the scale parameter m*,; is translated to a

widening of the coefficient of variation of the original distribution. Other such “mixings” of
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distributions can be found in [31].

The maximum likelihood estimator methods presented in [25] also provide means to estimate the
uncertainty inherent in those projections. These techniques parallel those used in [27]. Hence
variance estimates, including provisions for parameter unceriainty, for the number of claims can

be determined using the results of maximum likelihood estimation.

For example, the maximum likelihood estimate for the vector of parameters p can be estimated

iteratively by
(52) Pivt = Pi + [A(Pl)]-ls[pl]

where S(p,) is the vector of derivatives of the log— likelihood function with respect to the
parameters p, and A(p,) is the information matrix for the distribution. The resulting maximum
likelihood estimator p* is then approximately multivariate normal with covariance matrix V
whose inverse is equal Lo A(p*) (see p.81 of [25]). We can then incorporate this information to
estimate the parameter uncertainty in the cases where this approach is used to estimate ultimate

claims.

In these examples, we have used a single specific method to estimate the parameters of the
claim size distribution and distribution of IBNR claims. Both of these methods are stochastic in
nature and thus supply information, under certain assumptions, regarding the uncertainty inherent

in their particular projections.

Usual actuarial projection methodology, as described, for example, by Skurnick [32] or Berquist

and Sherman [33] do not begin with an underlying statistical model. Thus, the distribution of the
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projections does not have a readily apparent statistical form. This problem is compounded in
practice where the actuary considers the results of several different projection methods, often
yielding different results, and selects a best estimate of what the ultimate losses for a given

coverage in a given accident year will be.

As mentioned above, an approach used in these situations is to use the besi estimates of
ultimate claim counts and severities as estimates of E(N} and E(X) and then to select the claim
count and size distributions to have these expected values. Other parameter(s) are then selected
to represent the estimated variance in these two distributions and are derived either by
considering appropriate distributions of claims or judgmentally. Parameter uncertainty may then

be addressed by widening the resulting distributions.

These methodologies do have the sirength of addressing different influences which may be
apparent in the data. They also allow for the introduction of seasoned judgment in interpreling

the results of the projections or influences in the underlying data.

There are also a variely of models which are statistically based. Taylor's work [34] summarizes
many different reserve estimation methods and Ashe [22] provides a discussion of some of the
work which has been done to estimate variance in reserve projections using these methods. Of
particular note are regression—based methods of Taylor [35] and Kalman Filter based methods of
DeJong and Zehnwirth [36]. Both techniques look only to the historical development of Josses
for their projections. It could be argued with this data that, put simply, "not all that can happen
has happened”. If that is true, these methods may end up understating the amount of varalion
in reserve projections. However, they could be useful to quantify parameter uncertainby in the

estimates for the Collective Risk Model as presented here,

295



The answer to the question of how much uncertainty is added because of the other two
questions cited above is not nearly as clear as that for parameter uncertainty. Estimates of
parameter variability may address some of the uncertainty inherent in the choice of a particular
distribution for the model. This may be further mitigated by reviewing the fits of various
distributions to the data available to minimize the chance of picking the "wrong" one from a
particular collection. However, it is unlikely that, in actual applications, the second or third

questions posed above can be completely answered.
6. Conclusion

As can be seen from some of the questions raised, there appears to be more work necessary to
completely answer the question "How good are our reserve estimates?™ It has been the intent of
this paper to present an introduction to Collective Risk Theory for the first time reader, along
with a survey of some of the work that has been done which can be used to attempt an answer

to this question.

Without proper understanding, many tools can be misused. This is true with Collective Risk
Theory. The basic framework only addresses certain portions of the potential variability in
reserve estimates. Parameter uncertainty is one significant area not specifically addressed by
the basic model; thus it should be considered in any serious application to quantifying reserve
variability. Though some of the techniques outlined here to address parameter uncertainty are
necessarily complex and somewhat abbreviated due to the intended scope of this paper, it is

hoped that the reader will appreciate the importance of this aspect of the Collective Risk Model.
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