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ABSTRACT 

Insurers paid $1.9 billion on property claims arising from catastrophes 
in 1983. Researchers have estimated that annual Insured catastrophe 
losses could exceed $14 billion. Certainly, the financial implications 
for the insurance industry of losses of this magnitude would be severe; 
even industry losses much smaller in magnitude could cause financial 
difficulties for insurers who are heavily exposed to the risk of 
catastrophic losses. 

The quantification of exposures to catastrophes, and the estimation of 
expected and probable maximum losses on these exposures pose problems 
for actuaries. This paper presents a methodology based on Monte Carlo 
simulation for estimating the probability distributions of property 
losses from catastrophes and discusses the uses of the probability 
distributions in management decision-making and planning. 
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INTRODUCTION 

There were 33 named catastrophes in 1982, and they resulted in an 

estimated $1.5 billion of insured property damage. Most of these 

catastrophes were natural disasters such as hurricanes, tornadoes, 

winter storms, and floods. In 1983, hurricane Alicia caused over $675 

million of insured losses; the December storms caused insured damage of 

$510 milli0n.l 

Hurricane Alicia barely rated a three on a severity scale ranging from 

one to five, and destruction from hurricanes increases exponentially 

with increasing severity. A hurricane that rated a four hit New York 

and New England in 1938; 600 people died and wind speeds of 183 mph 

caused hundreds of millions of dollars of damage. 

If this storm were to strike again, dollar losses to the insurance 

industry could amount to six billion given the current insured property 

values on Long Island and along the New England coast. Estimates of the 

dollar damages that will result if a major earthquake occurs in Northern 

or Southern California are even larger in magnitude. 

A very severe hurricane or earthquake would produce a year of 

catastrophic loss experience lying in the upper tail of the probability 

distribution of annual losses from catastrophes, and it is the opinion 

of the author that the 1982 catastrophe loss figure lies in the lower 

end of this distribution. However, the determination of the shape and 

the estimation of the parameters that describe this distribution are 
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tasks that are not easily performed by standard actuarial methodologies. 

Yet since insurers need the knowledge of their exposures to catastrophes 

and the probability distributions of annual catastrophic losses to make 

pricing, marketing, and reinsurance decisions, the estimation of the 

distribution and the expected and probable maximum losses pose problems 

for actuaries. 

Standard statistical approaches to estimation involve the use of 

historical data to forecast future values of variables. However, models 

based on time series of past catastrophe losses are not appropriate for 

estimating future losses. Catastrophes are rare events so that the 

actual loss data are sparse and their accuracy is questionable; average 

recurrence intervals are long so that many exogenous variables change in 

the time periods between occurrences. In particular, changing 

population distributions, changing building codes, and changing building 

repair costs alter the annual catastrophe loss distribution. 

Since most catastrophes are caused by natural hazards and since most 

natural hazards have associated with them geographical frequency and 

severity patterns, the population distribution impacts the damage 

producing potentials of these hazards. A natural disaster results when 

a natural hazard occurs in a populated area. Changing population 

patterns necessarily alter the probability distribution of catastrophic 

losses. Since the average recurrence intervals of natural hazards in 

any particular area are long, patterns of insured property values may 

vary between occurrences to an extent that damage figures of historical 

occurrences have no predictive power. For example, if hurricane Alicia 
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had struck in 1950, dollar damages would have been significantly lower 

even after adjustment for inflation because of the smaller number of 

insured residential and commercial structures in the Houston area at 

that time. 

It is primarily the influence of the geographic population distribution 

that renders time series models inadequate although changing building 

codes also alter the loss producing potentials of natural hazards. As 

time passes, building materials and designs change, and new structures 

become more or less vulnerable to particular natural hazards than the 

old structures. Of course, changes in building repair costs also affect 

the dollar damages that will result from catastrophes. 

The above issues do not render the estimation problem intractable, but 

they do produce a need for an alternative methodology to approaches 

which employ historical catastrophe losses adjusted for inflation to 

approximate the probability distribution of losses. Even models which 

adjust these losses for population shifts can give only very rough 

approximations of expected and probable maximum losses. 

This paper presents a methodology based on Monte Carlo simulation, and 

it focuses on property damage from natural disasters. Part I discusses 

Monte Carlo simulation and the natural hazard simulation model. A 

windstorm example is employed to illustrate the approach. Part II 

outlines the ways in which management may use the model and its output 

for decision-making and strategy formulation. It discusses how 

knowledge of the probability distribution of property losses due to 
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catastrophes enables management to make risk versus return trade-offs in 

marketing, pricing, and reinsurance decisions. 

PART I: ESTIMATING THE PROBABILITY DISTRIBUTION OF CATASTROPHE LOSSES 

Monte Carlo Simulation 

Dramatic decreases in computing costs have led to the increased use of 

computer simulation in the analysis of a wide variety of problems. Many 

of these problems involve solutions that are difficult to obtain 

analytically. For example, computer simulation may be employed to 

evaluate complex integrals or to determine one or more attributes of 

complex systems. Law and Kelton state that "Most complex, real-world 

systems . . . cannot be accurately desertbed by a mathematical model which 

can be evaluated analytically. Thus, a simulation is often the only 

type of investigation possible." [8, p.81 

The simulation approach is very basically the development of computer 

programs that describe the particular system under study. All of the 

system variables and their interrelationships are included. A high 

speed computer then "simulates" the activity of the system and outputs 

the measures of interest. 

Simulation models may be deterministic or stochastic. Monte Carlo 

simulation models are stochastic models with random variables from 
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stable probability distributions; they are static, i.e. not time 

dependent, models. 

A Monte Carlo simulation model is an excellent tool for performing 

sensitivity analyses of the system of interest. Alternative values of 

input variables may be given; the system may be resimulated and new 

output produced. This type of simulation may be employed to analyze a 

variety of insurance related problems. Arata described five areas in 

which actuaries msy employ the simulation approach; one of these is the 

pricing of difficult or catastrophic exposures. [I] 

The Natural Hazard Simulation Model 

The natural hazard simulation model is a model of the natural disaster 

"system". As stated in the introduction, models based on historical 

catastrophe losses are not appropriate for forecasting future losses, 

Standard statistical approaches are found lacking for three reasons. 

First, since the losses are caused by rare events, there is not much 

historical loss data available and those that are available are 

imprecise. Parameters estimated from the historical loss distribution 

will be subject to much uncertainty because of the small sample size. 

Secondly, the shape of the distribution itself is not clearly 

discernible. Finally, the distribution is not stable since many factors 

that influence it change with time. 
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The Monte Carlo model described below simulates natural hazards so that 

the primary variables are meteorological or geophysical in nature. 

These variables are random variables that have stable probability 

distributions, and although the historical data on these variables are 

sparse as are the loss data, their probability distributions may be 

supplemented with the knowledge of authoritative meteorologists and 

geophysicists. 

This is, therefore, a stochastic yet stable system. The variables that 

change with time, i.e. the geographic distribution of exposure units, 

the insured property values, and the building construction types, are 

inputs into the model and the probability distribution of losses from 

natural hazards given these inputs is the model output. These inputs 

may be changed to see how the loss distribution is altered. 

The model variables may also be classified as frequency or severity 

variables. The frequency variables indicate the expected number of 

occurrences of the particular events within a given time period. 

Severity variables represent the physical components of natural hazards 

and they do not have a time dimension. Severity variables account for a 

hazard's force, size, and duration. 

A year of natural disasters is simulated thousands of times to generate 

the probability distribution of annual losses. For each model iteration 

and for each natural hazard, the following is performed: 
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1. The annual number of occurrences is generated from the 

frequency distribution. 

2. The exact location of each occurrence is generated. 

3. For each occurrence, values for the force and size are 

generated from the severity distributions. 

4. The movement of the event across the affected area is 

simulated, and dollar damages are calculated and accumulated. 

The average of all iterations is the model-generated expected loss 

estimate; a higher percentile loss is the probable maximum loss 

estimate, 

A Windstorm Example 

A model of the hurricane hazard has been developed, and this model will 

be used to illustrate the Monte Carlo simulation approach. Exhibit 1 is 

a flowchart of the computer model. 

All of the storm data used in the development of the model were obtained 

from the U.S. Department of Commerce. The data had been collected and 

analyzed by various agencies of the National Weather Service, and they 

included seventy-nine years of history spanning the period from 1900 to 

1978. Complete and accurate data were available for most of the 

hurricanes that struck the U.S in this time period. 
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EXHIBIT 1 

MODEL FLOWCHART 

GENERATE ANNUAL NUMBER OF HURRICANE OCCURRENCES 
I 

r- 
.._... T .__-- . . 

For each zip code in affected area,-- 
CALCULATE WIND SPEED 

(dependent on distance from eye and hours since landfall) 
-__________I 

.i+l 
CALCULATE DAMAGE FACTOR 

I---‘ 
--__._--_ -.L- -.-- .--. 

APPLY TO EXPOSURES 
.--: 

DAMAGE FACTOR AND VULNERABILITY FACTOR 
- ..- .__. I 

I. -. 

1 Go to next iteration ] 
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A hurricane is a closed atmospheric circulation which develops over 

tropical waters and in which winds move counterclockwise around a center 

of pressure lower than the surrounding area. It is a severe tropical 

storm in which the center of pressure is less than or equal to 29 (in.) 

which causes sustainable wind speeds of 74 mph or more. One hundred and 

twenty-eight hurricanes either approached and bypassed or entered the 

U.S. during the sample period. 

Referring back to exhibit 1, the first step of the model is the 

generation of the annual number of landfalling hurricanes. Table 1 

shows the numbers of years in which the number of occurrences was 0, 1, 

2, and so on. The exhibited data fit a Poisson distribution with mean 

and variance equal to 1.8, and the model generates the annual frequency 

from this distribution. 

Table 1 -- 

ANNIJAL NUMBER OF HURRICANES LANDFALLING IN U.S 
1900-1978 

No. storms Observed 
per year occurrence 

0 25 
1 25 
2 14 
3 8 
4 5 
5 1 
6 1 
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The next step of the model is the determination of the landfall location 

of each storm. Hurricanes enter the U.S. from the Gulf and East Coasts. 

The map in exhibit 2 shows the U.S. coastline from Texas to Maine 

divided into thirty-one smoothed 100 nautical mile segments. 2 The 

number of hurricanes that entered through each segment during the sample 

period is also shown. 

The numbers seem to indicate that there are variations in locational 

frequencies. In this case, it would not be appropriate to generate the 

landfall location from a distribution which assigns equal probabilities 

to all values, i.e. a uniform distribution. However, the limited amount 

of data precludes one from ascertaining statistically whether there are 

true frequency differences or whether the variations are caused by 

randomness within the small samples. 

The actual number of storm occurrences within each segment is not 

employed by the model to develop the relative frequency distribution. 

It is not clear, first of all, if 100 nautical mile segments are the 

appropriate lengths of coastline to use for the calculations. 

Additionally, although several segments are completely free of 

historical storm occurrences, it is not clear that the probability of 

hurricane landfall is zero in these areas. 

The relative frequency may be estimated by correlating it with another 

variable for which the value is known or may be estimated for each 

segment. Alternatively, the causal relationship between a variable(s) 

and the frequency of landfall may be employed if such a relationship 

2The coastline is smoothed for irregularities such as inlets and bays. 
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Exhibit 2 -- 

HURRiCANES ENTERING THE U.S. 1900-1978 
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exists. Of course, if one knew all of the conditions favoring landfall, 

one could assign probabilities based on the existence or absence of 

these conditions at each coastal location. 

The way in which hurricanes are formed as well as the process by which 

energy is supplied to the circulating winds determine the likely paths 

of these storms. To illustrate, "hurricanes obtain kinetic energy from 

latent heat from the condensation and precipitation of water vapor. 

Therefore, hurricanes develop over warm tropical ocean areas where 

evaporation rates are very high and vast quantities of water vapor are 

stored in the atmosphere. The general movement of air over most of the 

Tropics is from the east while in higher latitudes it is usually from 

the west. Consequently, most hurricanes move initially to the west and 

may drift slightly northward. However, aa they continue to drift toward 

higher latitudes, they come under the influence of westerly winds and 

recurve to the east" [4, p.3). Wind patterns, therefore, provide an 

explanation for the lower frequencies at higher latitudes. 

To derive the model locational frequency distribution, the following 

approach was adopted. First, the hurricane data were supplemented with 

data on all tropical storms. Tropical storms are closed atmospheric 

circulations with less intense winds than those of hurricanes. The 

assumption here is that the atmospheric conditions that favor the 

occurrence of a tropical storm are the same conditions that favor the 

occurrence of a hurricane. The additional data eliminate the problem of 

long coastal segments with no historical occurrences. 
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Next, the raw data on numbers of occurrences were smoothed using a 

procedure that was selected on the basis of its ability to capture 

turning points in the data while smoothing slight variations. The 

coastline was redivided into 50 nautical mile segments, and the number 

of occurrences for each segment was set equal to the weighted average of 

11 successive data points centered on that segment. The smoothed 

frequency values are obtained as follows: 

where Ci = the number of historical hurricane 

occurrences for the ith segment 

Fi = the smoothed frequency value for the ith 

segment 

Wn - -300, ,252, .140, ‘028, -.O4. -.03 

for n = 0, $1, 22, 23, -+4, 25, respectively 

This is the preferred smoothing procedure in climatological analyses 

because the weighting scheme maintains the frequency and phase angle of 

the original series of numbers. The endpoints of the series were 

approximated so that each segment of the coast was assigned a relative 
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frequency. The landfall location of each storm is generated from the 

thus derived locational frequency distribution. 

Step three of the model is the generation of values for the severity 

variables. There are four primary variables which account for hurricane 

severity . These variables are: the minimum central pressure, the 

radius of maximum winds, the forward speed, and the wind inflow angle. 

Central pressure (po) is defined as the sea-level pressure at the 

hurricane center or eye. This variable is the most important for 

computing hurricane windspeeds, and it is a universally accepted index 

of hurricane intensity. All else being equal, the square of the wind 

speed varies directly with op (ap = p,-p,) where p, is the peripheral 

pressure, i.e. the sea level pressure at the periphery of the storm. 

The radius of maximum winds (R) is the radial distance from the 

hurricane center to the band of strongest winds. Forward speed (T) 

refers to the rate of translation of the hurricane center from one 

geographical point to another. Track direction (A) is the path of 

forward movement along which the hurricane is traveling and is measured 

clockwise from north. 

The empirical data on each severity variable cannot be fit to standard 

theoretical distributions as were the annual frequency data. There 

appears to be a geographical hurricane severity pattern as there was a 

locational frequency pattern so that the probability density functions 

of the severity variables vary by location, and there are not enough 
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data points at each location to estimate these functions. Additionally, 

the available data indicate that the severity variables are not 

independent. Linear correlation coefficients are positive between most 

pairs of variables. However, it is not possible to test the 

significance of the correlation coefficients unless it is assumed that 

pairs of variables form bivariate normal distributions. 

If the variables are not independent, their correlations must be 

explicitly formulated within the model since the correlations will 

impact the variance of the model output, i.e. the estimated hurricane 

loss distribution. 

The strongest correlations seem to be between the severity variables and 

latitude. In general, as latitude increases, average hurricane severity 

decreases as does frequency. When a hurricane moves over cooler waters, 

its primary source of energy is reduced so that the intensity of 

circulation decreases in the absence of outside forces. "The reasons 

for the increase in central pressure3 from south to north include: the 

inability of hurricanes to carry their warm, moist, tropical atmosphere 

into temperate latitudes and the entrance of colder and drier air at low 

levels, which . . . decreases the amount of energy available to the 

storm." [7, p.391 

The data, however, indicate a more direct relationship between severity 

and latitude than that between frequency and latitude, and the 

mathematical expressions which describe the relationships between the 

hurricane severity components and latitude were estimated and employed 

3Central pressure is inversely related to severity so that high central 
pressures result in less severe storms. 
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by the simulation model in the following manner: Given the latitude and 

longitude coordinates of the landfall location, the latitude coordinate 

is entered into the equations to obtain initial values of the severity 

variables. Stochastic elements are added to the initial values and the 

sums become the simulated values. The stochastic elements are generated 

from the distribution of the error term for each equation. 

Linear transformations of exponential, power, hyperbolic, and other 

special functions were fit to the empirical data for each severity 

variable using the ordinary least squares estimation procedure. Simple 

linear equations provided the best fits of the relationships between R 

and latitude and T and latitude. 

Exhibit 3 shows a plot of the latitude, radius of maximum winds pairs 

for the 128 hurricanes in the data sample. Exhibit 4 shows the linear 

regression residuals plotted against latitude. Although the dispersion 

of the residuals is wide, i.e. the standard deviation is 10.10, the 

errors are distributed normally with expected value equal to zero. This 

statistical distribution is employed to generate the values e i for the 

following equation: 

RI = a + b(Li) + ed 

where Ri = the ith simulated value for R 

Li = the latitude coordinate for the ith hurricane 

a,b are the estimated regression coefficients 
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Exhibit 4 
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The distribution of the simulated values of R is then bounded by 

meteorological estimates of lowest and highest possible values. 

The strength of the linear relationship between latitude and forward 

speed is even greater than that between latitude and the radius of 

maximum winds as shown by exhibit 5. However, the regression residuals 

shown in exhibit 6 seem to be heteroskedastic, i.e. the variance of the 

residuals increases with latitude. A basic assumption of the linear 

regression model is that the distribution of the error term has a 

constant variance, and the violation of this assumption leads to least 

squares estimators that are not efficient, i.e. minimum variance, or 

asymtotically efficient. 

For the simulation model, it is also important that the distribution of 

the error term from which values are generated is stable for all values 

of latitude. If this is not the case, the simulated values of the 

particular variable will not form probability distributions that match 

the true underlying distributions, and the model-generated probability 

distribution of losses will not provide an accurate estimate of the true 

probability distribution of losses. 

Corrections for heteroskedasticity were made by assuming that the 

variance of the error term is proportional to latitude. The 

re-estimated regression equation residuals are shown in exhibit 7; they 

form a normal distribution with mean equal to zero and standard 

deviation equal to 4.9. 
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Exhibit 5 -- 
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Bhibit 6 
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Exhibit 7 
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Although hurricane central pressure and track direction are both 

correlated with latitude, the relationships between p, and latitude and 

A and latitude were more difficult to estimate statistically. For these 

variables, the simulated values are generated from the empirical 

distributions. Outliers are first removed so that the simulated values 

for each coastal location are within the lower and upper bounds that 

have been developed by meteorologists. 

The movement of the storm is next simulated by the computer model, and 

the property damage inflicted by the circulating winds is calculated for 

each geographic location. The particular geographical unit for which 

the damages are accumulated is determined by the model input. Insured 

property values are input along with the construction types and ages of 

the insured buildings and locational information such as zipcodes and 

counties. Wind speeds and dollar damages are calculated for each 

zipcode, but the damages may be accumulated by larger units to provide 

more meaningful output. 

The dollar damages are calculated by applying damage and vulnerability 

factors to the dollar amounts of liability. The damage factors are 

based on the results of engineering studies of the relationship between 

wind speeds and structural damage. The vulnerability factors account 

for the variability in inflicted damage due to construction type and 

age. The dollar damages are accumulated by the selected geographical 

units. 
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Two thousand years of hurricane experience are simulated by the model. 

These two thousand model iterations provide a complete probability 

distribution of annual hurricane losses from which the expected loss and 

probable maximum loss estimates are derived. 

Exhibit 8 shows the expected losses as well as the 80%. 90%, 95%, and 

99% confidence level losses calculated as the 80th, 90th, 95th. and 99th 

percentile losses, respectively, for a given geographical distribution 

of exposures. These conf.idence level losses may be interpreted in two 

ways. A given confidence level loss shows the loss amount for which the 

probability of experiencing losses above that amount is 1.0 minus the 

particular confidence level. For the loss distribution in exhibit 8 the 

probability of experiencing losses above $10 million is .20. The 

confidence level loss also shows the loss amount for which losses 

greater than that amount will be experienced on average once in every 

l.O/(l.O - confidence level) years. Again, from exhibit 8 losses 

greater than $10 million will be experienced once in every five years on 

average. The loss distribution is highly skewed with a median value 

which is much below the mean and a high proportion of zero values. 

The model output provides management with information that may be used 

in the formulation of pricing, marketing, and reinsurance strategies. 

Before the uses of the model output are discussed, the next section will 

summarize the Monte Carlo simulation approach. 
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EXP- ComIDm LEvm LoGsEs 
LIABlLITIES Loss 80% 90% 95% 99% 

7,170,753,024 9,011,808 10,003,715 24,179',636 44,827,623 117,946,980 
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Summary of the Methodology 

The Monte Carlo simulation approach to the estimation of the probability 

distribution of catastrophe losses involves %he development of models to 

simulate catastrophes. Each model is developed around the probability 

distributions of the random variables of the loss-producing “system.” 

Ideally, the model builder will have an a priori theory on the shape of 

the probability distribution underlying each random variable. For the 

results of the Monte Carlo simulation to be valid, the underlying model 

assumptions must be true. The empirical distribution formed by the raw 

data may be compared to standard statistical distributions using 

appropriate goodness-of-fit tests, and if the data do fit a well-known 

probability distribution, the moments of the distribution may be 

estimated and employed by the simulation model. In the windstorm 

example, the Poisson distribution was used to generate the annual number 

of hurricanes. 

Alternatively, the expressions which describe the relationships between 

model variables may be estimated and employed by the model to generate 

simulated values of variables. This approach was adopted for some of 

the hurricane severity components. 

Finally, the empirical distribution may be employed for the generation 

of values for a particular model variable. This procedure, however has 

a few drawbacks. First, since the sample is a collection of random 
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data, a different sample could yield a very different empirical 

distribution. Secondly, the generation of random variables from an 

empirical distribution precludes the possibility of generating a value 

of the variable outside of the observed range, and the observed range 

may not include all possible values of the variable. Finally, the 

generation of values from empirical distributions is, in general, less 

efficient from the standpoint of computing time than the generation of 

values from theoretical distributions. Nevertheless, in some cases 

generation from the empirical distribution is either necessary or 

preferred for various reasons, and in these cases, the empirical 

distribution can be programmed into the model. 

The testimony of experts may be employed along with the statistical data 

to build the model. Physical scientists who have studied extensively the 

phenomena of interest can provide information on the ranges of possible 

values of particular variables as well as on the most likely value or 

values. This information may enable the model builder to substitute 

theoretical distributions for empirical distributions, to identify 

outliers in the data, and/or to determine appropriate points at which to 

bound the probability distributions. 

Once the model is built, i.e. the important variables have been 

identified and their probability distributions and interrelationships 

have been programmed into the computer, the system is simulated many 

times to provide a range of all possible annual loss amounts. There is 

no standard formula that gives the number of model iterations necessary 

to produce output with a given level of precision for this type of Monte 
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Carlo simulation model. The necessary number of iterations is 

endogenous, i.e. model-dependent. 

Given that the variable of interest is annual dollar losses from 

catastrophes, one hopes to derive accurate estimates of annual expected 

losses and maximum probable losses. Assuming that the model has been 

specified correctly, the expected loss estimate will converge to the 

true expected loss and the model generated loss distribution will 

converge to the true loss distribution as the number of iterations 

increases. Very basically, 

4 
E(X) = lim 

IJ+- z 
Xi 

1=, 
n 

where E(X) = expected annual loss 

xi = annual loss from ith model iteration 

and, 

F(X) = lim F,(X) 
n--- 

where F(X) = the distribution function of annual losses 

F,(X) = distribution function of n model 
generated annual loss figures. 
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The larger the variance of the probability distribution of annual 

losses, the larger the value of n needed to produce loss estimates with 

a given level of precision. The variability of the model generated 

annual losses is determined by the variability of the model variables, 

i.e. the frequency and severity variables, and their correlations. If 

the model variables are positively correlated, the variance of the loss 

distribution will be greater than it would be in the absence of this 

correlation. 

Although there is no straightforward procedure for calculating the value 

of n needed for specified precision levels, there are a few procedures 

that may be employed to develop confidence intervals for E(X) if certain 

assumptions are made. These procedures will not be discussed here, and 

the interested reader is referred to Chapter 8 of Law and Kelton. [9] 

The recommendation of this author is to perform at least 1000 model 

iterations if possible. This should not present a problem given the low 

costs of computing time on high speed computers; however, development 

time may be well spent on writing efficient computer programs that 

minimize the computing time, particularly if the model is to be run 

frequently. If each iteration is still expensive, certain variance 

reduction techniques may be employed to reduce the number of Iterations 

needed to reach convergence. The model builder may perform tests to see 

how quickly the loss distribution is converging. Iterations may be 

performed in groups of 100 so that the changes in the loss distribution 

may be monitored. A stable loss distribution indicates that convergence 

has been reached. 
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Validation of simulation models often presents a problem if there are no 

historical data on the variable that the model is designed to measure. 

In the case of natural hazard simulation models, the historical data are 

sparse. Past occurrences may be simulated, nevertheless, if the 

geographical distribution of exposures that is input to the model 

corresponds precisely to the geographical distribution of exposures that 

existed at the time of the occurrence. Insured values, construction 

types, and ages of exposure units should also match precisely. Values 

for the variables which account for the severity components of the 

hazard are input to the model, the model is simulated, and the 

model-generated loss estimate is output. This estimate is compared to 

actual dollar damages to test the validity of the model and its 

underlying assumptions. 

There are several advantages of the simulation approach. First of all, 

it is able to capture the effects on the loss distribution of changes in 

variables Over time. Secondly, this estimation procedure provides 

management with a complete picture of the probability distribution of 

losses rather than just estimates of expected and probable maximum 

losses. And finally, the Monte Carlo simulation approach provides a 

framework for performing sensitivity analyses and "what-if" studies. 

The model uses will be described in the following sections. 
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PART II: MANAGING RXPOSURE TO CATASTROPHES -- - 

A methodology for estimating the probability distribution of annual 

catastrophe losses given a particular geographical distribution of 

exposures was described and illustrated in Part I. Knowledge of the 

probability distribution of losses enables insurers to manage their 

exposures to catastrophes. With respect to these exposures, management 

has several options: 

1. Write no business in catastrophe prone areas. 

2. Exclude coverage for losses caused by natural hazards. 

3. Plan to recover losses after a catastrophe occurs by 

retrospective pricing. 

4. Spread property business so that it is not concentrated in 

catastrophe prone areas. 

5. Add loadings to premiums and build up reserves to cover 

catastrophe losses when they occur. 

6. Reinsure property business. 

Option 1 does not present a very viable strategy since most areas of the 

continental U.S. are prone to natural disasters of at least one type. 
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For example, the Gulf and East Coast states are prone to hurricanes 

while the Great Plains and Midwestern states are highly prone to 

tornadoes. Earthquakes are natural hazards with the greatest damage 

producing potential in California, Nevada, Washington, and parts of 

Indiana, Missouri, Tennessee, Arkansas, South Carolina, and 

Massachusetts. [3] 

Option 2 may also not be feasible. If an industry-wide attempt is made 

to exclude coverage for losses resulting from a particular hazard, 

legislation may be passed to prevent effective exclusion. Recent 

legislation in California concerning concurrent causation is a case in 

point. On the other hand, if a single company or group of companies 

attempt to exclude coverage, business will certainly be lost to 

competitors who do provide coverage unless the policy premiums are 

reduced sufficiently. 

The insurance industry has traditionally priced its products 

retrospectively since expected costs are estimated from past costs. 

Policy premiums are determined by the most recent historical loss 

experience so that larger than expected losses in year t will lead to 

higher prices in year t+l. As long aa the individual firm's loss 

experience is better than or equal to the industry average, the firm may 

set premiums in relation to its own loss experience (in the absence of 

regulatory barriers.) However, if the individual firm's loss experience 

is worse than the industry average, competition will force the firm to 

price below its costs. 
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Retrospective pricing cannot be used to recover losses from 

catastrophes. If an individual firm experiences a disproportionate 

share of total industry losses from the occurrence of a catastrophic 

event in year t, competition will prevent the firm from increasing its 

rates enough to recover all of its losses in year t+l. Additionally, 

the industry as a whole is prevented from increasing rates dramatically 

after the occurrence of a catastrophe by the threat of new entry. 

The barriers to entry into the insurance industry are high enough to 

allow retrospective pricing of normal insurance covers; however, a 

financial need of existing firms to raise prices by a significant amount 

would provide a competitive advantage for new entrants that are free of 

the financial burden. 

Accordingly, option 3 is an inferior strategy as were options 1 and 2. 

The last three alternatives, however, are all viable strategic options, 

and each one will be discussed in turn under the headings of marketing, 

pricing, and reinsurance. 

Marketing 

The windstorm simulation model output as illustrated in exhibit 8 shows 

the probability distribution of annual countrywide losses from the 

hurricane hazard. For marketing purposes, however, it may be more 

useful to divide the country into zones so that the specific areas of 

high windstorm risk are clearly identifiable. 
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The computer model may be designed to accumulate dollar damages by 

state, by county, or by any other geographical configuration. Exhibit 9 

shows the state of Louisiana divided into eight zones. The dollars of 

liability, i.e. exposure, the expected loss, and various confidence 

level losses' are shown for each zone. The loss figures show clearly 

that the higher risk areas are the coastal zones. The hurricane is at 

maximum force just as it crosses overland; as it travels inland, the 

storm dissipates because of the elimination of its primary energy source 

i.e. kinetic energy derived from the sea, and because of frictional 

effects. 

Because all natural hazards have associated with them geographical 

frequency and severity patterns, they will produce gradations of damage 

or pockets of high risk and low risk. Management will want to avoid 

concentrations of property exposures in high risk areas, and the model 

output enables the development of marketing plans that are based on the 

long term profit potentials of various markets. 

Property business in high risk areas may be very profitable in years of 

no natural hazard occurrences. As years pass and no catastrophes occur, 

insurers may begin to compete for the business in a high risk area. The 

competition may drive the profits as well as the catastrophe loading to 

zero so that there are no resources available to cover the catastrophic 

losses when they occur. Knowledge of the probability distributions of 

losses from natural hazards in these areas enables insurers to resist 

the temptation to write business based on the very recent loss 

experience in these areas. 

41t is interesting to note that for small geographic areas, the confidence 
level losses may be zero since the frequencies of hurricances in specific 

locations are low. 
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Exhibit 9 

m 

LWIS 1 
LOUIS 2 
LWIS 3 
LaJIS 4 
LOUIS s 
LOUIS 6 
LOLUS 7 
1WIS 0 

Louisiana Windstorm Zones 

90417112. 256512. 
9210113* 25540, 

56674660 * 94066, 
50672900. 71042. 
79796656* e-09&5 I 

176149551. 231604, 
4Ob4471be 47590, 
33114740. 16552, 

80% 90% 

0, 276770 t 
0. 12932, 
01 31306. 
0. 0. 
0, 0, 
0. 0, 
0, 0. 
0. 0, 

level lossf?.s 

95% 99% 

1947396, 4930375. 
213693, 537371. 
653101. 2098500 t 
2340B8, 1722377, 
547837. 2021005. 
598346, 6823092e 
193227. 1309985* 

5991. 772270. 
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The natural hazard simulation model is an excellent tool for evaluating 

the exposure to natural hazards resulting from alternative marketing 

plans. If marketing plans alter the geographic distribution of 

exposures, the alternative distributions of exposures may be input to 

the model and new loss distributions generated. 

Pricing 

The model-generated expected loss figures may be used to calculate 

appropriate catastrophe premium loadings. The loadings may be expressed 

as percentages of insured values by dividing the expected loss figures 

by the dollars of liability for each of the established zones, i.e. the 

geographical units into which the country is divided. 

Theoretically, if an insurer establishes a reserve for catastrophe 

losses and makes annual contributions equal to the annual expected 

losses, the insurer will break even with respect to catastrophe losses 

over the long run. The model-generated output enables management to 

fine tune the catastrophe loadings in particular locations. Presumably, 

premiums charged in catastrophe prone areas include loadings for 

catastrophe losses, but these loadings may be subjective and may not 

correspond closely with expected catastrophe losses. Since the model 

can be programmed to accumulate dollar damages by any geographical 

configuration, expected loss estimates may be derived for any unit of 

area, and premiums that are in line with costs may be established. 
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Clearly, competitive factors dictate the amount of freedom that 

management has to set prices. If demand is very elastic, small 

increases in price will lead to large decreases in market share. Price 

changes may be tempered to result in the desired distribution of premium 

volume. 

An additional caveat is that pricing in accordance with expected loss 

does not eliminate the risk of large losses since it is possible that 

catastrophes will occur when the loss fund is at a level that is not 

sufficient to cover all of the losses. The losses could then lead to 

financial difficulties for the insurer. Insurers may, however, transfer 

part or all of this risk through reinsurance agreements. 

Reinsurance 

To evaluate alternative reinsurance proposals, management needs the 

following: 

1. An estimate of the probability distribution of losses for 

which the reinsurance contracts are to provide cover. 

2. Knowledge of the reinsurance market and the types of contracts 

that are available. 

3. A methodology for performing risk versus return trade-offs and 

obtaining preference orderings. 
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Part I of this paper provided a methodology for estimating the 

probability distribution of property losses from catastrophes. From the 

cumulative distribution function, one may determine the probability of 

experiencing losses in excess of any dollar amount. 

There are two broad categories of reinsurance contracts: proportional 

and nonproportional. Each type of treaty performs certain functions for 

the reinsured. Proportional or quota share treaties provide capacity 

and financing as well as reductions in the variance of the loss 

distribution. Non proportional or excess-of-loss treaties provide 

catastrophe and stop loss covers. 

Borch [2] has shown that the "most efficient" reinsurance contract from 

the viewpoint of the ceding company is the stop loss contract. The type 

of treaty leads to the greatest reduction in variance for a given price 

if the premium paid to the reinsurer is proportional to the expected 

loss of the ceded portfolio and not to its variance. From the viewpoint 

of the reinsurer, the quota share treaty that gives a ceded portfolio 

with the same expected loss is superior because the variance of the 

ceded portfolio will be smaller. 

In general, the reinsurer will charge a premium that compensates for the 

variability as well as the expected loss of the ceded portfolio. 

Accordingly, the premium will be lower for a quota share treaty that 

gives the reinsurer a portfolio with the same expected loss as the 

excess-of-loss treaty. The specific premium that the reinsurer will 
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charge for a particular contract depends on the risk profile of the 

company. 

The estimated probability distribution of losses shows the benefits that 

will be derived from particular reinsurance agreements, and these 

benefits may be compared to the costs. The reinsuring company w-ill rank 

order the alternatives that are available in the reinsurance market 

using its own risk profile. The derivation of the risk profile relies 

on utility theory and will not be discussed here. 

The pricing, marketing, and reinsurance decisions are not independent 

and as such should be evaluated simultaneously in the planning process. 

Obviously, pricing policies impact marketing plans which influence the 

geographical distribution of property exposures. This is a two-way 

relationship since marketing decisions also impact pricing decisions. 

The geographical distribution of property exposures will affect the 

probability distribution of catastrophe losses which in turn will 

influence the price of reinsurance since the reinsurer will demand a 

higher premium to cover exposures in high risk areas. Finally, the 

reinsurance covers influence the loss distribution and change the 

expected losses which drive the catastrophe loadings. The diagram below 

illustrates the decision triangle. 
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Summary 

Catastrophic events can affect significantly the results of property and 

casualty insurance companies. Since the losses resulting from the 

occurrences of catastrophes could affect adversely the financial 

condition of a company, management must plan for these events. The 

first part of this paper described an estimation methodology based on 

Monte Carlo simulation. A windstorm example illustrated the approach 

and its primary advantages. These advantages are: It estimates the 

full probability distribution of losses, it captures the effects on this 

distribution of changes in population patterns, building codes, and 

repair costs, and it may be used to perform sensitivity analyses. The 

second part of the paper outlined how knowledge of the probability 

distribution of losses enables management to evaluate the effects on the 

probabilities of severe losses of alternative marketing, pricing, and 

reinsurance strategies. 
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