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A fundamental problem of pricing insurance is: 

When all is known about claims from an accident-or 

policy-year, that year is too old to be relevant for 

next year's coverage. Thus, our ancestors began using 

aggregate historical patterns to estimate how incurred 

costs of recent periods would mature to full ultimate 

value. 

The cormaon accident-year model will be referred to 

as a representative of these development methods. The 

cost of claims from an accident year can be estimated at 

each of several points of time. The estimate at one 

time divided by the estimate at the previous time is an 

observed development ratio. Development stages are 

defined by a series of evenly-spaced time intervals 

measured from the beginning of each accident year. The 

latest observed ratios for each stage are usually 

averaged to estimate how a recent accident year yet to 

reach that stage will develop when it does pass through. 

The compound product of development ratios over all 

stages after a certain stage until the end of time - or 

to some prudent horizon - is a development factor for an 

accident year which has reached that stage. 

The costs used in the process are usually the 

estimated incurred costs of claims reported to date. 
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The assumption that this statistic will follow historic 

patterns rests on a belief that claim personnel who 

establish reserves are both consistent and uneducable. 

Using paid costs instead of incurred costs is more 

objective, but disregards all information about open 

reported claims. There is a tradeoff of advantages to 

be considered. 

Pricing insurance is like predicting adult traits 

of the next unborn generation of a species. Offspring 

are born and then grow teeth, hair, claws or fins and 

learn to walk, swim, hunt or fly and grow to adult size 

and strength. We can observe how youngsters of past 

generations have passed through stages to become adults 

and so can predict how todays children and adolescents 

will ripen. This is even called "development". 

But in predicting the next and future generations, 

we must allow for evolution. In times of rapid 

evolution, many previous patterns of development into 

adults may not be accurate because the adults will be 

different. It becomes necessary to examine the very 

latest information about members of the species at 

every stage. 

Evolution is called "trend" by an actuary. Trend 

factors are calculated across accident years much as 
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development factors are calculated across stages of 

maturity. So, the costs of a future accident year is 

estimated by essentially this formula: 

I COst Of~accident l a  recentl times' devel°pment l ~ t O r  times ~trend~ct~ 

year I 
This paper compares the common accident-year model with 

the uncommon closure-year model. Whereas an accident 

year includes all accidents or incidents occurring in a 

year, a closure year includes all claims reaching 

final disposition during a year regardless of when the 

incidents occurred. 

Closed claim data offer the most recent objective 

information about final costs of insured risks. In 

times of uncertainty, this can be tremendously important- 

particularly when new methods of claim management Or 

other aspects of claim disposition are significantly 

affecting costs independently from circumstances of true 

original incidents. 

Closure-year models are uncommon because they do 

not represent an insurance product. Accident and policy 

years are more natural. Closed claim data is not 

temporally aligned with claims arising from, reported 

in, or covered by policies issued in a recent period. 
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Closure-year models are difficult to assemble. 

Ideally, you should have closure data for claims 

arising from all prior occurrence periods within a 

conservative horizon. Relying upon open claim 

reserves to represent early periods can cloud important 

distinctions between risks. Furthermore, unless the 

insured population is stable and your data source is 

universal, you must have exposure indices for each 

occurrence period. For application to a future coverage 

year, each occurrence period component of a closure 

year must be separately trended in the traditional 

algebraic model. Pure premium trends are the most 

natural, or they may be split into frequency and claim 

size portions. The use of external cost indices and 

trend residuals is not recommended without considerable 

study into how claim costs are determined by occurrence- 

period, closure-period, and intermediate-period influences. 

The simplest conception of a closure-year model for 

representing an accident year is 

Accident Year (T+i)= ~ Accident Year (T-j+1) /Trend 
cost per unit Claims Closed in Year T ~ Factor~ 

Accident Year (T-j+1) l~iY~r~ 1 
J=l exposures 

where M is the number of years required for all claims 

to be closed. More interesting and useful models will 

be presented in later sections. 
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The most serious conceptual problems with 

closure-year models relate to the passage of time 

over long horizons. We toil and spin in a multi- 

variate world of infinite dimension in which relations 

between finite sets of factors do not remain constant. 

Significant changes over only a few years, however, 

mean important variables have not been included. The 

inability to recognize and usefully measure important 

influences is the true conceptual difficulty in any 

model. Other time-related problems will be discussed 

later. 

Another criticism of closure-year models is that 

they ignore information offered by open claims. They 

resemble an extreme of payment development models. 

This criticism, however, leads us to see the value of 

closed claim data as fully-developed factual information 

about claims now reaching final disposition. During 

any times of changing claim management approaches or 

disposition methods which may affect costs, closed 

claim data should at least be used to supplement an 

accident-year model. The algebraic construction of 

closure-year models suggests closed claim trends 

correspond to accident-year development factors and 

certainly can explain and guide their selection. 
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Illustrations in this paper will mostly be drawn 

from the medical malpractice claims study of the 

National Association of Insurance Commissioners, 

which is the most extensive closed claim research 

effort in the public domain. 

AN ALGEBRAIC MODEL 

The model described hereafter relies on the work 

of Archer McWhorter (2), with some important variation. 

Let us define M to be the number of years required 

for all claims to be closed, or at least a reasonable 

horizon where remaining claims may be aggregated with 

little loss of precision, and 

N(t) = the ultimate number of claims for occurrence 
year t, 

n(t,u) = the number of claims from occurrence year t 
closed during closure-year u, 

g(j) = the fraction of occurrence-year claims closed 
in the j-th year, j=l through M, 

r(t) = the claim frequency trend in year t, or 
N(t)/N(t-l). 

We can first use the number of claims closed in 

year T to estimate N (T+i) by a set of M equations: 

n(T-j+i,T) = N (T+i) t__~! 

~ r (T-k+2) 
= 

or, if the claim frequency trend is reasonably constant, 

n(T-j+i,T) = N(T+i) • g(j) • r-J 
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The following table illustrates the estimation of 

N(1979) and the set of gs for various assumptions of 

a constant frequency trend. Claims closed in 1978 in 

the jth year from date of occurrence were equally 

divided between the jth and (j+l)th years preceding 

1979. The sensitivity of the projected claim volume to 

the assumed frequency trend is readily apparent. 

Estimated closing pattern for 
1979 occurrence year: 

Paid Claims 
_l_ Closed in 1978 r= 1.00 1.05 i.i0 1.15 
1 441 .059 .049 .040 .032 
2 916 .123 .106 .091 .077 
3 998 .134 .121 .109 .096 
4 1,194 .160 .152 .143 .133 
5 1,308 .175 .175 .172 .167 
6 1,047 .140 .147 .152 .154 
7 676 .090 .100 .108 .114 
8 388 .052 .060 .068 .075 
9 200 .027 .033 .039 .045 

10 112 .015 .019 .024 .029 
ii 57 .008 .010 .013 .017 
12 35 .005 .007 .009 .012 
13 24 .003 .005 .007 .009 
14 18 .002 .004 .006 .008 
15 + 61 .008 .013 .021 .032 

Projected number of 
claims arising from 
1979 occurrences 7475 9537 12,221 15,743 

Source: NAIC Malpractice Claims, Vol. 2, No. 2 (1980). 
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Once the rs have been specified, the above M expressions 

give us M+l unknowns. Since the sum of the gs equals 

1.000, solutions can be found for N(T+i) and each g(j), 

j=l,2 .... ,M. 

Now we divide the range of claim sizes into L 

intervals using a sequence d(0), d(1), d(2) ..... d(L) 

where d(0) = 0 and d(L) is a coverage limit or else 

d(L-l) is some practical bound and d(L) is infinity. 

then we define: 

C(k) = average claim cost between d(k-l) and d(k), 

P(klj)=probability of a claim closed in the jth year 

having a cost between d(k-l) and d(k), 

P(j)=probability of a claim closing in the jth year, 

¥(t)=total claim costs for occurrence year t, 

S(t)=claim size trend in year t. 

A straight forward algebraic construction of 

Y(T+i) is 
L M 

Y(T+i) = N(T+I) ~C(k) ~ P(klj) • P(j). 

k=l J=l 

Ordinarily, P(j) = g(j). Evaluating each P(klj) and 

C(k) from closed claim data would begin by examining the 

distribution of claims closed in year T for each of the 

latest M occurrence years. This subset of claims for 

each occurrence year may be more homogeneous then the 
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whole and more likely to follow a theoretical pattern 

such as a log-normal distribution. 

If a density function can be found to describe 

the size of claims closed in year T for occurrence 

year T-j+1, then P(klj) can be evaluated by the 

definite integral from a(k-l) to a(k), where 

a(k) = d(k) 

J 

-~T s (T-k+2) 
k=l 

of, if the size trend is reasonably constant, 

a(k) = d(k) • S -j 

A first approximation for C(k) may be the average 

of closed claim amounts between d(k-l) and d(k). If 

L is large, then that may bo sufficiently precise. 

Othe~ise the effect on the average in each interval 

from a translation of the density functions could be 

determined using modern programmable calculators. 

Those who think continuously may readily observe 

that if the density functions can be generalized to a 

joint function of both claim size and year j, then 

Y(T+i)=N(T+i)i ~(L) x f(xs-J, j) dxd j 

oo 

If the size of a claim is independent of the interval 

from incident to disposition, then 

f(x,j) = f(xlj)g(j) = f(x)j(j) and so 

~+l~ :~C~+l~ ~ d~ xflxsJ~gCj~d~dj. 
o o 
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A great many other algebraic models may be devised 

which rely on a knowledge of trends and claim size 

patterns. 

Trendin~ Methods 

Some closed claim studies (I and 6) have used 

trending methods to attempt to reduce the temporal 

alignment differences by "adjusting" the size of each 

claim to what might be expected for a common occurrence 

period. There have been two problems with these methods: 

(i) They are too simple - relying on elementary curves 

with only primative measures of significance or none at 

all, and (2) such techniques assume time passage affects 

claim costs totally independently of all other factors. 

The latter problem will be discussed in later sections. 

Some approaches to resolving the first problem appear 

here. 

Closed claims have been commonly used to indicate 

claim size trends. Changes in the distribution of 

these claims among accident years, ranked by maturity, 

distort the patterns. Better understanding of both 

size and frequency trends can be gained by displaying 

closed claim data by closure period and maturity 

simultaneously. The NAIC publications (3, 4 and 5) give 

us good illustrations of how this may be done. Due to 

the obstinance of some insurers, however, we are unable 
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to observe reliable frequency patterns from this 

source. 

The NAIC maturity and closure period table 

provides ratios of claim sizes from consecutive 

closure periods for each maturity range. The measures 

of variance also shown allows us to use one-way and 

two-way analysis of variance on the array of ratios 

to determine if significant patterns are present. 

Regression methods may be used across closure periods 

within maturity ranges on either ratios or dollar 

amounts but only on ratios across maturity ranges within 

closure periods. 

Interpretation of the horizontal and vertical 

patterns requires some premise of whether the closure 

period influences costs independently of occurrence 

periods and maturity. In the simple trending methods, 

this distinction is overlooked because the time spans 

for which trend factors make adjustment have the same 

width whether measured between occurrence dates or 

between closure dates. If closure periods have an 

influence, then significant differences observed between 

maturity ranges within closure periods could mean 

trend factors should differ between maturities. Other- 

wise, such differences describe changes in trend ratios 
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across occurrence periods. A simple exponential trend 

is appropriate only of no significant differences are 

observed in the array of ratios. Otherwise, you must 

interpret the differences before you can select the 

series of trend factors to apply in an algebraic 

model such as previously described. 

A reasonable way to determine whether costs are 

influenced by the closure period independently of the 

other factors is by reviewing correlations between 

claim costs and external indices for occurrence and 

closure periods. Again, the NAIC (5) has thoughtfully 

illustrated how this can be accomplished. Average paid 

claim costs are arrayed by closure and occurrence 

periods for various severity of injury ranges. Correla- 

tions can be tested for medical indexes, price indexes, 

and other economic indicators. One tenable theory is 

that temporary injuries or losses are compensated at 

actual costs in the period of occurrence while 

permanent disabilities are compensated with regard to 

prices and price changes at the time of disposition. 

For a line of insurance like medical malpractice, 

precision may be gained by using trending methods to 

describe the residual claim cost changes remaining 

after adjustment using economic indexes and also by 
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separately reviewing trends by type or severity of 

loss. 

Claim Size Distributions 

From the wealth of published material about size 

distributions come two principal mathematical prob- 

ability functions: the logrithmic normal distribution 

and the gamma distribution. The rationale behind using 

the log-normal is the central limit theorem from the 

depths of probability theory. This theorem says the 

sum of items taken from similarly distributed 

populations tends to be normal. The size of a claim 

is the product of a great many factors in this multi- 

variate world, so the logarithm of claim size is the 

sum of many terms. Even if we do not know all the 

factors, we can still consider whether observed claim 

size patterns are log-normal. The ganmna distribution 

is a more general one. 

Density ~n~ -~)~ C ~f X~'l 
Function: e 

Mean : ~ ~. ~.b/~ ~/C 

Variance: A,~ *o'~0.L ~ ~/C~" 

Mode: e ~ - ~ - ~  (~-I),,.~ 

Skewness: C,°'~ ~) ~ ~ / ~  

e 
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The symbols~ and ~ in the log-normal formulas 

represent the mean and standard deviation of the 

logarithms. The gamma formulas are determined by two 

constants, ~ and C . For a gamma function to be of 

interest to us, usually ~ must be greater than ].000, 

which means that the mean must exceed the standard 

deviation. Unfortunately, this condition has ruled 

out gamma distributions for most types of insurance 

which have been critical problems recently because of 

the uncertainty of claim amounts as well as frequency. 

A simple way to determine whether observed data 

might reasonably be described as log-normal is to see 

how well the mean and variance of the logarithms of 

observed claims fit the formulas above. The 

hypothetical mean and variance of the logarithms can 

be found by an iterative process since the sum of the 

log-mean and half the log-variance equals the 

logarithm of the object mean. The skewness and kurtosis 

of the logarithms should each be near zero. Skewness 

is a measure of asymetry. Kurtosis is ameasure of 

non-normality. 

Some computational formulas for skewness and 

kurtosis are: 

Skewness= ~(x 3)-3 ~(x 2) (.~x)/n + 2 (~ x)3/n2 

L- l - - - j  
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Kurtosis=~(x4)-4~(x 3) (~x)/n + 6~(X 2) (alE.X) 2/n2-3 n~--~[ "~( i~[2~ ~ (~x) 4/n3_ 3 

If your data has fewer than 1000 paid claims, these 

computations may be more easily done on a programmable 

calculator than by convincing busy data processing people 

to give you sums, sums of squares, sums of cubes, and 

sums of fourth powers of both paid claim amounts and 

their logarithms with double precision. 

Very likely, no theoretical distribution will fit 

observed insurance claim size data for several reasons 

such as these: i) A popular premise is that small 

claims are overpaid and large claims underpaid. 2) Some 

groundless claims are paid for amounts less than probable 

defense costs(nuisance claims). 3) Many claims cluster 

about certain "target values" due to the need to 

approximate uncertain costs. 4) Economic factors operating 

over the occurrence, reporting, or closure period will 

"blur" the distributions. The latter effect may hinder 

analysis of accident-year claims as well as closure-year 

claims. Each is likely to be the sum of a continuum of 

log-normal distributions which will not be log-normal. 

(Products of log-normal distributions may be log-normal, 

but not sums.) 

These departures from theoretical patterns can be 
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simulated on programmable calculators. The log-normal 

distribution, for instance, can easily be generated 

from standard random normal number generating routines. 

Such efforts can be tedious but necessary if the density 

function cannot be modified or successfully integrated 

to find theoretical means, variances, and skewnesses to 

be compared with descriptive statistics from actual data. 

The Gini Index 

The Gini Index of Concentration is another interesting 

statistic for comparing distributions. Named for its 

Italian inventor, the Gini index is a tool used in 

economics and demographics to measure inequality of 

distribution. 

The associated Lorenz curve, L(x), in our application, 

represents the fraction of total claim costs which relates 

to claims closed for Sx or less. The Gini index, G, is 

the ratio of the area between L(x) and an equal distribu- 

tion curve (a 45-degree l'ine when L is plotted against 

percentiles) to the total area beneath such curve. If the 

range of claim sizes is divided into k intervals by a 

sequence 0, d(1), d(2) .... , d(k) and p(t) is the percentage 

of paid claims at d(t) or less, then a standard method 

for calculating the Gini index is: 

G= 1 -~ (p(t+l) - p(t)) d(t+i)) + L(d( . 

t=o 
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Since the indexes are linearly related, very 

likely a great many dramatically different distribu- 

tions could have the same Gini index (9). Nonetheless, 

the Gini index can be appropriately applied to a set 

of distributions understood to be substantially similar. 

Changes in the coefficient of variance, skewness, kurtosis, 

modality, or any feature in the shape of a distribution 

will affect the Gini index. 

The Gini index comes from a class of statistics 

with asymptotically normal distributions, known as 

"U-statistics". Tests for significance of differences 

exist beyond the scope and allowed length of this paper 

(8). Multiplying a distribution by a constant does not 

change the Gini index, but the index is sensitive to the 

number and selection of data points used in its construc- 

tion (ii). Our application concerns substantially 

similar distributions with the same means, so the use of 

a static set of data points should not distort comparisons 

of Gini indexes. 

The following exhibit illustrates a comparison of 

claim distributions according to descriptive statistics 

and Gini indexes. The pattern shown first is for 421 

paid claims closed in the second half of 1977 arising 

from occurrences in the first half of 1974 as reported 
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COMPARISON OF CLAIM DISTRIBUTIONS 

NAIC Malpractice Claims 
from first half of 1974 
closed during the 
second half of 1977 

Random generation 
from a log-normal 
distribution 

Random generation 
from log-normal with 
small claims overpaid and 
l_a[~9_claims underpaid 

Size of Number Amount Number Amount Number Amount 
Claim of claims of claims of claims of claims of claims of claims 

80 $ 74,080 
101 308,656 
64 427,712 
55 716,925 
59 1,671,057 
32 2,029,632 
19 2,634,312 
7 1,690,535 
3 1,713,312 

421 $12,666,221 

$ 1 to $1,999 
2,000 to 4,999 
5,000 to 9,999 

10,000 to 19,999 
20,000 to 49,999 
50,000 to 99,999 

100,000 to 199,999 
200,000 to 499,999 
500,000 to 999,999 
1,000,~00 and over 

1,571 
1,804 
1,785 
1,698 
1,738 

818 
378 
169 
26 
13 

10,000 

$ 1,654,718 226 
6,071,217 191 

12,976,943 170 
24,339,768 157 
55,477,202 141 
57,184,521 63 
52,642,581 29 
49,257,642 12 
17,331,377 i0 
22,441,297 1 

$299,377,266 1000 

Mean 
Standard Deviation 
Log-Mean 
Log-Standard Deviation 
Gini Index 

$ 211,673 
626,524 

1,230,519 
2,212,814 
4,461,099 
4,481,277 
4,199,820 
3,063,956 
7,315,137 
1,251,388 

$29,054,207 

$30,086 
92,263 

8.89 
1.64 
.763 

$29 938 
87 727 

9.15 
1.54 
.704 

$29,054 
91,541 

8.84 
1.67 
.765 



by the NAIC (5). A log-normal distribution with the 

same mean and standard deviation should have a log-mean 

of 9.14 and a log-standard deviation of 1.53. a random 

generation of 10,000 log-normal numbers with approximately 

the same sample mean and standard deviation is shown for 

comparison. Several smaller simulations strongly suggest 

the differences in these statistics and in the Gini 

indexes is more than random. 

The higher Gini index for the NAIC data suggests a 

greater peakedness which might plausibly be explained 

by the hypothesis that small claims are overpaid and 

large ones are underpaid. A random generation of 1000 

claims from a population with log-mean 8.83 and log- 

standard deviation 1.70 produced the third pattern 

shown in the exhibit after claim amounts less than 

$i000 were amplified by a factor which increased from 

1.00 to 2.00 as the amount decreased from $i000 to $0 

and the excess portion of claims over $500,000 was 

multiplied by .75. The differences between this third 

pattern and that of the NAIC data are well within the 

bounds of random variation. 

DIFFERENCES BETWEEN RISKS 

The greatest value of closed claim data is as 

factual information on the costs of insuring certain 
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risks. If our fears about temporal alignments can be 

overcome, we should be anxious to use closed claim data 

for determining the attributes or classification schemes 

which distinguish individual risks. Recent accident-year 

data refined by class or attribute may not disclose 

differences, or may display false differences, since 

development factors are typically based on aggregated 

data. 

One way to examine the claims costs effect of a 

certain attribute, such as smoking for drivers or 

board certification for physicians, would be to construct 

separate algebraic models for each data group. But that 

would be subject to the weaknesses of all the trending 

methods and would be a laborious task, especially if 

the attribute has several values. 

Multivariate statistical methods can be straight 

forward and enable the researcher to either control or 

manipulate several variables at once. Hence, if temporal 

alignment is feared to be influencing comparative 

observations from closed claim data, then a sensible 

remedy should be to include time values in a multivariate 

analysis. Such methods are able to recognize the inter- 

actions of factors, so the earlier criticism of simple 
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trending methods which assume time affects costs 

independently of other factors becomes less worrysome. 

Multivariate statistical methods have an advantage 

of precision. The significance of differences observed 

for any any variable is measured by comparing those 

differences to measures of "error", "unexplained", or 

"random" variance. When other factors are present which 

"explain" additional portions of the variance, then the 

error variance is reduced. Seen this way, multivariate 

methods are indispensible for reviewing closed claim data. 

In the remaining pages attention is given to analysis 

of variance and multiple regression. Thorough and 

understandable discussions of these methods can be found 

in the references (12 and 14). Brief mention will be 

made of more advanced methods and their application. 

Anal~sis of Variance 

The NAIC studies (4 and 5) have a great many 

illustrations of analysis of variance. The basic 

concept is very elementary. Variation between group 

or cell means is compared against residual or random 

variation "within" groups. For several factors and 

several groups, it is analogous to tests using the 

standard t-statistic for two group means. 

The F-test for significance assumes the populations 

are normally distributed. The computation process assumes 
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homogeneity of the variances within groups and that the 

dependent variable has continuous measure with equal 

intervals. The latter assumption is not of concern in 

our applications. Non-homogeneity of variance increases 

the residual variance and makes the F-test more con- 

servative. Simulation models with pure premium distri- 

butions - products of non-normal frequency and amount 

distributions - on a programmable calculator have found 

non-normality to also reduce F-ratios. Nevertheless, 

the NAIC analysis {4 and 5) have found several large 

F-ratios. The conclusion is that analysis of variance 

with standard F-tests is very robust. Nonparametric 

analysis of variance methods based on rankings may be 

used to verify results, but are less powerful for 

detecting false hypotheses. 

The following tables and calculations illustrate 

the concept of analysis of variance with two independent 

variables. The illustrated analysis seeks to determine 

whether the average cost of physicians' malpractice 

claims differs by type of practice and uses the year of 

claim disposition as a "control" variable. Occurrence 

year may be a more natural control or possibly both 

occurrence year and time required for disposition could• 
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PHYSICIANS AND SURGEONS 
MALPRACTICE CLAIMS BY TYPE OF PRACTICE AND YEAR OF CLAIM DISPOSITION 

Type of 
Practice 

Institutional 

Prof. Corp. or Ptnship 

Self-Employed 

Employed 

Resident 

Total 

1975 

Claims 88 
Indemnity 1,420,734 

Claims 873 
Indemnity 18,646,181 

Clazms 1,775 
Indemnity 37,207,032 

Claims 150 
Indemnity 2,705,521 

Claims 3 
Indemnity 194,333 

Clalms 2,889 
Indemnity 60,173,801 

Closure Year 
1976 1977 1978 Total 

108 86 89 371 
1,3].3,063 1,607,970 2,695,430 7,037,197 

1,370 1,333 1,585 5,161 
27,808,980 33,798,124 54,212,985 134,466,270 

2,674 2,457 2,730 9,636 
60,277,675 57,968,550 89,203,413 244,656,670 

201 293 219 863 
3,188,934 7,433,108 5,423,285 18,750,848 

i0 8 13 34 
128,705 116,875 100,411 540,324 

4,363 4,177 4,636 16,065 
92,717,357 100,924,627 151,635,524 405,451,309 

Total sum of squares of raw amounts: 68,739,329,480,645 

Source: NAIC Mal~ractice Claims, vol. 2, Number 2 (1980). 



Computations for Analysis of Variance 

Correction from raw amounts to (405L451,309)2 10,232,851 796,051 
deviations from the mean .... 16,065 = 

Total Sum of Squares = 68,739,329,480,645 
-lOt~32.cS..5!LZ96~051 
58,506,477,684,594 

Between All Groups Sum of Squares = ~  ~ (indemnitz~ ~ -C 
types years claims 

= 10,684,688,432,954 
-i0,232r851~796,051 

451,836,636,903 

Between Types of Practice 
Sum of Squares 

Between closure years 
Sum of Squares 

Interaction Sum of Squares 

Residual Sum of Squares 

= ~ (~ indemnit~ -C 
types ~ claims 

= 10,264,702,339,317 
-10,232~851,796,051 

31,850,543,266 

= > (Zindemnit~2 -C 
years ~ claims 

= 10,621,930,858,946 
-lo, 212,851 7~96, o~ 

389,079,062,895 

= 451,836,636,903 
- 31,850,543,366 
- 3 8 9 , . . ~ _ 9 ~ 0 6 ~ 8 _ _ 9 5  

30,907,030,742 

= 58,506,477,684,594 
451,836j636,903 

58,054,641,047,691 
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FINAL ANALYSIS OF VARIANCE TABLE 

Degrees of Mean 
Freedom S~uares 

Between types 
of practice 4 

Between Years 3 
Interaction 12 
Residual 16,045 
TOTAL 16,064 

F-ratio 

7,962,635,817 
129,693,020,965 

2,575,585,895 
3,613,959,229 

2.203 
35.887 

.713 

level of 
s i_@ni ficance 

.066 

.000 

.740 
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be used in a three-way analysis of variance. Closure 

year was selected for ease of illustration. 

In the final Analysis of Variance Table, the sums 

of squared deviations from the means ("sum of squares") 

are divided by the statistical degrees of freedom to 

achieve "mean squares", which are the estimates of 

variance used in this process. Each of these is compared 

with the residual mean squares to determine the level of 

significance. Note that if closure years had not been 

included in the analysis, the residual mean squares would 

have been greater, the F-ratio for types of practice would 

have been lower, and the level of significance would have 

been greater. (The level of significance is the 

probability observed differences could occur randomly.) 

Multi____~_~___le Regression 

Multiple regression estimates the magnitude of 

relations between factors and has more general capability 

then analysis of variance. Control variables can be 

included more naturally. If the number of observations 

in the groups or cells are unequal, multiple regression 

is preferred. There is an R 2 statistic to describe the 

portion of total variance "explained" by the set of 

independent variables and an F-ratio for significance. 
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However, the calculations are much more extensive• 

Desk calculators are impractical beyond four or five 

independent variables• 

The desired expression is of the form 

Y=A +B(1) X (i) + B(2) X (2) + ... + B(N) X (N) 

where Y is the dependent variable, the set of X's is 

the set of independent variables, and the coefficients 

A and B(1) to B(N) are found to minimize the squared 

deviations from the predicted values. The process 

requires solution of a set of equations: 

r(l,l) b(1) + ... + r(l,N)b(N) = r(y,l) 

riN,l)b(1) + ... + r(~,N)b(~) = r(y,N) 

where r(i,j) is the correlation between X(i) and X(j), 

r(y,i) is the correlation between Y and X(i), and b(i) 

is the standardized regression coefficient• 

The importance of a single factor X(k) is usually 

evaluated by the significance of the contribution it 

makes to R 2. Multiple regression strategies are a 

modern art form, admirably discussed by Cohen and Cohen 

(12). For our applications, the preferred strategy 

apparently is to first include the necessary control 

variables such as time of occurrence, determine an R2 
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for this limited set of independent variables, then add 

the particular variable of interest such as age, gender, 

or marital status, and redetermine R 2. 

Because of random fluctuations, any variable added 

to the set of independent variables will always increase 

R 2. Most researchers prefer to use a corrected or 

"shrunken" R 2 which is a better estimate of the 

population R 2. With k independent variables and sample 

size n, the corrected value is: 

n-l. R2c = 1 - (i-R 2) 

In the simple case of two independent variables, 

we can define the simipartial correlation, sr, of Y 

and X(2) to be the correlation between Y and X(2) not 

related to X(1). Then, 

R 2= (r 2 (y, i) +r 2 (y, 2)-2r (y, i) r (y, 2) r (I, 2) ) 

F/~2(1,2) 2 
st2= (r (y, 2)-r (y, i) r (i, 2) ) /(l-r2 (i,2)) 

F(x(2))=sr 2(n-3)/(l-R 2). 

Independent variables must be discrete or nominal 

for analysis of variance, but may be continuous for 

multiple regression. Continuous variables usually 

provide the greatest information value. 

Discriminant Anal~s 

A set of independent variables may be used to 

estimate group membership as the dependent variable. 
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Most applications discriminate between two groups, but 

discriminant analysis can be adapted to three or more 

groups. Some natural applications for insurance are 

classification of risks and answering claim management 

questions: Which claims will be paid? Which claims 

will include law suits? What will be the outcome of 

arbitration? Which claims will reopen? 

Discriminant analysis is becoming recognized as 

a highly sophisticated risk management tool. As soon 

as any untoward incident occurs, the particulars may 

be fed into a discriminant function at a computer 

terminal and the likelihood of a compensable event is 

rapidly determined. The risk manager can promptly 

act to contain the costs. This technology is being 

introduced at hospitals in various parts of the 

country. The basic data is from closed claims. The 

exclusion of incidents which have not produced claims 

may not seriously reduce the predictive accuracy in 

many instances. Even if extensive incident data is 

available, insurance claim costs are clearly necessary 

in corresponding detail. 

The selection of predictive variables is another 

modern art form. Separate discriminant functions 

should be constructed for nominal variables such as 

- 248 - 



gender, marital status, and medical specialty. 

Astonishingly, negative or highly positive correla- 

tions between independent variables increases dis- 

criminatory power (13). 

After discrimant analysis has been used to predict 

which claims will result in payment, a natural step is 

to use multiple regression to estimate the amount of 

payment for each - a loss reserving method. 

A genuine time problem may result if such techniques 

are based on internal data sources only. For instance, 

if a hospital constructed and periodically revised 

its discriminant function for compensable events based 

on its own data, then its own success at decreasing 

costs would also decrease the predictive accuracy of 

the predictive variables. Costs would then increase 

again until predictive power is reestablished. The 

insurance industry has cycles like that. 

Factor Analzsis 

Factor analysis is an extremely complex computational 

methodology for discovering natural dimensions behind 

a Dumber of simple quantitative measures. Psychological 

tests, for example, measure qualities by asking a great 

many questions. Most often researchers are not aware of 

the fundamental dimensions and must seek to learn these 

from many simple measures. 
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This analytic technique may eventually be used 

to find comparatively few important complex dimensions 

represented by the several hundred variables in closed 

claim data collection instruments of recent studies. 

DESIGNING CLOSED CLAIM DATA 

Underwriting, pricing, loss reserving, claim 

management, and loss prevention are only separated by 

brief steps and perspectives. The fact that claim 

files typically contain only sufficient information to 

establish coverage, establish defenses, and compute 

payments should not validly prevent us from seeking 

information important for other functions. 

The data should be designed to answer important 

questions or test important theories. If the task is 

so well defined, then questions can be easily imagined 

relevant to the hypothesis and sample sizes determined 

from formulas in the statistics books. 

Unfortunately, the examples of closed claim 

studies in the public domain have arisen from crises 

in various kinds of liability insurance where there 

have been low frequencies, phenomenal variances, myriads 

of socio-underwriting theories pointing in all directions 

and often conflicting, no deadlines for new theories, 

unresponsive rating systems, and simplistic ratemaking 

methods. 
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Because of these situations, few assumptions 

could be made about expected patterns or variances 

from them and no specific lists of hypothesis could be 

prescribed in advance. The first puzpese of the closed 

claim studies has been to provide an understanding of 

the statistical dimensions and to evaluate the importance 

of hypotheses as they become expressed. Classical research 

designs and statistical analysis have had to come second. 

The closed claim data collection instruments have 

had to be comprehensive. With no reliable knowledge of 

what factors may be importantly related to claim 

occurrences or costs, or of the nature of those relations, 

or of the variances from such, no sampling techniques 

could be intelligently chosen and no data item could be 

dismissed. Hence, the forms have been designed to 

describe as completely as possible the insured, the 

claimant, the relations of the insured and the claimant, 

the incident, the relations of the insured and the 

claimant to the incident, other persons and factors 

related to the incident, the loss endured by the claimant, 

the paths taken to final disposition, and the resulting 

indemnities and expenses. Then hopes have been expressed 

that the forms were not so formal as to preclude other 

significant factors from being discovered. 
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Actuaries bent on substituting fact for impression 

should understand this background and learn from it how 

closed claim data can be an imaginative source for 

designing responsive rating systems, observing trends, 

and answering important questions before crisis 

situations occur. 
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