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Transformed Beta and Gamma Distributions 
and Aggregate Losses 

For pricing aggregate covers it is useful on occasion to have a way to 

estimate the distribution function for aggregate losses from the moments of 

this distribution. The usual approximation methods are designed primarily 

to calculate percentiles of the far right tail for mildly skewed distribu- 

tions (e.g., see Pentik&nenC97 ). The gamma distribution has been sugges- 

ted for this purpose (e.g. HewittC71 ). However, the skewness of the gamma 

is always twice the coefficient of variation (see Hastings & Peacock[63 ). 

Adding a third parameter to the gamma has been suggested by Seal ClOJ, but 

the parameter added shifts the origin, sometimes resulting in the possibility 

of negative losses, which is often unsatisfactory. The transformed gamma 

distribution offers an alternative third parameter that affects the shape of 

the distribution but not its location. 

The transformed beta and its special cases could be tried in this regard 

also. However, its principal application herein is to deal with one kind of 

parameter uncertainty in the transformed gamma. The distributions are intro- 

duced below and then applications discussed for each. 

Transformed Gamma 

The gamma function at r is defined as P(r) =$ tr-'emtdt. The percent- 

age of this integral reached by integrating up to some point x defines a 

probability distribituon, i.e., the probability of being less than or equal 

to X. The gamma distribution is usually given by adding a scalar transfortna- 

tion of the variable, L.&the probability of being less than or equal to x 
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is given by the percentage of the integral that occurs up to Ax for some 

positive number X. The transformed Gamma distribution adds a power trans- 

formation, i.e., the cumulative probability G (x) is given by: 

G(x;r,a,A) = I, 
(b)' tr-l .-t dt 

r(r) 

This distribution will be considered below as a model for aggregate losses 

although it may be a reasonable candidate for severity distributions as well. 

Aa it has three parameters it can match three moments of the distribution 

being modelled. 

The gamma and exponential distributions are special cases given by a=1 

and a-r-1 respectively. The Weibull distribution is also reached by taking 

r=l. Thus the transformed gsmma distribution provides a common generalization 

of the gamma and Keibull distributions and offers the possibility of improved 

fits whenever either have been found approximately suitable. 

The moments are given by f (r + S$ and the moment distributions 
E(xnn) = in 

r(r) 

La xn d ", 
are given by G (a; r +t, a,A). The probability density function 

EO:") 

is g(x,r,a,X) = + ( xx> or-l eJ).x)a . These formulas require t-+arbut not 

r(r) necessarily an integer. 

Finding parameters r, a, and X from data involves the solution of non-linear 

equations whether matching moments or maximum lfklihood is used. These equa- 

tions can be quite readily solved by numerical means, e.g. Newton-Raphson 
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iteration, as discussed more fully in appendicies A and B. 

To match moments it has proven quite practical to solve for a and r 

using the known (e.g. known from sampling or calculated from frequency and 

severity) coefficients of variation and skewness, which do not depend on X, 

in a system of two equations in two unknowns, and then solve for X using the 

mean. Handy equations are CV2 + 1 - r(r -I- 2/a) r(r) + r(r + l/ayand 

(SK x CV3) + 3CV2 + 1 - T(r + 3/a) r(r)2 + T(r + l/a)3 where CV is the coeffi- 

cient of variation and SK skewness. See Appendix A for a discussion of how to 

solve this system. 

Maximum liklihood techniques are discussed in Appendix B. 

Once the parameters r,a, and h have been determined the expected losses, 

higher moments, and percentiles of the aggregate layer from a to b can be read 

off from the distribution. For example expected losses for the layer are ex- 

pected losses excess of a less expected losses excess of b. Define R(a) to 

be the ratio of expected losses excess of a to all expected losses, i.e., 

R(a) - Lm h-a) d G It is not difficult to show 
E(x) l a 

that R(a) = l- 6 xdG, - a - (l-G(a)). 
E(X) E(X) 

So far this is valid for any positive distribution G. Now using the 

moment ratio property of the transformed gamma: 
. 

R(a) = 1 - G(a;r$, a,h) - ;~~l~ (l- G(a;r,a,h)) 

?i 

Thus if we knew how to compute the probability distribution function G the 
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aggregate layer expected losses would drop right out. G can be calculated 

Using numerical integration, but there is a series expansion for the incomplete 

gamma function that is also fairly quick to use. The incomplete gamma function 

is defined as IG(x;r) - 6" tr-1 eVt dt + I' (r). Then G(x;r,a,X) * IG((lxga;r). 

From formula 6.5.29 page 262 of [1J the expansion IG(x;r) = e-x xr-l 9 If 

r(r) i=Ck=O k 

can be derived. From 30 to 200 terms of this sum generally give acceptable 

accuracy. Exhibit 1 lists an APL program for IG. 

For cases where the expected number of losses is low there is a non- 

negligible probability that no losses will occur. The transformed gamma can 

not account for this because it is an entirely positive distribution. An 

alternative is a point mass at zero with the probability conditional on losses 

being greater than zero modelled by a transformed gamma. The probability of 

no losses can be computed from the frequency distribution. Formulas for com- 

puting the moments of the positive (conditional) distribution from those of 

the entire loss distribution and the probability of having a loss are given 

in Appendix C, along with standard formulas for computing aggregate moments 

from those for frequency and severity. 

Example 

Professional liability losses limited to $1 Million per occurrence for a 

small group of hospitals are believed to have expected losses of $219,316 with 

coefficients of variation and skewness of 1.550 and 2.510 respectively and 

a probability of .123 of no losses. The aggregate expected losses excess 

of $1 million will be calculated by the above method, 
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By the formulas in Appendix C the positive portion of the aggregate 

distribution has expected losses of 250,000 and coefficients of variation and 

skewness of 1.099 and 2.344. Using the method in Appendix A gives parameters 

r- -2478, s- 1.470, and A = 1.144 x 10e6 for the positive portion. Thus the 

entire distribution has the cumulative probability function Pr(L<x) - .123 + 

.a77 G(x; .2478, 1.470,1.144 x~O-~). The excess ratio at a=$l,OOO,OOO can 

be calculated by the methods above to be .0728 for the conditional positive 

distribution, so the excess expected losses are $18,200=.0728 x $250,000 for 

this piece and ,877 x 18,200 L $16,000 for the entire distribution. 

Transformed Beta 

The beta function B(r,s) may be defined as B(r,s) =j tr-' dt . This 
(t+l)r+s 

is a transformation of the more usual definition B(r,s) =$ ur"(l-u)"-' du 
0 

accomplished by taking t = u+<l-u) or u = t . The beta is related to the 
t+l 

gamma by B(r,s) = P:;::;). As in the gamma case a distribution function F 

may be defined by the partial integral i.e., 
Xx/8ja r-l 

. F(x;r,s,a,B) = & t dt 
(t+l)r+s 

+ B(r,s). 

This will be called the transformed beta distribution. Its density is 
m-1 

f(x;r,s,a,B) - b/B) (x/B) 
B(r,s)(l + (x/B)') =*' ' 

For r-1 the closed form F(x;l,s,a,B) - l-( (x/B)~ + 1) 
-s 

results. This 

is coming to be known as the Burr distribution, and in turn has two special 

cases, namely a=1 which is the Pareto, and s=l which gives the log transform 

of the logistic. As the logistic is like a heavy tailed normal the loglogistic 

can be thought of as like a lognormal with heavier right and left tails. Its 

distribution function F(x; l,l, a, 6) = 1 - BU is of particularly 

simple form. 
xa + fP 
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The case (x=1, i.e. F(x;r,s,l,B) is a version of the transformed beta that 

has been Investigated for severity applications. This will be called the gen- 

eralized-- F as its special case a-l, B- s/r gives the F distribution where 

2r and 2s are integers. The Pareto is also a special case of the Generalized - 

F given by r-l. 

There is an interesting mixture property of the transformed gamma that 

generates a transformed beta, namely that with a population of transformed 

gamma random variables with fixedr and a and the transformed scale parameter 

Xa itself gamma distributed across the population, the compound process of 

picking a variable from the population then taking a realization of that vari- 

able is a transformed beta process. This is proved in Appendix D, Several 

corollary statements follow by taking the special cases of the transformed 

gamma (i.e. Weibull, gamma, and exponential) and mixing by a gamma,viz 

(a) Weibull mixed by gamma yields Burr 

(b) Gamma mixed by gamma yields generalized - F 

(c) Exponential mixed by gamma yields Pareto 

(d) Weibull mixed by exponential yields loglogistic. 

Exhibit two diagrams this situation. 

Robert Hogg proved (a), (b), and (c) separately andGary Patrik indepen- 

dently proved (c). The transformed beta and gamma distributions were origin- 

ally developed in order to unify these results. Robert Miccolis pointed 

out that the generalized - F is a ratio of two gamma distributions. This 

suggested the result, proved in Appendix E, that if X is transformed beta 

with parameters r, s, -1 
a, 6, then l/X is also, with parameters s, r, a, !3 . 
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If X is transformed beta in r,s,a,f then E(X") = 8" B(r + r-,/c, s _ n/a) + 

B(r,s) if - or < n < as and non-existent otherwise. This is an example of a 

distribution with unbounded moments for n 1. os which arises in a natural way 

as a combination of distributions with all moments finite. For a = 1 

(generalized -F, Pareto) the moments simplify to 
n 

E(X") - (r) (r+l) . ..(r+n-1) = II r+i-1 . - 
(s-l) (s-2)...(s-n) i-l s-i 

This makes methods of moments parameter estimation quite simple for this 

special case. Maximum liklihood parameter estimation for the transformed 

beta is similar to that for the transformed gamma as covered in Appendix ti. 

Loss severity distributions have also been fit by the transformed beta and 

gamma distributions, by matching sample and formula values of the excess 

ratio R(a) in a manner similar to that in [5]. 

As with the transformed gamma, the moment distributions are of the same 
a 

form as the original distribution, in fact;' xn dFx t E(Xn ) = F(a;r+n/a, 
0 

s-n/a,a,6). Thus as with the transformed gamma a calculation of excess losses 

can be made if the cumulative distribution can be calculated. This has proven 

most practical through numerical integration. Appendix F discusses one method 

of doing this. The moment distribution formulas for the transformed beta 

and gamma show that the Burr and Weibull moment distributions do not maintain 

the original form, i.e. r=l. 

The mixture derivation of the transformed beta provides an interesting 

way to deal with so called "parameter risk". It is fairly plausible that 

aggregate losses for a given company (insured or insurer) are distributed 
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transformed gamma and that the shape parameters r and a are fairly well knolzn 

and stable but because of uncertain trend, etc., there is a good deal of un- 

certainity about the scale parameter X, which relates to the overall level of 

expected results. If Xa is gamma distributed in s and y then the overall 

aggregate distribution is transformed beta in r,s,a,B where B=y l/a . It is 

also not difficult to show that Xa is gamma in s,a means that X is trans- 

formed garrmta in s,a,6. (See Appendix G). Thus it can be concluded that if 

aggregate losses are transformed gsmma in r,a,h where h is unknown but is 

itself transformed gamma in s,a,S (same a) then the aggregate losses are trans- 

formed beta in r,s,a,S. 

In theory it would be a great coincidence if the uncertainty about X had 

the same parameter a as did the aggregate losses themselves. As a practical 

technique for quantifying this uncertasnty, however, it should not be too 

burdensome to use the a already in hand for aggregate losses. There will 

still be two parameters, s and S, available to match to the uncertainty the 

analyst feels is inherent. 

There are several ways in which s and S could be arrived upon. Different 

values could be tried and the 25th, 50th, and 75th percentile X calculated for 
. 

each, with the corresponding percentile of aggregate expected losses T(r+&) i 

X T(r) following. These can be compared with the uncertainty that seems in- 

herent in the overall level of losses. The latter uncertainty can be estima- 

ted by trying to combine the uncertainties in the trend and development fac- 

tors and anything else used to estimate the overall level. The regression 

statistics used in developing these factors may be useful if regression was 

used. 
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Another approach to measuring the distribution of X is using industry loss 

ratios. 

Expected losses for an aggregate loss distribution with cdf G(x;r,a,X) 

are r (r + i-) i xr (r). Thus for fixed r,a the reciprocal of the aggre- 

gate losses and thus the reciprocal of the loss ratio is proportional to A. 

Therefore if X is unknown but is a realization of a random variable A which 

is transformed gamma in s,a,B, where a is fixed, the shape parameter s can 

be estimated by looking at the historical distribution of loss ratio recipro- 

cals. This would measure some of the variation that would occur even if A 

were knawn, however. An alternative is to look at some broader base of com- 

parable experience, such as the line for the industry or state or class in 

question where the process variance is minimal and hence the principal source 

of variation is the parameter uncertainty. Depending on the similarity 

between the company in question and the broader base as to projection methods 

for trend and loss development, the stability of the historical data base, 

etc., this may give a reasonable estimate of the parameter uncertainty. 

Estimating 6 then could proceed by matching the formula E(1/1:) for the 

transformed gamma distribution to the expected value of l/P, calculated for 

the year and company in question. For A with cdf G(A;s,a,E) the E(l/L) is 

B r(s-l/a) f l'(s) from the transformed gamma moment formula. 

Borrowing loosely from our earlier example, suppose a malpractice risk 

has aggregate losses transformed gamma distributed with r=.2478, ~=I.470 and 

E(l/A)=l + (1.144 x lO?,where A is transformed gamma in s, 1.470, 6. 
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Suppose the previous four years of industry malpractice experience showed 

loss ratios of .505, ,750, 1.001, and 1.357, i.e., reciprocals 1.9S0, 1.333, 

.999, and .737. The reciprocals have average 1.262 and an unbiased sample 

standard deviation estimate of -5370 for an estimated CV of .4255. The 

formula 1 + CV2 - T(s+2/a) r(s) + l'(s-t-l/a)2 then becomes 1.181 = T(s+1.36)' 

r(s) + rcs + .68)2, which can be solved numerically by computer 

or EP - 34c calculator to find se2.597. Then 1 + 1.144 x 10 -6 = E(l/h) = 

8 r(s - l/a) + r(s) = 8 r(2.597 - .68) f r(2.579) can be solved directly to 

yield 13 - 1,288,500. From the transformed beta in r-.2478, s-2.597, n-1.470, 

E=1,288,500 expected losses of 

8 l'(r + l/a) r(s - l/a) = 250,000 
r(r) r(s) 

can be calculated, confirming the calculation of B. 

The expected losses excess of $1 million in the aggregate increase 

substantially when this additional uncertainty is included. For this 

transformed beta an excess ratio of .1348 can be computed at $l,OOO,OOO which 

yields excess expected losses of $33,700 compared to .0728 and $18,200 for 

the transformed gamma. 

The great disparity between these figures comes from the wide divergence 

in loss ratios in the period studied. If the uncertainty in A is really so 

great that next year's ratio for the whole industry can come out anywhere in 

the range 50% to 135%, then there is a much greater chance that total losses 

for a small segment of the industry will exceed the target $1 million. 

For other more stable lines a similar analysis would show a much smaller 

difference. In those cases there is a danger that the potential variation 
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in level would be understated by looking at industry loss ratios. For one 

thing, the swings in calendar year ratios may be dampened by reserve changes. 

Also a particular sector of the industry would probably have wider variation 

in the degree to which the proper level could be projected. This would be 

important if the company under study were concentrated in one area. The 

selection of the parameter s should probably be made with a good deal of 

judgement because of the above. 

Summary and Extensions 

The above gives a method for approximating the distribution function 

of aggregate losses from the moments of that distribution, based on the 

transformed beta and gamma distributions. Since a distributional assump- 

tion is involved the method is likely to be less precise than the exact 

methods of Adelson [ll], Panjer [12] and Heckman and Meyers [13?. Those 

methods do, however, require more input information, namely the underlying 

frequency and severity distribution functions, and they also require 

substantially more computation. As computing becomes faster and less 

wpensive and good parameteriaed frequency and severity distributions be- 

come available those methods become increasingly viable, and the assumption 

of a distributional form for aggregate losses becomes more avoidable. 

Methods based on moments only are nonetheless of definite value at present. 

The transformed beta distribution is a good candidate for casualty 

loss severity distributions, because it generalizes the Pareto and Burr 

which have been used with moderate success, The problems of trend and 
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development by layer of loss have yet to be entirely settled in casualty 

lines, however, especially with regard to having factors that are inde- 

pendent of distributional assqmptions. Thus there is currently a fair 

amount of uncertainty as to casualty severity distributions. 

The transformed gamma may be useful in property loss severity where 

the tail may be lighter. Also the inverse transformed gamma, i.e., the 

distribution of Y when X - 1 + Y is transformed gamma, is a heavy tailed 

distribution which may have application to casualty loss severity. This 

has distribution function 

G’(Y) = j 
(Y/Ala t-r-l 

e -1't dt 

0 r(r) 

and E(Xn) = An T(r-n/o) f r(r) for n<ra. 

A problem that sometimes arises with maximun likelihood estimation 

with these distributions is that no maximum exists. Usually this happens 

because the maximum likelihood,given a,increases as a decreases. After 

some point the increase becomes negligible however. One alternative in 

this case is to pick a "low enough" value of a and maximize the likelihood 

fixing that value. This usually gives much better fits than the Weibull, 

Gamma, Burr, etc. in these cases. 

Another alternative is that there may be other functions that are 

limiting values of these distributions. For instance, in the Burr case, 

F(x) - 1 - ((x/%P + lrs , small a often leads to large B but with (xle)" 

near zero for the range of interest, so 1 + (x/B)' is close to e hf%)" and 

F(x) is approximately 1 - e -s(x/fQa 
which is a Weibull. Conversely, small 
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13 and large a make (x/B) very close to (x/E)~+ 1, relatively speaking, so 

F(x) is approximately 1 - (x/B) 
-aS 

, which is a non-shifted Pareto. 

Similar relationships may occur for the general cases. 

A limitation of the above methods is that the transformed gamma does 

not seem able to take on any combination of moments. In particular, it 

appears that the coefficient of skewness must be greater than the coeffi- 

cient of variation (CV) to match noments. In the gamma case the coeffi- 

cient of skewness is always twice the CV. Thus, the transformed gamma 

allows a fair amount of departure from gamma-ness but not complete 

latitude. 

Much of the interest in the gamma stems from a 1940 theorem of Lundberg [ 

which shows that under certain conditions the negative binomial frequency 

leads to an approximately gamma agpregate distribution. Since aggregate 

distributions seem to be positively skewed for the most part, but do not 

always have the skewness double the CV, gamma-like distributions allowing 

some deviation from the gamma are thus appealing candidates for this 

purpose, 

Exhibit 3 gives the results of a test of the transformed gamma against 

an exact calculation of an aggregate distribution provided by Glenn Meyers 

using the characteristic function method. The severity distribution is 

piecewise linear. Approximating the severity by a discrete distribution 

also permits a comparison to the recursive method of Adelson and Panjer. 

$500 intervals were chosen for this discrete approximation. Details are 

on the exhibit. The results show that the two exact methods are extremely 

similar, indicating that not much is lost by the discrete approximation to 
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severity. The transformed gamma is also reasonably close over a wide 

range of loss sizes, confirming, at least in this one case, the useful- 

ness of this simplifying approximation. 
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Appendix A 

Solving Two Equations 

Many systems of two equations in two unknowns, including the trans- 

formed gamma moment system In the text, can be solved by Newton-Raphson 

iteration, with the partial derivatives taken numerically. The numerical 

partial derivative of f(x,y) with respect to y, for example, isff(x,y(l+A))- 

f(x,y)) + yd, where A is a small number, e.g. 10 -7 . Because of machine accu- 

racy A should not be too small, e.g. AD 10 -so would be too small for most 

installations. This method is quite useful when the partials are not avail- 

able in closed form or are excessively intricate. 

Given f(x,y) and g(x,y), initial estimates x0 and y, and derivatives fx, 

fy, gx, gY the iteration procedes by setting 

xi+1 - xi - (fgv - gfy) + (fxgy - g f ) 
XY 

yi+1 - Yi - (gf 
*- fgx) + (fxgy - gxfy), 

where the functions and derivatives are evaluated at (xi,yi ). SeeC3] page 8 

for details. 

Exhibit fi gives an APL system for this procedure. The user interactive1 

defines the equations to be solved. Any user defined functions may be called 

in this process. A sample run of the system is shown In Exhibit A2. 
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Appendix B 

Maximum Liklihood for the Transformed Gamma 

Maximum liklihood in the case where there are no problems of truncation 

or censorship of the sample reduces to one non-linear equation to solve for 

a then linear equations for r and X. The a equation is somewhat intricate 

but solves easily nuoerically. Given a sample yi i=l to n, the liklihood 

function is L(r,a,A) - n" 
i-1 ah ar yior-l e-lxYi) 

a 
+ T(r) and In L(r,a,X) = n Ina+ 

narlnX- n In T(r) + (or-l) C lnyi - ia F Ya 
i-l i * 

Setting the partial derivatives of this to zero, and denoting the derivative of 

In T(r) by $(r) yields the liklihood equations: 

(a> $(r) - T lnr-am-lny 

(b) T-t r*Y a(ya-yiG-y) 

(cl X - T_;" i r)lia 

Substituting for r in (a) via (b) gives a single equation for a which 

when solved allows r and A to be calculated from (b) and (c). This is a 

generalization of the method found in [4_) for the gamma distribution. Note 

that to solve (a),;;h = - in 
i ii Yl,lny=f; T In Yi, and yu In y = ln Y 

must be calculated from the sample at each Iteration. 

As suggested on page 152 of[2] , differentiating formula 6.1.34 page 

256 of [l] 
26 

gi ves the series approximation $(z) = r(z) kZ1 kck z k-l 
, where c E 1 

to c26 are as shown in Exhibit Bl. This expansion gives more than 13 place 

accuracy onz 1,2 and the reCUrSiVe rdaCiOn $(l+z) = e(z) + $ Can be USed J 

outside of this interval. 
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To salve equation (a) with (b) substituted for r we have an equation 

f(a) - 0 where f is calculable by computer or calculator. This can be 

solved Iteratively by numerical Newton-Raphson: 

Start with a guess ao. Then let ai+f ai- f(cr+) 

f(ai (1 +A) ) - f(a,) 

where A is small, e.g. 10 
-7 

. 

A reasonable starting value ao is usually given by calculating the sample 

ratio of the coefficient of variation over half the coefficient of skewness, 

as this is greater, less than, or equal to 1 when cs is. 

As an alternative the secant method ai+l p ui - f(ci) (ui - oi-1) can 
f(ai) - f(ai-1) 

be used to solve for a. This involves only one computation of f each itera- 

tion, so may be faster than Newton-Raphson. 
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Exhibit Bl 

k =k 

1 -1.00000 00000 000000 
2 -0.57721 56649 015329 
3 0.65587 80715 202538 
4 0.04200 26350 340952 
5 -0.16653 86113 822915 
6 0.04219 77345 555443 
7 0.00962 19715 278770 
8 -0.00721 89432 466630 
9 0.00116 51675 918591 

10 0.00021 52416 741149 
11 -0.00012 80502 823882 
12 0.00002 01348 547807 
13 0.00000 12504 934821 
14 -0.00000 11330 272320 
15 0.00000 02056 338417 
16 -0.00000 00061 160950 
17 -0.00000 00050 020075 
18 0.00000 00011 812746 
19 -0.00000 00001 043427 
20 -0.00000 00000 077823 
21 0.00000 00000 036968 
22 -0.00000 00000 005100 
23 0.00000 00000 000206 
24 0.00000 00000 000054 
25 -0.00000 00000 000014 
26 -0.00000 00000 000001 

Series Expansion for q(z) 

26 
t'(z) = r(z) k;l kckz 

k-l 
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Appendix C 

Aggregate Moments 

A. In terms of frequency and severity moments, assuming individual claim 

sizes are independent, identically distributed, and independent from 

the number of claims. 

Let N denote nunber of claims, X claim size, L aggregate losses, !J the 

mean, a the standard devfation,y the coefficient of skewness, c the co- 

efficient of variation, and Ni - E (N-UN) 
i 

% 

Then 

-lJ IJ ‘lL XN 
2 aL = UN ‘X2 + bX c&2 

YpL3- UN YxUx3 + 3PXYX2GN2 + pX3YNaN3 

“L 2 - yx2UN(cx2 + W2) 

2 3 

yL= (yx%3 + 352 N2 + N3) * hN (Cx + N2) 

2= 
CL ccx2 + N2> + uN 
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l- 
E 

p a=0 
B. F(a) = P, (L(a) = 0 a<0 

Cl-P)+P G (a) a>0 

Then p = Pun 
F 

cG2 - P cF2 + p-1 

YG = p2+ Q3 + (P-l) c3PcF2 + p-2) 
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Exhibit Cl 
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VCl3U~ITMOC[17V 
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I IIll nWRITTt’N RY VICTOR PllliLI!3I 
I21 A ‘THJS pRUf;RAH CA~,CULATES CONJIJTIUNIIL MOMENTS IN TtIF I’ORtI OF THF CCIF-FFICIENT OF VARIATION (CV) AND THE SKEWNESS 
C37 R (r;hMM,$) PRSEO UPON RISKMODEL OIJTPUT I’llR THF. PART UF THE tlISTRIRU~ION IjREAlER THAN 0. 
[: 1) ‘1 n T’T TAKE3 AS LEFT--IIANTI bRl;llHENT THE: PRIliIAPlLIIY Of- (I CLAItt#RF.lNli I.hRliER THAN 0, CURRFNTLY FOUNII AT THE: TOP OF .THf: 

r :i ‘1 n RI~KMiXlEL OWIPUT FOR EACH LAYFR DENOTF1l DY PROA(IBII.I TY nl- I#!:!;’ ANTI f-OR RIGHT -HANI’! ARFUflENT REUUI RF:!; A TUf? 
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[71 A .THf’!;F ,%RF I CIUNO IN I:flI.UMN!; 8 ii ‘7 RE!.;PECf’IVFLY Or- 7lil RI!XHI~TIFI.. 111~1l’lJT. 
r:!l-J ~~~FTvnR~-((P.r~c.i~r:!),.l’-l butI. 
I ‘? I It-RtllG (f’*2)nrJr:“I~13Cf~*3 
I lnl IERi’t.lS ~f’-~l)r(3xPrfJl il*:‘)+P-:! 
I113 OAfltiR~ (TFRNl ,TF:RM:‘);.COr:F\‘nRx;i 
1. 1 :! :I XI I”(‘IEF’VAR , IinMNA 

v 



Appendix E) 

Transformed Beta is Transformed 
Gamma Mixed by a Gamma 

The transformed gamma density function g(x;r,a,X) = aXar xar-l emxa x" 
r (r) 

can also be parameterired as a r 8 x ar-1, -&a + T(r), taking 8 = X a . Given 

a family of such random variables with a and r fixed and 0 itself gamma dis- 

tributed with parameters s and y, i.e. having density ys 0"' e-yo + rw, ther 

the compound process is transformed beta, 

To see this the density for the compound distribution will be calculated. 

This is the probability weighted average of the densities of the family, that 

is at x equals: 00 
u Qr ar-1 -QXa x e B s-l 2 Q 

-YQ 

r(r) I-(s) 

I) aya xar-1 

s 

#-+s-1 e-e (xQ+y) d6 
r(r) r(s) 

which after the change of variable @ - 8(xa + y) becomes 

S 
ay x 

ar-1 
$ 

;; 4 
r+s-1 

r(r) r(s) Q\zp+y/ 
e-@ dlD 

xO+Y 

I Q YS x ar-1 
J .- cf r+s-1 e- c & 

r(r) r(s) (xa + y)r+s D 

I a ys xar-l 

r(r) r(s) W + Y)~+~ 
r (r+s) 
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I u YS .ar-1 

B(r,s) ha + v>*q ’ 
Now defining B by y = 6’ gives for the 

compound deneity 

a$ as *r-l m B-a (r+s) p5 ,ar-1 
B(r,s) 6~” + f3a)rfS B(r,s) ( (~.lti)~T 

p (U/e) (~/6)~~-l t B(r,s) ( (X!B)a + l)‘+s 

which is the transformed beta density. 
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Appendix E 

Reciprocal of Transformed Beta Variate is Transformed Beta 

Let Y = 1 where X has cdf F(x;r,s,a,B) 
X -a 

RowY(a+X>l -- so Pr (Y la) - l-Pr (X cl-) = 1 - 1 f 
(aa> r-l 

a a B(r,s) o &p+s dt 

Let u- 1 t * 1 dt - -du/u2 
t U 

(aOla l-r l+s-2 
Then Pr(Y<a) - 1 + 1 1, du 

B(r ,s) (HCp= u2 
=l- 1 I- 

B(r,s) (a6ja yu+l) '+' 
du 

U 

(as)a s-l 
-1 I U 

Boo (u+l)r+s 
du 

Therefore Y has cdf f(y;s,r,ci,l/B). 
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Appendix F 

Numerical Integration By Gaussian Quadrature 

Gaussian quadrature is a method of numerical integration that estimates 

the integral by taking a weighted sum of the value of the function being in- 
b 

tegrated at several points. In general 
J f(Y)dy ?$& ; wj,f(Yi)S where 
a 2 I=1 

2Yi = (b-a)xi+ b+a and Wi and xi are somewhat complex to calculate. Exhibits 

Fl and F2 give WI and xi for a few values of n. See 

others. [83 discusses the mathematical background. 

This approach works best for functions that can 

by polynomials of degree n. 

Cl] pages 916-919 for 

be closely approximated 

The integration of the transformed beta distribution function is more 

accurate if two transformations nrc made. First the mapping u = t trans- 
X0 t+l 

u 
forms the integral to F(x;r,s,a,E) = 

$ 
U r-1 (1-U>s-1 du + B(r,s) 

= IB d-$& ; r,=), which can be taken 

as the definition of the function IB. However, the approximation of this in- 

tegral by the above quadrature formula is not close for small values of r and 

s, e.g. below 1. A recurrence relation was derived to express IB(x;r,s) as 

a function of IB (x;r+l,s+l), putting the integral to be solved in a more 

satisfactory area. This relationship is rsIB(x;r,s) = xr (1-x)' (s-(r+s)x)+ 

(r+si-l)(r+s) IB(x;r+l,s+l), and was derived by George Phillips from formulas 

26.5.2 and 26.5.16 of page 944 ofcl>, In practice this formulti is applied 
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thrice to get to the r+3, s+3 level. Exhibit F3 gives a series of APL 

programs which performs the calculation of- F(x;r,s,a,B). 
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Exhibit Fl 

Xi 

2 0.23861 91860 
$- 0.66120 

83197 
93864 

" 0.93246 
66265 

95142 03152 

Abscissas and Weights for n Point 
Gaussian Quadrature 

+ 0.14687 43389 
+ 0.43339 

81631 
53941 29247 

+ 0.67940 95682 
2 0.86506 

99024 
33666 

t 0.97390 
88985 

65285 17172 

2 0.06405 68928 
2 0.19111 88674 
+ 0.31504 26796 
k 0.43379 35076 
+ 9.54542 14713 
+ 0.64809 
z 

36519 
0.74012 41915 

+ 0.82M30 19859 
2 0.88641 55270 
t 0.93827 45520 
+ 0.97472 85550 
2 0.99518 72199 

n-6 
WI 

0.46791 39345 
0.36076 

72691 
15730 48139 

0.17132 44923 79170 

n-10 

n=24 

62606 
73616 
90163 
26045 
88840 
36976 

78554 
73903 
04401 
02733 
71309 
97021 

0.29552 42247 14753 
0.26926 67193 09996 
0.21908 63625 
0.14945 

15982 
13491 

0.06667 
50581 

13443 08688 

0.12793 81953 46752 
0.12583 74563 46828 
0.12167 04729 
0.11550 

27803 
56680 53726 

0.10744 42701 
0.09761 

15966 
86521 04114 

0.08619 01615 
0.07334 

31953 
64814 

0.05929 
11080 

85849 15437 
0.04427 74368 17420 
0.02853 13886 
0.01234 

28934 
12297 99987 
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n - 96 Exhibit F2 

1 
“L 
; 
4 
ci 
b 
I 
R 
9 

10 
11 
12 
1 3 
14 
1 5 
1 h 
1.7 
lfl 
19 
30 
:? 1 
21 
23 
2 I+ 
:'5 
26 
:! 7 
23 
29 
30 
31 
32 
33 
34 
35 
36 
3? 
C38 
.5Y 
40 
41 
42 
4 3 
44 
45 
96 
47 
48 

Xi 
-' 999607503HH32.51 
- , 7'?8~564375fl63187 
-' , 99"jYf11lJ42YfI72OY 
-.Y9254390037~3763 
-' 9800541763'9624 
-.98751'7'63563015 
'.975Y39174JH51,56 

-.968336828463264 
- .959680?9144f1743 
- . 95003~?71 17R44L5fl 
- , 9393703:59752755 
-.927717456771309 
-.9150714'312089!3 
-.9"1460635315fl5L' 
-.886094517402430 
-.871388505909797 
-.854959033434601 
-.8376'3511238187 
-.a194l!o310737931 
-.80030874413Y141 
-.780369043fi67433 
-.759602341176647 
-.73R030643744400 
-.715676l~1?~54896R 
- .692564536642172 
-.668718310043916 
-.644163403784967 
-.6189'5840125469 
-.593032364777572 
-.5.56510418561397 
- .539388108324357 
.-.511694177154668 
-..4a3457973920591 
-.454709'422167743 
-.4?547Q988407301 
-,395797649828909 
-.365696861473314 
-. 33520852289T!625 
-.304364944354496 
-.27319881x91049 
-.241743156163i340 
-.210031310460567 
-' 17809688?367619 
-.1459'73714654897 
.- , 1136V5f350110666 
- , OR.t:!'?74954644:!6 

.048H1??0513A050 
-.016776'744fl49603 

Wi 
.000796lY206555~! 

00185396078f1947 
:00:!9107:51811v.5:; 

1~11.396't554.3.111~445 
: f~l~:.of4:~II:'r4::YL'R 

006058545504:':56 
0070964707911S4 

:008126876935698 
009148671?507fl3 

:01lt160770535008 
O111621010YYEl38 

:01:!151604671088 
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01409094177'315 
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.OL'U'3567971543:53 
.021177937897191 
.OL'196664443ll744 
, Or':! 13706965A3:'9 
.0234833YYOfl59?6 
.074204841792365 
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03?41196'726029 
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.OL'Y896344136:5?fl 

05u2999154700'8 , 
.0306713761;3669 
.03101033'5fJ6314 
.0313164'5596fl61 
.031509330770727 
.031830758894411 
.0.5?0344563.51993 

032206704794030 
:0X345872568576 

11:5"44716'3714064 
:O.S?51611871:5869 
.03""5061449?363 _ .I. 

‘I Y 
50 
!>l 
:,2 
!,3 
:r4 
:, !, 
56 
h 7 
58 
59 
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61 
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65 
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69 
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71 
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76 
17 
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HO 
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Xi 
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V 

Exhibit F3 

VCRETAE[IIV 
V YtV CBFTA U 

Cl3 nCOliPL.ETf: BETA OF V AND U 
c23 Ye+(V!V+u)xVrU+v+lJ 

V 
VIHL113V 

V R+,X IB AH:Y~:Y~;Y~:Y~:Y~:A:R 
Cl1 AURITTEN HY GEORGE PHILLIPS 
c 2 I AtARC17xl 0CC 0 
C31 fwAPf21 
c43 Yle-ltr\(X,l-X)rAH 
c53 Y?tf(R-l)+~3)-XxfA+R-3)+?rr5 
C6Zl YJc.(xxl-x)* 0 1 :! 
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Appendix G 

a 
To show: A IS gamma in s, Yif and only If A is transformed gamma in 

s,a,B where B - y l/a. 

a a a 
Note that Pr(h 2 X) - Pr (A ( h j = G(X ;s,l,Y) = { 

yx" ts-1 -t dt 
e 

- ya s-1 -t 
t e 

0 
dt - G(X;s,a,B). 

- 428 - 



Appendix H 

Maximum Likelihood Estimators for 
Transformed Beta Parameters 

Given a sample x1, . . ., xn, fitting the parameters r, s, a, and f? 

of the transformed beta by maximum likelihood involves finding the maximum 

of the log-likelihood function 

n 
In L(r, s, a, 87 = n lnP(r+s) + n lna + (ar-1) 1 lnxi 

i-1 

n 
- (nar lnl3 + n lnP(r) + n Id(a) + (r+s> 1 In l+Xi 

a 

111 B - 

As with the transformed gamma let the derivative of lnP(x) be denoted 

*(xl. Dividing the partials of 1nL by n and setting to zero gives the 

following 4 equations: 

(r) : 

(5): 

(4 : 

(8): 

a(r+s) = G(r) + ln(1 + S/xi>'> 

Jl(r+s) = $(s) + ln(l + xi/8)a> 

a -1 -' 
l/a + r ln(xi/e) = (198) (ln(xi/8))(B/xi) + 1) 

r = (L-+s) (1 ,-z- (B/Xi) a -1 > 

where the bar denotes the average over the sample of the barred function. 

The (a) and (6) equations are linear in r and s, so can be solved to 

yield r and s as functions of a and 6. These can be substituted into the 

(r) and (s) equations to give two non-linear equations in two unknowns 

(a,B) which can be solved by the methods of Appendix A. 

An APL system for solving these equations is shown in Exhibit Hl and 

a run with sample data in Exhibit HZ. 
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APL Programs for Transformed Beta MLE Exhibit Hl 

VNRFNCn3V 
V ABl+,V NRFN AH; YA; YH; .J; Z 

Cl1 nWRI’TTEN BY GARY ‘KNTER 
C21 nNE:WTGN RAPHSON ITERATION FOR TRM: r PARAHS. SAMPLE IN V 
CL31 ARlGAH 
iI 4 I Z‘- 1E -“7 
c53 TGP:AH+AH~ 
r.: 6 ::i Y+V FN AR 
c ‘7 1 YA+V FNIARCllxl+Z),AHC21 
CO1 YBc-V FN AHC13>ABC23xl+Z 
II’)1 YA+(YA-Y)+%XAEIC~I 
t101 YP~-(YB-~Y).~zxAHC21 
1:113 J~-~YAC~~XYBK~J~~-YA~~:IXY~~~~ 
Cl23 A151tAHC13.-((Y017xYaC23)--Y[~l~Y~~l~)~J 
Cl31 AP~~AB~,ABC~~-I~YC~~~YAC~~~-YC~~~YAC~~~~~.J 
Cl43 ‘2 OLD TGLERANCES 3 NEW’ 

I Cl.511 ATf,Y,AHl 
A Cl63 ‘R.S:‘;R,S 

zi Cl73 +(2E--?<:+/I -l+ABl+AH)/TOP 

I Cl83 O’..Y+V FN ABl 
Cl93 ‘R,S>ALPHA,HETA’ 
C2Ul R,S,AHl 

V 
VFNrnlv 

V Y+V FN AH;D;F;G;H;N;PS;PR;PRS;DL;L.L 
C 13 RR AND S ARE GLOHALS 
c23 RV A VECTOR OF UHSERVATIONS,AH IS ALPHA, Ilk 1’A 
C3J AY IS A 2 VECTOR TRYING TO GET TO 0,O FOR lIiE:T t4LE 
C’t 3 Nci.pV 
iI’;3 G+V+ANC21 
I: 6 3 He@G 
c-73 Dcl*G*-ABC13 
1.83 Fe-NX+/HsIl 
c ‘3 1 Ii+-AHCllXNX+/H 
Cl01 II+Nx+/+II 
Cl11 RI--+H-AHE1 JXF+D 
Cl23 ScRx-l-+11 
Cl31 GtNx+/el*G*AHC13 
El43 PSCSI s 
Cl53 Y+H+PS-PRcSI R 
El63 Y+Y,G+PS-PRScSI R+S 



I i:, .,. * ccl .I. A , L ; I” :3 .I. 1. ; I ; n ; N 
Cl3 “fiF’:iiX FlJNI3‘TSC.W :IE KIEATVA’TIVE LCIG Wd4MA Fl?blC’TICtN 
II21 nWRTTTEN EY HAriI?Y !mJL 
CJI Z&X-LX 
CYI ~+IL1>L2~cl+z:=o:I 
II53 Ll : r%IZ+-( !-I-Z)X+-/( \26>xCEExZ*-l+r26 
c 6l Y f” 1. 0 0 u I I” x 
c77 N*-0 
C8l M1-1.X+1000 
CY3 F’ti’Ixcp~Iz*+/~izt~-l+~y 
ClU3 +IM==U)/U 
Cll.7 LT:blGd+S. 
Cl21 ~‘!~IX(-PSIX~f~~~/~Z~~~1.OUU~N-~I~+Y+-1+~1000 
K133 +(N~:M)/LT 
KlY7 -f 0 
Cl57 L2:PSIZt-(!Z)Xe/I~26)xCEExlZ+l)~~’l+i26 
Cl&J PsIxcPsIz++/+~x--l. 

v 



Sample Run of Transformed Beta MLE 
with Good Starting Estimates 

Exhibit H2 

v 
2, 20182548727773.1 1 , 74’77YElYYSYf3Y6f~3 1 .55561Y4964’~ 1 1”!7 .l .434261861491408 

1.3458Y82939S5564 1 .27653276273:?43? 1 , :?1’~‘~‘?~‘49?925705 .l , 171009fl5333535Y 
1 , 128l378:!1.2884788 1. , 0915Y8560297HS5 1 . O~~:~l~tc~169?6~t94L) 1 , 027797375655266 
0 . 999’)Y9999’?9999’?9 0 , 974;543450 11!1363’76 0 , Y5O!;f!56924 1.3::,‘?83 0 .?28?31 18479:‘4588 
0 I9ft’7~531.381.4t3639067 0 .8~‘1758496505;!316’;~~~jl6~ 0 .86:l’~o4!?6t+1o;‘?fJ1 S 0 , I351 156f3358547295 
0, 8342rt16436?53031 0 , 8180749660’~1:!= J 0. DO:!:it1’tlY051’8’)312 0. 787’7064064383325 
0 , 7’7;3386746’7Y37893 0 , ‘75P’j7‘706-76095318 U , ‘7’tC,~34OD6384’73ti7 0 , 73:332252089f3723 
0 .72fl13063846’790024 0. 7flf:lt,56406164664~ 0 .6~7C~U45;4(53959924 0 .6f.i53493958275812 
0 ,674 145835167931 0.6632147483365766 0, SF;::!‘,.5 777858325B7 0 ,64L?O981190348407 
0 , 6318803337678372 U . 6218’702024548765 0 , 61:10~;4:-;Ft58~~77f334 0 , 6024213087964627 
0 a 5929590571538267 0.58365”72801149439 lt ,51’t:ift615f!4fl713’717 0 .56:54Y641385315;!? 
0.5566194066522674 II I547866959:5658831 0 , 53[~731354659354~ 0 . 5307052ElYY68Y 

I 0.5?:?2817Y668UY851 0 .5139542825661-741 0 .50:~71.641’;“)f~D7162 0 .4’$‘?56214~t1012036 

t 
0 .4UY4856366454348 0 .4f314812781759202 0, 4 13:5436331613866 0 .46X.674240036885 
I!, 45’78475082673738 0,4;007885678Y4164 fJ . lt’t:?356532429631 I 0,434675669228307 

IQ 0.4270314517386136 0 .4194190942972’YY 0.4118338199f3’7f~745 0.404270839f~3041rJ 
I fl~396725326328l.841 0,38YlY2397830YO’76 0. .5fiI6670053f366Y4t8 0.374144~OY66lJ2311 

0,3666188506509329 0,35908~~31~~~~4’7~9!~ 0. .55153f:t1.0120-7nY::;6 Oe3439713566152265 
0 , 33637f3934OY36847 0 , 32137’J4338331361 1 0 , :3:!1. 1100 &5%344 1 (!4 0 . 31338053345’7?376 
0 ,305615Y97826835 0.2977834554141212 0 , z’r)9C18R:;~!6!;394:i’7~t 0 , 28190591401.49433 
0.273829231162068 II.265645 7900 713:!35:! 0 , :!5‘754~33F1034:593? 0 , 24889Y725:301121 
0.2403024809791267 0.231 52826:33UZ;99:3 0,:!~75521361535894 0 ,2133445’?71882582 
Il. 2fl38702t+847Ofl424 0, lY4085929’721Y838 0, 1113’)Jii!0254f-jt3~l~!~‘~ 0,1’733584487947?35 
0.1622584092416313 0,1505182593963?02 0,137YhY908Y5?1S55 0,1243638;‘3Y6796Y79 
0.10Y3001’+77080087 0,09205Y65646f3573.06 fl , O-7106750819518526 0,040:~9307’~DY1365S~t 
V NRFN 1.5i21 1 553 . 

2 OLD TOLERANCES 2 NEW 
1.521 1,553 1.496996026050206E-6 1.08801269396-7Xf39E-7 1.5109155YY54243Y 

1.553OY2179774157 
R.S:l.4~tl.56’?‘~7975Y713 6.476705211863293 
2 OLII ‘TOLERANCES 2 NEW 
1 .:j209155’,9f;42439 1. * 5530921797’74157 2,314431?3’,436064E-11 :?.41850983684:3441E~‘l~ 

1 .:~?0’,1560082:!739 1.553092175281865 
R .S: 1. 4’t16P1~5f3018Y243 6.477401 387277938 
4.‘t4f!1?9:‘(tY~1:‘;0062hE’:-16 2,7755575615628YtE-16 
R > S , AI.. t’tlrl , I!L:TA 
1 ,441.6YY61.4:;00499 6,47~74llt16476’,3872 1 ,5,7OYi56f108:.!2739 1 ,553092175281865 



Exhibit 1 

8 

t 
w 
I 

V Et-V TG I;R;X;D 
c: 1 3 FIINCOMPIXT~:. GAMMA FC:T 0 TO X, P4RAM R; I IS PRECISION WGCiEST~35 TCI 350 
C21 xf”vc17 
I:: II II RtVC?:l . 
c: 117 +((R?55)~(175.::X)vX~7~7~.~~.~R+l)/flrG 
I: 5 I nc((Xx(R-,l))n+(-X))s'(R-1) 
c h I -+END 
c: ‘7 II nEIG:RtlE-12~l~0.5+R~lOOOOOOOnOOOOO~ 
c8:l RSOMETIMES AECh'h: LINE NEEDED TCI AVOJD TRUNCATION PROBLJ:M6 
II.97 PI:G:D~-(X*~.IR)~(~./X~“.(*X.~LR-~)~R~-.~I R,-I),+!llR 
Cl.01 ENa:E~nr+/x\X4Rc’-l+\I 

V 



Exhibit 2 

Transformed Gamma Mixed By Gamma 
with Special Cases 

f3Xa 

1 
s r(t) 0 

trwl e+ dt 

(Transformed Gamma) 

BX 

s tr-l e-t dt 0 

@amma) 

r-1 

1 _ .-oxa 

(W&bull) 

r-l 

If 0 is distributed Gamma in B, y: 

J' 

x/B Ia 
1 

B(r,E) o 3 :+a i-&)jx'O) -g% 
0 

(Transformed Beta) (Generalized - F) 

1 r-l 1 r*l 

1 - ((x/s)a + 1)-s .-7 1 + - (x/6 1)-S (Burr) 
a=1 (Pareto) 

where S=ylla 
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Aggregate Loss Distributions 

Exhibit 3 
Page 1 

Transformed 
GaBXla 

Cum. Prob. Excess Ratio --*._ 

Aggregate Characteristic Recursive 
Loss Function Method Method 

(ooa Cum. Prob. Excess Ratio Cm. Prob. Excess Ratio 

25 .0508 
50 .1291 
75 .2009 

100 .2676 
125 .3289 
150 .3843 
175 .4341 
200 .4788 
225 .5189 
250 .5548 
275 .6034 
300 .6556 
325 .7008 
350 .7405 
375 -7749 
400 .a047 
425 .8303 
450 .a524 
475 .ai14 
500 .a076 
525 ,904s 
550 .9201 
575 .9332 
600 -9442 
625 .9534 
650 .9611 
675 .9675 
700 .9728 
725 .9773 
750 .9810 
775 .9844 
800 .9873 
825 .9897 
850 .9916 

.9016 .0516 .9016 

.8107 .1298 .8107 

.7273 .2015 .7272 

.6507 .2683 -6507 

.5806 .3295 .5806 

.5163 .3848 .5163 

.4573 .4346 .4573 

.4030 .4793 .4029 

.3529 

.3066 

.2642 

.2273 

.1951 

.1672 

-5193 .3529 
-5552 .3066 
.6040 .2642 

.1431 

.1221 

.6561 .2273 

.7013 .1951 

.7408 .1672 

.1039 

.0880 

.0742 

.0622 

.0518 

.0430 

.0357 

.0296 

.0245 

.0202 
.0167 
.0137 
.0112 

.7752 

.a049 

.8!05 

.8526 

.8716 

.1431 

.1221 

.1039 

.0880 

.0742 
.a879 .0622 
.9047 .0518 
.9203 .0430 
.9333 .0357 
.9443 .0296 

.0074 

.0060 

.0048 

.0039 

.9535 a0245 

.9611 .0202 

.9675 .0167 

.9729 .0137 

.9773 .0112 

.9810 .0091 

.9844 .0074 

.9873 .0060 

.9897 .0048 

.9916 .0039 

.0621 .9@31 

.1260 .8125 

.1895 .7283 

.2520 .6503 

.3129 .5786 

.3717 .5129 

.4280 .4529 

.4817 * 3984 

.5324 .3491 

.5801 .3047 

.6245 .I2650 

.6658 .2295 
* 7039 .1981 
.7388 .1702 
.7707 .1457 
.7995 .1243 
.8255 .1055 
.8488 .0893 
08696 .0752 
.88El .0631 
.9043 .0528 
.9186 .0439 
.9310 .0364 
.9418 .0301 
.9511 .0247 
.9592 .0203 
.9660 .1X65 
.9718 .0134 
.9768 .0109 
.9809 .0088 
l 9844 .0070 
.9873 .0056 
.9897 .0045 
.9917 .0035 
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Lxhibit 3 
page 2 

Aggregate Loss Distributions 
Comparative Assumptions 

Frequency:Poisson X - 13.7376 

Piecewise Linear CDF 

Limit (000): 
Cumulative prob.: 

10 12.5 
.80466 .81564 

75 100 
.92739 .94256 

Discrete PDF 

Amount : 

Probability: 

4500 

.054731628 

249.500 

.0000685 

500 

.38326640625 

1000 1500 to 4000 

.03041796875 .04866875 each 500 

5000 

.019691497 

250,000 

.0241137 

5500 to 249,000 at each N = 500k 

Piecewise linear probability from N-250 to N+250 

Moments 

Mean Coefficient of Variation 
Coefficient of 

Skewness 

Severity 18,198 2.6600 3.6746 
Aggregate 250,000 .7667 1.0744 

1 
.3865 .7&70 

Is 17.5 20 11 35 50 
.82553 .83449 .84264 .85690 .87z7 .90280 

125 150 175 200 225 250 
.95277 .96= .96556 .96= .9x6 .9x0 

6 7 8 
.7t%38 .7@81 .7a98 

2 
.79993 

Transformed Gamma Parameters 

r : .5613125 
a : 1.8300318 
)r : li417896.414 
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