
TITLE: ADJUSTING SIZE OF LOSS DISTRIBUTIONS 
FOR TREND 

AUTHORS: Mr. Sheldon Rosenberg 

Mr. Rosenberg is an Associate Actuary and 
Manager with Insurance Services Office. He 
received his FCAS in 1976 and has served on 
the CAS Examination Committee. He authored 
a review of "On the Theory of Increased 
Limits and Excess of Loss Pricing" by Robert 
S. Miccolis. 

Mr. Aaron Halpert 

Mr. Halpert is an Actuarial Supervisor with 
Insurance Services Office. He has a B.S. 
degree in Mathematics from Brooklyn College, 
and is a student of the CAS. Together with 
Mr. Rosenberg, he authored a review of 
"Actuarial Issues to be Addressed in Pricing 
Insurance Coverages" for the 1980 CAS Discussion 
Paper Program. 

REVIEWER: Mr. Charles F. Cook 

Charles F. Cook is Senior Vice President of American 
International Underwriters, a division of AIG. He has 
an AB (mathematics) from Princeton and an MBA (finance) 
from St. Mary's of Texas. An FCAS since 1966, he is 
also a CPCU. Cook is a past General Chairman of the 
Education and Examination Committee of the CAS, and a 
former Director. 

458 



INTRODUCTION 

Size of loss distributions have gained attention in recent years as 

being the basis upon which many ratemaking and pricing decisions are 

made. Their usefulness has been enhanced not only by the mathe- 

matical relevance that such distributions bring to various pricing 

problems, but also by the fact that automated equipment and detailed 

statistical plans have made it possible to gather data and to produce 

such detailed size of loss distributions. The actuary equipped with 

historical size of loss distributions is in a position to solve such 

problems as pricing an excess of loss treaty, I producing an in- 

creased limits table, 2 and calculating loss elimination ratios in 

order to calculate deductible discounts. 3 

The solutions to these pricing problems depend however on the ability 

of the actuary to forecast the shape of these size of loss distribu- 

tions for the time period during which the determined price will be 

charged. Historical data are merely the starting point; estimating 

the adjustments needed to account for changes in the shape of the 

distributions is the cornerstone of creating rates that are reflec- 

tive of an ever changing economic environment. 

The methodology for pricing an excess of loss treaty based on 
the use of claim size distributions can be found in Patrik, G. 
and John, R., "Pricing Excess of Loss Casualty Working Cover 
Reinsurance Treaties," CAS 1980 Discussion Paper Program, Page 
399. 

See Miccolis, R.S., "On the Theory of Increased Limits and Excess 
of Loss Pricing," PCAS (1977), Page 27, and "Report of the Increased 
Limits Subcommittee: A Review of Increased Limits Ratemaking," 
ISO, 1980. 

See Hurley, R. L., "Couuuercial Fire Insurance Ratemaking 
Procedures," PCAS (1973), Page 208. 
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The aim of this paper is to discuss the methods that can be used to 

forecast the shape of a size of loss distribution in some future time 

period based on its shape in the recent past. In other words we will 

examine the ways one can adjust historical loss distributions for 

"trend". 

Section (I) of this paper provides a working definition and an 

example of the term "trend" as it is used in the ratemaking sense. 

Section (2) discusses trend in relation to size of loss distributions 

and indicates the basic model often used to adjust them for trend. 

Also included in this section are empirical methods that can be used 

to test the appropriateness of this model. Section (3) develops an 

alternate trend model and the paper concludes with Section (4) which 

exhibits the impact of this alternate model on increased limits 

pricing. 

I. TREND DEFINED 

Many definitions are offered for the word trend and they correspond 

to the various contexts in which the word is used. One may, for 

example, refer to the view that "opinions are trending towards 

conservatism", or of "the new fashion trends". 
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The definitions of trend, offered by Webster's New Collegiate Dictio- 

nary, that best explain its use in the ratemaking context however, are 

those that define trend as, "the general movement in the course of 

time of a statistically detectable change", and "a statistical curve 

reflecting such a change". The prior definition relates to the 

actuary's search for a detectable change in the historical data 

available to him, while the latter refers to what actuaries generally 

call "trend factors". 

In developing a "statistical curve reflecting such a change", it 

is first necessary to examine a time series of internal insurance 

data and external economic data, and reasonable assumptions relating 

the two, before postulating that there exists a "general movement in 

the course of time" of some variable. 

In examining the data, and plotting values over time, patterns in the 

data may be revealed and reasonable transformations of the data to 

fit these patterns may come to mind. Simultaneously, one should be 

examining reasonable causes for the patterns that appear. 

For example, a series often treated in ratemaking is average claim 

size (severity). A priori, it is not unreasonable to postulate 

that in times of inflation a severity trend must exist. But what is 

the nature of this trend? Certainly in times of inflation, frequent 

upward price changes will affect the average size of a claim. 
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Masterson 4 illustrates this effect by viewing insurers as huge 

purchasers of goods and services whose prices are affected by in- 

flation. Thus, for example, an auto accident leading to a property 

damage claim of $500 when it occurs in time t (goods and services in 

this example would include auto replacement parts, labor costs and 

loss adjustment expenses) may lead to a claim of $600 if it occurs in 

time t + i. In like manner, the average claim size will also increase 

over time. 

Claim sizes will be affected by phenomena other than just economic 

(or price) inflation. The growing inclination of juries to grant 

huge awards in liability cases has concurrently affected claim sizes 

in general. Also, changes in the scope and definition of tort 

liability (e.g. enterprise liability) may change the probability 

of insureds incurring huge claims in the future. These phenomena, 

often referred to as social inflation, may be difficult to translate 

into specific trends in average claim size, but certainly must 

be considered in developing a trend model. 

One can either build trend models by trying to relate a series 

of internal insurance data to external data in an econometric 

model, 5 or more simply use one's expectations of the impact of 

Masterson, N. E., "Economic Factors in Liability and Property 
Insurance Claim Costs, 1935-1967," PCAS (1968), Page 61. 

For examples of econometric modeling applied to insurance rate- 
making see Lommele, J.Ao and Sturgis, R.W., "An Econometric Model 
of Workmens' Compensation," PCAS (1974), Page 170; Ferguson, R.E., 
"Trend Factors-- A Model Approach," CPCU Journal, Volume 31, #3; 
and Insurance Services Office bulletin #TS-CA-81-2, "Commercial 
Automobile Bodily Injury Severity Econometric Model." 

462 



these variables to help discern a pattern in the internal data. Of 

course, any pattern discovered over the historical period must be 

expected to continue in the future and tested and redefined as new 

data points become available. 

In this paper, we shall not discuss how the actuary selects the 

trend in mean claim size. Rather, we will discuss how overall 

severity trends affect the shape of a size of loss distribution and 

how one may project this shape given some overall trend. There will 

be no further detailed discussion of how to ascertain the overall 

trend expected in the future or when historically discerned patterns 

should be judgmentally adjusted for external future influences. 

Nevertheless, these questions have major impact on what follows. 

2. SIZE OF LOSS DISTRIBUTIONS AND TREND 

The previous example has illustrated the concept of trend with 

respect to mean claim size. We now expand this concept to describe 

how one analyzes trend with respect to a size of loss distribution 

rather than just the mean of the distribution. 

To begin, we define x t to be a random variable represent- 

ing the dollar amount of loss incurred by an insured given 

that an accident has occured in time period t. 6 We also 

6 Ordinarily, t is assumed to be a period of one year. By 
this definition x would represent claim size in calendar 
accident year t. tOne could analogously define x t on a 
policy year basis. 
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define Ft(x t) to be the cumulative distribution of x t. 

Throughout, when we refer to F t (xt) , we mean the cumulative 

probability distribution of underlying claim sizes; that is the 

claim amounts incurred by the insured, not the amount paid by the 

insurer. This latter amount is affected by policy limits as well 

as deductibles and co-insurance clauses. We will assume that data is 

available to allow one to estimate a suitable distribution type (i.e. 

Gamma, Log-Normal, Pareto, etc.) and parameters of Ft(x t) for 

several successive values of t. 7 For example, data may be available 

for t=1972, 1973,...1977. The goal is to develop a trend model that 

will allow us to project the distribution form and parameters of 

Ft(x t) in some future time period, say t=1981. 

The general framework in which a trend model is implemented, 

consists of a transformation of the variable x from the 
t 

historical to the forecast period. This transformation is 

established either intuitively by making some assumptions 

about how claim sizes will change over time, or empirically 

We will not discuss methods by which one can estimate 
the distribution type and parameters of Ft(XL) from 
the sample data available. This subject is thoroughly 
discussed in Patrik, G., "Estimating Casualty Insurance 
Loss Amount Distributions," PCAS (1980). Of particular 
interest, are the equations developed to estimate the 
parameters of the underlying claim size distribution where 
the loss amounts captured in the data base are capped by 
policy limits. 
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by analyzing the historical distributions. In the latter 

case, the transformation is constructed in the following 

way. 

We define the transformation of xt, from year t to year t+k 

as follows: 

g k ( x t )  = F -1  ( F ( x t ) )  w h e r e  F -1  i s  t h e  i n v e r s e  
t+k t+k 

of the cumulative probability distribution Ft+k. 

In other words the probability of incurring a claim of size less than 

or equal to x t at time t is the same as the probability of incurring a 

claim of size less than or equal to g(xt) at time t+k. Note that 

g(x t) is really dependent on k as well as t and x t. k represents 

the length of the projection period. However, since the value of k 

can be derived from the context of the discussion we will omit it 

from the functional notation, g(xt). 

With this notation, g(xt) is said to be the "trended value" of x t. 

If a well defined transformation can be established for all values of 

xt, then this transformation, combined with knowledge of Ft(x t) 

at time t, will lead to the precise definition of Ft+k(Xt+ k) at 

time t+k. That is, given g(x t) we can solve for g-l(xt+ k) and 

then define Ft+k(Xt+k) as: 

Ft+k(Xt+k)=Ft(g-l(xt+k )) 

Before discussing possible transformations of x t it would be worth- 

while to consider the various reasons why one should expect a trend in 

x t to exist. Remember that x t is a random variable representing 
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claim size in time period t. As we pointed out earlier, trends in 

individual losses lead to trends in average claim sizes. But, what is 

the relationship of trend among the various claim sizes? Do infla- 

tionary forces (e.g. economic and social) affect all claim sizes 

equally, or is there some other pattern by size of loss that can be 

identified and projected? Let us first consider a simple model. 

Simple (Uniform) Trend Model 

A model that has been shown to be extremely simple to work with, is the 

transformation: 

g(x t ) = a.x t (i) 

This model assumes that the economic and social forces creating a 

claim size of x t during time t will lead to a claim size of ax t at 

time t+k. The implication of this model is that all claim sizes will 

inflate by the factor "a" regardless of the initial size of the 

claim. Another way of saying this is that g(xt)/ xt=a for all 

x t. The factor "a" is the mean severity trend factor. 

This model is simple in that it views inflation as affecting only the 

value of money; it does not anticipate an actual change in the shape of 

the claim size distribution. That is, given that overall costs as 

measured by the mean severity trend increase by "a", then it is assumed 

that each individual claim will also increase by "a". This model is 

simple to work with because for many distributions (e.g. the Log-Normal 

and the Pareto), the model implies that the distribution type will 

not change over time; that is, the trend in claim size can be reflected 

through a simple algebraic adjustment of the distribution parameters. 
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Miccolis develops this model to show how one can adjust increased 

8 
limits factors for trend. Finger employs this model to estimate 

basic limit trends, once total limits trend is known. 9 Ferguson 

illustrates the effects of inflation on reinsurers if this model of 

lO 
trend is assumed. 

If this model of trend is assumed appropriate, then the determination 

of the necessary adjustment of the size of loss distribution for trend 

reduces to estimating the value of "a". One way to do this empirically 

is to trace the trend in the mean of ft(xt), the density function 

related to Ft(xt) , by fitting an exponential curve to the means 

of ft(xt) for several successive values of t. Since it is assumed 

that all claim sizes will be trending by the factor "a", the trend 

in the mean will also be equal to "a". Certainly, this estimate of 

"a" should be subjectively modified if the inflation rate is expected 

to be different during the projection period than it was during the 

historical period. 

Testing the validity of g(xt)=ax t 

While the trend model discussed above is convenient and simple to apply, 

the asstn~ptions underlying the model should be tested and confirmed. 

8 Miccolis, R.S., op. cir. 

9 Finger, R.J., "A Note on Basic Limits Trend Factors," PCAS (1976), 
Page I06. 

lO 
Ferguson, R.E., "Non-proportional Reinsurance and the Index Clause," 
PCAS (1974), Page 141. 
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On an intuitive level, two possible objections to this model are offered 

in the CAS literature. Ferguson states: 

"It is commonly believed, or at least assumed, that 
inflation is uniform and does not vary by size of 
claim. Whether small claims inflate at an annual 
rate that differs from that affecting large claims 
has not been explored and remains a matter of conjec- 
ture. It is likely, however, that large claims 
would inflate at a higher rate due to their mix 
of indemnity and medical/rehabilitation. Large 
claims may have a higher proportion of medical/ 
rehabilitationl~osts and thus be more sensitive 
to inflation." 

Thus even if price inflation were the only change influencing claim 

size, its effect may not necessarily be uniform by size of claim. 

Another objection to the above model was stated by Fowler in his 

review of Finger's paper. He argued that: 

"Intuitively I have the notion that where there 
is a trend in claim costs that trend will make 
itself felt unevenly according to claim size. I 
would rather expect that the larger claims would 
be more heavily affected than the smaller ones. 
Another way of saying this is that it might be 
reasonable to assume that superimposed and/or 
social inflation would exertl@ greater effect on 
the claims of greater size." 

This argument relates to our discussion earlier regarding the intuitive 

reasons one expects a trend in claim size to exist. Social inflation 

may cause the entire shape of the size of loss distribution to change. 

This seems to be the issue that Fowler is addressing. 

II 

12 

Ferguson, R.E., op. cit. 

Fowler, T.W., unpublished discussion of Finger, R.J., 
"A Note on Basic Limits Trend Factors," op. cit. 
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It is difficult however to decide this issue based on abstract argu- 

ments. A good test of the validity of the simple trend model is to 

check how well it has been confirmed by the loss data available to 

us. 

There are various ways in which to examine size of loss distribution 

data to determine whether claims do indeed trend uniformly. We will 

now describe two such methods. 

The first method involves estimating the value of "a", the trend factor, 

under the assumption that g(xt)=ax t. Earlier we mentioned that 

this factor can be estimated by fitting an exponential curve to the 

unlimited means E(Xl) , E(x2) , .., E(Xk). We now introduce the 

following notation. We define E(xt,c) to be the expected value of 

x t given that each claim is limited in size to c. Mathematically: 

E(x t , c )  = FX~./tdFt ( x t ) ÷ c  t ( x t )  
o c 

Not ice  t h a t  E ( x t , ~ ) = E ( x t ) .  By a phenomenon known as the  l eve raged  

e f f e c t  of  i n f l a t i o n ,  13 a curve  f i t  to  s u c c e s s i v e  va lues  o f  E ( x t , c )  , 

with some fixed finite limit c, will lead to a trend factor that is 

less than or equal to "a". More specifically, if g(xt)=ax t then 

E(g(xt))=aE(xt) , but E(g(xt) , c) < aE(xt, c). 

If however, the value of c is not kept fixed but instead is allowed to 

increase each year by "a" and g(x t) =axt, then fitting an exponential 

curve to E(Xl,C) , E(x2, ac),...,E(Xk, ak-lc) will lead to a trend 

13 Ferguson, R.E., op. cit. 
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factor equal to "a" regardless of which value of c is chosen as the 

limit in the first year. 14 In other words: 

E(g(xt), ac)=aE(xt,c) (2) 

The proof of (2) is included in Appendix A. 

Thus, a test of the assumption g(xt)=ax t is to try to estimate "a" 

via an exponential curve fit to E(Xl,C), E(x2, ac),...,E(Xk, ak-lc) 

using several different values of c. This involves an iterative 

procedure. An initial estimate of "a" must be chosen and the limit c 

must be trended by this estimate "a". The iteration stops when the 

trend applied to the limit c and the trend resulting from the expo- 

nential curve is the same. If the estimates of "a" so derived from 

various values of c are about the same (i.e. they do not exhibit an 

upward or downward trend), then g(xt)=ax t would seem an appropriate 

assumption. 

This test was applied to Products BI data of companies reporting to ISO. 

The data was inclusive of Policy years 1972-1977. 15 The resulting 

estimated values for "a", the annual trend factor, based on various 

values of c, the base limit in policy year 1972 are summarized in 

Table I. 

14 

15 

Note the similarity between this statement and the "index clause" 
discussed in Ferguson, R.E., op. cit. 

For this test and all the remaining examples in the paper, data 
included is evaluated at 27 months of maturity. Testing has 
shown that the results are independent of whether each year is 
evaluated at 27 months or at ultimate maturity. Also, as mentioned 
later, the proceeding calculations and tests were based on a 
smooth Pareto curve fitted to the data, rather than on the 
reported data itself. The Pareto curve provides an estimate of 
the distribution of underlying claim sizes whereas the reported 
data is affected by policy limits purchased. See footnote 7 
above. 
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Table I 

Limit in 
Policy Year 1972 Estimate of "a" 

$ 25,000 +23.0% 
300,000 27.0% 
500,000 28.4% 

1,000,O00 30.1% 
I0,000,000 35.1% 

The fact that the estimates of "a" increase as the limits increase leads 

one to question the assumption that all loss sizes trend at the same 

rate. 

A more direct method to test the assumption that g(xt)=ax t is to 

actually consider the statistic g(xt)/x t. For Products BI, 

for Policy Years 1973 and 1977, listed in Table 2 are several 

values of x1973 , with their corresponding trended values, x1977 , 

(=g(x1973)) , and the statistic x1977/x1973, x1977 is the 

claim size in 1977 whose cumulative probability is the same as the 

corresponding claim size in 1973, as per our earlier definition of 

g(xt). 

Table 2 

Products BI 

( l )  (2) (3) (4) 

x1973 x1977 x1977/x1973 Annual Trend =(column (3))'25-1 

$ I0,000 $ 21,929 2.193 +21.7% 
50,000 116,355 ~2.327 23.5 

I00,000 255,310 2.553 26.4 
200,000 571,995 2.860 30.0 
500,000 1,692,052 3.384 35.6 

1,000,000 3,872,216 3.872 40.3 

Similarly, Table 3 contains claim sizes in 1972 for OLT BI and Hospital 

Professional Liability together with their corresponding claim sizes in 1977. 

4?1 



Table 3 

OL&T BI 

(1) (2) (3) 

x1972 x1977 x1977/x1972 

(4) 

Annual Trend =(column (3))'2-I 

$ I0,000 $ 21,638 2.164 +16.7% 
50,000 134,065 2.681 21.8 

100,000 317,682 3.177 26.0 
200,000 769,278 3.846 30.9 
500,000 2,520,619 5.041 38.2 

1,000,000 6,228,148 6.228 44.2 

Hospital Professional Liability 

(I) (2) (3) (4) 

x1972 x1977 x1977/x1972 Annual Trend =(column (3))'2-I 

$ I0,000 $ 17,793 1.779 +12.2% 
50,000 114,266 2.285 18.0 

100,000 269,663 2.697 21.9 
200,000 651,383 3.257 26.6 
500,000 2,137,138 4.274 33.7 

1,000,000 5,300,521 5.301 39.6 

The results in Table 2 and Table 3 indicate rather conclusively for 

the sublines considered that the annual trend is not constant but 

rather increasing by size of claim. 

It should be mentioned that the results in Tables I, 2 and 3 were attained 

based on the probabilities yielded by a shifted Pareto curve 16 which 

was fitted to the reported data for each of the policy years. Use of a 

16 
The details of this curve and how it was applied by ISO are 
contained in "Report of the Increased Limits Subcommittee...", op. 
cir. Also see Patrik G., "Estimating Casualty Insurance Loss 

4 ~ t  D~tributions," op. cit. 



continuous probability distribution made it possible to solve for the 

inverse of any given probability value (i.e. to solve for x1977 given 

that Fi977(xi977) = a given probability). Similar tests were 

applied directly to the reported data and the results were quite analo- 

gous to those in Tables I, 2 and 3. 

Tables 2 and 3 calculate annual trends corresponding to various claim 

sizes in 1973 for Products BI and 1972 for OLT BI and Hospital 

Professional Liability. This was done based only on data for those 

two policy years as well as policy year 1977. Actually this method 

can be expanded to incorporate several years of data and to not unly 

test the model g(xt)=ax t but to actually develop an alternate 

model. This is presented in the next section. 

3. CHOOSING AN ALTERNATE TREND MODEL 

We now make the following assumption. At each level of cumulative 

probability, P, the claim size values Ft-l(p) , Ft+l-1(p), 

• ., Ft+k-l(P) , are such that they are increasing at a rate that is 

approximately constant. Actually this implies that an exponential curve 

of the form e a+by, (y=0, I, 2,...,k), will fit the claim sizes reason- 

ably well at all levels of P. If this assumption is made, then a 

mapping can be constructed from any level, P, to the annual trend 

-l(p) derived by fitting an exponential curve to Ft-l(p),... , 
Ft+ k Q 

Note, this is a mapping from cumulative probabilities to annual trend 

factors and can be diagramed as follows: 

P ) trend factor 
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If a point in time is fixed then an additional mapping, namely Ft-I(P) , 

exists. This mapping is from cumulative probabilities to claim sizes; 

i.e. 

P 

FtI(P) 

x 
t 

We can thus complete this diagram as follows: 

P 

F-l(p) 
t 

>trend factor 

x 
t 

We denote the mapping x t ) trend factor as tr(xt). Note that 

referring to our earlier notation: 

tr(xt) = g(xt)/x t. 

Loosely speaking, tr(xt) , is the trend factor applicable to a claim of 

size x t at time t. We refer to tr(x t) as a "trend function". 

~74 



Note that by the development above, a trend factor is related to a 

given cumulative probability independent of time. However, the 

relationship of trend factors to claim sizes is dependent on time. 

This is because the claim size related to each cumulative probability 

will change over time. 

Using this notation, the simple trend model becomes a single valued 

function, tr(xt)=a. By reviewing the data presented in Tables 2 

and 3, one is led to believe that tr(x t) should actually be a 

monotonically increasing function. We thus proceed by examining 

suitable alternate functions for tr(xt). 

To do this, we modify and expand the data presented in Tables 2 and 

3 in the following way. We pick a value of x1972 , say $i0,000, and 

its associated cumulative probability F1972($i0,000). We then 

-I 
calculate F t (F1972($I0,000)) for t=1973, 1974 ..... 1977. 

For example, for OL&T BI, the distribution of claim sizes for Policy 

Year 1972 is such that 

F1972 (I0,000) = .9824 

That is, the probability that the size of a claim (on a policy 

written in 1972) will be less than $i0,000, given that an accident 

has occurred, is .9824. We now search for the claim sizes in Policy 

Years 1973,...,1977, whose cumulative probabilities are .9824. For 

OLT BI, these values are given in Table 4. 
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Table 4 

OLT BI 

Claim sizes whose cumulative probabilities are .9824 

Policy Year Claim size 

1972 i0,000 
1973 11,751 
1974 14,408 
1975 16,572 
1976 18,036 
1977 21,638 

An exponential curve is then fit to these six claim sizes to derive 

an annual trend factor. By repeating this process for several 

values of x1972 , we derive an empirical sample for tr (x1972). 

This procedure was applied to data for the sublines mentioned in Tables 

2 and 3. Table 5 contains a listing of empirical values for tr(x t) for 

several claim sizes. 

1973 
Loss Size 

Table 5 

Products BI 

Indicated Annual Trend 

$ I0,000 1.202 
20,000 1.203 
50,000 1.233 

I00,000 1.271 
250,000 1.335 
500,000 1.392 

1,000,000 1.454 

1972 
Loss Size 

$ i0,000 
20,000 
50,000 

I00,000 
250,000 
500,000 

1,000,000 

OL&T BI 

Indicated Annual Trend 

1 163 
1 173 
1 207 
1 243 
1 299 
I 345 
1 395 
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Hospital Professional Liability 

1972 
Loss Size Indicated Annual Trend 

$ I0,000 1.100 
20,000 1.119 
50,000 1.160 

I00,000 1.201 
250,000 1.267 
500,000 1.324 

1,000,000 1.387 

For each subline shown above, a graph of tr(x t) against x t produced a 

curve of the form in Figure I. 

Figure 1 

tr(xt) 

x 
t 

From this graph, we observe that any function tr(x t) for these sub- 

lines should possess the following characteristics: 

(i) tr(x t) ~ 0 for all x t 

(2) 

(3) 

d tr (xt) ~ 0 for all x t 

dx t 

d2tr(x t) ~ 0 for all x t 

dxt2 
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The next step is to find a function that satisfies these properties 

and also provides a reasonable fit to the data. Several model forms 

can be fit to the data via a least squares regression. Among them 

are: 

b 
(I) tr(x t) = ax t 

(2) tr(x t) = a(In(xt)) b 

(3) tr(x t) = a-b/x t 

Of these three, the first one tr(xt)=axt b, provides the best 

fit as measured by the coefficient of determination, R 2, when 

applied to the data for the sublines in Table 5. Table 6 lists 

several loss size values and the associated empirical values of 

tr(xt) , as well as the fitted values of tr(xt)=axt b for 

Products BI data, OL&T BI data and Hospital Professional Liability 

data. Note that the parameters "a" and "b" were derived by fitting 

to more claim sizes than are shown in Table 6. 

It should be noted that of the three models listed above, (I) and (2) 

imply that tr(xt) increases without bound as x t ~o~ . 

Model (3) implies that tr(x t) is bounded from above by "a". The 

data seem to indicate that tr(x t) is not bounded from above. Note 

however that tr(x t) will grow at a very slow pace with the values of 

parameters "a" and "b" derived via the least squares regression and 

displayed in Table 6. For example, for Products BI, the fitted 

annual trend at $I million is 1.427. At $I billion the fitted trend 

increases only to 1.894. 



Table 6 

1973 
Loss Size 

$ 10,000 
20,000 
50,000 
100,000 
250,000 
500,000 

1,000,000 

1972 
Loss Size 

$ I0,000 
20,000 
50,000 
i00,000 
250,000 
500,000 

1,000,000 

1972 
Loss Size 

$ I0,000 
20,000 
50,000 

I00,000 
250,000 
500,000 

1,000,000 

Products BI 

Indicated Annual Trend Fitted Annual Trend (ax b) 

1.202 1.182 
1.203 1.216 
1.233 1.262 
1.271 1.299 
1.335 1.348 
1.392 1.387 
1.454 1.427 

a=.810, b=.041 

OL&T BI 

Indicated Annual Trend Fitted Annual Trend (ax b) 

I.[63 1.136 
1.173 1.169 
1.207 1.214 
[.243 1.249 
1.299 1.297 
1.345 1.334 
1.395 1.373 

a=.779, b=.041 

Hospital Professional Liability 

Indicated Annual Trend Fitted Annual Trend (ax b) 

I.I00 I.ii0 
1.119 1.144 
1.160 1.191 
I. 201 1. 228 
1.267 1.279 
1.324 1.318 
1.387 1.359 

a=.740, b=.044 
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b 
Applying the model tr(xt)=ax t 

b 
The parameter "b" in the trend function ax t provides information 

regarding how trend varies by claim size. Note by assuming that b=O, 

one assumes that trend is uniform by claim size. For b > 0, trend 

will increase by claim size. The parameter "a" relates to the 

overall trend indicated and does not affect the ratio of the trends 

at various claim sizes. For example, if one were to modify "a" by a 

multiplicative factor, then the trend factor at each claim size would 

be multiplied by that same factor. Hence if recent economic activity 

leads one to believe that historical indications must be modified to 

reflect higher inflation rates, then this modification should be 

applied to "a", as is done in the model tr(xt)=a , presented earlier. 

It should be noted that the values derived for "a" and "b" were 

derived by setting t=1972 as the starting point. Had another 

starting point been chosen, different values would have been cal- 

culated for "a" and "b". This is because, as noted earlier, given a 

level of cLmlulative probability, the corresponding claim size will 

change over time. Appendix B describes how at+ k and ht+k, needed 

to trend claim sizes at time t+k, can be derived from a t and b t 

under the assLm~ptions of our model. 
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b . 
A concern with the trend function ax t Is that it tends to 

x t. In fact axt b ~ 0 as underestimate the trend for small 

x t ) 0 while small claim size data (e.g. claim sizes of $250, $500 and 

$I,000) seem to indicate that all claim sizes trend upward, and that 

the trend factors for small x level off to some number such as 1.05. 
t 

This can be corrected by changing the model to tr(xt)=a(xt+c)b , 

or by using the function tr(xt)=axt b only for claim sizes 

greater than a selected value and using empirical data to trend small 

losses. 

b 
Use of the model ax 

t 
has advantages in that it can be easily 

applied for special forms of Ft(xt). We will now discuss three 

such cases. 

Case I: Ft(x t) = 

cumulative distribution function, i.e. x t is lognormally distri- 

buted. Under the assumption that tr(xt)= axtb we know that the 

trended value of x t is equal to (axtb).xt=axt b+l We now 

adjust Ft(x t) for one year's trend. Thus we attempt to project 

the distribution type and parameters of Ft+l(Xt+l). 

-_ 

We have 
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We see that Ft+l(Xt+ I) is also lognormally distributed with 

parameters jps I~@(~Q~ and ~ I = = ~ (b+l). Thus to trend 

distribution under the assumption that tr(xt)=axt b, a lognormal 

one need only modify the parameters. Note that the coefficient of 

variation (~Var(x)/E(x)) of the lognormal distribution is given b y e  

which increases as ~ increases. Similarly, the skewness coef- 

ficient 17 increases as ~ increases. Under the assumption that 

trend increases by claim size (tr(x t) =axt b, b>O) the skewness 

of the size of loss distribution will increase over time. Under the 

assumption of uniform trend (b=O), the coefficient of variation and 

the skewness coefficient will remain unchanged. 

Case 2: Ft(xt)=l-exp [-(x~/~) ~ ] i.e. x t is Weibull distributed 

1 

So Ft~xt+ I) is a Weibull distribution with parameters: 

17 In general, skewness = E[(x-E(x))3]/Var(x) 3/2. For the 
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 aso : ,parameters   ere or 

to this distribution as the 'Transformed Pareto' distribution. 

This distribution is a generalized form of the shifted Pareto distri- 

bution 18 Ft(xt)=l - in which case ~=I. 

For the Transformed Pareto distribution we have: 

~° 1 ~ 

We see that Ft+l(Xt+ I) is also a Transformed Pareto distribution 

with parameters 

Thus when the distribution of x t is either lognormal, Weibull, or 

Transformed Pareto, then under the asstnnption that tr(xt)=axt b, 

the size of loss distribution can be trended by simply modifying the 

parameters of the distribution. 

In the next section we will explore the impact of this trend model in 

increased limits pricing. 

18 
See Footnote 16. 
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4. COMPARING THE IMPACT OF TWO TREND MODELS ON INCREASED LIMITS PRICING 

As an example of an application of tr(xt)=axt b and a comparison 

of this model to tr(xt)=a , we will illustrate the difference in 

increased limits factors derived from each of these models. 

In this example we will assume that based on information yielded from 

the most recent data (e.g. Policy Year 1978) the size of loss distri- 

bution for a given line of insurance is lognormally distributed with 

parameters ~ =8 and ~ =2. We wish to trend this distribution to 

say 1981, a total of three years. 

Based on data for several past policy years let us say it has been 

b • 
determined that tr(x1978)= ax1978 Is an appropriate trend 

model with b~ .02 and that overall losses are expected to increase 

by 15% annually for the next three years. We will choose a value for 

"a" such that overall trend i8 15%. To do this we first develop some 

formulas. 

The mean of a lognormal distribution with parameters~ and G is 

We have shown in Case I that when a log-normal distribution is 

adjusted for one year's trend under the model tr(xt)=axt b, the 

new parameters become~ °= ~A(b+l) + Ina and ~ •= ~(b+l). 

We can express the overall trend of 1.15 as the ratio of the new 

mean over the old mean: 

T=overall trend = E(Xt+l)/E(x t) 
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For the log normal curve we have: 

T = exp (~'+ G'2/2)/exp(@+~2/2) 

= exp (p'-~+G'2/2 - 62/2) 

= exp (Ina + p(b+l) -U+((~ (b+i))2)/2 - G212) 

= exp (pb+Ina + ( ~ 2/2)(b2+2b)) 

InT = ~b + Ina + (G2/2)(b2+2b) (3) 

Thus given values for u,G , b and T, we can solve for "a". In our 

example u=8,q=2, b=.02, and T=I.15 so that one can calculate a= .904. 

tr(x1978)=.904(x1978 )'02. The annual trends indicated Therefore, 

by this trend function for several claim sizes are listed in Table 7. 

Table 7 

Loss Size (in 1978) Annual Trend 

$ I0,000 
25,000 
50,000 

I00,000 
500,000 

1,000,000 

1 087 
1 107 
1 122 
1 138 
1 175 
1 192 
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In order to trend the parameters three years into the future we note 

that: 

x1981=(tr( 3 x1978)) "x1978 

=(a(x1978)b)3.x1978 

=a3(x1978) 3b+l 

In general g(xt) , the trended value of xt, after n years is given by: 

n nb+l 
a x t 

The adjustment of the log-normal parameters then becomes: 

p' = ~ (bn+l) +n ina 

(4) 
G ~= C (bn+l) 

In our example: 
19 

~1981 = 8(1.06) + 3 In (.904) = 8.177 

~1981 = 2(1.06) = 2.12 

For comparison purposes we also calculate ~1981 and ~1981 under 

the assumption that trend by claim size is uniform, i.e. that b=0. 

this case by using formula (3) above, we calculate a=T or a=l.15. 

(4), we get in the case of uniform trend: 

In 

Using 

19 

~1981 = 8 + 3 In(l.15) =8.419 

~1981 = 2 

Under the model asstnnption that at each level of ctnnulative 
probability, associated claim sizes are increasing at a rate that 
is approximately constant, the overall trend cannot demonstrate a 
constant rate of increase from year to year but rather will show a 
slightly increasing rate from year to year. This is due to the 
greater weight assigned to the higher claim sizes. In our example, 
with a=.904, T=I.15 the first year, 1.152 the second year and 1.154 
the third. Given a forecast horizon of only 3 years, the impact on 
increased limits factors is negligible and has been ignored in our example. 
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Miccolis 20 develops formulas for calculating increased limits factors 

given the size of loss distribution. Using our notation, the increased 

limits factor for limit=c, assuming that the basic limit is $25,000 is given 

by: 

E(x, c)/E(x, $25,000) 

For the log normal curve: 

+ c  I- }4 

Listed in Table 8 below are the increased limits factors derived from 

these formulas under the two assumptions that trend is either uniform by 

claim size or varying by claim size with parameters as derived above. 

Table 8 

Policy Limit 

Increased Limits Factors (19810 

Uniform Trend Varying Trend by Claim Size 

$ 25,000 1.00 1.00 
50,000 1.41 1.41 

I00,000 1.86 1.87 
500,000 2.85 2.95 

1,000,000 3.16 3.31 
5,000,000 3.55 3.83 

Note that at the $5 million limit, the assumption that trend varies 

by claim size produces an increased limits factor that is almost 8% 

greater than the corresponding factor developed under the assumption 

that trend is uniform by claim size. 

20Miccolis, R. S., op. cit. 
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This comparison is somewhat independent of the overall trend assumed. 

To illustrate this, we rework the example with overall annual trend 

assumed to be 20%. The trended parameters then become: 

Uniform Trend: ~1981 = 8.547 ~1981=2 

Varying Trend: ~1981 = 8.305 ~1981=2.12 

The resulting increased limits factors are included in Table 9 below. 

Table 9 

Policy Limit Uniform Trend Varying Trend by Claim Size 

$ 25,000 1.00 1.00 
50,000 1.42 1.42 

I00,000 1.90 1.91" 
500,000 2.98 3.08 

1,000,000 3.34 3.49 
5,000,000 3.79 4.08 

The relative difference of the factors in Table 9 is almost identical 

with the differences in Table 8. 

The examples above demonstrated the impact on increased limits factors 

of a varying trend model of the form ax b when such a model is 
t 

appropriate for all claim sizes. When the trend in losses less than 

some claim size L does not approach 0 as implied by the model axt b, 

then the model should be applied to those loss sizes greater than L and 

the smaller losses should be handled separately in the following manner. 
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Ft+ n (xt+ n) =" 

b 
Suppose that trend at claim size x t is equal to ax t , but for 

claim sizes less than some value, L, trend is observed to be uniform 

and equal to aL b When a log-normal distribution with parameters 

andG2, is trended (n years into the future) under this asstmlp- 

tion then the trended distribution becomes: 

f +i,- • for xt+ n 

i 

a nLnb+l 

for x ~ anL nh+l 
t~ 

<~L~+las Ct+ (xt+,) If we denote the distribution for x t+t~ 

>--~L~b+las . (x ) then and the distribution for xt+ ~ t+~ t+~ 

>~L ~b+l ) E(xt+n,c) becomes (assuming c 
h i~b ÷l 

O~L  C 

]Xt+n dGt+n(Xt+n) + ] O  "b'~tIn dHt+n(Xt+n) + c(l - Ht+n(c)) 
~E 

As an example consider the trend function displayed in our first example: 

tr(x1978) = .904(x1978 )'02 

In table 7, it was shown that this trend function implies that a 

$I0,000 claim will be trending at 8.7% annually. Now suppose that 

all claims less than or equal to $i0,000 are trending at 8.7% an- 

nually. The trend function then becomes:. 

].904(10,000)'02=1. 87 for ~ i0,000 x1978 
tr(x1978 )= 

-- [.904(x1978 )'02 for x1978 > I0,000 

#89 



The corresponding log-normal parameters for claim sizes in 1981 then 

become, (assuming as we did earlier that in 1978, ~=8 and ~ =2). 

Table I0 now adds a third column to the two columns listed in Table 8. 

This column represents the 1981 increased limits factors calculated 

when the assumed trend function is bounded from below by 1.087. 

Table I0 

Increased Limits Factors (1981) 

Policy Limit Uniform Trend 
Varying Trend 
by Claim Size 

Varying Trend by Claim Size 
With Minimum Trend = 1.087 

$ 25,000 1.00 1.00 1.00 

50,000 1.41 1.41 1.40 

I00,000 1.86 1.87 1.86 

500,000 2.85 2.95 2.92 

1,000,000 3.16 3.31 3.28 

5,000,000 3.55 3.83 3.79 

Note that there is still a significant difference between the $5 

million increased limits factors calculated under the uniform trend 

assumption and the assumption that trend varies by claim size even 

though a minimum trend has been imposed. 
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CONCLUSION 

This paper has examined various methods that can be used to adjust 

size of loss distributions for trend. Data has been presented that 

indicates that trend tends to increase by claim size. We have 

examined the implications of a model assuming an increasing trend by 

claim size for increased limits pricing. Pres~nably this trend 

assumption would affect other pricing areas that depend on size of 

loss distributions. Such implications remain to be explored. 
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APPENDIX A 

"TRENDED LIMITS TREND" 

We prove in this appendix that under the assumption that all claims 

are trending at the same rate, the leveraged effect of inflation can 

be negated by allowing the policy limit or retention level to trend 

at the same rate. 

Using the notation developed in the paper: 

Let: 

Then: 

Proof: 

let t=k=l. 

Now E(x2, ac) = ~ x2f2(x2)dx 2 

Since x 2 = ax 1 

We have F2(x2) = F2(axl) = Fl(Xl ) 

and af2(axl) = fl(Xl) 

So E(x2, ac) = 

= 

= 

xt+ k =g(x t) = ax t 

E(Xt+k, ac) = aE(xt, c) 

Without any loss of generality, and for ease of notation we 

+ ac (l-F2(ac)) 

• C 

axlf2(axl)adx I + ac (I-Fi(c)) 

a ( Xlfl(Xl)dX 1 + c(l-Fl(C)) ) 

aE(Xl, C) 

Q.E.D. 
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APPENDIX B 

SOLVING FOR at+ k AND bt+ k IN TERMS OF a t AND b t 

The function trt(xt) = atxtbt is appropriate for trending 

loss sizes at time t one year into the future. To trend loss sizes 

at time t+k one year into the future we must solve for 

at+ k and bt+ k in terms of a t and b t. 

To keep the subscripts simple we will deal with the case t=l and k=2. 

Now by our assumption of exponential trend at each level of cumulative 

probability, we have: 

x 3 = (alxlbl)2Xl 

2 2b,+l 
= alx I I 

This implies that x I = 2bl+l 

\ al 
Also tr3(x3) = trl(x I) 

So a3x3b3 = alxlbl 

b 1 

2bl+l 

2bl  
2bFl! C 

• x 3 
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APPENDIX B (Cont'd) 

So we have 

and b 3 = ~  
b 1 

2bl+l 

In general 

at+ k =(a t and bt+ k = 
b t 

kbt+l 
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