PROFIT/CONTINGENCY LOADINGS AND SURPLUS:

RUIN AND RETURN IMPLICATIONS

By Gary G. Venter
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As its name suggests, the profit/contingency loading in the insurance
rate serves two purposes: (1) to aid solvency by absorbing some degree of
fluctuation in loss experience and (2) to provide a suitable average return
to the underwriter.

If solvency were considered alome, the loading amount could be reduced
as long as surplus were increased commensurately. However, the desire to
receive an adequate returnm on surplus will tend to keep the ratio of loading
to surplus from becoming too low. It geems therefore that there should
exist an equilibrium point where (a) surplus and the loading together give
sufficient protection against insolvency, (b) the loading is high emough to
yield the desired average return rate and (c¢) for any lower loading amount
any surplus selected will violate either (a) or (b). The most competitive
prenium consistent with the ruin and returm goals will result from this min-
1imum 1oadi.ng.l

By formulating ruin and return objectives it will be found that such
a point does exist and that it can be expressed in terms of statistics of
the portfolio loss distribution. The solvency objective will be gpecified
by giving a maximal acceptable probability of ruin for a set time period,
while profitability goals will be assumed to be in terms of the desired rate
of return on the surplus invested.

To highlight the interplay of surplus and the profit/contingency
loading, these considerations will exclude investment income and expenses.

That is, the return rate will be premiums minus losses over surplus, or

R = W=-L w

where W 13 premiums, L is losses, R is the rate of return and S is surplus.
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The total amount of loading dollars and the necessary surplus will
first be determined for & company's entire portfolio of insured risks.
A method of allocating the loading amount to contract will then be dis-
cussed.

TOTAL PORTFOLIO

Taking the expected values of both sides of (1) yields:

B(R) - w- E(L)
S

2>

or
W = E(L) +S-E(R) (3}

This expresses the premium as the expected losses plus the profit/contin-
gency load of S+ E(R).

Accepting a probability of ruin of ¢ means the insurar wants
P{W+ S < L} < ¢, vhere P 1s the probability operator.

By (3) cthis becomes P{E(L) + S+ E(R) + S s L} < ¢ or:

5 + 5 &R S -T4D)
P ( e < & <€ @

where 01, Tepresents the standard deviation of L. Let T, be defined as the

smallest x such that P{x hl L;J!‘-L} <e, .., ‘I.‘c is the number of standard
L

deviations above expected lossas one must go to have a probability of only

e of expariencing higher actual losses. Since 'r‘ i1s tha smallest such x,

the probability of ruin criterion (4) becomes:

S + S+ E(R) T
— (&)

L
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If we were to graph the relationship between surplus (x - axis)
and the luad SE(R) (y - axis), any combination of surplus and loading
that is equivalent to a point on or above the line SE(R) = T, 0p - S
would therefore meet the ruin criteriom.

This acceptable region is further restricted by allowing only those
combinations of surplus and loading which meet management's returm goals.

For instance, consider the case where the insurer has a fixed return
percentage aim E(R) = a. Then (5) will be satisfied as long as
S > Te qL(i + a), and the loading aS will be minimized at the minimum value
of S in this region, namely at S = T fl + a), The minimum value taken

is then SE(R) = &S = aT, aL(l + a).

Instead of requiring a fixed rate of return, a more general approach
would be for management to seek tc have the expected return rate increase
or decrease with the uncertainty of returm that is 1inherent in its
current mix of business. For example, it may attempt to maintain the re-

lationship:

E(R) 2 a+boap )

wvhere op is the standard deviation of the rate of return, and a and b are
fixed constants. This can be interpreted as requiring the expected return to
be at least as great as some risk free rate a plus b times the standard de-

viation of the return rate. As (1) implies that og = o0p/S, a + b og will

increase as $ decreases. Thus, (6) will allow the underwriter a choice of

return rates depending in part on the surplus invested. Substituting op/S
for og in (6) gives SE(R)> a5 + b oy which constrains the risk load to be

ecual to or greater than the linear function of surplus as + b gy. This

=355~



relationship is graphed along with the ruin requirement (5) on Exhibit 1.
The points in the cross-hatched area above both lines represent surplus/
loading combinations which satisfy both the ruin and the return require~
ments. As is apparent from the graph, the minimum acceptable risk load
SE(R), which generates the minimum acceptable premium E(L) + SE(R), occurs
where the two lines intersect. This point can be determined by simultane-

ously solving the two equations:
SE(R) - T o -5 and
e L

SE(R)y = aS+b o9

- +
for S and E(R). Doing this ylelds S = 1€ =P o and SEp = 2 Te +b '
a+1l L a+l L

which expresses surplus and the loading in terms of the constants a and b and

the statistics Te and oy of the portfolio aggregate loss distributions.

Formulating the return goal as a linear functicn of the standard devia-
tion of the return rate is comsistent with several investment studies as
further referenced in Appendix 1. If some other profitability goal is
followed it will scill be posaible in most cases to find a minimum loading
point in the reglon of loading/surplus pairs satisfying the ruin and recurn
requirements. It should ba noted, however, that 1if the returm objec:iv;
allows for the return amount to decrease as surplus increases in some interval
then the minimum point may occur strictly above the ruin boundary
SE(R) = T, 0y - S. As an example of this, if T, =3.1 and & return criterion
E(R) > .04 + .36 aa is followed, the return boundary will be given by
SE(R) = .04 § + .36 0-/S. This boundary takes its minimun of .24 o, at
at S =3 o Since this point also satisfiaes the ruin requirement

SE(R) > Te GL - § it is the minimum loading possible under both objectives.
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Exhibit 2 graphs this gituationm.
ALLOCATION TO CONTRACTS

Each insurance contract can be treated as if it were an insurer's
entire portfolio in itself, in order to determine the surplus and profit/
contingency loading required to support the comtract on a stand aleone
basigs. The sum of the stand alone loadings and surpluses over all the
insurer's coatracts will usually exceed the load and surplus needed for
the portfolio in its entirity, because of the bemafit of pooling. Thus,
the purchasers of insurance will in general be charged less than their
stand alone loading requirement. The stand alome load 1s what it would
cost to transfer the risk if pooling were not possible. Thus, a reason-
able principle for the allocation of the portfolio loading to comtract
would be to give each risk a uniform percentage reduction from his stand
alone loading amount. This credits esch insured proportiomally for the
salutary effect of pooling.

Non=-pooled risk transfers are not common commercial transactions
when pooling is available, so the price assigned to such contracts should

be based on sound theory. The profit criteriom E(R) > a + b oR has a fair

amount of support and thus seems appropriate for this application. As men~-
tioned above, the stand alone loading under this criterion is “_TEI_Z_aL .
a

where now T, and 9 refer to the individual contract's loss distribution.

The actual loading for each risk will be proportional to this amcunt, with
the constant of proportionality determined 2s the ratio of the loading re=-
quired for the entire portfolio to the sum of the stand alone loadings for
the contracts in the portfolio. For most insurers a model of the distri-

bution of risks in the portfolio will be needed to estimate this comnstant. An

example for a simple portfolio is given in Appendix 2.
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Each contract's loading can also be expressed as being proportional
to (1 + _% TE)cL (by dividing the stand alone loading by a:;l). Numerically
this would be (1 + .15 Te) o using the estimates a = .047 and b = .316
mentioned in Appendix 1. It is important to reslize that this is not a
standard deviation loading, because for a given g, Te will usually depend
on the higher moments of the loss distribution, and thus may vary significantly
among contracts.

It should be noted as well taat the profit/contingency loading devaloped
by this approach is not additive. That i3, tha sum of the loads for two
separate coutracts will not in genaral equal the load for a single comtract
that encompasses both risks. Additivity is sometimes comsidered advantageous
for a loading system on the grounds of ease of calculation, but it is not
clear that it is better in principle. I would like to argue that a loading
system should not be additive in the sense abova, essentially because com~
bining contracts is itself a form of pooling that reduces rigsk. Thus, a
large insured with many homogeneous exposures should have a smaller propor-
tional load than an insured with a single similar exposure unit.

In faver of additivity, it could be argued that a collection of smaller
risks equal in size to a single large risk should have the same total loading,
because the contribution to the portfolio loss distribucion would be the
same. This argument does not comsider tha demand side of the pricing mechanism,
however. Even if the supplier of insurance views writing a large contract
and several small accounts as equivalent propositious, the small insureds would
probably be willing to pay more proportionally above their expected losses to
transfer their risk. This is becauss fluctuations in lossas would be pro-
portionately greater for the smaller insured, bnd because the assats available

to absorb these fluctuations would probably be smaller.



Supply and demand will thus interact to yield a higher profit/
contingency loading percentage for the smaller insured in particular
and more generally for the proportionmately more hazardous contracts.
The above would suggest that this is not a caprice of the marketplace
but rather reflects the higher costs of capital and the proportionately
greater surplus funds needed to absorb the proportionally greater fluc-

tuations in actual experience.
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APPENDIX |

The notion that the expected rate of return should increase linearly
with the standard deviation as one moves to riskier investment portfolios
has some support in the theory of capital markets. Sharpe in [ 6] demon-
strates theoretically that under certain gemeral assumptions on investor be-
havior, stock prices will adjust themselves to maintain a relationship of the
form E(R) = a + b 2y for all efficient investment porfolios, An efficient
portfolio is ome which cannot be jmproved upon in one of the values of risk
or return without deteriorating in the other.

In [ 7], Sharpe tested this theory using 10 years of return results for
34 nutual funds. While a degree of scattering about the linear relationship
E(R) = a + b og was observed, the linearity vas generally confirmed. Expanding
the formulatiom to E(R) = a + b g +c a: produced only a slight improvement in
the correlation coefficient (from .836 to .852).

Cooper in [2 ], Chapter 4, summarizes Sharpe's work and several related
studies, and develops estimates for the coefficients a and b by investigating
the risk/return relationships for 25 mutual funds during the fifteen year period

1957 to 1971. His result is E(R) = .047 + .316 og.



APPENDIX 2
EXAMPLE OF LOADING CALCULATION
An auto BI liability portfolio is assumed to comsist of 100 single
unit exposures plus a fleet of 100 vehicles. The expected frequency of
each unit is 2% with a variance of 2% and the expected severity is $5000
with a standard deviation of $10,000. Then the expvected losses are $100
with a variance of 2,500,000 square dollars by the formula: variance(loss)=
2
variance{frequency) (expected severity) + (expected frequency) variance(severity
See [3] page 14. To estimate T, the gamma approximation to the loss distri-
bution will be used as Tecommended by Seal [5]. The gamma parameters A and
2 ]
r are determined by A= Z(L)/cL =330 and r = A E(L) = ;J':'o . Sums of in-
dependent gamma distributions are themselves gamma with the r, parameters being
o
additive (see [4] page 70)¢ Thus, for the fleet t = ﬁ%?i a .4 and for the en-
tire portfolio r = '?f'oa- .8. A comstant A is maintained throughout as re-
- T d ed b r R e =y
quired by ¢ E(L). 5 is determin Y F ~ Y e dY - /-—5‘
The left hand gide can be estimated by taking enough terms of the sum;
& - pd r- X
rir i rrR
t=0
K=o

(see [1] page 262, formula 6.5.29), where x = X 'I.'£ 0. For ¢ = .01 and o = 100,

x was determined iteratively, vielding the table below:

One Exposure Fleet Portfolio
r .004 A .8
X= AT .04786 3.000 4.130
AC= ¥ r .06324 L6324 .8944
ﬁ .7568 4,744 4.617
o 1581 15,810 23,360
/,E - 1197 75,000 103,200
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Using a = .06 and b = .4 yields stand alone loading dollars of
$664.30, 510,210, and $14,280 for the single risk, fleet and portfolic
respectively. The total of the stand alome loading amounts is $74,640
80 a factor of 14280 <~ 74640 = .1913 cam be applied to each case yielding
$127 for each risk and $1953 for the fleet. The fleet them is charged 15
times as mich loading as each individual risk. This comnares to 10 times
as much for a standard deviation loading and 100 times as much for a variance
load.

The absolute magnitudes of the charges are probably ummarkatable, which
would indicate that a portfolio of 200 such risks would be tooc small to meet

these particular ruin/return goals.
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NOTES

1. The author is indebted to several conversations with Charles
Hachemeister for this formulation of the problem and for a
number of specific suggestions in developing the resulting study.
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