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Aggregate loss probability is an effective tool in actuarial rate 

making, risk charging, and retention analysis for both primary and 

secondary insurance companies. A noticeable trend over recent years 

indicates that i t  also is becoming an indispensable element in the risk 

management operations of many manufacturing and commercia] firms. Some 

major insurance brokerage houses in the U.S., in step with the trend, 

already employ this technique routinely in selecting a retention plan 

for their clients. In i ts broadest form, the application extends beyond 

the actuarial domain into the broader area of corporate financial planning. 

Host existing procedures for estimating aggregate loss probability 

distributions have significant disadvantages. Most often, these disadvan- 

tages are associated with inadequate treatment of skewed data. The 

purpose of this paper is to present a recently developed technique which 

seems to handle the aggregate loss estimation problem more effectively. 

The f i r s t  section presents a brief review of the strength and weakness 

of most popular techniques currently in use. This is followed by a 

brief description of the newly developed technique. Next, the results 

of a comparative study of the cost and effectiveness of these alternative 

procedures are reported. Finally, we i l lustrate the impact of improved 

aggregate loss estimation on the pricing of reinsurance. An appendix 

contains the mathematical derivation for those who would like to verify 

our results. 

S.tandard Aggregate Loss Estimation Procedures 

In dealing with the estimation of aggregate loss probability, there 

are three fundamental approaches commonly in use. They are analytical, 

approximation, and simulation models. Each is distinguished from the 

others by its own characteristics, advantages and disadvantages. The 
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pure analytical model I generally is the most accurate. The handicap is 

that i t  can be applied to only a few distr ibut ion types. A frequently 

used approximation model is the Normal Power approximation. This is easy 

to implement but yields disturbingly large approximation errors when 

applied to highly skewed data. 2 Another less well-known approximation 

technique is the Gamma approximation, 3 which seems more accurate than the 

NP approximation in most occasions. 4 The only weakness of the Gamma 

approximation is that, l ike the NP approximation, i t  does not respond 

to the sensitive choice of frequency distr ibut ion. Simulation modeling 

is perhaps the most widely used technique in the f ie ld  of management 

sciences; however, l ike the other techniques, i t  has disadvantages, 

too. F i rs t ,  since the error brought on from simulation is s tat is t ica l  

rather than mathematical, i t  can be reduced s igni f icant ly  only by 

increasing considerably the number of i terat ions. 5 This would be an 

unfavorable element should the consideration of computing time and cost 

become crucial. Secondly, simulation is a brute force technique and 

offers limited insight into how a system works. Thus, any sensi t iv i ty  

analysis or optimization drawn from a simulation model is v i r tua l l y  a 

t r ia l  and error process and can not be jus t i f ied  mathematically. 

l 
See Appendix a for a summary. 

2 
Reports compiled from experiments decline to recommend the use of NP 
approximation on data of skewness exceeding I or 2, see [ 2 ]  and ~13] . 

3 
See Appendix C for background materials on this technique. 

4 
There is a controversy in the l i terature [16] and [18] concerning which 
approximation is superior. In our study, we found out that at least 
for the distributions l isted in this ar t ic le ,  the result for the gamma 
approximation is much better than that from the NP approximation. 

5 See Table 7.1 given in [2~ , p. 93 For relat ion between the degree 
of error and number of i terations. 
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The aim of this paper is to introduce a new model which is designed 

to meet the dual requirements of accuracy and simplicity in implementation. 

Our approach is a blend of the analytical and approximation models. I t  

is approximate, because the answer is not the exact, and analytical 

primarily because the formula is derived from the fundamental character- 

is t ics of col lect ive r isk theory. To demonstrate the precision of our 

model, apart from the mathematical deduction attached as an appendix, 

we compare the results of the new model with those where the exact 

probability can be calculated d i rect ly  using the analytical method. 

A New Model (Modified Gamma Approximation 1 

Aggregate loss, occurring as a random process, is compi]ed from two 

variables: one is identif ied as the number of claims experienced in a 

given time span (normally one year) and denominated as the "frequency 

of loss." The other is the size of an individual claim and is termed 

the "severity of loss." Joint ly,  frequency and severity determine total 

or aggregate loss from al l  claims in the given time span. The most 

often, used frequency distributions are poisson and negative binomia]. 6 

For severity distr ibut ions, experience 7 indicates that normal, gamma, 

inverse normal, pareto, log-normal and log-gamma 8 are appropriate for 

casualty and property insurance. 

6 Some authors also recommend a third type, the generalized Waring 
distr ibut ion, for details please see {Ig~ . 

7 See t31 , [81 , ~0] , [111 , and I lS]  . 
8 

A summary of these distr ibutions can be found in Appendix A. 

- 3 6 1  - 



For convenience, we shal] adopt the term generalized poisson model 

for the aggregate loss distribution which uses the poisson distribution 

as the frequency function and leaves the choice of the severity function 

open. Similarly, the generalized negative binomia] mode] reflects the 

application of the negative binomial distribution as the frequency 

function. 

To describe our formula, we need the following statistics which 

can be estimated 9 from the samp]e data: 

o; 
and statistics which can be derived intr insical ly: 

: frequency mean 

: frequency standard deviation 

: severity mean 

: severity standard deviation 

/~ : aggregate mean (e.g., the product of 
and M~ )I0 

• L : aggregate standard deviation ( e . g . , ~ ( ~ * ~ )  
for the generalized poisson mode] a n d ' ~ + ~ L  
for the generalized ~.b. model) lO M~ P 

~# : severity skewness 

Our fommula states that the probability F(,) of annual aggregate loss 

less than or equal to x is given by: I I  

~) 

9 See [7] for the estimation of these statistics. 

I0 See I14] p. 179 for the derivation. 

11 The derivation of formula (1) and the subsequent tables are given 
in Appendix D. 

- 362  - 



where functions ~ '0 and ~ in the integrand are defined by: 

Table I 

Model 

General ized Poisson 

Generalized NB 

and f u n c t i o n s ~  and ~ )  in both models are given by: 

Table 2 

The only quantity which has not been expressed expiicitely in the formula 

is the severity skewness ~b • Since each of the six severity d is t r i -  

bution functions has exactly two parameters, each is defined and 

described completely by the severity sample mean and standard deviation. 

All the other quantities, including ~m , depend ultimately on the type 

of the severity distribution chosen; that is on the sample mean and 

standard deviation. The corresponding severity skewness of the six 

alternative severity distributions are tabulated as follows: 12 

12 

13 

Table 3 

Type Skewness 13 ~# 

Normal O 

The derivation of Table 3 is given in Appendix A. 

I f  the skewness is zero, replace i t  with any small number (e.g., I0 "9) 
in the computation, since dividing by zero is prohibited in our 
formula. 
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Inverse Normal 3 ( ~  • 

Pareto 14 ' ~ I ( ~  

,..og-norma, 3) 
Log_gamma 14 ,~J~ 

Formula (%) and its consequent computations may seem complex in 

the form shown above. However, the implementation is quite simple. Any 

standard numerical integration technique would handle the computation 

effectively; for example, the extended Simpson's rule is adequate to 

calculate the integration in (1) and is easy to code in any scientif ic 

programming language. A practical discussion on the use of extended 

Simpson's rule and the truncated range of integration in formula (I) 

is given in Appendix D. 

Effectiveness of the Modified Gamma Approach 

From a conceptual point of view, the new model seams to satisfy 

the objective of increased accuracy at nominal cost. The ultimate 

test, however, lies in its effectiveness in handling actual loss data. 

By combining the poisson or negative binomial (for frequency) with 

the normal, gamma, or inverse normal (for severity) i t  is possible to 

compute an exact aggregate distribution using the pure analytical method'(A). 

14 

15 

In the cases of the pareto and log-gamma'distributions, the skewness 
may not always exist; i t  depends on the relation between the sample 
mean and standard deviation. Thus, i f  the following conditions 

3~w~ > ~ for pareto , 

are not met, the new model is not applicable. See Appendix A for 
details. 

Since the skewness of log-gamma does not admit any closed form in 
terms of the sample mean and standard deviation, i t  is best expressed 
by its functional parameters, see Appendix A. 
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This procedure was used to provide a series of contro] distributions 

for a comparison of the relative accuracy of the normal power approxi- 

mation (NP), standard gamma approximation (G), and the new, modified 

gamma approximation (MG). 

In the analysis each of the four methods was used to generate 

aggregate probability distributions for several sets of hypothetical 

loss data. The primary variation in the data reflected differences 

in skewness (from a relatively modest .5 to a substantial skewness 

factor of 5). The points on the probability distribution were chosen 

in terms of standardized deviations from the mean rather than in 

absolute dollar amounts. Calculations were made ut i l iz ing both the 

generalized poisson and the generalized negative binomial models. 16 

Exhibit I, presents three sets of data for the generalized poisson 

model, as does exhibit [I for generalized negative binomial model. In each 

set, the severity type, severity coefficient of variation and frequency mean 

are selected (in the case of negative binomial the frequency variance is 

also required), and the aggregate skewness is calculated by the aid of Table A6 

given in appendix C2. Two auxiliary exhibits, labeled by la and IIa respectively, 

.display the difference between results obtained from analytic method and the 

other three methods. At the bottom row, their variances, calculated by summing 

the squares ofthe difference dividing by the number of rows, are comouted 

respectively. 

16 
The objective of the analysis was to uncover any systematic bias 
or approximation errors inherent in the alternative approximation 
techniques. In normal practice the candidate distributions would be 
determined by a goodness of f i t  criterion. 
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As can be seen from both exhibits I and I I ,  the new model clearly 

is superior to the other two approximation models in all scenarios. 

The discrepancy of NP approximation is particularly serious not only on 

highly skewed data but also on modestly skewed data (e.g., ~=~.) .  Also 

notice that in both~e generalized poisson and negative binomial models, 

the results from the standard gamma and NP approximation are determined 

ultimately by the skewness, e.g., the differences in the control d is t r i -  

butions reflecting the choice of frequency distribution are not captured 

by either traditional approximation methods. The new model does detect 

the difference between poisson and negative binomial frequency distributions. 

Finally, we want to indicate the degree of sensit ivity of the estimated 

aggregate loss probability to the selection of the tYDe of severity function. 

Exhibit IV asstm'tes that the frequency distribution is poisson (with mean = 60.383) 

and the estimated severity coefficient of variation is equal to 4. I f  the severity 

function is the inverse normal the aggregate skewness would be 1.5. The same 

parameter would be 9.02 for log-normal. AIso a tai l  appears in the aggregate 

picture when the log-normal is selected for the severity. .This phenomenon can 

be explained mathematically by the following observation: given a severity 

sample mean and variance, the magnitude of the severity skewness, according to 

Table 3, can be arranged in the following increasing order: 

normal, gamma, inverse normal, 
pareto } 

log-normal 

Since the aggregate skewness varies along with the severity skewness, the 

selection of log-normal as severity function always yields a larger aggregate 

skewness than does the selection of inverse normal. 
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Increased Limits Factors for Stop-Loss Reinsurance 

One of the practical applications of estimating aggregate loss 

probability is its use in excess of loss pricing, aggregate pricing and 

stop-loss reinsurance. The case of excess of loss pricing has been 

covered extensively in a recent article by Robert S. Miccolis. 17 We 

would l ike to concentrate on the latter two situations here. 

Aggregate pricing and stop-loss reinsurance are fundamentally one 

concept. Stop-loss reinsurance is a process which transfers the risk 

above an aggregate limit to a reinsurer. Aggregate pricing structure 

can be envisaged as zero l imit stop-loss reinsurance pricing structure, 

e.g., the reinsurer absorbs all the loss. Thus, as far as the pricing 

structure is concerned, we can treat aggregate pricing as a special 

case o f  stop-loss reinsurance pricing. 

I f  F(x), as before, represents the aggregate loss probability 

distribution, without an aggregate l imit ,  then let Ei~) be the 

truncated distribution where an aggregate limit L is introduceds~ ~ and 

~L are respectively the mean and standard deviation of E ~  ). The 

formula for premium, excluding loss expense, charged for stop-loss 

coverage of an aggregate l imit  L is given 18 as follows: 

17 

18 
See t lS] .  
See [5 ]  p. 85-87. An .al ternate suggestion for  the safety loading 
in formula (2) is to use the standard deviat ion ~r~ instead of  
variance ~ ,  see ( I ]  . 
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where the loading coefficient C generally is chosen from experience. I f  

L is zero (e.g., this is a full stop-loss coverage for the primary carrier) 

~d L and (~'L become aggregate /M and O" as specified before. Suppose a 

is the loss expense ratio, then the total premium charged for a stop-loss 

coverage with limit L is (Ha)~ • Then by definition, the increased l imit 

factor,~(L), of a stop-loss policy limit L imposed on a stop-loss basic 

l imit L e is 
Total premium of policy l imit L 

~ (L ) -  Total premium of basic l imit L o 

('°)P~. &o*,~:  
A formula is needed to ca lcu la te  [w~. and ~'L " This can be worked 

out from the truncated distribution FL(~ ). Since the aggregate loss of 

the reinsurer under a stop-loss coverage with a policy l imit L is 

reduced by an amount of L dollars, the probability FLtW ) is given by: 

F,~) = Fr,~L ) (4) 
Hence, the ~Ik~ moment,~ULj ~ accordingly is defined by: 

= 1:" ,~aFt,~L) 

(replaced variable x+L byx ) 

= J~{,-L)J'aF(.) 
part icu lar ly ,  when j = I and 2, we have 

/",. = =C"JR"-/,* L " r "  

I"L,, =/~" t j'aF~.~ 

=/2,,~t=,.)-/~',,ua.)-zL~.-L~,~m~÷L'Ca~> 

=~+i.'-J~'.'aP.)-zL~, *P(,-R,~) r~> 
- 368  - 



Notice that ~r~m~&, - ~  , thus two more values: 

have to be calculated before we compute formula (3). For this, the 

precise form of ~ )  would come into play. Since by (1), 

d Ft, O 
- Z 

Substitute dF{~) in (7) by (8). We have 

(exchange the order of integration) 

NOW the f i r s t  integrand ~£, i~ I (1 '~ '~ '~ ] )~X(denoted by ~ ( i ' l )  

qD 

IgJ 

~) 

in (9} 

has a closed form, and the desired values are given as fol|ows: 

Table 4 

~m 
L'¢~,~(L¢,~R,) , ,L#(o,(:t# ÷tin) 

f,J 

where g(t) and f ( t )  are given as before in Tables I and 2. 

In summary, the increased limits factor I(L) is calculated by 

formula (3), where ~mOf . ,~wi th  ~a,, and ~/.,Kgiven by (5) and (6). 

Whereas in formula (5) and (6), ~L~3Jf~,~,~is calculated by: 

Tab]e 5 
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The integrations in Table 5 can be handled by any numerical integration 

technique as discussed before, e.g., extended Simpson's rule, etc. 

Exhibit I l l  i l lustrates an increased l imits table derived by formula (3) 

and tables 4 and 5. 

Conclusion 

The effectiveness of the estimation of aggregate loss probabil ity 

and the aggregate pricing model introduced in this a r t i c le  w i l l ,  to a 

great extent, depend on how consistantly the loss-experience data is 

treated. In our model, we assume that al l  the losses have already been 

adjusted to the present or ultimate level. That is: losses have been 

developed to the ultimate; IB~R has been adjusted and inf lat ion has 

been trended to the forecasting year, etc. The reason that we did not 

discuss those in here is because they are rather standard actuarial 

techniques practiced in most areas of rate-making and have been covered 

extensively elsewhere in the l i terature.  19 

The analysis shown above indicates that for many classes of 

distributions the new modified gamma approximation is superior in 

estimation accuracy and poses no signif icant increase in computation 

e f fo r t  or expense. The new technique thus, is potent ial ly valuable 

in more ef fect ive pricing of certain classes of reinsurance. 

19 
An alternate approach is to incorporate those effects into the 
parameters of distr ibution as suggested in [12] and [15~ . 
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Exhibit I 

Generalized Poisson Model 

Aggregate Probability F(X ) (%) 

: .5, Sev = Gamma ~ = l , Sev = Inv. Normal 

A MG G NP A MG G NP 

~ = 5, Sev = Gamma 

A MG G NP 

-I.5 4.87 4 .87  4 .87  5.04 

-I 15.58 15.58 15.56 15.87 

.5 32.93 33.09 33.06 33.28 

0 53.14 53.33 53.33 53.30 

.5 71.28 71.32 71.33 71.14 

l 84.33 84.33 84.35 84.13 

1.5 92.30 92.30 92.31 92.16 

2 96.56 96.56 96.56 96.49 

3 99.44 99.44 99.46 99.45 

4 99.93 99.93 99.93 99.94 

5 99.99 99.99 99.99 99.99 

2.49 2 .60  1 .90  2.28 

14.17 14.21 14.29 15.87 

34.69 34.79 35.28 36.16 

56.33 56.36 56.65 56.45 

73.52 73.51 73.50 72.76 

85.05 84.99 84.88 84.13 

91.99 91.85 91.82 91.29 

95.86 95.80 95.76 95.45 

98.98 98.98 98.97 98.90 

99.77 99.77 99.77 99.78 

99.95 99.95 99.95 99.96 

q 

78.49 78.47 78.52 71.44 

87.18 87.20 87.20 78.81 

91.44 91.44 91.46 84.13 

94.00 94.00 94.01 88.05 

95.68 95.68 95.68 90.97 

97.63 97.63 97.63 94.81 

98.64 98.64 98.64 97.01 

99.20 99.20 99.29 98.27 

Frequency Mean I00 77.84 100.5 

Severity Coefficlent 
of Variation 2.5 3 25 

Note: (*) Points below zero dollar l imit. 

( I)  All four models are calculated by a HP-19 programmable calculator. 
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Exhibit II 

Generalized Negative Binomial Model 

Aggregate Probability F{~ ) (%) 

~ . ~  ~ = 2~Sev : Normal ~ : 3~Sev : Normal 

A M6 6 NP A MG G NP 

-1 .5  * * * * * * * * 

- I  * * * * * * * * 

- .5 39 .86  39.32 39.35 42 .97  40 .43  40.63 41.11 50.00 

0 63.51 63.39 63.21 61 .90  69.33 69.35 69.25 66.06 

.5 78 .03  78.10 77.69 75.16 81.57 81.49 81.41 76.79 

l 86.71 86.77 86.47 84 .13  88.37 88.42 88.29 84.13 

1.5 91.95 92.01 91.79 90.04 92.47 92.52 92.40 89.18 

2 95.13 95.09 95.02 93 .84  95 .05  95.08 94.99 92.64 

3 98.33 98.32 98.17 97 .72  97.79 97.78 97.75 96.63 

4 99.40 99.40 99.30 99 .19  98.99 99.00 98.96 98.47 

5 99.78 99.78 99.75 99 .72  99 .53  99.53 99.51 99.31 

Frequency Mean 90.25 I l l  

Severity Coefficient 
of Variation 2 

= 5 , Sev = Gamma 

A MG G NP 

• , * * 

78.61 7 8 . 5 9  7 8 . 5 2  7 1 . 4 4  

87.22 87.21 87.20 78.81 

9 1 . 4 6  9 1 . 4 6  9 1 . 4 6  8 4 . 1 3  

94.01 94.0l 94.0l 88.05 

9 5 . 6 7  95 .67  9 5 . 6 8  9 0 . 9 7  

97.63 97.63 97.63 94.81 

9 8 . 6 4  9 8 . 6 4  9 8 . 6 4  97 .01  

99.20 99.20 99.20 98.27 

lO0 

25 

Note: (*) Points below zero dol lar l imi t  

{I)  All four models are calculated by a HP-I9 programmable calculator. 
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Exhibit la 

Generalized Poisson Model 

Variances of Modified Gamma, Ganma and NP 

vs Analytical Model 

~= .5 Sev = Gamma 
Z(= x~ t--~ ) MG/A ~ NP/A 

-1.5 0 0 .17 

-I 0 -.02 -.01 

-.5 .16 .13 -.65 

0 .19 .19 .16 

.5 .04 .05 -.14 

I 0 .02 -.20 

1.5 0 .Ol -.14 

2 0 0 -.07 

3 0 .02 .Of 

4 0 0 .Ol 

5 0 0 0 

= l Sev = Inv.Normal 
MG/A G/A NP/A 

.ll -.59 -.21 

.04 .12 1.70 

.lO .59 1.47 

.03 .32 .12 

-.01 -.02 -.74 

-.06 -.17 -.92 

-.14 -.17 -.70 

-.06 - . l  -.41 

0 -.Ol -.08 

0 0 .Of 

0 0 .Ol 

= 5 Sev = Gamma 
MG/A G/__.A NP/A 

x x x 

x x x 

x x x 

-.02 .03 -7.05 

.02 .02 -8.37 

0 .02 -7.31 

0 .Ol -5.95 

0 0 -4.71 

0 0 -2.82 

0 O. -1.53 

0 0 -.93 

Variance 
vs Analytical 
Model 

.006 .005 .051 .005 .080 .652 0 0 30.243 
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Exhibit l l a  

Generalized Negative Blnomijl Model 

Varlancesof Modified Gamma, Gamma and 
NP vs Analytical l,~del - 

z(= w~# ~ ) 

-1.5 

-I 

-.5 

0 

.5 

l 

1.2 

2 

3 

4 

5 

= 2 Sev = Normal ~ o 3 Sev = Normal 
MG/A G/A NP/A MG/A G/A NP/A 

x x x x x x 

x x x x x x 

-.54 -.51 3.11 .20 .68 9.57 

-.12 -.30 -l.61 .02 -.08 -3.27 

.07 -.34 -2.87 -.08 -.lO -4.78 

.06 -.24 -2.58 .05 -.08 -4.24 

.06 -.16 -l.91 .05 -.07 -3.29 

-.04 - . l l  -I.29 .03 -.06 -2.41 

-.Of -.16 -.61 -.Of -.04 -l.16 

0 -.lO -.21 .Ol -.03 -.52 

0 -.03 -.06 0 -.02 -.22 

~ =  5 Sev = Gamma 
MG/A G/A NP/A 

x x x 

x x x 

x x x 

-.02 -.og -7.17 

-.Of -.02 -8.41 

0 0 -7.33 

0 0 -5.96 

0 .Ol -4.70 

0 0 -2.81 

0 0 -I.63 

0 0 -.93 

Variance 
vs 

Analytical 
Model 

.036 .066 3.654 .006 .055 17.933 .000 .001 30.612 
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Exhibit I l l  

Sensi t iv i ty on the Selection of Severity Distribution 

Aggregate Probabil i ty (%) 

Frequency = Poisson 

Frequency mean = 60.383 

Severity coeff icient of variation =4 

Z = ( ' ~ )  Inv. Normal log-normal 

-1.5 0 .01 

-I 10.71 .02 

-.5 37.34 8.07 

0 59.98 74.7] 

.5 75.66 92.52 

I 85.64 94.92 

].5 91.70 96.23 

2 95.28 97.09 

3 98.52 98.15 

4 99.55 98.77 

5 99.87 99.15 

Severity skewness 12 68 

Aggregate skewness 1.5 9.02 

- 3 7 6  - 



Increased Limited Factors Exhibit IV 

(1) (2) (3) (4) (5) (6} (7)* (8)* 

o" 

-1.5 .04871o .284267 .186949 1.324071 11.745089 1.353434 3.14457 

-1 .155801 .362889 •860435 1.061534 13.363123 1.094942 2.54399 

-.5 •330885 .885834 2.425967 .680985 14.5438ii .717345 1.66668 

0 .533291 1.58903i 4.873]83 .397018 13.354i80 .430403 1.00000 

.5 .713208 2 .302312  7.704674 .210377 I0.460275 .236528 •54955 

l .843333 2.882251 10.292049 .i01770 7.101659 .119524 .27770 

1.5 .923029 3 ,276798 12.246940 ,045233 4.248274 .055854 .i2977 

2 .965591 3 .508574 13.509924 .018602 2•273409 .024286 .05643 

3 .99460! 3 .685267 I4.588247 .002567 .490539 .003793 .00881 

4 .999351 3.71884I I4.825890 .000284 .077647 •000478 ,00111 

5 .999937 3.723562 14.863940 .000026 .009605 .000050 .00012 

(*) Parameters: Frequency mean = 100.551724, severity coefficient of variation : 2 . 5  aggregate coefficient~-:JT~@IJB 

laoding coefficient c = .0025*0" . Aggregate mean is selected as the stop - loss basic policy l imit  

Note: Columns (2), (3) and (4) are calculated by using extended simpson's rule with integration range Lg~ioJ 
subdivided into 50 intervals. 

i 
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Appendix 

A, Backgrounds on distributions listed in this naDer. 

AI. Function tj, ipes 

Table AI 

Frequency Distributions 

Type Density Function ~(n) Range of Earameters 

Poisson e-~An/~l A ~0  

Negative Binomial 20 ~ . ~ } w ' ( ~ } F } ) ~  4,J'~°. O ~  

Table A2 

Seyerity. Distribution~ 

Cumulative 
Type Notation Dist. Function Range of parameters 

G~ G(x~b,~,) - ~ r . ~ ; ~  ~,~o 
Inverse Normal ~ (XIQ, ~) ~e-~'~'~,~ R,~,O 

Pareto p(Xi ¢illi) ~ - O .I. ~ ) ' ~  c ,o, ~I a (  

A2. Characteristic Functions 

A powerful feature in the study of distribution Functions and their 

moments is the characteristc function. ~(~),  associated with a given 

distribution function F. which is defined as 21 

~O. T.e p~oete ,  a~ given b~: ~: c~-~, ~/,/ ~ d ~ - ~ , ~  
see [q] p.167 

zl .  See E~] Chap. 4 
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where i = ~ is the imaginary number. The overwhelming advantages of 

using the characteristic function is evident from the following: 

(1) A moment generating function is defined over real nomber; the 

characteristic function is i ts complex analogue. I t  retains all the desir- 

able properties of the mo~nent generating function and unlike 

the moment oenerating function, i t  always exists; 

(2) a standard mathematical technique known as the Laplace transformation 

(or Fourier transformation) asserts that as long as the characteristic 

function is known, one can rediscover the associated distribution 

function. This invertible property (not valid for moment generating 

function) offers an algorithm to compute the aggregate loss probability 

directly. 

Without using these two features of characteristic functions, 

the derivation of our formula for the new model would be v i r tual ly 

impossible. 

Among the six severity distribution functions listed in Table A2, only 

the f i r s t  three have an explicit Form for their characteristic function. 

The last three do not admit any closed form for the characteristic functions. 

We wil l  derive the characteristic function of the inverse normal distribution here, 

22 and leave that of the normal and gamma to the interested reader. 

~.etting the variable ~ ' ~  in the c.d. f of inverse normal (Table A2), 

we have 

22. See {9] pp. 147 and 152 - 381 - 



NOW, observe that 2&J~:d(~Fa/~.) + , ~ ( ~ - : I ~ - ) ,  thus 

= l 

mxtsettingvariable~.&J+a/~- in the f i r s t  integral and ~ = ~ - # ~  in the 

second, i t  follows that 

(change ~ : ' I ~  ) 
L r 4.m, ,.~,-a~ +F~-/,~i I e-I'/, d~ 

Thus, we have a practical form for the inverse normal distribution 

expressed in terms of the normal distribution: 

I(~,;a,s) = = '~r ~ , - d , ~ ; o , 1 )  
The calculation of the characteristic function follows closely the 

approach ~idq led to the derivation of formula (l l ) .  In fact, by defini t ion, 

~e joe - 

(change ~ -- #"[~ ) 

Compare the form inside the oarenthesis with the r .h .s  of  ( I0 ) ,  i t  is ident ica l  

to I(~;f~, b )13taking~ the fact that cumulative probability is a]ways equal t~ 

I when the argument tends to i n f i n i t y ,  then 

~3w~ ) = ex r (~b(.-~T)) (~) 
The comparable results for the normal and gamma distributions are given by 

{ ~ m  = e~Hi~ t , -~e  ; ,  for norm°, (13) 

~ m  = { | ° ' ( V b )  ° ~  1 for  gamma 

2-3-.-Since parameters of d i s t r i bu t i on  have to be real numbers, while, here we have 
complex numbers involved, i t  is thus confusing to use same notat ion. However, 
in this par t i cu la r  case (and except this ambiguous notat ion) the property of  
d i s t r i bu t i on  s t i l l  holds in the extended s i tua t ion ,  see M Abramowitz and 
I .A.  Stegan: "Handbook of Mathematical Functions" Mational Bureau of Standards, 

- 382 - 
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A3. Background information on the Inverse Normal Distributio_n. 

An immediate consequence of deriving the characteristic function is 

that one can readily determine the cumulantS of a givwn distribution 

function. Since, by definit ion, log ~O..(t) can be formally expanded as 

follows: 24 

where ~## ~ and T# are the mean, variance and skewness of S.  Now, appl~ (S4) 

to inverse normal d i s t r i bu t i on ,  we have 

t 

From a comparison with the right hand side of (14), i t  can be deduced that 

Next, solving the f i r s t  two equations for  a and b, and placing the resul ts 

in the last  equation, i t  can be seen that:  

A4. The skewness of severity/ d i s t r i bu t i on  

The last equation of  ( l l )  proved the case of inverse normal d i s t r i bu t i on  

stated in Table 3. The case of the normal is qui te s t ra ight  forward, since: 

24. See[gJ formula (4.3.3) p. 111, note that in [ 9 ] ,  the term semi-invariants, 

instead of cumulants, is used. 
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thus ~h~=oi.e., ~=o. As for the gamma distribution: 

log %(,~ =-/, .Is (~-~dh) 

or &=1,16,,¢=i,/~/' a°d &~'=~*l~{ ,t follows that 

which completes the case for the gamma distribution. 

For the other three types, i t  is necessary to use an alternative definition 

of skewness, which ( i f  i t  exists) is 25: 

= , ~ ' ~ ( £ t ~ ' 1 - J N E [ e J  +z~/) {,6) 
In carrying out the calculation of the f i rs t  three moments of the pareto, 

log-normal and log-gamma distribution, we have the following table: 

Table A3 

Type E(X) E(X 2 ) E(X 3) 

I og-gamma (i" qa)'r (I-21a)-v" (,- ~la )-4, 

where in order to ensure the existence of the integration in the derivation of the 

3rd moment, the following conditions have to be satisfied: 

/ ~ )3 t in pareto case (~7) 

)'3n in log-gamma case 

?5. See [q] P. 73 
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By solving the f i rs t  two columns of Table A3 for parameters in each case 

and substituting the results in the last column and in formula (16), we have the 

following table: 

Table A4 

Type Parameters Skewness 

l og-gama'' (2 

By using an expl ici t  value for m in (17)~ the assertion of the footnote 14 

for the pareto case is established. For the log-gamma case, since ( | / ~ )  is 

the root of H~-,x ) (see footnote 26) and the graph of H(@.x.) can be 

portrayed as follow: 

H 

H(.,J) 

| X 

where (~-2)/2(E,-I) is a local minimum point of H(G~X). Thus the requirement 

of (17) asserts that ( ~ ) ( ~  ,~vhichis equivalent to ~.l(~. I/~)~0 s Or 

We thus prove the last assertion of footnote 14. - 385 - 

26. Since from the f i r s t  two colums in Table A3, we have ~ / l~ )=- I# ' ,~e~ l° ' l /Q)  
log ( ~ z # ~  ) : - v log  (.L-X/G), hence ~ )  is the solut'Ibn of the fo l lowing 
equation " "  



B. Anal~tical Model 

A fundamental equation in collective risk theory demonstrates that the 

aggregate cumulative distribution function F(z) of annual aggregate loss less 

27 thanorequal to Z, is given by 

where sn*(~) is the nth convolution of S or, equivalently, the cumulative 

distribution ofexactlynclaims with total loss less than or equal to Z and 

p(~,) is the frequency density function as listed in Table AI. 

Formula (18) has practical value only when the characteristic function 

of S has a closed form, so that the precise form of sn*(z) can be derived. 

Among the severity functionsin Table A2, only the f i r s t  three meet this 

condition. For the rest three which do not admit a closed form for the 

characteristic function an alternative numerical technique has to be devised to 

calculate their characteristic functionsjthis would cause the whole computation 

not only time consuming but also, sometimes~very messy. 

In the case of normal, gamma and inverse normal, where their characteristic 

functions are known, i t  is possible to use the following two fundamental properties 

of characteristic function: 

( i) the characteristic function of the convolution of two Functions is 
the product of their respective characteristic functions; 

( i i )  i f  two distribution functions oossess identical characteristic 
functions, then the distribution functions are equalp 

we can derive the expl ici t  form for the sn*(z) as shown in the following table: 

27. For an expository treatment of collective risk theory, please see I~l  
and ~17~. 

- 386 - 



(1) (z) (3) 

,o l 

Gamma ~(~;I,,/0 (~-~V6)'~ (~-~16)"r 

Inverse Normal Z(E;~I,~) ~Xt(Zk(O-¢~) ) e , ~ ( z , b ( a - , ~ ) )  

(4) 
s"T(z) 

~(~;6,~,) 

In column (3)iproperty (i) is used and in column (4)#property ( i i )  is used. 

C. Gamma Approximation 

CI. T.he derivation of the 9amma aporo×imation 

The gamma distribution G(~b,?) has only two parameters which are' 

determined by the f i r s t  two sample moments. I f  we add one more parameter 

to the function, G(x¢~;bn~ ), then the third moment is required to estimate 

the parameters. This procedure is called the gamma approximation. 

To specify parameters x, b and p, one sets up three equations 

for the f i r s t  two moment and skewness, then solves them for x, b and p. To 

do this let us f i rs t  calculate the characteristic function of G(~f~.m;~ i ~  ). 

Since the density function of G(~.+m/bl ~) )is 

d b P 

then the characteristic function is defined by 

% (4.)= ~) ~'e~'tz(''.l"4e'bOz'"d~ 
( letting y = x ÷ ~ )  

= rlf~ 

: e "~*" ( ( -  ~+/6 ) -e  ((9) 
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take logrithm both side)and expand the le f t  hand side into power series 

of ( i t ) ,  we have 

compare the coefficients of the three lowest terms of ( i t ) ,  we set up three 

equations : 

solve them for x, b and p, we have 

Therefore the gamma approximation is expressed as 

o 

(lett ing ~, : Z  } / ( ~ ) ~  ) ) 

Ca°) 

t20 
C2. Aggregate skewness 

In applying NP or gamma approximation, one needs the input of aggregate 

mean, standard deviation and skewness. In this section we are going to derive 

the aggregate skewness for both generalized poisson and negative binomial 

models. 

As usual we f i r s t  calculate the characteristic function of either model. 

Taking the fact that characteristic function of S n* is the product of n 

characteristic functions of S, together with formula (18) and the expl ici t  

form of p(n) in Table At, i t  is not d i f f i cu l t  to see that the characteristic 

function of the aggregate distribution function F is given by. 

)}, 

h J- } ~ h - ~  
" i  I -  ~ / s 
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Where %( * ) : I  + ~ ( i { )  +~f2, ( ; tF+~, , [6 ( i tF  . . . . .  is the 

characteristic function of the severity distribution S. Taking the logrithm 

both sides, i t  becomes 

for poisson 

for negative binomial 

Identifying the coefficients of ( i t )  3 both sides, we can evaluate 28 the 

aggregate skewness. They are qiven as follows: 

(z3) 

Table A5 

A99regate Skewness 

Generalized poisson model Generalized negative binomial model 

Table A5 is a general formula for aggregate skewness and does not use the precise 

form of severity statistics. I f  the individual severCty type is incorporated the 

formula for skewness would bear the following form. 

28. This is done by expanding~( ~ ) into series of ( i t ) ,  and using footnote 20 
for the negative binomial model. 
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Table A6 

A99regate Skewness 

Severi t~,/Frequency Poisson Negative binomial 

inverse normal P ~  ¢'J~l ¢' L ) ~  t l  ("~:'fJd/'1) ÷~ t/~ 

pareto J/T~;i-/f"'aJg) {,~O,.~)l~4)~A1/e 

l og-no~al ( ,  V )"1,~ t ,m~)'+ A 1 la 

log-game 29 (c~-~l.~lt,-qo)~/~ ~(~.~r';~W~/,~l,~+,~lla 

where c a=o~/jlf ~ is the severity coefficient of vatiation, 

~o~(#-~)+#~-~) ' /~  and ~(~,+~,~ ~'/' 
D. Modified Gamma Approximation 

DI. Derivation fo the new model 

The approach we adopt for the new bodel is that, f i rs t  we use the 

game approximation technique to match the selected severity distribution 

(one of the six types in Table A2) by identifying the statistics /t/## ~ 

and ~m with those of the slected type, then uti l ize the following well 

known formula 30 

F(Z) = , , I -  

to invert the aggregate distribution function from its characteristic 

function. Thus what we have to do here is to substitute ~(-(.) in 

(24) by (22), then simplify it to the form given in (I), Table I and Table 2. 

29. See footnote 26 for a and v. 
30. This fomula uses property (ii) discussed in section A. For detailed 

information on Laplace transformation please see [17J. 
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NOW, let ~(.~ ) be the modules (or absolute value) of ~If/~r) 
and-g(t) be the arguments of ~('~, then 31 

~(*1?) = Im e';~'~ 
where both f ( t )  and g(t) are real numbers. Replace 

s:'N" in(24) and ~place ~(.~-) by (2~), i t  turns out that 

(Change the 2nd integral by s =-t) 
: ~.- ~ (C~¢~r~'~-.~'~'~v"~ ~ 

(taking the fact that ei~,~ ~ : 2 1  ~'~[~) ) 

which is the form given in ( I ) .  The next step is to find out f ( t )  and 

g(t) in either models. To continue our derivation, let us decompose 

~I~l-~ into two parts: 

then identify (25) with (22) via (26), w~ have 

for poisson 
(27) 

for negative binomial 

The case of the generalized poi.sson model in Table i is obvious from (27). 

31. An complex number can be expressed by its modulus and argument, see ~6] o.6 

32. l~re we take the following fact that 

to demonstrate that "~("'t')=~(i[') a.nd ~I;~'I:-~HJ, and uIt i ] ize in our 
derivationj for conjugate number see [B ] -  
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For the generalized negative binomial, by the ~f '~nit ion of 
35 

modulus and argument , w~ find that 

i 
~t~= ~,- ~trm,,f+ (-~w~1 -~ 

last item that has to be veri f ied is Table 2. This is straight-forward, 

since by (]9) and (20), we have 

(ae) 

where 

~ )  ° a~solu~ values of C ~ - i ~ . '  ) - ( ~ '  C:') 

Comparing bothsfdes of (26) and (28), andexplor ingtheleft  hand side of (29), 

we come to the results of Table 2 

D2. Formula ( t )  via Extended Simpson's Rule 

The extended Simpson's rule is adequate to handle the numerical 

integration of formula (1)and Table 5. Since integration over an in f in i te  

interval is pract ical ly impossible, i% is necessary to integrate over 

a truncated interval. The l im i t ,  R, of the range of integration has to be 

determined. ~so the size, h, of the equally divided subinterval has to be 

chosen in u l t i l i z i ng  Simpson's rule. 

33. See t&'1 p.5-7 

34. For a detailed treabnent of this, please see Stephen G. Kellison: 
'Fundamentals of Numerical Analysis' Richard D. Irwin. Inc. 1975, -~hap. 8 
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I f  a precision up to the sixth decimal point is required, h=.2 would be 

satisfactory. The selection for R would be more complicate. A quick and 

practical way to select the appropriate R is to input t until the value of 

is less than, say, ]0 -6 . Choose that t for R. Generally, the appropriate 

value of R would fal l  in to the range from lO to I00, depend on ~ and ~ . 
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