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INTRODUCTION 

In the past there has been much discussion about the 

definition of probable maximum loss (PML), but little 

attention has been given to its quantification. This 

paper will introduce the concept of order statistics 

as a too1 to use in estimating the PML. Two 

approaches will be used that will lead to six 

specific methods for estimating the PML. These six 

methods will then be illustrated with specific 

examples. 

The term PML is usually used in connection with 

property insurance but it can also be applied to 

liability insurance. In fact, there is some 

controversy over whether the appropriate term, from a 

risk management viewpoint, is probable maximum loss, 

maximum possible loss, estimated maximum loss or one 

of many other similar phrases. 

McGuinness offers two definitions:' 

"The probable maximum loss for a 
property is that proportion 0T 

I McGuinness, John S., "Is 'Probable Maximum Loss' 
(PML) A Useful Concept?", Proceedinqs of the 
Casualty Actuarial Society Vol. LVI, 1969, p- 31. 
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total value of the property which will 
equal or exceed, in a stated proportion 
of all cases, the amount of loss from a 
specified peril or group of perils. 

The probable maximum loss under a given -- 
insurance contract is that proportion 
of the limit of liability which will 
equal or exceed, in a stated proportion 
of all cases, the amount of any loss 
covered by a contract.” 

The first definition is pertinent to insureds and 

risk managers, while the second is pertinent to 

underwriters. These definitions were later combined 

by McGuinness into one generalized definition:’ 

“The PML for a specified financial 
interest is that proportion of the 
total value of the interest which will 
equal or exceed, in a stated proportion 
of all cases, the amount of any 
financial loss to the interest from a 
specified event or group of events.” 

A guest reviewer of McGuinness’ paper, who is an 
3 

underwriter, offered the following observations: 

“It is true that the definitions may 
vary between underwriters when put down 

2 McGuinness, John S., “Author’s Review of 
Discussions in Volume LVI, Pages 40-48”, 
Proceedings of the Casualty Actuarial Society vol; 
LVII, 1970, p. 107. 

5 Black, Edward B., “Discussion by Edward 8. Black”, 
Proceedings of the Casualty Actuarial Society Vol. 
LVI , 1969, p. 46. 
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in words, but I feel strongly that 
there is a universal understanding as 
to the end result which all 
underwriters expect PML to accomplish. 
. . . PML, no matter how you define it, 
is simply Probable Maximum Loss. It is 
neither foreseeable nor possible loss - 
rather, it is the maximum loss which 

will happen when, and if, the 
insured against actually occurs.” 

The definition which will be used in this paper is, 

simply, that probable maximum loss is the worst loss 

likely to happen. Since an actual loss could be 

greater than the PML, the PML depends upon (i) 

estimates of the likelihood that losses of various 

sizes will occur, (ii) the insured’s risk acceptance 

level and (iii) the underwriter’s risk aversion 

level. Note that for the same risk the insured and 

underwriter can have different estimates of the PML. 
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ORDER STATISTICS 

Let Xl, X2, . . . . Xn denote a random sample from a 

population with continuous cumulative distribution 

function FX. Since FX is continuous, the probability 

of any two sample values being equal is zero. 

Consequently, there exists a unique ordered 

arrangement of the sample. Let X(l) denote the 

smallest member of the set, X 
(2) 

the second smallest, 

etc. Then 

x(1) < x(2) c . . . < X(n) 

and these are called the order statistics from the 

random sample Xl, X2, . . . . 'n' For 1 2 r 2 n, Xfrl 

is called the rth order statistic. -- 

Order statistics are particularly useful for studying 

certain phenomenon because quite a few of the results 

concerning the properties of X 
(r) 

and the properties 

of functions of some subset of the order statistics 

are distribution-free. If an inference is 

distribution-free, assumptions regarding the 

underlying population are not necessary since the 

inference is based on a random variable with a 

distribution which is independent of the underlying 

population's distribution. 
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GENERAL RESULTS CONCERNING X (t-4 

‘(n) is the largest value of the sample. This is a 

good place to start since probable maximum loss is 

the worst loss likely to happen. 

Distribution of X n 

The cumulative distribution function of Xn is given 

by 

FX 
(n) 

(xl = Pr I Xtn) 2 x I 

= Pr { all Xi 5 x ] 

= FXn(x) 

since the Xi Is are independent. The corresponding 

density function is found by differentiating (1). It 

is easily verified that 

fX (xl = nfX(x)FX n-1 (x) 
(n) 

(2) 

where fX is the density function corresponding to FX. 

Moments of X(n) 

The exact moments of X (n) 
can be derived from the 

following equation: 
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k =k 
W$,$ =-LX fXt,) (x)dx 

= ;nxkfX(x)FXn-’ (x)dx. 
-0D 

(3) 

This requires a specified distribution FX and is of 

limited practical value due to the complexity of the 

integral involved. 

There are large-sample approximations for the mean 

and variance of X(nj that are easily calculable. The 

approximations require two facts. 

1. If LI(~) denotes the rth order 

statistic from a uniform 

distribution over the interval 

(0,l) , then 

2. The Taylor’s series expansion of a 

function g(z) about a point P is 

g(z) = g(u) + iw;+ c p (II) 
= 

where g(i) (p) = p 1 l This series 
Z=U 

converges if 

(2-u) lim nt n ,(n) 
n+* * 

(2,) = 0 

for it < 21 < z. 
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The first requirement is due to the probability 

integral transformation and is proved in various 
, 

statistical texts. The second requirement is the 

standard Taylor’s series expansion. 

If the Taylor’s series expansion is rewritten for a 

random variable Z with mean M, and the expected value 

of both sides is taken, the result is 

var(Z) E[g(Z)l = g(u) .+ 21 gf2) (!J) 

m E[(Z-IJ)~I g(i)t,,) + z i! . 
i=3 

so, a first approximation to E[g(Z)] is g(M), and a 

second approximation is g(p) + yw g(2)(u). 

To find similar approximations for var [g(Z)], form 

the difference g(Z)-E[g(Z)], square it and take the 

expected value. The result is 

var[g(Z)l = var(Z) [g(l) (1111~ 

- + [g(2) (~)12var2(z)+E[h(z)l 

where E[h(Z)] involves third or higher central 
3 

moments of Z. A first approximation to var[g(Z)] is 

. In particular, see Gibbons, Jean Dickinson, 
Nonparametric Statistical Inference, p. 23, New 
York 1971 . 

I Ibid, p. 35. 
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var(Z) [g(l) (U)12r and a second approximation is 

var(Z) [g(l) (P)]~ - + [gt2) (11) J2var2(Z). 

In order to apply these results to X(n], g is defined 

so that 

g(u(& = X(n) = FX -l (yn) 1 

where uCnl = FX(xtnj). The appropriate moments are 

u = ElU(,)l = * 

and 

varru(n)l = tn+ljifn+2j l ’ 

The derivatives needed are 

P)(u) = ff,[F,-‘(+) 3 1-l 

and 

,I21 (,,) = -f ’ [p -l( n 
x x ~HtfXtFx-1(&)ll-3.’ 

Substituting yields as first approximations: 

E(X(n)) es FX 
-1 n 

(n+l) (4) 

var(x(n)) o (n+ljg(n+2) IfXrFX -f& 1 F2. (5) 

6 Ibid, pp. 32-33. 
, Ibid, p. 37. 
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Second approximations are similarly found by the 

appropriate substitutions. 

Distribution-Free Bounds for E (X (N ) 

If a variate X has a finite variance, the expected 

value of X(n) can not be arbitrarily large even if 

the range of X is unbounded. 

From Equation (3), the expected value of X (n) is 

E(X(n) -oo ) = ;nxFxn-’ (x) fX(x)dx. 

Let u = FX(x) and standardize X to have mean 0 and 

variance 1. This means 

E(X(n) o ) = ;nx(u)u”-‘du, 

;x(u)du = 0, 
0 

;[x(u)12du = 1, 0 

where x(u) indicates that x is expressed as a 

function of u. 

Schwartz’s inequality states that 

Ifg du 2 (/f2du 1g2du) l/2 . 

8 David, Herbert A, Order Statistics pp. 56-59, 
New York 1981. 
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Let f = x and g = nu n-l -1. Then 

ix (nun-l ;(nu n-1,1) 2d”) ‘12. 
0 -1)du 2 (;x2du 

0 0 
Expanding yields 

;xnu”-‘du - ;x du 
0 0 

( (;x2du) 0 1’2 (1 (n2u2n-2-2nun-1+l) du) 1’2. 

Substituting for the various pieces gives 

E(X(n) - o ) < ( j (n2u2n-2-2nun-1 +l)du) 1’2. 

Hence 

If the mean and variance of the population are u and 
2 0 I respectively, the result becomes 

(n-l) 0 

E(X(n)) 2 ’ + (2n,l)1/2 ’ (6) 

This result is distribution-free and requires only 

the knowledge of the mean and variance of the 

population, not its specific distribution. 
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GENERAL RESULTS FOR QUANTILES 

Probable maximum loss has been defined as the worst 

loss likely to happen. If the sample under 

consideration has an unreasonably large loss, then 

using X(n) to estimate the PML would be unreasonable. 

In this case, quantiles could be used. The quantile 

approach would also be preferred if the insured was 

willing to accept more risk or the underwriter wanted 

to accept less risk. "More risk" and "less risk" 

used in this context are comparable to the risk level 

implied by using X(n) to estimate the PYL. 

A quantile of a continuous distribution fX(x) of a 

random variable X is a real number which divides the 

area under the probability density function into two 

parts of specified amounts. Denote the p th quantile 

by K p for 0 2 p 5 1. Then K 
P 

is defined as any real 

number solution to the equation 

FX(kP) = p* 

It is assumed that there is a unique solution to this 

equation, as there would be if FX is strictly 

increasing. 
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Point Estimate for K ’ 

It can be shown that the r th order statistic is a 

consistent estimator of the p th quantile where $ = p 

remains fixed. A definition which provides a unique 

X(,] to estimate the p th quantile is to choose r so 

that 

r = Q:;+l] 
if np is an integer (7) 
if np is not an integer 

where [x] denotes the greatest integer not exceeding 

X. 

Distribution-Free Confidence Interval for K P 

Since consistency is only a large-sample property, it 

is desirable to have an interval estimate for K P with 

a known confidence coefficient for a given sample 

size. The objective is to find two numbers r and S, 

r < s, such that 

‘(X(r) < Kp< x(s)) = l-u 

for some chosen number 0 < a < 1. 

For all r < s, 

P(X(/ fp < xts)) = p(x(,)< Kpf - p(x(s)< Kp)* 

* Op. Cit. Gibbons, pp. 40-41. 
lo Ibid, pp. 41-43. 
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Since FX is a strictly increasing function, 

x(r) < K P 
if and only if FX(X(rj) < FX(Kp) = P* 

Thus, 

‘(‘(r) < Kpc x(s) ) = P[Fx(X(r))< PI-P~F~(X(~))< PI 

= Yn(:r:)xrW1 (1-x) n-rdx 
D 

P 
-In(~I~)xS-l (1-x) n-Sdx. 

0 

If this formula is integrated by parts the necessary 

number of times, the result is 

s-l 

‘(‘(r) < Icp< x(s)) = z (;)pi(l-p)n-i. 
i=r 

(8) 

This does not produce a unique solution for r and 

s. The narrowest interval is produced when X (s) - ‘(r) 
is minimized. Alternatively, s-r could be minimized. 

Also, a confidence interval produced by 

s-l 
i4r @Pi (l-P)n-i = l-a 

is distribution-free. 

The formula derived above can also be argued 

directly. For any p, X(rjC Kp if and only if at 

least r of the sample values X1, X2, . . . . Xn are less 
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than K 
P’ 

The sample values are independent and can 

be classified according to whether they are less than 

KP. 
Thus, the n random variables can be considered 

the result of n independent trials of a Bernoulli 

variable with parameter p. The number of observations 

less than K P then has a binomial distribution with 

parameter p. 
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APPLICATION OF ORDER STATISTICS TO THE PML PROBLEM 

The application of order statistics has various 

requirements depending on the approach taken. The 

PML can simply be estimated by Xtn) if a 

reliable data set applicable to the particular 

problem is available. If the concern is to estimate 

the PML by using the expected value of X 
(n) 

or by 

constructing an interval around X(nj using the 

variance of X(nj and choosing the PML as the upper 

limit of this interval, the distribution of X, FX, 

must be known (actually FxW1, fx and fX' are needed). 

If estimates of the mean and variance of FX are 

available, derived either theoretically or from a 

data set, then the upper bound for E(X (nj) could be 

used as the PML. If a data set is available but, for 

various reasons, the quantile approach is preferred, 

only the order statistics themselves are necessary to 

produce either a point estimate for the quantile or a 

confidence interval for the quantile. In the former 

case, the PML would be the quantile; in the latter 

case the PML would be the upper bound of the 

confidence interval. 

- 520 - 



X n) as an Estimate for PML 

Exhibit I contains a list of 100 claims that are 

representative of a particular problem in which a PML 

estimate is needed. '(n) in this case is X(loo) or 

$576,525. Consequently the PML is $576,525. 

E(X(n) ) as an Estimate for the PML 

The use of E(X (n) ) as an estimate for the PML 

requires FX -1 . Suppose it is assumed that the data 

has a lognormal distribution. The mean is $212,521 

and the standard deviation is $110,506. The 

corresponding normal distribution has a mean of 

12.14714 and a standard deviation of .48920. From 

Equation (4), the approximation for the expected 

value of X(n) is 

EC$,+ = Ax -‘(&I = e [ofl(&) + u 1 

where hX is the lognormal distribution, 

Z is the standard normal distribution, 

u is the mean of the normal 

distribution, and 

0 is the standard deviation of the 

normal distribution. 

If n = 100, the value of ZB1(.9901) is found from 

standard normal tables to be 2.33. The PML estimate 

is $589,468. 
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The Upper Bound of an Interval Around E(X n ) Using 

Var (X(,,) as an Estimate for the PML 

It is possible to choose k so that 

E(X(n) 1 + k(var(Xtn))) l/2 

produces a reasonable estimate of the risk that is 

acceptable. If the prior example is continued, the 

var(X(,)) can be approximated using Equation (5): 

var(x(,) 1 = (101~~~lo2) (ax(589,468) 1 -2 

where X X is the density function corresponding to 

hX' The formula for xx is 

X,(x) = x0(2:)1,2 .I- 202 
2~ (lnx-p)21 . 

The (var (Xtn)) 1 l/2 is $106,976 for this example. If 

k is chosen to be 2.0, the PML estimate is $803,420. 

The Distribution-Free Upper Bound of E(X (n 1 as an 

Estimate for the PML 

The data shown in Exhibit I have a sample mean of 

$212,521 and a sample standard deviation of $110,506. 

Consequently, 

E(X(loo)) ( 212,521 + .=-=&g-Q . 
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The PML is thus $988,044. 

If sample data are not available, a mean, variance 

and number of claims could be chosen on some 

theoretical grounds and the upper bound calculated as 

shown above. 

KP as an Estimate for the PML 

Suppose it is decided that the .95 quantile will be 

used as the PML. If the sample data from Exhibit I 

are used, r is 95 (because .95x100 = 95) and the PML 

(Xtgs)) is $434,449. 

The Distribution-Free Upper Bound of K P 
as an 

Estimate for the PML 

The estimate of K p for p = .95 based on the sample 

data is $434,449. Now a confidence interval iS 

desired around this estimate so that a = .lO. In 

other words, r < s must be found so that 

s-l . 
P+) < Kp < x(s)) =i&($P1(l-P) 

n-i = .90. 

s-r should also be minimized. Exhibit II shows X~i) 

and (y) pi (l-p) n-i for i = 90, 91, . . . . 100. There 

are two possibilities for r and s: 
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and 

P(XCg2) < Kwg5< Xtgg))= .899831. 

The second is closer to .90 and s-r is 7. The first 

has an s-r of 8. Even though the probabilities are 

so close, and the second probability is slightly less 

than .90, the second answer would be chosen because 

s-r is minimized. The PML in this case is Xtg9) or 

$563,899. 

In the above six examples a particular size of loss 

distribution was assumed. The PML estimates for the 

sample data are summarized in Exhibit III. While 

these estimates vary considerably, this is due to 

differing data and risk aversion considerations. The 

methods presented work equally well if the 

distribution of size of loss as a percentage, of value 

is available. The former is more correct for 

liability insurance or for property insurance if the 

population has the same property value as the 

insured. The latter is more correct for property 

insurance where the property values differ among 

risks. 
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SUMMARY 

This paper has presented two different approaches to 

the PML problem using order statistics: ‘(n) and 
quantiles. These approaches lead to six different 

methods for estimating the PML: 

1. 

2. 

3. 

4. 

5. 

6. 

‘(n) ’ 
Wtn) 1, 

l/2 EM(n)) + k(var(xtn))) , 

distribution-free upper bound of 

WXtn) 1 t 

‘fr) as an estimate of k 
P’ 

and 

distribution-free upper bound of 

KP. 

Methods 1, 5 and 6 require sample data. Methods 2 

and 3 require assumptions about n and the underlying 

distribution of the population. Method 4 requires 

only estimates of n and the mean and variance of the 

population. The choice of method would depend on 

availability of data, willingness to make assumptions 

about the underlying population, and the amount of 

risk the insured is willing to accept or the 

underwriter is not willing to accept. 

- 525 - 



Exhibit I 

Ordered Sample Data 

i 

(1) 
1 
2 
3 
4 
5 
6 
7 

i 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

, 20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

t"5 
46 
47 

4": 
50 

'(i) 
(2) 

$ 19,874 
30,610 
32,159 
34,115 
40,660 
53,453 
56,598 
61,651 
63,411 
66,007 
73,062 
76,962 
87,348 
96,498 
98,408 

109,837 
122,838 
128,372 
128,426 
130,048 
130,610 
131,326 
131,474 
137,655 
139,681 
140,949 
147,987 
150,776 
151,044 
151,967 
152,219 
153,388 
154,619 
157,065 
162,956 
169,142 
170,262 
171,988 
173,391 
174,049 
175,689 
180,406 
182,223 
183,399 
190,532 
195,658 
197,482 
199,788 
203,310 
205,796 

i 

(3) 
51 
52 
53 
54 
55 
56 
57 

55: 
60 
61 
62 
63 

:"5 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

E 
78 
79 
80 
81 

885 
84 
85 
86 
87 

2 
90 
91 
92 
93 

;"5 
96 
97 
98 
99 

100 

'(i) 
(4) 

$207,196 
208,959 
209,568 
213,084 
214,307 
214,546 
215,978 
216,369 
220,808 
222,804 
224,417 
224,475 
235,209 
238,249 
238,679 
238,842 
240,455 
244,699 
247,465 
251,374 
257,426 
258,513 
265,051 
269,816 
271,647 
274,154 
275,727 
277,211 
277,734 
279,494 
280,721 
293,728 
302,641 
308,771 
311,612 
314,410 
319,722 
323,711 
327,927 
331,179 
345,130 
368,095 
371,194 
396,911 
434,449 
440,639 
447,171 
482,259 
563,899 
576,525 

mean=$212,521 
standard deviation=$110,506 
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i 
0 

Exhibit II 

Binomial Probabilities for n = 100, p = .95 

9’1” 
999 
94 
95 
96 
97 

xi 
100 

2#- 
331,179 .016716 
345,130 .034901 
368,095 .064871 
371,194 .106026 
396,911 .150015 
434,449 .180018 
440,639 .178143 
447,171 .139576 
482,259 .081182 
563,899 .031161 
576,525 .005921 

(3) 
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Exhibit III 

Summary of Example PML Calculations 

Method PML Estimate 

1. '(n) 

2. E(X(n)) 

3. E(XtnJ) + k(var(X(,j))1'2 

4." upper bound of E(X(,)) 

5. '(r) as an estimate of K P 
6.* upper bound of ~~ 

$576,525 

589,468 

803,420 

988,044 

434,449 

563,899 

*These are distribution free. 
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ESTIMATING PROBABLE MAXIMUM LOSS WITH ORDER STATISTICS 

by Margaret Wilkinson 

REVIEWED BY Albert J. Beer 

With the increased importance of utilizing quantitative analysis 

in risk management decision-making, Ms. Wilkinson's paper should pro- 

vide our profession with a valuable use of the concept of probable 

maximum loss (PML) which has been a fixture of the insurance vernaaular 

for decades. Previously, underwriters had used the PML (or other re- 

lated tools) to establish the range for the "working layer of coverage". 

While it was always acknowledged that a larger loss was possible, the 

PML estimated the expected maximum loss potential for the risk, with 

the exposure beyond the PML being treated by a catastrophe (risk) load. 

Today, the dramatic increase in the amount of risk retained by insureds 

has made the pricing of large accounts more complex since the "buffer" 

of the working layer is no longer available. It is at these extreme 

values that the author's work with order statistics may provide a 

variety of applications. 

Before I discuss the results of the paper, I would like to resolve 

what I percieve to be an ambiguity in the treatment of PML as defined 

by the author. fn my opinion, any discussion of PML is unclear without 

a quantification of the term "probable". If a pair of dice are rolled, 

is it reasonable to say the total will "probably" be less than eight 

(p = 21/36)?..... less than ten (p = 30/36)?.....less than twelve 

(p = 30/36)? How certain of an outcome must one be in order to say it 

is probable? It is precisely this subjectivity that leads to the poten- 

tial conflict between the insured and the carrier which is alluded to by 

the author. This dilemma could easily be resolved by quantifying the 

term "probable". McGuinness accomplishes this by means of a reference 
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to a "stated pronortion of all cases" whigh will be equaled or exceeded 

by the PML. This concept is similar to the confidence coefficient of a 

one-sided confidence interval. With these ideas in mind, I would suggest 

that the PML could be redefined as follows: 

Definition: PML, is that amount (or proportion of total value) 

which will equal or exceed 100~ % of all losses 

that are incurred. 

For example, PML 95 would represent that amount lphich would be expected . 
to equal or exceed 95% of the losses incurred by the risk. 

If the PML r( 'is so defined, an insured and underwriter who agree 

on the underlying loss distribution would arrive at the same PML 4 . 

It is true that the respective risk aversion and risk acceptance levels 

would certainly effect the degree of satisfaction each would have at 

various OT levels. However, at any fixed 4 point, there would be 

technical agreement on PML .r . The "negotiation" on the appropriate 

price for risk transfer would at least have a common starting point. 

MS. Wilkinson's definition of PML as the "worst loss likely to 

happen" does not include any quantification of the term "likely". 

Therefore, as is noted in the paper, the PML estimates that appear in 

Exhibit III are not approximating the same quantities. For example, 

the n'th sample order statistic X 
(n) 

is intended to be an estimator 

for the upper bound of the loss variate X. '(n) ' therefore, is more 

closely related to the maximum possible loss. Clearly, this is not 

the same concept McCUinness had in mind when he discussed the general- 

ized PML. It may be noted that my suggested definition of PML, allows 

for this degenerate case by choosing OT= 1.00. (Of course, it may not 

be technically possible to derive a PML 
1.00 if the distribution has no 
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finite upper bound.) On the other hand, using X 
‘(95) 

as an estimate 

for k 
.95 ‘ 

the 95'th quantile, is equivalent to approximating PML g5 . 
I will try to demonstrate that the results displayed in Exhibit III 

are much more consistent than they appear . 

Throughout this discussion , an attempt will be made to provide 

more general results derived from the author's excellent foundation. 

I hope these additional comments help to clarify any imprecision in 

the PML concept. 

General Results Concerning Xtnj 

This section concisely presents the theory upon which most of 

the remainder of the paper is based. In addition to the results which 

appear, the corresponding distribution for X (r) could be given by: 

fX (xl = 
-(r) (r-l)ltn-rf! 

(F,(x) f-if (x1 (1 - Fxbd )n-r 

The reason for introducing this more general result is to allow 

for the derivation of properties of X(,) similar to those presented 

for Xcn). In particular, it may be shown that the order statistics 

from a Uniform distribution over (O,l),with 

U(r) = Fx(X(r)) 

have a Beta distribution with parameters a = r , b = n - r + 1. 

Therefore, E(u(,)) = s-& 

Var'(u(r)) = f In-r+11 
(n+lj2(n+2) 

for r = 1,2,...,n 

Additionally, the first approximations displayed in the paper as 

(4) and (5) can be extended to : 
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E(X& L FX 
-1 

%i) 

. 
Var(x(rj) = r (n-r+11 

(n+1j2(n+2) 

These results form the basis of the author's initial three 

estimates of PML. Using the generalized forms above (with r = 100 01 1, 

estimates for our PML oc may be computed as follows: 

Method 

Estimates for : 

1) X(,) from sample data $331,179 $434,449 $563,899 $576,525 

* 2) E(X 
(r) 

) 344,158 404,453 516,532 589,468 

* 3) E(X (r)) + 2(Var(X(rj))' 399, i532 482,839 662,380 803,420 

* These methods assume an underlying lognormal distribution with 
K = $212,521 and d = $110,506. 

It may be noted that the PML 1.00 estimates are those derived in 

the paper under the author's definition of PML. 

Using Xc,) As An Estimate for the PML 

Although this is obviously the most convenient approach, it relates 

only to the data that are available from reported c&aims and may not be 

an accurate indication of the underlying exposure in the future. For 

example, immature loss history may not show any losses in excess of a 

few thousand dollars. Should the PML be chosen to be the largest claim 

paid to date?..... or the largest reported claim?.....or some other choic 

From another point of view, suppose X 
(99) 

= $400,000 and the larges 

claim X(looj = $2,000,000. Is the $2,000,000 loss catastrophic and, by 

definition, not probable? Clearly X(n) alone should not be used in any 
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