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Optimization of Excess Portfolios 

I. Introduction 

In confronting the difficult problems of choosing retentions and limits for a 

program of excess insurance or reinsurance coverages, practitioners have always, 

quite necessarily, placed heavy reliance on experience and intuition. The 

complex, intricate nature of the undertaking gives little choice. Our purpose 

here is to bring some very powerful new technology to bear on this problem; to 

suggest an explicit rationale for solution and to show how the potent combination 

of Fourier methods with the collective risk model can be applied to carry out the 

actual computations. 

Our considerations will have equal relevance to large-account risk management and 

to the planning of excess reinsurance cessions. We shall treat the two cases in 

parallel, from the risk manager/cession planner's point of view, calling atten- 

tion to differences where they are relevant. In each case, the problem resolves 

into two levels: first - what degree of risk to tolerate in the enterprise's 

operations, or, more likely, how much to spend on excess coverage; second - once 

this is decided, how to get the most coverage for one's money or to achieve an 

acceptable degree of risk at least cost. On the first level, we have a classic 

example of a management decision, whose irreducible anguish will not yield to any 

analysis, even the most brilliant. On the second level we have a complex of 

technical decisjons which will yield readily if only the relevant variables can 

be quantified and sufficiently powerful techniques brought to bear. 

The analogy with securities portfolio analysis is inescapable, and we may exploit 

it here to the full. As a risk surrogate, we propose the variance of retained 
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losses, mainly because it is the simplest quantity with qualitatively cbrrect 

behavior. Identification of a constraint variable depends on whether the cost of 

excess coverage is viewed as a cash flow item or as an investment. In the former 

case the gross cost is more likely relevant as a constraint imposed by higher 

management. In the latter case, the cost net of expected ceded losses is more 

relevant. In either case we shall assume that the cost can be modeled as a 

constant policy (treaty) fee plus a multiple of expected ceded losses plus a risk 

loading proportional to the root mean square (r.m.s.) deviation of the ceded 

losses. Conversations with reinsurance actuaries have provided convincing 

evidence that this last item is necessary for a consistent behavioral picture of 

reinsurance and excess pricing, which is largely an activity of underwriters. 

Thus we shall consider the following detailed problem: We have a risk portfolio 

consisting of exposures (assumed independent) in several casualty lines. For 

each independent coverage, we wish to purchase specific excess insurance and then 

to cap the exposure on that coverage wfth an aggregate excess treaty (stop loss). 

We shall assume that the specific and aggregate coverages are taken by different 

carriers to be sure that the risk loadings do not consider the correlation 

between loss payments for the two coverages. We shall further assume that the 

stop-loss coverage is offered only with a fixed coinsurance provision to avoid 

moral hazard and to assure year-round vigilance on the part of the insured. The 

retention and Ilmlt for each specific and aggregate coverage are assumed to be 

freely adjustable within reasonable ranges, and by making these adjustments we 

shall attempt to achieve the most efficient use of resources devoted to excess 

coverage: The smallest variance of total retained losses at a given level Of 
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cost for the entire portfolio. Given a schedule of retention and limits agains 

total cost, management can then concentrate on the financially relevant aspect o 

the problem, what resources to devote to the control of risk in the portfolio 

with confidence that the funds, once allocated, will be applied in a manner ver 

nearly the most efficient possible. 

The remainder of this paper is devoted to establishing the premise that sue 

methods can and should be used, exploiting existing technology. We shall rel 

heavily on recent work (1) of our colleague, Glenn Meyers, and one of us, also I 

be reported on at this meeting. Without the techniques described in that paper 

our present discussion would be merely academic. In Section II, we shall discus 

the problem of optimization under equality constraints, show how the solution . 

carried out in the present instance and attempt to convey some intuition as 1 

the meaning of the solution. Section III will show how the terms of the problt 

can be realized in the context of the Collective Risk Model, and will discu! 

input data requirements and ensuing computations, carried out with the aid of 

rather elaborate Fortran program. 

Section IV gives details of a single example: casualty excess above sel' 

insurance for workers' compensation. Associated exhibits show the input a 

output information. We conclude with a discussion of the scope and limitatio 

of the method‘s applicability. 

The calculations associated with this method are extensive and laborious and a 

presented in terse and skeletal form in two appendices, the first devoted to t 

optimization formulae, the second to their realization in the context of t 

Collective Risk Model. 
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II. Optimization 

Constrained optfmizations are an important class of problems those actuarial uses 

have been pointed out previously in the literature (2, 3, 4). In the present 

application, we have a problem of the foil owing form: Minimize the risk 

function, 

where 

1 

Vl 

Cl 

R 

I 

r 

t 

C 

identifies the coverage, 

is half the variance of the retained loss for coverage, 1, 

is the cost of insurance for coverage, 1, 

is the stop-loss retention, 

is the stop loss limit (thickness of the covered layer), 

is the specific retention, 

is the specific limit, 

is the constraint variable, ':A total cost of excess coverage for 

the entire portolio, 

is an auxiliary parameter, the Lagrange Multiplier (LM), intro- 

duced to facilitate enforcement of the constraint. 

To avoid clutter, # shall suppress arguments and indices wherever ambiguity 

will not result. 

Before proceeding, ua owe the reader a word on Lagrange inultipliers, objects 

which often seem wfspy, and ethereal, appearing out of nowhere for no 
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apparent reason, and eventually dominating the problem at hand. The most 

familiar example of an LM comes from statistical physics: temperature is a 

parameter defined for a mechanical system in thermal equilibrium and arises 

in the problem of maximizing entropy at constant total energy. The notion 

of equilibrium is a very helpful one in understanding what is going on. In 

the present problem, the LM, p , is the ratio of the incremental reduction 

(increase) in risk to the incremental associated increase (reduction) in 

cost due to adjustment of one or another of the variables. When this ratfo 

is the same for all variables, equilibrium is achieved: and the variable of 

constraint, C, can be expressed as a function of the LM only. Changing the 

definition of the ri;k function, say, by using a monotonic function of the 

variance in place of the variance itself, merely results in a remapping of 

the LM, leaving the practical results, the optimal retentions and limits, 

unchanged. This lack of need to fret over the detailed definition of risk 

(as along as we accept that greater variance always entails greater risk) is 

a clue to the nature of the mysterious difference between technical and 

managerial problems. In this instance the LM intervenes b&wren the two, 

absolving the technician from fretting about the managerial context and the 

manager from fretting over the technical details. One expects that a good 

many knotty business problems would yield to a similar analysis under suffi- 

ciently keen scrutiny. 

The technical problem that is left is simply that of balancing the port- 

folio: achieving optimal balance between specific and aggregate within 

coverage and also balancing across coverages. There is a sizeable lftera- 

ture, mostly European, on the problem of balancing specific and aggregate 
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cessions for optimal risk control, some of which we shall cite here for the 

benefit of the curious reader (5, 6, 7, 8, 9, 10, 11). A principal finding 

of these workers is that, for a fixed amount of ceded expected losses, stop- 

loss (aggregate excess) reinsurance gives a greater reduction in the 

variance of retained losses. This is not too surprising and accords well 

enough with our fntuftfon. If refnsurance and excess underwriters were 

indifferent to risk and bound to a rigid schedule of rates, it would settle 

part of our problem outright: all specific excess treaties could be 

consigned to the ashcan, However, life is not so simple, and stop-loss 

coverage is approached by underwriters with great circumspection for several 

reasons. First the reinsurer's risk is much greater since the ceded losses 

can fluctuate wildly from year to year. Second, the technical.means of cal- 

culating expected losses reliably have not been readily at hand. Finally, 

the underwriter must be convinced of the ceding carrier's good faith: that 

his vfgiiance will not be relaxed for the remainder of the treaty year after 

the stop-loss threshold is exceeded. 

Thfs stop-loss coverage is made available, if at all, under conditions and 

with price loadings that make the choice of specific and aggregate reten- 

tions less than straightfomard. This is why we have included explicit risk 

loadings in the refnsurance pricing model. 

Let us now return to our concrete optimfzatfon problem as posed in equation 

(1). We may easily find the condftfons for a stationary value of the risk 

function. Differentiating with respect to the LM 
+ 

gives 
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(2) 

the equation of constraint. Since we have assuned that the various cover- 

ages are independent, differentiating with respect to the retentions ant 

limits gives a separate set of four equations for each coverage: 

and similarly for T, r, and t. Thus the various coverages are connecter 

only by the LM which expresses the constraint. As remarked before, the tasl 

of optimization amounts to choosing a value of ,% and adjusting retention! 

and limits to bring all the marginal benefit-cost ratios into equality wit1 

this value so that 

for i = 1, 2, . . . L. Once the optimal retentions and limits are deter- 

mined, the cost and the risk surrogate can be computed. Repeating this fol 

several values ofp gives us the "efficient frontier', as it is known in the 

theory of securities portfolios. It is this curve in the space of risk vs 

cost which is most helpful to the managerial decision-maker. Associatel 

- 120 - 



with each point on the curve is a mass of detail - the characteristics of 

the equilibrium portfolio - with which he need not be concerned in reaching 

his decision. Such details are passed along as instructions to the techni- 

cians who do the actual portfolio handling. 

It is clear that this scheme, if it can be brought off, is a very valuable 

risk management tool. In the succeeding section we shall discuss the 

technical means of making it operational. 
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III. Realization 

A. The Collective Risk Model (CRM) 

Clearly, the choice of retention and limit for specific excess will have an 

effect on the distribution of aggregate losses: this is a connnonplace.of 

reinsurance underwriting.' Any model we choose should take this into account 

automatically and without any guessing. Such a model is available and has 

been well discussed in the actuarial literature. This model is founded on 

the following assumptions: 

1. The number of claims on a policy (treaty) is a random variable of known 
distribution. (We shall assume a negative binomial.) 

2. The claim amounts are independent and identically distributed (1.i.d.) 
random variables, with values drawn from a known severity distribution. 

Thus the aggregate loss variable is modeled as a random sum, and its distri- 

bution is expressible as the probability average over the claim count, 6 , 

of the 6 -fold convolution of the assumed severity distribution. This 

conceptual simplicity turns to computational facility when Fourier methods 

are applied to the problem. In the Fourier representation, convolutions 

become simple products and the probability sum a power series in the 

characteristic function (CF) of the severity, &(t) - ECeitxl. It is 

easy to see that, if two random variables, 'ii1 and g2, are independent, 

then the CF of their sum,~ - 11 + c2, 

fx(t) = E[ei% - ELe itG1 + Z2), I 

= E[efdll ECe itn2l = ijzp . 0g2(t), . 

the product of CF's of the components. 
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Amazing computational benefits ensue if we simply evaluate the characteris- 

tic function of the severity djstribution, carry out all computations in the 

Fourier representation, and perform the inverse Fourier transform (FT) only 

at the end to obtain the relevant moment distributions. Most interesting 

claim count distributions lead to an exact sum (the probability generating 

function evaluated at the value of the CF). The only real computation 

challenge in all this - a substantfal one - Is the numerics for the Fourier 

inversion. Plainly, the worker who overcomes the natural human fear and 

loathing of Fourier integrals will have a powerful tool at his disposal. 

For the interested reader, reference (1) gives a detai?ed account of the 

development of the model and of the numerics needed for reliable inversion 

of the aggregate CF to form the cumulative probability distribution and the 

first moment distribution (M(r) = E[(g - r)+], where (r)+ = r if r>O, 

zero otherwise). The work reported fn reference (1) led to a Fortran 

program, tagged the "Aggregate loss System" (ALS) which is the basis 07 our 

canputational approach to the present problem. In addition to the basic 

collective risk model, this program allows for overall scale uncertainty in 

severity, treated as the smearing of a randan scaling factor over a noma- 

lized gamma distribution. Claim counts are assumed to follow a negative 

binomial distribution, which includes the Poisson as a limit and the regular 

binomial as a continuation to negatfve variances. Severity input is in the 

form of a histogram density (or a piecewise linear cumulative distribution) 

with allowance for a point mass probability at the upper limit (policy 

limits). 

- 123 - 



For present purposes, we have extended this program to modify the severity 

CF to describe the effect of specific excess coverage and have installed a 

routine for computing the second moment distribution, .S~~~= F[*(zVzz7 . 

This function is needed in the calculation of aggregate loss variances. The 

modified prograan also calculates some auxiliary functions which arise in 

differentiating with respect to the specific retention and limit. These are 

described in the appendices. The entire modified ALS is embedded in an 

iteration scheme which computes the marginal ratios and adjusts the reten- 

tions and limits to bring them into equality with the selected Lagrange 

multiplier. 

So as to keep matters in perspective, we shall conclude our discussion of 

the CRM by remarking briefly on some of its drawbacks. 

- Input values relating to uncertainties in parameter estimates (negative 
ainomial variance, scale uncertainty variance) are difficult to estimate 
themselves, SO that one :lust often resort to rules of thumb. (This 
problem is being addressed in another of this session's call papers (12).) 

- More seriously, the CRM is a static model, which does not describe how 
losses occur and develop in time. The input severity distribution is 
expected to reflect ultimate losses, fully developed and valued ivy a 
method consistent with the problem at hand. For instance, valuing losses 
with payment lag discounts under fixed dollar retentions puts some strain 
on our present conceptual framework unless retentions are indexed and an 
interest rate chosen to parallel the inflation rate. 

It is impossible to overstress the importance of the severity input in this 

approach and the closeness of the attention it deserves. In fact some of 

the technology for really doing a job of it has yet to be fully developed. 

Certainly the dynamic aspects of the problem deserve the keenest scrutiny. 
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B. The Excess Pricing Model 

Our model for the specific and aggregate excess coverage prices is a hybrid 

one, intended to bring together information obtained by shopping in the 

excess markets with knowledge of the behavior of losses in the covered 

business. Far from attempting a prescriptive model of excess pricing - 

certainly a vain undertaking - we shall use the aggregate loss functions and 

the severity and claim count information only to interpolate on a schedule 

of fresh quotes for different retentions and limits. The purpose in this is 

to be able to consider a continuous range of parameters in optimizing the 

portfolio. The model is as simple as possible, given the facts we have to 

deal with. For line of coverage, 1, we have for the cost of coverage: 

where (suppressing the line indices and arguments), 

o( is the stop-loss coinsurance factor (usually prescribed by the 

excess underwriter); 

B is the stop-loss policy/treaty fee; 

A is expected payments under the stop-loss; 

lx is half the variance of payments under the stop-loss; 

Q is the specific excess policy/treaty fee; 

2 is the expected value of ceded losses under specific excess; 

24 is half the variance of such losses. 
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c. 

The policy fees and the coefficients, ?, A , Y , and 8 , are adjustable tr 

allow interpolation on the actual quotes. In Appendix A, the above quanti. 

ties are related to the distribution functions of the problem. In out 

illustrative runs, described in the next section, we simply assume values 0' 

the coefficients. In making this scheme operational, one of the firs 

priorities should be a detailed test of the pricing model under realistil 

conditions. 

Iterations 

Our actual approach to the optimization problem is to return to the ris 

function of equation (l), which we attempt to minimize for a fixed value o 

the LM,p . The choice ofp in this context reflects the relative impor 

tance placed on cost as opposed to risk control. The risk function and it 

first derivatives are computed directly and the values used in a search doS 

the gradient fran a prescribed set of starting values for the retention. an 

limits. The decision as to the step size is made by calculating the chang 

in the derivatives at nearby points, assuming that the risk function has 

parabolic shape along the current gradient, and aiming for the minimum o 

the parabola. The step site is constrained to half the current paramete 

value, or less. At each step, the value of the risk function is teste 

against the previous value. If it has increased, the last step is revoke 

and tried again with half the step size (but in the same direction). Thi 

last condition enables the algorithm to turn sharp corners in the paramete 

space (per actual observation). The search terminates when the next ste 
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size for each parameter is less than a prescribed tolerance. This algorithm 

is a provisional solution to the problem, and we expect that a more effi- 

cient and reliable one can and, we hope, will be found. An element of trial 

and error is unavoidable due to the peculiarities of the risk function, 

which contains near-singularities in the stop-loss parameters at multiples 

of the specific retention and modified policy limit (if any). In the risk 

function, these are, at worst, sudden changes in slope, which lead to sudden 

leaps in the first derivatives, which in turn render second derivatives 

almost uninterpretable. Thus a Newton-Raphson scheme,. relying on the entire 

matrix of second partial derivatives was tried and rejected as too erratic. 

More reflection than we have had time for will be required to devise an 

entirely reliable and efficient algorithm. One simple possibility may be to 

reparametrize the stop-loss retention and limit as multiples of the specific 

retention. This would constrain variations in the parameter space so as to 

avoid the most violent singularities. Clearly, the matter is far from 

settled. 
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IV. Results and Discussion 

The reader would certainly have a right to dismiss all the foregoing as i 

elaborate impracticality if we had not achieved successful calculations fc 

presentation here. This we have done, by the skin of our teeth; and the art ( 

analytic excess plan design may be considered launched and afloat, if not yc 

seaworthy. Our example, while entirely realistic, is a simple one which bypasst 

some computational difficulties and leaves us with plenty of work yet to do. I 
this section, we shall describe the example and the results, concluding wii 

caveats and reminders of what the scheme does and does not do. 

A. Example: Workers' Compensation 

Exhibit I gives a complete account of the input data for the problt 

studied. This is a simple risk management problem: designing an efficier 

combination of specific and aggregate excess covers for a workers' compensi 

tion self-insurance program on a modest-sized account: total expected losst 

of $500,000. It is assumed that stop-loss coverage will be provided on1 

under a ten-percent coinsurance provision. Further, as discussed above, tI 

excess pricing reflects the underwriters' risk aversion by adding amounl 

proportional to the standard deviation of ceded losses. The coefficient fc 

specific coverage is O.l/ 2; that for stop-loss is 0.2/ 2, reflecting tt 

greater perceived uncertainty associated with this coverage. Expen! 

loadings are 10% of expected losses. The cumulative probability distribt 

tion of the severity is presented and in the computations is assumt 

piecewise linear between the tabulated points. 
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B. Solutions: The Efficient Frontier 

From the starting values of the retentions and limits given in Exhibit I, 

for a given value of the LM, the program searches the parameter space for a 

minimum of the effective risk function. The results of this search can be 

expressed in terms of the cost of coverage and the agreed risk surrogate, 

the standard deviation (or r.m.s. error) of retained losses. Plotted in 

Cartesian coordinates these solution points trace a curve, the 'efficient 

frontier', which is graphed in Exhibit II and tabulated with the associated 

plan parameters (in thousands of dollars) in Exhibit III. The frontier 

descends at a decreasing rate from the trivial full-retention solution, 

which entails zero cost and the full risk of about $267,000 (a little more 

than half the expected losses), to the full coverage point with a cost of 

about $569,000 and zero risk. Computed solution points are marked on the 

graph with crosses. The dotted portion of the curve is condectural, lying 

in a region where our algorithm became 'sticky' and yielded no solutions - 

another area for further study. The starting point of the iterations is 

marked by a circle and the risk-equivalent efficient solution by a square. 

The solid line connecting the two represents the cost of suboptimality, 

about $27,500 out of the total cost of about $160,000. The multipliers 

associated with the solutions are shown for the benefit of the curious in 

the last column of Exhibit III. 
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C. Conclusions 

The solutions presented above were obtained via TSO on an IBM 370-168-at the 

tetminal, on a while-you-wait basis. They are certaintly plausible, being 

mutually consistent and in accord with intuition. Further, if correlations 

between'fluctuations in distinct lines of business are unimportant, there is 

no obstacle to extending the same treatment to multiple lines of coverage. 

As remarked before, the algorithm for minimizing the risk function needs to 

be made more general and flexible, not to mention more efficient. When 

these goals are achieved, we shall have in hand a risk management tool of 

major utility. The next step would be to include the possibility of a 

single global stop-loss above all the specific coverages. This would open 

up the study of risk-control aspects of retrospective plan design. The 

deepest problems with this approach, using static distribution models, have, 

as we all know, to do with the time element of the loss payouts (and some- 

times of the premium collections), an aspect which has come to the fore in 

this period of high inflation/interest rates and slack insurance markets. 

There is no simple, elegant solution to this latter problem. We shall 

simply have to keep it in mind and work on it while doing our best with what 

we have. 
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Appendix A 

Optimization Formulas 

1. Individual Claim Variable (suppress line indices) 

a. Uncensored Loss 

Define a random variable (RV), 2, the amount 

subject to primary policy limits (if any) but 

retentions and limits. We define the following: 

of an individual loss 

not altered by excess 

(The "wedge fur,$tign" (x)+ was defined in the main text.) 

b. Loss Ceded under Specific Excess 

7 
"9 = (ii+-)+- (&p-t)+ ; 

@gq= h(+b-#--6-t) ; 

(y,~)y$Lq~- (w--q - 2tcji+-t),; 

~p(fy~;'I= s(r) -s(r++] -t h-,&+-t) . 2 
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2. Total Losses 

a. Ceded under Specific Excess 

Define the claim count variable ? drawn from a negative binomial 

distribution with mean, 9, and variance Y trCy2 (Ic is the "contagion" 

parameter). 

.+- r,t 
Y = 

F lyrJt] = 

The function u(r,t), defined in the m? ,I text, is 

b. Retained after Specific Excess 

- 132 - 



d. Retained after Stop-Loss 

+v k,t 

x 

- b-Jt N ‘J+- , 
= - 

E[ilg-.= 

x Y R,J- J 

M(b) - o-g[r-l(e)-M(RcTIJ; 
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= V(R,-rp+) c 

3. Derivatives 

Derivatives with respect to R and T pose no problem, following, as they do, 

from the definitions, However, derivatives of the aggregate functions witt 

respect to the specific variables, r and t are troublesome. We shall no1 

present the solution until Appendix B. For the present we adopt tht 

following definitions: 

The new M's and G's will be defined in the next Appendix. We shall no 

present the formulas need to calculate the marginal benefit/cost ratios. 
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a. Marginal Benefits 
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Appendix B 

Characteristic Functions and Fourier Integrals 

1. Severity 

lfPr[G:C-U ]= 

the uncensored CF, 

and the censored CF, 

The derivatives, 

2. Aggregate CF for Negative Binomial 

The CF of total loss retained after specific excess is given by 
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Its derivatives are 

It is convenient to define the auxiliary CF's; 

which are useful in calculating the auxiliary functions defined in Appendix 

A. 
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3. Fourier Integrals 

a. Scale Uncertainty 

Following the treatment of reference (11, we introduce a RV, 6, to 

describe overall uncertainty in the scale of the loss size. This could 

arise, for instance, from uncertainty in trend projections. or in loss 

developments, or both. For convenience we assume thatj is a gamma RV 

with parameters chosen so that expected losses are left unchanged. 

Thus, if the observed losses are require 

= E [>i"*] I?[$-: = 1 . 

We further define b= ~L?,&F-'J and 9 = 1 + l/b. We shall have 

use for the relationship, 

- 
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b. Aggregate Loss Functions 

Using Fourier's theorem and the properties of probability distribu- 

tions, we can derive 

Taking the expectation on Ba 
- izY 

we find that the Fourier kernel, 8 , 

in the absence of scale uncertainty, becomes the Cf of # evaluated at 

argument - a, whence, ifF is a gamma RV, 

As the scale uncerainty disappears, b + 0, and p+ 00, restoring the 

original Fourier kernel. We may take some strain off the numerics used 

to evaluate this integral by subtracting from the CF the probability of 

no claims and adjusting the constant term to compensate, whence 

This device becomes important when the expected number of claims,y, is 

small. The higher moment distributions can be obtained by integrating 

this result from x = o and supplying the known values at x = o, whence 
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C. Auxiliary Functions 

We may use the differentiation formulas already derived, with the known 

properties of the distributions and integrals to derive the following: 
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We have enhanced the ALS to calculate F, m, 5, & 8, $, and i;r', rather than onl: 

the first two, but the numerics used in the actual calculation are basicall, 

those described in reference (1). 
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EXCESS PORTFOLIO SYSTEN:DISPLAY OF INPUT 

LINE t 1:WORKERS CONP 
EXPECTED LOSSES= 500000 
EXPECTED CLAIMS= 506 
CONTAGION PARAMETER= 0.0500 
NIXING PARAr,ETER= 0.0250 
SEVERITY DISTRIBUTION 

LOSS AMOUNT CUMULATIVE PROBABILITY 

2Eo 
50.00 

100.00 
150.00 
200.00 
250.00 
300.00 
400.00 
500.00 
750.00 

1000.00 
1500.00 
2000.00 
2500.00 
3000.00 
4000.00 
5000.00 
6000.00 
7000.00 
8000.00 
9000.00 

10000.00 
12500.00 
15000.00 
17250.00 
20000.00 
25000.00 
30000.00 
40000.00 
50000.00 
75000.00 

100000.$0 
i50000.00 
250000.00 
350000.00 
500000.00 
750000.00 

1000000.00 
1250000.00 
1500000.00 

:*!0230 
0:48880 
0.71960 
0.78150 
0.81090 
0.82890 
0.84270 
0.86090 
0.87410 
0.89600 

iLE 
0:93921 
0.94758 
0.95381 
0.96257 
0.96851 
0.97283 
0.97613 
0.97875 
0.98087 
0.98262 
0.98594 
0.98827 
0.98984 
0.99132 
0.99322 
0.99451 
0.99613 
0.99710 
0.99135 
0.99893 
0.99944 
0.99978 
0.99988 
0.99995 
0.99998 

i*x; 
1:00000 

REINSURANCE INFORNATXON 
SPECIFIC 

PRICING PARAMETERS 
COINSURANCE FACTOR 36%x3t)o(Wx 
TREATY FEE 6 ll- 
LOSS MULTIPLE 1.1000 
RISK FACTOR o.iooo 

STARTING VALUES 
RETENTION s 50000. 
LIMIT 
STEP SIZE 

AGGREGATE 

0.1000 
6 

;.;di 

0 500000. 
52000000. 

8 500. 
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Exhibit III 
Efficient Excess Plans Based on Exhibit I 

Specific Excess 
+ $1,000 

Risk Retention 

00 
677 
526 
311 
188 

$ 97,764 172 
101 

5; 
. . 
. . 

l $ 0 6 

Limit Retention Limit LM 

5;3* 1 ,i47 
602 1,239 
582 706 
537 515 
541 455 
550 368 
577 304 
584 250 

. 

. 

. 
00 

00 
7,702 700,000 
7,628 400,000 
6,355 200,000 
4,201 100,000 
4,525 70,000 
5,601 40,000 
8,834 20,000 
9,659 10,000 

. . 

. 

l- 

* This number must be considered rather soft since almost no probability exist 
above $1,25OK. The solution is equivalent to unlimited specific excess. 
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