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I. Introduction 

This paper discusses the role of Collective Risk Theory in 

making insurance pricing decisions. Actuaries are making 

increasing use of Collective Risk Theory to derive aggregate 

loss distributions which in turn are used to measure the risk 

of an insurance contract, or to calculate the pure premium of 

an aggregate excess insurance contract for a large insured. 

One of the main pillars of insurance theory has been the Law of 

Large Numbers. In the context of large account pricing, this 

law can be stated as follows. "AS the risk size increases, we 

expect, . . . . the variance (of the loss ratio) to approach zero 

ultimately." 1 Large insureds are typically written on a 

retrospective rating plan or an aggregate excess policy. The 

effect of the Law of Large Numbers would be that for any entry 

ratio greater than one, the excess pure premium ratio would 

approach zero as the size of the insured becomes large. 

The practical underwriter would feel very uncomfortable with an 

agreement to provide coverage for all losses above the expected 

loss for a zero or nominal premium. His complaint would be 

that the expected loss cannot be estimated with the necessary 

precision. 
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What is of interest is the distribution of actual losses about 

an unbiased estimate of expected losses. Actual losses depend 

upon future economic conditions, changes in the insured's 

operations and changes in loss control procedures. Many of 

these factors are independent of the size of the insured. Thus 

one should not expect the Law of Large Numbers to hold when the 

expected loss cannot be estimated with precision. 

For the small insured, the variance due to the random nature of 

the loss process is large compared to the variance due to 

misestimation of expected loss. But as the insured increases 

in size, the variance due to the random nature of the loss 

process decreases in accordance with the Law of Large Numbers. 

For the large insured, the variance due to the misestimation of 

expected losses will dominate. 

Below, we will supply a more precise version of this statement. 

But first, a fundamental question should be addressed. Why use 

a model? 
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2. The Actuary's Dilemma 

It has been a long standing debate among actuaries as to 

whether one should use empirical data or theoretical models to 

derive aggregate loss distributions. After completing the 

mamnoth task of tabulating empirical aggregate loss 

distributions in 1965, LeRoy Simon wrote: "TO avoid the 

difficulties and pitfalls of empiricism, we should borrow from 

the mathematical theory of risk, from Monte Carlo techniques 

and from operations research,---. Let's begin pushing some 

frontiers today, so that we'll be ready to solve tomorrow's 

problems."2 

Officially, it appears that those who favor the empirical 

approach have prevailed, and Mr. Simon's advice has gone 

unheeded. Skurnick constructed a table in 1974 based on 

empirical observations.3 In 1980, a National Council 

subcommittee constructed yet another table based on empirical 

observations. It should also be noted that Mr. Simon's table 

is still in effect after some sixteen years. 

While the use of empirical distributions does not require one 

to make the assumptions that are necessary in the theoretical 

approach, there are fundamental problems with the empirical 
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approach. It is conceded that the variance of the loss ratio 

distribution decreases as the size of the insured increases. 

It is also conceded that the variance of the distribution of 

loss ratios should increase as the average claim size 

increases . But it is necessary to combine the results of 

insureds of different sites and average claim severities to get 

a sufficiently large sample. For example, the tables 

constructed recently by the National Council combined all 

insureds on a countrywide basis into expected loss ranges which 

include $25000 to $50000, $50000 to $100000 and $100000 to 

$200000. 

Thus the actuary is faced with the dilemna of choosing between 

two undesirable alternatives. If he elects the empirical 

approach, he must take a sample from a heterogeneous 

population. If he elects the theoretical approach, he must 

make a number of simplifying assumptions. 

By proposing a mathematical model, we do not advocate 

abandoning the use of empirical data. Once a model has been 

constructed, it should be possible to form hypotheses which can 

be tested by live data. If it can be shown, by using 

statistical tests, that the model is consistent with the data, 

the dilemma will be resolved. 

It will become apparent that this is easier said than done, but 

this is the goal toward which we all must strive. 
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If this goal is reached, there will be many advantages to the 

theoretical approach. Since the size of insured and the claim 

severity distribution are input variables, the model should give 

a better representation of the insured aggregate loss 

distribution than the empirical approach. It will not be 

necessary to combine experience from a heterogeneous group of 

insureds. In addition, it will be possible to adjust the 

parameters of the model to account for situations when there is 

little or no empirical data available. For example, it would be 

a simple matter to find the aggregate loss distribution that 

results when all claims are subject to an accident limitation. 

The Collective Risk Model 

Collective Risk Theory started by considering the Generalized 

Poisson distribution. However it soon became apparent that the 

assumptions of this distribution are violated for many 

applications. In this section we will discuss the assumptions 

underlying the use of the Generalized Poisson distribution and 

indicate some common violations of these assumptions. We will 

then state a version of the Collective Risk Model which can deal 

with certain violations of these assumptions. 

We start by considering the Poisson distribution. The 

assumptions underlying this distribution are as follows.4 

1. Claims occurring in two disjoint time intervals are 

independent. 
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2. The expected number of claims in a time interval 

(tl, t2) is dependent only on the length of the 

interval and not on the initial value tl. 

3. No more than one claim can occur at a given time. 

There are situations when these assumptions 

give three examples. 

are violated. We 

1. Positive Contagion 

A manufacturer can be held liable for defects in its 

products which, in many cases, are mass produced. A 

successful claim against the manufacturer may result in 

several other claims against the manufacturer. The 

notion that a higher than expected number of claims in 

an earlier period can increase the expected number of 

claims in a future period is called positive contagion. 

2. Negative Contagion 

Consider a group life insurance policy. A death in an 

earlier period will reduce the expected number of 

deaths in a later period. One does not die twice. 

. The notion that a higher than expected number of 
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claims in an earlier period can decrease the expected 

number of claims in a future period is called negative 

contagion. 

3. Parameter Uncertainty 

There are many cases when one feels that a Poisson 

distribution is appropriate, but one does not know the 

expected number of claims. Two options are available 

under these circumstances. The first option is to 

estimate the expected number of claims using 

historical experience. Parameter uncertainty can come 

from sampling variability. A second option is to use 

the average number of claims for a group of insureds 

which are similar to the insured under consideration. 

Parameter uncertainty arises when some members of the 

group have different expected numbers of claims. 

The effect of parameter uncertainty is similar to that of positive 

contagion. We give a heuristic argument for this which appeals to 

modern credibility theory. Suppose one observes N claims during a 

certain time period. Then one can estimate the number of claims, 

x, in a future period of equal length using the following forumla: 

x=z. N + (1-Z) . E . 

Where E = Prior estimate 

z= Credibility factor. 
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Note that if the estimate of the expected number of claims is 

precise or the group of insureds is homogeneous, the credibility 

factor will be 0. 

If N is greater than expected, the number of claims expected in the 

future will be greater than the prior estimate. 

It should be emphasized that we are not arguing that claims in an 

earlier period will cause claims in a later period, as in the 

positive contagion case. We are stating only that the claim count 

distributions observed under the conditions of parameter 

uncertainty and positive contagion should be similar. 

We now turn to specifying the claim count distributions we shall 

use for each of the above situations. We shall adopt the following 

notation. 

N - A random variable denoting the number of claims 

A - The expected number of claims (h= E CNI) 

'? - A random variable with E [‘?I = 1 and Var C41 = c 

Parameter uncertainty can be modeled by the following algorithm. 
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Algorithm 3.1 

1. Selecttiat random from the assumed distribution. 

2. Select the number of claims, N, at random from a 

Poisson distribution with parameter &A. 

We have the following relationships. 

Et41 = E$E(N I$] = E?[+h] = x (3.1) 

Var [Nl = E+ Dar (N ]?)I + Vat-+ lX(N )+)I 

= Ey 13cxl + Var,t+Al 
= h + c x2 (3.2) 

If 9 has a Gamma distribution, the claim count distribution 

described by Algorithm 3.1 is the Negative Binomial distribu- 

tion.6 We shall use the Negative Binomial distribution to model 

both the positive contagion and the parameter uncertainty cases. 

The Binomial distribution can be used to model the negative 

contagion case. 

We shall call the parameter c the contagion parameter for the claim 

count distribution. We should note that c has also been called the 

contamination parameter by some authors.7 If c = 0, Algorithm 

3.1 yields the Poisson distribution. 
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We now adopt the following notation. 

Z - A random variable denoting the amount of a claim. 

S(z) - The cumulative distribution function of the claim 

severity, 2. 

X - A random variable denoting the aggregate loss for an 

insured. 

Aggregate losses can be generated by the following algorithm. 

Algorithm 3.2 

1. Select the number of claims, N, at random from the 

assumed claim count distribution. 

2. Do the following N times 

2.1 Select the claim amount, 2, at random from the 

assumed claim severity distribution. 

3. The aggregate loss amount, X, is the sum of all claim 

amounts, Z, selected in step 2.1. 

We now give expressions for the mean and the variance of the 

aggregate loss distribution generated by Algorithm 3.2. 
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E[X] = E[N] . E[Z] = A. E[Z] (3.3) 

Var [Xl = EN Dar (X 1 NII f VarN [N . E(Z)] 

= A * Var [Zl + ( x + c A21 , E2 CZI 

= h . E[Z2] + c A2 - E2 [Z] (3.41 

Implicit in the use of Algoritm 3.2 is the assumption that the 

claim severity distribution, S(z), is known. In practice this 

distribution must be estimated from historical observations, or it 

must be simply assumed. Parameter uncertainty of the claim 

severity distribution can significantly affect the predictions of 

the Collective Risk Model, and it should not be ignored. Our 

response to this problem is to make the simplifying (and we think 

reasonable) assumption that the shape of the distribution is 

known, but there is uncertainty on the scale of the distribution. 

More precisely, we specify parameter uncertainty of the claim 

severity distribution in the following manner. 

Let p be a random variable satisfying the conditions E[l/, ] = 1 

and Var[l//3] = b. We then model aggregate losses by the following 

algorithm. 

Algorithm 3.3 

1. Select the number of claims, N, at random from the assumed 

claim count distribution. 
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2. Select the scaling parameter,,@ , at random from the assumed 

distribution. 

3. Do the following N times. 

3.1 Select the claim amount Z at random from the assumed 

claim severity distribution. 

4. The aggregate loss amount, X, is the sum of all claim 

amounts, Z, divided by the scaling parameter ,& . 

We now give forllulas for the mean and the variance for the aggregate 

loss distribution generated by Algorithm 3.3. 
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ECXI = E P EE(X I(311 
= EP [ ).. E(Z)@ 1 

= A. E[Z] . ECUP] 

= A. ECZ] (3.5) 

Var[X] = EP[Var(X j/3)1 + Vara CE(X lp)l 
= E@[( A. E(Z2l + cx2 E2 (Z))/,@21 + VarpC A. E(Zl/p 1 

= (A. E[Z21 + c x2 . E2 [Z]) . EC1421 +),2 . E2[Z1 

.VarCl/pl 
= (A. E[Z2] + c x2 . E2 [Zl) . (l+bI + ),2 . EZCZI . b 

= ,4E[Z23 (ltb) + )\2 . E2 [Z] . (b+c+bc) (3.6) 

Let R denote the loss ratio X/ECXl. From Equations 3.5 and 3.6 we 

have the following results. 

Var CR] = Var[X/E[X]] 

= (l+b).E[Z2] . 1 + b + c + bc 

E2[Z] x 
(3.71 

Thus this model implies a linear relationship between the Var CR1 

and l/X . If either b or c is nonzero, the Law of Large Numbers 

does not hold. As the insured gets large, the expected number of 

claims, X , gets large, and the variance of the loss ratio 

distribution approaches b t c t bc. However, for a small insured, 

this limit is small compared to Var[Rl. 

In this paper we shall assume thatp has a Gamma distribution. We 

shall call b the mixing parameter. The mixing parameter is a 

measure of parameter uncertainty for the claim severity distribu- 

tion. 
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Under the above assumptions on parameter uncertainty, it is 

possible to calculate the cumulative distribution function and 

the excess pure premium ratio for aggregate losses in an 

efficient manner.8 It should be noted that we have chosen 

mathematically convenient distributions to model parameter 

uncertainty. We do not want to imply that these distributions 

are in any way the "correct" ones. Since parameter 

uncertainty is not directly observable it is difficult to 

discover what the correct distribution should be. As we shall 

show, it is possible to infer the variance of the parameter 

uncertainty through the use of Equations 3.6 and 3.7. But 

until statistical methodology has advanced to the point where 

the proper distributions can be determined, it should be 

acceptable to use ones which are mathematically convenient. 

4. Estimating the Parameters of the Model 

In the previous section we proposed a modification of the 

collective risk model which accounts for parameter 

uncertainty. This model depends upon the claim severity 

distribution, S(z), the expected number of claims, x , the 

mixing parameter b, and the contagion parameter c. 

A complete discussion of estimating claim severity 

distributions is beyond the scope of this paper.g In our 

work we typically obtain claim severity distributions from 

bureau circulars, or we estimate claim severity distributions 

from company data. 
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Since these claim severity distributions are derived from 

experience other than that of the insured under consideration, 

we frequently adjust the scale of the claim severity 

distribution so that the average claim size matches that which 

we project for the insured. 

The expected number of claims can be obtained by dividing the 

expected losses by the average claim size. 

Two years ago, Gary Patrik and Russell John presented a serious 

attempt to deal with parameter uncertainty.10 We summarize 

their approach. They pick a finite set of parameters (claim 

severity distributions and claim count distributions) for the 

collective risk model. They then combine the various outputs 

of the model by taking a weighted average. The weights are 

probabilities which they assign subjectively. 

The use of subjective probabilities has always been 

controversial. Many consider the word "guess" to be more 

appropriate. It is unfortunate that in many situations an 

answer is demanded, but no data is available. Under these 

circumstances, the use of subjective probabilities may be 

acceptable. 
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Regardless of how one feels toward the use of subjective 

probabilities, one should always consider the possibility of 

estimating b and c from observations of aggregate loss data. 

The remainder of this section will develop ways of doing this. 

The estimates will be based on several observations for which 

a single b and a single c is appropriate. These observations 

may come from more than one insured. Ideally, one would like 

to have premium (or exposure), incurred losses, claim count and 

the mean and variance of the claim severity distribution for 

each observation. In practice, data is usually not available 

in this detail. Since one wants to use all available data, we 

will provide several estimators. The choice of estimators will 

depend on the available data. 

Estimation of c 

Let NI,..., Nr be r independent claim counts. Let 

el,..., er be numbers such that ei = K . E[Ni] for all f. 

K is a constant of proportionality. While we will refer to 

ei as a premium, it could just as easily represent exposure. 

Let E[NI]=AI. Then ECNiI= %hI ' It is a 

consequence of Equation 3.2 that 

2 
,i = l,...r. 
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' q Ni and 
i=l 

' = 2 JX Ni - 21 

2 

+, ei . 
f=l 

We have E(>l) =hl. 

Thus, ECVI = f Var 
i=l 

r 
= r-l 

-T 
Var [Ni] 

i=l 

It follows that 

* A1 f$l + c q ECVI - r . 

(r-l) . $ 
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Substituting V for ECVI and x, for A, yields 

r-l . 

as an estimator for c. 

Estimation of b 

Let X1 ,..., Xr be r independent loss amounts associated with 

Nl ,***, Nr respectively. Let,&3 denote the severity scaling 

coefficient. Let Af = Xi/Ni, i=l,...,r be average claim 

costs. Let N = $ Nf 
i=l 

Then E[Ai 1 Nf,P 1 = l/p* EDI 

and Var[Af 1 Nf,P] = (1/p2) . Var Ei!I/Ni 

(4.1) 

Thus, ECAfl Nil = Ep CECAf 1 Nf ,@I = EC21 
and Var[Ail Nf] = E#[Var[Af) Nf ,pll + Vap+CE[Ail Ni,@l 

=(l+b) Var[Z]/Ni + b . E2 [ZI (4.2) 
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Let T1 = ,gI Ni (Ai - ECZl12. 

Then ECTll Nl,..,NrI = ,& Ni Var [Ail Ni I 

= dltb) . Var CZI + Nab. E2CZl. 

It follows that 

ECTl( Nl-...,NrI - r . Var [Z] . 
b= r. Var [Zl + N . E2 CZI 

Substituting T1 for ECTl( Nl,..,NrI Yields 

Tl-r. Var CZI 
' = r.Var CZ] + N.Ez[ZI (4.3) 

as an estimator for b. 

The above estimator for b assumes that the mean and variance of the 

claim severity distribution are known. This estimator is appropriate 

when the claim severity distribution is derived from sources other 

than our r observations of actual loss data. We now provide an 

estimator for b which uses the observed claim severity. 
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Let 7 =I.$iXj/N, and T2 = I Ni (A.1 -7)'. We have 
i=l 

EC7 bl ,...Nr, = E[Z]. 

Now T2 = S NiC(Af - E[Z]) - (T- E[Z])12 
i=l 

= ,kl Ni(Af - E[ZI)2 - N. (7 - E[Z]12. 
-- 

Thus 

ECTd Nl,..., Nr] zii' Ni Var [Ai/ Nil - N.Var [?I Nl,... ,NrI 

=f51 Ni Var[Ail Nil - 1 
K 

i Var CNiAf 1 Nil 
i=l 

= r(ltb) . Var [Zl + N.b.Ez [Z] 

- 1 . 5 (Ni (ltb) Var CZI + N: CE2 CZI) 
ii i=l 

= (ltb)(r-1) . Var CZI + b E2CZ1 N -.$Ni 

( Nj 
i=l 

It follows that 

E[T? bl,...,Nr) - (r-1) Var CZI 
b= . 

(r-l).Var[Zl + Ez[Z] 
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Let G CZ] be an estimator for Var CZI. In practice c CZI could 

be the sample variance of the claim severity distribution for the r 

observations. It could also be derived from 7 and an assumed 

coefficient of variation. Then substituting T2 for 

E CT:Td Nl,..., Nr], 7 for ECZI and Gr CZI for Var EZ] yields. 

r = T2 - (r-l).&XI 
(r-l).VG[Z] + 7 

2(N) 

N-f N; 
i=l 

(4.41 

as an estimator for b. 

We now consider the case when we do not have the claim count for 

each observation. 

Let Ri = Xi/ei for i = l,...,r and let/J = E[Ri]. 

Then Var[Ri] = Var [Xi]/e: 

=[(I+b).E[Z2].E[Ni]+E2[Z].E2[Ni](b+c+bc)],e~ . 

NOW, ECNil = ei .E[Ni].E[Z] = ei . E[Ri] = s .)A. 

ei ECZ] ECZI ECZI 
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Thus, 
1 

Var [Ri]= (ltb) . E[Z2] . e3.h + et .p2(b + C l bc) ii2 
ELrJ 

= (ltb) . 
E[Zl 

E[Z$&+j$ lb + C + h) 
ei 

Letp= $ fil Ri and W = ft. (RI -fi12. Then E [p] =JA and 

= igl fRf -/A'~ - r (F -yP 

Thus, 

ECWI =i: Var I&l - r Var LPI 

r-l 
= I^ 

i Var[Ri] 

i=l 

= (r-l) (1 t b) . - 

c 
+p2(b + c + 

i=l 
It follows that 

= (ltb). E[Z21 1 . ; 1 . l+btctbc. (4.5) 
ITT ' j=l ei F 
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Given several loss ratios, divide them into n groups of size 

Pj, j = 1, . . . , n. For the jth group, let the loss ratios and 

premiums be denoted by Rij and eij, i = l,..., rj, 

respectively. Let 

% = $ $, Rij, 
1 rj 1 

. 
J 

Ej = Fj & Qij and Wj = FiRij - f;j)2 
= 

It is assumed that ECRijl =pj for each j. 

Let A = (l&I. E[Z2] and B = b t c tbc. 
ml- 

From Equation 4.5 we have 

E&J1 
(rj-1 I2 .e2 

=A.QtB. 

4 
Estimates of A and B can be obtained by performing a linear 

regression of on E-. 

F" 
It should be noted that 

j 

Wj is the sample squared coefficient of variation for the 

(rj-1 12fi2 

jth group. 

we then have 2 = (1 +6, . E[Z2] 
m 

and k=$tzts. 
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This yields 

-t? =?. E[Z] - 1 
aim--- 

and 

(4.6) 

(4.7) 

as estimators for b and c. 

ECZI and E[Z?l can either be assumed, or estimated from the data. 

We have given several estimators of b and c. The following tables 

summarize the data requirements for the various estimates. 
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Table 1 - Estimators of b 

Estimator Data Requirements for Each Observation 

Equation 4.3 Premium 

Losses 

Equation 4.4 

Equation 4.6 

Claim count 

Assumed severity mean and variance 

Premium 

Losses 

Claim count 

Severity mean and variance estimated 
from combined experience of all 
observations. (One may use an assumed 
coefficient of variation to estimate 
the variance) 

Premium 

Losses 

Assumed severity mean and variance 

Table 2 - Estimators of c 

Estimator Data Requirements for Each Observation 

Equation 4.1 Premium 

Claim count 

Equation 4.7 Premium 

Losses 

Assumed severity mean and variance 

Estimate of b (Equation 4.6) 
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5. Testing the Collective Risk Model on Live Data 

In 1980 a National Council connnittee constructed a new Table M 

based on empirical data. At this time we became aware of a 

very large data base of individual insured experience. We 

requested and received from the National Council a tape 

containing the experience of well over l,OOO,OOO insureds. 

This data forms the basis of our analysis. 

The data used in this study was WCC1 policy year 1973-74 

interstate data developed to the third report. This data 

consisted of premium and losses for each insured. At the time 

this study was done the National Council did not have a claim 

severity distribution available. The closest thing we had to a 

comparable claim severity distribution was estimated from our 

own company data for the National Council states for accident 

year 1975 developed to 42 months. We then changed the scale of 

the distribution to match the average claim size which was 

reported by the National Council for policy year 1973-74. The 

resulting claim severity distribution is given in Exhibit I. 
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It should be stressed that the National Council data base is 

made up of insureds from many different states and many 

different Hazard Groups. Also, the claim severity distribution 

is a composite distribution of the many different insureds from 

a single company. These are serious defects. But testing the 

Collective Risk Model on live data is extremely important, and 

so we proceed. 

Estimating b and c 

As noted above, we have premium and loss information for each 

insured and an assumed claim severity distribution. This 

requires us to use a linear regression and Equations' 4.6 and 

4.7 to estimate b and c. A problem with the regression is how 

to choose the groups in which the squared coefficients of 

variation of the loss ratios are to be computed. We decided to 

choose the loss ratios corresponding to the r-1 lowest 

premiums the first group, the loss ratios corresponding to the 

next t-2 lowest premiums in the second group and so on. The 

problem remained of choosing the rj, j = l,... n for the n 

groups. If the rj's are equal for all j, we observed that 

the variance of the residuals of the regression decreased as 

the premium became larger. In statistical terminology this is 

known as heteroscedasticity. We dealt with this problem in two 

ways. One way was to have rj decrease as the premium 

increases. The other was to use a weighted regression. 
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The weighted regression can be described as follows. If the 

model Y = A X + B +E is to be fitted, but it appears that the 

standard deviation of e Is proportional to X, then let Y' = Y/X 

and let X' = l/X. In the new model Y' = A' + B' X' t I' , E’, 

will have approximately constant variance. A' will be an 

estimate of A and B' will be an estimate of 8. 

Exhibit II gives the various sets of rj's that we considered. 

Exhibit III gives the resulting estimates of b and c. The 

following comments should be made about these estimates. 

1. It is possible for estimates of b and c to be negative. 6 will 

be negative whenever 

A . ECU <1 

E[Z21 

and? will be negative whenever 

(ii + 1) . E[ZB] 

ECU CT. 

This can happen if the assumed mean and variance of the claim 

severity distribution are not appropriate for the given 

observations. Negative estimates of b and c can also occur 

because of random variation of the regression coefficients. 

Examination of the standard errors of estimates for A suggests 

that random variation could explain the two negative estimates 

of c. 
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2. 

If a negative estimate of b or c is obtained, we suggest using 

0 in place of the negative estimate. 

If one uses Equations 4.6 and 4.7 to estimate b and c, the 

variance of the aggregate loss distribution is not sensitive to 

the assumed mean and variance of the claim severity 

distribution. If a small error is made in selecting the mean 

and the variance of the claim severity distribution, the 

estimates of b and c will compensate to give the variance of the 

aggregate loss distribution that was determined by the 

regression. 

3. The estimate? of b + c + bc appears to be decreasing as the 

size of the insured increases. This can be seen by comparing 

the pairs of estimates #2 (j = l-11) with #2 (j = 12-221, #3 (j 

= 1-8) with 13 (j = 9-15) and #4 with #5. In all three 

comparisons the estimate of B corresponding to higher premium 

observations was lower than the estimates corresponding to lower 

premium observations. 

This seems to be a reasonable conclusion. Because of experience 

rating, one would expect to be able to estimate the losses of a 

large insured with greater precision than for a small insured. 

If losses are estimated using manual rates, we would expect B to 

be the same for all premium sizes. 
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4. The estimates of A and B vary by the set of r-j's chosen. 

Examination of the standard errors of the coefficient for ? 

indicates that this variation is random. However, the variation 

in the estimates for B cannot be explained by random variation. 

It should be noted that the regressions which have a relatively 

high number of points corresponding to large premium sizes have 

lower 6's. Compare regression #l with regression #2. The 

variation in 2 can thus be explained by a decreasing B as 

premium increases. 

Comparison of Expected with Actual Results 

Using the estimates of b and c we obtained in the preceding 

section, it is possible to calculate the cumulatl've 

probabilities and the excess ,pure premium implied by the 

model. In this section we compare the results predicted by the 

model with the actual results in the National Council data base. 

This comparison will take two forms. We will first perform 

chi-square tests on the data. We will then compare excess pure 

premium ratios predicted from the model with excess pure 

premium ratios calculated from the data base. 

We chose three sets of parameter values for our testing. In our 

first test we set b=O and c--O as a control hypothesis. We chose 

the estimates% = .258 and I‘= .037 from regression #3 since it 

produced the best fit over all the points. As our third set of 

parameters we chose 'i; = .184 and ? = .220 for the 
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model when the premium was less than $125000 (regression 4(41 

and 6 = .263 and ? = .068 for the model when the premium was 

greater than $125000. This enabled us to test the hypothesis 

that B (and therefore b and c) decrease as the premium 

increase. 

Since the model predicts that the variance of the loss ratio 

distribution changes with the size of the insured, we decided 

to perform the chi-square tests on several groups of insureds. 

Each group was to have a fairly narrow range of premium sizes. 

The results are given in Exhibit IV. 

No set of parameter values performed well when the premium was 

less than $15000. While the second and third sets did a much 

better job than the first, all sets severely underestimated the 

number of small loss ratios. The following table shows a 

typical result. 
Table 3 

Number of Observations: 364 
Range of Premiums: 5001 to 5025 
Average Loss: 4209.34 

Upper Boundary Observed Expected Contribution 

42.09 
84.19 

147.33 
252.56 
420.93 
841.87 

1262.80 
2104.67 
3788.41 
9260.55 

18521.10 ' 
Infinity 

15 
19 
42 
30 
34 

fi 

z 
19 
25 

21.79 
21.53 
29.82 
38.32 
39.24 
49.97 
27.03 
31.75 
31.63 
36.64 
18.46 
17.82 

2.18 (-1 

Chi-Square = 136.19 
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It would appear that higher values of b and c are required for 

small premium sizes. 

If one looks at the results on individual groups, it is 

difficult to note a pattern in the results. The chi-square 

test is simply not powerful enough to distinguish between the 

various sets of parameter values on the individual groups. 

However, the chi-square test permits the combining of the 

results of independent tests.11 When this is done a clear 

pattern emerges. The results predicted by the second and third 

sets of parameter values are significantly better than the 

results predicted by the parameters b = 0 and c = 0. Allowing 

for parameter uncertaintly significantly improves the 

performance of the Collective Risk Model. Comparing results 

for insureds in the $1500040000 range with those in the $50000 

- 200000 range make it equally clear that b and c must vary by 

the size of the insured. 

It should come as no surprise that the chi-square test 

indicates that we must reject the hypothesis that aggregate 

losses have the distribution predicted by the model. We have 

made a number of simplifying assumptions about the nature of 

the data. 

In 1980 a committee of actuaries at the National Council 

produced tables of excess pure premium ratios based on the same 

data we have used. Exhibit V provides a comparison of excess 

pure premiums produced by the model with those produced by the 

committee. 
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6 ‘. The Calculation of b and c for an Individual Insured 

We believe the excess pure premium ratios are reasonably close. 

The differences between the model and the 1980 Table M are much 

less than the differences that can be attributed to known 

differences among individual insureds, such as claim severity 

distributions and loss limits I2 

The preceding section demonstrated that we should expect b and 

c to decrease as the size of the insured increases. The 

estimates of b and c were tested for insureds whose standard 

premium was below $200000. No measurement of b and c was given 

for the very large insured. 

Large accounts receive extensive analysis by highly paid 

professionals representing both the insurer and the insured. A 

great deal of quantitative and qualitative information goes 

into the analysis. This results in an insurance contract that 

is tailored to the needs of the individual insured. 

It seems highly unlikely that the values of b and c should be 

simply a function of the size of the insured. Many insureds 

operating in a radically different environment from year to 

year, while many others operate in a comparatively stable 

environment. Large account underwriters recognize this and 

they design their contracts accordingly. 

Because of the intense scrutiny afforded large insureds, large 

insureds have traditionally been priced on the basis of their 

own experience. 
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In this section we test the feasibility of estimating b and c 

from the historical observations of a single insured. Our test 

proceeds in the following manner. 

1. Select a claim severity distribution. 

2. Select the expected losses. 

3. Select b and c. 

4. SeTect the number of observations 

5. Generate the given number of observations using 

Algorithm 3.3 

6. Calculate 6 and 2. 

7. Compare 6 with b and 2 with c. 

This test was done repeatedly for a variety of conditions. The 

results are summarized in Exhibits VI and VII. 

Exhibits VI and VII show that while the accuracy of the 

estimate improves with an increasing number of observations and 

with increasing size of insured, errors of over 100% can be 

quite common. The number of observations required for an 

accurate estimate is unrealistically high. Estimating b and c 

from historical individual insured data can hardly be called 

reliable. 
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Exhibit VIII shows that there is a substantial difference in 

excess pure premium ratios for large insureds that can be 

attributed to differences in b and c. We conclude that the 

primary risk in pricing aggregate excess for a large insured is 

not in the random nature of the loss process. Instead the risk 

lies in the selection of the expected losses, or more 

specifically, in the selection of the parameters for the 

Collective Risk Model. 

We would come to the same conclusion if the excess pure premium 

ratios were derived by empirical methods rather than by 

Collective Risk Theory. The large volume of data required 

would have to come from a group of heterogeneous insureds. It 

is highly unlikely that the group experience would be a good 

indicator of what one should expect for an individual large 

account. 

It should be pointed out that underwriters have a considerable 

amount of flexibility in designing insurance contracts. 

Frequently, the maximum premium in a retrospective rating plan 

will be set high enough to absorb errors in estimating the 

expected losses. Another option is to design a contract which 

will spread the losses over a period of years. 

We would not rule out the possibility of estimating b and c by 

some other means. It may be possible to estimate b from the 
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standard error of a regression for average claim costs. Using 

credibility theory to estimate b and c may be possible. Both 

of these areas require further research. 

We believe the proper role for Collective Risk Theory in large 

account pricing lies in sensitivity testing. The Collective 

Risk Model can be a very useful tool for determining how much 

is at risk for various values of b and c. Estimates of b and c 

based on several insureds may provide a benchmark to work from, 

but they should be used carefully. This information will be 

very useful to both the insurer and the insured in designing 

the proper insurance contract. 

Conclusion 

The Collective Risk Model can be a very useful tool for pricing 

insurance contracts. Allowing for parameter uncertainty sig- 

nificantly improves the accuracy of the model. In deciding how 

to use it, one must also consider the available alternatives. 

It is not cost effective to provide an extensive analysis of 

the individual small insured. Thus class rating and 

statistical methods are the primary tools for rating the small 

insured. 

For small insureds the Collective Risk Model can reproduce the 

results of empirical data with reasonable accuracy. Since the 

model can adjust for known differences between the underlying 
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, 'data in current tables and the proposed insurance contract, 

such as changes in claim severity and loss limitations, it 

should be used in place of current tables. 

For large insureds the inability to form a precise estimate of 

expected losses is the major element of risk. The statistical 

methods of quantifying parameter uncertainty that are presented 

in this paper are extremely volatile when applied to 

observations of an individual insured. It seems likely that a 

sound (and perhaps expensive1 qualitative analysis can do a 

better job. While the Collective Risk Model can provide useful 

information, the primary burden of responsibility rests with 

sound underwriting judgment and proper design of the insurance 

contract. It is questionable that published tables of excess 

pure premium ratios have any real meaning for the large 

insured. 
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Exhibit I The Claim Severity Distribution 

Loss Amount Cumulative Probability 

lE9 
39.57 
79.15 

118.72 
158.29 
197.86 
277.01 
395.73 
593.59 
791.45 

1187.18 
1582.91 
1978.63 
2770.09 
3957.27 
5935.90 
7914.54 
9893.17 

11871.80 
15829.07 
19786.34 
27700.87 
39572.68 
59359.02 
79145.31 
98931.69 

118718.00 
158290.69 
197863.37 
277008.75 
395726.56 
593590.00 
791453.44 

0.0 
0.21384 
0.51025 
0.74056 
0.79959 
0.82665 
0.84450 
0.86657 
0.88626 
0.90606 
0.91797 
0.93388 
0.94464 
0.95223 
0.96242 
0.97156 
0.97998 
0.98476 
0.98785 
0.99001 
0.99281 
0.99452 
0.99649 
0.99790 
0.99890 
0.99934 
0.99956 
0.99970 
0.99983 
0.99990 
0.99996 
0.99998 
0.99999 
1.00000 

Summary Statistics: 

Severity Mean = 632.56 
Severity Std Dev = 5407.69 
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$ 41 
46800 &Ii 39% i-f& 

2 34221 39000 60000 11500 
3 26730 34000 50000 9500 
4 21008 29000 40000 8000 

i 
31690 25000 30000 7000 
22575 21000 20000 6000 

:, 
29264 17500 12800 5000 
18702 15000 6400 4500 

9 12955 13000 3200 4000 
10 9478 11000 1600 3500 
11 7304 10000 800 3000 

:: 
5477 9000 400 2500 
4592 8000 200 2000 

14 8573 7000 100 
15 5684 6000 50 
16 7318 5000 
17 4461 4500 
18 2933 4000 
19 3638 3500 
20 2265 3000 
21 1516 2500 
22 1057 ' 1472 
23 724 
24 610 
25 453 
5; 

827 
541 

28 351 
29 231 

ii! 
351 
188 

i'3 
222 
129 

34 65 
35 41 
36 

:i 
53" 

39 239 
40 12 
41 
42 7 
43 10 

* Range of premium for each set is given in Exhibit IIb 

Exhibit IIa Groupings used for the Regressions 

ri* 

3% 
325 
300 
275 
250 
225 
200 
175 
150 
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Exhibit IIb Groupings used for the Regressions 

Grouping Range of Premium Sizes 

#l Premium > 1000 - 

#2 Premium > 1000 - 
#3 Premium > 1000 - 
#4 5001 < Premium < 125000 

#5 Premium > 125001 - 

The following table should provide one with an indication of how 
the premium sizes were spread among the various rj's. 

Premium 
Upper Boundary Insured Count Average Loss CV2 

1000 
1100 
1250 
1500 
1750 
2000 
2700 
3000 
4000 
5000 
7500 

10000 
15000 
25000 
35000 
50000 
60000 
75000 

100000 
150000 
200000 
300000 
400000 
500000 
750000 

1000000 
00 

99714 
15818 
19515 
25548 
19311 
14742 
27986 

8470 
19568 
12232 
16834 
8603 
8858 
7000 
3129 
2238 
829 
827 
788 
686 
296 
243 
91 

5”: 
13 

313472: 

907 65.860 
1250 62.606 
1367 47.696 
1632 31.696 
1960 23.433 
2345 24.807 
2885 17.424 
3320 13.802 
4696 15.356 
5579 10.878 
7611 6.330 

11176 4.679 
15294 4.278 
23616 2.710 
35732 2.093 
51152 1.369 
61635 1.518 
74536 1.063 
93348 0.926 

136603 0.936 
172329. 0.527 
262231 0.609 
312604 0.428 
385255 0.551 
480894 0.373 
586174 0.292 
798100 0.303 

Total 
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Exhibit III Estimates of b and c 

Set t"j'S A SE(A) B SE(B) 

1 62831 5746 .275 .020 

2 85383 1609 .443 .038 

2 (j =l-11) 55378 3786 1.054 1.269 

2 (j =12-22) 52831 2728 .469 .046 

3 58997 2967 .305 .013 

3 (j =l-81 55418 2226 .495 ,176 

3 (j =9-15) 64572 8328 .291 .025 

4 55539 4430 .445 .164 

5* 59311 13939 .350 .103 

*Used unweighted regression. 

2 
R 

,820 

.870 

.071 

.921 

.976 

.570 

.964 

.401 

.721 

i; r 
.340 -.048 

,181 .222 

.181 .740 

.127 .304 

,258 .037 

.182 .265 

.377 -.062 

.184 .220 

.265 .068 
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Exhibit IV Chi-Square Tests 

b=. 184 c=.220 

Premium 
Range 

b = 0 c = 0 b =.258 c =.037 p 0125000 
Sample 

Size X2 DF P* X2 DF P* X2 OF P* 

200001-205000 
175001-178000 
150001-153000 
125001-127500 
100001-102500 
90001-91500 
80001-81000 
70001-70700 
65001-65550 
60001-60600 
55001-55550 
50001-50500 

1.54 4 .82 
4.02 5 .55 

s:: 17.61 2.21 5 7 .82 .Ol 
129 34.76 10 .OO 
!i 13.69 14.27 8 7 .09 .05 

48 4.18 5 .52 
75 12.61 7 .08 
73 8.76 8 .36 

10"; 36.77 25.82 8 8 -00 .OO 

5.20 3 .33 5.44 4 .16 
9.57 4 .05 7.18 4 .13 
5.68 5 .34 8.16 6 .23 
7.57 6 .27 2.8? 7 .90 

15.76 10 .ll 16.57 10 .08 
4.22 7 .75 2.38 8 .97 

11.54 10 .17 17.05 8 .03 
2.82 5 .73 5.44 5 .36 

13.34 8 .lO 18.17 8 .02 
10.94 8 .20 14.17 8 .08 
15.22 8 .05 9.03 8 .34 
22.45 8 .oO 19.63 8 .Ol 

Subtotal 176.24 80 .OO 124.32 82 .OO 126.04 84 .OO 

45001-45450 99 34.28 8 .OO 13.12 8 .11 7.82 8 .45 
40001-40400 1;; 6.81 8 .44 6.68 8 .57 7.24 8 .51 
35001-35350 76.36 10 .OO 38.25 10 .OO 15.01 10 .ll 
30001-30300 146 55.40 10 .oo 31.45 10 .oo 7.22 10 .71 
25001-25250 195 118.57 10 .OO 56.35 10 .OO 12.03 10 .28 
20001-20200 222 60.48 10 .OO 31.94 10 .OO 18.70 10 .04 
15001-15075 148 46.82 10 .OO 24.36 9 .Ol 14.96 10 .13 

Subtotal 391.91 66 .OO 202.15 65 .OO 82.98 66 .07 

Total 568.15 146 .OO 326.47 147 .OO 209.02 150 .OO 
*P = Probability that X2 is greater than the observed X2 if the 
hypothesis is true. 
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Exhibit V Comparison of Model and Empirical Excess Pure Premium 
Ratios. 

Empirical Excess Pure Premium Ratios (NCCI 1980 Table M) 

Entry Ratio 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

Expected Losses 

25000 50000 75000 -- 

.789 .771 .764 

.631 .592 .574 

.516 .458 .431 

.430 .360 .330 

.365 .290 .258 

.316 .239 .208 

.277 .200 .171 

.246 .171 .144 

.220 .148 .123 

.198 .129 .106 

.180 .114 .091 

.163 .lOl .080 

100000 

.760 .756 .753 

.562 .545 .537 

.414 .388 .373 

.310 .280 .260 

.238 .208 .184 

.187 .159 .133 
,154 .128 .098 
.128 .104 .074 
.llO .087 .057 
.094 .073 ,044 
.080 .061 .033 
.069 .051 .026 

150000 200000 

Model Excess Pure Premium Ratios (the parameters are from 
regressions #4 and #5) 

Entry Ratio 

0.25 
0.50 
0.75 
1 .oo 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

Entry Ratio 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

Expected Losses 

25000 50000 75000 - - - 

.7849 .7708 .7653 

.6326 .5972 .5812 

.5216 .4699 .4453 

.4381 .3758 .3458 

.3734 .3051 .2724 

.3222 .2511 .2175 

.2809 .2092 .1759 

.2471 ml762 .1440 

.2190 .1499 .1192 

.1954 .1287 .0996 

.1754 .1113 .0840 

.1583 .0970 .0714 

25000 50000 75000 100000 - - ~ 
.7637 .7531 .7509 .7503 
.5883 .5455 .5275 .5179 
.4654 .3975 .3636 .3423 
.3774 .2961 .2539 .2267 
.3122 .2258 .1816 .1535 
.2626 .1760 .1333 .1071 
.2239 .1399 .1005 .0771 
.1931 .1132 .0775 .0570 
.1681 .0931 .0610 .0432 
.1475 .0776 .0489 .0335 
.1304 .0655 .0398 .0265 
.1161 .0559 .0328 .0212 
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100000 

.7623 

.5717 

.4304 

.3275 

.2525 

.1973 

.1562 

.1252 

.1014 

.0831 

.0687 

.0573 

150000 200000 - - 
.7533 .7523 
.5422 .5361 
.2879 .3766 
.2810 .2670 
.2074 .1926 
.1561 .1417 
.1197 .1062 
.0934 .0810 
.0739 .0628 
.0593 .0494 
.0482 .0394 
.0396 .0317 

Model Excess Pure Premium Ratios (b = c = 0) 

Expected Losses 

150000 200000 - ~ 
.7500 .7500 
.5086 * 5045 
.3165 .3011 
.1921 .1702 
.1185 .0969 
.0757 .0573 
.0503 .0355 
.0347 .0230 
.0247 .0154 
.0180 .0106 
.0134 .0075 
.0102 .0054 



Exhibit VI Tests of Estimators for c (Equation 4.11 

(c, b) Expected Losses Obs Average 2 S.D. of E‘ 

250,000 11 
,I 
II 

1,000,000 II 

II 

5,000,000 II 
II 
II 
II 

250,000 II 
II 
II 

1,000,000 I, 
II 
II 

5,000,000 ,I 
I‘ 
II 

5 

1:: 
400 

5 

1:; 
400 

5 

1:; 
400 

2: 
100 
400 

5 

1;; 
400 

255 
100 
400 

.1004 .0720 

.1002 .0326 

.I005 .0153 

.1013 .0086 

.0957 .0672 

.0973 .0305 

.1014 .0155 

.0986 .0077 

.0973 .0670 

.lOOl .0308 

.0992 .0218 

.0988 .0084 

.0298 .0237 

.0300 .0095 

.0306 .0043 

.0299 .0022 

.0290 .0211 

.0294 .0092 

.0300 .0042 

.0303 .0023 

.0307 .0220 

.0297 .0090 

.0303 .0042 

.0300 .0019 
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Exhibit VII Tests of Estimators for b 

(c, b) Expected 
Losses 

250,000 II 

II 

1,000,000 II 

*t 
5,000,000 I, 

II 

250,000 II 
,I 

II 

1,000,000 II 
II 
II 

5,000,000 8, 

Obs 

- 

5 

12 
400 

5 

10'; 
400 

5 

1:: 
400 

2: 
100 
400 

5 

1:: 
400 

5 

10': 
400 

Equation Equation 
4.3 4.4 
Mean = 633 Mean esti- 
Std Dev= mated from 
5408 simulated 

observation 
Dev/Mean = 
8.55 

Aver- S.Dd Aver- S.D. 
age 6 of% age 6 of 6 

.0957 .3689 .0364 .174! 

.1035 .1878 .0759 .120: 

.1207 .0981 .1017 .079( 

.1191 .0554 .0999 .0441 

.1058 .1945 .0787 .108( 

.1069 .0931 .0956 .0621 

.1048 .0384 .0961 .027: 
-1081 .0197 .1006 .014! 
.1074 ml504 .0873 .084; 
.1031 .0503 .0956 .039( 
.1078 .0358 .0995 .025; 
.1033 .Olll .0993 .009( 

.0246 .3518 .0115 

.0263 .1197 .0185 

.0309 -0687 .0287 

.0365 SO438 .0334 

.0290 .0718 .0228 

.0299 .0333 .0284 

.0316 .0160 .0304 

.0308 BOO83 .0304 

.0302 .0329 .0283 

.0314 .0134 .0302 

.0315 BOO78 .0306 

.0303 moo47 .0296 

.142( 

.0901 

.058; 

.038t 

.057! 

:gi 
.007; 
.0281 
.Oll( 
.007i 
.0041 

Equation 
4.4 
Mean and 
Std Dev 
estimated 
from 
simulated 
observation 
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tXnlDlI: Ylll - ' *LzI *'*-* The Effect of Parameter Uncertainty on Large Accounts 

Excess Pure Premiun Ratios 

Expected Loss = 1,000,OOO 

Entry Ratio b=c=O.O b=c= -01 b=c=.03 b=c=.05 b=c= .lO 

0.25 0.7500 0.7500 0.7500 0.7500 0.7503 
0.50 0.5000 0.5001 0.5014 0.5040 0.5131 
0.75 0.2552 0.2631 0.2784 0.2923 0.3219 
1.00 0.0829 0.1004 0.1277 0.1494 0.1914 
1.25 0.0204 0.0306 0.0514 0.0706 0.1110 
1.50 0.0048 0.0085 0.0193 0.0320 0.0639 
1.75 0.0010 0.0023 0.0070 0.0143 0.0370 
2.00 0.0002 0.0006 0.0025 0.0064 0.0216 
2.25 0.0000 0.0001 0.0009 0.0029 0.0128 
2.50 0.0000 0.0000 0.0003 0.0013 0.0077 
2.75 0.0000 0.0000 0.0001 0.0006 0.0047 
3.00 0.0000 0.0000 0.0000 0.0003 0.0030 

Expected Loss = 5,000,OOO 

Entry Ratio b=c=O.O b=c= .Ol b=c=.03 - - - b=c=.05 b=c=.lO 

0.25 0.7500 0.7500 0.7500 0.7500 0.7501 
0.50 0.5000 0.5000 0.5003 0.5016 0.5089 
0.75 0.2500 0.2529 0.2659 0.2797 0.3105 
1.00 0.0383 0.0680 0.1040 0.1297 0.1764 
1.25 0.0006 0.0084 0.0314 0.0528 0.0968 
1.50 0.0000 0.0006 0.0080 0.0200 0.0526 
1.75 0.0000 0.0000 0.0019 0.0074 0.0287 
2.00 0.0000 0.0000 0.0004 0.0027 0.0158 
2.25 0.0000 0.0000 0.0001 0.0010 0.0089 
2.50 0.0000 0.0000 0.0000 0.0004 0.0051 
2.75 0.0000 0.0000 0.0000 0.0001 0.0030 
3.00 0.0000 0.0000 0.0000 0.0001 0.0018 
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