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Abstract: Dimension reduction is one of the major tasks for multivariate analysis, it is especially critical for 
multivariate regressions in many P&C insurance-related applications. In this paper, we’ll present two 
methodologies, principle component analysis (PCA) and partial least squares (PLC), for dimension reduction in a 
case that the independent variables used in a regression are highly correlated. PCA, as a dimension reduction 
methodology, is applied without the consideration of the correlation between the dependent variable and the 
independent variables, while PLS is applied based on the correlation. Therefore, we call PCA as an unsupervised 
dimension reduction methodology, and call PLS as a supervised dimension reduction methodology. We’ll 
describe the algorithms of PCA and PLS, and compare their performances in multivariate regressions using 
simulated data. 
Key Words: PCA, PLS, SAS, GLM, Regression, Variance-Covariance Matrix, Jordan Decomposition, Eigen 
Value, Eigen Factors. 

_____________________________________________________________________________ 

Introduction 

In large-scale data mining and predictive modeling, especially for multivariate regression 
exercises, we often start with a large number of possible explanatory/predictive variables. Therefore, 
variable selection and dimension reduction is a major task for multivariate statistical analysis, 
especially for multivariate regressions. A well-known method in regression analysis for dimension 
reduction is called stepwise regression algorithm, which is covered by many statistical softwares such 
as SAS and SPSS. One of the major limitations of the algorithm is that when several of the 
predictive variables are highly correlated, the tests of statistical significance that the stepwise method 
is based on are not sound, as independence is one of the primary assumptions of these tests. 

 Often, many variables used as independent variables in a regression display a high degree of 
correlation, because those variables might be measuring the same characteristics. For example, 
demographic variables measuring population density characteristics or weather characteristics are 
often highly correlated. 

A high degree of correlation among the predictive variables increases the variance in estimates of 
the regression parameters. This problem is known as multi-colinearity in regression literature 
(Kleinbaum et al. [4]). The parameter estimates in a regression equation may change with a slight 
change in data and hence are not stable for predicting the future. 

In this paper, we will describe two methodologies, principle component analysis (PCA) and 
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partial least square (PLS), for dimension reduction in regression analysis when some of the 
independent variables are correlated. We’ll describe what algorithm is used in each methodology and 
what the major differences are between the two methodologies. 

Principal Component Analysis 

PCA is a traditional multivariate statistical method commonly used to reduce the number of 
predictive variables and solve the multi-colinearity problem (Bair et al. [3]). Principal component 
analysis looks for a few linear combinations of the variables that can be used to summarize the data 
without losing too much information in the process. This method of dimension reduction is also 
known as “parsimonious summarization” (Rosipal and Krämer [6]) of the data. We will now 
formally define and describe principal components and how they can be derived. In the process we 
introduce a few terms for the sake of completeness. 

Data Matrix 

Let Xn×p denote the matrix of predictive variables (henceforth referred to as data-matrix), where 
each row denotes an observation on p different predictive variables, X1,X2, … , Xp. We will denote 
a random observation from this matrix by x1×p. The problem at hand is to select a subset of the 
above columns that holds most of the information. 

Variance-Covariance Matrix 

Let σij denote the co-variance between Xi and Xj in the above data-matrix. We will denote the 
matrix of ((σij)) by ∑. Note that the diagonal elements of ∑ are the variances of Xi. In actual 
calculations σijs may be estimated by their sample counterpart’s sij or sample covariance calculated 
from the data. The matrix of standard deviations ((sij)) will be denoted by S. Note both ∑ and S are 
p×p square and symmetric matrices. 

Linear Combination  

A linear combination of a set of vectors (X1,X2, … , Xp) is an expression of the type ∑αiXi (i=1 
to p) and αis are scalars. A linear combination is said to be normalized or standardized if ∑|αi|=1 
(sum of absolute values). In the rest of the article, we will refer to the standardized linear 
combination as SLC. 

Linear Independence 

A set of vectors are said to be linearly independent if none of them can be written as a linear 
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combination of any other vectors in the set. In other words, a set of vectors (X1,X2, … , Xp) is 
linearly independent if the expression ∑αiXi = 0 → αi = 0 for all values of i. A set of vectors not 
linearly independent is said to be linearly dependent. 

Statistically, correlation is a measure of linear dependence among variables and presence of highly 
correlated variables indicate a linear dependence among the variables. 

Rank of a Matrix 

Rank of a matrix denotes the maximum number of linearly independent rows or columns of a 
matrix. As our data-matrix will contain many correlated variables that we seek to reduce, rank of the 
data-matrix, Xn×p , is less than or equal to p. 

Jordan Decomposition of a Matrix  

Jordan decomposition or spectral decomposition of a symmetric matrix is formally defined as 
follows.  

Any symmetric matrix Ap×p can be written as A=ГΛГT=∑λiγ’
(i)γ(i) where Λp×p is a diagonal matrix 

with all elements 0 except the diagonal elements and Гp×p is an orthonormal matrix, i.e., Г Г’=I 
(identity matrix). 

The diagonal elements of Λ are denoted by λi (i=1 to p) and the columns of Г are denoted by γ(i) 

(i=1 to p). In matrix algebra, λis are called eigen values of A and γ(i)s are the corresponding eigen 
vectors. 

If A is not a full rank matrix, i.e., rank(A) = r < p, then there are only r non-zero eigen values in 
the above Jordan decomposition, with the rest of the eigen values being equal to 0. 

Principal Components  

In principal component analysis, we try to arrive at a suitable SLC of the data-matrix X based on 
the Jordan decomposition of the variance-covariance matrix ∑ of X or equivalently based on the 
correlation matrix Φ of X. We denote the mean of the observations as μ 1×p.  

Let x1×p=(x1,x2,…,xp) denote a random vector observation in the data-matrix (i.e., transpose of 
any row of the n×p data matrix), with mean μ1×p and covariance matrix ∑. A principal component is 
a transformation of the form x1×p → y1×p = (x-μ) 1×p Гp×p, where Г is obtained from the Jordan 
decomposition of ∑, i.e., ГT∑ Г = Λ = diag(λ1, λ2, …, λp) with λis being the eigen values of the 
decomposition. Each element of y1×p is a linear combination of the elements of x1×p. Also each 
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element of y is independent of the other. 

Thus we obtain p independent principal components corresponding to the p eigen values of the 
Jordan decomposition of ∑. Generally, we will only use the first few of these principal components 
for a regression. In the next section, we will list the major properties of the principal components as 
obtained above. This will help us to understand why the first few of the principal components may 
hold the majority of the information and thus help us reduce the dimension in a regression without 
losing too much information. 

Properties of Principal Components (Anderson [2]) 

The following result justifies the use of PCA as a valid variable reduction technique in regression 
problems, where a first few of the principal components are used as predictive variables. 

Let x be a random p dimensional vector with mean μ and covariance matrix ∑. Let y be the 
vector of principal components as defined above. Then the following holds true. 

(i) E(yi) = 0 

(ii) Var(yi) = λi 

(iii) Cov(yi,yj) = 0 

(iv) Var(y1) ≥ Var(y2) ≥ … ≥ Var(yp) 

(v) No SLC of x has variance larger than λ1, the variance of the first principal 

component. 

(vi) If z=∑αixi be a SLC of x, which is uncorrelated with first k principal 

components, then variance of z is maximized if z equals the (k+1)th principal 

component. 

Item (iii) above justifies why using principal components instead of the raw predictive variables 
will remove the problem of multi-colinearity.  

Items (iv), (v), and (vi) indicate that principal components successively capture the maximum of 
the variance of x and that there is no SLC that can capture maximum variance without being one of 
the principal components. When there is high degree of correlation among the original predictive 
variables, only the first few of the principal components are likely to capture majority of the variance 
of the original predictive variables. The magnitude of λis provides the measure of variance captured 
by the principal components and should be used to select the first few components for a regression. 
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A Numerical Example of PCA 

In this section we describe the process of building principle components in a multivariate 
regression set up using a simulated data for line of business of business owners policies (BOP). The 
simulated data has been used for the 2006 and 2007 CAS Limited Attendance Predictive Modeling 
Seminars. 

Description of the Data 

The simulated data is in a policy-year level. That means each data record contains information of 
a twelve-month BOP policy. In the data, we simulated claim frequency, claim count over per $000 
premium, and six correlated policy variables.  

The policy variables in this example are: 

fireProt – Fire Protection Class 

numBldg – Number of Building in Policy 

numLoc – Number of Locations in Policy 

bldgAge – Maximum Building Age 

bldgContents – Building Coverage Indicator  

polage – Policy Age 

All the predictive variables are treated as continuous variables including the bldgContents 
variable. Both the multivariate techniques described in this paper works only with continuous and 
ordinal variables. Categorical variables cannot be directly analyzed by these methods for variable 
reduction. 

The correlation matrix of the above predictive variables is:  

 fireProt numBldg numLoc bldgAge bldgContents polAge
fireProt 1.0000 -0.3466 0.0020 0.2921 -0.0945 -0.0328
numBldg -0.3466 1.0000 0.8012 -0.2575 0.1216 0.0494
numLoc 0.0020 0.8012 1.0000 -0.0650 0.0619 0.0417
bldgAge 0.2921 -0.2575 -0.0650 1.0000 -0.0694 0.0287
bldgContents -0.0945 0.1216 0.0619 -0.0694 1.0000 0.0068
polAge -0.0328 0.0494 0.0417 0.0287 0.0068 1.0000
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As can be seen, numBldg and numLoc are highly correlated and the variable fireProt has 
significant correlation with two other variables.  

Principle Components Regression 

As described earlier, the principle components are obtained by eigen-value decomposition of the 
covariance or correlation matrix of the predictive variables under consideration. Generally, most 
statistical software can compute the principle components once we specify the data set and the 
variables with which we want to construct principle components. SAS, for example, provides 
outputs of the linear coefficients (eigen vectors) along with mean and standard deviations of each 
predictive variables. These can be used to compute the principle components on the data set for 
regression. 

Step 1: Compute the Jordan decomposition of the correlation matrix and obtain the eigen vector 
(Гi={γ1i, γ2i,…, γpi}) corresponding to each eigen value (λi). 

The six eigen values of the eigen value decomposition of the above correlation matrix are as 
follows: 

Eigen 
Values 

Proportion of 
Total 

Cumulative 
Proportion of 

Total 

2.00767648 0.294943617 0.294943617 
1.9965489 0.293308887 0.588252504 
1.00066164 0.147005141 0.735257644 
0.96103098 0.141183082 0.876440726 
0.71945588 0.105693782 0.982134508 
0.12161012 0.017865492 1 

As we can see the first four eigen values capture about 90% of the information in the correlation 
matrix.  

The eigen vectors (columns of matrix Г in the Jordan decomposition) corresponding to each of 
the eigen values above are: 

Eigen Vector 1 Eigen Vector 2 Eigen Vector 3 Eigen Vector 4 Eigen Vector 5 Eigen Vector 6 

(0.336140) 0.589132 (0.135842) 0.167035 0.654102 0.256380 
0.664985 0.178115 (0.053062) (0.050656) (0.097037) 0.715033 
0.561060 0.501913 (0.109841) 0.005781 0.065075 (0.645726) 

(0.313430) 0.558248 0.087962 0.212191 (0.729197) 0.075033 
0.168213 (0.204757) 0.127973 0.953512 0.061786 0.020003 
0.059014 0.125363 0.970851 (0.123655) 0.151504 0.002265 
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Step 2: Construct the principle components corresponding to each eigen value by linearly 
combining the standardized predictive variables using the corresponding eigen vector. 

Hence the first principle component can be computed as: 

PrinComp1 = 

 -0.336139581 * ( fireProt - 4.55789 ) / 2.4533790858 

 + 0.6649848702 * ( numBldg - 1.10179 ) / 0.6234843087 

 + 0.5610599572 * ( numLoc - 1.16947 ) / 0.4635645241 

 + -0.313430401 * ( bldgAge - 48.5329 ) / 17.719473959 

 + 0.1682134808 * ( bldgContents - 2.36607 ) / 0.8750945166 

 + 0.0590138772 * ( polage - 4.81878 ) / 3.1602055599 

Note that each variable is standardized while computing the principal components. 

Now, we’ll use the principle components we constructed above in a generalized linear model 
(GLM) type of regression. There are lot of papers and presentations on GLM ([1], [5]), and we will 
not spend effort here to describe the related concepts and details. The only two characteristics of 
GLM that we like to mention are error distribution and link function. Unlike the traditional ordinary 
regressions, a GLM can select any distribution within the exponential family as the model for the 
distribution of the target variable. GLM also allows us to use a non-linear link function that permits 
us to incorporate a non-linear relationship between the target variables and the predictive variables. 
For example, while fitting a severity curve often the LOG of the loss value can be modeled more 
easily than the actual loss value in a linear model. GLM allows us to accomplish this by specifying a 
LOG as the link function. However, it is to be noted that GLM is still linear in terms of the 
regression parameters. 

In this numerical example for PCA, we choose Poisson distribution for regression error and 
choose IDENTITY as a link function. We used the claim frequency, claim count over $000 
premium, as the dependent variable and used the principle components constructed above as 
independent variables. The summary of the regression is displayed below: 
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The P-values and chi-square-statistics demonstrate that the first three principle components 
explained about 75% the predictive power of the original six policy variables. But, we also noticed 
the rank of the predictive power didn’t line up with the order of the principle components. For 
example, the first principle component is less explanatory for the target than the second, even 
though the first principle component contains more information on the six original policy variables. 
In the next section, we’ll describe another dimension reduction technique, partial least squares 
(PLS), which can be used to solve the problem. 

PARTIAL LEAST SQUARES 

In the last section we discussed applying PCA in regression as a dimension reduction technique 
as well as using it to deal with multi-colinearity problems. One drawback of PCA technique in its 
original form is that it arrives at SLCs that capture only the characteristics of the X-vector or 
predictive variables. No importance is given to how each predictive variable may be related to the 
dependent or the target variable. In a way it is an unsupervised dimension reduction technique. 
When our key area of application is multivariate regression, there may be considerable improvement 
if we build SLCs of predictive variables to capture as much information in the raw predictive 
variables as well as in the relation between the predictive and target variables. Partial least square 
(PLS) allows us to achieve this balance and provide an alternate approach to PCA technique. Partial 
least squares have been very popular in areas like chemical engineering, where predictive variables 
often consist of many different measurements in an experiment and the relationships between these 
variables are ill-understood (Kleinbaum et al. [4]). These measurements often are related to a few 
underlying latent factors that remain unobserved. In this section, we will describe PLS technique and 
discuss how it can be applied in regression problems by demonstrating it on our sample data. 

Description of the Technique 

Assume X is a n×p matrix and Y is a n×q matrix. The PLS technique works by successively 
extracting factors from both X and Y such that covariance between the extracted factors is 
maximized. PLS method can work with multivariate response variables (i.e., when Y is an n×q vector 
with q>1). However, for our purpose we will assume thatwe have a single response (target) variable 
i.e., Y is n×1 and X is n×p, as before. 

PLS technique tries to find a linear decomposition of X and Y such that X =TPT + E and 
Y=UQT + F, where 

T n×r = X-scores U n×r = Y-scores 
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P p×r= X-loadings Q 1×r = Y-loadings 

E n×p = X-residuals F n×1 = Y-residuals (1) 

Decomposition is finalized so as to maximize covariance between T and U. There are multiple 
algorithms available to solve the PLS problem. However, all algorithms follow an iterative process to 
extract the X-scores and Y-scores. 

The factors or scores for X and Y are extracted successively and the number of factors extracted 
(r) depends on the rank of X and Y. In our case, Y is a vector and all possible X factors will be 
extracted. 

Eigen Value Decomposition Algorithm 

Each extracted x-score are linear combinations of X. For example, the first extracted x-score t of 
X is of the form t=Xw, where w is the eigen vector corresponding to the first eigen value of 
XTYYTX. Similarly the first y-score is u=Yc, where c is the eigen vector corresponding to the first 
eigen value of YTXXTY. Note that XTY denotes the covariance of X and Y. 

Once the first factors have been extracted we deflate the original values of X and Y as, 

X1=X – ttTX and Y1=Y- ttTY. (2) 

The above process is now repeated to extract the second PLS factors.  

The process continues until we have extracted all possible latent factors t and u, i.e., when X is 
reduced to a null matrix. The number of latent factors extracted depends on the rank of X. 

A NUMERICAL EXAMPLE FOR PLS 

In this section we will illustrate how to use the PLS technique to obtain X-scores that will then 
be used in regression. The data we used for this numerical example is the same as we used for the 
last numerical example of PCA. The target variable and all the predictive variables used in the last 
numerical example will be also used in this numerical example. 
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Partial Least Squares 

As we described in the last section, PLS tries to find a linear decomposition of X and Y such that 
X=TPT + E and Y=UQT + F, where 

T = X-scores U = Y-scores 

P = X-loadings Q = Y-loadings 

E = X-residuals F = Y-residuals 

Decomposition is finalized so as to maximize covariance between T and U. The PLS algorithm 
works in the same fashion whether Y is single response or multi-response.  

Note that the PLS algorithm automatically predicts Y using the extracted Y-scores (U). However, 
our aim here is just to obtain the X-scores (T) from the PLS decomposition and use them separately 
for a regression to predict Y. This provides us the flexibility to use PLS to extract orthogonal factors 
from X while not restricting ourselves to the original model of PLS. 

Unlike PCA factors, PLS factors have multiple algorithms available to extract them. These 
algorithms are all based on iterative calculations. If we use the eigen value decomposition algorithm 
discussed earlier, the first step is to compute the covariance XTY. The covariance between the six 
predictive variables and the target variable are: 

2,208.72 
9,039.18 
9,497.47 
2,078.92 
2,858.97 

(2,001.69)

As noted, the first PLS factor can be computed from the eigen value decomposition of the 
matrix XTYYTX. The XTYYTX matrix is: 

4,878,441 19,965,005 20,977,251 4,591,748 6,314,657 (4,421,174)

19,965,005 817,067,728 85,849,344 18,791,718 25,842,715 (18,093,644)
20,977,251 85,849,344 90,201,995 19,744,478 27,152,967 (19,011,011)
4,591,748 18,791,718 19,744,478 4,321,904 5,943,562 (4,161,355)

6,314,657 25,842,715 27,152,967 5,943,562 8,173,695 (5,722,771)

(4,421,174) (18,093,644) (19,011,011) (4,161,355) (5,722,771) 4,006,769



Principal Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression 

Casualty Actuarial Society, 2008 Discussion Paper Program 89 

The first eigen vector of the eigen value decomposition of the above matrix is: 

{ -0.1588680, -0.6501667, -0.6831309, -0.1495317, -0.2056388, 0.1439770}. 

The first PLS X-scrore is determined by linearly combining the predictive variables using the 
above values. 

Xsr1=  - 0.1588680 * ( fireProt - 4.55789 ) / 2.4533790858 

- 0.6501667 * ( numBldg - 1.10179 ) / 0.6234843087 

- 0.6831309 * ( numLoc - 1.16947 ) / 0.4635645241 

- 0.14953171 * ( bldgAge - 48.5329 ) / 17.719473959 

- 0.2056388 * ( bldgContents - 2.36607) / 0.8750945166 

+ 0.1439770 * ( polage - 4.81878 ) / 3.1602055599 

Once the first factor has been extracted, the original X and Y is deflated by an amount 
(Xscr1*XscrT) times the original X and Y values. The eigen value decomposition is then performed 
on the deflated values, until all factors have been extracted (refer to formula 2). 

We next perform a GLM using the same claim frequency as the dependent variable and the six 
PLS components, xscr1 – xscr6, as independent variables. Same as we did in the numerical example 
for PCA, we still choose Poisson distribution for error the term and an IDENTITY link function. 
The regression statistics are displayed below. 

Comparing to the ChiSq statistics derived from the GLM using PCA, we can see how each PLS 
factors are extracted in order of significance and predictive power. 

Further Comparison of PCA and PLS 

In this section, we have done a simulation study to compare principal components method 
against the partial least squares methods as a variable reduction technique in regression. A number 
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of simulated datasets were created by re-sampling from original data. PCA and PLS analysis were 
performed on these data samples and ChiSq statistics of the extracted PCA factors and PLS factors 
were compared. The exhibit below shows the results on three such samples.  

 Simulated Sample 1 Simulated Sample 2 Simulated Sample 3 

Extracted 
Factor # 

ChiSq Statistics 
for PCA Factors 

ChiSq Statistics 
for PLS Factors 

ChiSq Statistics 
for PCA Factors 

ChiSq Statistics 
for PLS Factors 

ChiSq Statistics 
for PCA Factors 

ChiSq Statistics 
for PLS Factors 

1 79.79 190.73 71.62 160.35 51.44 144.03 

2 101.65 24.55 65.18 25.61 43.28 19.21 

3 4.78 9.06 34.73 7.72 35.99 0.53 

4 17.19 3.58 4.61 5.13 22.65 1.86 

5 0.75 0.44 0.21 0.24 2.11 1.16 

6 17.91 0.3 20.29 0.14 4.66 0.15 

We can see from the above table that the chi-squared statistics of the first two PLS factors are 
always more than the corresponding two PCA factors in capturing more information.  

Summary 

PCA and PLS serve two purposes in regression analysis. First, both techniques are used to 
convert a set of highly correlated variables to a set of independent variables by using linear 
transformations. Second, both of the techniques are used for variable reductions. When a dependent 
variable for a regression is specified, the PLS technique is more efficient than the PCA technique for 
dimension reduction due to the supervised nature of its algorithm. 
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