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Abstracf 

The intent of this paper is to present an introduction to Collective Risk Theory for the first 
time reader and considerations in applying that theory to estimate variability in loss reserves. It 
begins with a brief introduction to the basic concepts of Collective Risk Theory along with a 
survey of some of the techniques developed to date to estimate the aggregate distribution of 
losses. With this framework, descriptions of some applications to loss reserves are discussed, 
with attention paid to the assumptions inherent in those methods and some problems that arise 
in applying this theory to reserves. Of note are questions that are not directly addressed by 
this model, in particular, parameter uncertainty. Included is a bibliography which, it is hoped, will 
lead the interested reader further into the applications to date. 



APPLICATION OF COLLECTIVE RISK THEORY TO ESTIMATE 

VARIABILITY IN LOSS RESERVES 

1. Infroducfton 

The question of the amount of variability inherent in loss reserve estimates has gained more 

notice in recent years. In fact, in Principles 3 and 4 of the final exposure draft statement of 

principles for loss and loss adjustment expense liabilities the Committee on Reserves states, 

3. The uncertainty inherent in the loss or loss adjustment expense reserving 
process will produce a range of actuarially sound reserves. The true value of the 
liability for losses or loss adjustment expenses at any valuation date can be 
known only when all attendant claims have been settled. 

4. The determination of the most appropriate estimate within a range of 
actuarially sound reserves requires consideration of both the relative likelihood of 
estimates within the range and the financial reporting context in which the reserve 
estimate will be presented. [l] 

Quantification of the variability in reserve estimates will thus be useful in the determination 

mentioned in Principle 4. In addition knowledge of the statistical distribution of reserves is also 

useful in discussing the impact of reserve discounting on insurer capacity and solidity. One 

author has already cited this as a favorable result of discounting in that it would “(i)ncrease the 

statutory capacity of the insurance industry. Statutory surplus would increase as loss reserve 

liabilities were reduced.” [2] H owever, simply discounting reserves will not necessarily increase 

financial strength or capacity. Rather, a better measure of that capacity is probably the ability 

of surplus to ensure solvency. Without knowledge of the variability of the reserve estimates, the 

assessment of the strength of a given level of surplus, and hence capacity, probably cannot be 

made accurately. 

There are several techniques which are available to assess the financial solidity of a given 
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application requires an estimabe of the statisticai distribution of tire rcscrvcs 

The intent of this paper is to discuss the framework of Coliective Risk l’heory as one approach 

that can be used to estimate 1.h~ ::tatjstical distribution nf TCL;::T~OL‘. It’0 prior exposure Lo 

Coiiective Risk Theory is assumed; however, it is hoped that ih? bibiiography will provide a good 

starring piace for the reader who wants to pursue this subject. furlher 

The basic coli~:c:t,ive rtsk ruoiic! apprcaclres the question ~i ti,c d:strrbution of Idal reserves by 

modeling the claim process faced by an insurer. it Po;i:4er:~ I,/::2 ir:tc:a::tior, beiween bhe 

distribution of iire number o! claims and the distributionis) of ttre individual claim:: by calculating 

loss (or reserve) T as the sum 

where: 

1. The number of claims N is randomiy sciected, and 

2. Each of the claims X,, X,, _.., XN is randomly selectee! from claim size distribution(s) 

There is a signiiicant amount of literature which addresser :his modei and its applications to 

casualty insurance. The primary source is probabiy the t,ext by Beard. Pentikainen and Pesonen 

[5]. Other complete texts de&rig with Colieci.ive Risk ‘i’heor.~ ar!d its applications are those by 

Aiihlmann [5], i3orch [7] and Scai [8] The papers Ly Forth [9j and P entrkarnen ilO] aiso 



consider this model from a fairly broad point of view. 

There are some useful properties of the distribution of T under rather broad assumptions. In 

particular, if: 

1. The number of claims N has moments: 

v = E(N) and 

v, = E[(N-v)‘] for i = 2, 3, and 4, 

2. All claims are drawn from the same population with moments: 

x = E(X) and 

x, = E[(X-x)‘] for i = 2, 3 and 4, 

3. All claims X, and the number of claims N are all independent. 

Then the first four moments of the random variable T exist and are given by: 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

E(T) = vx, 

E[{T-E(T)}*] = xzv + x*vz, 

E[{T-E(T)}S] = xsv + 3xzxvz + x3vg, and 

E[{T-E(T)}‘] = x4v + 3xz2(v2-v+v2) + 4xx3v2 + 
Gx~x~(v~+vv~) + x’v~. 

Comparable formulae for higher moments can also be derived if the corresponding moments of 

the claim count and size distributions exist. The paper by Mayerson, Jones and Bowers [11] 

gives a derivation of these formulae. 
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These facts can and should be used to test the reasonableness of any approximation to the 

distribution of T. In fact, one of the methods used to approximate that distribution relies on 

these relationships. 

There have been many approaches used in estimating the distribution of T, given distributions 

for the number of claims, N, and the size of those claims. These methods can be broadly 

grouped into 3 classes: 

1. Monte Carlo Simulation, 

2. Approximate Distributions, and 

3. Analytic Approximation, 

3.1 Monte Carlo Slmuiairon 

Probably the most flexible of these approaches is that of Monte Carlo simulation. The idea is 

simple and directly follows the basic Collective Risk Model above. Simply stated, the Monte 

Carlo simulation algorithm is composed of five steps: 

1. Randomly select the number of claims N from the claim count distribution. 

2. Randomly select N claims, X,, X2, . . . . XN from the claim size distribution. 

3. Calculate one observation from the distribution of T by the sum Xr + X2 + . . + XN. 

4. Repeat steps 1 through 3 “several” times. 

5. Estimate the distribution of T using the points generated in this manner. 
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approximate 1OOe percentile of the distribution of T. Here 

m, = E(T) 

mz* = E[{T-E(T)}*] 

m3 = E({T-E(T)}S)/m,S 

mrl = E[{T-E(T)}‘]/md 

Using formulae (2.2) through (2.5), the various moments of T can be found from those of the 

claim count and size distributions. The various percentiles of the aggregate distribution can then 

be approximated. 

A similar approach is followed by Venter in [14]. In that paper transformations of the Beta and 

Gamma distributions are suggested as forms for the distribution of aggregate losses. The 

Gamma distribution is also suggested on page 121 of Beard, PentikBinen and Pesonen, [5]. 

Again, matching of moments are used to estimate the parameters of the distribution. 

PentikZinen [15], Lau [16] and Philbrick [17] also present approaches based on distribution fitting. 

The benefit of this approach is its relative simplicity and, once the moments are calculated, the 

ease with which the percentiles of the aggregate distribution can be approximated. It does 

require, however, that the form of the distribution be assumed and there are no readily available 

tests of how well the distribution used fits the actual distribution of T. 

8.8 Anolyftc Approsrmotron 

A third category of approximations of the distribution of T attempts to analytically calculate 

that distribution. This approach generally looks at the distribution of T as the sum: 
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(3.3.1) F(t) = i P(N=n) F,(t) 
n=O 

where P(N=n) is the probability of n claims and F,,(t) is the probability that the sum of n claims 

will be less than t. The functions F,(t) can then be calculated in terms of the probability 

density function of the individual claim size distribution. In the discrete case, for example, if 

F(x) is given by: 

F(lOO) = 0.60 
F(300) = 1.00 

then Fz(x) will be given by: 

Fz(200) = 0.36 
Fz(400) = 0.84 

Fz(600) = 1.00 

Since there are only two outcomes of the original distribution, a loss of 100 with probability .6 

and a loss of 300 with probability .4, the only possible outcomes for the sum are 200 (two losses 

at 100 each), 400 (one loss at 100 and and one at 300) and 600 (two losses at 300 each). The 

resulting distribution is called the convolution of the probability density function (p.d.f.) 

underlying F with itself. More generally, in the continuous case, if f(x) and g(y) are p.d.f.‘s for 

independent random variables X and Y, then the sum Z = X+Y has the p.d.f. given by 

(3.3.2) (f*g)(z) = p f(x)g(z-x)dx 
-m 

which is called the convolution of f and g. Similar to multiplication define f’” iteratively by: 
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f*” = f*f’i”~‘l for n = 1, 2, _._ 

Then F,(x) can be written in terms of I’” as 

(33.3) F,(x) = j f*“(z)dz 
--oo 

If now the p.d.f. of the claim size distribution is f(x) then combining (3.3.1) and (3.3.3) the p.d.f. 

underlying the distribution of T can be written as 

(3.3.4) h(t) = g P(N=n) f’“(t) 
n=O 

These formulae hold under rather broad conditions which guarantee that the sum converges and 

the various f*“(x) exist. If one is wrllmg to place some restrictions on the distribution of claim 

counts, N, then (3.34) can be further simplified. 

A common approach is to consider the characteristic function (or Fourier transform) of the 

probability density function of the claim size distribution 

(3.3.5) C[f](t) = E[exp(itX)] 

where i is the imaginary unit. Under rather broad regularity and integrability conditions on f, 

this function exists and is “unique”. Thus if the characteristic function is known then, 

theoretically at least, the underlying distribution function can be found. A useful property of the 

characteristic function is that. 

(3.3.6) C[f’gl(tl = C[fl~~ml(~) 

2x4 



if f and g are independent p.d.f.‘s. Thus, under conditions sufficient for the sums to exist, 

(3.3.7) C[h](t) = t P(N=n) C[f](t)” 

n=O 

If N is further assumed to have a Poisson distribution with mean v, i.e. 

P(N=n) = e-‘v”/nl 

then C[h](t) can be written as 

C[h](t) = z e-‘v”C[f](t)“/nr 
n=O 

which reduces to 

(3.3.8) CIhl(t) = exp{v(C[fl(t) - 111. 

Heckman and Meyers (181 present an algorithm which “inverts” this characteristic function. They 

only require that the cumulative density function for the distribution of claims by size be a finite 

step function. Since any (reasonable) cumulative density function can be approximated as 

closely as desired by such step functions, conceptually the algorithm they developed should be 

applicable in any situation. 

They also relax the above condition that the claim count distribution be Poisson, with variance 

and mean equal. Their algorithm also applies to the cases when that distribution is binomial 

(with variance less than the mean) and negative binomial (with variance greater than the mean). 

Also included in their algorithm is a provision for the uncertainty in parameter estimates in the 
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choices of the distributions. 

They also provide computer code which for that algorithm. The algorithm is computationally 

rather efficient and can easily be run on a microcomputer with a mathematical co-processor in a 

reasonable amount of time. In short, Heckman and Meyers provide a very valuable tool to 

estimate the distribution of T, and, for a very wide range of cases, effectively solve that 

problem. 

Another approach to this problem was taken by Panjer [19] and by Sundt and Jewel1 [20]. In 

the simplest case, assuming the claim count distribution is Poisson and the p.d.f. of the claim 

size distribution is discrete and evaluated at equally spaced points, there is a recursive formula 

which leads to a direct calculation of the distribution of T. Work continues in this area, see, for 

example Willmot [21]. 

/. Applrcafrons rn Loss Reserves 

It is interesting to note that the majority of the references listed so far either deal with Risk 

Theory on its own or in relationship to various aspects of ratemaking. There have been some 

recent papers dealing with risks and uncertainty in loss reserve estimates (see [3], [4], [22], [23], 

and [24]) but we have been unable to find any which deal directly with considerations which 

enter with the application of this model to the estimation of variability in loss reserves. 

The model of the insurance process provided by Collective Risk Theory seems a natural tool to 

apply in evaluating the degree of uncertainty in loss reserve estimates. If, for example, under 

the independence hypotheses listed in section 2, the distribution of open and IBNR claims (N) is 

known and the distribution of the size of those claims (X) is also known, the methods outlined in 

section 3 all provide ways to estimate the distribution of total reserves (T). 
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One approach used at this point takes the actuary’s best estimate of ultimate claim counts and 

losses as an estimate the expected number of claims E(N) and average claim size E(X). 

Statistical distributions are then selected for each of these quantities. 

If the Poisson is chosen as a model of the claim count distribution then the only parameter to 

estimate is its mean. Other distributions, such as the binomial and negative binomial, allow for 

the variance of N to differ from its mean. These are “well behaved” and can be easily 

accommodated in the algorithm described in [18]. 

The claim size distribution is usually assumed to be more complex. Common choices include the 

lognormal, Pareto, and a transformed Gamma, among others. An ad hoc approach is to select 

the distribution to be used, assume that its mean corresponds with the average claim size derived 

by the actuary’s best estimate, and then select the other parameter(s) either judgmentally or 

based on characteristics of the line under evaluation. This may be all that can be done in 

situations where data for further analysis is lacking. If sufficient data is available, however, the 

techniques described by Hogg and Klugman [ZS] provide powerful tools to select the “proper” 

distributions. 

To better model the distribution of reserves for an insurer or self-insured, accident (report, or 

policy) years are often considered separately, with separate distributions of claim counts and 

claim sizes for each year. This has the benefit of preserving differences in relative maturity and 

maintaining greater homogeneity of claims within each year. The distribution of total reserves 

can be calculated using convolutions of the distributions for individual years if the various years 

are assumed to be stochastically independent. The algorithm in [18] allows for such convolution. 

One “short- cut” sometimes taken is to approximate the 951h percentile, for example, of the 
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distribution of total reserves by the sum of the 95’h percentiles of the distributions of reserves 

for various accident years. A bit of reflection leads to the conclusion that this assumes that 

the various distributions are perfectly correlated with each other. 

There are many possible approaches that can be used to estimate the distributions and resulting 

reserve variability estimates. What follows here is a discussion of only one possible approach. 

This refinement considers the distribution of reserves for an accident year as the combination of 

the distributions of reserves in three categories; case reserves, development reserves and IBNR 

reserves. In this discussion we consider reserves for reopened claims in the IBNR category. 

This approach allows closer modeling of the various components of the reserves. These three 

components also have respectively increasing uncertainty, summarized in the following table: 

Case Reserves 
Development Reserves 
IBNR Reserves 

Counts Amounts 
Certain Certain 
Certain Uncertain 

Uncertain Uncertain 

4.1 Dtsfrrbufrons /or Reporfed C/arms -- One Approach 

If we group the first two categories, the case and development reserves, then the statistical 

uncertainty lies only in the variation of claim sizes, since the number of the claims is known. 

Given an estimate of the claim size distribution, methods presented in Section 2 could be applied 

to estimate the distribution of these reserves. 

The current distribution of open and reported claims may provide some knowledge of this 

distribution. For more mature years, one could consider the relationship between the distribution 

of claims at this stage of development with the “ultimate” distribution of those same claims and 

incorporate it, with the current distribution, to estimate the ultimate distribution of claims. 
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As an example of one possible approach, let us assume that the lognormal is an appropriate 

model for the distribution of X, the claim size random variable. Then Z=ln(X) has a normal 

distribution, and the lognormal can be completely parameterized by the mean m and variance s* 

of Z. We select this parameterization for the distribution of X. 

It then follows (see, for example, p. 38 of [26]) that maximum likelihood estimators for m and s2 

are obtained from the sample mean and variance of the values In(X,) where X, are observed 

claims. As in the normal case, the sample variance, using the number of sample points as the 

denominator, is a biased estimate for s2 so a denominator of n-l is used to estimate s2. 

Suppose, for example, that we are trying to estimate the claim size distribution for open and 

reported claims for accident year 1984 as of December 31, 1987. That accident year is currently 

48 months from the beginning of 1984. 

We can calculate the estimators m,e and s,*~ of the m and s2 parameters for reported claims 

for “mature” accident years at 48 months of development. We can also calculate the estimators 

muIt and s,r,* for the distribution of ultimate values of those same claims, Using regression we 

can find constants which best fit 

(4.1.1) muit = a + bmA8 and 

(4.1.2) %t ’ = c + ds,a2 

for the “mature” years. These parameters, along with the estimators rn*,* and s*,~* for the 

current distribution of claims for accident year 1984 as of December 31, 1987 yield the following 

estimates of the parameters for the ultimate distribution of currently reported and open claims 
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for accident year 1984: 

(4.1.3) 

(4.1.4) 

m*“r, = a + bm*,a and 

s*“,, 2 = c + ds t 2 48 . 

At this point other analyses, for example usual reserve estimation techniques, could be used to 

modify these parameters to reflect the results of those projections. It is a property of the 

lognormal distribution that the coefficient of variation (ratio of the standard deviation to the 

mean) can be expressed only in terms of the parameter s2: 

(4.1.5) C.V.* = exp(s2)-1. 

Thus, adjustments made to the msUll p arameter will affect the mean of the final distribution but 

not its relative variation, as measured by the coefficient of variation. This technique does, 

however, have the benefit of incorporating information regarding the current distribution of open 

and reported claims in deriving the estimate for the ultimate distribution of those claims. 

.#.I? D;sfrrbufrons /or IBKR Reserves -- One Approach 

For estimating the distribution of IBNR reserves, both the claim counts and severity are 

uncertain. The parameters for the claim size distribution could be considered in light of the 

ultimate value of claims for more “mature” years which were reported after 48 months. 

Consideration of the trend in those costs could also be considered in selecting the distribution of 

claim sizes. 

One approach to estimating the distribution of claim counts would be to assume it is Poisson 

and estimate the expected number of IBNR claims using usual actuarial projection methods. 

Another approach, similar to that used by Weissner [27], considers the reporting emergence as a 
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statistical distribution with known data truncated from above. Maximum likelihood estimators 

are then used to estimate the parameters of that distribution. A benefit of this approach is that 

it can result in estimates of both the mean and variance of the claim count distribution. 

Given these distribution estimates, an estimate of the distribution of IBNR reserves for accident 

year 1984 as of December 31, 1987 can then be obtained. If it is assumed that this distribution 

and the distribution of reserves for reported claims are stochastically independent then an 

estimate of the distribution of total reserves can be made by convoluting these two distributions. 

The assumption of independence may not be too restrictive in this case. As of December 31, 

1987, reported and IBNR claims form two distinct populations. It is unlikely that fluctuations in 

the loss amounts for a fixed number of known claims will lead to fluctuations in the amounts, or 

counts, of claims yet to be reported. This does not, however, address the question of parameter 

estimation for these populations and the potential interrelationships there. 

4.3 Combrnafton o/ Years 

The above calculations lead to an estimate of the distribution of total reserves for a single 

accident year, in this case 1984. Though not explicitly stated, in practice they would probably be 

calculated for a single coverage or line of insurance. For a multiple line company, however, the 

distribution of total reserves, for all lines and for all years, is of concern. 

If one assumes that the distributions for the various lines of business and accident years are all 

stochastically independent, the distribution of total reserves could be estimated by convoluting 

the distributicns for individual lines and accident years, In some situations the assumption of 

independence may not be too restrictive. 
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In other situations, however, the reserve distributions for various lines may not be independent; 

for example in the bodily injury and property damage portions of automobile liability coverage, 

some correlation may sometimes be expected, especially in the distributions of the number of 

claims. 

There has been some activity in extending the Collective Risk Model to include such interrelated 

events. Cummins and Wiltbank in [28] and [29] consider multivariate models for claim count and 

size distributions. These models can be thought of as considering the distribution of claims 

arising from potentially different, but not independent perils. The paper in 1281 specifically 

addresses the automobile liability situation noted above. 

5. Ofher Areas o/ Uncerfarnty 

The applications discussed thus far have only addressed one area of uncertainty, the statistical 

“noise” inherent in the insurance process, assuming that all distributions are correct. Not yet 

addressed are other areas of uncertainty regarding the loss reserve estimates, such as: 

1. How close are the selected parameters to the “real” parameters? 

2. Are the distributions used in the model correct? 

3. Is the Collective Risk Model the right one to use? 

None of these questions have been answered yet, nor has the uncertainty they imply been 

incorporated in the estimated distribution of reserves. The first question, that regarding 

parameter uncertainty, is sufficiently significant as to be the topic of a paper by Meyers and 

Schenker [30]. In some situations, the variation due to parameter uncertainty can outweigh the 

variation from the pure Collective Risk Model itself. Needless to say, this should be recognized 
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in any application of the Collective Risk Model. 

Also recognizing the importance of parameter uncertainty, Patrik and John in [13] reserve the 

term “Collective Risk Model” to a generalization of what we present here. That generalization 

recognizes parameter uncertainty by considering the parameters themselves as randomly drawn 

from some probability space. 

Often parameter uncertainty is recognized by “expanding” the variability of the component claim 

count or size distributions. If data is lacking, such judgmental approaches may be all that is 

possible. 

The possible approaches included in sections 4.1 and 4.2 lend themselves for inclusion of 

parameter uncertainty. In the claim size distribution estimates for reported claims, the parameter 

m*“rt is estimated using linear regression. Usual regression theory leads to the conclusion that 

the variance of m*“i, can be expressed as: 

(5.1) sr2 = (n-2)SE*i/(n-4) 

where n is the number of points used in estimating the fit in section 4.1 and SE, is the standard 

error of the forecast given the observed value for m*,B. 

We now assume that the claim size distribution is lognormal with parameters m* and s*,rr2 

where m* is now unknown but having a normal distribution with mean mtult and variance si*. In 

this case, the final claim size distribution will again be lognormal with parameters mtull and 

s* * ult + sr*, Thus, the uncertainty regarding the scale parameter m*,ri is translated to a 

widening of the coefficient of variation of the original distribution. Other such “mixing9 of 
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distributions can be found in [31]. 

The maximum likelihood estimator methods presented in [25] also provide means to estimate the 

uncertainty inherent in those projections. These techniques parallel those used in [27]. Hence 

variance estimates, including provisions for parameter uncertainty, for the number of claims can 

be determined using the results of maximum likelihood estimation. 

For example, the maximum likelihood estimate for the vector of parameters p can be estimated 

iteratively by 

P1+1 = PI + IA(p’S(P,) 

where S(p,) is the vector of derivatives of the log- likelihood function with respect to the 

parameters p, and A(p,) is the information matrix for the distribution. The resulting maximum 

likelihood estimator p* is then approximately multivariate normal with covariance matrix V 

whose inverse is equal to A(p*) ( see p.81 of [25]). We can then incorporate this information to 

estimate the parameter uncertainty in the cases where this approach is used to estimate ultimate 

claims. 

In these examples, we have used a single specific method to estimate the parameters of the 

claim size distribution and distribution of IBNR claims. Both of these methods are stochastic in 

nature and thus supply information, under certain assumptions, regarding the uncertainty inherent 

in their particular projections. 

Usual actuarial projection methodology, as described, for example, by Skurnick [32] or Berquist 

and Sherman [33] do not begin with an underlying statistical model. Thus, the distribution of the 
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projections does not have a readily apparent statistical form. This problem is compounded in 

practice where the actuary considers the results of several different projection methods, often 

yielding different results, and selects a best estimate of what the ultimate losses for a given 

coverage in a given accident year will be. 

As mentioned above, an approach used in these situations is to use the best estimates of 

ultimate claim counts and severities as estimates of E(N) and E(X) and then to select the claim 

count and size distributions to have these expected values. Other parameter(s) are then selected 

to represent the estimated variance in these two distributions and are derived either by 

considering appropriate distributions of claims or judgmentally. Parameter uncertainty may then 

be addressed by widening the resulting distributions, 

These methodologies do have the strength of addressing different influences which may be 

apparent in the data. They also allow for the introduction of seasoned judgment in interpreting 

the results of the projections or influences in the underlying data. 

There are also a variety of models which are statistically based. Taylor’s work [34] summarizes 

many different reserve estimation methods and Ashe [22] provides a discussion of some of the 

work which has been done to estimate variance in reserve projections using these methods, Of 

particular note are regression-based methods of Taylor [35] and Kalman Filter based methods of 

DeJong and Zehnwirth [36]. Both techniques look only to the historical development of losses 

for their projections. It could be argued with this data that, put simply, “not all that can happen 

has happened”. If that is true, these methods may end up understating the amount of variation 

in reserve projections. However, they could be useful to quantify parameter uncertainty in the 

estimates for the Collective Risk Model as presented here. 
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The answer to the question of how much uncertainty is added because of the other two 

questions cited above is not nearly as clear as that for parameter uncertainty. Estimates of 

parameter variability may address some of the uncertainty inherent in the choice of a particular 

distribution for the model. This may be further mitigated by reviewing the fits of various 

distributions to the data available to minimize the chance of picking the “wrong” one from a 

particular collection. However, it is unlikely that, in actual applications, the second or third 

questions posed above can be completely answered. 

6. Conchon 

As can be seen from some of the questions raised, there appears to be more work necessary to 

completely answer the question “How good are our reserve estimates?” It has been the intent of 

this paper to present an introduction to Collective Risk Theory for the first time reader, along 

with a survey of some of the work that has been done which can be used to attempt an answer 

to this question. 

Without proper understanding, many tools can be misused. This is true with Collective Risk 

Theory. The basic framework only addresses certain portions of the potential variability in 

reserve estimates. Parameter uncertainty is one significant area not specifically addressed by 

the basic model; thus it should be considered in any serious application to quantifying reserve 

variability. Though some of the techniques outlined here to address parameter uncertainty are 

necessarily complex and somewhat abbreviated due to the intended scope of this paper, it is 

hoped that the reader will appreciate the importance of this aspect of the Collective Risk Model, 
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