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The Practtttoner'~ Grade to Ge .erahzed  Lmeur Mudel~ is written for the practicing actua%, who 
~ould hke to understand generalized linear models (GLMs) and use them to analyze insurance 
data The guide is divided into three sections 

Secuon I provides a foundauon for the statistical theory and gv.'es illustrative examples and 
intuitive explanatlons which clarify the theory The intuitive explanations build upon more 
commonly understood actuarial methods such as hnear models and the minimum bias 
procedures 

Section 2 provides practical insights and realistic model output for each stage ofa GLM analysis 
- including data preparation and preliminary analyses, model selection and iteration, model 
refinement and model interpretauon This section is designed to boost the actuary's confidence 
in interpreting GLMs and applying them to solve business problems 

Section 3 discusses other topics of interest relating to GLMs such as retention modeling and 
scoring algorithms 

More technical material m the paper ~s set out in appenthces. 

A c k n o w l e d g e m e n t s  

The authors would hke to thank James Tanser, FLA., for some helpful comments and 
conmbutions to some elements of this paper 
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Section I discusses how GLMs are formularized and sol~.ed. The following topics are 
covered in detail 

• background of  GLMs - budding upon traditional actuarial methods such as 
rain,mum bias procedures and linear models 

• introduction to the statisttcal framework of  GLMs 

• formulanzat~on of  GLMs - including the linear predictor, the link function, the 
offset term. the error term, the scale parameter and the prior weights 

• typical model forms 

• solving GLMs - maximum likelihood estimation and numerical techniques 

• aliasing 

• model dmgnostics - standard errors and deviance tests. 

Background 

Traditional ratemaking methods in the United States are not statistically sophisticated 
Clatms experience for many hnes of  business ,s often analyzed using simple one-way 
and two-way analyses. Iterative methods known as minimum bias procedures. 
developed by actuanes m the 1960s, provtde a significant improvement, but are still 
only part way toward a full statistical framework 

The classical linear model and many of  the most common minimum bias procedures 
are, in fact, special cases of  generalized hnear models (GLMs) The statlsucal 
framework of  GLM allows exphcit assumptions to be made about the nature of  the 
insurance data and its relationship with predtctive variables The method of  solving 
GLMs Is more technically effictent than iteratively standardized methods, which is not 
only elegant in theory but valuable in practice In addiuon, GLMs provide statistical 
diagnosttcs which atd in selecting only significant variables and in validating model 
assumptions 

Today GLMs are wtdely recognized as the indust~, standard method for pricing 
private passenger auto and other personal lines and small commercml hnes insurance 
in the European Union and many other markets Most British, Insh and French auto 
msurers use GLMs to analyze their portlblios and to the authors' knowledge GLMs are 
commonly used m Italy. the Netherlands, Scandinavia, Spare, Portugal, Belgium. 
Switzerland, South Africa, Israel and Australia The method is gaming popularity in 
Canada, Japan, Korea. Brazil, Singapore, Malaysia and eastern European countries 

Tile primary applications of  GLMs in insurance analys,s are ratemaking and 
underwriting Circumstances that limit the abihty to change rates at wil l  (eg 
regulation) have increased the use of GLMs for target marketing analysis 

4 
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The failings of one-way analysis 

In the past, actuaries have relied heavily on one-way analyses tbr pricing and 
monitoring performance 

A one-way analys~s summarizes insurance staustics, such as frequency or loss ratio, 
for each value of  each explanator3, variable, but wtthout taking account of  the effect o f  
other variables Explanatory variables can be discrete or continuous Discrete 
variables are generally referred to as "factors", with values that each factor can take 
being referred to as a "level", and continuous variables are generally referred to as 
"variates" The use ofvariates is generally less common in insurance modeling. 

One-way analyses can be distorted by correlations between rating factors. For 
example, young drivers may in general drive older cars A one-way analysis o f  age of  
car may show high claims experience for older cars, however this may result mainly 
from the fact that such older cars are in general driven more by higher risk younger 
drivers. Relalavities based on one-way analyses of  age of  vehicle and age of  driver 
would double-count the effect o f  age of  driver. Traditional actuarial techniques for 
addressing this problem usually attempt to standardize the data in such a way as to 
remove the distorting effect of  uneven bus,hess mix, for example by tbcusing on loss 
ratios on a one-way basis, or by standardizing for the effect o f  one or more factors. 
These methods are, however, only approximations. 

One-way analyses also do not consider interdependencies between factors in the way 
they affect claims experience. These mterdependencies, or interacuons, exist when the 
effect of  one factor varies depending on the levels of  another factor For example, the 
pure premium differential bev, veen men and ~omen may differ by levels o f  age 

Multivanate methods, such as generahzed linear models, adjust for correlations and 
allow investigation into mteracuon effects. 

The failings of minimum bias procedures 

In the 1960s, actuaries developed a ratemaking technique known as minimum bias 
procedures ~ These procedu[es impose a set of  equations relating the observed data, 
the rating variables, and a set of  parameters to be determined An iterative procedure 
solves the system of  equauons by attempting to converge to the optimal solution. The 
reader seeking more reformation may reference "The Minimum Bias Procedure A 
Practitioner's Guide" by Sholom Feldblum and Dr J Eric Brosius " 

Bailey, Robert A. and LeRoy J Simon, "Two studies in automobile insurance ratemaking," 
Proceedings of  the Casually Actuarial Soctet3,, XI.,k;[I, 1960. 
: Feldblum, Sholom and Brosius, J Eric, "The Mmimt, m Bias Procedures A Practitioner's 
Guide", Casualty Actuarial Society Forum, 2002 Vol. Fall Page(s): 591-684 
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Once an optimal solution is calculated, however, the minimum bias procedures give no 
systematic way of testing whether a particular variable mfluences the result with 
stattstical si~ificance. There Js also no credible range provided for the parameter 
estimates The minrmum bias procedures lack a statistical framework which would 
allow actuaries to assess better the quali~' of their modeling work 

The connection of minimum bias Io GLM 

Stephen Mildenhall has written a comprehenswe paper sho~mg that many mimmum 
bins procedures do correspond to generalized linear models ~ The following table 
summarizes the correspondence for many of the more common minimum bias 
procedures. The GLM terminology Imk.fimcllon and error fimcllon is explained m 
depth later m this sectton. In brief, these functions are key components for specifying 
a generalized hnear model 

Minimum Bias Procedures 

Multiphcative balance pnnciple 
Additive balance principle 
Nluhtplicative least squares 
Muhiphcatl~e maximum likelihood 
with exponential denmty function 

Generalized Linear Models 
Link function 

Lou, arithmic 
Identle,, 

Logarithmic 
Logarithnuc 

Error function 

Poisson 
Normal 
Normal 
Gamma 

Mult~plicatixe maximum likelihood Logarithmic Normal 
with Normal denmty function 
Additr,'e maximum likelihood with Identity Normal 
Normal densi~' function 

14 

]5 

116 

Not all minimum bias procedures have a generalized linear model analog and vice 
versa For example, the 7,: additive and multiplicative minimum bias models have no 
corresponding generalized hnear model analog 

Linear m o d e l s  

A GLM is a generalized form of a linear model. To understand the structure o£ 
generalized linear models it is helpful, therefore, to review classic linear models. 

The purpose of both linear models (LMs) and generalized linear models is to express 
the relationship between an observed response vanable, Y, and a number ofcovanates 
(also called predictor vanables), X Both models view the obser,'at~ons. Y,, as being 
realizations or'the random vanable Y 

Mildenhall, Stephen, "A systematic relationship be~.s'een minimum b,as and generalized linear 
models", Proceedings ofthe Casualty Actuanal Society, LX.'XXVI, 1999 

6 
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Linear models conceptualize Y as the sum of  its mean, p, and a random variable, 6 : 

Y = p + ~  

They assume that 

a. the expected value of  Y, p, can be written as a linear combinauon of  the covanates,  
X', and 

b. the error term, e, is Normally distributed with mean zero and vanance 

For example, suppose a simple private passenger auto classification system has two 
categorical rating vanables territory (urban or rural) and gender (male or female). 
Suppose the observed average claim severities are: 

Urban Rural 
Male 800 500 
Female 400 200 

The response variable, }', ts the average claim severity The two factors, territory and 
gender, each have two levels resulting in the four covariates male (Xt), female (X2), 
urban (X.o, and rural (.¥,) The variables take the value I or 0 For example, the urban 
indicator variable. (.¥j), is equal to I if the temtory is urban, and 0 otherwise. 

The linear model seeks to express the observed item Y (in this case average claim 
seventy), as a linear combination of  a specified selection of  the four vanables, plus a 
Normal random variable E wflh mean zero and variance c/, often v, ritten ~" - N(O,o;). 
One such model might be 

Y = p ,X ,  + p : . ¥ :  + ~q3.X', + ]~,~'~ + e 

However th~s model has as many parameters as it does combinations o f  rating factor 
levels being considered, and there ~s a linear dependency between the four covanates 
X/, ,~, X.,, X~. This means that the model in the above form is not uniquely defined - it" 
any arbnra~, value k is added to both /~'I and ,0:, and the same value k is subtracted 
from p.~ and ~ ,  the resulting model is equivalent 



I 23 To make the model uniquely defined in the parameters/3, consider instead the model 

24 

25 

26 

.27 

I 28 

Y =/3, X, +/3:X: +/3~X 3 + e 

This model is equivalent to assuming that there is an average response for men (fit) 
and an average response for women (fi2), with the effect of  being an urban 
pohcybolder (as opposed to being a rural one) having an additional additive effect (fis) 
which is the same regardless of  gender 

Alternatively this could be thought of  as a model which assumes an average response 
for the "base case" of  women in rural areas (/3:) with additional additive effects for 
being male (fi.,-/3t) and for being in an urban area (/3s). 

Thus the four observauons can be expressed as the system of  equations: 

Y, =800=/31 +0+/33+c,  
Y., =500= , 6 '  h + 0 + 0  +e':  

Y~ = 4 0 0 = 0 + / 3 : ÷ f l ~ + e  3 

Y~ = 200 = 0+/3 :  + 0 + 6 ~  

The parameters/3~ f12./3s which best explain the observed data are then selected For 
the classical hnear model this is done by minimizing the sum of  squared errors (SSE). 

= (soo -/3, - /3~):  + (5oo -/3, ) ~ .  (400 - /3:  - /3 ,  ): + (200 - /3:  ): 

This expression can be minimized by taking derivatives with respect to ill, 13,. and/3j 
and setting each of  them to zero The resulting system of  three equations in three 
unknowns is 

OSSE 
&, 

OSSE 
- 0  z_-z> 

Op: 
OSSE 
- - = 0  =::, 
0/33 

/3, ÷ p~ + fl, = 800 ÷ 500 = 1300 

P: +/33 + P: = 400 + 200 = 600 

P, * P3 * /3:  + P ,  = s o o .  400 = 1200 
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which can be solved to derive 

Vector alld Matrtx Notatton 

t ,  = 525 

/3: = 175 

p~ = 250 

Formulating the system of  equations above quickly becomes complex as both the 
number of  observations and the number of  covariates increases, consequently, vector 
notation is used to express these equations in compact form 

Let _Y be a column vector with components corresponding to the observed values for 
the response variable 

r,00  
- t !j:l:°o:l 

L2ooJ 

Let X;, ._.,~., and X~ denote the column vectors with components equal to the observed 
values for the respective indicator variables (eg the i ~ element of_Xi is I when the i ~ 
observation is male. and 0 if female) 

x_,  = _x2 = X :  = 

Let p denote a column vector of  parameters, and for a given set of  parameters let _e be 
the vector of  residuals: 

m ----" /3~ E 2  p E_.= 

/3 E~ 
£ '4  
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Then the system of  equations takes the form 

L' = # ,  _x_, + #.. £ :  + # : , x ,  + c 

To simplify this further the vectors X;, ~ ,  and ~ can be aggregated into a single 
matrix X This matrix is called the design mamx and in the example above would be 
defined as. 

Appendtx A shows an example of  the tbrm of  the design mamx X when explanatory 
vanables include continuous variables, or "vanates". 

The system of  equations takes the form 

I__'=X ~ ÷ _e 

ha the case of  the hnear model, the goal is to find values of  the components o f p w h i c h  
minimize the sum of  squares of  the components of  e If there are n observanons and p 
parameters m the model. ~ will have n components and fi will have p components 
(p<-) 

The basic ingredients for a linear model thus consist oft,.~o e lements  

:~. a set of  assumpuons  about the relationship between ~_" and the predictor variables, 
and 

b. an objective function which is to be optimized in order to solve the problem 
Standard statistical theo~, defines the objectwe function to be the likelihood 
[hnctlon In the case of  the classical linear model with an assumed Normal error it 
can be shown that the parameters which mm~mtze sum of squared error also 
maximize likelihood 

10 
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Classical  l inear  model a s sumpt ions  

Linear models assume all obsen'at lons are independent and each comes from a Normal 
distribution 

This assumption does not relate to the aggregate o f  the obse~'ed ~tem, but to each 
observation individually An example may help illustrate this distinction. 

LDISlrlbllllOtl o f  imhwdual observations 

Women Men 

1.41 

142 

,An examination of  average claml amounts by gender may identif 3' that average cla, m 
amounts  for men are Normally distributed, as are average claim amounts for women, 
and that the mean of  the distribution for men is twice the mean of  the distribuuon for 
women. The total distribution of  average claim amounts across all men and women ~s 
not Normally distributed The only dismbution of  interest is the distnbuuon of  the two 
separate classes (In this case there are only two classes being considered, but in a 
more complicated model there would be one such class for each combination o f  the 
rating factors being considered ) 

Linear models assume that the mean is a hnear combinauon of  the covariates, and that 
each component of  the random variable is assumed to have a common variance 

II  



43 The linear model can be wntten as fol lows. 

r = E [ ? ' ]  + ~_, E[_r]  = X . p  

44 McCullagh and Nelder outline the explicit assumptions as follows: 4 

(LMI) Random componem." Each component of  ~_" is independent and is Normally 
distributed. The mean, p,, of  each component is allowed to differ, but the!,, all have 
common variance or: 

(LMZ) Systematic componem. The p covariates are combined to give the "linear 
predictor" rr 

r /=  X.fl 

(LM3) Link l~lllclinn." The relatnonship between the random and systemauc 
components  is specified via a link function. In the linear model the link function is 
equal to the identi~' functmn so that 

E[Y]  ~ ~ = ,1 

45 

46 

The ~dentib' link function assumpuon in (LM]) may appear to be superfluous at this 
point, but it wnll become more meaningful when discussing the generalization to 
GLMs 

Limlta,ons of Linear Models 

Linear models pose quite tractable problems that can be easily solved with well-known 
hnear algebra approaches However it is easy to see that the required assumptions are 
not easy to guarantee in applications: 

• It is difficult to assert Normalnty and constant variance for response variables 
Classical linear regressmn attempts to transform data so that these conditions hold. 
For example, Y may not sausfiy the hypotheses but hi(Y) may. However there is no 
reason why such a transformation should exist. 

• The values for the response variable may be restricted to be positive. The 
assumption of  Normahty violates this restriction 

• If the response variable is smctly non-negative then intuitively the variance of  Y 
tends to zero as the mean of  Y tends to zero. That is. the variance is a function of 
the mean 

4 McCullagh, P. and J. A. Nelder. Generah=ed Linear Models, 2 nd Ed , Chapman & HalI/CRC, 
1989 

12 



• The additivity of  effects encapsulated in the second tLlVl2) and third (LM3) 
assumptions is not realistic for a variety of  applications. For example, suppose the 
response variable ~s equal to the area of  the wings of  a butterfly and the predictor 
variables are the width and length of  the wings Clearly, these two predictor 
variables do not enter additively; rather, they enter multiplicatively More 
relevantly, many insurance risks tend to vat 3, multiplicatively with rating factors 
(this is discussed m more detail in Section 2). 

General ized linear model assumptions 

1.47 GLMs consist of  a wide range of  models that include linear models as a special case. 
The LM restriction assumptions of  Normahty. constant variance and additivlt)' of  
effects are removed. Instead, the response variable is assumed to be a member of  the 
exponential family of  dlsmbutions. Also, the variance is permitted to vary with the 
mean of  the distribution. Finally, the effect of  the covariates on the response variable 
is assumed to be additive on a transformed scale Thus the analog to the linear model 
assumptions (LMt), (LM2), a.0d (LM3) are as follows 

(GLMI) Ralldom componem: Each component of)_' is independent and is from one of  
the exponenual family of  distributions 

(GLM2) Systematic component" The p covariates are combined to give the linear 
predictor 22 

q = X . f l  

(GLM3) Llnkfitnclion. The relationship between the random and systematic 
components ~s specified via a link function, g, that Is differentiable and monotonic 
such that: 

E[Y] ~ / ,  = g-I(tl) 

1.48 Most staust~ca[ texts denote the first expression in (GLM3) w~th g(x) written on the left 
side of  the equation, therefore, the systematic element is generally expressed on the 
right side as the inverse function, g.l 

13 



E.rponential Fannl.v o f  Dl.~ trtbuttopls 

1.49 Formally, the exponential family of  distributions is a 2-parameter family defined as 

where a,('dp), b(Od, and c(y,.~) are functions specified in advance. O, is a parameter 
related to the mean, and O~ is a scale parameter related to the variance. This formal 
definition is further explored in Appenthx B For practical purposes it is useful to 
know that a member of  the exponenual family has the following two properties 

a. the dJstnbution is completely specified in terms of  its mean and variance, 

b. the variance of  t', is a function of  its mean 

I 50 This second propert3, .' is emphasized by expressing the variance as 

t'(l~, ) 
~,'or ( ~ : )  = - -  

63, 

where V(x), called the variance function, is a specified function, the parameter ¢ scales 
the variance: and ~, is a constant that assigns a weight, or credibdity, to obse~'ation 

1.51 A number of  familiar dismbutions belong to the exponential family the Normal, 
Poisson, binomial, gamma, and reverse Gaussian 5 The corresponding value of  the 
variance function is summarized in the table below 

152 

t ' ( x )  

Normal I 

eoL~'s'o/I X 

Gt' l t l lma x 2 

Btnom/al x(I - x) 6~here the number o f  trial~ = I) 

hlver.ge Gau,s~ian x 3 

A special member of  the exponential family is the Tweethe dismbut~on. The Tweedie 
distribuuon has a point mass at zero and a variance function proportional to/1 r (where 
p<0 or I<p<2 orp>2)  This distribution is typically used to model pure premium data 
directly and ~s discussed further m Appendix C 

5 A notable e~:ception to this list is the Iognormal distribution, which does not belong to the 
exponential family. 

14 



1.53 

1 54 

155 

The cho,ce of  the variance function affects the results of  the GLM. For example, the 
graph below considers the result of  fittmg three different (and very simple) GLMs to 
three data points In each case the model form selected ~s a two-parameter model (the 
intercept and slope of  a line), and the three points represent the individual obsen.,at)ons 
(with the observed value Y, shown on the y-axis for different values of  a single 
continuous explanatory, vadable shown on the x-axts). 

Effect of varying the error term (simple example) 

10 

1 2 3 

Data Normal Pmsson Gamma 

The three GLMs considered have a Normal, Poisson and gamma variance function 
respectively It can be seen that the GLM with a Normal variance function (which 
assumes that each observation has the same fixed variance) has produced fitted values 
which are attracted to the original data points with equal weight By contrast the GLM 
with a Poisson error assumes that the variance increases wtth the expected value o f  
each observation Observations with smaller expected values have a smaller assumed 
variance, which results in greater credibility when estimating the parameters The 
model thus has produced fitted values which are more influenced by the obse~'atlon on 
the leo. (with smaller expected value) than the observation on the right (which has a 
higher expected value and hence a higher assumed variance) 

It can be seen that the GLM w)th assumed gamma vanance function ~s even more 
strongly influenced by the point on the leO. than the point on the nght  since that model 
assumes the variance increases w~th the square of  the expected value 

15 



I 56  A further, rather more realisttc, example illustrates how selecting an appropnate 
variance funcuon can improve the accuracy of a model. This example considers an 
artificially generated dataset ~hich represents an insurance portfolio This dataset 
contains several rating factors (some of which are correlated), and m each case the true 
effect of  the rating factor is assumed to be known Claims experience (in this case 
average claim size expenence) is then randomly generated for each policy using a 
gamma dismbuuon, with the mean m each case being that implied by the assumed 
effect of the rating factors The claims experience is then analyzed using three models 
to see how closely the results of each model relate to the (in this case known) true 
factor effect 

1.57 The three methods considered are 

• a o n e - w a y  analysis 

• a GLM with assumed Normal variance function 

• a GLM with assumed gamma variance funcuon 

I 58 The results for one of the several rating factors considered are shown on the graph 
below. It can be seen that owing to the correlations between the rating factors in the 
data, the one-way analysis is badly distorted The GLM ss.nth an assumed Normal 
distribution is closer to the correct relativities, but tt can be seen that it is the GLM 
with an assumed gamma variance function whLch yields results which are the closest to 
the true effect 

Effect of ;,ao:mg the error term (insurance ratmg factor example) 

U 6  

05 

04 
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In addition to the variance function l"(x), two other parameters define the variance of  
each observation, the scale parameter d, and the prior weights co, 

Vor[}: ] = ~~'(/"' ) 
co, 

Prior weights 

The prior weights allow information about the known credibility, o f  each observation to 
be incorporated in the model. For example, if modeling claims frequency, one 
observation might relate to one month's exposure, and another to one year's exposure. 
There is more information ,and less variability in the observation relating to the longer 
exposure period, and this can be incorporated in the model by defining co, to be the 
exposure of  each obsem, atmn. In th~s way observations w~th higher exposure are 
deemed to have lower variance, and the model will consequently be more influenced 
by these observauons 

An example demonstrates the appropriateness of  th~s more clearly. Consider a set o f  
observations for personal auto claims under some classificatmn system Let cell i 
denote some generic cell defined by this classification system To analyze frequency 
let 

m,~ be the number ofclaims arising from the k th unit of  exposure in cell i 

co, be the number of  exposures in cell i 

}'; be the observed claim frequency in cell i: 

1: = I__ ~ m,~ 

If the random process generating re,t- is Poisson with frequency f, for all exposures k 
then 

£[m,~ . ]  =.1';, = I~r[m,~] 
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Assuming the exposures are independent then 

it, = E[Y,] = / £  E[m,, ] = / . t ~ , J ] ,  = f ,  
C"Ol s=l ~1, 

t.~,[r, ] =- ' , ~  I~,,[,,,,, ] :  L . o ,  t: = L t = ~,.- ± 
CO" ,=1 ed 7 " (O, " ' (O , 

So in this case I'(ud =/6,  ~ = I, and the prior weights are the exposures in cell i 

An ahernative example would be to consider claims severity Let 

:,~ be the number size of'the k ~h claim in cell i 

co, be the number of  claims in cell i 

}'~ be the observed mean claim s~ze in cell i 

] a,, 

}'~ = ~ Z  ~ :,~ 

Thts time assume that the random process generating each individual claim is gamma 
dist r ibuted Denoung  

E[za] = m, 

and 

t".r[:,, ] = o :  . , ,: 

and assuming each claim is independent then 

/ m, I 
/~. = E [ K  ] = - -  ~ E [ : , ,  ] = - - -  e a .m,  = m, 

,t,, 
I ~ l . t ~ r [ : , ]  = I a "~ l , ' a r [ Y ,  ] = - 7 .  , ~ - .  " ° , ° ~ m . :  = I - - ° ' : m ,  " = l l , :  - -  

~0 , : l  ( t )  , ( , 3  ~ )  

So for seventy  xslth a gamma d~smbution the var iance o f  Y, fo l l ows  the general form 
fo r  all e~ponent ia l  d is tnbuuons  with l ' ( .u j  = ii, z, ¢, = o ~, and pr ior  weight  equal to the 
number  o f c l a i m s  in cell i 
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Prior weights can also be used to attach a lower credibility to a part of  the data which 
is known to be less reliable. 

Tile scale parameter 

In some cases (eg the Poisson distribution) the scale parameter ~ i s  identically equal to 
I and falls out of  the GLM analysis entirely However in general and for the other 
familiar exponential dismbutions (b is not known in advance, and in these cases it must 
be esumated from the data 

Estimation of  the scale parameter is not actually necessa~, m order to solve for the 
GLM parameters _B, hov, ever in order to determine certain staustics (such as standard 
errors, discussed below) it is necessary to estimate (b 

(b can be treated as another parameter and estimated by maximum likelihood The 
dras~,back o f  this approach is that it is not possible to derive an explicit formula for (b, 
and the maximum likehhood estimauon process can take considerably longer. 

An alternative is to use an estimate of(b, such as 

a. the moment estimator (Pearson X: statistic) defined as 

= 

, " ( p , )  

b. the total deviance estimator 

n -  p 

where D, the total deviance, is defined later m this paper 

Link Funcmms 

In practice when using classical l inear regression practiuoners sometimes attempt to 
transform data to satist~, the requirements of  Normality and constant variance of  the 
response variable and additivity of  effects Generalized hnear models, on the other 
hand, merely require that there be a link function that guarantees the last condition of  
additivity. Whereas (L~I3) requires that }' be additr.'e m the covafiates, the 
generalization (GLM3) instead requires that some transformation o f  Y, written as gO'), 
be additive in the covariates 
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It is more helpful to consider/z, as a function of  the hnear predictor, so typically it is 
the inverse ofg(x) which is considered 

~, = g - ' ( q , )  

In theoD, a different link function could be used for each observation i, but in practice 
this is rarely done 

The link functson must satis~' the condition that it be differentiable and monotonic 
(elther strictly increasing or stricdy decreasing) Some typical choices for a link 
function include) 

g(x) g-'(x) 
Identtty x x 

Log In(x) e" 

Logit In(x/O-x)) e r / ( l + e  ") 

Reciprocal I / x I / x 
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Each error structure has associated with it a "canonscal" link function which smlplifies 
the mathematics of  solving GLMs analytically These are discussed in Appendix D 
When solving GLMs using modem computer so~ware, however, the use of  canonical 
link functions is not ~mportanl and any pairing of  link function and variance function 
which ss deemed appropriate may be selected 

The Iog-hnk function has the appeahng property that the effect of  the covariates are 
multiplicative. Indeed, writing g(x) = In(x) so that gZ(x) = e ~ results m 

la = g - ' ( f l ,  x,l +..  + f l  xp )  = exp(fl, x a ) . e x p ( f l , x : ) . ,  exp(flpx,p) 

In other words, when a log link function *s used, rather than estimating additive 
effects, the GLM estimates logs ofmultiplicative effects 

As mentioned previously, alternative choices of hnk functions and error structures can 
yield GLMs which are equivalent to a number of the minimum bias models as well as 
a slmple linear model (see section "The Connection of Minimum Bias to GLM") 
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The offset term 

There are occasions when the effect of  an explanatory variable is known, and rather 
than estimating parameters ~ in respect of  this variable it is appropriate to include 
information about this variable in the model as a known effect This can be achieved 
by mtroducing an "offset term" ~ into the definition of  the linear predictor r/: 

~ = x . B +  ~" 

which gives 

ELY] : z, = g "  ( ~  = g "  ( x . 9  + ~9 

A common example of  the use of  an offset term is when fitting a muhiplicative GLM 
to the obse~,ed number, or count, of  claims (as opposed to clarm frequency) Each 
obse~,ation may relate to a different period of  policy exposure An observation 
relating to one month's exposure will obviously have a lower expected number of  
claims (all other factors being equal) than an observation relating to a year's exposure 
To make appropriate allowance for th~s, the assumption that the expected count of  
claims increases in proportion to the e~cposure of  an observation (all,other factors being 
equal) can be introduced in a muhiplicative GLM by setting the,offset term ~ to be 
equal to the log of  the exposure of  each observauon, giving 

E[Y,]=g"I~X:,Pj+~,i=expI~.'V,:Pj+log(e,)i=ekpI~X,j.Bjl e, 

where e, -- the exposure for observation 

In the particular case of  a Poisson muhiplicative GLM it can be shown that modeling 
claim counts with an offset term equal to the log of the exposure (and pnor weights set 
to I ) produces identical results to modeling claim frequencies with no offset term but 
with prior weights set to be equal to the exposure of  each observation. 
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Structure of a generahzed linear model 

In summary,  the assumed structure o fa  GLM can be specified a s  

i~, : L[Y,] = g - ' ( ~  X,,~., + L  ) 
t 

~'~r[~;]  : ¢ ~ " (~ , ) /co ,  

where 

Y, is the vector of  responses 

g(x) is the link funcuon, a specified (invertible) function which relates the expected 

response to the linear combination of observed factors 

X,, is a matrix (the "design mamx")  produced from the factors 

/7, is a ~.ector of  model parameters, which is to be estimated 

~, is a vector of  kno~n  effects or "offsets" 

¢, is a parameter to scale the function/."6,c) 

l,'(x) is the variance function 

Cv, ~s the prior weight that asstgns a credibility or weight to each observation 

The vector of  responses }'~, the design mamx X,;, the prior wetghts ca,. and the offset 
term x are based on data in a manner determined by the practitioner The assumpuons  
which then further define the form of  the model are the hnk function g(x.), the variance 
function I '(x), and whether ¢5 is kno~n or to be esumated. 

Typical  G L M  model forms  

The typical model Ibrm tbr modeling insurance claim counts or frequencies is a 
muhiplicative Polsson .-ks well as being a commonly assumed distribution for claim 
numbers,  the Poisson distribution also has a particular feature ~,hich makes It 
intuitively appropriate m that t t t s  mvariant to measures of  time In other words. 
measuring frequenctes per month and measuring frequencies per year wall y~eld the 
same results using a Poisson mult~plicatwe GLb, I This is not true of some other 
distributions such as gamma 
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In the case of claim frequencies the prior weights are typically set to be the exposure o f  
each record. In the case of claim counts the offset term is set to be the log o f  the 
exposure. 

A common model fore1 for modeling insurance severittes is a multlplicative gamma. 
As well as often being appropriate because of its general form, the gamma dlsmbution 
also has an intmtively attractive property for modeling claim amounts since it is 
mvariant to measures of  currency In other x~ords measuring severities in dollars and 
measunng  seventies in cents will y~eld the same results using a gamma multiplicauve 
GLM This is not true of  some other distributions such as Poisson 

The typical model form for modehng retenuon and new business conversion is a Iogit 
link function and binomial error term (together referred to as a logistic model) The 
Iogit link function maps outcomes from the range of  (0,1) to (.-oo, +oo) and is 
consequently invariant to measunng successes or fadures. If the y-vanate being 
modeled is generally close to zero, and if the results of  a model are going to be used 
qualitatively rather than quantitatively, ~t may also be posstble to use a multiplicative 
Poisson model form as an approximation given that the model output from a 
muhiplicat~ve GLM can be rather eas~er to explain to a non-techmcal authence 

90 The below table summanzes  some typical model forms 

__Y Claim Claim Average Probabil i ty 
frequencies numbers or claim (eg o f  

counts amounts renewing) 

Link function g(x) In(x) In(x) In(x) In(x/(I-x)) 

Error Poisson Potsson Gamma Binomial 

Scale parameter ~k I I Estimated I 

Variance function l'(x) x x x 2 x( I-x)* 

Prior weights ~ exposure I # of  claims I 

Offset ~ 0 In(exposure) 0 0 

" where the number o f  mals = I, or x(t-x)~t where the number o f  trials = t 
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GLM maximum likelihood estimators 

Having defined a model form in terms of,X, g(x), ~, V(x), ~, and ~, and given a set of  
observations _Y, the components o f ~  are derived by maximizing the likelihood function 
(or equivalently, the logarithm of  the likelihood function) In essence, this method 
seeks to find the parameters which, when apphed to the assumed model form, produce 
the observed data with the highest probability. 

The likelihood ts defined to be the product of  probabilities of  observing each value or" 
the y-variate For continuous dismbutions such as the Normal and gamma 
distributions the probabihty density funct,on is used in place of  the probability It is 
usual to consider the log of  the likelihood since being a summation across observations 
rather than a product, this yields more manageable calculations (and an)' maximum of 
the hkelihood is also a maximum of  the log-likelihood). Maximum likelihood 
estimauon m practice, therefore, seeks to find the values of  the parameters that 
maximize this log-likelihood. 

In simple examples the procedure for maximizing likelihood involves finding the 
solution to a system of  equations with linear algebra, in practice, the large number of  
observations typically being constdered means that this is rarely done instead 
numencal techniques (and in particular muh~d~mensional Newton-Raphson 
algorithms) are used Appendix E shows the system of  equations for maximizing the 
likelihood function in the general case of  an exponential dtstribution 

An exphcitly solved illustrative example and a dtscussion of  numerical techniques 
used with large datasets are set out belox,,. 

Solving simple examples 

To understand the mechanics involved m solving a GLM, a concrete example is 
presented Constder the same ['our observauons discussed in a previous section for 
average claim severity 

Urban Rural 
Male 800 500 
Female 400 200 [ 

The general procedure for solving a GLM involves the following steps 

a. Speo~ '  the design matrix X and the vector of  parameters 6' 

b. Choose the error structure and link funcuon 

c. Identify the Iog-hkelihood function 

d. Take the logarithm to convert the product of  many terms into a sum 
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e. Maximize the logarithm of  the likelihood funcnon by taking partial derivatives 
w~th respect to each parameter, setting them to zero and solving the resulting 
system of  equations 

f. Compute the predicted values 

Recall that the vector of  observations, the design matrix, and the vector o f  parameters 
are as follows. 

Y = 
m 

Male Rural = ]500 / 

Female Urban | 4 0 0 [ '  X = 

Female Rural L2ooJ 

, and ,6'= 6', 

P 

where the first column of  X indicates if an observation is male or not, the second 
column indicates whether the observation is female, and the last column specifies if the 
observation is m an urban temtory or not 

The following three alternative model structures are illustrated• 

• Normal error structure w , h  an ~denti~' link function 

• Poisson error structure with a log hnk function 

• Gamma error structure with an inverse link function. 

These three model forms may not necessarily be appropriate models to use in practice - 
instead they illustrate the theo D' involved 

In each case the elements of_~ (the "prior weights") will be assumed to be I, and the 
offset term ~ assumed to be zero, and therefore these terms will, in this example, be 
ignored• 

N o r m a l  error  .;tructure . tth an Me~tit 0, l ink f unc t /on  

The classical linear model case assumes a Normal error structure and an identity link 
function. The predicted values in the example take the form 

° /  /=  - cP'J=g-'ix~) [g-,~p,+p:~| p_~ ~, 

L j L ;: 
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The Normal dismbuuon with mean It and variance ~ has the lbllowing density 
funct ion 

f ( y , / t , o . : )  = exp 2o'" 2 In(2~o.'~) 

Its likelihood function is: 

U.~',.,o.2)--~e,,p~ !Y'-;")" ~ln(2.To.:~l 
,=i  2 o . z  ' 

Maximizing the hkelihood function is equivalent to maximizing the log-likelihood 
funct ion 

/( v./t,o.2 ) = ~-~" _ 0',  - ' u , ) :  I In(2:rcr-' ) 
" ,~, 2o'" 2 

I 105 Wtth the identi b' link function,/.l, =Z~X,.,/Tj and the Iog-likehhood function becomes 

0 .  - ~ . X, p,): 
/0 ' :  .tt. o." ) = ~, J:' I ,=, 2o ' :  - ~- In( 2,,"to." ) 

I 106 In this example, up to a constant term of 4 VIn(27to2), the log-likelihood is 

I 107 

f ( v ; l t , ~ r 2 ~ = _ ( S O O - ( l ' 3 , + f l , ) ) "  ( 5 0 0 - f l ~ ) "  ( 4 0 0 - ( f l : + f l , ) )  2 ( 2 0 0 - f l z )  2 

• ' 2o" 2 20" :  2 o "  2o  "z 

To maximize f take denvatives with respect to fl;, fl: and fls and set each of them to 
zero. The resulting system of three equations in three unknowns is 

- - = 0  : ~  f l t + f l ~ + p , = 8 0 0 + 5 0 0 = 1 3 0 0  c~p, 
~?/" 

= 0  :=~ . B : + / 5 '  3+ ,6 ' :  = 4 0 0 + 2 0 0 = 6 0 0  

,~/" 
- -  = 0 ~ ,8, + ,8~ ÷ ,6': + p~ = 800  + 400  = 1200 
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1 1 0  

I l l l  

I l l 2  

I . I13 

It can be seen that these equations are identical to those derived when minimizing the 
sum of  squared error for a simple hnear  model Again, these can be solved to derive 

fl~ = 525 

fl~. = 175 

f13 = 250 

which produces the following pre&cted values 

Urban Rural 
Male 775 525 
Female 425 175 

The Pot.sson error structure wtlh a logarithm hnk.fi¢nction 

For the Pmsson model with a logarithm hnk l~ncuon, the predicted values are given by 

,Ig-'(fl '+fl")] I e a " ~ ( f l : + , 6 '  3) e [ g-'(fl,) e~ 
E[Y__]= g-' ( );'p) = | g _~ o, .~, 

L g-'(P:) L ,'~' 

A Poisson distribution has the following densily ~ n c u o n  

f ( y , # )  = e-" # '  / ),l 
Its log-likelihood lhncuon is theretbre 

/(>,;l,) : ~ ~n/<>,,, ¢,,) : ~ -  ~,, + y, In U, -In(>', !) 
i = ]  I = l  

With the logarithm link function. /t, = c, xp(~V~p 2, and the log-likelihood function 
reduces to 

/O':e"~') = ~"-  exp(.'~ X:, ,6',)+ y,~-" X,~/3,-In(y,O 
i=[ j= l  ,=1 

In this example, the equation is 

l(y;  # )  = -e '  '*'" a, ) + 800 * (fit + ,8~ ) - In 800! - e a, + 500 * ,6') - In 500) 

_ eta,, o, ! + 400 * (fl: + ,6' 3 ) - In 400! - e °' + 200 * ,6': - In 200! 
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1.114 Ignoring the constant o f  In800! + In5001 + In400! + In2001, the following function is to 
be max imized  

I ' 0 ' .  ,u) = - e '  ~" a., + 800(ill + fl~ ) _ e a, + 500 fl, - e ~ a'" "~' + 400(fl:  + fls ) - e a~ + 200.fl: 

1.115 To maximize f the derivatives with respect to ,81, fl~ and fls are set to zero and the 
fol lowing three equations are derived 

6~1" 0 > e ~ * ( e  a ' + 1 ) = 1 3 0 0  
0,6', 

c ' l - - = 0  => e a : * ( e  a'+1)=600 

631" = 0  > e ¢J' *(e ~' ÷ e  a~) 1200 

to derive the following parameter estimates: I 116 These can be solved 

fll = 6  1716 

fl, = 5 3984 

fl~ = 0 5390 

which produces the following predicted values: 

Urban Rural 
Male 8211 479.0 
Female 3789  221.1 

The gamma error structure with an inverse link function 

1117 This  example is set out in Appendlx F 

28 



Solving fo r  large datasets using numerical techniques 

I I I 8 The general case for solving for maximum likelihood in the case of  a GLM with an 
assumed exponential distribution ,s set out in Append,x E. in insurance modeling 
there are typically many thousands if not millions ofobservauons being modeled, and 
it is not practical to find values of  _/7 which maximize hkelihood using the explicit 
techniques illustrated above and in Appendices C and D Instead iterative numerical 
techniques are used. 

I.I19 As was the case in the simple examples above, the numerical techniques seek to 
optimize likehhood by seeking the values of  B which set the first thfferential of  the 
Iog-hkehhood to zero, as there are a number of  standard methods whmh can be applied 
to this problem. In practice, this is done using an iterative process, for example 
Newton-Raphson iteration which uses the formula. 

.~.,, =,~.-/W.s__ 

where fl_,, is the n ~ iterative estimate of  the vector of  the parameter estimates B (with p 
elements), s is the vector of  the first derivauves of  the log-likelihood and [] is the (p by 
p)  matrix containing the second derivatives of  the log-likelihood. This is simply the 
generahzed form of  the one-dimensional Newton-Raphson equauon, 

x . .  ; = x. - f fx,d 'J"(.x~) 

which seeks to find a solutmn to f (x)=0 

I 120 The iterative process can be started using either values of  zero for elements of_Bo or 
alternatively the esumates implied by a one-way analysis of  the data or o f  another 
previously fitted GLM. 

1 121 Several generic commercial packages are available to fit generahzed linear models in 
this way (such as SAS ®, S t  R, etc), and packages specifically built for the insurance 
industry, which fit models GLMs more quickly and with helpful interpretation of  
output, are also available (such as Pretium~. 
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Base levels and the intercept term 

The simple examples dtscussed above considered a three parameter model, where ,8~ 
corresponded to men, r :  to women and ,8j to the effect o fbe ing  in an urban area. In 
the case of  an additive model (with identity link function) this could be thought of  as 
either 

4, assuming that there is an average response for men, .6'~, and an average response 
for women, fie, with the effect o fbemg an urban policyholder (as opposed to being 
a rural one) having an additional addiuve effect ,6'~ which is the same regardless of  
gender 

o r  

assuming there is an average response for the "base case" of  women in rural areas, 
fie, with an additional additive effects for being male, p.~pj, and for being in an 
urban area, Ps 

123 In the case o fa  muluplicative model this three parameter form could be thought of  as 

124 

125 

assuming that there is an average response for men, exp(fl;) and an average 
response for women, exp(,8~, with the effect of being an urban policyholder (as 
opposed to being a rural one) having a multiphcauve effect exp(fl~) which is the 
same regardless of  gender 

Or 

assuming there is an average response for the "base case" of  women m rural areas 
,.'xp(gJ with an additional mulfiphcative effects for being male. exp(fl:-Pd, and for 
being in an urban area exp(p.~) 

In the example considered, some measure of  the overall average response was 
incorporated m both the values of,6'1 and ,g: The decision to incorporate this m the 
parameters relating to gender rather than area was arbnrar 3, 

In practice when considering many factors each with many levels it is more helpful to 
parameterize the GLM by cons,defing, m addition to observed factors, an "intercept 
term", which is a parameter that apphes to all obse~,ations 
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In the above example, thts would have been achieved by defining the design matrix X 

as X =  t I ~~1 

that is, by redefining 13t as the intemept term, and only having one parameter relating 
to the gender of the policyholder It would not be appropriate to have an intercept term 
and  a parameter tbr evew value of gender since then the GLM would not be uniquely 
defined - any arbitrary constant k could be added to the intercept term and subtracted 
from each of the parameters relating to gender and the predicted values would remain 
the same. 

In practice when considering categorical factors and an intercept term, one level o f  
each factor should have no parameter associated with it, m order that the model 
remains umquely defined 

For example consider a simple rating structure with three factors - age ot" dr iver  (a 
factor with 9 levels), territory (a factor ~sith 8 levels) and vehicle class (a factor with 5 
levels) ,An appropriate parametenzanon might be represented as follows 

Age of driver Territu D' Vehicle class 

Factor level Paramcler 

1%21 fi: 

22-24 /t., 

25-29 /~, 
30-34 /1~ 

35-39 /3,. 

40..-19 

50-59 d '  

604~  /), 

7t~+ i~ 

Faclor level earanleler 

A lt,,,J 

13 j3~, 

C 

D d;: 

E l% 

F P,, 

G It, 

H lJv 

Faclor level Parameter 

A 

B fl,: 

C ,O~, 

D fls~ 

E /b0 

Intercepttcrm ~1 I 

that is, an intercept term is defined for every pohcy, and each factor has a parameter 
associated x~th each level except one I1" a muhiplicative GLM were fitted to claims 
frequency (by selecting a log link function) the exponentials of the parameter estimates 
8could be set out in tabular form also 
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Ageofdn~er  

Factor le~ el Muhiplier 

17-21 I 6477 

22-24 1.5228 

25-29 1.5408 

30.34 I 2465 

35-39 I 2273 

40-49 l 0 ( ,00  

50-59 0 g244 

604~9 0 0871 

70+ 0 'M66 

Territu~' 

Factorlevel MultipUer 

A 0 9407 

B 0 9567 

C 1 0000 

D 0 9505 

E 10975 

F 11295 

G 11451 

H 14529 

Vehicle class 

Factor level Multiplier 

A 1 0000 

B 0 9595 

C 1.0325 

D 0 9764 

E I 1002 

I Intercept term 0 1412 I 

1.129 In this example the clarms frequency predicted by the model can be calculated for a 
given policy by taking the intercept term 0.1412 and multiplying it by the relevant 
factor relativities. For the factor levels for which no parameter was estimated (the 
"base levels"), no mulupher is relevant, and this is shown in the above table by 
displaying multipliers of I The intercept term relates to a policy with all factors at the 
base lexel (ie in this example the model predicts a claim frequency of  O 1412 for a 
40-49 )'ear old in territo%' C and a vehicle in class A) This intercept term is not an 
average rate since its value is ennrely dependent upon the arbitrary choice of which 
level ofeach factor is selected to be the base level 

I. 130 If a model were structured ~qth an intercept term but without each factor having a base 
level, then the GLM solving routine would remove as many parameters as necessa~' to 
make the model uniquely defined This process ts known as ahasmg. 

Aliasing 

1 131 Aliasmg occurs when there is a linear dependency among the observed covariates 
,V,. . .¥p That is, one covariate may be tdentical to some combination o f  other 
covariates. For example, it may be observed that 

1132 

-L'3 = 4 + X, + 5,_v., 

Equivalently,, aliasing can be defined as a linear dependency among the columns of  the 
design matrix X 
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There are two types ofaliasing intrinsic aliasing and extrinsic al~asing. 

hltrmsic tThaSltlg 

Intrinsic aliasing occurs because of  dependenc,es inherent m the definition of  the 
covariates. These inmnsic dependencies arise most commonly x~.henever categorical 
factors are included in the model. 

For example, suppose a private passenger automobile classification system includes 
the factor vehwle age which has the four levels 0-3 )'ears (XD, 4-7 )'ears (X:), 8-9 
),ears (X.,), and 10+ years (.¥j) Clearly if any ofXiX:,Xs,  is equal to I then X, is equal 
to O. and if all of  XI, ),'2, Xs, are equal to 0 then X4 must be equal to I Thus 
X., = I -X~- X.,- X++ 

136 The linear predictor 
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17 = p ,X ,  + p : . ¥ :  + p+X+ + p+.¥+ 

(ignoring any other fa~:tors) can be uniquely expressed m terms of  the first three levels 

r] = p , x ,  + p , x . ,  + p,)`', + ,+',(l - x ,  - x ;  - x , )  

= ( p ,  - p . , ) x ,  + ( p ,  - & ) x :  + ( .~ ,  - p . ,  ).),' ,  + p, 

Upon renaming the coefficients this becomes 

t7 = OtLXl + Ct2"1(2 +~3"~'3 +~,~ 

The result is a linear predictor with an intercept term ( , fone  did not already exist) and 
three covariates. 

GLM soflxvare will remove parameters which are ahased Which parameter is selected 
tbr exclusion depends on the sol~.vare The chmce of  which parameter to alias does 
not affect the fitted values For example in some cases the last level declared (ie the 
last alphabetically) is aliased. In other software the level with the maximum exposure 
is selected as the base level for each factor first, and then other levels are aliased 
dependent upon the order of  declaration (This latter approach is helpful since it 
minimizes the standard errors associated with other parameter estimates - this subject 
is discussed later m this paper ) 
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Extrm~tc dhavmg 

This type of  aliasing again anses from a dependency among the covariates, but xxhen 
the dependency results from the nature of  the data rather than inherent properties of  the 
covariates themselves This data characteristic arises if one level o f  a particular factor 
is perfectly correlated ~lth that of  another factor 

For example, suppose a dataset is ennched with external data and txxo new factors are 
added to the dataset: the factors tmmber o f  doors and color ofvehtcle. Suppose further 
that m a small number of  cases the external data could not be linked with the exlsung 
data with the result that some records have an unknown color and an unknown number 
of  doors. 

Exp . . . . . .  I # D~mrs I 
2 3 . . . . . . . .--. '¢~ 5 U n b l o w n  ~ .~Red. --- ' '~- '~ 13.23 ~, 12.243 15.432 13.432 0 

Green -I 543 4.543 I 3 243 2.3~5 II 

Blue ¢~.544 5 . 4 ~  I~.t, S4 4.565 ~l 

B h c k  4 643 1.235 14.5G5 4.545 u 

S¢lected Base n Dot,,i = 4 Color = Red 

Addltlonal . 4ha.+lng. Cob,r = L:,~ no .  n 

In this case because of  the way the new factors were denved, the level unknown for the 
factor coh~r happens to be perfectly correlated with the level utlkllolvtl for the factor n 
d o o r ~  The covanate assocmted , .~.lth u t l k t l o w H  c o l o r  i s  equal to I in eveG, case for 
which the covanate for I t l l k l lowt l  = d o o r s  i s  equal to I, and v,ce versa 

Ehmination of  the base levels through intrinsic aliasing reduces the linear predictor 
from 10 covariates to 8, plus the introduction of an intercept term In addition, m this 
example, one further covanate needs to be removed as a result o f  extrinsic aliasing 
This could either be the un/mown color covanate or the unkTtown tt doors covariate 
Assuming  in th~s case the GLM routine aliases on the basis o f  order of  declaration, and 
assuming that the u door.s factor is declared before color, the GLM routine would ahas 
wd~own color reducing the linear predictor to just 7 cox ariates 
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"Near A liasmg" 

When modeling in pracuce a common problem occurs when two or more factors 
contain levels that are almost, but not quite, perfectly correlated For example. ~fthe 
color o f  vehicle was "known for a small number of  policies for which the # doors was 
unknown, the two-way of  exposure might appear as follows 

E.~:po~'lar¢'~ [ # Doors 
2 3 .......14"-I 5 Unkno,.~n 

[ '-~ ~C~¢e f l d ~  13.234 12.343 I .~,432 13,432 u 
4.543 4,.~43 13.243 2,345 0 

I t~ ] Blue t;.544 5.443 I ~,654 4.5(,5 0 
I }Black 4.643 1.235 14.565 4.545 5 
I I [Jnkno~n 0 t, t, (, 3.242 

S e l , . e t e d  Base .  n Dc, o , s  = 4 C o l o r  = R e d  

I 145 

I 146  

I 147  

In this case the un/mown level of  color factor is not perfectly correlated to the unlalown 
level of  the # doors factor, and so exmnsic  aliasing will not occur 

When levels of  two factors are "nearly ahased" in this way, convergence problems can 
occur. For example, if there were no claims for the 5 exposures indicated in black 
color level and unlmo**n u doors level, and if a log link model were fitted to claims 
frequency, the model would attempt to esumate a very large and negative parameter 
for unlolown ~ doors (for example. -20) and a very large parameter for unlalown color 
(for example 20 2) The sum (0 2 m this example) would be an appropriate reflection 
of  the claims frequency for the 3,242 exposures having unlotown ~ doors and unknown 
color, x~,hlle the value of  the unknown ~ door.s parameter would be driven by the 
experience & t h e  5 rogue exposures having color black with unknown # doors This 
can either gr.'e rise to convergence problems, or to results which can appear very 
confusing 

In order to understand the problem m such circumstances it is helpful to examine 
two-way tables of  exposure and claim counts for the factors which contain large 
parameter estimates From these )t should be possible to identil~, those factor 
combinations which cause the near-aliasing The ~ssue can then be resolved either by 
deleting or excluding those rogue records, or by reclassifying the rogue records into 
another factor level. 
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Model diagnostics 

As well as deriving parameter estimates which maximize likelihood, a GLM can 
produce important additional information indicating the certainty of those parameter 
estimates (which themselves are estimates of some true underlying value). 

Standarderrors 

Statistical theory can be used to give an estimate of the uncertainty. In particular, the 
multivariate version of the Cramer-Rao lower bound (which states that the variance of 
a parameter estimate is greater than or equal to minus one over the second derivative of 
the log likelihood) can define "standard errors" for each parameter estimate. Such 
standard errors are defined as being the diagonal element of the covariance matrix _//-1 
where H (the Hessian) is the second derivative matrix of the log likelihood. 

Intuitively the standard errors can be thought of as being indicators of the speed with 
which log-likelihood falls from the maximum given a change in a parameter. For 
example consider the below diagram. 

Intuitive illustration of  standard errors 

Log 

Likelihood 
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This diagram illustrates a simple case with t~vo parameters (ill and fie) and shows how 
log likelihood varies, for the dataset in question, for d~fferent values of  the txvo 
parameters It can be seen that movements in parameter I from the optimal position 
reduce log likelihood more quickly than similar movements in parameter 2, that is to 
say the log hkelihood curve becomes steeper in the parameter I direcuon than in the 
parameter 2 d~recuon. This can be thought of  as the second partial differential of  log 
likelihood with respect to parameter I being large and negative, with the result that the 
standard error for parameter I (being minus one over the second partial differential) is 
small Conversely the second partial differential of  log likehhood with respect to 
parameter 2 is less large and negative, with the standard error for parameter 2 being 
larger (indicating greater uncertainty) 

Generally it is assumed that the parameter estimates are asymptotically Normally 
distributed and consequently it is in theory possible to undertake a stmple statistical 
test on individual parameter estimates, companng each esumate with zero (ie testing 
whether the effect of  each level of  the factor is significandy different from the base 
level o f  that factor) This is usually performed using a 7,: test. with the square of  the 

X.: parameter estimate divided by its variance being compared to a distribution This 
test in fact compares the parameter with the base level of  the factor This is not 
necessarily a full,,' use~l  test in isolation as the chmce of  base level is arbitrary. It is 
theoretically possible repeatedly to change the base level and so construct a triangle of  
72 tests comparing eyeD' pair o f  parameter estimates If none of  these dtfferences is 
significant then this is good evidence that the factor is not significant 

In practice graphical interpretation of  the parameter estimates and standard errors are 
often more helpful, and these are d~scussed in Section 2 

Devtance tests 

In addition to the parameter estimate standard errors, measures of  deviance can be used 
to assess the theoretical significance of  a particular ['actor. In broad terms, a deviance 
is a measure of  how much the fitted values differ from the observations 

Consider a deviance function dO',.pO defined by 

I' , y  

~, v(¢) 

Under the condition that V(x) is strictly positive, d(T,,/iJ is also strictly positive and 
satisfies the conditions for being a distance function. Indeed it should be interpreted as 
such 
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Consider an obsem, atmn }', and a GLM that makes a prediction/l, for that obse~'ation. 
dO;.,ud is a measure of  the difference between the fitted and actual observations which 
gives more weight to the difference between Y, and p, the smaller the vanance functmn 
V(x) is That is, if  Y, is known to come from a dlsmbution with small variance then any 
discrepancy between }~ and .u, is given more emphasis  

d(Y,./~) can be thought of  as a generalized form of  the squared error. 

Summing the deviance functton across all obse~'ations gives an overall measure o f  
deviance referred to as the total deviance D 

D = ~z~ 2ca ~' j (};- ( ) / ~((  )d( 
1=1 

Dividing this by the scale parameter ~, gives the scaled deviance D' ,  which can be 
thought of  as a generalized form of  the sum of  squared errors, adjusting for the shape 
of  the distribution 

D" = £ 2 co' i (I" -() /V(()d ( 

For the class ofexponenual  distributions the scaled deviance can be shov, n to be equal 
to tw.ce the difference between the maximum achievable likelihood (ie the likelihood 
where the fitted value ts equal to the obsercation for every record) and the likelihood 
o f the  model 

A range of  stat~sncal tests can be undertaken using deviance measures One of  the 
most useful considers the ratio of  the likelihood of two "nested" models, that is to say 
where one model contains explanatory variables which are a subset of  the explanatoD, 
variables m a second model Such tests are often referred to as "type lit" tests (as 
opposed to "type I" tests which consider the significance of  factors as they are added 
sequenually to a model wtth only an intercept term, referred to as a null model). 

The change in scaled deviance between t~vo nested models (which reflects the ratio of  
the likelihoods) can be considered to be.a sample from a 7. 2 distribution with degrees o f  
freedom (defined as number of  observations less the number of  parameters) equal to 
the change in degrees of  freedom, ]e 

D," - D; ~ Z~., i _~.. 
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This allows tests to be undertaken to assess the significance o f  the parameters that 
differ between the two models (with the null hypothes~s that the extra parameters are 
not important) Expressed crudel)' this measures whether the inclusion o f  an 
explanatot3.' factor in a model improxes the model enough 0e decreases the deviance 
enough) given the extra parameters which it adds to the model Adding an)' factor wdl 
improve the fit on the data in question - what matters is whether the improvement is 
s ,gmficant given the extra parametenzation 

The X: tests depend on the scaled deviance. For some distributions (such as the 
Poisson and the binomial) the scale parameter is assumed to be known, and it is 
possible to calculate the statistic accurately. For other distributions the scale parameter 
is not known and has to be estimated, typically as the ratio of  the deviance to the 
degrees of  freedom Thts can decrease the rehability o f  this test if the estimate of  the 
scale parameter used ~s not accurate. 

It is possible to show that, after adjusting for the degrees of  freedom and the true scale 
parameter, the estmlate of  the scale parameter is also distnbuted with a X ~" distribution. 
The F-dlstribution is the ratio o f z  2 distributions The ratio of'the change in deviance 
and the adjusted estimate of'the scale is therefore distnbuted x~ith an F-distribution 

(D, - D2) 

This means that the F-test ~s suitable for use when the scale parameter is not known 
(for example ,,,,,hen using the gamma dlsmhulion) There is no advantage to usmg this 
test where the scale is known 
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Section I discussed how GLMs are formularized and solved. This section considers 
practical issues and presents a plan for undertaking a GLM analysis in four general 
stages: 

• pre-modeling analysis - considering data preparation as well as a range of  helpful 
portfoho investigations 

• model iterauon - typical model forms and the diagnostics used in both factor 
selection and model vahdation 

• model refinement - investigating interaction variables, the use of  smoothing, and 
the incorporation of  aruficial constraints 

• interpreting the results - how model results can be compared to existing rating 
structures both on a factor-by-factor bas~s and overall. 

Data required 

GLM claim analyses require a certain volume of  experience Depending on the 
underlying claim frequenctes and the number of  factors being analyzed, credible 
results on personal lines portfolios can generally be achieved with around 100,000 
exposures (v,.hich could for example be 50,000 in each of  two years, etc). Meaningful 
results can sometimes be achieved with smaller volumes of  data (particularly on claim 
types with adequate claims volume), but it is best to have man)' 100,000s of  exposures 
As models fitted to only a single year of data could be distorted by events that occurred 
during that year. the data should ideally be based on two or three years of  expenence 

In addmon to combining different years of  experience, combining states (or prox races) 
can also improve stabdit3., , assuming inputs are consistent across borders 6 In the case 
where one geographic area has sufl~ctent exposure it may be more appropriate to fit a 
model just to that area's experience If a count~,wide model has been run, the 
goodness of  fit of  that model on state data may be investigated, or the state and 
countrywide model results may be compared s,de-by-side Examining the interaction 
of  state with each predictive factor may also identlfi,.' x~.here state patterns differ from 
countr3,w,de, interaction variables are discussed later in this paper 

6 In this sense, inputs refer to explanatory, critena, not necessarily existing rating relativities. 
Data coding should be rev,ex~ed to ensure some level of  consistency and care should be taken 
x~,th recycled coding from one state to another ('eg temto~'  I in Virginia should not be added to 
territory I in Florida) 
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Different types of  claim can be affected by rating factors in different ways and so often 
it is appropriate to analyze different types of  claim with separate models Analyzing 
different claim elements separately will often identify clearer underlying trends than 
considering models based on a mixture of  claims (for example, liability claims 
combined with theft claims). Even if a single model ,s required ultimately, it is 
generally beneficial to model by individual claim type and later to produce a single 
model which fits the aggregate of the  underlying models by claim type 

The overall structure of  a dataset for GLM claims analys~s consists of  linked policy 
and claims information at the individual risk level. Typical data requirements and a 
more detailed discussion of  issues such as dealing v.'ith IBNR are set out in 
Appendix G. In summary, however, the following fields would typically be included 
m a GLM claims data.set 

• Raw explanatory variables - whether discrete or continuous, internal or external to 
the company 

• Dummy variables to standardize for time-related effects, geographic effects and 
certain historical underwriting effects. 

• Earned exposure fields - preferably by claim type tf certain cla,m types are only 
present for some pohcies These fields should contain the amount of  exposure 
attributable to the record (eg measured in years) 

• Number of  incurred claims fields. There should be one field for each claim type. 
giving the number ofclaims associated with the exposure period in question 

• Incurred loss amounts fields. There should be one field for each claim type, giving 
the incurred loss amount of  clmms associated with the exposure period in 
question. 

• Premium fields These give the premium earned dunng the period associated with 
the record. If it is possible to split this premium between the claim types then this 
can be used to enhance the analysis This information is not directly reqmred for 
modeling claims frequency and severity, however it can be helpful for a range of  
post-modeling analyses such as measunng the tmpact of  mo~mg to a new rating 
structure 
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When analyzing pohcyholder retention or new business conversion, a di f ferent t'orm o f  
data is required For example to fit G L M s  to pol icyholder renewal experience, a 
dataset would contain one record for each invitation to renew and would contain the 
fo l lowing fields 

• explanatory variables including, for example, 

• raung factors 

• other factors such as distribution channel, method o f  payment and number o f  
terms with company 

• change in premium on latest renewal v 

• change m premium on previous renewal 

• measure ofcompet i t iveness on renewal premium 

• details o f  any mid-term adjustments occumng m the preceding pol icy period 

• number o f  invitations to renew (t3,pica]ly ] /'or each record - this would be the 
measure o f  exposure) 

• whether or not the policy renex~ed 

I f  several risks are written on a single pohcy, renewal may be defined at the pohcy 
level or at the individual risk level ( for example, a personal automobile career may 
wnte all vehicles in a household on a single pol icy) An understanding o f  how the 
model wi l l  be used wi l l  aid data preparation For example, models that wi l l  be part o f  
a detailed model off ice scenario wdl benefit from data defined at the individual risk 
level Models used to gain an overall understanding o f  which criteria affect 
pohcyholder retention (perhaps for markeung purposes) would not require such detail 

Separauon ofpremtum change into rate change and nsk cnteria change would be beneficial 
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Preliminary analyses 

Before modeling, it is generally helpful to undertake certain preliminary analyses. 
These analyses include data checks such as identification of records with negative or 
zero exposures, negative claim counts or losses, and blanks in any of the statistical 
fields. In addition, certain logical tests may be run against the data - for example, 
identifying records with incurred losses but with no corresponding claim count. 

Analysis of distributions 

One helpful preliminary analysis is to consider the distribution of key data items for 
the purpose of identifying any unusual features or data problems that should be 
investigated prior to modeling. Mainly this concerns the distribution of claim amounts 
(ie number of claim counts by average claim size), which are examined in order to 
identify features such as unusually large claims and distortions resulting from average 
reserves placed on newly reported claims. A typical claim distribution graph is shown 
below. 

Distribution of claim amounts 

i~i ~:~ i!iii iiii i 

oo 200. &oo. ~ 0 .  too. 1000 l ~  1400 i~[~ ~ loco N ~400 2~00 2800 3~00 32~0 ~400 ~00 3 ~  4~]0 4200 4400 

A ~  claim size 

This distribution, along with a distribution of loss amount by average claim size, will 
aid in understanding the tail of the distribution for a particular claim type. (When 
modeling severity, it is often appt:opriate to apply a large loss threshold to certain claim 
types, and this helps assess possible thresholds. A tabular representation of the 
distribution would also help quantify the percent of the claims distribution which 
would be affected by different large loss thresholds.) 
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2.11 Dismbution analyses can also htghlight specific anomalies that might require 
addressing prior to modeling. For example, if many new claims have a standard 
average reserve allocated to them, it might be appropriate to adjust the amount of  such 
an average reserve if it was felt that the average level was systematically below or 
above the ultimate average claims cost. 

One and Iwo-~ ay analyse.~ 

2 12 Although GLMs are a multivariate method, there is generally benefit in reviewing 
some one-way and ~vo-way analyses of  the raw data prior to modeling. 

2 13 Firstly, the one-way distribution of  exposure and claims across levels o f  each raw 
variable will indicate whether a variable contains enough reformation to be included m 
any models (for example, 1f99 5°'o of  a variable's exposures are in one level, it may not 
be suitable for modeling) 

2 14 Secondly, assuming there is some viable distnbution by levels o f  the factor, 
consideration needs to be given to any indwidual levels containing very low exposure 
and clam~ count If these levels are not ultimately combined with other levels, the 
GLM maximum likelihood algorithm may not converge Of a factor level has zero 
claims and a multiphcattve model is being fitted, the theoretically correct multiplier for 
that level will be close to zero, and the parameter estimate corresponding to the log of  
that multiplier may be so large and negatwe that the numerical algorithm seeking the 
maximum hkehhood wdl not converge) 

2.15 In addition to investigating exposure and claim dismbution, a query of  one-way 
statistics (eg frequency, severity, loss ratto, pure premium) will give a preliminary 
indication of  the effect of  each factor. 

Factor  categorizations 

2 16 Before modeling, ~t is necessary to consider how explanatory variables should be 
categorized, and whether any variables should be modeled in a continuous fashmn as 
variates (or polynomials in variates) Although variates do not require any,,' artificially 
imposed categorizauon, the main d~sadvantage is that the use of  polynommls may 
smooth over interesting effects in the underlying experience. Often it is better to begin 
modeling all variables as narrowly defined categorical factors (ensuring sufficient data 
in each category) and if the categorical factor presents GLM parameter estimates 
which appear appropriate for modeling with a polynomial, then the polynomial in the 
variate may be used in place of  the categorical factor 
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When using categorical factors consideration needs to be given to the way in which the 
factors are categorized If an example portfolio contained a suffcient amount of  
claims tbr each for each age of  driver (say from age 16 to 99), the categorization of  age 
of  driver may consist of  each individual age. This is rarely the case in practice, 
however, and often it is necessaD, that levels of  certain rating factors are combined. 

In deriving an appropriate categorization, the existing rating structure may provide 
initial guidance (particularly if the GLMs are to be applied m ratemaking), with factor 
levels with insufficient exposure then being grouped together and levels with sufficient 
exposure being considered separately In general such a manual approach tends to be 
the most appropriate One particular automated approach within the GLM framework 
is considered in Appendix H This approach, however, would not necessarily produce 
any more appropriate results than the manual approach 

Correlat ion analyses 

Once categorical factors have been defined, it can also be helpful to consider the 
degree to which the exposures of  explanatory factors are correlated One commonly 
used correlanon statistic for categorical factors is Cramer's V statisnc. ~ Futlher 
information about this statistic is set out in Appendix I. 

Adthough not used directly in the GLM process, an understanding of  the correlations 
within a portfolio is helpful when interpreting the results of  a GLM In particular it 
can explain why the multivariate results for a pamcular factor differ from the 
umvariate results, and can indicate which factors may be affected by the removal or 
inclusions of  any other factor in the GLM 

Data extracts 

In pracnce ~t is not necessary to fit every model to the ent, re dataset For example, 
modehng seventy for a particular claim type only requires records that contain a claim 
of  that type Running models against data subsets, or extracts, can improve model run 
speed 

Other correlauon statistics for categorical factors include Pearson chi-square, Likelihood ratio 
chi-square, Phi coeffcient  and Contingency coefficient A thorough discussion of  these 
sta.stics is beyond the scope of this paper 

45 



2 22 

223 

2 24 

225 

2 26 

The error term assumed for a model can also influence these data extracts. In the case 
of  claim counts, a pamcular property of  Poisson multiplicative model is that the 
observed data F, can be grouped by unique combination of  rating factors being 
modeled (summing exposure and claim counts for each unique combinauon) and the 
GLM parameter estimates and the parameter estimate standard errors will remain 
unchanged. This is helpful in practice since it can decrease model run times This is 
not the case for some other distributions 

A gamma multiplicative model does not produce identical results if the observations 
are grouped by umque combinations of  factors. Such a grouping would not change 
parameter estimates, but it would affect the standard errors Depending on the line of  
business, however, it may be appropnate to group the small number of  multiple claims 
which occur on the same policy in the same exposure period 

Model i teration and the role of diagnostics 

Given data relating to the actual observations and the assumptions about the model 
form, a GLM wdl yield parameter estimates which best fit the data gixen that model 
form The GLM wdl not automatically provide information mthcatmg the 
appropriateness of  the model fitted - for this it is necessat 5' to examine a range of  
diagnostics. This section reviews model forms typically used in practice and discusses 
the range of  diagnostics which aid in both the selection ofexplanatoD, factors and the 
validation of  statistical assumptions 

Factor selection 

One of  the key issues to consider is ~hich explanatory factors should be included in 
the model The GLM ~dl benefit from including factors which systematically affect 
experience, but excluding factors which have no systematic effect To thsnngmsh 
whether a factor effect is systematic or random (and therefore unlikely to be repeated 
in the future) there are a number ofcnter ia  ,.vhlch can be considered, including 

• parameter estimate standard errors 

• deviance tests (type Ill tests) 

• consistency with rime 

• c o m m o n  sense 

SRmdard c r r o r . s  

As discussed in Section I, as well as deriving parameter estimates which maximize 
likelihood, a GLM can produce important additional information mdtcating the 
certainty of  those parameter estimates 
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One such helpful diagnostic is the standard errors of the parameter estimates, defined 
as being the square root of the dmgonal element of-/ar t where H (the Hessian) is the 
second derivative matrix of the log hkelihood. 

Although theoretically tests could be performed on individual parameter estimates 
using standard errors, in practice it is often more helpful to consider for each factor in 
the GLM the fitted parameter estimates alongside the associated standard errors (for 
one base level) m a graphical form thus  

GLM output (example of stgmficant factor) 
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~,eh,cle s i m ~ l  

One such graph would be shown for each factor in the model In this case the factor m 
quesllon is Vehicle Symbol with levels running from I to 13 

The thick solid line shows the titled parameter estimates In this case the model is a 
multtphcative model w~th a log hnk fiJncnon and so the parameter estimates represent 
logs ofmuhipl iers For clarity the imphed Ioadmgs are shown as labels by each point 
on the thick solid line For example - the parameter estimate for Vehicle Symbol 3 has 
value 0 27. Th~s means that the model estimates that, all other factors being constant, 
exposures with Vehicle Symbol 3 wdl have a relati'aty of e °:7 = I 31 nines that 
expected for exposures at the base level (in this example Symbol I). This multiplier is 
shown on the graph as a "loading" of  3 I% 
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The thin solid lines on each graph indicate two standard errors either side of  the 
parameter estimate• Very approximately this means that (assuming the fitted model is 
appropriate and correct) the data suggests that the true relativity for each level o f  rating 
factor will he between the two thin sohd lines with roughly 95% certainty. The two 
bands will be wide apart, indicating great uncertainty m the parameter estimate where 
there is low exposure volume, where other correlated factors also explain the risk, or 
where the underlying expenence is x'eD, variable 

The dotted lines shows the relauvlties implied by a simple one-way analysis. These 
relati,,ities make no allowance for the fact that the difference in experience may be 
explained in part by other correlated factors These one-way estimates are of  interest 
since they wdl differ from the muhivariate estimates for a given factor when there are 
significant correlations between that factor and one or more other significant factors• 
The distribution of  exposure for all business considered is also shown as a bar chart at 
the bottom of  each graph• This serves to illustrate which level o f  each factor may be 
financially significant. 

Even though the standard errors on the graph only indicate the estimated certainty of  
the parameter estimates relative to the base level, such graphs generally give a good 
intuitive feel for the significance of  a factor For example in the above case it is clear 
that the factor is significant since the parameter estimates for Vehicle Symbols 3 to 13 
are considerably larger than twice the corresponding standard errors By contrast the 
graph below (an example of  the same factor m a different model for a different claim 
type) illustrates an example where a factor is not significant - in this case there is no 
parameter estimate more than two standard errors from zero• 
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Sometimes some levels of  a categorical factor may be clearly significant, while other 
levels may be less so Although the factor as a whole may be statistically signtficant, 
this may indicate that it is appropriate to re-categorize the factor, grouping together the 
less significant levels with other levels. 

Deviance lCSI5 

As discussed in Section 1, comparing measures of  deviance of  two nested models 
allows "type IH" tests (X 2 or F-tests depending on whether or not the scale parameter 
is known) to be performed to determine the theoretical significance of  individual 
factors. 

In the X.'ehtcle Symbol examples above (which were based on frequency models of  two 
different claim types, each with a Poisson error structure), the resulting probability 
values (or P values) from the x:tests are shown as footnotes to the graphs. Each X 2 test 
compares a model with. Vehicle Symbol to one without. In the first case the X 2 test 
shows a probability level close to 0 (displayed to one decimal place as 0 0%) This 
means that the probability of  this factor having such an effect on the deviance by 
chance is almost zero, ie this factor (according to the X: test) is highly significant 
Conversely in the second .example the probabthty value is 52 5%, indicating that the 
factor is considerably less significant and should be excluded from the model 
Typically factors with 7. 2 or F-test probabdity levels of  5% or less are considered 
significant. 

These kinds of  type [ ]  likelihood ratio tests can provide additional information to the 
graphical interpretation of  parameter estimates and standard errors For example if 
other correlated factors in a model could largely compensate for the exclusion of  a 
factor, this would be indicated m the type []  test Also the ~'pe HI test is not 
influenced by the choice of  the base level in the way that parameter estimate standard 
e l T o r s  a r e  

On the other hand, type I11 tests can be tmpracucal on occasions - for example r fa  20 
level factor contained only one level that had an',' discriminator), effect on experience, 
a type III test might indicate that the factor was statistically significant, whereas a 
graphical representation of the model results would show at a glance that the factor 
contained too man), levels and needed to be re-categorized with fewer parameters 

49 



]/IIL!/'aCIIOH |¢/I]7 l i the  

2.39 In additmon to classical stattsttcal tests it can often be helpfi~l to consider rather more 
pragmatic tests such as whether the observed effect of  a rating factor is consistent over 
tm~e For example if more than one ),ear's experience is being considered nt is possible 
to consider the effect of  a particular factor in each calendar year of  exposure (or 
altematmvely pohcy )'ear) In theot3.' this could be done by fitting separate models to 
each year and then companng the results, however this can be hard to interpret since a 
movement in one factor in one year may to a large extent be compensated for by a 
movement in another correlated factor A potentially clearer test, therefore, is to fit a 
series of  models each one of whnch considers the mteractton of  a single factor wmth 
tmme (,Interactions are dtscussed in more detail later in this paper ) 

"40  The below diagram shows one example factor interacted with calendar )'ear of  
exposure. It is clear from this result showing lines which are largely parallel that the 
factor efl"ect is mainly cons,stem from .','ear to year. suggesting that the factor is likely 
to be a good predictor of thture experience. 

GL~,I output  - e~carnple ~howmg fac to r  con.w.~'tenr over  , m e  
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2.41 Conversely the graph below shows an example of a factor (in this case temton,, 
classification) which, although significant according to classical type I[1 tests, shows a 
pattern for some levels which differs from year to year In such a case it would be 
appropriate to investigate whether there was a possible explanation for such variations 
If the variation can be attributed to some known change (for examples some event in 
one of the temtories during one period) then that can be allowed when interpreting the 
results If no explanauon can be found for variations over time, this may indicate that 
the factor will be an unrehab[e predictor of future experience. 
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In addition to statistical and other pragmatic tests, common sense can also play an 
important role m factor selection Issues winch should be considered ~hen assessing 
the significance of a factor include 

• whether the observed effect of  a factor ~s similar across models which consider 
related t),pes of claim (eg auto properly damage liabdity and collision) 

• whether the obserced effect makes logical sense (given the other factors in the 
model) 
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whether the observed effects of  a categorical factor which represents a continuous 
variable (such as the age of  a vehicle) show a natural trend - the model has no way 
of  knowing that factor levels have a natural order, therefore if a trend is obse~'ed 
this may suggest that the factor has a more significant effect than the pure 
statistical tests alone would suggest. 

M o d e l  t t e r a n o n  ,' M e p w t s e  macro~" 

It is not generally possible to determine from a single GLM which set of  factors are 
significant since the inclusion or exclusion of  one factor will change the observed 
effects and therefore possibly the significance of  other correlated factors in the model. 
To determine the theoretically optimal set of  factors, therefore, it is generally 
necessary, to consider an iterated series of  models. 

Often the model iteration starts with a GLM that includes all the main explanatory. 
variables. Insigmficant factors can then be excluded, one at a time, refitting the model 
at each stage 

When a factor is identified as being insignificant ~t is helpful to compare the GLM 
parameter estimates for that factor with the equivalent one-way relativities. When the 
GLM parameter estimates are different from the one-way relativlties this indicates that 
the factor in question is correlated x~ith other factors in the model and that the removal 
of tha t  factor from the model is likely to affect the parameter estimates for other factors 
and quite possibly also their significance. Conversely if the one-way relativities are 
xery similar to the GLM relativities for the factor to be excluded, it is hkely that there 
wdl be no such consequences and that therefore to save time a second insignificant 
factor could be removed at thai Iterauon also 

If a vet 5' large number of  factors are to be considered it can be impractical to start the 
factor ~¢eration process with all possible factors in the model In such cases tt is 
possible to select a model with certain factors which are known to be important, and 
then to test all other excluded factors by fitting a series of  models ~,hich, one at a time, 
tests the consequences of  including each of  the excluded factors. The most sight ficant 
of  the excluded factors can then be included in the model, and then the other excluded 
factors can be retested for sigmficance 
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Where possible ,t ,s generally best to iterate models manually by analyzing the various 
diagnostics descnbed above for each factor. In practice if many factors are being 
analyzed this can be impractical In such circumstances automatic "stepwise" model 
iterating algorithms can be programmed to iterate models on the basis of  type [U tests 
alone. Such algonthms start with a specified model, and then: 

a. the significance of  each factor m the model is tested with a type [ ]  test, and the 
least significant factor is removed from the model if the significance is below a 
certain specified threshold 

b. the significance of  each factor not m the model (but in a specified list of  potential 
factors) is tested by (one at a time) creating a new model w,th each factor included 
and then measuring the significance of  that factor wnh a type Ill test. The most 
significant factor not currently in the model is then included if the significance is 
above the specified threshold 

c. steps a. and b. are repea.ted until all factors in the model are deemed significant, 
and all factors not in the model are deemed insignificant. 

Such algorithms allow no human judgment to be exercised and can take a significant 
ume to complete The)' are also heavdy dependent on the type HI test which has some 
practical shortcomings as described previously Nevertheless they can derive a 
theoreucally optimal model which at the ve D' least could form the starting point for a 
more considered manual iteration 

Model validation 

As well as considering the significance of  the modeled rating factors, there are a 
number of  more general diagnostic tests which allow the appropriateness of  other 
model assumptions to be assessed Diagnostics which aid in this investigation include 

• residuals which test the appropriateness of  the error term 

• leverage which identifies observations which have undue influence on a model 

• the Box-Cox transformation which examines the appropriateness of  the link 
function 
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Residuals 

Various measures of residual can be derived to show, for each observation, how the 
fitted value differs from the actual observation. 

One measure of residual is the deviance residual 

I }, 
ri D = sign(~ -l~,) 2 (o, ~(~ - ( ) / v ( ( ) a (  

,u t 

which is the square root of the observation's contribution to the total deviance (ie a 
measure of the distance between the observation and the fitted value), multiplied by 1 
or -1 depending on whether the observation is more than or less than the fitted value. 

The deviance residuals have various helpful properties. In general they will be more 
closely Normally distributed than the raw residuals (defined simply as the difference 
between the actual observation and the expected value predicted by the GLM), as the 
deviance calculation corrects for the skewness of the distributions. For continuous 
distributions it is possible to test the distribution of the deviance residuals to check that 
they are Normally distributed. Any large deviation from this distribution is a good 
indication that the distributional assumptions are being violated. 

The below diagram shows a distribution &deviance residuals from an example model. 
In this case the residuals appear to be reasonably consistent with a Normal distribution. 

Histogram of Deviance Residuals 
Run 12 (Final models with analysis) Model 8 (AD amounts) 

5coo ~" 

Size of deviance residuals 

Pre~ura 08/03/zCO4 16:21 
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For discrete distributions the deviance residuals based on individual observanons tend 
not to appear Normally dlsmbuted. Th~s is because the calculation of  the contribution 
to the dev,ance can adjust for the shape but not the d~screteness of  the observations 
For example, m the case of  fitting a model Io claim numbers,  a GLM might predict a 
fitted value for a record of  say 0 1 representing an expected claims frequency of  10% 
In reality 0gnoring multiple claims) either a claim occurs for that record or it does not, 
with the result that the residual for that record will either correspond to an "actual 
minus expected" value o f  (0-0 l) = -0. I, or (with lower probability), the residual will 
correspond to an "actual minus expected" value of(1-0 I) = 0.9. 

Some practitioners group together the inthvldual residuals into large groups of similar 
risks This aggregation can disguise the discreteness allowing some distribuuonal tests 
to be performed. For example, it is commonly thought that a Polsson with a suitably 
large mean can be thought of  as being almost Normally distributed At this point the 
deviance residual calculated on the aggregate data should be smooth enough to test 
meamnglhl ly 

The deviance residuals are often standardized bet'ore being analyzed The purpose of 
this standardlzanon is to transform the residuals so that they have variance I d" the 
model assumptions hold Thls is achieved by adjusting by the square root of the scale 
parameter and also by the square root of one m,nus the "leverage" h, 

_ , , z ~ ,  ' Y  - , ' ,~  ) ] " 

The leverage h. is a measure of  how much influence an observation has over its own 
fitted value Its formal definition ,s complex but essentially ,t is a measure of  how 
much a change in an observanon affects the fitted value for that obse~'ation Leverage 
always lies smctly between 0 and I A leverage close to l means that ff the 
observation was changed by a small amount the fitted value would move by almost the 
same amount Where the leverage is close to I it is likely that the residual for that 
observatton will be unusually small because of the high influence the observation has 
on its fitted value. Dividing by the square root of  one minus the leverage corrects for 
this by increasing the residual by an appropriate amount 

Another contmonly used measure of the residual is the Standardized Pearson res,dual 
This is the raw residual adjusted for the expected variance and leverage (as described 
above) (}~ - ~, ) 

/ '  I ~ , . ( / , , ) ( i _ / ,  ) 
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This adjustment makes observations with different means comparable, but does not 
adjust for the shape or'the distribution 

Observing scatter plots of res,duals against fitted values can give an indicatmn of the 
appropnateness of the error functmn ,.vh~ch has been assumed For example, if the 
model form is appropnate then the standardized devmnce residuals should be 
d,smbuted Normal (0, I) regardless of the fitted value The example scatter plot below 
shows the result of fitting a GLM with a gamma variance function to data which has 
been randomly generated on a hypothetical insurance dataset from a gamma 
&smbution (w~th a mean based on assumed factor effects) It can be seen that moving 
from the left to the nght of the graph the general mean and vanabilits, of the deviance 
residuals is reasonably constant, suggesting (as is "known to be the case in this artificial 
example) that the assumed variance funcnon is appropnate. 

Plot of deviance residual against fitted value 
Run 12 (All c la im ~pes  final rnode~s N&.~) Modo l  6 (Own damage. Amounts) 
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261 Conversely the graph below shows the scaled deviance residuals obtained from fitting 
a GEM with an assumed Normal error to the same gamma data. In this case the 
variab:lity increases with fitted value, indicating that an inappropriate error function 
has been selected and that the variance of the obse~'ations increases with the fitted 
values to a greater extent than has been assumed. This could occur, for example, when 
a Normal model is fitted to Poisson data, when a Poisson model is fitted to gamma 
data, or (as is the case here) where a Normal model is fitted to gamma data. 

Plot of deviance residual against fitted value 
Run 12 (Al l  c l a im  fyl:~ee, final models, N&A) Model 7 ( O w n  damage Amounts) 
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Leverage 

As well as being needed to calculate standardized residuals, the leverage statistic ns 
also a helpful diagnostic in its own nght, since ~t can identify particular obsen'at=ons 
v,h~ch might have an undue influence on the model For example the graph below 
shox~s a scatter plot of" leverage against fitted value In th~s case sexen pamcular 
obserx ations have clearly hCgher leverage than other obse~'ations (around 0 I) and it Cs 
possible that they are having an undue influence on the model An inspection of these 
obse~'at¢ons may indicate whether or not it is appropriate to retain them in the model 

Plot of leverage against fitted value 
Run  12 (Al l  cfa~rn types f inal  mode ls  N&.A) Mode l  6 ( O w n  ¢lamage.  Amounts )  
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Box Cox transfornlatton and the crye for  a multtphcattve model 

The Box Cox transformauon can be used to assess the appropriateness of  the assumed 
link function. The transformation defines the following link function in terms of  a 
scalar parameter ), 

i (x  a - I ) 1 2 ,  2 .~0  

g ( . r ) = l  In(x), 3 .=0  

If k=l ,  g(x) = x-I This is equivalent to an identity link function (ie an additwe model) 
with a base level shift.. 

As ) ,~0 ,  g(x) ~ In(x) 9 

lim x a - I  lim [ ~ ( e x p ( A I n ( x ) ) _ l ) /  ] I,m In(x)~c a 
= = - In(x)  

, t ~ o  ~. ,~-4OL / ~ , t J  2 - - * 0  1 

This is equwalent to a multiplicauve model. 

If k=-I,  g(x) = I-x "t This is equivalent to an inverse link function with a base level 
shift. 

By fitting a series of  GLMs to the data with many different values o f k  (including real 
values betx~een -I & 0 and 0 & I), and with all other model features identical in every 
other respect, it is possible to assess which value of  k is most appropriate for the 
dataset in quesuon by seeing which value of  ~, yields the highest likelihood. Optimal 
values of  k around 0 would suggest that a multiphcative structure with a log link 
function would be the most appropriate for the data m question, whereas optimal 
values of  k around I would suggest an additive structure would be best, with values 
around -I indicating that an ,nverse link function would be most appropnate 

Examples based on two real datasets are shown below 

9 Via L'H6pital's Rule. 
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The first graph shows various values of ~ tested on two different datasets containing 
private passenger automobile property damage liability frequency experience. The 
optimal ~. in one case is very close to zero (suggesting a multiplicative model) but in 
the other is around 0.3, suggesting that the frequency in that case is largely influenced 
by explanatory variables in a multiplicative fashion, but to an extent also in an additive 
fashion. 

The second graph shows the results for claim amounts models for the same data. Here 
the optimal values of L are near zero (multiplicative), but this time slightly toward the 
direction of being partly inverse. 

In order to understand how significant the value o f~  is upon the fitted values produced 
by the model it is helpful to consider the histogram graph below which shows, for one 
of the two frequency datasets considered above, the distribution of the ratio of fitted 
values produced by a GLM with ~,=0 to an otherwise identical GLM with ~=0.3. It 
can be seen that there is in fact little difference between the fitted values produced by 
these two models, with the great majority of fitted values being within 2 or 3% of each 
other. 

Distribution o f  ratio o f  f i t ted values between model with 2 = 0 
and model with 2 = 0.3 

!ili?~i 

iiiii~! i~ii 

R I I O  of  I ~ed  v ~ u o s  [c¢ L f f i b ~ 8  • 0 (mul l )  Io  La,m bda - 0.3 

In practice there are many significant advantages with using a multiplicative structure, 
not least because it is easy to understand. In the above examples it seems that there is 
no strong evidence to use a structure other than a multiplicative structure. 
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While this should be tested in each case, it is often the case that multiphcative 
structures and log link functions are the most appropriate pracucal model for modeling 
insurance risk, and this may explain the high prevalence of  muhiplicative rating 
structures, especially in Europe where GLMs have been in use for many years 

Model re f inement  

hileracllolt.~ 

Thus far, the discussion has focused on the independent effect of  factors in the model 
Generalized hnear models can also consider the interaction between two or more 
factors Interacuons occur when the effect d rone  factor ,,'aries according to the level 
o f  another factor 

Interactions relate to the effect which factor.; have upon the nsk, and are not related to 
the correlation in exposure between two factors. This is illustrated with two examples 
v, inch consider two rating factors in a mult~phcauve rating structure 

Example I -correlatton but no mteracnon 

Eurned expo~re 

Town Countr)slde Tolal 

Male 21)0 I O0 300 

Po'aale I Of) 21J0 300 

Tolal 3C)0 3Oil 61 if) 

Nomb,.'r ol claims 

"r o,,Lli Counlra side 

~',tale gl'l 20 

Penlale 20 20 

"I-olal Iut) 40 

Tolal 

lol l  

40 

140 

Cldmls Irequenc', 

l c, ,~n Countr) side 

M J c  4i,% 20% 

Fondle 2('% lt l"o 

In this example the exposure is not distributed evenly amongst  the different rating cells 
- a higher proportion of  town dwellers are male than is the case in the countryside. 
The effect of  the rwo factors upon the risk, however, does not in this example depend 
on each other - men are twice the risk o f  women {regardless of  location) and town 
dwellers are twice the risk of  countr3.,stde dwellers (regardless of  gender). In th~s 
example there is therefore a correlation between the tx~o fating factors, but no 
interaction 
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Example  2 - interaction bill I10 correlation 

Earned exposure 
Towr~ Countryside Tolal 

Male 300 151) 451J 
ft.'runic 200 I l lO 31)0 
Tolal 500 250 750 

Number of clzim s 

To~n CountD'slde 

Male 180 30 

Female 40 I 0 

Toml 220 40 

Tolul 

210 

50 

260 

C laurts I-req u en¢.,, 

"1- owiI ColJiiI/~ Sltle 

Male 60% 2tJ°~ 

Female 20% 10% 

In this example the exposure ~s distributed evenly amongst  the different rating cells - 
the same proportion of  town dwellers are males as are countryside dwellers The effect 
of  the two factors upon the risk, however, in this example depend on each other - it is 
not possible to represent accurately the effect of  being male (compared with being 
female) in terms of  a single muhiplier, nor can the effect of  location be represented by 
a single multiplier. To reflect the situation accurately it is necessary in this case to 
consider mulupliers dependent on the combined levels of  gender and location. 

An interaction term can be included within a GLM simply by defining an explanato~, 
variable in terms of  two or more explanatory variables In the above example, rather 
than declaring location and gender as two explanatory variables (each with a base level 
and one parameter), a combined "gender-location" variable could be declared x~.ith four 
levels (a base level and three parameters) 

Interacuon terms should only be included where there is statistical justification for the 
inclusion of  the additional parameters in the above example the interaction term only 
revolved the addition of  one fiJrther parameter to the model, but if an interaction is 
introduced between two ten level factors (each with a base level and nine parameters), 
a further 81 parameters would be introduced into the model 
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"Complete "and "margtnal" interactions 

Interactions can be expressed in different ways For example consider the case of  two 
factors each with four levels One way of  expressing an interaction is to consider a 
single factor representing every combination of the two factors (or "complete" 
interaction) A set ofmulupl iers  (in the case o f a  multiplicative model) could therefore 
be expressed as follows. 

Factor 1 A B C D 

Factor 2 W 
X 
Y 
Z 

0 72 0 80 0 88 0.96 
0.90 I00  1.10 120 
0 97 I 20 1.45 1 66 
I 2 6  I 4 0  1 .85  2 10 

In this case the base level has been selected to be the level corresponding to level B of  
factor I and level X of  factor 2, and the interaction term has 15 parameters 

An alternative representation of  this mteracuon is to consider the single factor effects 
of  factor I and factor 2 and the additional effect of  an interaction term over and above 
the single factor effects (or "marginal" interacuon) A set of  multipliers in this form 
can be set as follows 

Factor 2 

Fac to r  I 

Y 
Z 

A B C D 

[ 0 9 O  IO 120 I 

I I I 

0.9 I I 1.15 
I 12 125 

In thts case fewer parameters are present m the additional interaction term because the 
presence of  the single factor effects makes some of  the interacuon terms redundant 
When fitted in a GLM (assuming that the single factor effects were declared first) the 
redundant terms m the additional interaction term would be aliased Overall the three 
terms combined still have 15 parameters, and result in identical predicted values (for 
example in the case of factor I level D and factor 2 level Z, I 2 * I 4 " 1.25 = 2 l) 
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In practice sometimes it can be helpful to consider the "complete" interaction (ie just a 
single factor representation of  all combinations of  the two factors) and sometimes it 
can be helpful to consider the additional or "marginal" interaction term over and above 
the single factor effects While the fitted values from both approaches are identical, 
what differs is the statistical diagnostics available in the form of  parameter estimate 
standard errors 

Example 

For example, the graph below shows the result of  a "complete" interaction between the 
age of  driver and the gender ofdriver for the claims frequency of  a certain type of  auto 
claim, with age relativities for men and women superimposed (with solid and dotted 
lines respectively) on the same x-axis. 

Complete interaction 

3a~aa 

a s  \ 

C ~g) l l~T a m r e ~ c l m n  b-f &go Of O~.~r BIXI ~o~ a a l l ~  p ~ l ru I I  • 0 0% 
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If there w e r e  no s,gnificant interaction between these two factors the sohd and dotted 
lines (showing parameters from a log link GLM) v, ould be parallel In this example 
they are clearly not. showing that whde younger dnxers have higher frequencies, and 
while in general male drivers have higher frequencies, in this example (as in man)' real 
cases) young men experience a higher frequency than would be predicted by the 
average independent effects of the two factors. 

The narrow standard error bands around the parameter estimate lines suggest the hkely 
significance of the result, hox~ever the)' do not provide an)' sound theoretical basis for 
assessing the simaificance of the factor A more theoretically appropnate test can be 
apphed ifa marginal interaction is considered. 

The graphs below show the results of fitting age and then a marginal interaction of age 
and sex to the same data. 
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The first graph shows the single factor effect for age, and the second shows the 
marginal interaction term over and above this single factor effect (In this case the 
single factor gender of  the driver was not included smce it proved not to be 
significant ) 

Stnce the male level of  the gender factor is ordered after the female level, the male 
levels o f  the marginal factor have been ahased, w~th the result that the first graph 
represents the age effects for males, and the marginal graph shows the additional 
adjustment which is appropriate for females of  different ages. 

The implied fitted values from the marginal mteraction are the same as the complete 
interaction - for example: 

• Complete interaction effect for age 22-24 female = +46% or multiplier o f  I 46 

• Marginal approach 

• Single factor age effect tbr 22-24 = +138% or mulupher of  2 38 

• Marginal effect of  women relative to men at age 22-24 = -38% or multipher o f  
0 62 

• Combined effect for age 22-24 female = 2.38 x 0 62 = I 48 (differences due to 
rounding) 
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The marginal approach does however provtde more meaningful diagnostics in the form 
of" parameter estimate standard errors and type [ ]  tests The standard errors on the 
graph of  the marginal term indtcate that the marginal term ts indeed significant, and the 
Type III P-~,alue of  0 00% tbr this factor confirms that this is the case. 

,,Ma example of  an interaction term which is not significant is shown below The first 
graph is the complete interaction (where the parameter estimate lines can be seen to be 
largely parallel). The second and third graphs show the main effects of" age of" driver 
and payment frequency, respectively. The fourth graph shows the marginal interaction 
(where the marginal interaction term can be seen to be insignificant, both visually and 
because of the  ~'pe I11 p-value of 61.9%) 
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htterpreting marginal interactions 

AJthough the marginal form of  an interaction provides a more sound theoretical basis 
for assessing the significance of  a factor, in practice marginal interactions can be hard 
to interpret. For example consider the example oft~.o factors each with four levels It 
might be the case that the true underlying frequency (all other factors being at a certain 
level) was as follows 

Faclar l: A B C D 

Faclor 2: w 7 2°'0 8 0% 8 8% 9 6% 

i 9 0% 10 0% I 1.0% 12 0% 
970/0 120% 145% 166% 

126% 140% 185% 210% 
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Hox~ever m reahty the exposure available for this analysis might be low for some 
combinations of  these t~vo factors, for example: 

Exposure Factor I: A B C D 

Factor Z: W 1000 1000 1000 1000 
1000 1000 1000 I 
1000 1000 1000 1000 
1000 1000 1000 1000 

If in general the claims experience was in line with the underlying frequencies but the 
one policy with factor I level D and factor 2 level X had one claim (resulting in a very 
high claims frequency of  100%), a marginal interaction would yield results which 
could be hard to interpret Specifically i ra  marginal interaction were fitted, the GLM 
x~ould seek the following parameters 

F~ictor l :  A B C D 

Factor  2: "i x 
I /s, P~, p~, I 

P.,, ,3H ,3/: 
p .  /s. ,0. 

2 97 Since level X is the base level of factor 2, there is no single term in the marginal 
interaction which can represent the very high observed frequency for factor l level D / 
factor 2 level X Instead the model will yield parameter [33 with a very high value, and 
parameters flo, ,31: and ,3j~ with low values Ahhough theoretically correct, the 
parameter estimates and standard errors lbr parameters flo, ill: and fll5 would be hard to 
interpret 

Searchmg fl)r mleracllons 

2 98 In general the significance ofan  interaction can be assessed by considering 

• the standard errors of  the parameter estimates of  the marginal term 

• the type Ill P-value of  the marginal term 

• general intuition given the o~erall "complete" interaction effect 

• the consistency of  an interaction over time 
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2.99 In theory all possible combinations of  pairs or triplets of  factors could be tested as 
interactions one at a time m a model In practice, the design of  the current rating plan, 
the results oft~vo-way analyses and wider expenence wdl influence the cho.ce of  what 
ts tested, as ,,*,'ill the ease ofinterpretation and the uinmate application of  the model. 

2 100 In some cases rather than considering every combinatton of  two factors with many 
levels it can be appropriate to consider only the strongest effects For example, a 
marginal interaction of  driver age, car symbol and the interaction of  driver age - car 
symbol (denoted dnver  age*car symbol) may highlight an interesting effect in one 
"comer" o f  the interaction (eg young drivers driving high car symbols). In practice, 
the interaction may be re-parameterized as a combinatton o f  detailed single factors for 
age of  dnse r  and car s).mbol, and an additional less detailed factor based on the 
combmanon of  age o f  dnver  and car symbol winch has the same level for many 
combinations, and a few levels representing certain combinations o f  young drivers 
driving high car symbols  

2.101 The inclusion of  several meaningful interactions which share factors (eg age*sex, 
age*multi-car and territory*multi-car) could provide a theoretically correct model but 
may be ','e~' difficult to interpret The practitioner may consider creating separate 
models for single and multi-car, and continue to investigate other interactions. 

Smoothing 
2.102 Once models have been iterated to include only sigmficant effects and interactions 

have been investigated, smoothing of  the parameter estimates may be considered in 
order to improve the predictive power of  the model. Much like the offset and prior 
weight terms in the formularization of  GLMs, smoothing is used to incorporate some 
element of  the practitioner's knowledge into the model In this sense, the practitioner 
may ~mpart knowledge that some factors have a natural order (eg that age o f ca r  seven 
should fall between age of  car six and age of  car eight). Outhers may also be 
tempered This tempenng is not based on commercial selections at this point (ie 
tolerance for rate change) but rather an attempt to adjust an anomaly once a proper 
investigation has been done to ensure that the outlier is truly an anomaly and not 
something systemanc m the experience 

2 103 The selection of  smoothed parameter estimates can be done in an unscientific fashion 
(for example - a visual modification to a curve) or in a more scientific fashion (for 
example - fitting polynomials to the observed parameter estimates, or electing to refit a 
model using polynomial terms as variates within the GLM). If smoothing is rather 
severe, the practitioner may consider restricting the values of  the smoothed factor and 
re-running a model to allow other factors to compensate. (The concept of  restrictions 
~s discussed later in th~s paper.) In general, however, this techmque may only remove 
the random element from one factor and move it to another factor, and if olden it can 
be preferable not to refit using resmcuons m this ~ay  
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2.106 

Risk Premium 

Fitting GLMs separately to frequency and severity experience can provide a better 
understanding of the way in which factors affect the cost of claims This more easily 
allows the idenufication and removal (via smoothing) of certain random effects from 
one element of the experience Ultimately, however, these underlying models 
generally need to be combined to g~ve an indication of loss cost, or "risk premium", 
relativities. I° 

In the case of mulnplicatlve models for a single claim type, the calculation is 
straightforward - the frequency multiphers for each factor can simply be multiplied by 
the seventy multipliers for the same factors (which is analogous to adding the 
parameter estimates when using a log link function) Alternatively, models may be 
fitted.directly to pure premmm data using the Tweedie distribution (discussed in 
Appendix C) The advantages and disadvantages of this alternative approach are 
discussed in Appendix J: 

Certain market conditions may warrant the development of a single theoretical nsk 
premium model, even if different types of claim have been modeled separately An 
example is the aggregation of homeowners models by peril into a single rating 
algonthm at point of sale The derivation of a single model m this situation is not as 
straightforward since there is no direct way of combining the model results for the 
underlying claim types into a single overall expected cost of claims model In this 
situation, however, it is possible to approximate the overall effect of rating factors on 
the total cost of claims by using a further GLM to calculate a weighted average of the 
GLMs for each of the underlying frequency and severity, models for each of the claim 
b'pes Specifically this can be done by 

• selecting a dataset which most accurately reflects the likely future mix of business 

• calculating an expected claim frequency and seventy by claim type for each record 
m the data 

• combining these fitted values, for each record, to denve the expected cost of 
claims (accordmg to the individual GLMs) for each record 

• fitung a further generalized linear model to this total expected cost ofclaims, with 
this final GLM containing the union of all factors (and interacnons) in all of the 
underlying models. 

,o The term "risk premium" ~s used rather than pure premium in order to differentiate between a 
model fitted directly on pure premium data and a model denved by combining underlying 
frequency and severity models 
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2 107 .An dlustrative example is shown belov~. The top table represents the intercepts and 
multipliers from underlying frequency and se~,erity models for claim types I and 2 
The bottom table shows the calculat,on of the total risk premium, based on the 
underlying models, for the first four records in the data The additional GLM is fitted 
to thts last column in this dataset m order have a single theoretical risk premium 
model 

Intercept 

Sex: 

Area:  

Male 

Female 

Tmvn 

Country 

Claim type I Claim t3pe 2 

Frequency Severity Frequency Severity 

0.32 1.000 f) 12 4,860 

I 00 I ( ]0  1 0 0  I 0 0  

f/75 I 20 0.67 0 90 

1.0f) 1.00 1.00 1.00 

I 25 0 7 2  0 7 5  (183 

Pnlic~, Sex Area Fitted 
freq I 

82155654 ikl T 32.005'0 

82168746 F T 24 00% 

82179481 M C 40 0o% 

82186845 F C 31~.00% 

Fitted Fitted Fitted Fitted Fitted Tntal 
sev I RP ! freq 2 sev 2 RP 2 RP 

1.000 00 320 00 12 00% 4.860.00 583.20 903.20 

1.200 00 288 00 8 04% 4,374.00 351.67 639.67 

720.n0 288.00 9 00% 4.1)33 80 363 04 651.114 

864 ()o 259 20 6.03% 3.63o 42 218 91 478. I I 
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In addinon to combining frequency and sexenty across multiple claim types, the 
techmque of  fitting an oxerall GLM to fitted values of  other GLMs can be used to 
incorporate non-proportional expense elements into the modeled relativ~ties For 
example, a constant dollar amount could be added to each observation's expected risk 
premium and then a GLNI re-fitted to this new field The resulting "flattened" risk 
premmm relatlviues x~,lll prevent high risk factor levels from being excessively loaded 
for expenses 

.~tematively, the amount added to each observation's expected risk premium could be 
designed to va D' according to the results of  a separate retention study. This would 
allow risks with a high propensity to lapse to receive a higher proportion of  fixed 
expense than those risks with a low propensity to lapse As above, a thrther GLM is 
fitted to the sum of  the expected nsk premium and a (lapse-dependent) expense load. 

Restrictions 

The theoretical risk premium results from a GLM claims analysis wdl differ from the 
rates implemented in pracnce since cons,deration needs to be given to price demand 
elastic,ty and the competmve situation. There are, however, some situations where 
legal or commerc,al considerations may also impose rigid restrictions on the way 
particular factors are used in practice. Though certain factors need to be restricted, if 
desired the model may be able to compensate to an extent for this artificial restriction 
by adjusting the fitted relativlties for correlated factors This ,s achieved using the 
offset term in the GLM 

Specifically, the required parameter esnmates (logs of  muhlpliers in the case of  a 
multiplicauve model) are calculated for each record and added to the oft'set term ,~,. 
The factor in question is then not included as an explanator3.' factor in the GLM (This 
can intuitively be thought of  as fixing some selected elements of  13, to be I for certain 
specified columns of  the design matrix X,j ) 

The graphs below illustrate the use of  a restriction. In the upper senes of  graphs, the 
dotted hnes display the theoretically correct parameter estimates indicated by a GLM 
containing these four rating factors The dashed line in Factor I shows the intended 
restricuon In the lower series of  graphs, the solid lines sho~ the output o f  the GLM 
after the restriction for Factor I has been incorporated and Factors 2, 3, 4 have been 
allowed to compensate It can be seen that the parameter estimates in Factors 2 and 3 
have hardly changed, suggesting little correlanon between these factors and Factor I 
On the other hand the sohd line in Factor 4 has moved away from the theorencally 
correct dotted line, suggesting a correlation between the restricted levels in Factor I 
and those levels m Factor 4 wh,ch moved to compensate for the resmction 
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Example of  restrtctmg a f~wtor 
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Although restrictions could be applied either to frequency or amounts models (or in part to 
both), generally it is more appropriate to impose the restriction on the model at the risk premium 
stage since this allows a more complete and balanced compensation by the other factors. This 
can be achieved by calculating the expected cost of  claims for each record, according to 
"unrestricted" GLMs, and then imposing the restriction in the final GLM which is then fitted to 
the total expected cost o f  claims. (For restricted risk premtum models thts approach is necessary 
even in the case of  a single claim type ) 

2.113 ha the US, many personal lines rating plans contain discounts that were initially 
implemented for marketing appeal or perhaps mandated by regulation Today's models 
may indicate that these discounts are not supported by the claims experience - or in 
many cases may even indicate a surcharge Ira company chooses to continue offering 
such discounts, ~t is important that these restricuons are incorporated into the modeling 
process since such restrictions can affect the relativities which become appropriate for 
other correlated factors. Counterintuitive model results may occur on behavioral 
factors such as factors which pohcyholders self-select, for example limits and 
deductibles. These factors may require restricuon if they are to be used direcdy in 
ratemaking 

2.114 Model restnct~ons,are also used m US ratemaking to mitigate the number of  factors 
which will change in a given rate review. Companies may restrict certain existing 
rating factors and allow the GLM to measure only the effect o f  new rating factors. 
Restrieuons may also come into play when applying the results o f  a countrywide 
model to a particular state. 

2115 Prior to incorporating restrictions, it is sull important to assess the true effect of  all 
factors upon the risk by initially including them in the analysis as i f  they were ordinary 
factors. In addition, a comparison of  the fitted values of  the theoretical model and the 
restricted models will demonstrate the degree to whach other factors have compensated 
for the resmcuon The examples below show ~,vo such comparisons. Each graph 
shows the number of  policies (on the y-axis) that have different ratios of  restricted to 
unrestricted fitted values (on the x-axis) The graph is subdiv,ded by levels of  the 
resmcted factor (shown in different shading) If the GLM can compensate well for a 
factor restriction (because there are many other factors in the model correlated with the 
restricted factor) then this distribution wil l  be narrow Conversely tf the GLM cannot 
compensate well for the restriction, this distribution will be wider 
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2.116 In this particular example the factors in the upper graph have not compensated well for 
the restriction. The wide distribution of the restricted to unrestricted ratio implies that 
the restriction is moving the model away from the theoretical result. The lower graph, 
on the other hand, shows a model which contains factors that are more correlated with 
the restricted factor, and which have compensated better for the restriction. 

Distribution of ratio of fitted values between restricted and unrestricted models 
(showing little compensation from other factors) 
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Interpreting the results 

To understand how the results of a GLM claims model differ from the existing rating 
relatwiues it is helpful to consider the results both on a factor-by-factor basis and also 
by measuring the overall effect of all factor differences combined. 

Compari.g GLM mdtcated rek~tzvittes to current  relat tvt t tes  

The final risk premium models can be plotted on graphs similar to those shown in 
previous sections Another line can be added to display the relativ~ties implicit in the 
current rating structure This allows easy comparison of the relativities indicated by 
the model and those which are currently used An example graph Is shown below. In 
this example ,t can be seen that the current relativiues for young drivers (shown as a 
dotted hne) are too low. 

Final risk premium model compared to current  relat tv i t ies  
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2.119 If the existing rating plan is purely multiplicative, superimposing current relativities on 
the graph above is vep] straightforward. Superimposing relativities from a mixed 
multiplicative/additive rating plan is slightly less straightforward. Some additive 
components may be re-expressed as an interaction variable (eg {A x B x (C+D)} may 
be re-expressed to consider the interaction of C and Du). Existing rating plans with 
more complex additive components may be approximated by fitting a multiplicative 
model to a data field containing existing premium. The appropriateness of  this 
multiplicative proxy to the mixed rating plan can be evaluated by examining the 
distribution of  the ratio of  the premium produced by the multiplicative proxy and the 
actual premium. Proxy models which estimate the rating plan within a narrow 
distribution (eg +/-5%) may well be appropriate to use. 

I m p a c t  g raphs  

2.120 The results of  a GLM analysis are interdependent and must be considered together. 
For example, while a GLM analysis might suggest that young driver relativities are too 
low, it may also suggest that relativities for inexperienced drivers (eg less than two 
years licensed) are too high. Although the existing rating structure may be 
theoretically wrong, it might be the case that to a large extent these errors compensate 
each other. To understand the true "bottom line" difference between the existing rating 
structure and the theoretical claims cost, "impact" graphs such as the one below can be 
considered. 

Impact on portfolio of moving to theoretically correct relativities 
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i~ Where A, B, C and D represent factors each of  which possibly have a different number of  
levels. 
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This graph above sliows the number of exposures in the existing portfolio that would 
experience different changes in premium if the rating structure were to move from its 
existing form to the theoretically correct form ,immediately. It is, of course, 
exceptionally unlikely that such dramatic change would be implemented in practice. 
The purpose of this analysis is to understand the magnitude of the existing cross- 
subsidies by considering the effect of all rating factors at the same time. 

This graph can also be divided by levels of a particular rating factor. (Indeed one such 
graph can be produced for each rating factor.) This identifies which sectors of the 
business are currently profitable, and which are currently unprofitable, taking into 
account the correct theoretical model and considering the effect of all factors at the 
same time. In the example below, the impact graph is segmented by age of driver 
(notice the shape does not change, only how the histogram is pattemed). 

lmpact on portfolio of moving to theoretically correct relativities 
(segmented by age of driver) 
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The histogram shows the impact of all rating factor changes (not just the age of driver 
factor) by age of driver levels. It can be seen in this example that a large number of 
exposures which would experience large increases in premium if the rating structure 
were moved immediately to the theoretically correct structure are young drivers. It 
had already been seen from the GLM risk premium graphs that young driver 
relativities were too low. This graph suggests there are no effects from other 
correlated factors which noticeably mitigate this effect; otherwise, young drivers 
would not be so strongly on the "unprofitable" side of the impact graph.. 

An example may make interpretation of the graph above clearer. Assume the 
multiplicative claims model uses age, gender, marital status, territory and credit as 
rating factors. Consider the following young driver profile with indicated rate change 
for each criterion in parenthesis: age 17-21 (+60%), male (+15%), single (-5%), urban 
territory (+15%), high credit score (-20%). All factors considered, the total indicated 
rate change for this risk profile is +61% and so this policy would contribute a count of 
one to the bar at 1.60-1.65. There are roughly 600 total exposures in this band; 
roughly one-third of which correspond to drivers age 17-21. 

The graph below adds a second (right hand) y-axis. This y-axis contains the actual 
loss ratio present in the historical data. This shows very clearly how the GLM has 
differentiated between segments of differing profitability - each band on the x-axis 
represents a band of differing expected profitability, and the solid line shows the actual 
profitability experienced for that band. 

Impact on pot/folio of  moving to theoretically correct relativities 
(segmented by age of driver, with actual loss ratio also shown) 
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3 Other applications of GLMs 

31 

32  

33 

34 

This section briefly discusses 

• the role o fGLMs m the use of  credit in personal hnes ratemaking 

• the use of  scoring algorithms m more general terms to consider underwriting and 
marketing scorecards not necessarily related to credit 

• the use of  GLMs in retention/conversion analysis. 

The role of  GLMs in the use of  credit-based insurance scores 

Credit-based insurance scores attempt to measure the predictive power of  components 
of  consumer credit report data on the cost of  insurance claims The personal lines 
insurance indust%' in the US has been using credit-based insurance scoring for over a 
decade. A 2001 Conning & Company su~'ey reported that 92°'0 of  the 100 largest 
personal automobile insurance wnters in the US use some t'orm o f  credit scoring i~. 

The early pubhshed actuanal studies on the use of  credit information m insurance 
demonstrated clear differences m univariate loss ratio by different bands of  Insurance 
Bureau credrt score Further studies examined tins relationship by components of  the 
Insurance Bureau score and also considered how loss ratio by credit component varied 
across certain [radiuonal rating variables 0e a two-way approach). ~ 

These studies drew early criticism regarding possible double-counting of  effects 
already present in risk classification schemes ~ Generahzed hnear models and other 
multivariate methods have played a critical role in addressing that criticism A recent 
study, conducted by EPIC Actuaries, LLC on behalf of  the property-casualty insurance 
industry's four national trade associations, offered four major findings about credit- 
based insurance scores: 

12 "Insurance Scoring in Private Passenger Automobile Insurance - Breaking the Silence", 
Conning Report, Conning, (2001 ) 

~3 The reader seekmg more information may reference the summaries of  the Tillinghast study 
and the James Monoghan paper in "Does Credit Score Really Explain Insurance Losses '~ 
Multivariate Analysis from a Data Mining Point of  \"iew" by Cheng-Sheng Peter Wu and James 
C Guszcza, Casuahy Actuanal Society Forum 2003 Vol Winter Pa~e(s) 120-125. 

~ The use of  credit information in insurance underwriting and ratemakmg has also drawn 
serious criticism regarding issues such as social equip,,, mtuntve correlatmn with loss, disparate 
~mpact by race and level of  wealth, etc. These issues are beyond the scope of  this paper 
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a. using generalized linear models to adjust for correlations betxveen l'actors, 
insurance scores were predictive or propensity i'or private passenger automobile 
insurance loss (particularly frequency), 

b. insurance scores are correlated with other risk characteristics, but after fully 
accounting for those correlations, the scores significantly increase the accuracy of  
risk assessment, 

c. insurance scores are among the three most important nsk factors for each of  the six 
automobde claim types studied; 

d. an analysis of  properb, damage liability frequencies by insurance score group for 
15 each of  the fifty states suggest consistent results across states 

Model vendors and insurance companies have developed credit-based insurance 
scoring algorithms which vary in complexity, apphcatlon and proprietary nature. The 
2001 Conning & Company survey concluded that smaller insurers were using credit 
scoring predominantly in their underwriting processes, whereas larger insurers 
appeared to be focusing on underwnting, pricing and sophisticated market 
segmentation. 

Insurance scores beyond credit  

Other scoring techniques can be used as a way to share vital information between the 
actuanal departments and the rest of  the insurance organization. For example, scores 
can be used to predict the profitability of  an insurance policy given a certain rating 
structure This information can be used in underwriting, cession decisions, marketing, 
and agent compensation schemes. 

The most d,rect way to manage the profitabilit3.' of  a personal lines product is through 
effective ratemakmg. Sometimes, however, regulatory., practical or commercial 
condit,ons restrict the degree to which premmms can be set to reflect the risk. ha these 
circumstances a score based on expected loss ratio can be used by insurers to gauge 
which customers are hkely to be more profitable As various functional areas are 
faro,liar with the application or  sconng algorithms, this provides a common language 
for communicating a desired strategy throughout the insurance organization. 

t" "The Relationship of  Credit-based Insurance Scores to Private Passenger Automobile 
Insurance Loss PropensiD,, an actuarial study by Epic Actuaries LLC". principal authors 
M,chael J Miller and Richard A Smith 
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3.12 

For example, a sconng algorithm could help target marketing campaigns to those 
customers who are likely to be more profitable Scores can also be used as part o f  an 
incentive scheme for agents, v, here commission or bonus Is linked to the average 
customer score. Such applications can be particularly useful in highly regulated 
markets, as the score can include pohcyholder characteristics that are not permitted in 
the actual premium. 

Producing the score 

One method of  deriving a scoring algonthm takes advantage of  the "linear" part o f  
generalized linear models (GLMs) The output of  a GLM is a series of  additive 
parameters which is then transformed via the link function to give the expected value 
for an obse~'ation. When calculating a score the link function can be omitted, leaving 
a simple additive structure which orders the risk A straightforward calculation can 
then transform the additive structure into a sconng algorithm which produces scores 
between a desired range, for example 0 to 100. 

To derive a profitabilit 3' score, the starting point would be a standard analysis o f  claims 
expenence using GLMs This would involve fitting a series of  GLMs to historic 
claims data, considering frequency and severity separately for each claim type. These 
models would include all standard rating factors, as well as any additional information 
that will be avadable at the time the score is to be calculated. Such additional 
information could include geodemographic data. 

The expected cost of  claims can then be calculated for each record in the data based 
upon the GLM claims models. For each policy this can then be divided by the 
premium which will be charged to yield an expected loss ratio, which can then itself be 
modeled and re-scaled to derive the profitability score 

The model of  expected loss ratio should only include those factors that will be 
considered at the time the score is to be applied For direct mailing campaigns this 
will usually mean that traditional insurance rating factors used m the premium will 
have to be excluded at this point (since they are not known at the time of  the mailing 
campaign) 
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Example results 

The graph below shows how a score can be used to segment very effecuvely between 
profitable and unprofitable business The bars on the graph shox~ the number o f  
policies that have been allocated d~fferent scores betx~een 0 and 100 Tile solid hne 
shows the actual loss ratio expenenced for business with differing scores. It can be 
seen that the business towards the lel~ of  the graph, with low profitability scores, ~s 
expenencing loss rauos of  100% and above, while the business to the right o f  the 
graph, with high scores, is returning loss rauos of  50% and below 
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Scores are simple to produce, easy to explain and are increasingly used by insurers 
Actuanes  can pla.v a xital role in the development o f  scoring models with the aid oi" 
generalized linear models 

Retention modeling using GLMs 

Traditional ratemaking techniques focus pdmadly  on loss analysis in a static 
environment Rate changes developed by these techniques, especiall,, ~,hen they are 
large, can actually contribute to a shortfall ~n projected premtum volume and 
profitability ]f insufficient conslderauon ~s given to the effect of  the rate change and 
other policy characteristics on customer retention and/or new business conversion 
Modeling retention (or ns complement, lapse rate) and new business conversion w~th 
GLIXls can improve ratemaking decisions and profitability forecasts, as well as 
improve marketing decisions 

86  



316  

317  

318 

3.19 

.3.20 

The data for a retention model must include information on individual policies that 
have been given a renewal offer, and x',hether or not each policy renewed 16 Similarly, 
data for a conversion model must contain individual past quotes and x~,hether the quote 
converted to new business (While most insurers have access to appropriate retention 
data, many distributing via exclusive agents or independent brokers will not have 
access to appropriate individual conversion data.) The explanatory variables to include 
in the data can be divided into three categories customer reformation, pnce change 
data, and information on the competitive position. 

The first category, should encompass more than just the standard rating variables (eg 
age,. territory., claim experience). Other "softer" variables such as number of  years 
with the company, other products held, payment plan and endorsement activity can 
determine much about a customer's behavior Distnbufion channel, too, can have a 
clear effect on the retention rate - and may interact significantly with other factors (eg 
the effect of  age may be different with intemet distribution than with agency 
distribution) 

Prior rate change, whether measured in percent change or dollar change, is often one of  
the most significant factors in a retention model Though it is intuitive that retention is 
a function of rate change, the slope of  the elasticity curve at different rate changes may 
not be as obvious In addition, measuring retention using a generalized linear model 
will adjust for exposure correlations between price elasucit3' and other explanatory 
~,ariables (eg a GLM will not show that a particular rating factor level has a low 
retention rate merely because histoncally there was aggressive rate activity with that 
level) 

The third type of  vanable, information on the competitive position, is often the hardest 
to gather in practice. .An example of  a competitive index may be the ratio o f  the 
company's renewal quote to third cheapest quote from a specified selection o f  major 
competitors at the time of  the quote Given the propenstty of  many small and medium 
companies to follow the price of  the market leaders, ignonng these companies in the 
model may not have a significant effect since their relationsinp to the market leaders 
may be fairly constant over time 

Tracking the myriad of  compeutor rate changes in a multitude or states can be 
overwhelming - even with the availabilib' of  tinrd party, competitive rating software 
and advances in quote collection procedures Fortunately even the most rudimenta l '  
competitive index vanables can prove to be pre&ctive m a retention model (and more 
so in a conversion model) 

16 Alternatively, retention data may be orgamzed by risk i f  more than one risk is wriuen on a 
single policy. 
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Model form 

As mentioned previously in Section I, the typical model tbrm for modeling retention 
(or lapse) and new business conversion is a Iogit link function and binomial error term 
(together referred to as a logistic model) The Iogit link function maps outcomes from 
the range of(0,1 ) to (..oo +co) and is consequently invafiant to measunng successes or 
failures If the y-variate being modeled is generally close to zero, and if the results of  a 
model are going to be used qualitatively rather than quantitatively, it may also be 
possible to use a multiplicative Poisson model form as an approximation given that the 
model output from a muhiphcative GLM can be rather easier to explain to a non- 
techmcal audience 

Example results 

The graph below shows sample GLM output for a lapse model The main line on the 
graph demonstrates (on a log scale) the measured muluplicattve effect of  age of  
policyholder upon lapse rate The effect is measured relative to an arbitrarily selected 
base level, and the results take into account the effect of  all other factors analyzed by 
the GLM 

Pols~on multlphcat~ve lapse model output 
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Age of ~,o1~ p n01oar 
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3.24 

In thns example, which is fairly typical, it can be seen that young polncyholders lapse 
considerably more than older policyholders, perhaps as a result of having more time 
and enthusiasm in searching for a better quotat,on, and perhaps also as a result ofbeing 
generally less wealthy and therefore more interested in finding a competitive price. 

Thns next graph shows the effect of premium change on lapse rate This GLM output 
is from a UK Institute of Actuaries General Insurance Research Organisation (GIRO) 
study t7 based on around 250,000 policies across several major UK insurers in 1996. 
The premium change is measured in ranges of monetary units (British pounds in this 
case), but the model could easily be based on the percentage change in premium. As 
would be expected, increases m premium increase lapses The model, however, 
quantifies this accurately and enables investigauons into potentially optimal rate 
increases to be undertaken It can be seen in this case (as is generally the case) that 
decreases in premium beyond a small threshold do not increase retention at all. 
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i" Bland. R H et al, Institute o f  Actuaries GIRO Customer Selectnon and Retention Work ing 
Pan.,,', 1997 - ISBN 0 901066 45 I 
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3.25 Measures of  premium change should ideally consider whether customers have an 
inherent expectation of  premium change. For example, customers with recent claims 
will anticipate a premium increase and may be prepared to accept their renewal offer 
rather than face the underwriting guides of  a new company Conversely, customers 
who are roiling off an accident surcharge, hitting a milestone age or a change in 
marital status may expect a decrease A possible proxy for customer expectation is to 
adjust the premium change variable to be the ratio of  proposed premium (based on new 
risk criteria and new rates) to adjusted proposed premium (new nsk criteria based on 
last year's rates) 

3 26 In addition to including premium change, absolute premium can also be considered as 
a factor in a model. This approach, though not theoretically incorrect, may make the 
model d,fficult to interpret since many other factors =n the model will be a component 
of  premium and therefore highly correlated with premium size. Adding absolute 
premmm to the model may significandy alter the observed relativities for other factors 
which may make the results hard to interpret One alternative to including absolute 
premium in such a case is to fit separate models for different bands of  average 
premium 

3 27 The next graph below shows an example of  the effect of  competitiveness in a new 
business conversion model The measure of  competitiveness used in this case is the 
ratio of  the proposed premium to the average of  the three cheapest alterative premiums 
from a selection of  ahemative insurers It can be seen that the less competitive the 
premium, the lower the conversion rate 
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3.31 

A further analysis which can be undertaken is to superimpose the results o f  two models 
on one graph one model that includes the competitiveness measure and one model 
that does not. The disparity between these two models will show how much of  a 
factor's effects are simply price-related 

Applications 

In a fully deregulated market such as the LJK, insurance companies can set premium 
rates according to what the market x~,ill bear In the US, insurance companies need to 
demonstrate that rates are within a reasonable range of  loss and expense cost estimates. 
Companies can, however, measure the sensitivity of  various point selections within 
those ranges (~,hether the point estimates pertain to overall rate level or classification 
ratemaking) Future pricing reviews may not only present management with support 
on actuarial considerations such as trend and loss development, but also a forecast of  
how various rate change proposals are expected to affect retention, conversion, 
premium, overall loss ratio (incorporating both overall rate change and portfolio shift 
o f  classification changes) and profitabdity in the short term and/or long term. 

Retention analyses can also lead to operatmnal actions which are unrelated to price. 
For example, in a highly rate-regulated state, consideration could be gwen to which 
segments of  the population (given a restricted set of  rates) are both profitable and most 
likely to renew in the future Such a measure could help form new underwriting 
guides or targeted marketing and cross-sell campaigns 

Insurance expense analysis is another field of  study that is often over-shadowed by 
loss analysis If acquisinon expenses are higher than renewal expenses then an 
understanding of  hkely retentmn (and therefore expected life of  a policy) can be used 
to amortize the h~gher acquisition cost over the expected life o f  the policy 
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Conclusion 

3 32 A GLM statistically measures the effect that variables have on an observed item In 
insurance, GLMs are most ot~en used to determme the effect rating variables have on 
claims experience and the effect that rating variables and other factors have on the 
probability of a policy renewing or a new business quotation being accepted 

3 .33 GLMs estimate the true effect of each ,,'affable upon the experience, making 
appropriate allowance for the effect of all other factors being considered Ignoring 
correlation can produce significant inaccuracies m rates 

3 34 GLMs incorporate assumptions about the nature of the random process underlying 
claims experience Having the flexibility to specify a link function and probability 
distribution that matches the observed behavior increases the accuracy of the analysis 

3 35 A further advantage of using GLMs is that as well as estimating the effect that a given 
factor has on the experience, a GLM provides information about the certainty, of model 
results 

3.36 GLMs are robust, transparent and easy to understand With advances in computer 
power, GLMs are widely recognized as the industD' standard in European personal 
lines, and fast gaining acceptance from mdustry professmnals in the US and Canada. 

3 37 GLMs in insurance are not limited to pncing Alternative applications of GLM claims 
analyses include underwriting, selective marketing and agency marketing 

3 .38 GLMs are grounded in statistical theory and offer a practical method for insurance 
companies to attain satisfactory profitability and a competitive advantage 
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A The design matrix when variates are used 

Consider the example of  a model which ,s based on tx,,o continuous rating variables age of  
driver and age of  car 

Let Y be a column vector w, th components corresponding to the n observed values for the 
response variable, tbr example severity: 

Y = Y, = 400 

~. L200. ! 

Let X, and ~ denote the column vectors with components equal to the observed values for the 
continuous variables (eg Xt shows the actual age of the driver tbr each observation) 

[ " 'l ['2 I 
,~_', = x :  = 

As before, p denotes a column vector of  parameters, and _a-the vector of  residuals. 

_O_= P: e =  . 

Then the system ofequatmns takes the tbrrn 

Or, defining the design matrix X as 

Y~ = ~L "~'I + ~=~ X ~  + 

x:i ] 1_'44.4 3.8 
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The system of  equations takes the form 

Y__=X.p + ~_ 

Polynomials  

Rather than assuming that the value of  X~81s linear in the vanate, it is also possible to include in 
the defimtion o fX .B te rms  based on polynomials in the variates For example, a model could be 
based on a third order polynomial in age o f  driver and a second order polynomial in age of  
vehicle. In this case the design matrix would be defined as lbllows 

18.1 327 61 5929 741 12 5 156 25 

32 2 1036.84 33386.25 [ 6 2 56 

44.4 1971.36 87528.38 3.8 14 44 

where 

the first column represents the intercept term (dnver age) t' 

the second column represents the values o f (dnve r  age) L 

the third column represents the values of(driver age) 2 

the fourth column represents the values of(driver age) 3 

the fifth colunm represents the values of(vehicle age) I 

the sixth column represents the values of(vehicle age) 2 
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B The exponential family of distributions 

Formally the exponential family of  distributions is a two-parameter family of  functions defined 
by 

{ YO - b(O) + cO,,,Ck) } fO ' ,O,¢)  = exp a(~) 

where a(¢~), b(O), and c(y, ~b) are specified functions Conditions imposed on these functions are 
that 

a. a(o~) is positive and continuous; 

b. b(t)) is twice ditYerentiable with the second derivauve a positive function (in 
particular b(~)) is a convex function), and 

c. cO'. ~b) is independent of  the parameter0 

These three funcuons are related by the simple fact tha t fmus t  be a probabihty densi W functmn 
and so it must integrate to I over its domain Different choices fora(qk), b(O), and cO', ~b) define 
a different class ofdismbutions and a different solution to the GLM problem The parameter O 
is termed the canonical parameter and ~ the scale parameter. The chart below summarizes some 
familiar distribuuons that are members of  the exponential family: 

a(¢) h(O) c(y,¢) 
Normal ~,/co 0 : / 2  -)/.(wy:]'d.ln(2,'rCMo2)) 
Potsson O/ca e a - In y,! 

Gamma ~/62 - In(-O) % In(~;~) - In(Y)r,. - In(F'(7/~) 

Binomtal(mtrtals) ~/'co m In(I ÷e  a) In('~} 

h , , , e r + e  - 

It can be seen that the standard choice for a(~) ~s 

a(~) ¢~ 

where ~a is a prior weight, a constant that Is specified in advance For insurance applications 
common choices for the prior weight are equal to I (eg when modeling clarm counts), the 
number of exposures (eg when modeling claim frequency), or the total number of  claims (eg 
when modeling claim sevenw) It ~s also clear from the chart that for certain distributions, such 
as the Polsson and binomial distributions, the scale parameter ~ is equal to I and plays no 
further role in the modeling problem. 
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A distribution for each observation Y, needs to be specified It ,s assumed that 

f(y,;0,¢~)--exp(y'O'-a-(--~)(O') + c(y , ,~)}  

Thus each obse~'ation has a different canonical parameter O, but the scale parameter 4, is the 
same across all observations It is further assumed that the functions a((O, b(O), and cO', ¢b) are 
the same for all L So each observation comes from the same class within the exponential 
family, but allowing Oto vary corresponds to allowing the mean of  each observation to vat3' 

The parameters O, and ¢~ encapsulate the mean and variance information about Y, It can be 
shown that for this family ofdismbutions 

/~, = g O ~ )  = h ' ( 0 , )  

Var(Y ) = e"(O, ) aloe) 

where the prime (') denotes differentiation with respect to 0 

The first equation implicit[s: defines 0, as a funcuon of  u, ff an explicit expression for the 
inverse ofb ' (O9 is known (as is the case for the familiar distributions) then the first equauon can 
be solved to express the canomcal parameter O, explicitly as a function of  the mean of  the 
distribution la, 

o, : (b')- '( /~,) 

Thus the canonical parameter ts essentially equivalent to the mean 

Sect*on I describes how a GLM asserts that u, is a function of  the linear predictor r/, where the 
linear predictor is a linear combination of  the p covariates X,t, • X,p 

#, = g- l ( f l lX,  l + + p x,p) 

Thus Ois ultimately a complicated function ot'the elements o f p  

8, = (h ' ) - ' ( g - ' ( f l ,  X l + .  + flpx,o) ) 

This derivation makes exphcit the manner in which the distribut,on of  Y, depends on the GLM 
parameters ,6'; . . . .  ,tip. 
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It can be seen from the table above that the expression for cO,. ~b) can be complicated. 
Fortunately as long as cO'. ¢~) does not depend on O- and hence not on /~  and thus not on the 
GLM modeling parameters f l -  then the form of cO', (0 is irrelevant to the solution o f  the 
maximum likelihood estimator. 

G ~ e n  that 8, is a function of  the mean ~, the equauon 

I'arO',) = b"(O, ) a(O) 

can be interpreted as establishing the vanance of Y, as a function of the mean of  }'; tames some 
scahng term a(ek) Thus the scaling parameter ¢,is a funcuon of  the mean and variance of  the 
d~smbuuon 

Thus the exponential family has two desirable properties 

• each d~stribution in the family is completely specified in terms of  its mean and 
variance 

• the variance of Y is a function of i t s  mean 

This second properb.' is emphasized by writing 

l"(U,) 
va t  0', ) : ¢ ~ - -  

0.) 

where the function 1" is termed the variance function. The chart below summarizes the 
relanonshtp between the mean and the canomcal parameter, expresses f in terms of  the standard 
parameters for the respective distribution, and lists the variance function for the familiar 
distributions 

Nota tum O~ ,u(~) V(,u)  

Normal  N( / l ,  a :  ) cr " 0 I 

Poisson P(/1) 1 e o /l  

G a m m a  G(~l ,v )  v -j - I / 0  .u" 

B m o m u l l  Bfnl, ,r) / m I / m e ° / ( I  + e ° ) /./(1 - ~)  

Inverse Gausstan IG(p,cr"/ 'co)  or" ( -20 )  + : /1 ~ 
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C The Tweedie distribution 

Direct modeling of pure premium or incurred claim data is problematic since a' typical pure 
premium distribution will consist of a large spike at zero (where policies have not had claims) 
and then a wide range of amounts (where policies have had claims). This is illustrated in the 
diagram below. 

Many of the traditional members of the exponential family of distributions are not appropriate 
for modeling claims experience from such a distribution since they do not have a point mass at 
zero combined with an appropriate spread across non-zero amounts. 

The Tweedie distribution, which is a special member of the exponential family of distributions, 
corresponds to the compound distribution of a Poisson claim number process and a Gamma 
claim size distribution. Consequently its probability density function has a point mass at zero 
corresponding to the probability of the Poisson number element of the compound distribution 
being zero. 

The Tweedie distribution has three parameters - a mean parameter, a dispersion parameter, and a 
"shape" parameter c~. 

Its density function is rather complex and is defined as: 

fr(Y;O'2'°t) = ~Z ~r tc,,(_l/ y))" .exPIAC°[OoY-X.(Oo)]} fory > 0 
.~1 F(-na)nfy 

and 

p ( r  = o) = exp{- ,~,o,~° (e.)} 
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where 

Or, = 0 3),,~i-,~:, 

to is the prior weight corresponding to the exposure of the observation m question 

It can be shown that the variance function for the above Tweedie distribution is given by 

where 

~ - 2  p = - -  
~ - I  

Thus the Tweedle distribution can be Poisson-l,ke (as p -~ I) or Gamma-like (as p --~ 2) 

In practice the shape parameter can either be assumed to be a particular value or, more usefully, 
estimated as part of  the maximum likehhood process Typically values o f p  just under l 5 seem 
to be estimated for auto claims experience. 

Further reformation about the Tweedie distribution can be found m the paper "Fitting Tweedie's 
Compound Poisson Model to Insurance Claims Data" by Jorgenses, B and De Souza. M.C.P, 
Scand Actuarial J 1994 169-93 
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D Canonical link functions 

Each of  the exponential dismbutions has a natural link funcdon called the canonical link. It has 
the property that _~ = r /where  _0 is the canonical parameter. This property means that the GLM 
parameters fit, ...fit, enter the expression for the distribution function in a simple way In general 

L., Cv,)= expfY'°-'a-~;(°')~-c(y,¢~)} 
( y, (b')- '  (g- '  (q.))  - b ( (b ' ) - 'g - '  (rl,)) ~ c (y , ,  O) ] = exp] a(O) 

but if_0 = ~ this simplifies to 

expl (, Y'q',,(~) - b(,7,) +c(y,O)} 

and  subsequent differentiation with respect to the GLM parameters ~ is thus significantly 
simplified. 

The canonical link functions associated with the familiar distributions are listed below 

Canomcal  Link 

Normal /.t 

Potsson In/..t 

Gamma I n ( / 1 / ( I  - .t,t ) )  

Binomial I / IJ 

In verse Gaussian I I It " 

Note that the requirement to be a canonical link function: 

0 = (b ' )- '  (g - '  (q)) = q 

implies that the inverse o f the  link funcuon, gJ ,  is the inverse o f b '  

In practice, with sophisticated s o . r a r e  to solve GLM modeling problems there is no imperative 
to use the canonical link associated with a particular distribution Instead arbitrary pairings of  
the link function and the error structure can be made and such non-canonical pairings can in fact 
yield more predictive models 
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E Solving for maximum likelihood in the general case 
of an exponential distribution 

In the case of the exponentlal family of distributions the log likelihood takes the form 

Log likelihood is maximized by taking, for each j, the first order partial derivative of / with 
respect to 13, and setting equal to zero 

OI 
- - = 0 ,  j = l  ..... p 
0 fl, 

If there is an explicit expression for Oi in terms of[31, .[3p one can make this substltunon into the 
log hkelihood function and then can 5, out the differentiation However, the calculatmns become 
complicated quite quickly It is simpler just to apply the chain rule of calculus three times 

0 =  
ol o_~(~;o,-~o,)+c(,,,~ ! ao, a~,, a,1, 

a p , = Z a o ,  k ,  a(¢~) "' au, a,7, ap, 

Recalling the following relationships. 

~ 0  I 
~?/~' =b*(O, )~  ' = l~, = h'(o,) ~ ~e ' O a, h"(0,) 

8,7, = g ' ( / . t ) ~  c3/2' = 1 
,7, = gf.u,) ~ c~it, 0,7, g'(,u,) 

Oq, = X  
q, = P,x , ,  + + p.X,~ ~ ~ P, 
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It can be deduced that 

8 1 0,'~ - u~ ) 1 I 
c~ ,6', = ~  x, i = 1  . . . .  ,o , a ( ~ )  h ' ( a , )  g ' ( l~ ,  ) ' 

c% + f l  ~ x lp ) ( Y " = i / ( / t j ) g , ( f l l x - - ~ l  + ' - , t t , ) x , j  , t = 1, , P  

Although the theoreucal system of  equations which must be satisfied in order to maximize the 
likelihood can be (relauvely) eastly written, finding the solution to these equations is more 
complicated. 
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F Example of solving for maximum likelihood with a 
gamma error and inverse link function 

For the Gamma error structure with an inverse link function, the predicted values take the form 

I g'<P,> I=I ip,>-' ,I E[r-l=g-'(xP-)'Ig"(/~: +/~')I I lls: +A)-| 
L g-'lp:) J L Ip:)- j 

The Gamma error structure has the following density function 

-I  
X x ] ,  (-  ~-'-) 

Its log- l ike l ,hood funct ion is 

l l x ; . u , $ ,  = ~ , n  f(x,,#,)= ~-~(In x._~,- x _ , , - I n  x , - I n - ~ -  In I - (~ ,  
,=j /a, / a  

Wnh an inverse link function,/a, = I.(-rYvfl fl and the log-likelihood funcuon reduces to 

t(x,I/xp,¢)= (~(~,*~x,,/~)-x,- x p ,~ - In~ , - In¢ -mr (  ) 
/=l ,1=1 ' ' 

In this example, 

l ( x ; l~ )  = ~ ( In (800  * ¢fl, + ,L/~)) - 800"  (.L/, + .  ,6';)) - In 800 - ]n ~ - In F (~ )  

+ ~ ( l n (500  * P, )  - 500 * fl, ) - In 500 - I n ~  - In F ( ~  ) 

l _ _ _ _  .~ + - ( I n ( 4 O O * ( f l ~  + .6 '~ ) ) -400 ' ( .L / .  + f l ~ ) ) - I n 4 0 0  In4, I n r (  ) 

+ ~ (In(200. *,6'.. ) -  200"  ,6': ) - I n  800 - In ~;zS¢, - I n  F(~I. 

Ignor ing some constanl terms and mul t ip ly ing by ¢,, the fo l lowing funct ion is to be maximized 

l"  ()', l , )  = In(800 * (fl, + fl~ )) - 800*  (f l ,  + fl~ ) + In( 500 */9', ) - 500 * fl, ) 
-4- In(400 * (.#/2 + fl~ )) - 400 * (,02 + ,L/} ) + In( 200*  f l .  ) - 200 * f l .  
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Again, to maximize I* take derivatives with respect to p~, ,B2 and ,6'.~. Set the derivatives to zero 
and the following three equations are derived 

21" I I 
- - = 0  => ~ + - - = 1 3 0 0  

2/" I I 
=0  => - - + - - = 6 o o  

~P: P: +P~ P: 
~/" I I 
- - = 0  => - - ~ - -  =1200 

Solving these simultaneous equation gives the following solutions: 

fll = 0.00223804 

fl: = 0.00394964 

f l~=-0  00106601 

which result in the following predicted values: 

Urban Rural 
Male 853.2 446 8 
Female 346.8 253.2 
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G Data required for a GLM claims analysis 

The overall structure o f a  dataset for GLM claims analysis consists of  hnked policy and claims 
information at the individual risk level The defimtion of  individual risk level ~sill vary 
according to the line of  business and the type of  model For instance, m a personal automobile 
claims model, the definiuon of  risk may be a vehicle (In a personal automobile retention 
model, the definition of  risk may be a policy containing several vehicles ) 

One record should be present for each period of  time dunng which a policy was exposed to the 
risk of  having a claim, and during which all factors remained unchanged Policy amendments 
should ideally appear as txso records, with the previous exposure curtailed at the point o f  
anaendment Mid-term policy cancellations should also result in the exposure period being 
curtailed If this data is not available it ts often possible to approximate it from less perfect data 
- tbr example the policies m force at one year end could be compared with the policies in force 
at the previous year end, with matching pohcles being assumed to be m force for the whole year, 
and appropriate approxtmatlons being made for non-matching policies 

The dataset should contain fields defining the earned exposure and the rating factors applicable 
at the start o f  the exposure period Addiuonally, prenuum information (typically earned 
premium) can be attached to each record ?although premium is not used directly in the 
development of  the claims models, it can provide valuable reformation for measuring the impact 
o f  an.,,' new rating or unde~vriting actions, and for producing summary one-x~.ay and two-way 
analyses including loss ratios 

All explanatory variables m the dataset should record the criteria which x,.ere applicable at the 
start o f  the policy exposure (or, strictly speaking, the point at which the premmm was 
determined for the exposure period m question) In the case of  categorical variables such as 
temto~'  or vehicle class, ho~ever, the data recorded should ideally be derived by appl',ing the 
current method of  categorization to the historic s~tuat~on 

Not all explanatory variables will be used to predict future claims experience Dummy vanables 
may be used to absorb certain effects that could bias the parameter estimates For example, if 
conducting a countr).'w~de stud)', ~t may be appropnate to create a dummy variable to 
standardize for differences m overall loss experience by geography. This dummy variable may 
be state (province). temtory ssithm state (province). or groups of  temtories within state 
(province) 

Similarly, if  combining data from several companies, a company ~dentifier ma~ be an 
appropriate dummy variable This dummy variable could absorb differences in underwriting 
standards and overall quality of  business bet~een the compames Dummy vanables could also 
absorb some histoncal effect which is not expected to continue in the future Though dummy 
variables can be used in such a way, it is still preferable to have an experience period devowd of  
strong effects 
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GLM claims datasets are typically either based on a certain policy year period or a certain 
calendar-accident year period. An example using the traditional parallelogram and rectangle 
diagrams illustrates the difference between the two. 

Dataset A: policy year 
i 

PY 01 PY 02 

Dataset B: calendar-accident year 

CAY 01 CAY 02 

Policy year: Annual policies written between 1/1/01 and 12/31/02, earned as of 12/31/03. 
Claims incurred on these policies before 12/31/03 but losses evaluated as of 6/30/04. 

Calendar-accident year: Annual policies earning between 1/1/01 and 12/31/02 in respect of 
policies written between 1/1/00 and 12/31/02. Claims occurring on policies earning between 
1/1/01 and 12/31/02, incurred losses evaluated as of 6/30/03. 

There are benefits and disadvantages of each method of organization. The policy year approach 
has the advantage of relating to a certain period of underwriting and method of selling a product. 
The earning pattern of any given policy year, however, extends beyond the 12 month period. In 
order for policies to be fully earned, the cut-offdate for exposures needs to extend 12 months (in 
the case of annual policies) or six months (in the case of semi-annual policies). In addition, the 
need for some IBNR emergence builds in more delay, resulting in data analyzed being not very 
recent. 

The calendar-accident method of organization requires that each policy be split into its calendar 
year components (for example, an annual policy written on May 1 will be split into records 
defined by May 1 through December 31 and January 1 through April 30). Although this adds to 
system requirements and increases the number of records in the dataset, this allows the creation 
of an accurate calendar year "dummy" explanatory variable which can be used to absorb trends 
in claim experience which purely relate to time. If this is not possible, the policy year method of 
organization can be used, but the effect of any trends can be more difficult to identify. 
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Cltttms reformation 

Claim count and loss amount informauon should be attached to the relevant exposure records, 
based on the most recent reserve esumates The choice of  definition of  incurred claim count, 
specifically whether this pertains to number of  claims or number of  claimants, is not particularly 
important if ultimatel.~ the clatm frequency and claim severity will be combined to the pure 
premium level. It is generally eas~er to model loss information net of  deductibles, but should 
ideally not be truncated according to an t' large loss threshold at this stage since this allows 
sensitivity testing of  several different large loss thresholds when modeling. 

It is appropriate to leave some delay between the end of  the experience period and the valuation 
date to allow for some IBNR claims to emerge and to allow for the case esumates to develop If 
there is a regular (annual or quarterly) review of  case estimates, or any other known issue 
surrounding the rese~'es, the expenence period and valuation dale should be selected to take 
advantage o f  the most accurate reformation. 

The overall base level adjustment for pure IBNR and development of  known claims will be 
made after models are finalized, but it is necessary, to consider whether such time-related 
influences could bias the model rating factor relativ,ties There is a range of  options for 
investigating the consequences o f  claims development upon the relativities measured, including: 

• ignoring loss development and assuming that parameter estimates are unaffected 

• including a dummy vanable (eg calendar year or policy year ~) in the model to 
absorb ume-related influences, once models are finalized, the dummy variable is 
simply removed and the base levels are adjusted x, ta a separate calculation (this 
assumes the development of  claims is similar for all types of  policy) 

• before modeling the most recent experience, performing a series of  GLM analysis 
on an older dataset which contains claims statistics as at various periods of  
development. By comparing GLM relativities based on data as at different 
development periods it is possible to assess whether claims development differs 
materially by type o f  risk - if they do it is possible to use the ratio o f  two models 
as at different development periods to derive multivariate development factors 
which can be applied to analyses based on a more recent dataset 

tg Dummy variables based on quarters or months may contain an element of  seasonality 
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It is also necessary to consider the treatment of claims closed without payment (also known as 
CWPs) Before modeling, it is generally most appropriate to remove such clarms (setting the 
claim count field to zero in these cases), perhaps also creating a new claim type consisting of  
only CWPs (if they are to be modeled for expense allocation purposes). If CWPs are not 
excluded it can become difficult to model average claim amounts since some common GLM 
forms (eg those with gamma error functions) cannot be fitted to data containing observations 
equal to zero 

Generally, one period of  policy exposure will have zero or one claim associated with it. 
Occasionally, there may be two or more accidents occumng in a gr,'en period of  exposure. 
There are a number of  alternative ways to deal w, th this situat,on. 

• Multiple claims could be attached to the single exposure record, with the number 
of  such claims and the total amount of  such claims being recorded This is the 
simplest method A small amount of  information is lost as a result of  stonng 
information like this, but such a loss is not generally material 

• Further records could be created m the database in the case of  multiple claims. 
The exposure end date of  the original record could be set to be the date of  
occurrence of  the first accident, with the exposure start date o'f the second record 
being the day after Each claim could then be attached to one exposure record 
(and the "number of  claims" fields would always be ze/o or one) All rating 
factors recorded in the second record would be identical to the original record. 

• Further records could be created m the database as in the second.option above, but 
with the exposure dates in the original record remaining unaltered, and with the 
exposure start and end dates in the second (and subsequent) copied records being 
equal to each other, so that the additional records had zero days exposure 
recorded (When analyzing claim amounts, the exposure information is not 
reqmred, and when analyzing clmm frequencies the" experience could be 
summarized by unique combination of  rating factor levels using an appropriate 
extract of  the data, thus compressing this data to derive the correct exposure) 

In practtce, the easiest way to program the last two of  these three methods produces one extra 
record for every, claim, so pohcies with one claim wottld produce two records, and policies with 
two claims would produce three records For example, using the second method, the exposure 
would be split at every claim date, so that there would always be one record with no claims (the 
last record). 
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General 

In addition to volume requirements, how the model ~s to be used should also be considered It" 
the model were to be used to identify inaccuracies in the current rating plan, a line o f  business 
which undergoes sigmficant rate inte~,ention at point of  sale would not be appropriate (unless 
being used to guide underwriters on the acceptable range o f  their intervention) Similarly, if 
little is collected or stored m the way of  explanatory variables, this too would limit the strength 
o f  the GLM. 
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H Automated approach for factor categorization 

One automated approach within the GLM framework is to replace a single factor with many 
levels with a series of  factors each containing just two levels which are then tested for 
significance For example instead of  modeling age of  insured with a single l'actor, a series of  
blnat3.' factors could be created 

(binary factor l ) is the age less than 18? 

(binary factor 2) is the age less than 197 

(binary factor 3) is the age less than 20 '~ 

(binary factor 4) is the age less than 21 ? 

(binary. 

(age 40 

(binary 

factor 22) is the age less than 39 '~ 

is the base level in this example) 

factor 23) ts the age less than 41'~ 

(binary factor 82) is the age less than 100 .7 

These single parameter binar3.' factors could then be tested for significance using an automatic 
stepwise algorithm as discussed in Section 2 

If, for example, ages 23, 24, 25 and 26 did not have a statistically different effect on the nsk, the 
['actors "is age less than 24", "is age less than 25" and "is age less than 26" would be deemed 
insignificant and excluded from the model Those bmar3, factors deemed significant in the 
model would determine the appropriate age categorization, and implied parameter estimates for 
each age could then be determined by summing the appropnate binary factors - eg in the above 
example the implied parameter estimate for "age 20" would be the sum of  the parameters for 
binary factors 4 to 82) 

An example result, based on real data, is shown below The dotted line shows the fined 
parameter estimates when age is not grouped (and when a parameter is allocated to each 
indiv,dual age rounded to the nearest integer) The solid hne shows the parameter esumates 
implied by the results of  the automatic grouping approach described above Only results up to 
age 29 are shown for reasons ofconfidentiahl3.'. 
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In this case it is not at all clear that the automatic approach produces a better categorization than 
a manual approach - for example it can be seen from the dotted line that age 23 has a parameter 
estimate between ages 22 and 24, and intuitively it appears wrong to group this level with ages 
25 to 26 as the automatic process suggests. It is often the case that a manual approach to 
categorizataon can produce more appropriate results than an automated approach 
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I Cramer's V 

Cramer's V statistic is a measure of  correlation between two categorical factors and is defined as I ~(n,-e)" 
• ' ,  e ,  t 

mln((a - I),(b - 1)) n 

where 

a = number  o f  levels of  factor one 
b = number of  levels o f  factor two 
% = amount  o f  the exposure measure for the i ~ level o f  factor one and j~ level o f  factor two 
n = Y , j (n , j )  
e u = E,(n, i )  .x"j(nu) / n 

The statistic takes values becx~,een ~) and 1. A value o f  O means  that knowledge o f  one o f  the two 
factors gives no knowledge of  the value of  the other. A value of  I means  that knowledge o f  one 
o f  the factors allows that value o f  the other factor to be deduced The two tables below show 
possible two-way exposure distributions o f two  categorical factors - each with only two levels, 
A and B, expressed as either rows or columns• The top table shows a Cramer's V statistic of  O, 
and the bottom table gives an example o f a  Cramer's V of  I. 

I = . . . . . . .  ~ =  . . . . . . .  ~ - ~ ~  ~ -  . . . . .  !1 
.L ,_.~ ....... ,t . . . . . . .  ~o,o, . . . . . . .  :, . . . . . . . . .  ! o o  . . . . . . . . .  iI 

[i • A ~! ~ B 
t = . . . . . . . . . . . . . . . . . . .  I 

I A  ' :I ~ " ~ o o  . . . . . . .  ; . . . . .  o = I I 
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J Benefits of modeling frequency and severity 
separately rather than using Tweedie GLMs 

Tweedie GLMs fitted to pure premium directly can often give very smlilar results to those 
derived by the "traditional" approach of combining models fitted to claim frequencies and claim 
severit,es separately In these cases using T~,eedie GLMs can reduce the amount of iterauve 
modeling work required to produce satisfacto~, claims models 

The traditional approach, however, can provide a better understanding of the way ,n which 
factors affect the cost of claims, and can more easdy allow the identification and removal of 
certain random effects from one element of the experience, for example via smoothing or by 
excluding certain factors from one of the frequency or amounts models 

For example, the graph below compares the risk premium results from the Tweedie model to 
those from the traditional approach for one rating factor Though the results between the taro 
approaches are nearly identical, the tradinonal approach does provtde additional informauon 
about the underlymg frequency (numbers) and severits, (amounts) effects - in this case the factor 
affects frequencies and severiues in completely opposite ~.a} s 

E 
.o 

o l  

o o~ 

Compartson of Tweedte model with tradtttonal frequeno' .. severtty approach 

: / i  I 
Calegor/1 Category 2 

OCt ul~l,ol~ 

aocooo 

3 ",,)00,) 

~ 0 0 o ~  

t o o o ~  

o 

The three graphs below demonstrate a case x,,here the results for a particular /'actor from a 
Tweedte GLM dtffer from those produced by the traditional approach The first two graphs 
show the underlying frequency and severity model output from the traditional approach. 
Because of the wide standard errors, meaningless pattern, and insignificant type HI test, the 
factor has been removed from the seventy model. Consequently, the trad~tlonal risk premium 
reflects the underlying frequency experience only The Tweedle model is more affected by the 
volatdity from the underlying severity experience, and produces results whtch may be less 
appropnate 
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A PRIMER ON THE EXPONENTIAL FAMILY OF DISTRIBUTIONS 

David R. Clark and Charles A. Thayer 

2004 Call Paper Program on Generalized Linear Models 

Abstract 

Generahzed Linear Model (GLM) theory represents a significant advance beyond linear 

regression theor,], specifically in expanding the choice of probability distributions from 

the Normal to the Natural Exponential Famdy. This Primer is intended for GLM users 

seeking a hand)' reference on the model's d]smbutional assumptions. The Exponential 

Faintly of D,smbutions is introduced, with an emphasis on variance structures that may 

be suitable for aggregate loss models m property casualty insurance. 
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A PRIMER ON THE EXPONENTIAL FAMILY OF DISTRIBUTIONS 

INTRODUCTION 

Generalized Linear Model (GLM) theory is a signtficant advance beyond linear 

regression theory. A major part of this advance comes from allowmg a broader famdy of 

distributions to be used for the error term, rather than just the Normal (Gausstan) 

distributton as required m hnear regression. 

More specifically, GLM allows the user to select a distribution from the Exponentzal 

Family, which gives much greater flexibility in specifying the vanance structure of the 

variable being forecast (the "'response variable"). For insurance apphcations, this is a big 

step towards more realistic modeling of loss distributions, while preserving the 

advantages of regresston theory such as the ability to calculate standard errors for 

estimated parameters. The Exponentml family also includes several d~screte distributions 

that are attractive candtdates for modehng clatm counts and other events, but such models 

will not be considered here 

The purpose of this Primer is to give the practicmg actuary a basic introduction to the 

Exponential Family of distributions, so that GLM models can be designed to best 

approximate the behavior of the insurance phenomenon. 

Insurance Applications 

Two major apphcation areas of GLM have emerged in property and casualty insurance. 

The first is classification ratemakang, which is very clearly illustrated m the papers by 

Zehnwwth and Mddenhall. The second is in loss rese~'ing, also given an excellent 

treatment in papers by England & Verrall. In 1991, Mack pointed out a connection 

between these two apphcauons, so it is not surprising that a common modehng 

framework v, orks m both contexts. 
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Both classification ratemaking and resen'mg seek to fmd the "'best" fitted values ,u to 

the observed values y.. In both cases the response ',,affable, ?~, of  which the obse~'ed 

• ~alues ),, are realizations, is measured in units of aggregate loss dollars The response is 

dependent on predictor variables called covanates. Following Mack, classification 

ratemaking is performed using at least two covanates, winch might include territory and 

drrcer age. In the reserving application, the covariates might include accident year and 

development year. 

For our dtscussions, the choice of co'~ariates used as predictors will not be important, but 

i! will always be assumed that the response ~ariable Y represents aggregate loss dollars. 

Some of the desirable quahues of  the distribution for Y, driven by this assumption, are: 

• The dtsmbution is unbiased, or "'balanced" with the obse~'ed values 

• It allows zero values in the response with non-zero probability. 

• It is posmvely skewed 

Before seeing how specific thstrlbutions in the Exponential Family measure up to these 

desirable qualities, some basic definittons are needed. 

DEFINING THE EXPONENTIAL FAMILY 

The General and Natural Forms 

The general exponential family includes all thstributions, whether continuous, discrete or 

of mixed type. whose probability function or density can be written as follo~,~,s: 

General Form (ignoring parameters other than O,): 

f (y, ; e, ) = e.xp [d(O, ) e(,', ) + g (0,) + h L", }1 

where d. e, g, h are all known functions that have the same form for all y,. 
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For GLM, we make use of a special subclass called the Natural Exponential Family, for 

which d(O, ) = 0 and e(y, ) = y,. Following McCullagh & Nelder, the "natural form" for 

this family includes an additional dispersion parameter 0 that is constant for all y, 

Natural Form: 

fO',;O,,O)= exp[{O y, -b(O,)}/a(O)+c(y,,9)] 

where a. b. c are all known functions that have the same form for all y,. 

For each form, 0~ is called the canonical parameter for Y,. 

Appendix A shows how the moments are derived for the Natural Exponenlial Family. 

The natural form can also be written in terms of  the mean 11 rather than 0, by means of 

a stmple transformation:" g, = r(0, ) = Ely,; 0 ]. This mean value parameterization of the 

density function, in which /1. is an explicit parameter, will be the form used in the rest of 

the paper and the Appendices. 

Mean Value Natt,-al Form: 

/~v,;~,.~)= exp[{~"(~,)v,- b(~"(.,))},'~(~)+~(y,.~)] 

To put this in context, a GLM setup based on Y consists of  a hnear component, which 

resembles a linear model with several independent variables, and a link function that 

relates the linear pan to a function of the expected value .u of  Y,, rather than to p, itself. 

In the GLM, the variables are called covanates, or factors if they refer to qualitative 

categories. The function 0 = r -~ (u) used m the mean value form is called the canomcal 

hnk function for a GLM setup based on ~", because it gives the best estimators for the 

model parameters. Other hnk functions can be used successfully, so there is no need to 

set aside practical considera,ons to use the canomcal link function for Y. 
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For most of  th~s paper, ever), parameter of the distribuuon of Y, apart from /1 itself, v,,dl 

be considered a known constant. The derogatory-sounding term nmsance parameter is 

used to identify all parameters that are not of  immediate interest. 

The Dispersion Function at(p) 

The natural form includes a dispersion function a(O) rather than a simple constant ¢ .  

This apparent comphcation provides an important extra degree of flexibdlty to model 

cases in which the ]'~ are mdependent, but not idenucally d~stnbuted. The dlstribuuons of  

the Y, have the sanle form, but not necessarily the same mean and variance. 

We do not need to assume that ever),, point in the tustoncal sample o f n  obser,'al~ons has 

the same mean and variance. The mean .u is esttmated as a function of  a linear 

combination of predictors (covanates). The variance around this mean can also be a 

funcuon of  external information by making use of the dtspersion function a(~).  

One way m which a model builder might make use of a dispersion functton to help 

improve a model is to set a ( ¢ ) =  ~/w~,  where ¢~ is constant for all observations and w is 

a weight that may var), by observatmn. The values ~; are a priori weights based on 

external infurmatton that are selected in order to correct for unequal variances among the 

observations that '~ould otherwme v~olate the assumpuon that ~b ~s constant. 

Now that we have seen how a non-constant d~sperslon function can be used to counteract 

non-constant variance in the response variable, ~e  will assume that the weights are equal 

to umty, so that each observation is given equal weight. 
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The Variance Function Var(Yo, and Uniqueness 

Before looking at some specific distributions m the Natural Exponential Family, we 

define a uniqueness property of the variance structure in the natural exponential family. 

This property, presented concisely on page 51 of  Jorgensen, states that the relationship 

between the variance and the mean (ignoring dispersion parameter ¢ ) uniquely identifies 

the distribution. 

In the notation of  Appendix A, we write VarO;)in terms of u. as Var(Y,)=a(C)).Z(g,), 

so that the variance is composed of  two components: one that depends on ¢ and external 

factors, and a second that relates the variance to the mean. The function V(/.t), called the 

unit variance function, is what determines the form of a distribution, given that it is from 

the natural exponential family with parameters from a paaicular domain. 

The upshot of  this result is that, among continuous distributions tn this family, V(,u)= 1 

implies we have a Normal with mean ,u and variance ~ = tr2, that V ( u ) = / 1 :  arises 

from a Gamma, and V(/.t)=/l ~ from an Inverse Gaussian. For a discrete response, 

V(/./) =/1 means we have a PoKsson 

Uniqueness Property: The unit variance.function V(fl ) umquely ident(lTes its parent 

distribution type within the natural'exponential family. 

The implications of  this Umqueness Property are important for model design in GLM 

because it means that once we have defined a variance structure, we have specified the 

distribution form. Conversely, if a member of  the Exponential Family is specified, the 

variance structure is also determined. 
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BASIC PROPERTIES OF SPECIFIC DISTRIBUTIONS 

Our discussion of the natural exponential family will focus on five specific distnbuttons: 

• Normal (Gaussian) 

• Poisson 

• Gamma 

• Inverse Gaussian 

• Negative Binomial 

The natural exponential famdy is broader than the specific distributions discussed here. 

It includes the Binomml. Logarithmtc and Compound Poisson/Gamma (sometimes called 

"Tweedle" - see Appendix C) curves. The interested reader should refer to Jorgensen for 

details of addittonal members of the exponential family. 

Many other d~stnbutions can be written in the general exponential form, if one allows for 

enough nuisance parameters. For instance, the Lognormal is seen to be a member of the 

general family by using e(y) = In(),) instead of e (y )  = y ,  but that excludes it from the 

natural exponential family. Using a Normal response variable in a GLM with a log link 

function appl,ed to/1 is quite different from applying a log transform to the response 

itself. The link function relates /1, to the hnear component; it does not apply to Y itself. 

In the balance of this discussion, it is assumed that the variable Y is being modeled in 

currency units. The functmn f ( y )  represents the probability or densi~' function over a 

range of aggregate loss dollar amounts. 

Appendix B gives "cheat sheet" summaries of the key characteristics of each distnbution. 
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The Normal (Gaussian) Distribution 

The Normal distribution occupies a central role in the historical development of statistics. 

Its familiar bell shape seems to crop up everywhere. Most linear regression theory 

depends on Normal approximations to the sampling distribution of estimators. 

Techniques used in parameter estimation, analysis of residuals, and testing model 

adequacy are guided largely by intuitions about the Normal curve and ~ts properties. 

The Normal has been criticized as a distribution for insurance losses because: 

• Its range includes both negative and positive values. 

• It is symmetrical, rather than skewed. 

• The degree ofdtspersion supported by the Normal is quite hmited. 

Besides these criticisms, we should also note that a GLM with an unadjusted Normal 

response implies that the variance is constant, regardless of the expected loss volume. 

That ~s, if a portfolio with a mean of $1,000,000 has a standard deviation of $500,000, a 

larger portfolio with a $I00,000,000 mean would have the same standard deviation. 

A weighted dispersion function a(¢~)= ¢~/w, can be used to provide more flexibility in 

adjusting for non-constant variance. The weights w can be set so that the variance for 

each predicted value #, is proportional to some exposure base such as on-level premium 

or revenue. 

For the Normal d~smbuuon, this amounts to using weighted least squares. The 

parameters that minimize the sum of squares are equal to the parameters that maximize 

the likelihood. The least squares expression then becomes: 

Ordinary Least Squares = )-" (y, - .u,) :  

Weighted Least Squares = ~ w • (,v, - /a,  )2 

where **; = I / Exposures for category 
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Poisson and Over-Dispersed Poisson Distributions 

The Poisson distribution is a discrete distribution ranging over the non-negative integers. 

It has a mean equal to its variance. 

The Over-Dispersed Poisson distribution is a generalization of  the Poisson, in which the 

range is a constant ~ times the positive integers. That is, the variable Y can take on 

values {0,1~, 2~, 3~, 40,..}. It has a variance equal to ~ times the mean. 

Poisson Distribution 

0.3000 
0.2500 
0.2000 
0.1500 
0.1000 
0.0500 
0.0000 

0 1 2 3 4 5 6 7 fl 

Over-Dispersed Poisson Distribution ~ = 500 

0.3000 
0.2500 
0.2000 
0.1500 
0.1000 . . . . . . .  
0,0500 
0.0000 

i ! ~ : 

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 

The first important point to make concerning the Poisson is that, even though it is a 

discrete distribution, it can still be used as an approximation to a distribution of  aggregate 

losses. There is no need to interpret the probabilities as anything other than a discretized 

version of  an aggregate distribution. In fact, the Poisson immediately shows an 

advantage over the Normal: 

• It is defined only over positive values 

• It has positive skewness 
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An addmonal advantage of the Poisson ~s that it allows for a mass point at zero. The 

assumptton that the rat,o of the variance to the mean is constant ~s reasonable for 

insurance applications. Essentmlly, this means that '.,,'hen we add together independent 

random variables, we can add their means and variances. A very convement property, of 

the Over-Dispersed Poisson (ODP) is that the sum of ODP's  that share a common scale 

parameter ¢ will also be ODP. 

Gamma Distribution 

The Gamma distribution is defined over positive values and has a posmve skew. The 

probabdity density funcuon, v, Titten in the natural exponenttal form, ,s: 

. .  

From its form, we see that the Gamma belongs to one-parameter natural exponential 

family, but only if  we assume that the shape parameter a Is fixed and kno'.,,,n By 

holding o¢ constant, we treat the CV of the response variable as constant regardless of 

loss volume. As such, portfolios with expected losses of  $1,000,000 and $100.000,000 

would have the same CV. This seems unrealistic for many casualty insurance 

apphcations, although the Gamma may '.`.'ork well in high-',olume lines of  business, 

where GLM-based classlficauon rating plans and bulk loss reserving models work best. 

The Gamma distribution is closed under convolution in certain cases. When the PDF is 

written m the form below, the sum of two Gamma random variables X) ~ Gamma(cry,O) 

and X',. ~ Gamma(ct,.,O') ts also Gamma-distributed with X~.: - Gamma(ot~ +ct~,O), if 

they have a common0.  Unfortunately, we cannot capitahze on this property in GLM, 

since we require ct to be constant and 0. to ',ary. 

a - i  

f (y) - >' e-.,./0 
0"  • r ( a )  
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Inverse Gaussian Distribution 

The Inverse Gaussian d~stribution is occasionally recommended as a model for insurance 

losses, especially since its shape is very strnilar to the Lognormal. 

The probability density funcuon, wntten in the natural exponenual form is' 

+ , ' -  exp[{/  (2° 
In this form, the ¢ parameter ts again treated as fixed and known. The variance is equal 

to ¢./a3. In other words, the variance is proportional to the mean loss amount cubed. 

This tmplies that the CV of a portfolio of losses would increase as the volume of loss 

increases, which ~s an unreasonable assumption for insurance phenomena. 

The Inverse Gaussian dismbution also has a practical difficulty that is worth noting. The 

difficulty is seen when the cumulative distribuuon function (CDF) is written: 

For small values of CV, this expression requires a very accurate evaluation for both 

EXP(-) and the tails of NOR.MSDIST(.) functiorl In practice, this represents a problem 

since commonly used sofb.vare often does not provide values m the extreme tails. 
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The Negative Binomial Distribution 

The Negative Binomial dKstributnon, like the Polsson, is a discrete distribution that can be 

used to approximate aggregate loss dollars. As in the Over-Dispersed Poisson, we can 

add a scale parameter 0 to Increase the flexibility of the cur,'e. 

The Negative Binomial distribution has a variance function equal to: 

¢~.u 2 with unit variance V ( g ) = . u . [ l + ~ )  v~(y )  = ~ . u  + ~-- 

The variance can be interpreted as the sum of an unsystematic (or "random") 

and a systematic component~.,u 2. The inclusion of a systematic component 0. # ,  

component implies that some relative variability, as measured by a coefficient of 

variation, remains even as the mean grows very large. That is, 

 .cv = = / ° - +  - = 
. . . . .  E [y l  . ~ - V u  k 

We would expect the variance of a small portfolio of risks to be driven by random 

elements represented by the unsystematic component. As the portfolio grows by adding 

more and more similar risks, the vanance would become dominated by the systematic 

component The parameter k can be interpreted as the expected size ofloss ,u for which 

the systematic and unsystematnc components are equal. 

Stated differently, the k parameter us a selected dollar amount. When the expected loss 

is below the amount k, the variance ~s closer to being proportional to the mean and the 

distnbu,on starts to resemble the Poisson. When the expected loss is above the amount 

k, the variance is closer to being proponLonal to the mean squared and the distribution 

approaches a Gamma shape 
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Tlus '~ariance structure f'mds a close parallel to the concept of "mixing", as used in the 

Heckman-Meyers collectwe risk model. The unsystematnc risk is then typically called 

the "'process variance" and the systematic risk the "'parameter vanance". 

Total Variance = E[Var( v)] + Var(u') 

Process Parameter 
Variance Variance 

A practical calculation problem arises if we wish to simultaneously estimate the k and /z 

parameters. The k paranleter is imbedded in a factorial function and is not independent 

of the scale parameter ¢), as shown in the probability function below Because of this 

complexity, the k will need to be set by the model user separately from the fit of /.*. 

This can be repeated for different ,.alues, with a fmal selection made by the user. 

Prob(Y=))  = expIIInl-~.l.v+lnl--~lkl,"~p~-Inl(k+Y)"(#-II]. Y,"¢) )] 

The Lognormal Distribution -Not! 

Because of its popularity in insurance applications, it is worthwh,le to include a brief 

d~scussion of the Lognormal distribution. 

The Lognormal distribution ~s a member of the general exponential famdy, but its densnty 

cannot be v,'ritten in the natural form: 

f (Y) = exp[ [ / l l n ( ) ' ) - ~ : ' 2 j ' O - ( l n ( v ) ,  202 + l n ( ~ ) + l n ( ) , ) / ] . .  
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To employ a Lognormal model for insurance Losses Y, we apply a log transform to the 

observed values of  the response, and fit a Normal distribution assumption to the 

transformed data. The response variable is therelbre In(I,') rather than Y. 

~,~,qule it initially seems attractive to be able to use the Iognormal along with GLM theory, 

there are a number of  problems w~th this approach. The first is purely practical. Since 

we are applying a logarithmic transform In(y)to our observed y, ,  any zero or negative 

values make the formula unworkable. One possible workaround is to add a constant 

amount to each y. in order to ensure that the logarithms exist. 

A second problem is that while the estimate of .fi, (the mean of ~ y j )  ) will be unbiased, 

we cannot simply exponentiate it to estimate the mean of y, in the original scale of 

dollars. A bias correction Ls needed on the GLM results. 

A third potential problem arises from the fact that the lognormal model implicitly 

assumes, as does the Gamma, that all loss portfolios ha,.e the same CV. If we believe 

that the y, come from distributRons with identical CV's,  then the GLM model with the 

Gamma assumption can be used as an alternative to the Lognormal model. This would 

allow us to steer clear of  the first two problems. 

H I G H E R  M O M E N T  P R O P E R T I E S  OF S P E C I F I C  D I S T R I B U T I O N S  

Now that we have reviewed the basic propemes tor five specuqc members of  the nalural 

exponential family, including theu- variance structure, we will examine the overall shape 

of the curves being used. 
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Moments 

The variances for the natural exponential family members described in the previous 

section may be summarized as follows 

Distribution Variance 

Normal Vat(y) = 0 

[Over-D,spersed] Poisson V a r ( y )  = ¢.# (constant V/M) 

¢ #2 [Over-Dispersed] Negative Binomial V a r ( y )  = ¢~" la * -~" 

Gamma /,'arO.,) = 0..u 2 (constant CV) 

Inverse Gaussian V a t ( y )  = O" l.t 

Two higher moments, representing skewness and kurtosis, can be represented in a similar 

sequence as functions of the CV. 

Normal 

Poisson 

Skewness 

E[cY-. 'I 
V a r ( Y )  I'2 

CV 

Negative Binomml (2 - p )  . C V  

Gamma 2. C V  

Inverse Gaussian 3- CV 

Kurtosis 

Var( r )"  : 

3+CV:  

3+ (6 " (I - p)  + p a )" C V  2 

3+6  " C V  ~ 

3+15 .CV:  
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The Negative Binomial distribution can be seen to represent values in the range between 

the Poisson and Ganmm distributions, since 0 < p <  1. The graph below shows the 

relationship between the CV and the skewness coefficient. 

6 

5 : [ ~ Neg Binom,al 

i 4 ~. LogNormal 
3 × Inv Gausslan 

2 L .1. Gamma 
Poisson 
Normal 

0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Coefficient of Variation (CV) 

The Lognormal disa'ibution is shown for comparison sake, and has a coefficient of 

skewness equal to (3 + CV z ). CV.  

Measuring Tail Behavior: The Unit Hazard Function h (y) 

In order to evaluate tail behavior of the curves in the exponential family, we will examine 

the hazard function hw(y), the average hazard rate over an interval of fixed width '~.v". 

Unit Hazard Function 

h..(y) = FO; + w ) -  F(y)  for continuous distributions, w= layer width 
I -  FO,) 

h (v) 
Pr(y < Y < y +  w) 

Pr(Y > y) 
for discrete distributions, w = fixed integer. 
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The more familiar hazard function h(y)  = f(y)/[l-F(y)] presented in Klugrnan 

[2003] is sometimes called the "failure rate", because it represents the conditional 

probability or density of a failure m a given instant of time, given that no failure has yet 

taken place. The umt hazard function measures the change in F(.v) over a small interval 

of width w, rather than a rate at a given instant in time. 

The unit hazard function has a useful interpretation in insurance applications. It is 

roughly the probability of a partial limit loss in an excess layer. For example, in a layer 

of $10,000,000 excess $90,000,000, we seek the probabihty that a loss will not exceed 

$100,000,000, given that it is in the layer. A high value for h , 0 ' )  would mean that a loss 

above $90.000,000 would be unlikely to e.,daaust the full $10,000,000 layer 

For most insurance applications, we would expect a decreasing unit hazard functton. 

That is. as we move to higher and lugher layers, the chance of  a partml loss would 

decrease. For instance, if we consider a layer such as $10,000,000 xs $990,000,000 we 

would expect that any loss above $990,000,000 would almost certainly be a full-limit 

loss. This would imply h (y) ~ 0. 

The decreasing hazard funcuon is not what we generally find in the exponentml family. 

For the Nornlal and Potsson, the hazard function approaches I, implying that full-limit 

losses become less likely on tugher layers - exactly the opposite of what our 

understanding of  insurance phenomena would suggest. The Negative Binomial, Gamma 

and Inverse Gaussian distributions asymptotically approach constant amounts, mimicking 

the behavior of  the exponential d,stribution 
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The table below shows the asymptouc behavior as we move to higher attachment points 

for a layer of',vldth w. 

Distribution LimLting Form of h (y) Comments 

Normal lim h ( y )  = 1 No loss exhausts the limit 

Poisson ~ n  h (),)  = I 

Negative Bmomial [rift h , ( y )  = I - ( I - p ) "  

Gamma lhn h ( y )  = I - e  "''°'~' 

Inverse Gausstan Inn h ( y )  = I - e  - ' ' a° ' '~  

Lognormal Irn h ( v )  = 0 Every loss ts a full-limit loss 

From this table, we see that the members of the natural exponential family have tail 

behavior that does not fully reflect the potential for extreme e,.ents m hea,.5' casualty 

msurance. It would seem that the natural exponential distnbuuons used with GLM are 

more appropriate for insurance hnes without much potenual for extreme events or natural 

catastrophes. 

S M A L L  S A M P L E  ISSUES 

The results calculated in Generalized Linear Models generally rely on asymptotic 

behavior assuming a large number of  obse~at ions  are avadable. Untbrtunately, this is 

not alv,'ays the case in Property & Casualty insurance. For instance, in per-nsk or per- 

occurrence excess of loss reinsurance, there may not be a large enough volume of losses 

to rely upon asymptotic approxtmations. 

Wtule we include here a brief discussion of the uncertainty m our parameter esttmates. 

this is an area in which much more research ts needed. 
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Including Uncertainty in the Mean I~ 

Most of our dnscussion of the exponential family has focused on the d~strnbution of future 

losses around an estimated mean ,u. However, the actuary is more often asked to 

provide a confidence interval around the estimated value of the mean /~. The estimate 

,O is also a random variable, wnth a mean, variance and higher moments. However, 

GLM models generally produce an approximation to this distribution by making use of 

the asymptotic behavior of the coefficients ]J in the linear predictor being Normal. 

The calculatnon of the variance in the parameter estimates, which leads to the confidence 

interval around the estimated mean .O, is accomplished using the matrix of second 

derivatives of the loglikelihood function. A comprehensive discussion of that calculation 

can be found m McCullagh & Nelder or Klugman [1998]. 

In general, the &stribution of the estimator ~ will not be the same exponential family 

form as that of Y. In other words, the process and parameter variances are variances of 

different dismbution forms. As a practical solutnon, the actuary will want to select a 

reasonable curve form (e.g., a gamma or Iognormal) wLth mean and variance that match 

the estimated/.~ and Var(l~) from the model. 

Including Uncertainty in the Dispersion 

In all of the d:scussmn to th~s point, the dispersion parameter 4~ has been assumed to be 

fixed and known. It is estimated as a side calculation, separate from the estimate of the 

parameters fl used to estimate the mean /2. 

So long as the separate esumate of the dispersnon paran~eter is based on a large number of 

observations, this approximauon is reasonable A problem arises m certain Lnsumnce 

applncatLons where there are relauvely few observations, and our esumate of the 

dispersion is far from certain. 
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In normal linear regression, the uncertainty in the dispersion parameter (cr 2 instead of  ¢ ) 

is modeled by using a Student-t distribution rather than a Normal distribution. The use of 

a Student-t distribution is equivalent to an assumption that the parameter cr ~ (or ~)  .s 

distributed as Inverse Gamma with a shape parameter equal to its degrees of freedom v.  

That is: 

'.. 2, ~ F ( v J 2 - 1 )  
2 ' .  e -~ '~' E re ' ]  : "F'(v .'~-) ' for 2k < v, 

g(~) = ,_..~ 
~2 . F (v /2 )  where v = degrees of  tieedom. 

A similar "mixing" of  the dispersion parameter can be made for curves other than the 

Normal. it is not always easy to explicitly calculate the mixed distribution, but the 

moments can be found with the formula above. 

For calculation purposes, if the distribution is used in a simulation model, tie mixing can 

be accomplished m a two-step process. First we simulate a value for ~ from an Inverse 

Gamma distribution. Second we simulate a value from the loss distribution conditional 

on the simulated ¢~. 

The real difficulty with the uncertainty in the dispersion parameter is that it has a 

significant effect on Me higher moments on the distfibutton, and therefore on the tail - 

the pan of the distribution where the actuaD, may have the greatest concern. As ~ae 

formula for the moments of the Inverse Gamma shows, many of  the higher moments will 

not exist. 

Another important note on the uncenainn,.' tn the dispersion parameter relates to the use of 

the Lognormal distribution. When the log transform is applied to the observed data in 

order to use linear regression, we have uncertainty m the dispersion of the logarithms 

MY,)-  When the transformed data In(),,) has a Student-t distribution, the 

untransformed data y, follows a Log-T dismbution The Log-T has been recommended 

by Kreps and Murphy for use in estimating confidence intervals in reserving applications. 
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What neither author noted, hov.ever, ~s that none of the moments of  the Log-T 

thstr~button exists. We are able to calculate percentdes, but not a "confidence interval" 

around the mean. because the mean itself does not exist. 

C O N C L U S I O N S  

The use of the Natural Exponential Family of thstnbutions m GLM allows for more 

realistic variance structures to be used in modeling insurance phenomena This is a real 

advance beyond linear regressmn models, which are restricted to the Normal distribution. 

The Natural Exponential Family also allows the actuary, to work dtrectly with their loss 

data m units o f  dollars, wtthout the need for logarithmic or other transformattons. 

Hov,'ever. these ad,,antages do not mean that GLM has resolved all ~ssues for actuarial 

modeling. The  curve forms are generally thin-tailed distributions and should be used 

with caution ~ insurance apphcatmns with potenttal for extreme e~,ents, or with a small 

sample of  Iustoncal data. 
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Appendix A: Deriving Moments for the Natural Exponential Family 

As stated in this paper, the probabdity density function fO') for the natural exponential 

family is gtven by: 

f b ' ;  0. ¢)  = exp[ (0 .y  -b(O))/a(¢)+c(y,~)] 

In the natural form, a, b, c are suitable known functions, 0 is the canonical parameter for 

Y, and ~ is the dispersion parameter. The umt cumulant function b(O), which is useful 

m computing moments of Y, does not depend on .v or 0. Likewise, the disperston 

function a($) does not depend on y or 0 The catch-all function c6', Cp) has no 

dependence on O. 

The unit cumulant function b(O) ns so named because it can be used to calculate 

cumulants, which are directly related to the random variable's moments 

We recall from statistics that the Moment Generating Functton MGF(t) is defined as: 

MGF(t)  = Se '~ • f ( y ) d y  for continuous variables 

and that 

d Y ' ]  - a ' , v s r ( t )  
m 

The Cumulant Generating Function K(t) ts defined as In[MGF(t)], and the cumulants: 

a" K(t) . 
I~" = a I " :~(, 

There ns an easy mapping between the first Four cumulants and the moments: 

= EL,.'] = = 

r :  : E l ( y - p ) : ]  : ra~(y) ~, : E[( . , , -~) 'J -3 .Var(v) :  
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For the Natural Exponential Family, the Cumulanl Generating Function can be written in 

a very convenient form: 

K(t)  = b(O +a (O) . t ) -b (O)  , so that 
a(¢) 

I¢ = b'"(O).a(ck)'-' where b"l(O) = O' b(O) 
30 '  

In the mean value form, ,.,,,here 0 = r-it ,u),  the chain rule is used to find derivatives m 

terms of  /1. The fimction b'(O) is the umt variance function, denoted VO0 when 

expressed in terms of/.2. 

Mean E[Y;O]= b ' (O)=/ l  

Variance Wr[Y ;O ] = b'(O ). ~(¢,)= V(~ ). ~(~ ) 

S,e,,. ,e,,= e',lo!. ay I;= li. 

v d ,  " a(~) 
K u r m s i s = 3 +  Var [ r ;o ] "  =3+ IV(u)] (.u)+ i(.u) .--p---~-~ 
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Appendix BI: Normal Distribution 

Density Function: 

Natural Form: 

] - -  , _  2 

y ~  (-~, ~) 

f ( y )  = exp y - / 1 ' , ' 2 ) , " 0 -  ÷In 

Cumulative Dismbuuon Function in Excel@ Notation: 

FO') = NORMDIST(v,/.t, ~'O, I) 

Moments: E[Y] = H 

r a t ( Y )  = 

S k e w n e s s  = E[(Y-P)~] 
Var(Y)~ '- 

Kurtosis  = E[(Y-/2) ']  
Vat(y) ~': 

-- 0 

= 3 

Convolution of independent Normal random variables: 

,v,(~,,¢)~N (~ ,~,) = ^,.,(u. +u,~, +~ ) 
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Appendix  B2: Over-Dispersed Poisson 

Probability. Function: Prob(Y =y )  = (Y/0)! 

y ~ (0, 1O, 2¢,, 30, 40  . . . .  ) 

NaturalForm Prob(} '=y) = exp[(In(/,t) y- / . t ) /q~-y . ln(~) /4~-In[(y/O) ' ) ]  

Cumulative Distribution Function in Exeel,~ Notation: 

Moments: ElY] = u 

Var(} ')  = 0 /.t 

s k . , , . . . , -  E[, :Y-.) ' I  
Var(  Y ) ~ ' : 

K.r,o.. = E [ ( Y - . ) ' ]  
Var( )')4 2 

C[ . ' "  = 

= 3 ÷ C V  2 

= C V  

Convolution of independent Ore r-Dispersed Polsson random variables: 

O D P , ( . u , , @ ) ® O D P ,  ila , ~ )  :=. O D P , . , ( # , ÷ # ; , O )  

where ~ is a ~:onstant variance/mean ratio 
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Appendix B3: Gamma 

Density Funciion: i>,oTf,i,-, so,) : t -~-? t T j  r--~T 

y ~  (o, =~) 

Natural Form: fO ' )  = e x p I a ( ( ~ - ~ ) - I n ( p ) / + ( ~ - l ) l n ( a y ) + l n ( v - ~ ) )  1 

Cumulative Distribution Function in Excel® Notation: 

Moments E[Y] = p 

u~ f~ gar ( r )  = - -  CV = 
ot 

Skewness = E[(Y-/~)z] 2 Var(Y)V: = ~ = 2 . C V  

Kurtosis = E[(Y-U) ' ]  = 3 ÷ 6 . C V  2 
Var(Y) 4': 

Convolution of independent Gamma random variables: 

G , ( ~ , , c t , = l a , , ' f l ) ® G . ( p , , a ,  =l .~ , ' f l )  ~ G, . . , (p  +p. , ,o t  + a ~ )  

,,,,here fl is a constant vanance/mean raUo 
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Appendix B,l: Inverse Gaussian 

I e x p r - ( y - / z ) z  / Density Function. f O ' )  = ~ ~ 2~M2). ) 

y ~ (o, ~) 

Natural Form: 

Cumulative Distribution Function in Excel@ Notation: 

F(y) -- NO~SD,ST((/a. ~qr~,y j(y-/a) )+ ~ f  2_2I/.NORMSDIST{I (~./a J P ~ ) ' J  _(Y+M) ) 

Moments: ElY] = 

Var(Y) = ~.#~ 

Skewness = 

Kurtosis -- 

c v  = 4~.~ 

E[ir-~)'] : 3 ,./;G~ : 3 c , ,  
Var( y)s ,. 

E[(Y-u) ' ]  = 3 . x 5  c z '  
Var(Y)" 2 

Convoluuon of independent Inverse Gausstan random variables: 

to,(,,,~,=p/~,~)eza.,(~,:,~,=:~,,~,.') = IG. . . (s , .+ . . , , , / , . .  = ~ 0 / ( . . + s , , )  ~) 

',,,here /] IS a constant variance/mean ratio 
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Appendix B5: [Over-Dispersedl Negative Binomial 

Probability Function: 

Natural Form: 

P r o b ( Y = y )  = 

(k + y) "O - 1 I" p' '" "(I - P r o b ( Y = y )  = [, .v,'@ P)"'* 

y 6 (0, 10, 20. 3@, 4¢ . . . .  ) 

Cumulative Dtstribution Functton m Excel,~ Notation: 

Prob(Y _< )') = BETADIST( ku+k'@'q/J Y+I) 

Moments.  ElY] = k . ( l - P )  = /1 so p =  k 
p / . t+k 

Var( Y ) = @.k ( i - p )  _ ¢~./..t.e@ p:  ~ . . u :  

CZ = ~ .O_k 

sk¢ , , , . e ,~  - E,.Y-uI',=[~ l ¢ 2 - p : ,  CV 
ear( }')J' ' 

Kurtos,s = E[(Y-'u) '~] = 3 + ( 6  (I - p)+ p" ).CV: 
l'ar( )') ~' 2 

Convolution of  independent O'. er-D~spersed Negatwe Bmomm] random variables: 

NB,(#,,dP, p)®NB,(I~,,O,p) ~ NB,.~(II, +II ,gp, p) 
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Appendix C: Compound Poisson/Gamma (Tweedie) Distribution 

The Tv.,eedie distribution can be interpreted as a collective risk model with a Polsson 

frequency and a Gamma seventy. 

Probability Function: 

[ 

f (Yl  ).,O,c_x) = []k~l e-~' 

. ~.te-J..'~ ta-~e-~ 6* 

Poisson Gamma 

y = 0  

) ' > 0  

This form appears complicated, but can be re-parameterized to follow the natural 

exponential family form. 

[12-p 
We set: ~ =  2 - p  ~ 0 = 0 . ( p - I )  /1 ''-~ 

p - l  O ( 2 - p )  

a + 2  
and I < p < 2 ,  since p =  

~x+l 
and a > O  

f ( Y [ P , O , P )  = exp ( 2 - p ) ' *  ( p - I ) . g  • c(v,O'. 

where 

cry.O) = 
[ ~  y = 0 

V ~ ." -p,~p-ii-i 
[0 (2-P~] ~ [0 (P-I)] ~'''p''°'' ' FI.k(2-p),'(p-lJ) k! y>O 
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The density function f ( y  I.u,~p, p) can then be seen to follow the "natural form" for the 

exponenual family. 

Moments: E[Y] = 2 . 0 . c t  = U 

Far(Y) = ; t ' 0  2 U ( a + l )  = ~ /./P 

Cv = + ~ a  = 

Skewness - E[(Y- / ' t )3] -  ~ . . O ' . a . ( a + l ) . ( a + 2 )  = p .  C V  
V,~,-(Y)' : (;t.O' .c,.(a+O)": 

Kurtosts = E[ (Y- /z ) ' ]  = 3 + p . ( 2 p - I )  CV 2 
liar( r ) "  2 

For GLM, a p value m the (I. 2) range must be selected by the user. The mean /1 and 

dispersion ¢~ are then estimated by the model. 

The Compound Poisson/Gamma is a continuous distribution, with a mass point at zero. 

The evaluation of  the cumulative distribution function (CDF) is somewhat inconvenient, 

but can be accomplished using any of  the collective risk models available to actuaries. 

Finally, we may note that the convolution of independent Tweedie random variables: 

TW(A, O,a /®TW(X. , ,O, tx )  =:, TW..,(A +A,,O,ct) 
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S e v e r i t y  D i s t r i b u t i o n s  for  G L M s :  G a m m a  o r  L o g n o r m a l ?  

Evidence from Monte Carlo Simulations 

Luyang Fu, Ph.D. and Richard Moncher, FCAS, MAAA 

Abstract 

Insurance claim costs have been found in numerous studies to be positive and usually 

positively skewed with variances often proportional to the mean squared. In practice, the 

gamma and Iognormal distributions are the ones with those desired properties most 

widely used. Most actuarial research in GLMs also report results from normal 

distributions as a comparison. In this stud~, we apply Monte Carlo simulation techniques 

to examine the unbiasedness and stability of the GLM classification relativities assuming 

gamma, Iognormal, and normal distributions. We find that the gamma distribution 

provides better predictive accuracy and efficiency. 
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I. Introduction 

Generalized Linear Models (GLMs) have been widely used in property-casualty 

ratemaking recently because they consider all rating factors simultaneously and adjust for 

interactions and correlations among them. Numerous studies, such as Brown (1988), 

Holler, Sommer, and Geoff(1999), Milderdaall (1999), and Murphy, Brockman, and Lee 

(2000) have shown that one-way analysis leads to systematic bias and that GLMs can be 

used to calculate classification relativities and to reduce estimation errors. 

Traditional linear models assume independent and identical normally distributed 

residuals. Insurance data, such as losses and severities are positive and usually positively 

skewed. GLMs assume that data is sampled from an exponential family of distributions t. 

Many distributions in this family (e.g., gamma, inverse Gaussian, and negative binomial) 

are consistent with the nature of insurance data (positive and positively skewed). In 

practice, GLMs with gamma and normal distributions are usually used for severity 

relativity calculations. Most empirical analyses ofGLMs m actuarial research report 

results from gamma and normal distributions. 

Besides the gamma distribution, the Iognormal is the other widely used distribution w~th 

the desired characteristics of insurance data. Mildenhall (1999) discussed that the 

logarithm of the response variable, the variance-stabilizing transformation, is often used 

t The exponential family of  distributions has the probabdity densLty function for continuous variables or the 

probabdity function for discrete varmbles in the form of f(x:O,¢) = e x p  {xO - b(O) ÷ c(x,q)')}. The 
a(0) 

Iognormal, Pareto and Weibul] distrtbuhons are not in the e~ponential family. 
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in linear models to improve normality. The log-transformed model also converts 

multiphcative models to linear ones. The underlying assumption of  the log-transformed 

model is that the response variable follows a Iognormal distribution. 

McCullagh and Nelder (1989) contend that it is common for data "in the form of  

continuous measurements" to have variance posittvely correlated with the mean. So, the 

constant coefficient o f  variation (mean / standard deviation) is a more realistic 

assumption than constant variance. This property of  constant coefficient of  variation is 

found to be appropriate tbr insurance data by Murphy, Brockman, and Lee (2000) and 

Mildenhall (1999). The former study also shows that the correct selection of  the non- 

constant variance function significantly improves the robustness of  parameter estimates. 

Both gamma and Iognorma] distributmns have the property of  constant coefficient of  

variation. A gamma distribution with parameters tr and 0 has the following density 

Xa- l  e-X , e 
G(.r;a,O) = F(a)O------~, (1) 

function: 

where F(a') is the gamma function. G(x, ct, O) has mean fl = a'O and variance 

o': = G0: .  So, the gamma distribution has its variance proportional to its mean squared, 

i.e., o': . The Iognormal distribution with parameters M and f2 has density: 
t~ 

] --(.I na -,~.fl 2 '2 f ' t  ~ L(.~,M,g~)=-~--~ e (2) 
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L(x, M, ~) has mean , t / =  e '~+n:' 2 and variance 0 -2 = e 2'~*n' (e  n: - I) .  The variance 

of  the Iognormal distribution is also proportional to its mean squared, i.e., H 

0--' = (e  n: _ I)/./2 ' 

. .  . : ,  

In this study, Monte Carlo simulation analysis is applied to investigate the following 

questions: 
J 

I. Under what conditions are the assumed severity distributions important? 

2. If the severity distribution is unknow~ or difficult to test, which of  the gamma, 

Iognormal or normal distribution assumptions yield the most robust result (i.e., 

minimized estimation bias and standard error)? 

The individual losses are generated randomly from gamma and lognormal distributions. 

For each simulated dataset, three models are fit: GLM with a gamma distribution and log 

link; GLM with a normal distribution and log link; and GLM on the log-transformed 

severity with a normal distribution and identity link. 

This paper assumes the reader is familiar with basic class ratemaking and the 

fundamentals o f  GLMs. It is organized as follows. Section 2 discusses the details o f  our 

Simulation Methodology, and Section 3 reviews Simulation Results. Section 4 outlines 

our Conclusions, and Section 5 provides ideas for Future Research. 
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2. Simulation Methodology 

Simulation Assumptions 

The simulation is numerically based on the predicted claim severity for private passenger 

auto colhsion claims adjusted for severity trend. The data is fi-om Mildenhall (1999) and 

McCullagh and Nelder (1989)", and it includes thirty-two severity observations for two 

classification variables: eight age groups and four types of vehicle-use (which are based 

on 8,942 individual claims). In this study, the response variable is the average claim 

severity and the simulation assumptions fl~clude the following: 

I ). The individual losses have a constant coefficient of variation. Let L~.j denote 

the loss for claim k with age group i and vehicle-use group j. We assume that L*.., are 

independently distributed with mean E(L~.j ) = `U,., and variance 

var(Ll, j ) = cr2.j = (`U,.j * cv)", where cv is the coefficient of variation. Mildenhall (1999) 

and McCullagh and Nelder (1989) discuss that the assumption of constant variance is 

unrealistic and the standard deviation of severity is more likely to be positively correlated 

with the mean severity. Following their research, ,,,,e assume a constant coefficient of 

xariation (rather than constant variance) in the simulation. The average claim severity 

tl . 

Sij = 1 S"L  k 
i,.t , where n, ,  is the total claims for age group i and vehtcle-use group 

~1,] k=l 

j, while S.j  has m e a n u . ,  and variance o'~j 
/'|r. I 

' W e  u s e d  t h i s  d a t a s e t ,  a s  it ,.i.as u s e d  in  t h e s e  l~vo a u l h o r l l a t r ' , e  s t u d i e s .  
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2). The relationship between severities and rating variables is multiplicattve. The 

mean severity equals: 

.ll..j = Base*Rel  * R e / j ,  (3) 

where Re/, is the severity relativity for age group i and Re/j  is the relat.vity for vehicle- 

use group j. This is equivalent to a generalized linear model with log link function: 

log(//,., ) = Intercept + ~ a , x ,  + Eb . , ) , , ,  (4) 
i i 

where x, is the dummy variable for age group i ( x, = I if age .s i; 0 otherwise) and y,  is 

the dummy variable for vehicle-use group j; a, is the GLM coefficient for x, and b, ts 

the coefficient for y j .  

3). The "true" base severity and relativities Rel  and Re/j  (or GLM coefficients 

a, and b, ) distributions are known. Those "true" values are the predicte~l GLM values in 

Mildenhall (1999) based on the gamma distribution and log links 3. The age group "60÷" 

and vehicle-use group "'for pleasure" are selected as the base 4, an.d the base severity is 

195. Table I. 1 and Table 1.2 list the "'true" relativities for age groups and vehicle-use 

groups, respectively. Table 1.3 shows the "'true" severities and relallvlties for each 

combined age and vehicle-use group. 

4). The coefficients o f  variation of  the severity distribution are known. We set the 

coefficients of  variation to be 1.0, 2.0 or 3.05. 

The conclusions in this study are still valid if we use the predicted GLM se'.ertues from other 
distributions in Mildenhall { 1999). 
' The selecuon of the base does not affect the GLM results numerically. 
s The data used by Mildenhall (1999) is average claim se',erit),, and the individual clatm information is not 
available. We calculated silty-five se','er]ty coefficients of variation from the major co,.erages in fifteen 
states from our company data. The average of variation coel'fic~enLs was 1.434, the minimum 0.529, the 
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D i s t r i b u t i o n  P a r a m e t e r s  

From the simulation assumptions, the losses L~ ~ follow distributions with means of  u .... 

and variances of  (u,., * cv) 2 . The parameters of  the gamma and Iognormal distributions 

can be calculated based on the assumed mean and variance. The gamma distribution 

G(x,  ct,O) has mean ctO and variance ctO:. This implies L ~ has gamma parameters of  1.1 

I 
a = ----7 and O =/,t.j * cv:.  Similarly, the lognormal distribution L(x,  M,t2) has mean 

CL'- 

= eM+n:.,2 and variance = e -~M*f~: (e  t2: - I ) .  This implies that L~.j has Iognormal 

parameters of  M = IogQ2;.j ) - Iog(I + cv  2 ) / 2 and .Q," = Iog(I + cv 2 ). In other words, 

og(L .; ) is normally distributed with mean M and variance ~'~. 

S i m u l a t i o n  P r o c e d u r e  

I). For each coefficient o f  ~ariation, the individual losses are generated based on 

Iognormal and ganmaa distributions. For each combined age group i and vehicle-use 

group j, n.j individual losses of  L~.j are simulated. The average claim severity is 

calculated as the mean of  those individual losses. In total, 8,942 individual losses and 

thirty-two claim severities S,.j are generated in each round of  simulation. 

2). For each dataset, three models are fitted: GLM with gamma d.stnbution and 

log link; GLM with normal distribution and log link; and GLM on the log-transformed 

maximum 3 464, and the standard deviation 0.516. Fifiy-~even of  the sixt~,-fi'~e coeffic=ents of vanatton 
were wuhm the interxal [I.0. 3.01. 
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severities with normal distribution and identity link (the "log-transformed linear model" 

in Mildenhall 1999). In each regression, we calculate thirteen coefficients (one intercept, 

eight age groups with 60+ as zero, four vehicle-use with pleasure as zero), seven age 

relativities, and three vehicle-use relativities. We also calculate thirty-two predicted 

severities for each combined age and vehicle-use group. Following Mildenhall (1999), 

we use severity as the response variable and the claim frequencies as the weights in the 

linear regressions. 
i 

log(S,.,)= I n t e r c e p t + Z a x  , + Z b j y ,  +e..,, (5) 

If gamma or normal distributions are assumed, the severity based on a GEM with a log 

link is: 

Si  I ~ eintercept * ea'+bj 
. , ( 6 )  

For Iognormally distributed losses, Klugman, Panjer, and Willmot (1998) and IVlildenhall 

(1999) show that the severity based on log-transformed regression is: 

fl 2 
, . t  

S,,j = e interccpl * e 2,,.,, (7) 

where f ~  is the variance of the logarithm of the individual loss. We designate 

e f~J2~ j  as the volatility adjustment factor. In the numerical analysis, ~ . j  is 

estimated by .Q~.., = Iog(I + c v : )  for the coefficients of variation 1.0, 2.0, and 3.0, 

respectively. 

3). Steps I-2 are repeated one thousand times, so the sampling distributions of 
I 

ten coefficients ( h  and /~ ) and thirty-two predicted severities ( S,.j ) are generated. The 
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mean and standard error of  the coefficients and predicted severities are calculated based 

on the sampling distributions. 

For each combination of  the "'true" severity distribution and the assumed distribution in 

the regressions, we evaluate the performance of  the models by two criteria. Following 

Bailey (1963), we use the weighted absolute bias to measure the accuracy of  the model. 

We also evaluate the model from an alternative perspective: the stability of  the 

coefficients and predicted values, which Is measured by the weighted standard error. 

From the definition of  unbiasedness, the mean estimate is equal to the true value, 

E(S,a ) = I t , , .  If the sampling mean of  one thousand predicted ,~.., is equal to the "'true" 

severity and the model is unbiased, then the estimation bias could be measured by 

E(S..j ) - ,u,. i . Bailey (I 963) suggests using the weighted absolute bias to measure the 

accuracy of  the model: 

~w,., I E(s,, ) -#, ,  
wab - (8) 

~WI,  i 

Besides unbiasedness, stability is the other important criteria to measure model 

performance. The standard error is a commonly used statistic for stabdity. Similar to (8). 

we use the weighted standard error to measure the stability of  the model: 

w s e  = Z w., ' (9) 

where (r,., is the sampling standard deviation of  one thousand S,.j. 
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3. Simulation Results 

Data Generated 

We repeat the simulation 1,000 times, and 8,942 individual losses are generated in each 

round of  the simulation. As it is inefficient to list all individual losses for all combined 

groups of  age and vehicle-use, we only report the detads of simulated average claim 

severity for two classifications. 

Classification I - Age 17-20 and Pleasure Use 

Classification I1 - Age 40-49 and DTW Short (Short Drive to Work, less than 15 miles) 

Classification I is used as an example of a small-sample classification (as it only has 

twenty-one observations. Classification II includes 970 observatmns and is an example 

of a large-sample classification. Tables 2. I and 2.2 show statistical summaries of  the 

1,000 simulated severities for Classification I with coefficients of variation 1.0, 2.0, and 

3.0 for the gamma and Iognormal distributions, respectively. Tables 2.3 and 2.4 show 

statistical sununaries for Classificanon II. Figures 3.1,3.3, and 3.5 report the scatter 

plot, density plot, QQ plot, and histogram for gamma distributions with coefficients of  

variation 1.0, 2.0, and 3.0 for Classification I, respectively. Figures 3.7, 3.9, 3. I1 report 

those plots for Iognomlal distrtbutions, while Figures 3.2, 3.4. 3.6, 3.8, 3. I0, and 3.12 are 

the corresponding plots for Classification If. 

From the simulations, the severity of Classification II is as)rnptotically normal because 

of  its sample size, even though the individual losses follow gamma or Iognormal 

distributions. The Q-Q plots are close to 45-degree straight lines; and the density 
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function and histogram are close to symmetric. Tables 2. I-2.4 also show that 

Classification II has much smaller standard deviation and skewness. On the other hand, 

the severity of Classification I is positively skewed. The Q-Q plots are concave; and the 

density function and histogram have longer tails on the right rode. From Tables 2.1-2.4, 

the larger the coefficient of variation, the more positively skewed the severity. The 

severities of Iognormal losses have larger skewness because the lognormal distribution 

has longer right-side tails than the gamma distribution. 

Regression Results 

For each round of simulation, two datasets are generated based on gamma and Iognormal 

distributions• Six regressions are performed on these two datasets: G-G, G-L, G-N, L-G, 

L-L, and L-N 6. For each regression, the GLM coefficients ~, for each age group and /~j 

for each vehicle-use group, and predicted seventy S,.., are calculated, e d' is the 

relativity for age group i, and e bl is the relativity for vehicle-use groupj. 

For log-transformed models, a volatility adjustment factor e f~2'j ;2n,.+; . Is applied to 

reduce the estimation bias. The weighted absolute bias ( wab ) with and without the 

adjustment is reported in Table 4. I. Without the adjustment, the overall wab s are 0.38, 

1.50, and 2.66 for G-L models with cv = 1.0, 2.0, and 3.0. After the adjustment, wabs 

+ G-G imphes that the loss follov, s a Gamma d=s~bution and a Gamma dismbutton is assumed in the 
regression; similarly, G-L implies the loss follov, s a Gamma d=smbutmn bul a Lognormal is assumed m the 
regression, and G-N implies the loss follows a Gamma d=stribution but a Normal is assumed m the 
regrassmn. The same logic applies for L-G, L-L, and L-N. 
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are reduced to 0.24, 0.85, and 1.81. On average, the wab reduction is 37%. Similarly, 

the wab reduction for L-L models is 35% on average. 

Table 4.2 exhibits the wabs for the eight age groups with cv = 1.0, 2.0, and 3.0; and 

Tables 4.3-4.5 show the detailed information for predicted severities and biases for all 

thirty-p, vo classifications. For the small-sample classifications, the prediction errors 

without adjustment could be vet)' large. For example, the wab for age 17-20 is 39.5 for 

the G-L model with cv=3.0, and 22. I for the L-L model if no adjustment is applied. 

After the adjustment, the wabs are reduced to 28.3 and 13.2, respectively. Without the 

adjustment, the wabs of the same models for age 40-49 are 1.25 and 1.83. After the 

adjustment, the weighted absolute biases are reduced slightly to I. 16 and 1.50, 

respectively. The volatility adjustment factor could reduce the biases of small-sample 

classifications significantly. In practice, log-transformed models are often apphed. 

Without adjustment, the predicted severities (or relativit~es) are underestimated. In the 

case of G-L with cv=3.0, thirty-one of the thirty-two predicted severities are lower than 

the "true" relativities. Because the log-transformed model with adjustment is 

significantly better than the model without adjustment, only the former model is used in 

the following analysis. 

For all the six models (G-G, G-L, G-N, E-G, L-L, and L-N). the weighted absolute biases 

and weighted standard errors of the predicted seventies are used to measure the 

unbiasedness and stabilit3' of the models. The 95% confidence intervals are calculated 

based on the 2.5% quantile and 97.5% quantile of the sampling distributions. The wab 
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and wse of the predicted severities for gamma and Iognormal losses are reported in Table 

5. I and 5.2, respectively. The detailed information for the mean, bias, and standard 

deviation of the thirty-two predicted severities is shown in Tables 5.3, 5.5, 5.7, 5.9, 5.1 I, 

and 5.13 for G-G, G-L, G-N, L-G, L-L, and L-N, respectively. The corresponding 

confidence intervals are reported in Tables 5.4, 5.6, 5.8, 5.10, 5.12, and 5.14. Figures 

6.1,6.3, and 6.5 are the scatter and density plots of Classification I predicted severities 

for gamma losses with coefficient of variations 1.0, 2.0, and 3.0, respectively. Figures 

6.2.6.4, and 6.6 are the same plots for Classification II. Figures 6.7-6.12 show the 

corresponding plots for Ioguormal losses. 

From Tables 5.3-5.14, the larger size the classification, the smaller bias and standard 

errors of predicted severities, and the more accurate the classification relativities. For 

example, the estimation biases of the G-G model with cv=l.O are 1.65, 1.99, 2.43, and 

2.77 for the four age group 17-20 classifications with vehicle-use pleasure, DTW short, 

DTW long, and business, respectively. The estimation biases for the four age group 40- 

49 classifications are much smaller (-0.12, 0.05, 0.04, -0.20). This is also true for the 

standard errors of the models. 

When data is less volatile and the sample size of the classification is large enough, the 

predicted severity is asymptotically normal and the confidence interval is close to 

symmetric across the mean. On the other hand, when data ~s volatde and the sample size 

of the classification is small, the predicted severity is not symmetric across the mean. For 

example, the confidence interval of the predicted severity with coefficient of variation 1.0 
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for Classification II is ( 194.90, 214.72) based on the G-G model. It is symmetric across 

the "'true" mean of  204.54. The confidence inte~'al o f  the predicted severity with 

coefficient of  variation 3.0 for Classification I is ( 119.40, 458.67) based on the G-G 

model. It is far from symmetric with the true "mean •` of  254.90. In practice, confidence 

intervals are usually estimated by adding and subtracting two times the standard error to 

the mean. Our study shows that this could be very wrong for the small classifications 

(i.e., asymmetrical confidence intervals might be more appropriate). 

Residual Diagnostics 

To validate the distribution assumptions in the GLMs, "residual Q-Q'" plots and 

"'residual-fitted value" plots are o~en used to examine the beteroscedastic~ty `.vithin the 

error structure o f  the model (e.g., Holler, Sommer, and GeofT 1999 and Murphy, 

Brockman, and Lee 2000). In contrast to traditional linear models, deviance and Pearson 

residuals are applied 7. To make the plots comparable, the residuals are standardized. If 

the "Q-Q'" plots of  deviance residuals are nonlinear or the residuals are fanning inwards 

or outwards (',,,'hen plotted against the predicted values), the severity distribution 

assumptions are inappropriate. 

We repeat the simulation one thousand times. It is too voluminous to report the residuals 

plots one thousand times for each model. So, we run an extra simulation independent of  

the previous ones and show the "residual Q-Q" and "residual-fitted value" plots in 

Figures 7. I-7.12 for each of  the six models with ct'=1.0, 2.0, and 3.0. Ira gamma 

• For detaded explanations ofde,.mnce and Pearson residuals, please refer to McCullagh and Nelder 
(Iq89). lfa normal distribution is assumed in GLMs, de,.lanee residuals are equal to Pearson residuals. 
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distribution is assumed, both Pearson and deviance residual plots are reported. If 

Iognormal or normal distributions are assumed, only deviance residual plots are reported 

because Pearson and deviance residuals are identical. 

From Figures 7. 1-7.12, the "residual Q-Q'" and "residual-fitted value" plots are similar 

for the ganu'na, Iognormal, and normal models. It is difficult to examine the assumptions 

of  severity distributions based on average severity data (summarized data). As discussed 

above, the distribution of  average severity may be very different from the distribution of  

individual losses. When the sample size of  the classification is large enough, the average 

severity is asymptotically normal no matter how the individual losses are distributed. 

The smoothing effect of  summarized data makes the residual plots insensitive to the 

distributions assumed by GLMs. 

If we run GLMs based on the individual losses of  the same damsel (with 8,942 

observations), residual plots are very sensitive to the distribution assumptions. Figures 

7.13 and 7.14 report the "residual Q-Q" and "'residual-fitted value" plots for gamma 

losses wnth cv= 1.0. Figures 7.15 and 7.16 are plots for lognormal losses. It is clear that 

when the distrnbution assumptions are consistent with the "true" distribution, the Q-Q 

plots ofdeviation residuals are 45-degree straight lines and the residuals are randomly 

scattered across zero in the "residual-fitted value" plots ~. Therefore, residual plots work 

well to examine the distribution assumptions on individual data, but not necessarily on 

summarized,'average data. 

" For the Iognormal models on Lndlvidual data, the ",'olatnlity adjustment factor is e £'~'J/2 because each 
observation represents one claim and has one as the weight. 
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4. Conclusions 

Insurance data with continuous measurement (severities and pure premium) have been 

found in numerous studies to be non-normal: I) positive and usually positively skewed; 

and 2) variances are proportionally correlated to the mean squared. In practice, gamma 

and Iognormal are two widely-used distributions with those desired properties. 

Traditional hnear models assume a normal distribution, and don't  have those properties, 

though most GLM actuarial research also report results from normal distributions as a 

benchmark. In this study, we apply Monte Carlo simulation techniques to examine the 

gamma, Iognormal, and normal distributions, and determine which one provides better 

estimation in terms of  unbiasedness and stability. 

The simulation is numerically based on the predicted claim severity for private passenger 

auto collision claims used by Mildenhall (1999) and McCullagh and Nelder (I 989). In 

each round of  1,000 simulations, six datasets of  individual losses are generated based on 

gamma and lognormal distributions with "true" (known) classification severities and 

coefficients o f  variation (I.0, 2.0, and 3.0). For each dataset, three models are fitted on 

the average severities: GLM with gamma distribution and log link; GLM with normal 

distribution and log link; and the GLM on the log-transformed severities with normal 

distribution and identity link. 

Based on the simulation results, we find that: 

I). When the gamma distribution is "true", the G-G model is dominant in both 

unbiasedness and stability (except the G-L model is slightly more stable). 
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2). When the lognormal distribution is "'true", the L-L model is dominant in terms 

of  stability. 

3). GLMs with a normal distribution never dominate based on any criteria, and 

they have the worst weighted standard error ( w s e  ). 

4). GLMs with a gamma distribution are dominant in terms of  unbiasedness, no 

matter whether the "true" distribution is gamma or Iognormal. 

5). Overall, GLMs with a gamma distributmn perform slightly better than the log- 

transformed model and GLMs with a normal distribution. This result is consistent with 

the statistical research by Firth (1988). 

6). When the data is not volatile, the distribution selection m GLMs may not be as 

important because all distribution assumptions yield small biases and standard errors. 

7). When the log-transformed model is used, the classification relativities should 

be adjusted by a volatdity-adjustment factor. Without the adjustment, the relati~ ities are 

undem'alued. 

8). Residual plots may work well to examine the distribution assumptions on 

individual data, but not necessarily on summarizect.'average data. 

5. Future Research 

McCullagh and Nelder (1989) and Mildenhall (1999) discussed that insurance data is 

more likely to have a constant coefficient of  variation rather than constant vartance. 

However, it is possible that the variance increases with the mean but not proportional to 

the mean squared. Other dtstribut~ons in the exponential farad v, such as the negat~ e 
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binomial and inverse Gaussian 9 have those properties. In future research, it might be 

interesting to generate losses based on negative binomial and reverse Gaussian 

distributions and also run GLMs assuming those distributions. 

We investigated two classifications using private passenger auto severity data. However, 

simulation research on GLMs could be extended to other response variable (e.g., pure 

premium), other classifications (e.g., credit, territory), and other lines of business (e.g., 

homeowners, general liability, workers compensation). 

9 Negat]'.e binomial distribution f(x;p,k) - r ( x  + 1 / k )  (k'//)~ has variance L / +  k/ . /: .  
F ( x +  I)l-(I ,"k) (I ~ k / / )  I"L'~ 

• I . I x - / . t  2' 
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Appendix I 
"True" Relativities and Severities Assumed from Simulations 

Table I.!: "True" Relativities for Each Age Group 

Age Relativity GLM Coefficient 
17-20 1.307 0 268 
21-24 1.301 0.263 
25-29 1.206 0.187 
30-34 1.156 0.145 
35-39 0.931 -0.071 
40-49 1.007 0.007 
50-59 1.022 0.022 

60+ Base 0.000 

Table 1.2: "True" Relativities for Each Vehicle-Use Group 

Vehicle Use Relativity GLM Coefficient 
Business 1,644 0,497 

DTW Long 1,264 0,234 
DTW Short 1.042 0.041 

Pleasure Base 0.000 
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Table !.3: "True"  Severities and Relativities for Thirty-Two Classifications 

Age Vehicle Use # of Claims Severity Relativity 
17-20 Business 5 419.07 2.149 
17-20 DTW Long 23 322.17 1,652 
17-20 DTW Short 40 265,56 1,362 
17-20 Pleasure 21 254,90 1,307 
21-24 Busmess 44 417,10 2,139 
21-24 DTW Long 92 320,66 1,644 
21-24 DTW Short 171 264 31 1,355 
21-24 Pleasure 63 253,70 1,301 
25-29 Business 129 386,66 1,963 
25-29 DTW Long 318 297,26 1,524 
25-29 DTW Short 343 245.02 1.257 
25-29 Pleasure 140 235.19 1.206 
30-34 Busmess 169 370.53 1.900 
30-34 DTVV Long 361 284 85 1.461 
30-34 DTW Short 448 234 80 1.204 
30-34 Pleasure 123 225.37 1.156 
35-39 Business 166 298.35 1.530 
35--39 DTW Long 381 229 37 1.176 
35-39 DTW Short 479 189 06 0.970 
35-39 Pleasure 151 181 47 0,931 
40-49 Business 304 322.78 1.655 
40-49 DTW Long 719 248.15 1.273 
40-49 DTW Short 970 204.54 1.049 
40-49 Pleasure 245 196.33 1.007 
50-59 Bus~ness 162 327.72 1.681 
50-59 DTW Long 504 251.95 1 292 
50-59 DTW Short 859 207.67 1.065 
50-59 Pleasure 266 199,34 1,022 

60+ Business 96 320.60 1 644 
60+ DTW Long 312 246.47 1,264 
60+ DTW Short 578 203.16 1.042 
60+ Pleasure 260 195.00 1.000 
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A p p e n d i x  2 
S u m m a r i e s  o f  t h e  S i m u l a t e d  Sever i t i e s  fo r  Se lec ted  C l a s s i f i c a t i o n s  

Table 2.1: Statistical Summary. of Simulated Gamma Severity for Age 17-20 and 
Pleasure Use with Variation Coefficients 1.0, 2.0, and 3.0 

CV Min 25% Q Median Mean 75% Q Max Stdev Skewness 
1.0 86.7 217.2 254.0 258.2 292.5 505.2 57.6 0.605 
2,0 51,0 168,1 232,3 251 0 314,7 771,1 111 7 0,846 
3.0 4.3 133.4 214.6 255 7 338 4 1.122 0 170.4 1.413 

Table 2.2: Statistical Summary of Simulated Lognormal SeveHt)' for Age 17-20 and 
Pleasure Use with Coefficients of Variation 1.0, 2.0, and 3.0 

CV MIn 25% Q Median Mean 75% O Max Stdev Skewness 
1 0 128,2 215,5 247,5 254,5 284,3 557 6 54.1 0,772 
2,0 71.73 181,6 230,6 252,3 291,9 1.097,0 109,6 2,112 
3,0 57,95 157,3 220,5 258,1 301,3 4,219,0 200,2 9,162 

Table 2.3: Statistical Summar) '  of Simulated Gamma Severity for Age 40-49 and 
DTW Short Use with Coefficients of Variation 1.0, 2.0, and 3.0 

CV Min 25% Q Median Mean 75% Q Max Stdev Skewness 
1,0 188,4 200 0 204,5 204.7 209,2 227,9 6,7 0,122 
2 0 156,0 193 9 203,0 203,7 213,1 247,5 13,9 0,190 
3.0 156.8 190 0 204.0 204.8 217.7 269.3 20.1 0.298 

Table 2.4: Statistical Summary of Simulated Lognormal Severity for Age 40-49 and 
DTW Short Use with Coefficients of Variation 1.0, 2.0, and 3.0 

CV Min 25% Q Median Mean 75% Q Max Stdev Skewness 
1,0 182,4 200,0 204,4 204,4 208,9 226,5 6,5 0,141 
2,0 168.3 195,8 203,3 204,3 212,6 252 0 12 9 0,253 
3,0 154.5 191 0 202,2 204,2 215,6 284 8 19 6 0,650 
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A p p e n d i x  3 
Plo ts  o f  S i m u l a t e d  Seve r i t i e s  fo r  Se lec ted  C l a s s i f i c a t i o n s  

Figure 3. I: Plot Summary of Simulated Gamma Severity for Age 17-20 and 
Pleasure Use with Coefficient of Variation 1.0 

simulated severity for age 17-20 for.pleasure 
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• The density is estimated by the non-parametric method from Silverman (1986). 
• A 45-degree straight line in the Q-Q plot implies that the severity follows a 

normal d~stribution. 
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Figure 3.2: Plot Summa~, of Simulated Gamma Severity for Age 40-49 and DTW 
Short Use with Coefficient of Variation 1.0 
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Figure 3.3: Plot Summary of Simulated Gamma Severity for Age 17-20 and 
Pleasure Use with Coefficient of Variation 2.0 
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Figure 3.4: Plot Summary of Simulated Gamma Severity for Age 40-49 and DTW 
Short Use with Coefficient of Variation 2.0 

simulated severity for age 40-49 for DTW Short severity density for age 40-49 for DTW Short 
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Figure 3.5: Plot Summary of Simulated Gamma Severity for Age ! 7-20 and 
Pleasure Use with Coefficient of Variation 3.0 
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Figure 3.6: Plot Summary of Simulated Gamma Severit 3' for Age 40-49 and DTW 
Short Use with Coefficient of Variation 3.0 

simulated severity for age 40-49 for DTW Short severity density for age 40-49 for DTW Short 
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Figure 3.7: Plot Summa ~' of Simulated Lognormal Severi~' for Age 17-20 and 
Pleasure Use with Coefficient of Variation 1.0 
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Figure 3.8: Plot Summary of Simulated Lognormal Severity for Age 40-49 and 
DTW Short Use with Coefficient of Variation 1.0 
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Figure 3.9: Plot Summary of Simulated Lognormal Severity for Age 17-20 and 
Pleasure Use with Coefficient of Variation 2.0 
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Figure 3.10: Plot Summary of Simulated Lognormal Severity for Age 40-49 and 
DTW Short Use with Coefficient of Variation 2.0 
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Figure 3,11: Plot Summary of Simulated Lognormal Severi~' for Age 17-20 and 
Pleasure Use with Coefficient of Variation 3.0 
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Figure 3.12: Plot Summary of Simulated Lognormal Severity for Age 40-49 and 
DTW Short Use with Coefficient of Variation 3.0 
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A p p e n d i x  4 
P red ic t ed  Sever i t ies  a n d  Biases  o f  L o g - t r a n s f o r m e d  Mode l s  wi th  and  wi thou t  A d j u s t m e n t  

Table 4.1: Weighted Absolute Biases with and without Adjustment 

Coefficient wab 
Of Variation G-L1 G-L2 L-L1 L-L2 

1.0 0.380 0.240 0.278 0.202 
2.0 1.500 0,852 1.539 0,844 
3.0 2,681 1.808 2,359 1.589 

• G-LI is the log-transformed model on gamma losses without volatility adjustment; 
• G-L2 is the log-transformed model on gamma losses adjusted by the volatility adjustment factors; 
• L-LI is the log-transformed model on Iognormal losses without volatility adjustment; 
• L-L2 is the log-transformed model on Iognormal losses adjusted by the volatility adjustment factors. 



Table 4.2: Weighted Absolute Biases with and without Adjustment for Age Groups 

Coefficient wab 
Age Of Variation G-L 1 G-L2 L-L 1 L-L2 
17-20 1 0 2.75 2.20 3.69 2 17 
17-20 2.0 21.90 14.56 14.01 7.86 
17-20 3.0 39.95 28.30 22.10 13.19 
21-24 1.0 1.45 0 35 0.27 1.16 
21-24 2.0 6.74 4.06 4.36 1.66 
21-24 3.0 8.94 5.13 6.47 2.63 
25-29 1.0 0.48 0.13 0.59 0.15 
25-29 2.0 1.35 0.48 1 95 0.95 
25-29 3.0 2.77 1 34 2 29 1.47 
30-34 1.0 0 33 0.37 0.22 0.25 
30.34 2.0 1.20 0.51 2.73 1.92 
30-34 3.0 1.75 1.10 2.19 1.53 
35-39 1.0 0.52 0.26 0 28 O. 10 
35-39 2 0 1.02 0.41 1.13 0.54 
35-39 3.0 2.67 1.80 1 81 1.25 
40-49 1.0 0.22 0 19 0.18 0.14 
40-49 2.0 1.30 0.95 0.68 0.41 
40-49 3.0 1 25 1.16 1.83 1.50 
50-59 1.0 0.22 0.21 0.15 0.12 
50-59 2 0 0.90 0.45 1.13 0 69 
50-59 3 0 1.20 0.73 1.58 1 19 
60+ 1.0 0.23 0.15 0 21 0.10 
60+ 2.0 0.55 0.31 0 97 0.35 
60+ 3.0 3.49 2.62 2 53 1.65 



Table 4.3: Predicted Severities and Biases of Log-transformed Models with and without Adjustment for Variation Coefficient 
1.0 

Vehicle Predicted Severity Prediction Bias 
Age Use G-L1 G-L2 L-L1 L.L2 G-L1 G-L2 L-L1 L-L2 

....j 

17-20 Pleasure 252.00 256.20 251.36 255.55 -2.89 1.30 -3.53 0.65 
17-20 DTW Short 263 26 265.55 262.24 264.52 -2.30 -0.01 -3.32 -1.04 
17-20 DTW Long 319.26 324.11 318.28 323.11 -2.91 1.93 -3.89 0.94 
17-20 Business 414.06 443.78 412.76 442.39 -5.00 24.71 -6 31 23.32 
21-24 Pleasure 252.06 253.45 253 48 - 254.88 -1.64 - -0.25 -0 22 1.18 
21-24 DTW Short 263.30 263.83 264 45 264.98 -1 01 -0.48 0.13 0.67 
21-24 DTW Long 319.25 320.46 320.93 322.14 -1.41 -0.20 0.27 1.48 
21-24 Business 414.12 417 40 416 20 419.49 -2.97 0.30 -0.90 2.39 
25-29 Pleasure 234 43 235.01 234.52 235.10 -0.75 -0.17 -0.67 -0.08 
25-29 DTW Shod 244 89 245.14 244.65 244.90 -0.14 0.11 -0.37 -0.12 
25-29 DTW Long 296.92 297.25 296.88 297.21 -0.33 -0.01 -0 37 -0 05 
25-29 Business 385.16 386.20 385.05 386.09 "-1.50 -0.46 -1 60 -0.57 
30-34 Pleasure 225.05 225.68 225.05 225.69 -0.33 0.31 -0.32 0.32 
30-34 DTW Short 235.07 235.25 234.77 234.96 0 27 0.45 -0.03 0.16 
30-34 DTW Long 285.03 285 31 264.90 285.17 0.18 0.45 0.04 0.32 
30-34 Business 369.71 370 47 369.48 370.24 -0.82 -0.06 -1.04 -0.28 
35-39 Pleasure 180.75 181.16 181.10 181.52 -0.72 -0.31 -0.37 0.64 
35-39 DTW Short 188.82 188.95 188.93 189.07 -0.25 -0.11 -0.13 0.00 
35-39 DTW Long 228.95 229.16 229.27 229.48 -0.41 -0.21 -0 10 0.11 
35-39 Business 296.97 297.59 297.34 297.96 -1.38 -0.76 -1.01 -0.39 
4049 Pleasure 195.90 196.18 196.03 196 31 -0.43 -0.15 -0.30 -0.02 
4049 DTW Short 204.63 204.70 204.51 204 58 0.08 0.16 -0.04 0.64 
40-49 DTW Long 248.11 248.23 248.16 248.28 -0.03 0.09 0.02 0.14 
40-49 Business 321.83 322.20 321.85 322.22 -0.95 -0.58 -0.93 -0.56 
50-59 Pleasure 198.95 199.21 199.04 199.30 -0.39 -0.13 -0.29 -0.03 
50-59 DTW Short 207.82 207.91 207 65 207.74 0.15 0.23 -0.02 0.06 
50-59 DTW Long 252.01 252.18 252.00 252.17 0.06 0.23 0.05 0 23 
50-59 Business 326.89 327.59 326.79 327.49 -0.84 -0 14 -0.93 -0 23 
60+ Pleasure 194.47 194.73 194.63 194.89 -0.53 -0 27 -0.38 -0 12 
60+ DTW Short 203.15 203.27 203.06 203.18 -0.01 0 11 -0.10 0 02 
60+ DTW Long 246.34 246 61 246.42 246.70 -0.13 0.14 -0.05 0.23 
60+ Business 319 52 320 67 319 59 320.75 -1.08 0.07 -1.00 0.15 



Table 4.4: Predicted Severities and Biases of Log-transformed Models with and v~ithout Adjustment for Variation Coefficient 
2.0 

Vehicle Predicted Severity Prediction Bias 
Age Use G-L1 G-L2 L-L1 L-L2 G-L1 G-L2 L-L1 L-L2 

~o 
oo 

17-20 
17-20 
17-20 
17-20 
21-24 
21-24 
21-24 
21-24 
25-29 
25-29 
25-29 
25-29 
30-34 
30-34 
30-34 
30-34 
35-39 
35-39 
35-39 
35-39 
40-49 
40-49 
40-49 
40-49 
50-59 
50-59 
50-59 
50-59 
60+ 
60+ 
60+ 
60+ 

Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Shorl 
DTW Long 
Business 
Pleasure 
DTW Shod 
DTW Long 
Business 
Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Short 
DTW Long 
Bus~ness 
Pleasure 
DTW Short 
DTW Long 
Business 

234.75 243.92 242.18 251.64 -20.15 -10.98 -12.72 -3.26 
245.84 250.83 252.99 258.13 -19.72 -14.73 -12.57 -7.43 
297.79 308.39 306.59 317.51 -24.38 -13.78 -15.58 -4.66 
383.88 450.91 395.37 464.40 -35 19 31.64 -23.70 45.34 
247.25 250.43 249.90 253.11 -6.45 -3.27 -3.80 -0.59 
259.01 260.23 260.96 262.19 -5.30 -4.08 -3.36 -2.13 
313.70 31646 316.32 319.10 -6.96 -4.20 -4.33 -1 56 
404 78 412.25 407 99 415.52 -12.32 -4.85 -9.11 -1.58 
233.53 234.87 233.61 234.96 -1.66 -0.31 -1.57 -0.23 
244.62 245.20 243.96 244.53 -0 40 0.17 -1.06 -0.49 
296.23 296.98 295.62 296.36 -1.03 -0.28 -1.64 -0.89 
382.31 364.71 381.16 383.55 -4.35 -1.95 -5.50 -3.11 
223.92 225.39 223.19 224 65 -1.45 0.02 -2.18 -0.72 
234.52 234.95 233.05 233.47 -0.28 0.15 -1.75 -1.33 
283.95 284.58 282.43 283.06 -0.91 -0.27 -2.43 -1.80 
366.44 368.19 364 15 365.88 -4.08 -2.33 -6.38 -4.64 
180.24 181.21 180 61 181.57 -1.23 -0.27 -0.87 0.10 
188.75 189.07 188 56 188.88 -0.31 0.01 -0.50 -0.18 
228.59 229.07 228.48 228.96 -0.78 -0.30 -0.89 -0.41 
294.94 296.38 294.63 296.07 -3.41 -1.97 -3.72 -2.29 
194.79 195.43 195.77 196.42 - 1.54 -0.90 -0.56 0.09 
204.01 204.18 204.45 204.62 -0.54 -0.37 -0.10 0.07 
247.06 247.34 247.76 248.04 -1.09 -0 81 -0.39 -0 11 
318.75 319.59 319.45 320.30 -4.03 -3.18 -3.32 -2.48 
198.01 198.61 198.25 198.85 -1.33 -0.73 -1.09 -0.49 
207.37 207.56 207.06 207 25 -0.31 -0.11 -0.62 -0.42 
251.16 251.56 250.92 251 32 -0.78 -0.36 -1.03 -0.63 
324.08 325.69 323.51 325 12 -3.64 -2.03 -4 21 -2.60 
193.95 194.55 194.01 194 61 -1.06 -0.46 -0 99 -0.39 
203.15 203.43 202.64 202.92 -0.01 0.27 -0.52 -0.24 
246.10 246.73 245.59 246.23 -0.37 0.26 -0.88 -0.24 
317.57 320.24 316.66 319.33 -3.03 -0 36 -3.94 -1.27 



Table 4.5: Predicted Severities and Biases of Log-transformed Models with and without Adjustment for Variation Coefficient 
3.0 

Vehicle Predicted Sevedty Prediction Bias 
Age Use G-L1 G-L2 L-L 1 L-L2 G-L1 G-L2 L-L1 L-L2 

~o ",D 

17-20 
17-20 
17-20 
17-20 
21-24 
21-24 
21-24 
21-24 
25-29 
25-29 
25-29 
25.29 
30-34 
30-34 
30-34 
30-34 
35.39 
35.39 
35.39 
35.39 
40-49 
40-49 
40-49 
40-49 
50-59 
50-59 
50.59 
50.59 
60+ 
60+ 
60+ 
60+ 

Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Shorl 
DTW Long 
Business 
Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Shorl 
DTW Long 
Business 
Pleasure 
DTW Short 
DTW Long 
Business 
Pleasure 
DTW Shod 
DTW Long 
Business 

218.27 230 58 233.25 246.40 -36.62 -24.32 -21.65 -8.50 
229.70 236 41 246.73 253.93 -35 86 -29.15 -18.84 -11 63 
277.35 291.59 297.28 312.54 -44.82 -30.58 -24.89 -9.63 
354.90 446.80 381.85 480.72 -64.16 27.73 -37.22 61.65 
245.26 249.79 246.14 250.68 -8.44 -3.91 -7.56 -3.02 
257.67 259.41 260.50 262.26 -6.64 -4.90 -3.82 -2.06 
311.91 315.84 313.76 317.71 -8.75 -4.82 -6.90 -2.95 
398.09 408.64 402 80 413.48 -19 01 -8.46 -14.30 -3.62 
232.32 234 24 231.81 233.72 -2.87 -0.95 -3 38 -1.47 
244.17 244 99 245.33 246.15 -0.86 -0.04 0.31 1.13 
295.23 296.30 295.33 296.40 -2.02 -0.95 -1.92 -0.85 
377.08 380.46 379.37 382.77 -9.58 -6.20 -7.29 -3.89 
223.42 225.52 222.07 224.16 - 1.95 0.15 -3.30 - 1.21 
234.78 235 38 234.81 235.42 -0 02 0.58 0.01 0.62 
283.96 284 86 282.80 283.71 -0.90 0.01 -2 05 - 1.15 
362.53 365 01 363.04 365.53 -7 99 -5.51 -7.48 -5 00 
178.68 180.04 178.71 180.08 -2.80 -1.43 -2.77 -1 40 
187.86 188.32 188.98 189.44 -1.20 -0.75 -0.08 0.37 
227.27 227.95 227.62 228.31 -2.10 -1.42 -1.74 -1.06 
290.28 292.30 292.26 294.29 -8.08 -6.06 -6.10 -4.06 
195.13 196.05 193.36 1 94.27 - 1.20 -0.28 -2.97 -2.06 
205.16 205.40 204.50 264.74 0.62 0.86 -0.05 0.20 
248.06 248.46 246.34 246.74 -0.09 0.31 -1.81 -1.41 
316 74 317.94 316 14 317.34 -8.04 -4 83 -6.64 -5 44 
197.46 198.32 196.31 197.17 -1.87 -1.02 -3 02 -2.17 
207 56 207.64 207.65 207.93 -0.11 0.17 -0.02 0.26 
251.10 251.67 250.14 250.71 -0.85 -0.27 -1.81 -1.24 
320.78 323.07 321.03 323.32 -6.94 -4.65 -6.70 -4.41 
191.11 191.96 191.14 191.98 -3.89 -3.05 -3.87 -3.02 
200 84 201.25 202.26 202.66 -2.32 -1 92 -0.90 -0.50 
243 15 244.05 243 67 244.57 -3.32 -2.42 -2 80 - 1.90 
310 56 314.31 312.80 316.58 -10.04 -6.29 -7.80 -4.02 



Appendix 5 
Summary Tables of Predicted Severities 

T a b l e  5.1: O v e r a l l  U n b i a s e d n e s s  a n d  S t a b i l i ~  of  P r e d i c t e d  Sever i t i es  fo r  G a m m a  Loss  

Coefficient wab wse 
Of Variation G-G G-L G-N G-G G-L G-N 

1.0 0,180 0,240 0,221 8,170 8,177 8,568 
2,0 0,475 0.852 0.509 16,498 16,514 17,239 
3,0 0 860 1,808 1.139 25,223 25,097 26,986 

G-G implies thai the loss rollo~,s a Gamma distribution and a Gamma distribution is assumed m the regressions; 
s~mflarly. G-L implies the loss follov, s a Gamma distnbul~on but a Lognonnal is assumed m the regressions; and G- 
N implies Ihe Inss follov, s a Gamma distribution bu~ a Normal is assumed in the regressions. 

T a b l e  5.2: O v e r a l l  U n b i a s e d n e s s  a n d  Stab i l i ty  of  P r ed i c t ed  Sever i t i e s  fo r  L o g n o r m a l  Loss  

Coefficient wab wse 
Of Variation L-G L-L L-N L-G L-L L-N 

1,0 0,151 0,202 0 175 8,309 8,284 8,754 
2,0 0,498 0,844 0 604 16,428 16 113 17,721 
3,0 0,720 1,589 1,006 24 328 23,214 27 608 



Table 5.3: Summarized Statistics for Predicted Severities with Gamma Loss and Coefficient of't/ariation 1.0 

Vehicle Mean Bias Standard Error 
Age Use G-G G-L G-N G-G G-L G-N G-G G-L G-N 
17-20 Pleasure 256 55 256 20 256.42 1.65 1 30 1.53 26.95 27.31 27.80 
17-20 DTW Short 267.55 265.55 267.55 1.99 -0.01 1.99 27.64 27 83 28.72 
17-20 DTW Long 324.60 324 11 324.69 2.43 1.93 2.52 34.06 34.55 35.56 
17-20 Business 421.83 443 78 422.33 2.77 24.71 3.27 44.80 47.88 47.10 
21-24 Pleasure 253.27 253 45 253.24 -0.43 -0.25 -0.46 14.48 14.52 15.38 
21-24 D'INV Short 264.12 263.83 264.18 -0 20 -0.48 -0 13 13.85 13.88 14.77 
21-24 DTW Long 320.39 320.46 320 56 -0 27 -0.20 -0.10 16 88 16.93 18.17 
21-24 Business 416 43 417.40 417.02 -0.67 0.30 -0 08 24 43 24.56 26.34 
25-29 Pleasure 235.00 235.01 234.82 -0 18 -0.17 -0.36 9.61 9.63 9.91 
25-29 DTVV Short 245.07 245.14 244.98 0.04 0.11 -0.04 8.54 8.54 8.92 
25-29 DTW Long 297.28 297 25 297.24 0.02 -0.01 -0.01 10.26 10.26 10.80 
25-29 Business 386.39 386.20 386.70 -0.27 -0.46 0.04 16.69 16.66 17.83 
30-34 Pleasure 225.54 225.68 225.49 0.16 0.31 0.12 9.06 9.08 9 49 
30-34 DTW Short 235.18 235.25 235.22 0 38 0.45 0.42 7.46 7.47 7 88 
30-34 DTW Long 285.30 285.31 285 42 0.45 0.45 0 56 9.46 9.46 10 02 
30-34 Business 370.80 370.47 371.27 0.27 -0.06 0.75 14.94 14.94 15.71 
35-39 Pleasure 181 13 181.16 180 94 -0 34 -0.31 -0.54 6 84 6.84 7.16 
35-39 DTW Short 188.90 188.95 188.76 -0.17 -0.11 -0.30 5 98 5 98 6.32 
35-39 DTW Long 229.16 229.16 229.04 -0.21 -0.21 -0.32 7 71 7.70 8.00 
35-39 Business 297.83 297.59 297.93 -0.52 -0.76 -0.42 12.10 12.09 12.25 
40-49 Pleasure 196.21 196.18 196.01 -0.12 -0 15 -0.32 6.80 6.80 7.21 
40-49 DI"W Short 204.60 204.70 204 47 0.05 0.16 -0.08 5 07 5.07 5.39 
40-49 DTW Long 248.19 248.23 248.09 0.04 0.09 -0.06 6.27 6.27 6.51 
40-49 Business 322.58 322.20 322.72 -0.20 -0 58 -0.06 11.22 11 22 11.58 
50-59 Pleasure 199.30 199 21 199.24 -0.03 -0 13 -0.09 6.73 6.72 7.02 
50-59 DTW Short 207.84 207 91 207.85 0.16 0 23 0.18 5.33 5.33 5 58 
50-59 DTW Long 252.14 252 18 252.22 0.19 0 23 0.27 7.22 7.21 7.54 
50-59 Business 327.71 327.59 328.10 -0.01 -0.14 0 38 12.37 12.37 12.90 
60+ Pleasure 194.87 194.73 194.71 -0 13 -0.27 -0.29 7.08 7.08 7.38 
60+ DTW Short 203.22 203.27 203.13 0.06 0.11 -0.03 6.03 6.03 6.32 
60+ D r w  Long 246 54 246.61 246.49 0.07 0.14 0.02 7.99 7.99 8.29 
60+ Business 320.42 320 67 320.63 -0.18 0.07 0.03 12.61 12 64 13 08 



Table 5.4: 95% Confidence Intervals for  Predicted Severities with Gamma Loss and Coefficient of Variation 1.0 

Vehicle G-G G-L G-N 
Age Use Lower Upper Lower Upper Lower Upper 
17-20 Pleasure 207,63 310.60 207,59 311.14 206 28 310.82 
17-20 DTW Short 216 34 322.12 214.26 321.27 215.28 322.54 
17-20 DTW Long 263.80 392.67 263.01 392.03 261.02 394.83 
17-20 Business 340.83 512.07 358.86 54 1.99 338.00 517 58 
21-24 Pleasure 226.25 283 09 226.57 282.19 224.42 284.02 
21-24 DTW Short 237.62 290.70 237 59 290.38 236.56 293 08 
21-24 DTW Long 289.50 354.99 289.55 356.13 286.43 357.91 
21-24 Business 372 10 468.31 372 53 470 09 369.86 473.94 
25-29 Pleasure 216.42 253.50 216.61 253.21 216.42 253.86 
25-29 DTW Short 229.15 261.89 229.24 262.06 228.08 262.99 
25-29 DTW Long 277.55 315.84 277.48 315.65 276.57 317.05 
25-29 Business 353.94 418.31 354.08 417.04 354 51 424.11 
30-34 Plea sure 208.37 244.26 208.38 244.39 207.70 244.94 
30-34 DTW Short 220.31 250.36 220.32 250.59 219.66 251.02 
30-34 DTW Long 267.57 304.54 267.29 304.64 266.47 305.14 
30-34 Business 343.29 400.92 343.27 400.73 340.73 402.13 
35-39 Pleasure 168.49 1 94.75 168.73 1 94 88 167.68 194.87 
35-39 DTW Short 177.86 201.01 177.93 200.92 176.73 200.90 
35-39 DTW Long 214.26 244.34 214.21 244 50 213.75 245.04 
35-39 Business 274 05 321.18 273.63 320.86 274.55 322 64 
40-49 Pleasure 183.77 209.55 183.81 209.44 182.42 210.65 
40-49 DTW Shod 194.90 214.72 194.97 214.84 194.43 215.61 
40-49 DTW Long 235.56 260.38 235.60 260.46 234.78 260.80 
40-49 Business 302.55 344.78 301.93 344.46 301.67 346.83 
50-59 PIea sure 186.45 212.74 186.43 212.74 185.40 212.99 
50-59 DTW Short 197.56 218.44 197.69 218.57 197.29 219.28 
50-59 DTW Long 237.88 265.95 238.07 266.05 237.88 267.72 
50-59 Business 304.74 352.71 304.30 352.50 304.37 353.81 
60+ Pleasure 180.54 208.23 180.54 208.05 180.35 208.72 
60+ DTW Short 190.79 214.47 190.96 214.48 190.91 215.67 
60+ DTW Long 230 42 262.11 230.51 262.10 230.67 263.05 
60+ Business 296.82 345.96 297.28 346.23 296.32 346.93 



Table 5.5: Summarized Statistics of Predicted Severities with Gamma Loss and Coefficient of Variation 2.0 

Vehicle Mean Bias Standard Error 
Age Use G-G G-L G-N G-G G-L G-N G-G G-L G-N 
17-20 Pleasure 252.38 243.92 252.38 -2.52 -10.98 -2.52 55.66 55.58 57.27 
17-20 DTW Short 262.56 250.83 262.73 -3.00 -14.73 -2.83 56.54 55.93 58.13 
17-20 DTW Long 318.61 308.39 319.25 -3.56 -13.78 -2 92 69.08 69.36 71.04 
17-20 Business 414.11 450.91 415.88 -4.95 31.84 -3.19 89.73 101.38 92.78 
21-24 Pleasure 252.11 250.43 252.29 -1.59 -3.27 -1.41 29.49 29.59 31 10 
21-24 D]'W Short 262 37 260.23 262.75 -1.04 -4.08 -1 56 28.87 28.96 30.77 
21-24 DTW Long 318.36 316.46. 319.33 -2.30 -4.20 -1.33 35.76 35.89 38.73 
21-24 Business 414.18 412.25 416 32 -2.92 -4.85 -0.78 50.28 50 63 54.30 
25-29 Pleasure 235.66 234.87 235.09 0.48 -0 31 -0.10 19 06 19.18 19.74 
25-29 DTW Short 245.25 245.20 244.81 0 23 0.17 -0.21 17.30 17.39 18.03 
25-29 DTW Long 297.54 296.98 297.42 0 28 -0.28 0.16 21 24 21.34 22 34 
25-29 Business 387.17 384.71 387.86 0.51 -1.95 1.20 33.57 33.60 35.31 
30-34 Pleasure 225 81 225.39 225.34 0.44 0.02 -0.03 17.85 17.92 18.71 
30-34 DTW Short 234.96 234.95 234.61 0.17 0.15 -0.19 15.33 15 35 16.10 
30-34 DTW Long 285.01 284.58 284.95 0.15 -0.27 0.10 18 13 18.07 18.98 
30-34 Business 370.86 368.19 371.61 0.33 -2 33 1.09 29.81 29.59 31.50 
35-39 Pleasure 181.70 181.21 181.16 0 23 -0.27 -0.31 14 54 14.65 15.20 
35-39 DTW Short 189.05 189.07 188.61 -0.02 0.01 -0.45 12.32 12.33 13.20 
35-39 DTW Long 229.36 229.07 229.13 0 00 -0.30 -0.24 15.45 15.42 16.25 
35-39 Business 298 40 296.38 298.68 0.04 -1.97 0.33 24.05 23.92 24.61 
40-49 Pleasure 195.92 195.43 195.58 -0.41 -0.90 -0.75 13.42 13.51 13.95 
40-49 DTW Short 203.85 204.18 203.61 -0.69 -0.37 -0.93 10 52 10.54 10.84 
40-49 D'I3N Long 247.32 247.34 247.37 -0.83 -0 81 -0.77 13 36 13.38 13.81 
40-49 Business 321.73 319 59 322.46 -1 05 -3.18 -0.32 22.19 22.05 22.61 
50-59 Pleasure ,199.37 198 61 199.04 0 04 -0.73 -0.29 13.81 13.80 14.37 
50-59 DTW Short 207.43 207 56 207.20 -0.25 -0.11 -0.47 10.65 10.67 11.02 
50-59 DTW Long 251.70 251.56 251.78 -0.25 -0.38 -0.17 14.13 14.14 14.71 
50-59 Business 327 46 325.69 328.2~) -0.26 -2.03 0 53 23.59 23.50 24.38 
60+ Pleasure 195 53 194.55 195.17 0.53 -0.46 0 17 13.93 13.93 14.57 
60+ DTW Short 203.48 203.43 203 22 0.31 0.27 0.06 11.71 11.70 12.33 
60+ DTW Long 246.95 246.73 246 99 0.48 0.26 0.52 16.01 16.02 16.92 
60+ Business 321.30 320.24 322.03 0.70 -0 36 1.43 25 65 . 25.61 26.83 



Table  5.6: 95% Confidence Intervals  of  Predicted Severities with G a m m a  Loss and  Coefficient of  Variat ion 2.0 

Vehicle G-G G-L G-N 
Age Use Lower Upper Lower Upper Lower Upper 
17-20 Pleasure 158,35 376,66 149,52 365 56 158,84 376,87 
17-20 DTW Short 165,84 381,71 155,59 373,76 163,21 387,07 
17-20 DTW Long 200,10 466,14 189,87 458.93 199 68 471.12 
17-20 Business 255,66 598,37 277 67 657.76 257,72 616,11 
21-24 Pleasure 200,06 312,91 198 77 312.26 195,56 318,09 
21-24 DTW Short 209.62 323.74 206 82 320.18 208.76 328.66 
21-24 DTW Long 252.26 395.51 250.10 395.99 248.29 400 67 
21-24 Bus~ness 326 46 518.11 324.64 519 12 323.28 537 11 
25-29 Pleasure 197 04 272 30 196.73 271.76 196.67 273.53 
25-29 DTW Short 213.02 279 50 212.57 280.36 211 69 281.30 
25-29 DTW Long 255.31 338 45 253.74 338.05 264 69 342.64 
25-29 Busmess 324.38 454 40 322.35 452.27 321.71 457.47 
30-34 Pleasure 193.78 264.05 193 12 262.77 191.06 265.62 
30-34 DTW Short 205.47 264.82 205.22 265.26 203.59 265.85 
30-34 DTW Long 251 10 323.21 250.81 322 41 248.71 323 42 
30-34 Business 316 42 436.16 314.93 433 69 315.41 439 43 
35-39 Pleasure 155 51 212.04 154.64 212.05 154.29 212.11 
35-39 DTW Short 166.78 213 24 166.14 213.32 165.21 214.64 
35-39 DTW Long 200.79 260 60 200.55 261.02 198 82 263.34 
35-39 Business 253.47 345 96 250 98 344.36 264.36 347.61 
40-49 Pleasure 171.25 222.39 170.62 222.44 170.23 223.89 
40-49 DTW Short 183.16 225.39 183.49 225.63 182.62 225 13 
40-49 DTW Long 222.45 274.25 222.16 274.26 223.13 275 54 
40-49 Business 277.71 368.54 276.58 364.18 278.55 371.04 
50-59 Pleasure 173 47 226.93 172.88 226.73 173.55 228.03 
50-59 DTW Short 187.16 228.85 187.30 229 00 186.60 229.03 
50-59 DTW Long 225.66 280.26 225.69 280.43 224 79 281.50 
50-59 Bus=ness 280.90 371.99 279 61 369.27 282.24 375.68 
60+ Pleasure 169.76 223.18 168.20 221.76 168.22 223.76 
60+ DTW Short 181.97 228 44 181 85 228.06 180.28 228 05 
60+ DTW Long 217 10 278.89 217.39 278.64 216.90 280 57 
60+ Business 272.16 372.71 272 14 372.18 270.86 376 79 



Table 5.7: Summarized Statistics of Predicted Severities with Gamma Loss and Coefficient of Variation 3.0 

Vehicle Mean Bias Standard Error 
Age Use G-G G-L G-N G-G G-L G-N G-G G-L G-N 
17-20 Pleasure 257.52 230.58 255.72 2.62 -24.32 0.83 86.21 82.61 91.05 
17-20 DTW Short 267.20 236.41 265.82 1 64 -29.15 0.26 89.76 83.92 96.62 
17-20 DTW Long 324.01 291.59 323.56 1.83 -30.58 1.39 107.64 102.76 117.81 
17-20 Business 422 28 446.80 425.16 3.22 27.73 6 10 145.96 162.99 166.59 
21-24 Pleasure 256 19 249.79 256.05 2.49 -3.91 2.35 46 74 46.19 49.70 
21-24 DTW Short 265 13 259.41 265 23 0.82 -4.90 0.92 43 92 43.52 46.77 
21-24 DTW Long 322.33 315.64 323.53 1.67 -4.82 2.87 55 62 55.06 60.23 
21-24 Business 419.14 408.64 424.14 2.64 -6.46 7.64 77.39 76.22 87.22 
25-29 Pleasure 237.39 234.24 236.73 2.20 -0.95 1.54 30.43 30.22 32.09 
25-29 DTW Short 245.76 244.99 245.30 0.74 -0.04 0.28 26.57 26.55 28.07 
25-29 DTW Long 298.44 296.30 298.80 1.18 -0.95 1.54 32.26 32.16 34.83 
25-29 Business 388 38 380.46 391 89 1.72 -6 20 5.23 50.92 50.05 56.39 
30-34 Pleasure 227.81 225 52 226.64 2.43 0.15 1.27 27 68 27.37 29.44 
30.34 DTW Short 235.78 235.38 234.79 0 98 0.58 -0.01 22.94 22.97 24.44 
30-34 DTW Long 286.39 264 86 285.99 1 64 0.01 1.14 28.60 28.59 30.52 
30-34 Business 372.51 365.01 374.85 1 99 -5.51 4.33 45.04 44 69 49.22 
35-39 Pleasure 181.93 180.04 180 93 0.46 -1.43 -0.64 21.04 20 82 22.97 
35-39 DTW Shod 188.41 188.32 187 49 -0.66 .0.75 -1.57 18.14 18.17 19.54 
35-39 DTW Long 228 91 227.95 228 40 -0.46 -1.42 -0.97 23.28 23.21 24.45 
35-39 Business 297.90 292 30 299.37 -0.46 -6 06 1.02 37.73 37.16 39.44 
40-49 Pleasure 197.77 196 05 196.66 1.44 -0 28 0.33 19 95 19.64 21.73 
40-49 DTW Short 264.82 205.40 203 80 0 27 0 86 -0 74 15.94 15 99 16.94 
40-49 DTW Long 248.70 248.46 248.17 0.56 0.31 0 02 19.20 19.25 20.32 
40-49 Business 323.57 317.94 325.23 0.79 -4.83 2 45 33.97 33 53 35.81 
50-59 Pleasure 200.61 198.32 199.95 1 28 -1.02 0.61 20.93 20 78 22.21 
50-59 DTW Short 207.71 207.64 207.21 0.04 0.17 -0.46 16.55 16.58 17.52 
50-59 DTW Long 252.35 251.67 252.51 0.40 -0.27 0.56 21.62 21.72 23.34 
50-59 Business 328.47 323.07 331.15 0.74 -4 65 3.43 38.02 37.68 41.24 
60+ Pleasure 194.72 191.96 193.88 -0 29 -3.05 -1 12 22.21 21.99 23.43 
60+ DTW Short 201.57 201.25 200.93 -1.59 -1.92 -2 23 17.96 17.94 19.47 
60+ DTW Long 245 07 244.05 244.97 -1 40 -2.42 -1.50 25.02 24 97 26.55 
60+ Business 318.89 314.31 321.13 -1.71 -6.29 0 53 40.26 40 16 43.00 



Table 5.8: 95% Confidence Intervals of Predicted Severities with Gamma Loss and Coefficient of Variation 3.0 

Vehicle G-G G-L G-N 
Age Use Lower Upper Lower Upper Lower Upper 
17-20 Pleasure 119,40 458,67 100, 30 417,64 116, 72 464.45 
17-20 DTW Short 123.57 463.79 104.96 429.05 121.19 476.23 
17-20 DTW Long 152.25 553.60 129.10 522.80 147.50 588.64 
17-20 Busmess 197.98 736.88 192.31 811.30 189 61 791.06 
21-24 Pleasure 174 28 354.30 169.13 348.49 168.95 363.52 
21-24 DTW Short 187.71 356.20 182.58 347.55 184.32 362.97 
21-24 DTW Long 224.39 437.50 216.92 434 11 218.99 450.27 
21-24 Business 286.22 582 62 274.97 572.10 282.43 609.41 
25-29 Pleasure 182.60 302.19 178.15 297.26 178.27 301.54 
25-29 DTW Short 198.08 302 01 198 39 300.56 195.33 301.90 
25-29 DTW Long 238.87 369.25 237.79 364.67 235.15 371.60 
25-29 Business 295.64 493.23 288 69 486.40 294 77 512.37 
30-34 Pleasure 176.23 288.30 175.55 264.70 171.04 290.97 
30-34 DTW Short 193.91 284.31 194.30 283.27 189.77 283.53 
30-34 DTW Long 230.77 343.30 229.00 341.21 227.96 345.22 
30-34 Business 287.59 462.08 281.84 456.24 284.66 482.26 
35-39 Pleasure 143.20 227.33 142.39 224.37 138.70 228.38 
35-39 DTW Short 153.81 224.66 154.40 225.26 150.07 225.74 
35-39 DTW Long 187.28 276.19 186.76 274.11 183.66 277.67 
35-39 Business 229.72 377.77 224.79 368.38 227.96 381.40 
40-49 Pleasure 160.82 239 99 159.21 238.90 157.29 243.15 
40-49 DTW Short 175.46 237 44 176.41 238.21 172.95 238 09 
40-49 DTW Long 213.32 287 29 212.09 286.54 210.15 288.20 
40-49 Business 261.98 390.65 255.71 386.11 262.30 398.89 
50-59 Pleasure 160 21 245.48 159.82 242.52 156.29 245.10 
50-59 DTW Short 177.04 241.75 177.40 242.20 174.27 242.14 
50-59 DTW Long 213 72 299.75 212.50 299.24 209.77 301.62 
50-59 Business 261.28 402.18 258.73 397.92 261.86 418.11 
60+ Pleasure 156.33 241.67 1 64.37 239.29 150.36 243.77 
60+ DTW Short 167.59 239.55 167.96 238.12 164.24 241.78 
60+ DTW Long 201.44 297.13 200.01 295.99 196.45 298.56 
60+ Business 251.86 403.89 247.03 397.12 249 41 419.10 



Table 5.9: Summarized Statistics of Predicted Severities with Lognormal Loss and Coefficient of Variation 1.0 

Vehicle Mean Bias Standard Error 
Age Use L-G L-L L-N L-G L-L L-N L-G L-L L-N 

,,,j 

17-20 Pleasure 255.65 255.55 255.69 0.76 0.65 0.79 28.25 27.67 29.69 
17-20 DTW Short 266.26 264.52 266 36 0.70 -1.04 0.80 28.82 28.07 30.60 
17-20 DTW Long 323.31 323 11 323.50 1.14 0.94 1.32 35.60 34.88 37.76 
17-20 Business 420.12 442.39 420.79 1.06 23 32 1.73 47.25 48.78 50.10 
21-24 Pleasure 254.78 254.88 254.83 1.08 1.18 1.13 14.83 14.70 15.76 
21-24 DTW Short 265.36 264.98 265.44 1.05 0.67 1.12 14.34 14 19 15.29 
21-24 DTW Long 322.19 322.14 322.36 1.53 1.48 1.70 18 02 17.82 19 46 
21-24 Business 418.66 419.49 419.33 1.56 2 39 2.23 25.10 24.91 27 17 
25-29 Pleasure 235.07 235 10 234.98 -0.1t -0.08 -0.21 10.06 10.04 10.37 
25-29 DTW Short 244.82 244 90 244.75 -0.21 -0.12 -0.27 8.63 8.61 9.07 
25-29 DTW Long 297.22 297.21 297.21 -0.04 -0.05 -0.05 10.69 10.68 11.30 
25-29 Business 386.25 386.09 386.65 -0.40 -0.57 -0.01 17.15 17.07 18.17 
30-34 Pleasure 225.53 225.69 225.39 0.16 0.32 0.02 9.19 9.18 9.70 
30-34 DTW Short 234.88 234.96 234.75 0 08 0.16 -0.04 7.62 7.62 7.97 
30-34 DTW Lbng 285.16 285.17 285.07 0 31 0.32 0.22 9.58 9.56 10.11 
30-34 Business 370.56 370.24 370.82 0.03 -0.28 0.29 15.08 15.05 15.67 
36-39 Pleasure 181.48 181 52 181.33 0 01 0.64 -0.14 7 01 6.98 7.47 
35-39 DTW Short 189.01 189.07 188.87 -0.05 0.00 -0.19 5.91 5.91 6.27 
35-39 DTW Long 229.47 229.48 229 35 0.10 0.11 -0.02 7.48 7 47 7.87 
35-39 Business 298.19 29796 298.33 -0.16 -0.39 -0.02 11.90 11.86 12.17 
40.49 Pleasure 196.33 196.31 196.26 0.00 -0.02 -0.07 6.63 6.61 6.93 
40-49 DTW Short 204.47 264.58 204.43 -0.07 0.04 -O.12 5.03 5.03 5.33 
40-49 DTW Long 248.24 248.28 248.23 0.09 0.14 0.09 6.25 6.24 6.73 
40.49 Business 322 59 322.22 322.91 -0.19 -0.56 0.13 11.32 11 27 11.64 
50-59 Pleasure 199 40 199.30 199.32 0.06 -0.03 -0.02 6.87 6.64 7.14 
50-59 DTW Short 207.68 207.74 207.62 0.00 0 06 -0 06 5.47 5.46 5.81 
50-59 DTW Long 252.14 252 17 252.12 0.20 0.23 0.18 7.51 7.50 7.83 
50-59 Business 327.62 327.49 327.93 -0.10 -0.23 0.21 11.49 11.45 11.90 
60+ Pleasure 195.03 194.89 194.92 0.03 -0.12 -0.09 7.17 7.14 7.53 
60+ DTW Short 203.14 203.18 203.05 -0.02 0.02 -0.11 6.46 645 6.87 
60+ DTW Long 246.64 246 70 246.57 0.17 0.23 0.10 8.40 8 39 8.80 
60+ Business 320.50 320.75 320 74 -0 10 0 15 0.14 13.31 13.31 13.70 



Table 5.10: 95% Confidence Intervals of Predicted Severities with Lognormal Loss and Coefficient of Variation 1.0 

c¢, 

Vehicle G-G GoL G-N 
Age Use Lower Upper Lower Upper Lower Upper 
17-20 Pleasure 205,05 316 70 203.40 307.55 203 19 318,52 
17.20 DTW Short 214,43 328,01 211,71 320,61 211,73 330,81 
17-20 DTW Long 259 17 401,24 256,36 390,40 256,56 402,51 
17-20 Bus~ness 337,08 522,18 333.09 511,61 330,32 529,09 
21-24 Pleasure 226,56 283,43 225,60 281,63 225,85 287,69 
21-24 DTW Short 238.46 295.12 237.34 293.23 237.01 298 77 
21-24 DTW Long 284 28 358 08 284.01 355.83 284.56 361.52 
21-24 Business 370.62 469.04 368.95 464 63 368.65 479.95 
25-29 Pleasure 216.26 256.18 216.02 255.22 216.23 256 25 
25-29 DTW Short 228 67 262.28 228.51 262.00 228.41 263 20 
25-29 DTW Long 276.69 317 48 276.13 317.43 276.64 319.12 
25-29 Business 353.85 422.39 353.10 420.98 354 53 426.60 
30-34 Pleasure 208 28 243.70 208.13 242.93 207.73 244.50 
30-34 DTW Short 220 65 251.47 220.63 250.98 220.31 251 32 
30-34 DTW Long 267.64 305.43 267 76 305.27 267.06 306.66 
30-34 Business 341.59 400.71 340.58 399.32 341 81 404.39 
35-39 Pleasure 168.71 195 98 168.23 195.07 167.11 195 74 
35-39 DTW Short 177.91 200 87 177.83 200.70 176.99 200.95 
35-39 DTW Long 215.74 245.05 215.66 245 02 214.24 245.06 
35-39 Business 276.01 322.57 275.42 321.61 276.00 322.86 
40-49 Pleasure 184.24 209.35 183.89 209.06 183.42 210.19 
40-49 DTW Shorl 194.75 214.64 194 72 214 56 194.01 214.94 
40-49 DTW Long 236.39 260.36 236 16 260 14 235.00 261.73 
40-49 Business 301 33 344.57 300.79 343.99 301.76 345.62 
50-59 Pleasure 185 96 212.58 185.85 212.37 185.65 212 70 
50-59 DTW Shod 197.23 219.06 197 24 218.95 196.83 219.79 
50-59 DTW Long 238.18 267.51 238.03 267.33 238 02 268.39 
50-59 Business 306.11 351 17 305.46 350.51 306 26 352 32 
60+ Pleasure 180.79 209 77 180.52 209.25 179.41 209 82 
60+ DTW Short 190.49 217.81 190.44 217.72 189.52 217.20 
60+ DTW Long 230.66 263.46 230.34 263.25 229.77 264.51 
60+ Business 295 57 348.05 294.77 347.68 295.51 348 73 



Table 5.1 !: Summarized Statistics of Predicted Severities with Lognormal Loss and Coefficient of Variation 2.0 

Vehi(:le Mean Bias Standard Error 
Age Use L-G L-L L-N L-G L-L L-N L-G L-L L-N 
17-20 Pleasure 255.85 251.64 256.33 0 95 -3 26 1.44 55.75 49.77 59.13 
17-20 DTW Short 265.63 258.13 266.16 0.07 -7.43 0.60 57.32 50.41 61.16 
17-20 DTW Long 322.42 317.51 323.67 0.25 -4.66 1.50 69.90 62.08 75.29 
17-20 Business 418.64 464.40 421.82 -0.22 45.34 2.75 93.53 93.27 101.45 
21-24 Pleasure 254.33 253.11 264.09 0.63 -0.59 0.39 28.83 27.88 31.54 
21-24 DTW Short 263.96 262.19 263.61 -0.36 -2.13 -0.70 27.46 26 46 29.34 
21-24 D'I-W Long 320.45 319.10 320.57 -0.21 -1.56 -0.09 34 77 33.68 37.51 
21-24 Business 416 30 415.52 417.92 -0.80 -1.58 0.82 50 90 49.07 56.94 
25-29 Pleasure 235.71 234.96 235.68 0.52 -0.23 0.50 19 58 19.15 20.76 
25-29 DTW Short 244.64 244.53 244.60 -0 38 -0 49 -0.42 17.24 17 02 18.44 
25-29 DTW Long 296.89 296.36 297.34 -0.37 -0 89 0.08 21.27 20.96 23.18 
25-29 Business 385.55 383 55 387.36 - 1.11 -3.11 0.70 33.33 32 45 36.85 
30-34 Pleasure 225 01 224 65 224.82 -0.36 -0.72 -0.56 17.52 17.25 18.80 
30-34 DTW Short 233.52 233.47 233.28 -1.28 -1.33 -1.51 14.69 14.54 15.80 
30-34 DTW Long 283 42 283 06 283.59 -1.43 -1.80 -1.26 18.75 18.53 20.24 
30-34 Business 368.05 365.88 369.46 -2.48 -4.64 -1.07 29.87 29.08 33.07 
35-39 Pleasure 182.07 181.57 181.48 0.60 0 10 001 14.76 14.35 16.12 
35-39 DTW Short 188.92 188.88 188.26 -0 14 -0 18 -0.80 12.04 11.86 13.02 
35-39 DTW Long 229.27 228.96 228.81 -O 10 -0.41 -0.56 14.77 14.53 15 85 
35-39 Business 297.76 296.07 298.05 -0.59 -2.29 -0.30 24.34 23.69 25.74 
40-49 Pleasure 196.89 196.42 196.61 0.56 0.09 0 28 12 88 12.65 14.00 
40--49 DTW Short 204.36 204.62 264.04 -0.19 0 07 -0 51 9.95 9.94 10.79 
40-49 DTW Long 248.03 248.64 248.02 -0.12 -0.11 -0.13 12.98 12.92 13.83 
40-49 Business 322.09 320 30 323 04 -0.68 -2.48 0.27 22 92 22.28 24.17 
50-59 Pleasure 199.53 198.85 198 99 0.20 -0.49 -0.34 13.34 13.09 14 40 
50-59 DTW Short 207.12 207.25 206 54 -0.55 -0.42 -1.14 11.03 11.01 11.86 
50-69 DTW Long 251 38 251.32 251 07 -0.57 -0.63 -0.88 14.15 14.06 15.27 
50-59 Business 326 42 325 12 327.02 -1.30 -2 60 -0 71 23.84 23 34 25.70 
60+ Pleasure 195 55 194.61 195.32 0.54 -0.39 0.32 14.17 13.90 15.28 
60+ DTW Short 202 99 202.92 202.74 -0.17 -0 24 -0 42 12.32 12.19 13.28 
60+ DTMV Long 246.40 246.23 246.49 -0 07 -0 24 0 02 16.13 15.91 17.45 
60+ Bus=ness 319.99 319.33 321 15 -0 61 -1 27 0.55 26.10 25.31 29 18 



Table 5.12: 95% Confidence Interwals of Predicted Severities with Lognormal Loss and Coefficient of Variation 2.0 

o 
O 

Vehicle L-G L-L L-N 
Age Use Lower Upper Lower Upper Lower Upper 
17-20 Pleasure 169,68 394,47 168,87 366,93 166,67 399,58 
17-20 DTW Short 179 65 405.01 177.92 374.96 175.01 409 57 
17-20 DTW Long 210.88 495.47 213.68 463.80 209.70 502 79 
17-20 Bus=ness 271.22 635.59 304 54 663.21 266.23 670 44 
21-24 Pleasure 205.17 312 46 204.53 309.27 201.69 318.60 
21-24 DTW Short 216.70 323.67 215 35 321 28 213.56 324.67 
21-24 DTW Long 258.44 393.94 258.94 391 20 259.45 398.67 
21-24 Business 329.32 530.54 329.47 525.37 327.32 543 69 
25-29 Pleasure 200 46 274.84 200.99 273.93 198.76 279.92 
25-29 DTW Short 212.92 282 04 213 04 281.60 210.55 283.22 
25-29 DTW Long 256.54 343.83 256.74 342.09 256.53 346.75 
25-29 Business 328.91 455.32 327.13 451 43 325 82 469.24 
30-34 Pleasure 193.74 263.39 193.06 263.06 190.05 264.27 
30-34 DTW Short 207.16 264.35 207.40 254.12 205 53 265.69 
30-34 DTW Long 250.27 322.50 250.03 321.97 248 98 325.70 
30-34 Busmess 316.23 424 68 314.65 421.11 313.51 437.02 
35-39 Pleasure 156.79 212 64 156.19 212.36 152.92 213.55 
35-39 DTW Short 168.63 214.29 168.49 214.08 164.60 214.69 
35-39 DTW Long 203.37 260.87 203.10 260.29 201.08 260.93 
35-39 Business 254.97 347.13 253.51 343.22 253.65 350.60 
40-49 Pleasure 174.01 222 20 173 79 221.63 172.78 225.16 
40-49 DTW Short 185.78 224.90 185.79 224.75 184.21 226.20 
40-49 DTW Long 221.97 274.58 222.26 274 31 220.83 276.09 
40-49 Business 280.72 370.43 279.97 367.95 281.36 373.81 
50-59 Pleasure 173 89 225.92 173.44 225.01 171.95 229 45 
50-59 DTW Short 186.98 229.99 187.14 230.30 184.86 230 96 
50-59 DTW Long 224.54 281.15 225 04 280.18 223.36 283.44 
50-59 Business 283.77 376.14 282.83 372.19 281.38 382.39 
60+ Pleasure 169.52 226.13 169.24 225.40 167.43 227.65 
60+ DTW Short 180.88 229.26 181.06 228.47 180 05 229.66 
60+ DTW Long 217.11 280.25 216.93 279.46 216 22 281.31 
60+ Business 272.80 372.72 273.14 371.94 273 31 382.09 



Table 5.13: Summarized Statistics of Predicted Severities with Lognormal Loss and Coefficient of Variation 3.0 

Vehicle Mean Bias Standard Error 
Age Use L-G L-L L-N L-G L-L L-N L-G L-L L-N 
17-20 Pleasure 257.16 246.40 258.06 2.26 -8.50 3.16 85.62 67.59 117.76 
17-20 DTW Short 268.54 253.93 267.82 " 2.98 -11.63 2.26 85.90 67.80 89.92 
17-20 DTW Long 324.71 312.54 325 60 2.54 -9.63 3.43 104.78 84.05 115.61 
17-20 Business 422.41 480.72 425.05 3.34 61.65 5.98 140.16 134.16 154.98 
21-24 Pleasure 254.82 250.68 254.43 1.12 -3.02 0.73 40.94 37.56 45.87 
21-24 DTW Short 266.36 262.26 265.81 2.04 -2.06 1.50 40.30 37.18 45.00 
21-24 DTW Long 321.82 317.71 322.71 1.16 -2.95 2.05 49.09 45.70 57.36 
21-24 Business 418.49 413.48 421.22 1.40 "-3.62 4 12 70.58 65.59 83 84 
25-29 Pleasure 236.11 233 72 235.41 0.92 -1.47 0.23 27.95 26.32 31.21 
25-29 DTW Short 246.79 246.15 245.89 1.77 1.13 0.86 25 80 24.91 28.01 
25-29 DTW Long 298.07 296.40 298.13 0.81 -0.85 0.87 30.77 29.33 33.63 
25-29 Business 387 89 382.77 389.66 1.23 -3.89 3.00 51.09 47 36 58.73 
30-34 Pleasure 226.07 224.16 226.09 0.70 -1.21 0 72 27.30 25.28 33.06 
30-34 DTW Short 236.03 235.42 235.68 1 23 0.62 0 88 22.03 21.28 24.80 
30-34 DTW Long 285.20 283.71 285.96 0.35 -1.15 1.11 27.71 26.58 31 74 
30-34 Business 370.86 365.53 373 41 0.33 -5 00 2.89 44.73 41.68 54.94 
35-39 Pleasure 181.61 180.08 180 72 0.13 -1.40 -0.76 20.60 19.56 24.19 
35-39 DTW Short 189.67 189.44 188.53 0.61 0.37 -0.53 16.98 16.57 19.27 
35-39 DTW Long 229.19 228.31 228.69 -0.18 -1.06 -0.68 21.60 21.00 24.12 
35-39 Business 298 06 294.29 298.47 -0 29 -4.06 0.12 35.52 33.60 39.75 
40-49 Pleasure 195.69 194.27 195.05 .0 64 -2.06 -1.28 19.43 18.52 23.19 
40-49 DTW Short 204.40 204.74 203.48 -0 14 0.20 -1.06 14.83 14.73 16.66 
4049 DTW Long 247.03 246.74 246.92 -1.12 -1.41 -1.23 19.79 19.41 22.24 
40-49 Business 321.11 317.34 322.08 -1.67 -5 44 -0.70 33.26 31.46 37.36 
50-59 Pleasure 199.01 197.17 198.29 -0.33 -2.17 -1.05 20.50 19.49 23.42 
50.59 DTW Short 207.89 207.93 206.95 0.22 0.26 -0 72 16.55 16 31 18.01 
50.59 DTW Long "251.24 250.71 251 12 -0.71 -1.24 -0 82 21.46 20.97 23.55 
50.59 Business 326.62 323 32 327.89 -1.11 -4.41 0 17 35.76 33.63 44.49 
60+ Pleasure 194.21 191.98 193.59 -0.79 -3.02 -1.42 20.49 19.59 23.44 
60+ DTW Short 203.00 202 66 202 22 .0.16 -0 50 .0.94 18.29 17.80 20.91 
60+ DTW Long 245.37 244.57 245.41 -1.10 -1.90 -1.06 23.93 23.06 27.15 
60+ Business 319.04 316.58 320.35 -1.56 4.02 -0.25 38.26 36.22 45.39 



Table 5.14: 95% Confidence Intervals of Predicted Severities with Lognormal Loss and Coefficient of Variation 3.0 

I,J 
C 
I-J 

Vehicle L-G L-L L-N 
Age Use Lower Upper Lower Upper Lower Upper 
17-20 Pleasure 150,84 453 79 147.45 408,89 145,28 467 57 
17-20 DTW Short 161,08 473,55 153,81 411 66 159.79 483 70 
17-20 DTW Long 189.15 565 01 185.34 501.03 183 93 584 01 
17-20 Business 239 60 742.03 261.24 752.07 236 26 766 60 
21-24 Pleasure 186.60 352 85 185.83 336.33 180 20 365 38 
21-24 DTW Short 201 75 357 23 200.30 344.52 196.74 377.53 
21-24 DTW Long 242 47 434.58 240.99 419.43 235.19 461.13 
21-24 Busmess 307.98 586.35 306.03 559.09 300.17 627.96 
25-29 Pleasure 190.82 297.56 189.29 288.25 185.34 302.97 
25-29 DTW Short 205.21 303.08 204.96 300.56 199.10 304.64 
25-29 DTW Long 246.31 367.25 245.78 360.33 243.93 376.80 
25-29 Busmess 297.11 503.33 296.69 485.59 297.80 516.34 
30-34 Pleasure 184.39 283.27 182.85 279.17 177.12 293.13 
30-34 D TW Short 199 74 283.08 199.18 280.41 192.81 288.72 
30-34 DTW Long 240 12 348.16 239.32 342.69 232 60 357.79 
30-34 Business 293.64 465 80 292.36 452.40 291 62 488.31 
35-39 Pleasure 145 54 224.85 145.63 220.97 141 15 231.34 
35-39 DTW Short 160.64 225 26 160.97 224.35 156.05 227.58 
35-39 DTW Long 193.77 276 10 192.86 273.97 189.01 279.85 
35-39 Business 238.76 378.53 235.37 369.80 237.17 394.84 
40-49 Pleasure 162.62 239.36 161 18 233.75 157.09 241.60 
40-49 DTW Short 178.70 237.68 178 91 238.54 173.96 238.30 
40-49 DTW Long 213 76 288.45 213.47 287.55 209.57 292.07 
40-49 Business 265.59 391.26 262.73 385.95 262 02 400.44 
50-59 Pleasure 163 04 243.77 162.93 238.02 161 17 244.78 
50-59 DTW Short 180.15 245 63 180.36 243.67 175 68 244.27 
50-59 DTW Long 211 62 297.42 211.79 295 67 207.37 298.99 
50-59 Busmess 265.87 402 81 264.66 396 51 263.59 409 25 
60+ Pleasure 158.82 239.61 158.17 234 44 153.71 243.81 
60+ DTW Short 171.32 243.17 170 95 240.05 166.97 245 22 
60+ DTW Long 206.10 300.94 205.74 296.58 198.58 308 97 
60+ Business 257.01 404.61 254 96 394.06 251.04 420.91 



Append ix  6 
Plots o f  Predicted Sever i t ies  for Selected Class i f ica t ions  

Figure 6.1: Scatter and Densit)' Plots of Predicted Severities for G a m m a  Loss with Coefficient of  
Variation 1.0 for Age 17-20 and Pleasure Use 
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• G-G implies that the loss follows a Gamma distribution and a Gamma distribution is assumed in 
the regressions; similarly, G-L implies the loss follows a Gamma distribution but a kognormal is 
assumed in the regressions; and G-N implies the loss follows a Gamma distribution but a Normal 
is assumed in the regressions. 

• The density function is estimated by the non-parametric method from Silverman (1986). 
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Figure 6.2: Scatter and Density Plots of Predicted Severities for Gamma Loss with Coefficient of 
Variation 1.0 for Age 40-49 and DTW Short Use 
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Figure 6.3: Scatter and Density Plots of Predicted Severities for Gamma Loss with Coefficient of 
Variation 2.0 for Age 17-20 and Pleasure Use 
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Figure 6.4: Scatter and Density. Plots of Predicted Severities for Gamma Loss with Coefficient of 
Variation 2.0 for .Age 40-49 and DTW Short Use 
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Figure 6.5: Scatter and Density Plots of  Predicted Severities for G a m m a  Loss with Coefficient of  
Variation 3.0 for Age 17-20 and Pleasure Use 
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Figure 6.6: Scatter and Density Plots of Predicted Severities for G a m m a  Loss with Coefficient of 
Variation 3.0 for Age 40-49 and DTW Short  Use 
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Figure 6.7: Scatter and Density. Plots of Predicted Severities for Lognormal Loss with Coefficient of 
Variation 1.0 for Age 17-20 and Pleasure Use 
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Figure 6.8: Scatter and Density Plots of Predicted Severities for Lognormal Loss with Coefficient of 
Variation !.0 for Age 40-49 and DTW Short Use 
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Figure 6.9: Scatter and Densit 7 Plots of Predicted Severities for Lognormal Loss with Coefficient of 
Variation 2.0 for Age 17-20 and Pleasure Use 
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Figure 6.10: Scatter and Density Plots of Predicted Severities for Lognormal Loss with Coefficient 
of Variation 2.0 for Age 40-49 and DTW Short Use 
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Figure 6.1 I: Scatter and Density Plots of Predicted Severities for Lognormal Loss with Coefficient 
of Variation 3.0 for Age 17-20 and Pleasure Use 
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Figure 6.12: Scatter and Density. Plots of Predicted Severities for Lognormal Loss with Coefficient 
of Variation 3.0 for Age 40-49 and DTW Short Use 
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Appendix 7 
Residual Plots for Regression Diagnostics 

Figure 7.1: QQ Plots of Standardized Residuals for Gamma Loss with Coefficient of Variation 1.0 

G-G Pearson Residuals QQ Plot G-G Deviance Residuals QQ Plot 
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G-G implies that the loss follows a Gamma distribution and a Gamma distribution is assumed in the 
regressions; similarly, G-L implies the loss follows a Gamma distribuuon but a kognormal is assumed 
in the regressions, and G-N implies the loss follows a Gamma distribution but a Normal is assumed in 
the regressions. 
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Figure 7.2: Plots of  Predicted Severities vs Standardized Residuals for G a m m a  Loss with 
Coefficient of  Variation !.0 
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Figure 7.3: QQ Plots of Standardized Residuals for Gamma Loss with Coefficient of Variation 2.0 
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Figure 7.4: Plots of Predicted Severities vs Standardized Residuals for G a m m a  Loss with 
Coefficient of Variation 2.0 
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Figure 7.5: QQ Plots of Standardized Residuals for Gamma Loss with Coefficient of Variation 3.0 

G-G Pearson Res=duals QQ Plot 
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Figure 7.6: Plots of Predicted Severities vs Standardized Residuals for Gamma Loss with 
Coefficient of Variation 3.0 
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Figure 7.7: QQ Plots of Standardized Residuals for Lognormal Loss with Coefficient of Variation 
1.0 
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Figure 7.8: Plots of Predicted Severities vs Standardized Residuals for Lognormal Loss with 
Coefficient of Variation 1.0 
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Figure 7.9: QQ Plots of Standardized Residuals for Lognormal Loss with Coefficient of Variation 
2.0 
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Figure 7.10: Plots of  Predicted Severities vs Standardized Residuals for Lognormal  Loss with 
Coefficient of  Variation 2,0 
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Figure 7.11 : QQ Plots of Standardized Residuals for Lognormal Loss with Coefficient of Variation 
3.0 
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Figure 7.12: Plots of Predicted Severities vs Standardized Residuals for Lognormal Loss with 
Coefficient of Variation 3.0 
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Figure 7.13: QQ Plots of Standardized Residuals for Gamma Loss with Coefficient of Variation 1.0 
based on Individual Data 
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Figure 7.14: Plots of Predicted Severities vs Standardized Residuals for Gamma Loss with 
Coefficient of Variation 1.0 based on Individual Data 
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Figure 7.15: QQ Plots of Standardized Residuals for Lognormal Loss with Coefficient of Variation 
1.0 based on Individual Data 
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Figure 7.16: Plots of Predicted Severities vs Standardized Residuals for Lognormal Loss with 
Coefficient of Variation 1.0 based on Individual Data 
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A P R A C T I T I O N E R ' S  A P P R O A C H  T O  M A R I N E  L I A B I L I T Y  P R I C I N G  

U S I N G  G E N E R A L I S E D  L I N E A R  M O D E L S  

By. B GEDALt.A MSc CStat FSS. D JACI,LqON BSc(Honsl FSS, and D E A SANDERS FIA i~ SI~ ~ L ~  FS S 

A B S T R A C T  

Mar ine  Liability. underwr i t e r s  - notably  those  at the Pro tec t ion  and  I n d e m n i t y  (P&I)  C l u b s  

- have t rad i t iona l ly  used  emp i r i ca l  app roaches  based  on ind iv idua l  r i sk  expe r i ences  to arrive 
at their  pr ic ing .  But  P&I  is a d i rect  c lass  of insurance  and  the underwr i t e r s  have at their  
d i sposa l  s ign i f i can t  da ta  vo lumes .  T h i s  m e a n s  tha t  it is more  than  poss ib le  to apply  the k ind  
of  m o d e l l i n g  t e c h n i q u e s  to P&I  (and,  for that  mat te r ,  to o ther  c l a s ses  in the mar ine  s e c t o r )  

that  have  b e c o m e  c o m m o n p l a c e  e l sewhere  in the Genera l  I n s u r a n c e  (Proper ty  & Casual ty)  
world.  In  this  p a p e r  w e  n o t e  the t rad i t iona l  m e t h o d s ,  the da ta  ava i lab le  and  ind ica te  how the 
Gene ra l i s ed  L inea r  ModeUing  t e c h n i q u e  can  be used  to der ive r a t ing  m o d e l s  tha t  apply  to 
Mar ine  Liabi l i ty  b u s i n e s s .  

1.1.1 

1 1 2  

1 1 3  

1 1.4 

I. I N T R O D U C T I O N  A N D  B A C K G R O U N D  

As much as 90% of the world's merchant shipping obtains Its b.lanne Liabiht 3, insurance ~'ia 
the loose ne~ 'o rk  of Protecnon and lndemruo., Assocaataons (the "P&I Clubs") that are 
members of  the Intemataonal Group of  P&I Clubs. Both shipowners and charterers enjoy 
the benefits of membershap of a system that has survaved since the middle of  the nineteenth 
century and which itself grew out of the marine hull market based around Lloyd's of 
London Traditionally, underwrifng methods have been empmcal  m nature and tend to rely 
hea~aly on simple loss tatao statements based on simplisnc experience models Frequendy, 
they ,:,'ill not even allow for IBNR/ IBNER.  Rasks are usuall) underwritten as part of a fleet 
assessment with the hastofic experience of  the vessels being the pnncapal factor taken into 
account b,, the underwriter for renewals. Sublecuve assessments, such as the quality, of the 
fleet's management ,xall often influence the ratang decistons. 

Larger usks or groups of  nsks have histoncaUy been insured through the P&I Clubs, and the 
smaller risks, notably smaller vessels requmng lm'uted habtliw cover or cover on a fixed 
prettuum basis, have been insured by the compan,., .."Lloyd's market, where special facihties to 
cater for then" needs have developed. However, these facihues have not always proved 
profitable and few have maintained a consistent place m the market 

The total prerruum for the P&l club market Is of the order of $1.8 bilhon prermum (2002). 
This figure represents the total expected prerruum receipts, including reinsurance prettuums 
It is based on a total insured gross tonnage of  nearly 700 milhon tons 

p&l Clubs (at least, those that are lXlembers of the International Group) are pure mutuals 
and are owned by their insured members. A t3'plcal P&I Club will have two groups of 
Directors - the first being the Club's main Board who will be elected from amongst the 
shipowrung membersbap. However, for day-to-day matters, the shapowners are usually 
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1 1 5  

1.1.6 

1.1.7 

1.1.8 

1.19 

1 1.10 

content to cede control to the insurance professionals who make up the management 
companies that run the Clubs. The second group is the management  company who ".all have 
its own seruor management and Directors, who are someumes,  but not always, subject to the 
formal approval of the Shapo".'ners Board 

Shipo".'ners or charterers insure thetr vessels by "entering" the risks ".lth one or more of the 
Clubs The shipowner ".aU agree ".lth the tmderwtiter a premaum rate per ton entered for 
each vessel. This is usually known as the "Expected Total Call" (ETC) (the term vanes from 
Club to Club). The Club ,.'ill expect an agreed propornon of  tl'us ETC to be paid up front as 
an "Advance Call". In recent years, many Clubs have increased the p ropomon of the ETC 
called m advance and one Club has recendy announced that for 2004/'05, the Advance Call 
wtll be 100% of  the ETC. Where the Advance Call is less than 100% of the ETC, the 
remainder ".all be called by the Club at a later stage, possibly a )'ear or eighteen months after 
the start of the Policy Year A policy year tradiuonally begins on the 20 ~ February.. 

Most Clubs rexfew thetr expected ultarnate losses at regular intervals with a view to closing 
the Pohcy Year three years after Its start Being mutuals, they reserve the right to ask thetr 
shipowners for addiuonal premium at any nine up to the date of closure Their record of 
collecting these additional premiums Is good, ".ath members '  bad debt normally running at 
less than 5% of total premium Members seeking to leave the Club before the policy )'ear Is 
closed can usually expect to pay a "Release Call", whach would normally be set at the Club's 
highest level of  probable future Calls on that policy year. 

The Clubs in the Internataonal Group operate a Claims Pooling agreement where large claims 
are shared between them on an eqtutable basis derived from their entered tonnages, Called 
Premium and aggregate claims experience over some ~'ent2, .' years. Thas Poobng agreement 
has operated since 1993 m two layers, currendy between the Pool Retenuon of $5m and the 
Upper Pool Limit of $30m. 

Beyond $30m, the International Group joindy purchase Excess of Loss Reinsurance in the 
London Market, using a mulu-layered programme. For some years, the Clubs themselves 
have co-tnsured up to 250/0 of the working layer of this programme. 

The Group reinsurance currendy runs to losses of $2.03bn. Beyond that point, a clan-n, 
should it occur, would revert to the Clubs. Funding for such a loss would come from a 
variety of  sources, including overspdl remsurances taken out by some Clubs, calls on Club 
reserves, and ultimately (as the Clubs are Mutuals) by clxrect Calls on the members. 

Set out in Figure 1 below Is a pictorial representauon of  the 2002 International Group 
reinsurance programme 
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1.1.11 

1 1 1 2  

1.1.13 

1.1 14 

Unul the late 1990s, standard P&I cover was unhmited, so theoreucally a malor catastrophe 
could result m financsaUy cnppbng caUs that could threaten the entire system. Because of tbas 
danger, the Group has for some years limited oil poUunon asks to first $400m and more 
recently $500m. For the last few years, the Group has also imposed a babdiq, hrntr for non- 
od pol lufon claims, using a tonnage based romania derived from the 19"6 Athens 
Conventaon non-cargo babtht 3, knuts. Tbas lirrut effecuvely estabhshes a cap on habthn' clatms 
of around $4.5bn. 

Most P&l claims are actuaUy quite small, ~ath only a dozen or so breachang the $5m Pool 
Retennon each )ear The largest ever P&l clatm was the Exxon Vatdez loss m 1989, bebeved 
to have cost around $Sbn m total. However, as thas was od pollution, the Group loss was 
hrruted to the then limit of  $400m The largest non-od pollutaon case remains the Betelgeuse 
loss m 1978 (an explosion off the Irish coast that resulted in several crew deaths), wtuch cost 
approxamately $118m. 

h should be noted that there have been incidents m the past wtuch could easily have 
generated much larger claims Perhaps the most  well known o t  these was the Texas Ctty 
explosion in the late 1940s. The cost of that los~ at today's prices would run to several bilhon 
US dollars - and that loss occurred before US courts started imposing punitive damages on 
top of other claims. 

Today, tile P&l nsk, while hrmfing od polluuon losses, sull leaves the Clubs exposed to some 
potentaal large losses, such as Laqtud Petroleum Gas ('LPG) tanker explosions and the 
potentially catastrophac tmpact of a major passenger cruise hner loss. 
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2.11 

2.1.2 

2.1.3 

2 1.4 

21.5 

2. C U R R E N T  R A T I N G  M E T H O D S  A N D  U N D E R W R I T I N G  M O D E L S  

At some stage dunng the months leading up to Renewal, ever), sbap owning member or his 
Broker xxall have been presented v, ath evidence of his loss record (going back over a period 
of years). The Club Underwnters "~all have chscussed with the shipowner the Club's overall 
financml posmon together ~xath the general level of  increase that the Club's Shapowmng 
Board of Directors will have agreed early m the Season should be apphed to all Members'  
rates at the start of negouaoons. The Shipowner wall argue, perhaps, that they are a special 
case - they',' have implemented new smngent  levels of  sl'up management  and loss preven ,on;  
they have replaced ageing elements of thetr fleet with new state-of-the-art vessels; they no 
longer car D" dangerous cargoes; they no longer sad into potenually hugious US ports and so 
on The Shapowner ,aall offer to increase the deductibles operating on thetr Pohcy and there 
~41] be a health), chscussion as to the effect such an increase might  have on the loss ranos. 

Clubs use different techmques to aid their arguments Some ~aU rely on fau'ly simple gross 
loss rano calculations, while others will present rather more sophisticated pncang models to 
support  the chscussion In the end, however, a deal will be done and the business duly 
renewed. 

It is a tesumony to the stabthtv of the Intemanonal Group system that surprisingls htde 
tonnage moves bem'een Clubs at the 20th February Renewal Dunng any )'ear, mergers and 
acquismons bev, veen Sl'apowners result in vessels being moved from Club to Club, but a 
feature of the rene,o, als process in recent )'ears has been that the vast malonty of  Shapowners 
stay '~.ath their Clubs. Increasingly, larger (and not so large) Shipowners choose to belong to 
more than one Club, entering some vessels with one Club, some with another, or 
occasionally sphtting theLt enr_ry pro-rata be~ ' een  Clubs, so that each Club has, for example, 
50% of  each vessel m a group of  vessels. Such Shipowners may vary their distribuuon of 
vessels between thetr Clubs at renewal, but again, few will make radical changes. 

Against this background, rates have fallen m the 1990s. Underwriters alv.,ays talk of  insurance 
cycles and certainly a soft rate cycle afflacted Lloyd's m those years It is undoubtedly true 
that Hull rates fell m the London Market and this generated pressure from Shipowners and 
Brokers for P&l Underwriters to lbUow slut. Counter-arguments that Hull and P&I 
insurance are completely different have tended to fall on deaf ears and the perceaved threat 
from the entry into the market of fixed premium writers reinforced the pressure. The Clubs, 
It Is pointed out, are pure mutuals and their substannal assets are ultimately the property of  
the Shipowrung members. These Shipowning members feel that Jt is not unreasonable to 
expect the Clubs to release free resen'es m the soft years - reserves that have been built up m 
the harder years of the cycle, when higher premiums were collected. 

Since 2000, a new reahsm has gripped the market and Rates have substannally increased in 
the last 2-3 years and are conunLung to nse. Most Clubs soil beheve thetr rares are too low 
and that they are conunumg to draw down on their resen'es Accorchngly, p,'pleal general 
increases sought by the Clubs for the 2004 renewal are still in excess of 15% 
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2.2 

2 2 1  

Or ig ina l  R a t i n g  Process 

Most P&I Club raung procedures currendy m force are based on a stmple model, with 
premium rates based on tonnage. T,,'picaLIv, there are several deductions from the gross 
premium to denve the retained premaum, and these are assessed against historic experience 
on a ludgemental basts to reach an acceptable rano of  retained to gross prermum. This type 
of  process is typical for many types of  task m the London market. 

The deducnons may include the following" 

• Excess of  Loss Reinsurance 

• A premium m respect of  the upper Pool ($20m - $30m) of  losses, possibly based on the 
reinsurance pren'uum 

• A premium in respect of the lower Pool ($5m -$20m). Again posstb[y based on the 
reinsurance premium or on some funcuon of the Club's cont.ribuuon level to lower pool 
Claims. 

• An abatement la)er below the Pool to smooth out the effect of  large losses. Depending 
on the size of the C]ub. this might be set at an), point bet~'een, $|0(),000 and $2 maUJon 
and cover the layer from the abatement point to the Pool retennon of  $5 rru~on. 

• Alternatively. some models may not make any allowance for an abatement layer, bur may 
cap claims at the Pool retention point, currently $5 mllhon 

2.2.2 The remaining net prermum ts used to assess the retaaned loss rano = premaum net of 
deducnons/gross  premium. The reraaned premium for the insured vessel ts compared against 
the corresponding losses If a shortfall arises the rate Is adlusted upwards 

2.3 

2.31 

2.32 

U n d e r w r i t i n g  Mode l s  

Larger fleets may be broken do'-x'n into rough]) homogeneous groups of  vessels (crude off 
tankers, for example, may be assessed together), but tt 2s unusual for the assessment to be 
an)' more detaded The simplest underwriting models may do litde more than calculate the 
hastoric gross loss ranos by underwriting )'ear, ',xath no adlusu'nent for unexptred risk, IBNR 
or unallocated expenses. These simple calculauons ,:,all be used to ludge whether the ra6ng 
group is profitable From this ludgement, a loading will be apphed in addinon to the overall 
increase prevaously agreed by the Club's board. 

There are more soplusucated models m the market P&l Clubs m the International Group 
pool thetr losses above $5 miUion and eoUectively purchase Excess of  Loss reinsurance 
abo~e $30 rnilhon, one varianon on the baste loss faun model, is to cap claims at the $5 
rmlhon retention point and apply an overall loading to account for the Club's share of Pool 
and reinsurance claims. A vananon on this theme is to recognise that $5 mill.ton is far too 
I'ugh a point to share large claims "0,1thout seriously distorting the loss ratio model for those 
fleets ~xath a large clatm. Therefore, the abatement la),ers described above are introduced to 
smooth out the distornons 
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2.33 Other  models do exist, ,xith adjustments for IBNR, IBNER, expenses and so on. Some 
models at tempt to relate prermum to the task by developmg a simple burning cost model, 
based on losses per entered ton. 

23.4 The common factor in all these models is that the) are essemaally one-du'nensional or at best 
two-dimensional, and make no real staustical use of  the wealth of  data held on the 
underwnnng systems, and the mteracuon betaveen the various factors that drive the clmms 
expenence 

2.4 

24.1 

2.4.2 

2.43 

A Different Approach 

The original approach outhned above ts strnphstic in that it does not full), reflect all of  the 
factors underl}ang an insured's expenence. Usmg a mulnfactor approach should give rise to 
consistent internal premium rates, 'o.'lth the need to mcrease rates only to reflect the overall 
market conchnon, or lnch~adual n.~ks that perform badly as a result of  poor risk management. 
A Generahsed Linear Model (GLM) approach gives a more scaentific basis for esumatmg 
rates. 

A GLM creates a muln-dimenslonal representanon of  the data that enables the inter- 
dependent relanonships m the data to be visualised in a way quate tmposstble by inspection 
alone. Such relationships are obxaous when there are only two raung factors and can be 
tdennfied by stmple one and two-way tables Even with three factors, and a fair amount of 
patience, the various combmanons of tabular analyses can be explored. But once the number 
of variables starts to climb, this quacldy becomes in, possible GLMs explore the dam using 
powerful staustieal software and estabhsh the relanvmes present, as weU as evaluanng the 
staustica] errors associated x~ath the models derived. In this way, the actuary or statasnoan 
can evaluate the possible soluuons mchcated by the modelling process and select the models 
that best explain the v.anadon in the data. 

GLMs also give an equitable approach to ratmg between the various fleets or Club members. 
The ratmg could be readily extended to the higher layers to allow for the abatements and 
reinsurance prerruurns 

31.1 

3.12 

3. D A T A  S E L E C T I O N  

The key to carrying out the GLM modelhng process successfuUv is to obtam as much data 
from mtemal underwnnng and claims systems as possible. It IS Important to capture both 
sides of the data store as valuable descnp.uve mformanon ,xall often only be rehably held on 
the underwntmg system while the detailed claims cost informanon w-dl usually only be held 
on the claims system 

The data should be extracted from these systems on an indJ~ldual risk basis together with 
measures of exposure period. I fa  pohcy has an adlustrnent rrud-term, resulting m a change to 
mformation we would w~sh to use as a rating factor, there should be a stogie record entry 
represennng each of  the rating factors applicable to each portaon of  the policy. This should 
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3.1.3 

3.1.4 

not pre~ent too much of a problem 'aath P&l business as the incidence of rmd-teml 
adlustments to policies is very rare. If an exposure period cannot be calculated wlthin the 
under ' ta r ing  system, then enough date informanon should be extracted for each record 
produced to allow the accurate calculauon of exposure periods 

The data extracted for the exercise should be of a recent nature and of  suffictent volume to 
ensure the models fitted accurately reflect the expected chums experience going forward. It Is 
normally expected to cover around four or five pohcs year's worth of data, although more is 
acceptable ff a~ailable Care needs to be taken though as including older data may result m 
the model no longer reflccfng current experience A rough guade is to use a rrunJmum 
exposure of approximately 15,000 vessel years 

The data needed ,.,,all most likely come as two sources. 1) an tmderwrifing file conslstmg of 
stogie records for each exposure umt - probably a "vessel-year" - represenung a unique 
comb,nauon of rimng factor details for each period of task, and 2) a detailed claims file w'tth 
informauon relanng to every cintra recurred by the exposure uruts on the underwnung file 

3.2 

32.1 

3 2 2  

32.3 

Rating Factors 

Most e.',asting pricing models analyse actual experaence by under',xnung year, maybe split 
accordang to some appro.,umare vessel classification wtrban a fleet There Is a "aade range of 
classl tang factors about each vessel rouunely captured by the underwntmg systems and 
several of these can be used to analyse the risks. The levels to be modelled for eaci~ raung 
factor are generally easily determmed by the nature of a parucular rating factor. However, for 
rating factors widt a large number of levels it is more practical to group together levels ~ t h  
similar propertaes so that more stable parameter esthnates are produced "0,'athm the GLM 
model. 

The common raung factors used in Manne l_Jabtht 3' pncmg are" 

• Type of  vessel, 

• Age of vessel. 

• Classlficanon sooeq" (Lloyd's Register, the American Bateau and so on), 

• Vessel flag. 

• Nauonaht% 

• Tonnage either In temps of gross, tonnage or entered tonnage, 

• Vanous types of deductibles. 

Other factors can be ldenufied from the exisung data such as those vessels ,.,.ath lm'uted 
habdiq, or those extending their standard P&[ Cover to mclude 4,/4ths of vessel colhsion 
claicns, otherv.'lse known as Runrung Dov.n Costs (RDC), ,,vtuch by maritime trachuon .are 
normally spht bet',veen P&I and Hull insurances 

Up to 150 chfferent type., of  vessel exist, but for raung purposes these should be aggregated 
mto 10 or so categories at the most. It is practical at ttus stage to ldentit:}." vessels that carry 
dr), cargo or tankers cartsnng clean cargo and rate these as separate factor levels, as thffercnt 
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3 2 4  

reinsurance arrangements ,,*4U apply to these vessels at a later stage• The age of  vessel factor 
ts most senstbly grouped into bands of 5 years. The clas~tficanon soctet 3' factor is usually 
grouped into 10 or I1 levels represenung the ma~or sooeues  plus an 'other'  category. 
containing the smaller societies and those vessels where the classlficauon socaet 3' cannot be 
tdennfied or is not recorded• The vessel flag factor can usually be spht into levels 
represenong 12 or so of  the major flag nanons plus one level representing the smaller flag 
nations combined experience 

The nationaliry factor represents the vessel owner's counu 3, o f  origin This Is normally best 
grouped together by geographical region with the malor countries such as Greece, USA, 
Russm, and China tdennfied separately. Deductibles are best grouped into 5 or 6 bands 
represenung the amount of deducuble taken. The types of  deducuble being taken are 
tdennfiable from the Rule codes they are attached to and are therefore easily classified into 
t2,.'pes consistent with the tTpes of  claims being analysed. T)pical types of  deductible are. 

• Collision 'a.'lth other vessels, 

• Collision ',vlth fixed and floating oblects, 

• Polludon, 

• Cargo, 

• Persona] inlury, 

• Other  

Personal mlury deductible t3?es can further be spht mto crew, passenger and other personal 
injury if desired. Some vessels can be sublect to an all-clanns deducnble, rather than pinking 
up one or more of  these individual deducubles separately. 

3.3 

331  

3.3.2 

3.3.3 

Claims Data 

Different insurers hold different levels of  detad on their claims systems. Some may be able to 
provide bttle beyond a total amount p a d  and a total outstanding estimate for each claim. For 
modelling purposes however, much more detaded mformauon ~s required 

A P&I Clam1 can include claims of  various types, such as colhslon damage both m terms of  
collisions '~4th other vessels and colhsion ~ath fixed and floaung oblects, pollution, cargo, 
personal mlury and others. The personal mlury element of the chum could also be spht 
further into crew passenger miury, passenger personal injury, stevedore ml~ ies  and other 
mju O' types if so desLred. The type of claim can normally be determined relauvely easily, as 
different aspects of the claims transacnon mformanon are nomul ly  assigned to Rule codes 
External fees relating to each clawn should be included m the clawns amounts to be modelled 
and are most  easdy analysed when they are assigned chrecdy to the relevant Rule code for the 
clama that they apply to 

The claims file should be pro~4ded oil a ful] transacnonal basts, allowing flail analysis of  all 
claims recurred. In order that the model is fitted to data represennng a stable and settled 
claims posinon, each Incurred clamas amount should be increased to take account of any 

239 



3.34  

I B N E R  The IBNER factors are usually derived flora o ther  tese~4ng work cat 'ned out  upon 
the same book o f  business and are apphed on a pohcy .,,'ear and D'pe o f  claim basis. The 
claims t ransacuon file is then stmwnansed on an individual incident per  policy per vessel 
basis. 

Each o f  the individual claims should be capped at an appropna te  level to remove the effect 
o f  large claims The  level at which the claims are capped may' be predetermined by the choice 
o f  a parncular  P&l Club's abatement  level In other  cases rktis level Ls too high and an 
arbltrar)' figure o f  $100,000 is chosen. It Ls also useful to cap individual claims amounts  at the 
aba tement  level used and ar any retention amounts  that apply, so that appropr ia te  loadmgs 
can be evaluated and apphed at a later stage 

3.4 P r e p a r a t i o n  o f  M o d e l l i n g  D a t a  

34.1 The task then zs to merge the files, ehmmate  errors and aggregate claims costs,  so as to end 
up "0,'nh a" manageable data file contaJmng one record for each exposure umt "aAth 
.~ummansed claims m f o r m a u o n  appended  Inexatably at this stage there ~all be some degree 
o f  mismatch  when Linking the claims data ro the u n d e r w n u n g  data. Care needs to be taken 
here to ensure the mismatched claims are mvesugated.  If the rrusmatched claims are for 
business to be included in the model,  then the mismatch amoun t  needs to be evaluated and a 
loading for this should be applied at a later stage m the modelhng  process 

3.4.2 O n c e  a single manageable  data file has been produced,  the data must  be examined and any 
records represenung business not  required in the model  should be removed For  instance, a 
particular Club may want  to fit a model to owned-orfly vessels and not  chartered vessels, or 
they may wish to exclude those vessels insured under  consor t ium arrangements  and price 
this business separately 

4.1 

4.1.1 

4.1.2 

4. T H E  G E N E R A L I S E D  L I N E A R  M O D E L L I N G  A P P R O A C H  

Modelling 

Having generated the database,  the mos t  a 'nporrant stage o f  our  work Is the modelling 
process itself For  some time now, actuaries and statisticians have been appl',ang a class o f  
mathemancal  models known as GLMs to mass-volume insurance data to ldentifi,' 
re lanonships between risks and establish relatMties between different levels o f  rating factors. 

The  underlying a s sumpuon  m ramlg Marine Liabiht 3, business is that the risks are similar m 
many aspects to those found m personal lines insurance,  m particular those found m moto r  
insurance. P&I club risks covered are usually single vessels, each o f  which is considered to be 
comparable  to a private mo to r  pohcy Large fleets o f  vessels on cover  are considered to be 
comparable  to a mo to r  fleet poh~- 
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4.1.3 

4.1.4 

4 .15  

There  have been a large number  o f  papers written which make use o f  the GIA~I techniques 
to rate m o t o r  business. The underlying theo D' we have used to form the basis o f  this paper  
can be found  in Brockman & Wright (1992). 

We have fitted a basic frequency-seventy model to the risk pre rmum per ton calculated using 
the capped  incurred claims cost,  using a poisson error structure with a log hnk, weighted by 
exposure  measured m terms o f  entered tonnage The log link results in a muluphcat ive model  
being fitted, which is preferred as neganve fitted values cannot  be obta ined f rom the model,  
unhke m an ad&nve model.  Also, a greater level o f  accuracy can be obtained by f imng 
mulnphcanve  models as opposed  to ad&uve models,  where more  terms would need to be 
included in the model  to achieve the same outcome.  We use a poisson error  structure as the 
incidence o f  P&l clmms being modelled are measured m terms o f  clatrns cost per ton over a 
fixed nine period 

Ano the r  approach  is to fit separate models to frequenc?, and sevent2,' and exarmne the results 
o f  the two separately. The frequency model  would be fitted to the number  o f  obse~,ed 
clatms per ton using a polsson error  structure xxath a log hnk, lust kkc the model  used above 
The sevenq, model  is &fferent in that It uses a gamma error  structure rather than the polsson 
error  structure. A detailed outhne o f  the theory for severity models  can be found m 
Broc "kman and  \'("right (1992). 

4.2 

4.2.1 

4 2.2 

42 .3  

T i m e  D e p e n d e n c y .  

In choos ing  the data to be included in the model,  care mus t  be taken to ensure the exposure 
periods chosen are suitably recent so that the claims experience b ~ n g  pre&cted by the model  
can be expected to be o f  a similar nature to the historical experience and that the volume of  
the data being used is large enough  to reduce r andom variation m the parameter  esumates. It 
is c o m m o n  pracuce to select data that covers the mos t  recent four or  five-vear period, to 
ensure that both  o f ' these  cnteria are met. Arguably, very recent  claims data should not  be 
used in the model  due to its undeveloped nature. This is easily overcome by ensuring that the 
claims amounts  being used are recurred amounts ,  mchi&ng both  paid amounts  and all 
outs tanding estimates, together  with an appropriate  development  for an element o f  IBNER. 

When  fitting the models ,  a time factor should be allowed for as an explanatory variable. This 
zs to ensure the trend m the size o f  clamas due to inflation is Identified This way there is no 
need to remove mflauon by making prior adlustments to the clatms data. Tbas claims 
mf lauon  should not  be assumed to be the same as the RPI inflanon,  or the clawns mflanon 
experienced m other  hnes o f  business. Another  reason for fitting a m-he factor m the model  
Is to remove the effects o f  an)' changes in portfolio rrux over ume as this could result in the 
parameter  estimates being &storted. 

To check the stab~hty o f  parameter  estimates over tune for a particular ranng factor, the 
selected model  should be re-fitted containing an addiuonal  interactaon tenn.  Thas interaction 
term includes both time and the rating factor to be tested. Separate models  should be fitted 
for each o f  the main raung factors m turn It usual to plot the results o f  d'us fit on  the same 
graph as the results o f  the fit f rom the selected model.  The g raph  m Figure 2 below shows 

2 4 1  



the results of  fitting an additional term for the interaction of  vessel qTpe and ume. We can see 
from flus graph that when compared ,x]th the fit obtained from a mare effects model fit, the 
same general trend across the vessel types ts observed in each of the pohcy .,,,ears under 
analysis. 

T~.IE INT i~ACTION GRAPH 

~---~ ~ ' "  ',,N',,"-g/Z/' 

I 2 3 4 5 6 7 8 ~ I0 

V]~3 ~ I~L I~pE 

r 

Figure 2 - Time Interaction Graph 

4 2.4 

4 2 5  

If data is available for muluple claim types as menuoned earher m secuon 3 3 2, separate 
models can be fitted to each claim tTpe separately. This v.fll give a much deeper insight into 
the factors driving the claims experience. Additionally including the time factor m the model 
prmldes  the ability to esumate the elamas inflanon for each of the clmm qpes  separatel), and 
also to idenu~, trends m the data applicable to m&vadual claxm rypes, without bemg affected 
by changes m the portfoho max over ume. 

The standard model assumpuons of constant variance should be checked by producing a 
plot of standar&sed residuals against the fitted values, and also by producing plots of the 
standar&sed residuals agamst the levels of  each rating factor m rum The graphs m Figure 3 
and 4 below show the plots of standatdi,;ed restduals ag:unst fitted clamas costs per entered 
ton, and standardised restduals by ;'esse[ t),pe. 
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4.3 

4.3.1 

43.2 

Vafidafion 

The final stage of  the modelling process ts to turn the GLM output  into a set of reladvines 
together with a base rate. Tl-us base rate is taken from the model base and ~xall need to be 
increased to take into account ad&uonal costs These will include a loading for an.',' 
rrusmatched clmms dunng the data preparauon stage, loadings for the capping of  clamas 
between the chosen capping level and the abatement level Of the two are different), abated 
clamas, expenses, the club's share of pooled clatms, future mflauon and reinsurance costs 

Ha',qng derived the model. It is then apphed to the under'wnnng information to compare the 
indicated premium for each risk ,ruth the actual premium charged The total indicated 
prernium can be examined to ensure that tt is sufficient to cover the histotac losses. 

5. 

51.1 

5 1.2 

5.13 

C O N C L U S I O N  

In tiffs paper, we have described the background to existing Manne Liabilit 3' pricing models. 

We have gone on to describe the apphcarion of  powerful new modelhng techniques based on 
Generalised I.anear Models to the available data. 

The end result is an easy to apply mu]nphcative raung model that can be used to derive a 
starisucallv vahd prermum for each vessel. Nothing in this work deprives the Underwriter of  
his or her abtl.it 3, to negotiate a chfferent rate from that mchcated by the model. However, 
with an appropriate modelling techruque added to the toolkit of methods, the Underwriter is 
better placed to conduct a meaningful negotiauon x~ath the Shipowner armed with the results 
of  a formal analysis of  the past experience. 
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Multivariate Spatial Analysis of the Territory Rating Variable 
by Serhat Guven 

ABSTRACT 

The average insurer typically utilizes some form of territory ratemaking in its algorithm; 
thus. in constructing a GLM. one of the major issues revolves around how to reflect 
location in the statistical solution. The problem arises because there are too many 
territory categories to directly include in the statistical model. This issue can be resolved 
by altering the perception of the location dimension from a categorical rating variable to a 
continuous one. 

This paper presents an alternative approach to incorporating the location dimension in the 
GLM analysis of the rating algorithm. The procedure develops the indicated relativities 
and boundaries in a statistical multidimensional framework thus removing the 
distributional effects of other rating variables and measuring the geographic risk alone. 
Furthermore, the territory procedure is based on the principle of locality, i.e., the 
expected loss experience at location L is similar to the loss experience around L. 

The indicated relativities of each geographic unit are determined by modeling polynomial 
functions of latitude and longitude in the GLM statistical framework. By expressing the 
indication in terms of a polynomial the analyst can include location in the statistical 
model without having to worry about too man), additional parameters. 
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INTRODUCTION 

An insurer's rating algorithm consists of a multitude of rating variables to accurately 
quantify the various insured risks. Insurers that are able to properly segment and 
appropriately charge the pool of insured risks will not suffer the problems associated with 
adverse selection. Ideally, the insurer would want to develop a rating scheme that 
accurately represents the multidimensional framework of the insured population. 
Generalized Linear Models (GLMs) are an ideal tool to analyze the various dimensions 
of the rating algorithm in a multivariate framework using distributions common to 
insurance. Much of the current application of the GLM is to study rating factors such as 
an insurer's class plan, limit structure, or tier assignments. 

Insurers use a wide variety of rating variables, and one of the most common among them 
is location. The average insurer typically utilizes some form of territory ratemaking in its 
algorithm. In constructing a GIM,  one of the major issues revolves around how to 
reflect location in the statistical solution. The problem arises because there are too many 
territory categories to directly include in the statistical model. From a practical point of 
view, the actuary attempts to identify the best groupings of location that would properly 
reflect the distributional differences across the rating dimensions without adding an 
inordinately large number of parameters to the GLM. This approach is somewhat 
subjective. The problem can be resolved by altering the perception of the location 
dimension from a categorical rating variable, such as gender, to a continuous one, such as 
age. 

The purpose of this paper is to present an alternative approach to incorporating the 
location dimension in the GLM analysis of the rating algorithm. The procedure develops 
the indicated relativities and boundaries in a statistical multidimensional framework thus 
removing the distributional effects of other rating variables and measuring the geographic 
risk alone. Furthermore, the territory procedure is based on the principle of locality, i.e., 
the expected loss experience at location L is similar to the loss experience around L. 

Under this approach, a GLM models the dependent random variable as a function of the 
rating variables including the location dimension. Location is defined as the latitude and 
longitude coordinates of the geographic unit. Other rating variables are regarded as 
categorical predictors; however, by using the latitude and longitude coordinates, location 
can be treated as a continuous predictor. Thus the actuary can measure the geographic 
risk while upholding the principle of locality. The indicated relativities of each 
geographic unit are determined by modeling polynomial functions of latitude and 
longitude in the GLM statistical framework. By expressing the indication in terms of a 
polynomial the analyst can include location in the statistical model without having to 
worry about too man:,' additional parameters. 

The framework of this paper begins with an overview of traditional territory boundary 
ratemaking procedures. Traditional methods rely either on loss ratio or one-dimensional 
adjusted pure premium techniques. GLM or other multivariate methods develop 
solutions that avoid the problems associated with one-dimensional techniques, however, 
the emphasis in this section will focus on how traditional methodologies treat the territory 
variable as a mixture of categorical and continuous concepts. 
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The next section ,.,,'ill introduce some basic ideas for modeling the rating algorithm using 
GLM. This section will discuss common terminology and strategies used to model a 
response dependent variable as a function of categorical and continuous independent 
predictor variables. With this background the problems associated with developing the 
territory rating variable within the GLM framework will be explained; furthermore, 
current techniques used to work around these problems v, ill also be presented. The 
subjective nature and theoretical c6ncerns will be shown for these current methods. 

The paper will finally present the proposed solution to the territory issue by modeling the 
rating algorithm in the GLM framework while treating location as a continuous concept. 
This approach allows the analyst an alternative solution that avoids the issues and 
concerns associated with the current techniques. Issues arising from using the proposed 
methodology and the corresponding practical solutions to these concerns will be 
presented as well. 
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SECTION ONE: Traditional Techniques and the Principle of Locality, 

In 1996 two important papers were presented that discussed the use of geographic 
information systems in developing the territory rate. 

'1 
Christopherson and Werland presented "Using a Geographic Informer,on System to Ident,fy 
Territory Boundaries", which developed rates for a geographic unit reflecting the experience 
at that unit as well as experience around the unit. The paper eloquently describes the 
principle of locality as "physical and social conditions around a location impact the risks 
associated with homes at the location." Once these rates were determined they were 
aggregated into discrete groupings based on common results. t., 

At the same time, Brubaker presented "Geograph.c Raiing of Individual Risk Transfer Costs 
w=thout Temtorial Boundanes", which also developed rates for a geographic, unit; however, 
he did not recommend aggregation, instead he proposed various interpolation techniques 
to produce rates for geographic areas that were between the initial geographic units. 

Both papers developed a pure.premium for each geographic unit. This metric was 
adjusted to include experience from surrounding locations; however, as the distance from 
the geographic unit increased, the weight given to the surrounding location decreased. 
This spatial smoothing approach is used because of the principle of  locality. 

The principle is based on the concept that the "risk level wil l  vary gradually from one 
location to another location." From a mathematical perspective this principle allows us to 
consider the territory rating dimension as a continuous concept. Both papers rely on the 
concept of  distance to develop rates for categorical units, but one can think of  distance as 
a continuous concept (unlike gender or tier dimensions, which are categorical concepts). 
Furthermore, the Brubaker paper directly utilizes continuity principles in the presentation 
of  interpolation between vm'ious categorical geographic units. 

Both papers also discuss adjusting the pure premium metric for all other rating 
dimensions in an attempt to isolate the effect of  territory. Without a multivariate 
approach, this is much easier said than done. Depending on the complexity of the rating 
algorithm, aggregation assumptions are ol~en made to simplify implementation that 
results in a greater likelihood of not removing the distributional biases inherent in the 
rating dimensions of the insurer's data. 

The motivation behind these adjustments is to remove the effect of  other rating variables 
and define the "geographic risk as the residual risk after the effects of other rating 
variables have been controlled." This is a problematic assumption, because from a 
statistical point of view a model attempts to identify the systematic and unsystematic 
behavior of the data. The unsystematic behavior is regarded to be the noise that reflects 
the random nature of the stochastic process. The current procedures imply that the 
geographic risk should have the qualities associated with systematic as well as 
unsystematic variation. This is a precarious assumption to make since the unsystematic 
variation is random noise and the allocztion of this randomness to a particular rating 
dimension is fairly arbitrary. 
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In summary, traditional ratemaking procedures to develop the territory rating variable 
rely on the principle of  locality, v,'hich allows one to eonsider the location dimension as a 
continuous concept. Furthermore, the traditional attempts to remove the effects of  the 
distributional biases and the resulting treatment of  the territory rating variable to capture 
the residual risk are problematic. 
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SECTION TWO: GLM Modeling Techniques .., 

The basic idea behind GLM is to model the dependent response variable as a function of  
a linear combination of  the independent predictor variables. Dependent response 
variables are defined as the subject that is measured. Examples in the insurance 
environment are concepts such as frequency and se`,:erity. Independent predictor 
variables are defined as characteristics o f  the subject that is being measured. Common 
examples in insurance include concepts such as age and gender. There are three major 
components of  any GLM: 

I. The distributional form of  the dependent response `,'ariable. 
2. The structure o f  the independent predictor variables. 
3. The function that links the dependent response variable to the independent 

predictor variables. 

GLM requires the modeler to assume that the dependent response variable be drawn from 
the exponential family of  distributions. In the insurance environment the Poisson and 
Gamma distributions, which are commonly used to model frequency and severity, are 
p,'u't o f  the exponential family. 

The combination of  the independent predictor variables creates the structure of  the 
model. The modeler decides which variables to include or exclude; furthermore, once the 
variable is included in the model, the analyst must decide on how to include the variable. 

If the variable is a rating dimension, should all the le`,els o f  the rating dimension be 
included or should they be grouped into categories'? Examples in insurance include 
grouping of  insured ages into categories such as youthful and adult. Should the different 
variables be modeled so that the effects of  one variable depend on the effect o f  another 
variable? In homeowners insurance the classic example is the common Protection 
Construction rating variable. 

Can the predictor variable being analyzed be modeled as a categorical or a continuous 
concept? Categorical concepts allow us to group the individual items into distinct 
groups; howe`,'er, the modeler cannot quantify the difference between distinct categories. 
An example of  this type of  variable is marital status. The insured can be classified into a 
particular marital status, but the difference in the levels o f  marital status cannot be 
quantified. Continuous `,'ariables allow us to quantify and compare the differences in the 
levels within the variable. The classic example is age. An insured that is tbrty years old 
is twenty years older than an insured that is twenty years old. Identifying the predictor 
variable as continuous allows the modeler to use polynomial functions to describe the 
behavior of  the underlying variable. 

Finally, GLM relates the mean of  the dependent response ,,'affable as a function of  the 
linear combination of  independent predictor variables. This function is called the link 
function. Commonly used link functions are the ~dentity and log functions. The identity 
function creates an additive model while the log functions are used to build a 
multiplicative model. Insurers use rating algorithms that have multiplicative as well as 
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additive components. In GLM one can use the structure of the link functions to best 
reflect the insurers underlying rating algorithm. 

As stated earlier, the goal in any GLM is to model the dependent response variable as a 
function of a linear combination of independent predictor variables. Each predictor, such 
as gender, has a given number of rating levels, such as male and female. The greater the 
number of rating levels for a given predictor the more difficult it becomes to interpret the 
resulting parameters. This becomes quite obvious when we consider the location rating 
variable. A state or region can be subdivided into countless numbers of geographic units. 
For example if we decided to use the county zip as the underlying geographic unit, then 
there are approximately 40,000 unique county zips in the United States. This is a 
significant challenge to any statistical model. The validity associated with a model that 
has such a large number of parameters is very questionable. 

So one of the challenges associated with application of GLMs in the insurance 
environment is how to reflect the location rating variable in the statistical solution. 

One approach is to define a geographic unit to be large enough so that the total number of 
location segments is manageable in the GLM. Grouping locations together based on 
distance and other information, such as population density, usually does this. These 
techniques are problematic. The first problem with this approach is that the procedure 
could produce groups that contain heterogeneous data. The second problem is that 
grouping and clustering procedures can be very subjective. 

Another alternative is to derive a GLM using all of the rating variables excluding the 
geographic dimension. The next step is to examine the residuals of the model and 
allocate those residuals to the geographic unit. Spatial smoothing techniques are then 
utilized to insure the principle of locality, and then territory boundaries are derived from 
the clustering of the geographic units based on the residual of the GLM. Territory 
relativities are built from the resulting boundaries. The biggest problem with this 
technique is the residual itself. The residual represents both systematic variation not 
included in the original GLM (i.e. territory) AND unsystematic variation that is inherent 
in any stochastic process (i.e. random noise). In this approach both the systematic and 
unsystematic variation is being allocated to the location rating variable. 

One of the commonly relayed themes in this paper has been the principle of locality. As 
defined earlier, this principle states that experience around location L is similar to 
experience at location L. This principle can also be thought of a continuous concept. 
The difference in experience between locations changes gradually. Current methods tend 
to utilize spatial smoothing techniques thus emphasizing the continuity of this particular 
dimension. Expanding on this idea, this paper proposes to directly include the location 
dimension at the lowest geographic unit in the GEM statistical solution; furthermore, by 
defining the variable using a coordinate system (e.g. latitude/longitude), the analyst can 
treat the variable as continuous; thus, territory variable can be modeled using polynomial 
functions which avoids the problems associated with an inordinate number of categorical 
parameters. 
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SECTION THREE: Modeling the Geographic Risk 

The first step in this process is to identify the geographic unit to be used in the analysis 
and then assign a coordinate pair to each unit. 

One option available is to use the county zip code as the underlying geographic unit, and 
assign a coordinate latitude-longitude pair for each county zip. County zip codes are easy 
to use and can be readily extracted from most insurers databases. Furthermore, the 
coordinate assignments are usually built into most GIS software systems. There are two 
problems associated with this approach. The first is that county zips are developed by the 
US Postal Service to allow them to better coordinate and deliver mail. Outside of 
population density issues, these goals really are not a good representation of the insurer's 
risk. County zips are constantly changing to meet postal needs; thus, these changes can 
seriously impair the usefulness of the insurer's data. (See Werner) The other problem is 
the assignment of the coordinates. Common assignments include the location center OR 
the population weighted center of the geographic unit. 

In the Brubaker paper, the region was segmented into grids with each point being the 
geographic unit. This is an ideal approach because it avoids all of the problems 
associated with the county zip. Of course, the problem with this approach is how to 
define the grids and the tec[:mical challenges associated with plotting the data on the grid. 

The ideal approach is to have a latitude and longitude coordinate for each record in the 
insurer's data, but this can be very costly and difficult to implement. 

In order to facilitate this discussion, an example will be used to illustrate the underlying 
equations associated with this approach. Lets assume that we have the following simple 
rating algorithm: 

Premium = BaseRate x TerrRel x Size x Age 

Assume that the age rating variable has two rating levels - youthful and adult. Also, the 
size rating variable has three rating levels - small, medium, and large. Finally, the 
territory rating variable has fifteen rating levels. Each level represents the geographic 
unit. Also let the base level for each variable be defined as 

Age - Adult 
Size - Large 
Territory - 4 

As stated earlier, the goal of the GLM is to model the dependent response variable as a 
function of independent predictor variables. The common notation can be expressed as: 

= h ( n )  

q = X B  
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The linear combination of  parameters is represented by XB where X is the design matrix 
and B are the parameters that reflect the charges associated with the risk characteristics. 

Using the aforementioned rating algorithm we can specifically define r I for each 
combination of  rating characteristics: 

q~ = Box I ÷ B ^ l x  I ÷ B s l x  I + B s z x 0 +  BTIX I * BT2X0+  Bx3 x 0 +  B T S X 0 + B T 6 X 0 ÷  B r ~ x 0 +  B r s x 0 t  B r ~ x 0  
• B~-io x 0~- B r n  x 0 ÷ B.T~: x 0 + B~-I~ x 0 + B-n, ',: 0 * B-r,~ x 0 

q z = B o x l * B ^ ~ x l ~ B s l x l ÷ B s z x 0 + B n x 0 + B T - : . x l + B r 3 x 0 ÷ B T s x 0 ÷ B r 6 x 0 + B r ~ x O + B ~ l x 0 + B r ~ • 0  
+ Brio x 0+ BTtl X 0 ÷ B-(tz x 0 *  BTH \ 0 t BTt4 X 0 + BTL:, x 0 

q~ = B0 x I + B , I  x I ÷ BsL x I + Bs2 x 0 *  BTL X 0 * Br7 x 0 *  BT3 x I + Br~. • 0 + Bx~,x 0 ~  Br r  x 0+ Brs x 0 ÷ Br,~',, 0 
+ BTto x 0+ B.rs, x 0 + Brl.. x 0 + BT,S x 0 + BTi, ".t 0 "1- BTl~ x 0 

This pattern of  equations continues until all combinations of  rating variables have been 
expressed• For this example there will be ninety (2 x 3 x 15) distinct equations 
representing the different combinations of  Age x Size x Territory. 

In matrix notation this system of  equations can be expressed as follows 

rl= 

-1 1 1  0 I 0 0 0 0 0 0 0 0 0 0 0 0 0- 

I I I 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

I I I 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

1 1  I 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

1 0 o o o o 0 o o o o o o o o o  I o] 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

! Bo 
BA~ 

B s l  

B s z  

B r l  
x 

i Br: 

B r 3  

. B/-~  

_Brl! 

=XB 

Note that the linear combination of  the independent predictor variables treats territory as 
a categorical variable. Thus this model will produce a separate relativity for each 
geographic unit. The exponential function represents the multiplicative model that best 
mimics the rating algorithm. Using the earlier example we have the following system of  
equations: 

h ( q o  = e'.tp(Bo ',t I + B,,,t x I * B s l x  I + Bs.,X 0 *  B n x I + B-r: x 0 +  BT~', ,0 + Br,J x 0 + B r r x  0 + B.rT',: 0~ Br~x  0 + 
B ~  x 0 + B1-1o x O "1- B r u  • 0 + Br l :  x 0 + B n 3  x 0 + Brl4 x 0 ~" ~r lg  & 0 t  

h t q ; )  = c x p t B o x  I + B ^ l x  I * B s . x  I + Bs :  x 0  t B n  x 0 +  B p . x  I + B r ] , , . 0  + Brs x 0 + B r r x 0  + B.r7 x O+ Brs'. .  0 + 
Br.~ ",, 0 + Br=¢, x 0-~ I~rH '.. 0 ÷ Brr ,  "< 0 + BTt3 x 0 + Brl.~ x 0 + BT,~ x 0) 

h ( rh~=  exp(B0 x I + B,., ",, I + Bs~ ',. I + Bsz'.. 0 ÷  B-rl x 0 ÷ Bp. x 0 + Br~ x I + BT~ x 0 ÷ Br6 x 0 ÷ Br7 x 0*  Brs  x 0 ÷ 
BT~ x, 0 + BTit, X 0+ BTIS X 0* BTIZ x 0 ÷ BT;~ x 0- Brl, x 0 + Bri~ x 0) 

Note that the exponential [unction converts the linear combination of  parameters into a 

multiplicative fore3. 
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As mentioned earlier, the first step in the territory analysis is the assmgnment of  the 
coordinates to each geographic unit. For this analysis we ,.,,'ill use the coordinates that are 
displayed in the following manner: 

Y 
1 2 3 

2 5 6 
x 3 8 g 

4 I 10 11 12 
5 [ 13 14 15 

Thus each territory rating level is assigned a coordinate pair 

Territory n: (x, y) 
Territory 1 : ( I, I ) 
Territory 2: (1, 2) 
Territory 3: ( I, 3) 
Territor}' 4: (2, I ) - Base Level 

Territoryl5: (5, 3) 

This simple exanlple assumes that the territory rating levels are the smallest geographic 
unit that describes the risk. In practice a territory rating level covers a much broader area 
and typically consists o f  a number of  geographic units. The coordinate system assigned 
to the territory allows the analyst to quantify the difference between separate rating 
levels. This quantification allows the territory rating variable to be treated as a 
continuous predictor, which in turn allows the modeler to use polynomial functions to 
describe the differences in risk experience across the territory rating level. 

For the above example we can model the territory variable as a polynomial function of  
the assigned coordinate system. Assume that a simple one-degree linear relationship for 
the territory variable is used. Then the system of  equations can be described as: 

h(rh)=explBo x ! +B..x 

h(112) = cxp(Bo x I * B^I x 

h(rh)=exp(Box I ÷ B^, x 

h(q~)=¢xp(Bo x I + B..l x 

h(qs) = exp(Bo ~, I ~ B^I • 

h(rh,) = exp(Bo ~. I + B... x 

* Bsl x 

+ Bst x 
s, Bsl • 

+ Bs~ • 

+ B5. • 
* B~= x 

+ B s = x O +  B , x  I + B....x I t  

+ Bs., x 0 +  B ,  x I ÷ B~ x 2 )  

+ Bs:'.,. 0 + B ,  x I * B ~  " :3 )  

+ B s : x 0 + B ,  x 2 + B ~ . • 1 1  

* B s : x O +  B ,  x 2  + By  ~.2~ 

+ Bs :  ~ . 0 -  B ,  x 2 + B., , , 3 )  

h{q~o  = ¢xp lBo  • I * B^l  x 0 * Bs.  • 0 ÷ Bs ,  x 0 + B ,  ~. 5 + B,, x I I  

h(qs¢,) = ¢xp(Bo  x I + B~, • 0 ~ Bsl • 0 + Bs:  x 0 ÷ B ,  x 5 + By ', 2) 

h(n~,~'l = e',.p( B6 x I + B,,I x O *  Bs.  x 0 + Bsz x 0 ÷ B ,  x 5 * B.,. x 3) 

Thus the design and parameter matrices take the following form 
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rl= 

-I I 1 0 1 1  

'1 I 1 0 I 2 

,1 I 1 0 I 3 

I I 1 0 2 1 

i ] 0 0 0 5  i 
1 0 0 0 5  2 

L I o o o 5  3 

B0 

BA~ 

Bsl x =XB 
Bs2 
Bx 

.By . 

Note that if we treated territory as a categorical predictor, then the GLM produces 
eighteen parameters (Base ÷ Age + Size + Territory = I + 1 + 2 ÷ 14). Translating the 
territory into a continuous predictor, and using the aforementioned structure, the GLM 
produces only six parameters (Base + Age + Size + Territory = 1 + I -*- 2 + 2). This 
simple illustration shows that one can use polynomial functions on continuous predictors 
to reduce the total number of  parameters in the statistical solution. 

As an alternative to the one-degree polynomials, assume a simple two-degree 
relationship, then the equations become: 

hiq~) ~ exp(Bo x 1 ~- B^~ x I ~ Bsl x I ÷ Bs: x 0 * B,  x I'+ B , j  x I + By x I + By z x I )  
h l q2 )=  ¢xp(Bo x I * B ~ l x  I + Bs, x I + B s z x O + B , x  I+ B,a x I ~ B y x 2  + By: x 4) 
h ( ~ j l ~ c x p ( B o x l + B A E x l  + B ~ i x l 4 " B s 2 x O ÷ B ,  x I ~ B , j x I + B y x 3 ~ B y 2 ~ - 9 )  
h (q4 )~cxp (Box  I + B^~ x I +Bs=x  I + B s : x 0 +  B, x 2  * B , j x 4  + By x I + B v ~ x  1) 
h(rls) = ¢xp(Box I + B , . x  I ÷Bs=x  I + B s : x O + B . x  2 +  B . j x 4 +  B y x  2 +  B y : x 4 )  

h(q~,) ~ exp(Bo x I + B,~. x I +Bs=x  I + Bs2 xO ' , -B ,  x 2 + B,~ x 4 +  By x 3 + By2 x 9). 

Again 

h(n iB)= exp(Bo x I + B~,, x 0 + B~I x 0 + Bs: x 0 ~ B,  x 5 * B , j  x 25 ~ By x I + By :  x l )  
h(rls~) = exptBo x I ~ B ~  • 0 + Bs~ x 0 4- Bs2 x 0 + B, x 5 + B , j  x 25 + By :~ 2 + By2 x 4) 
h i r l ~ ) = e x p ( B o x l + B ~ x 0 * B s ~ x O + B s z x O ÷ B ,  x 5 + B , j ~ 2 5 + B y x 3 + B y ,  x 9 )  

the design matrix takes on the following form: 
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rl= 

- 1 1 1 0 1 1 1 1 "  

1 1 1 0 1 1 2 4  

1 1 1 0 1 1 3 9  

1 I 1 0 2 4 1 1 

i . . . . . . .  0 0 0 5 2 5 1 1  

1 1 0 0 0 5 2 5 2 4  

1 0 0 0 5 2 5 3 9  

B o 

B m 

as1 

x B~ 

B~ 

B,,J 

= X B  

In this case the GLM model produces eight parameters (Base + Age + Size + Territory = 
I + I + 2 + 4) to describe the underlying data. 

In either case, instead deriving a separate parameter for each territory rating level, the 
modeler derives a function based on the coordinates of  each rating level, which allows 
the territory relativity to be defined as a function of  the latitude and longitude coordinates 
from each geographic unit. 

The immediate benefit of  this method is the ability to include the location dimension in 
the statistical solution vAthout having to rely on clustering routines. Furthermore, the 
polynomial functions.used to describe the territory rating variable are continuous. The 
continuity of  the underlying functions is in line with the principle of  locality. 

In reality there exist thousands of  geographic units and the location dimension would 
produce an overwhelming number of  categorical parameters that significantly affects the 
validity of  the GLM. Instead of  treating each unit as a category, this approach allows the 
analyst to describe the location with a smaller number of  manageable parameters. 

There are several issues that need to be considered when modeling the territory rating 
variable in this manner. The first issue is the coordinate system which was described 
earlier. 

The second is the issue of  sensitivity. How complex should the polynomial be to 
describe the geographic risk? The modeler could utilize large degree polynomials in an 
effort to describe the data as closely as possible. Alternatively, cubic splines could be 
used to build cubic polynomials for segments across the territory variable. In addition 
non-linear components (such as xy) can be incorporated in the underlying data to create 
additional layers of  sensitivity. Ultimately the modeler should rely on the principle of  
parsimony in making this decision. 

The next issue is the practical implementation. Most insurers' rating algorithm treat the 
territory rating variable as a categorical concept; thus implementing continuous curves 
can create quite a systems cost. To avoid this issue, the analyst would have to aggregate 
the resulting indications at the geographic unit level to the boundary level. The goal of  
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GLM is to produce indications that reflect the distributional biases inherent in the 
underlying rating dimensions. The problem with aggregating the GLM indications can 
recreate the distributional biases that were tr~Sng to be avoided. As with any modeling 
task, the analyst will have to balance the statistical solution with the practical 
implementation. 

Another issue has to deal with the incorporation of the catastrophe experience. Generally 
GLM are modeled using non-catastrophe data. It is vital that a catastrophe load be 
reflected in the results. The problem arises because catastrophe loads are generally not 
multi dimensional. Catastrophe results tend to be modeled across the location dimension; 
therefore, the analyst must then allocate an aggregate catastrophe load across the other 
rating dimensions. Different allocation procedures (such as exposure distributions) imply 
different homogeneity assumptions. 

Finally as with any analysis, it is crucial that the systematic results produced by the 
statistical model make sense. All actuarial analysis consists of balancing the systematic 
statistical solution with judgment. In addition to the parameter estimates, models should 
also produce several statistics that attempt to quantify and describe the validity and 
variability of the results. It is vital that the analyst leverage this type of information to 
justify and explain the resulting relativity indications. 
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CONCLUSION 

The purpose of this paper is to present a technique that allows the incorporation of the 
territory rating varmble into the GLM statistical solution. The approach leverages the 
well known principle of locality whereby the location variable is regarded as a 
continuous predictor, since the territory dimension can be described via a coordinate 
system. Specifically the principle of locality allows the modeler the ability to develop 
closed form polynomial spatial curves that reflect the insurer's geographic risk. 

This idea allows one to include directly the location dimension in the analysis. 
Traditional and current approaches rely on problematic residual assumptions as well as 
greater subjectivity in the systematic solution. Thus this proposed method would resolve 
many of these issues surrounding the residual approaches and the loss ratio techniques. 
The multidimensional GLM allows for a more systematic isolation and quantification of 
the geographic risk. 

As GLM and other multidimensional techniques are becoming more and more common, 
it is very important that the modeler be able to reflect all of the dimensions that are 
associated with the insurer's risk into the statistical solution. Historically v, ith GLM, the 
territory rating variable could not be directly included in the statistical solution. With the 
approach presented in this paper, the territory rating variable can now be directl) 
included with the other rating variables in the model. The relativities that are derived 
from a muhidimensional model that reflects all of the rating characteristics will produce 
results that better reflect the distributional dependencies inherent in the rating 
dimensions. The resulting rating algorithm will better reflect the insured risk thus 
reducing the insurer's adverse selection 

259 



References 

Christopherson. Steven. Werland. Debra L. "Using a Geographic Information System to Identify 
Territory Boundanes". Casualty Actuarial Society Forum, Winter 1996. pp. 191-211. 

Brubaker. Randall E. =Geographic Rating of Individual Risk Transfer Costs without Territorial 
Boundaries". Casualty Actuarial Society Forum, Winter 1996. pp. 97-127 

Werner, Geoffrey. "The Umted States Postal Service's New Role Territonal Ratemakmg". 
Casualty Actuarial Society Forum. Winter 1999. pp. 287-308. 

260 



Testing the Significance of Class Refinement 

Leigh J. HaUiwell, FCAS, MAAA 

261 



Testing the Significance of Class Refinement 

Leigh J. Halliwell, FCAS, MAAA 

Abstract 

Generalized linear modeling (GLM) is becoming e regular too/ for insurance 
ratemaking. Actuaries and underwriters have begun to realize that classes may 
not simply interact, whether additively or multiplicatively. Some class 
combinations may synergize, or more than simply interact; others may 
counteract, or less than simply interact. But lest actuaries be tempted by 
abundant computer power and affordable GLM software to over-refine rating 
classes, they must know how to test whether class refinement is statistically 
significant. This paper provides the theory for this testing, and performs an 
illustrative test on a small detaset of automobile physical-damage claims. 

Mr. Halliwell is a consulting actuary in Chattanooga, TN, with EPIC Consulting, 
LLC. His phone and e-mail are 423-296-2739 and Ihalliwell@ask-epic.com. 

Keywords: generalized Linear modeling, classification, hypothesis testing, significance 
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Tes t ing  the  S ign i f i cance  o f  C lass  R e f i n e m e n t  

Leigh J. Halliwell, FCAS, MAAA 

One benefit of generalized linear modeling (GLM) is that with it one can test 

whether the explanatory power of a model with more classes is significantly 

greater than that of a model with fewer classes. In other words, one can 

scientifically determine whether a refinement of a classification scheme is 

worthwhile. This article presents basic statistical theory, and illustrates ciass- 

refinement testing with a simple exercise. 

The exercise is to estimate frequencies of automobile physical-damage claims by 

state, sex, and age, a reasonable prerequisite to rating an auto owner's physical- 

damage insurance coverage. Exhibit 1 shows the summarized data for five 

states, two sexes, and four age groups. Since every combination is represented, 

there are 5x2x4 = 40 observations. As per the bottom of Exhibit 2, young 

insureds are less than twenty-one years old; those in their prime are from twenty- 

one to forty; middle age ranges from forty-one to sixty-five, and old age is over 

sixty-five. The age groupings and the data itself are purely illustrative. 

A standard actuarial treatment might summarize the exposures and claim counts 

as in Exhibit 2. It is usual to select certain classes as base, here the base being 

females in their prime (i.e., from twenty-one to forty years of age). In this dataset 

the frequency of males is 1.073 times that of females. Frequency decreases by 
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age until old age, the relativities being 1.899, 1.000 (base), 0.825, and 1.142. 

One can combine these =one-way" relativities to derive that the PD-frequency of 

old-aged males, for example, is 1.072 x 1.142 = 1.225 times the base frequency. 

However, one can just as reasonably calculate one table of "two-way" relaUvities, 

and conclude that the old-aged-male frequency is 1.288 times greater than base. 

If premium were proportional to PD-fi'equency, the "two one-way or one two-way" 

decision would make a 4.8 percent difference in the premiums of old-aged males. 

The two one-way factors require six relativities, or more accurately, four after 

allowing for one base per factor. The one two-way factor requires eight 

relativities, or seven without the base. Combining many one-way factors is 

simpler and easier than using one many-way factor; but it is also less accurate. 

Only a statisticel model can test whether the loss of accuracy is significant. 

Moreover, in Exhibit 2 sex and age are not controlled for state; but a statistical 

model can filter out the effect of state. 

The standard linear model is y = X ~ + e ,  where y is the ( tx l )  vector of 

observations, X is the (txk) "design" matrix, each of whose columns is celled a 

factor or explanatory variable, ~ is the (kx l )  vector of parameters to be 

estimated, and e is the ( tx l )  random vector of error terms. The errors are 

assumed to be of mean zero, of identical variance (i.e., "homoskedastic"), and of 

zero covariance. In matrix terminology, the error vector has mean 0 ( tx l )  and 

variance ~1,, where If is the (txt) identity matrix. The columns of X must be 
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linearly independent, i.e., X must be of full column rank. Since the k columns of 

X explain, or account for, the t observations (with a residue.of randomness), it is 

desirable for t to be much larger than k. With the model so described, the best 

linear unbiased estimator (BLUE) of 13 is 13=(X 'X)"X 'y .  The variance of this 

estimator, which will be important for hypothesis testing, is Var~]=a=(X'X) ''. 

Usually o ~ must be estimated, the formula for the unbiased estimator being: 

o' = (y-  xp)'(y- xp) 
t - k  

Exhibit 3 presents and solves the one-way model. The design matrix consists of 

zeroes and ones. Therefore, the explanatory variables are categorical. For 

example, the first column of X tells whether the observation pertains to California 

(yes = 1. no = 0). The last column tells whether the observation pertains to old- 

aged insureds. There are no columns for the base dasses of female and prime; 

hence, nine variables account for as much as possible of forty observations, 

leaving thirty-one degrees of freedom in the estimation of 02 . One reads down 

the exhibit through the intermediate calculations of X'y and X'X to (X'X) -1 and I]. 

Below that is the estimate of the variance of 13. To the right of the design matrix 

are predicted values and residuals, and below these are sums of squares and 

cross products. From these we conclude that the model explains 99.6 percent of 

the actual values, and that the estimate for o 2 is 0.049. 
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The logarithm of frequency is here modeled as a linear combination of 

parameters with an error term, i.e,, In~= XI3 + e.  Thus, ~ = exp(Xp + a). The 

exponential function is a monotonic link between frequency and a standard linear 

model, and it is this link that makes for a generalized linear model (GLM). Sex 

and age-group relativities, displayed in the "One-Way" table at the bottom of 

Exhibd 5 are exponentiated ~ values, e.g,, the old-age relativity is exp(O,261) = 

1.298. This relativity, for which state and age have been controlled, is much 

larger than the na'[ve relativity of 1.142. 

Similarly, Exhibit 4 works out the two-way model, with its five state parameters 

and seven combinations of sex and age group (S x AG). Having three more 

explanatory variables, it explains more than the one-way model (99.7 versus 99.6 

percent). However, due to its fewer degrees of freedom its estimated G 2 exceeds 

that of the one-way model (0.051 versus 0.049). Exhibit 5 shows that each 

model outpredicts the other exactly half the time, and neither method prevails on 

average or squared deviations. At this point most would claim, quite rightly, that 

the accuracy gain of the two-way model is trifling, and would prefer multiplying 

the two one-way factors, However, this is an imprecise, unscientific judgment, 

and it makes a sizeable difference to the relativities of females in their middle age 

and males in their prime (13.8 and 12.7 percent, according to Exhibit 5). 

The key to the hypothesis is the recognition that the one-way model is a subset 

of the two-way. Let index i range over female and male, and index ] over young, 
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prime, middle, and old. And let 13i be the one-way factor for sex, 13 I the one-way 

factor for age group, and ~3,~ the two-way factor for the combination of sex and 

age group. The two-way model reduces to the one-way if and only if for all 

i E {1,2} and for all j ~ {1,2,3,4}, Pu = 13, + PI" Now, because they are bases, 13 .... 

13j.. z, and 13~.,z are zero, and are not paired with explanatory variables. The 

proper form of the hypothesis must eliminate all 13~ and 13j variables, and contain 

constraints on 13~/variables only. The bases al low us to achieve the form. For 

i = 1  and for all j, 13 v=13,= 1+13j=0+131=13 s. And for j = 2  and for all i, 

13, z =131 +13,. z =13, +0=13,. Therefore, for all i and j, 13q =P,= +131j. However, 

some of these equations are non-binding tautologies. In particular, for i =1, 

13,j = 13,z + 13,1 = 0 + 1311 -= I~,l. This leaves constraints of the form 13al = 13zz + 1311. 

But even here. when j =2  we have the tautology 1322 =13zz +13,z =13z~ +0z13=.  

Therefore, the two-way model reduces to the one-way when subjected to the 

three constraints (corresponding to its three fewer degrees of freedom): 

I~=1 = P~ + 1311 

P~ = P,2 * P,3 
13=, = p =  + P,, 

Expressed in matrix notation, the hypothesis H0 that the two-way model is 

equivalent to a one-way is." 

2 6 7  



1 0 0 -1 1 0 

0 1 0 0 1 -1 

0 0 1 0 1 0 

-P,,1 
13~3 

0 ~2, = 

-1.1 P,~ 
iP2~ 
LP~,J 

R(3 ,T i~ (7 , t  ) = r(3,~ I 

Matrix R appears in Exhibit 7, but augmented with five columns of zeros to 

accommodate the state parameters. 

Before developing the statistic for testing this hypothesis, it is instructive to see 

how the two-way model of Exhibit 4 under the constraint RI3 = r = 0 reduces to 

the one-way model of Exhibit 3. In an earlier article ~ the author showed that the 

restricted BLUE [3 ° of the model y = XI3 + e subject to the constraint RI3 = r falls 

out of the equation: 

OJL>:J L rJ 

One can discem this form in the three additional rows and columns of the middle 

section of Exhibit 6. The three lambdas are Lagrange multipliers, byproducts of 

the constrained least-squares problem that may be ignored. One may check that 

the seven sex-age parameters are sums of the proper sex and age-group 

' Leigh J. Halliwell, "'Statlsltcal and Financial Aspects of Self-Insurance Funding," Altemanve 
Markels/Self Insurm~f (CAS 1996 Discussion Paper Program), 1-46. Appendix A and its cilalions not 
only solve the resUicled least-squan~ problem, but provide proofs for all the statements herein to follow. 
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parameters of Exhibit 3. But the equivalence of the two models is apparent from 

their identical predictions (the XIB columns) and O 2 estimates. 

The statistical test makes use of the fact the least-squares estimator 13 has mean 

13 and vadanca O2(X'X) -1. Therefore, RIB has mean RI3 and variance 

o2R(X'X)-IR ', Also important is the assumption that the distribution of p is 

multivariate normal. This is true, if e is multivariate normal; but even under 

certain robust conditions the distribution of IB will be asymptotically multivariate 

normal. Then Rp will be multivariate normal with mean R~ and variance 

O2R(X'X)-IR ', and RIB - RI3multivariate normal with mean zero and variance 

o2R(X'X)-IR ', Wherefore it follows that the expression 

(RI~ - RIB)' (o 'R(X'X )-' R')-'(R~ - R13) 

= (RI3- RI3~(R(X'X)-'R')-I(R~- RI 3) 
O 2 

is chi-square distributed with j degrees of freedom, where j is the number of rows 

of R. However. normally we do not know o 2 and have to estimate it. But the sum 

of the squared residuals divided by o 2 is chi-square distributed with t - k degrees 

of freedom, and this sum does not covary with 13. Therefore, under the 

multivariate normal assumption, the following two expressions are independent 

chi-square random variables: 
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(Rp - RI],) r (R(X' X)-'R')-' (Rp - RI3) 
0.2 

(y - Xp) ' (y - xp )  _ ~ '  
0.2 - U ( t - k )  

Finally, this implies that the following expression is approximately and 

asymptotically F-distributed with j and t - k degrees of freedom: 

-I - i  ,r (Rp-Rp)'(R(X'X) R ' ) ( R p - R [ B ) " i  
0.2 / ~ 

(y - xp~(y -  x~) / ' t -  k 
0.2 

(Rp - Rp)' (R(X' X)-' R')-' (Rp - RI3),"j 
O. 2 

Hence, under hypothesis Ho: RI] = r, the statistic 

(Rp - RI])' (R(X' X)-'R')"(Rp- Rp),/j 
0 .3 

is F-distributed with j and t - k degrees of freedom: 

Accordingly, Appendix 7 tests whether the [3 of the two-way model differs 

significantly from the 13 of the one-way model, which is the two-way [3 under 

hypothesis H0. R is a 3x12 matrix of zeroes and ones, and r is the 3x l  zero 

vector. X is the design matrix of Appendix 4, from which [3, (X'X) -1 and (~= also 

are taken. The F statistic as described above has the value 0.546, which is at 

the 65.5 percentile of the F3. 28 distribution. In other words, if H0 be true, in 

approximately one-third of repeated samples will the F statistic be greater than 

0.546. Few statisticians would deem 65.5 percent as significant enough to reject 

the hypothesis; most would here accept the simpler, one-way model. 
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State 
CA 
CA 
CA 
CA 
CA 
CA 
CA 
CA 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
MI 
MI 
MI 
MI 
MI 
MI 
MI 
MI 
NY 
NY 
NY 
NY 
NY 
NY 
NY 
NY 
TX 
TX 
TX 
TX 
TX 
TX 
TX 
TX 

S6x 
F 
F 
F 
F 
M 
M 
M 
M 
F 
F 
F 
F 
M 
M 
M 
M 
F 
F 
F 
F 
M 
M 
M 
M 
F 
F 
F 
F 
M 
M 
M 
M 
F 
F 
F 
F 
M 
M 
M 
M 

Exhibit 1 

Automobile Physical-Damage Data 

Age 
Group 
Young 
Pnme 
Middle 
Old 
Young 
Prime 
Middle 
Old 
Young 
Prime 
Middle 
Old 
Young 
Prime 
Middle 
Old 
Young 
Prime 
Middle 
Old 
Young 
Pdme 
Middle 
Old 
Young 
Prime 
Middle 
Old 
Young 
Prima 
Middle 
Old 
Young 
Prime 
Middle 
Old 
Young 
Prima 
Middle 
Old 

Car Years PD Claims 
821.9 94 

11,181.7 644 
4,792.1 21~ 

931.6 39! 
677.6 66 

12,418.3 696 
5,134.0 222 

928.5 58' 
515.4 45 

5,578.1 229 
4,694.1 162' 
1,209.2 54 

542.0 60 
5,796.9 249 
4,476.7 171 
1,166.0 66 

373.0 6 
5,168.0 24 
1,545 0 17 

161.2 3 
387.8 5 

5,966.4 54 
1,802.5 13 

183.8 3 
447.3 34 

5,092.4 220 
3,289.3 121 

611.4 36 
565.9 59 

5,978.7 340 
3,528.5 133 

625.9 38 
1.009.3 84 
8,931.7 513 
4,429.9 206 

705.2 46 
1 ,O03.4 112 
9.067.5 568 
4,478.0 225 

641.7 50 

Freq 
0.114 
0.058 
0.044 
0.042 
0.097 
0.056 
0.043 
0.062 
0.087 
0.041 
0.O35 
0.045 
0.111 
0.043 
0.038 
0.057 
0.016 
0.005 
0.011 
0.019 
0.014 
0.009 
0.O07 
0.016 
0 076 
0.043 
0.037 
0.059 
0.104 
0.057 
0.038 
0.048 
0.083 
0.057 
0.047 
0.065 
0.112 
0.063 
0.050 
0.078 

l.O~l Freq 
-2.168 
-2.854 
-3.118 
-3.173 
-2.329 
-2.882 
-3.141 
-2.773 
-2.438 
-3.193 
-3.366 
-3.109 
-2.201 
-3.148 
-3.265 
-2.872 
-4.13(~ 
-5.372 
-4.51(] 
-3.984 
4.298 
-4.705 
-4.932 
..4 11~ 
-2.5T/ 
-3.142 
-3.303 
-2.832 
-2.261 
-2.867 
-3.27~ 
-3.038 
-2.48E 
-2.857 
-3.068 
-2.7:30 I 
-2.193 
-2.770 
-2 991 
-2.552 
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State Sex 
CA 
FL 
MI 
NY 
TX 

Total 

F 
F 
F 
F 
M 
M 
M 
M 

Age 
Group 

Young 
P/lme 
Middle 
Old 

Young 
Prtme 
Middle 
OJd 
Young 
Prime 
Middle 
Old 

Exhibit 2 

Relativity Companson 

Car Years PD Claims Freq 
36,885.? 2.031 0.055 I 
23,978.4 1,036 0.043 I 
15,567.8 125 0.008 I 
20.139.4 973 0.048J 
30,266.5 1 r804 0.060 

[ 126.837.8 5r969 o.o471 

Car Years PD Qaims Fre 
61,48?.7 2"789 0.045 
65,350.1 3,180 O.04g 

6,323.6 565 0.088 
75,179.7 3,537 0.041 
38,170.0 1,482 0.039 
7,164.6 385 0.054 

3,166.9 263 0.083 
35,951.9 1,630 0.045 
18,750.3 718 0.038 
3.610 6 178 0.049 
3,156.?. 302 0096 

39.227 8 1.907 0.049 
19.419.7 764 0.039 
31545.9 207 0.058 

AQe Groups 
Young under 21J 
Prime 21 to 40 I 
Midge 41 to65 
Old over 65 

SXAG 
Re~h~ RelaUvtt~ Dtff 

1.000 
1.073 

1.899 
1000 
0 825 
1.142 

1.832 1.899 3.7% 
1.000 1.000 0.0% 
0.845 0.825 -2.3% 
1.085 1.142 5.3% 
2.110 2.037 -3.4% 
1.07'2 1.073 0 1% 
0.868 0.885 2.0% 
1288 1.225 -4 8% 
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Exhibit 5 
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-2 329 -2 292 -2.286 
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l i  One-Way Relativlds ] Two-Way RelalJvles 
% 0 0 0  0.0% I F.Young 2 052 ,106 2% 
1 094 -9 4% I F.Prtme 1.000 0 0% I 

oun9 1 955 +956%J F.Mlddle 1.011 ~.1.1% 
rime 1.000 0.0% I F.OId 1.374 +37 4% 
lddle 0 888 -11 2%] M Young 2.287 +128 7% 
ld 1 298 +298% I MPdme 1.233 +233% I 
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1 

1 
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Exhibit 7 
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NdQ HylxYJl~b H~: R,6 m 0 

CA rL u ~ TX r Y ~  ~ told M Y o m g  ~ ~ MO~ 
R 

I 0 0 0 0 0 1 0 0 . I  1 0 0 
o 0 0 0 0 0 0 1 0 0 I -I 

0 0 0 0 0 0 0 I 0 I 0 - 

Unm~TIc~ed Two-W~ 

[ R(X'X, 'R' 0.800 
0.800 0 400 0.400 
0.400 OJ~O 0.400 
0.400 OAO0 

1 875 -0.825 -0 625 
.-0625 1.875 ..0~.5 
-0 625 -0.825 

numera l '  ~f 3 
• ~-.--, ~ ,o'naZor df 28 

OO28 
denornbl~¢ (o J) 0 0~1 
F S ~ s t ¢  054~ 
PmblF - 05461H=J 655% 
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Enhancing Generalised Linear Models with Data Mining 

Irma Kolyshkina, PricewaterhouseCoopers(Actuarial) 
Sylvia Wong, PricewaterhouseCoopers(Actuarial) 
Steven Lim, PricewaterhouseCoopers(Actuarial) 

I. Introduction 

Generalised linear models (GLM) appear to be a tool that has become very popular 
and have shown to be effective in the actuarial work over the past decade, see for 
example Haberman & Renshaw (1998). A detailed description of the GLM 
methodolo~' is outside of the scope of this paper, and can be found in the other 
sources such as McCullach and Nelder(1989). 

Data mining methodologies are more recent and their popularity in the actuarial 
community is increasing. They have been used in insurance for risk 
prediction/assessment, premium setting, fraud detection, health costs prediction, 
treatment management optimization, investments management optimization, customer 
retention research and acquisition strategies. Recently a number of publications have 
examined the use of data mining methods in an insurance and actuarial environment 
(eg, Francis (2001), Francis (2003). The main reasons for the increasing attractiveness 
of the data mining approach is that it is very fast computationally and also overcomes 
some v,'ell-known shortcomings of traditional methods. 

However the advance of the new methodologies does not mean that the proven, 
effective techniques such as GLM should be wholly replaced by them. This paper 
discusses how the advantages and strengths of GkM can be effectively combined with 
the computational power of data mining methods presenting an example of the 
combining multivariate adaptive regression splines (MARS®)  and GLM approaches 
by running MARS® model and then building a GLM x~.ith MARS® output 
functions used as predictors. The results of this combined model are compared to the 
results achievable by hand-fitted GLM. Comparisons are made in terms of time taken, 
predictive power, selection predictors and their interactions, interpretability of the 
model, precision and model fit. 

2. Enhancing the Linear Modelling Approach by Combining it with Data 
Mining 

GLM being a linear technique shares the usual shortcomings of the linear modelling 
approach. 

Linear models 

operate under the assumption that data is distributed according to a 
distribution in the exponential family 

are affected by multicollinearity, outliers and missing values in the data 

280 



are often troublesome to use for selecting important predictors and their 
interactions 

are troublesome to use with categorical predictors that have large numbers 
of categories (for example, postcode, occupation code etc) as tlus can lead 
to unreliable results due to sparsity-related issues 

take longer to build because of the need to address the issues above by 
transforming both numeric and categorical predictors and choosing 
predictors and their interactions by hand which can prove to be a lengthy 
task. 

Data mining techniques in contrast 

are typically fast, 
easily select predictors and their interactions, 
are minimally affected with missing values, outliers or collineanty and 
effectively process high-level categorical predictors. 

This suggests that combining a linear approach with data mining tools can expedite 
the modelling process, allowing the modeller to attain equal or better model accuracy 
in less time with the same level of interpretability. Such models, usually combining 
decision trees, multivariate adaptive regression splines and GLM have been used by 
our team in a number bf  projects (see Kolyshkina and Brookes, 2002). 

3. Multivariate Adaptive Regression Splines (MARS®) 

Multivariate adaptive regression splines (MARS®) is becoming increasingly popular 
in the actuarial community; for example, Francis (2003) describes application of 
MARS® to insurance fraud analysis. 

We provide below a brief introduction to the MARS® methodology, a more detailed 
description can be found in other sources (see for example, Friedman, 1991, Hastie et 
al. (2001 )). 

MARS® is an adaptive procedure for regression, and can be viewed as a 
generalisation ofstepwise linear regression or a generalization of the recurswe 
partitioning method to improve the latter's performance in the regression setting 
(Friedman, 1991; Hastie et al, 2001). 

The MARS® procedure I)uilds flexibleregression models by litting separate splines 
(or basis functions) to distinct intervals of the predictor variables. Both the variables 
to use and the end points of the intervals for each variable-referred to as "knots" -are 
found via an exhaustive search procedure, using very fast update algorithms and 
efficient program coding. Variables, knots and interactions are optimized 
simultaneously by evaluating a "loss of fit" (LOF) criterion. MARS,:~ chooses the 
LOF that most improves the model at each step. In addition to searching variables one 
by one, MARS® also searches for interactions between variables, allowing any 
degree of interaction to be considered. 
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The "optimal" lXL,~RS,~ model is selected in a two-phase process. In the first phase, a 
model is grown by adding basis functions (nev~ main effects, knots, or interactions) 
until an overly large model is found. [n the second phase, basis functions are deleted 
in order of  least contribution to the model until an optimal balance ofbias  and 
variance is found. By allowing for any arbitrary shape for the response function as 
well as for interactions, and by using the two-phase model selection method, MARSh, 
is capable of  reliably tracking very complex data structures that often hide in high- 
dimensional data (Salford Systems. 2002). MARS® is fast, requires less data 
preparation than some other techniques, can easily handle missing values or noisy 
data, and the output, for both the model and the basis functnons, is easy to interpret. 
MARS® is implemented in a sofiv~are package produced by Salford systems. The 
package is easily available, inexpensive and can work with data in most formats 
(SAS, SPSS, dbfetc).  The output MARS® produces can be combined with any GLM 
s o , r a r e  with minimal effort as nt is easy to code in any program language such as 
SAS which is the main data analysis sot~vare package used by many actuaries. 

4. How the Use of NLARS® Can Expedite GLM Building 

Most of the  shortcomings of  linear models outlined above can be overcome by using 
MARS® as a way of  pre-processing predictors before putting them in a GLM. This 
will also significantly reduce the time needed for model building. This can be done by 
feeding MARS® output (in the form of  basis functions created by MARS~)  as inputs 
into a GLM. 

MARS® is minimally affected by multicollinearilV, outliers and missing values in 
the data, easily handles categorical predictors with large numbers of  categories and 
requires less data preparation than linear methods, it quickly selects important 
predictors and their nnteractions and transforms numeric and categorical predictors in 
such a way that the resulting variables are easy to interpret. The modeller though 
needs to make sure that the transformed predictors make business sense, and that the 
MARS,~ model is stable. 

We have seen that although MARS® output functions are not created specifically to 
be used as the input for a linear model, in practice about 90% of  them turn out to be 
significant predictors in a GLM. Another feature of  the MARSh'  output functions 
that makes them useful is that they are linearly independent as stated m Friedman 
( 1991 ) which means that the multicollinearity nssues do not arise in the GLM that uses 
them as explanatory variables. 

In the case stud.',' beloxs this technique was applied to summarised data, but it would 
be even more efficient on the individual level data with many predictors, both 
numeric and categorical. 
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5. Case Study. Queensland Industry CTP data provided by Motor Accident 
Insurance Commission (MAIC) 

5.1 Background 

The methodology described above was applied in order to model the ultimate incurred 
number of claims based on reported claim data. The data used was industry-wide 
auto liabihty data from Queensland (commonly called Compulsory Third Party or 
"CTP" in Australia). 

5.2 Data Description 

Individual claim data was aggregated into the number of claims reported for each 
accident month and development month for input to the GLM. The variables used for 
the analysis were accident month, accident quarter, number ofcasualties, 
development month, development quarter, number of vehicles in the calendar year, 
and number of vehicles exposed in the month. 

5.3 Modelling Methodologies Description 

5.3.1 Hand-fitted GLM 

,an initial GLM was created without using MARS®. This was a Poisson model with 
the log link, using the number of vehicles exposed in the month as the offset. The 
transformations and interactions of the input variables were created manually for the 
purposes of both best model fit and interpretability. The model fit was assessed by 
usual methods such as ratio of deviance to the degrees of freedom, predictor 
significance, link test and restdual analysis. All the assessments showed adequacy of 
the model fit. 

5.3.2 M A R S h -  enhanced GLM 

A second model was created by preprocessing the variables in MARS® as described 
above and then including them in a GLM as the inputs. First we built a MARS® 
model with the ratio of incurred number of claims to number of vehicles exposed in 
the month as the dependent variable. The model output included explanatory variables 
pre-processed by MARS® ? We then used these variables as the inputs in the Poisson 
model with log link and the number of vehicles exposed in the month as the offset. 
The GLM output showed that most of these variables were significant. We then used 
backward elimination to refine the model by excluding the inputs that were not 
significant. The resulting model fit was assessed in the same way as for the hand- 
fitted model above. 
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5.4.1 Timing 

The hand-fitted model of this type would usually take about 5-7 days to build and 
refine. 

The MARS® - enhanced model involved running the model in MARS® with 
different settings such as finding the optimal level of predictor interaction, then 
copying and pasting MARS® output into SAS and running and refining the GLM. 
This took about half a day. The MARS® analysis took less than an hour. 

5.4.2 Goodness o f  fit. Bar charts. Gains chart 

The fit of both GLMs was assessed by usual methods such as ratio of deviance to the 
degrees of freedom, predictor significance, link test and residual analysis. The 
MARS®- enhanced GLM has shown a similar if not slightly better fit to the hand- 
fitted GLM. 

Figure 1. Average actual and predicted values for overall number of claims, 
hand-fitted GLM 

Claim frequency. Hand-fitted GLM 
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5.4 Comparison of Models 

A further diagnostic of model performance is analysis of actual versus expected 
values of the number of claims. 

Such analysis can be pictorially represented by a bar chart of averaged actual and 
predicted values for the number of claims. To create such a chart, the records were 
ranked from highest to lowest in terms of predicted number of claims for each model, 
and then segmented into 20 equally sized groups. The average predicted and actual 
values of the number of claims for each group were then calculated and graphed. The 
chart for the hand-fitted GLM is shown in Figure 1 and the chart for MARS®- 
enhanced GLM is shown in Figure 2. 
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Figure 2 Average actual and predicted values for overall number of claims, 
MARS-enhanced GLM 

I 
Claim frequency. MARS-enhanced GLM I 

[lactualnumber of t 
40,000 . . . . . . . .  ~,  . . . . . . . . . .  ~ claims ] 

30,000 ~ mnumberofclaims I 

20,000 : .  , ~. . ~ ~ ~ ', 

10,000 

% of  data 

Comparison of the charts suggests that the models fit equally well, with the MARS®- 
enhanced GLM having a marginally better fit. The hand-fitted GLM slightly over- 
predicts for the fifth group and under-predicts for the third group while the MARS® - 
enhanced GLM predicts well for the higher expected numbers of claims but slightly 
overpredicts for the groups with lower numbers of claims. However, the scale of these 
errors is of little business importance. 

Figure 3 Gains chart for number of  incurred claims for both models. 

d 
i Gains Chart 

Another graphical method used for the comparison of the models was gains charts. 
Gains charts are described in detail in literature, see for example Berry & Linoff 
(2000).The gains chart presented in Figure 3 shows that both models are able to 
predict the segments with high number of claims with a good degree of accuracy. As 
a rough guide, taking the 15% of records predicted as having the highest number of 
incurred claims by the model, we end up with 80% of the total number of incurred 
claims. Taking the 30% of records predicted as having the highest number of incurred 
claims by the model, we end up with 93% of the total number of incurred claims. 
The graph above shows that the models perform equally well. Detailed analysis of 
actual statistical results suggests that the MARS® - enhanced GLM performs 
marginally better than the hand-fitted model. 
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It can be seen from the charts abo~e that the MARS@ - enhanced GLM fits only 
slightly better than the hand-fitted model. This effect would be more apparent in raw 
data modelling than in modelling summarised data as the trends observed are likely to 
be smoother and easier to identify as random variation cancels out. 

5.4.3 MARS'~ -created vs hand-transformed variables and predictor interactions: 
similarities and differences 

Comparison of  the MARS,:~-created predictor variables with those which were 
manually created showed a great degree of  similarity. For example, if we compare the 
predictors based on the variable "'development month". MARS@ placed "knots 
mostly at the same points that were found ~mportant by the hand-fitted model. The 
differences included the fact that the hand-fitted model included the variable 
"'minimtml (development month, 10)" ~hich is equal to 10 if development month is 
greater than 10 and is equal to development month otherwise, while MARS@ 
selected 9 rather than 10 as the "knot point". MARSh'  also selected interactions of  
predictors that were not picked up by the hand-fitted model such as the interaction of  
development month and experience month. 

5.4.4 lnterpretabilio, o f  the models 

Interpretability of  the models was sm~ilar. The hand-fitted model was easier to 
interpret because it included less predictors and less predictor interactions than the 
MARSh:,- enhanced model. 

5.5 Findings and results 

The fit and precision of  the models was similar with the MARS®-enhanced GLM 
showing a slightly better fit than the hand-fitted GLM. The MARS~,-enhanced GLM 
included predictor interactions not picked up by the hand-fitted model. This effect 
would be more pronounced in raw data modelling than in modelling summarised data, 
as the trends obse~'ed are likely to be smoother and easier to identify as random 
variation cancels out. The hand-fitted model was easier to interpret because it 
included less predictors and less predictor interactions than the other model. Building 
of  the MARS@-enhanced GLM was considerably faster and more efficient. 
These findings suggest that MARS@ is a useful tool to enhance and expedite GLM 
modelling. 

5.6 Future  directions 

For large data sets, our team has found that combining decision trees (CART@) with 
MARSh:, and GLM proves quite effective as described in Kolyshkina & Brookes, 
2002. 

Also as an additional check of  fit o f a  GLM model, a parallel model built in MARS® 
can be used. The model will be built as a part o f  the stage described previously and 
will not require additional time. The model equation can be copied and pasted from 
MARS@ to SAS or another package directly. Comparison of  the predicted values of  
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this model to the GLM model graphically and numerically can suggest some ins!ghts 
and inform the choice of the best of the models. 

5.7 Conclusion 

The results described above demonstrate that the use of a data mining technique, 
MARS, to enhance GLM building makes the model-building process considerably 
faster and more efficient. This approach allows to achieve higher computational 
speed by expediting the process of the selection of predictors and their interactions 
and variable transformation. The precision of this model is higher than for the hand- 
fitted model as shown by traditional GLM assessment methods as ,,,,ell as by using 
additional goodness-of-fit analyses such as gains chart. The effects described would 
be even more pronounced in raw data modelling than in for modelling summarised 
data as described i n  the case study, especially for large data sets with many potential 
predictors. The interpretabilit2,' of the MARS®-enhanced GLM is similar level to 
that of the hand-fitted model. 
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Estimating Claim Sett lement Values Using GLM 

by 

Roosevelt C. Mosley, Jr., FCAS, MAAA 

Abstract: The goal o f  this paper is to demonstrate how generalized linear modeling 
(GLM) can be applied in non-tradttional ways in property and casualty insurance. 
Specifically, we wdl use a proper~, and casualty closed claims database to aid in 
estimating ultimate claim settlement amounts, evaluating claim trends, and assisting in 
improving claims handling procedures. This specific example will be used to 
demonstrate the potential o f  the application o f  GLM to different areas o f  an insurance 
company. 

A GLM will be developed with data from the Insurance Research Council (IRC) closed 
claims study. The model will be populated with characteristics o f  closed automobile 
claims along with final settlement amounts. Using this data, the paper will examine how 
GLM can be used to identify: 

I) Trends in claims severities over time, 
2) Differences in severities that exist between current ratemaMng characteristics 

(e.g. state, territoD9, characteristics o f  the claims and the injured parties, and 
other factors (e.g. time from reporting to settlement, attorney involvement, use 
o f  arbitration), and 

3) Interactions between these factors. 

Diagnostics will also be discussed which can be used to test the validi~ and robusmess 
o f  the GLM models that are developed, and several apphcations o f  the results o f  this type 
o f  analysis will be presented. 

Over the last several years, Generalized Linear Modeling (GLM) has seen increased 
usage among actuaries primarily in traditional ratemaking applications. The benefits o f  
GLM are that it allows for a flexible model structure to be fit to insurance ratemaking 
data, and it also allows for a multivariate model to be generated that simultaneously 
incorporates a set o f  independent variables to determine their impact on a dependent 
variable. Thns is an improvement over traditional one-way types of  analysis (both loss 
ratio and pure premium) because it adjusts for the impact o f  distributional biases that are 
present in all insurance data sets. The result is a set o f  indications for whatever you are 
modeling (class plan relativit,es, tiering relati~Aties, etc.) that reflect the true impact o f  
each variable being analyzed. 

GLM has had immediate appeal in the traditional areas of  actuarial practice. Most 
significantly, insurers have used GLM to refine class plan relativities, establish tiering 
and underwriting plans, and incorporate commercially available insurance scores into 
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rating and unden,,xiting plans, just to name a few applications. These applications have 
been addressed quickly as insurers move to this type of  analysis for a number of  reasons: 
these areas fall within the actuary's normal area of  responsibility, the data for these types 
of  analyses is usually readily available, and this type of  analysis can provide the most 
immediate benefit for an insurer. 

However, understanding the general statistical nature of  GLM, one realizes that a GLM 
analysis can be applied to other areas within insurance companies, areas that have not 
necessarily been within the actuaries' traditional realm o f  responsibility. Specifically, we 
have used GLM's  for a number o f  non-traditional applications, including developing 
custom insurance scores, generating vehicle classification systems, evaluating claims and 
agency personnel and external sen, ice providers, and estimating claim settlement value 
amounts. These types of  analyses can provide benefit to many areas o f  the company, and 
can display the actuary's skills to a wider audience. 

We will demonstrate the concept o f  applying GLM to non-traditional areas in this paper 
using the 1994 Insurance Research Council (IRC) Closed Claim Study database. In this 
example, we use the characteristics o f  the closed claims as provided in the IRC database 
to estimate the ultimate settlement value of  a claim; however, we will describe this 
process in general terms such that it might be applied to a variety of  different areas. The 
goal o f  this paper is not to provide you with a complete analysis o f  the [RC database, but 
to use this database as an example of  how this general statistical procedure can be applied 
to other areas. 

The Basics of G L M  

GLM is a statistical process by which a model is developed in which a specific 
dependent, or response variable, is predicted by a number of  independent, or explanatory 
variables. For example, as applied to the insurance ratemaking process, the process of  
setting class premiums for groups of  risks can be thought of  graphically as shown in 
Figure I. 

The goal o f  the classification ratemaking process is to set premiums by class of  risk that 
reflect the risk o f  each group. This requires estimating the relative loss potential o f  each 
insured characteristic in the classification plan to determine how the factor contributes to 
the overall risk premium. An insured is then charged a premium based on his or her 
characteristics, and how these characteristics relate to the risk of  loss. The traditional 
approach to analyzing the variables in the class plan was to analyze each of  the variables 
separately, using a one-way loss ratio or pure premium approach. The inherent 
assumption in the one-way analysis is that, for each level o f  the factor being analyzed, 
the distribution of  all the other factors in the class plan is constant. This means, for 
example, if one were analyzing auto symbol, model ),ear, and age using a series o f  one- 
way analyses, one would be assuming that the same proportion o f  teenagers drive I 0-year 
old Ford Escorts and brand new Cadillac Escalades. While this is simply one example, 
there are a number of  other violations of  this assumption that can be thought of  in an auto 
or homeowners insurance class plan. 
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Figure I: Description of Classification Ratemaking Process 

Figure 2 gives an example of  how this type of  analysis can lead to erroneous results. The 
first table in Figure 2 gives the results o f  two separate one-way homeowner 's  insurance 
analyses, one for territory and one for protection class. In this particular example, when 
analyzing the two territories, one assumes that territory A has the same ratio of  protection 
class I risks as territory B. The result o f  the loss rauo analysis shows that the rates lbr 
territory A should be increased relative to the territory B rates. Similarly for protection 
class, the analysis shows that the change in protection class 2 rates should be higher 
relative to the change in protection class I rates. However, when these results are ~Aewed 
in a two-way table, the true picture becomes clear. The territory loss ratios are identical 
for both protection classes. The true problem is in the protection class relativities. If one 
had simply looked at the one-way analysis, the erroneous decision would have been to 
increase both the territory A rates and the protection class 2 rates, resulting in an over- 
correction. The reason the one-way loss ratios appear this way is because of  the 
difference in protection class distribution over the two territories. Again, while this is a 
simple example, one can easily think of  the number of  different potential scenarios where 
this can occur in a rating plan. 
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Figure 2: Example of one-way loss ratio analysis 

GLM corrects for these distributional biases, and also provides a flexible model structure 
such that it better fits insurance data. One can best think o f  GLM in terms of  one o f  its 
simplest forms, classical linear regression. The formula for a simple one-factor  linear 
regression is: 

y = a + bx + error 

This describes the fitting o f  a line through a series o f  points, attempting to model a 
response variable (y) using an explanatory variable (x). The b represents the relationship 
o f  the independent variable x to y. There is also an error term which accounts for the fact 
that the model will not predict the observations perfectly. Under linear regression, the 
error is assumed to be normally distributed with a mean of  zero and a constant variance. 
A graphical description o f  this simple regression model can be seen m Figure 3. In this 
example, the bodily injury severity is being modeled as a function o f  the time period. 

To extend this to GLM, the more general formula for multiple regression is: 

y = X[3 + error 

In this notation, the X[5 represents a matrix, where X represents a series o f  independent 
variables and [3 represents the relationship o f  these independent variables to the 
dependent variable. The error term is more general in that it is not restricted to the 
assumption o f  normally distributed error terms (as in simple and multiple linear 
regression). More general error structures, such as Gamma, Poisson, and Negative 
Binomial can be used which are more representative o f  insurance data. 

295  



7.600 

7.500 

7.400 

7.300 

7.200 

7.100 

7.000 

6,900 

8 

Bodily Injury Severity 

A • 

• • • • • 

2 4 6 8 10 12 

Per iod  

Figure 3: Simple regression example 

14 

Non-Traditional Applications 

Given the general structure of GLM described above, one can begin to expand the use of 
GLM beyond the traditional actuarial realm. The general structure of GLM can be 
described as shown below in Figure 4: 

Q 
/ 

/ 
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4 

Figure 4: General structure of a GLM model 
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Because GLM is a general statistical process, it is not limited to estimating class plan 
relativities. The general structure of  the model can be used to describe many different 
responses by a series of  explanatory variables. Depending on what problem GLM is 
applied to, the explanatory variables and the model error structure will change, but the 
process of  generating and applying the model will remain the same. 

CLAIM S E T T L E M E N T  VALUE ESTINIATION 

One potential area for the application of  GLM in an insurance company is in the 
estimation of  uhimate claim settlement values. The ultimate value of  a settled claim can 
be described as the response variable, and the characteristics o f  the claim represent the 
explanatory variables. When a claim is reported to an insurer, the insurer is presented 
with the facts o f  the claim. Based on the facts o f  the claim, an estimate is made of  what 
the final value ofthat  claim will be. This value may be determined based on a claim 
value estimation software package, guidelines established by the company, the claim 
persons' expert opinion, or a combination of  the three. As the case matures, as payments 
are made on the case, and as more information regarding the case becomes available, 
future refinements o f  that estimate can be made. It is these estimates that are made 
before the final disposition-of a claim that are reflected in an insurers financial results 
from year to year. 

What this GLM example will do is develop a model to estimate the final amount o f  the 
claim settlement, which can then be used as part o f  the overall information that the claims 
handler uses to determine the expected final value o f  a claim. The goal o f  this analysis is 
not to replace the claims person, no more than the goal o f  the analysis o f  traditional class 
plan relativities by using (3LM is to replace the actuary. The goal o f  this process would 
be to provide the claims person with additional information on which to base decisions. 

This type of  model could be used to help estimate the ultimate settlement value o f  claims 
based on the information known. It could also be used to assist claims departments in 
determining the effectiveness of  certain claims handling techniques. It can also provide 
information on areas of  focus such that claim handlers might more efficiently handle 
claims. 

Data 

To perform this type of  analysis, an insurer would need a database o f  final closed claim 
settlement amounts, as well as the characteristics o f  the claims that have been closed. 
The characteristics available will likely vary between insurers, but examples of  the 
information that could be used are: 

• Insured rating and unde~vriting characteristics 
• Typeofinjuries  involved 
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* Ageof in ju red  parties 
* Hospitalization involved 
• Location o f  accident 
• Types of  treatments 
• Treatment providers 
• Claim report inglag 
• Claim settlement lag 

The list o f  characteristics to be analyzed could continue, and the goal should be to include 
all the information that is available that might be useful to the analysis. This could be 
one potential difficulty for an insurer employing this type o f  analysis technique. For 
some insurers, this type o f  closed claim database might simply not exist, or the 
information might exist in paper form in the claim files. 

For this paper, we have analyzed the IRC 1994 Bodily Injury closed claim database. This 
database was compiled by the IRC as a sample of  claims closed during a specific period 
during 1992 from a number o f  insurance companies. The database consists o f  the 
ultimate senlement value o f  these claims, a breakdown of  these settlement amounts by 
type o f  payment (medical, wage loss, etc.), and a number o f  characteristics o f  the claim. 
The variables analyzed from this database reflect many of  the ~tems listed above. A 
complete list o f  the factors could be obtained from the IRC. 

While not a specific issue with the IRC database, an insurer or clatms organization that 
undertakes this type o f  analysis will need to be aware o f  claims that are closed without 
payment. While these claims do not generate any loss dollars, there are at least tv,,o other 
issues that these claims raise. First, they will generate loss adjustment expense dollars 
because a claim file will be opened on these claims and a claims person will be assigned 
to handle the claim. Also, because these claims can generate a series o f  points with no 
settlement value or a very small settlement value, this can create some difficulty with the 
determination o f  a model error structure. One approach to handhng this issue would be 
to use an analysis similar to a claim frequency analysis, but instead analyze the likelihood 
of  a claim closing without payment. This analysis could then be combined with a 
settlement value analysis to determine the ultimate expected settlement value. 

Additionally, a priori there are some factors that we could analyze that would be 
significant in our analysis of  expected claim value but were not present exphcitly in the 
dataset. For example, in the IRC dataset, we knew the date o f  the accident and the date 
o f  the insurance company ' s  initial contact with the claimant, which allowed us to 
calculate the contact lag. The a priori expectatton was that the longer the period between 
the accident and the initial contact, the larger the ultimate value o f  the claim. Another 
example is a difference between the claimant state and the accident state. We assumed a 
priori that i f a  claimant has an accident in a state different than their place o f  residence, it 
could potentmlly increase the ultimate settlement value. [n an insurer database, there will 
be variables like these which the modeler will want to denve from information present in 
the database. 
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In addition to data from a closed claim database and data from the rating database, there 
may be information in other parts of the company or external to the company which 
might be useful to the GLM process. Potential internal information might include 
marketing information or underwriting information. External available data might 
include population and vehicle density, medical inflation rates, wage inflation rates, 
vehicle repair rates, etc. The ultimate goal of the data process is to be confident that you 
have compiled as complete and correct a dataset as possible with v,,hich to generate the 
model. 

Model Considerations 

The overall goal of the modeling process is to generate a model that is complex enough to 
provide a satisfactory degree of predictive accuracy, yet simple enough that it can be 
explained and understood by users. This delicate balance can be difficult to maintain, but 
there are some things that can be done to attempt to make this process easier. 

in generating a GLM based on the IRC database, we analyzed 150 potential explanatory 
factors. Needless to say. when analyzing a dataset of this size, we are fully anticipating 
that the number of explanatory variables included in the final model will be significantly 
less that 150. Therefore, we need a process by which to determine which variables 
provide enough predictive value to the modeling process to remain in the final model. 
There are a number of different approaches that can be undertaken. Three of these 
approaches are outlined below: 

Single Inclusion Process: Beginning with the first potential explanatory variable, 
we add each variable one by one to the model in order of presence in the dataset, 
keeping the variables that add predictive power to the model and not using the 
variables that do not provide predictive power. To determine whether or not 
predictive power was added to the model, we utilize the chi-square test which is 
based on the deviance of the model, or the difference between the expected claim 
settlement value as generated by the model and the actual claim settlement value 
present in the dataset. The disadvantage of this approach is that the order of 
addition of explanatory variables to the dataset is generally random, and this 
could result in a less than optimal set of variables being included in the final 
model. 

2. Stepwise Type I Regression: This process begins with a model including no 
factors, and then generates a one-factor model for all 150 potential explanatory 
variables. The factor that produces the lowest deviance and proves to be 
significant by evaluation of the chi-square test results is added to the model (FI). 
Next, all 149 potential two factors models are generated which include FI plus all 
the other explanatory factors, one at a time. The next factor added to the model is 
the one that produces the lowest deviance and is also significant based on the ch~- 
square test. The process continues until no other additional factors added to the 
model produce significant results. 
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While this process is more time consuming than the first process, it helps assure 
that the factors that provide the most predictive power will, with high likelihood, 
make it into the final model. Once you have generated a final model, this process 
will also require a review o f  the factors in the final model again for significance. 
There is the potential that a factor that entered the model early in the modeling 
process might be proved to be insignificant later by the additional variables. To 
the extent that the model can be simplified by the removal o f  these redundant 
factors, this should be done. 

3. Stepwise Type III Regression: This is a variation of  the Type l regression that 
starts with a model which includes all 150 factors, then generates a series of  
models removing the factors one at a time to determine which factor is the least 
significant. The factor that is not significant as measured by the chi-square test 
and has the smallest impact on the deviance will be removed from the model. The 
process continues until there are no more insignificant factors in the final model. 

This approach is the most time consuming of  the three, since it requires models 
with more explanatory factors to be generated. 

If we are working with a dataset with a manageable number of  explanatory factors (less 
than 50), we will generally begin with a model that includes all parameters, and 
investigate each o f  the independent variables to determine which factors are significant. 
For analyses that have a larger number of  factors, we usually take an automated approach 
to determining which factors to further investigate. For the purpose of  analyzing the IRC 
database with a larger number of  factors, we employed the Type I regression method. 

As a general practice for modeling projects, one should consider developing the model 
based on a portion of  the dataset and testing the model that has been developed on the 
remaining portion of  the dataset. There is the potential in generating models that you can 
"over-fit" the dataset. The process of  splitting your dataset, sometimes referred to as 
"'training and testing," can help avoid interpreting a trend when one really is not there. 
The optimal split will depend on the size of  your dataset, but as a general rule of  thumb, 
using 70% of  the data to develop the model and 30% to test it works well. In this 
particular example, we did not divide the dataset due to the size. There were just under 
34,000 records in the dataset, and removal o f  30% of  these records would have 
significantly impacted our ability to generate the GLM. 

In order to generate the model, one must determine an initial model error structure. For 
claim settlement values, good a priori distribution assumptions are a gamma or a negative 
binomial distribution. For purposes of  this paper, we have chosen the gamma 
distribution. 

Because we are analyzing liability data, the potential always exists for large claims. 
Large claims present some difficulty in performing a relativity analysis (such as we are 
performing here or would be perfomled in a class plan analysis) because one or two large 
claims can have a significant ~mpact on an indicated relativity or the indicated impact o f  a 
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claim characteristic on the final settlement value of  a claim. However, large claims 
cannot be ignored because they are covered as part o f  the insurance contract. 
Traditionally, insurers have simply generated relativities based on a limited claim 
severity analysis, and loaded back a fixed amount to each claim for purposes of  covering 
the large claim amount. However, this ignores the fact that the likelihood of  large claims 
is not constant over all claims that are presented. All liability claims have some potential 
to become large claims, however, there are certain claims that have a higher than average 
likelihood of  becoming large claims. In this analysis o f  the IRC data, we have analyzed 
the likelihood of  large claims as a basis for generating a large claim load which varies 
based on the characteristics o f  the claim. 

To generate the large claim analysis, for claims that pierced a $25,000 threshold, we 
generated a second model, using a logistic error structure, that attempted to determine the 
likelihood of  a claim to pierce the $25,000 threshold based on its particular 
characteristics. Each total estimated claim amount would then be a combination of  the 
limited claim settlement value estimate and the adjusted large claim load. A description 
of  the models generated is shown in Figure 5. 

Expected 
Limited 
Loss Portion 

Expected 
Large Loss 
Portion 

Expected 
Claim 
Sett lement 
Value 

Figure 5: Claim settlement value model structure 

LIMITED CLAIM S E T T L E M E N T  VALUE MODEL 

Of the 150 variables analyzed, we selected 35 which were determined to be significant 
for the limited claim settlement value model. Many of  the variables and the effects made 
intuitive sense, however there were some that may have appeared at first glance to be 
counterintuitive. We provide a few of  the results o f  the model below, as well as some of  
the simplifications to the factors in the model. 

Presence of  an Attorney 

One o f  the factors analyzed in the Bodily Injury dataset was whether or not the claimant 
was represented by an attorney. Insurers have long alleged that the use of  an attorney for 
an auto insurance claim causes the settlement value of  that claim to increase. Attorneys 
have alleged that the settlement value of  claims involving attorneys is higher because 
they are generally involved in the more serious claims. The results for the involvement 
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of an attorney in the claim settlement process are shown in Figures 6 and 7. Figure 6 
shows that, all else being equal; the average final claim settlement value for the base 
claim characteristics for cases involving attorneys (Code I ) was about $9,500, more than 
double the cost of claims not involving attorneys (Code 2). Figure 7 simply shows the 
relative cost of these types of claims due to the impact of attorneys, even after removing 
the impact of the type of injury. This result is helpful in attempting to determine the final 
value of a claim and it would also be valuable during the claim handling process in 
determining which claims should be monitored more closely. The bars at the bottom of 
graph represent the distributiofi'of claims in each category, and relate to the y-axis on the 
right side of the graph. 
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Figure 7: Attorney invoh,ement (Relative to catego~' 1 - yes) 
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Depending on the type o f  analysis that you are undertaking, you may have to deal with 
the issue of  unknown explanatory variables. (In the example above the Null category 
represents an unknown category). Unknown data can come from a couple o f  different 
sources. One reason might be that the data collected was just not complete, and therefore 
there are a number of  risks for which you may not have all the desired information. 
There may also be a systematic reason for unknown variables. For example, in many 
class plans in the United States, marital status and gender are not used to rate adult risks, 
so this data is not collected on non-youthful risks. Regardless of  the reason for the 
unknown data, the modeler will need to decide how to handle the unknown values. The 
best solution would be to try to obtain the missing data fields, however this is not usually 
feasible. Another option would be to model the unknown variable as a distinct level o f  a 
factor, which would make sense i fa  variable being unknown is a valid occurrence, such 
as the class plan example given earlier. A third approach would be to group the unknown 
level with an "average" level, or with the most likely occurrence o f  the variable. For the 
purposes of  this analysis, since it is likely that there would be information about future 
claims that is unknown, we chose to model the unknown level as a distinct level. 

The graphs shown above represent two different ways of  viewing the results o f  this claim 
analysis. We will view the results using the relative claim cost method (Figure 7), 
realizing that we will use the actual claim settlement values when generating the final 
claim settlement amounts. 

Most Significant Injury 

Another factor in the analysis dataset is the most significant injury to the claimant. A 
graph showing the results from this factor is shown in Figure 8. As can be seen from the 
graph, lower claim amounts were associated with less serious claims, such as minor 
lacerations (code 3) and various sprains and strains (codes 6-8). The larger claim 
amounts were associated with more serious claims, such as serious lacerations (code 4), 
scarring and permanent disfigurement (code 5), Temporomandibular Joint (TMJ) 
dysfunction (code 16), and loss o f  senses (code 17). 
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Figure 8: Most significant injury 

To assist the modeler in determining the significance o f  independent variables, the 
standard error o f  each parameter estimate is generated. The parameter standard error 
estimate gives an indication of  the reliability o f  the parameter estimate. For example, the 
relativity estimate for neck sprains and strains (code 6) is 1.00. Plus and minus two 
standard errors around this parameter estimate yields 0.77 to 1.29. However, the estimate 
for the loss o f  a body part (code 14) is 1.49, two standard errors around this parameter 
estimate yields a range of  1.13 to 1.93. This is a wider spread, and relecfts the increased 
uncertainty regarding the serious laceration parameter as compared with the neck 
sprain/strain parameter. Many times (but not always), increased standard errors for a 
parameter estimate are caused by a lower number of  observations for a particular 
category. The standard errors will give the modeler information regarding the amount of  
reliability to place in the estimate. 

Year of Accident 

The year of  the accident occurrence was present in the IRC database, which gives some 
indication to the length of  time the claim had been in the company claim process. Claims 
were present in this dataset that occurred as far back as 1950. The expectation is that i fa  
claim has been open for a long period of  time, it represents a more complex claim, or a 
claim that may have been contested more fiercely. It is expected that these claims would 
settle for larger amounts. As can be seen in Figure 9, this trend appears to hold for 1992 
back through 1987, but at 1986 the trend appears to break down. This might be a 
reflection of  the trend breaking down, but is more likely a reflection of  the data 
sparseness for years prior to 1988. Due to the lack of  data at these points, we decided to 
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combine years 1988 and prior for purposes ofthis analysis, as shown in Figure 10. 
Another option would be to potentially extrapolate the trend from 1989 and subsequent 
onto the 1988 and prior data. 

For other variables, levels of  the variable that exhibit similar claim settlement values can 
potentially be combined. 

Estimated Limited Loss Settlement Value R e l a t i v i t l e s  
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Figure 9: Year of accident 
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Figure 10: Year of accident grouped '. 
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Claimant Age 

The age o f t he  claimant was also analyzed as part of  the final model. For variables that 
have a natural scale where successive levels are related, such as age, one can consider 
fitting a continuous cum'e representing this factor's impact on the dataset. Figures I 1 and 
12 represent the initial and final smoothed results o f  the claimant age factor. In this case, 
we fit a "a-nixed" simplification to the claimant age. We fit one curve to ages 0-9, 
allowed the model to fit separate and distinct factors to ages 10 and I 1, and then fit a 
second curve to ages 12 and over. This demonstrates the flexibility o f  fitting GLM's .  As 
can be seen, the cost o f  the ultimate claim tends to increase as the claimant age increases, 
but then around age 60 begins to decrease again. This may have something to do with the 
wage earning potential of  an injured person. Wages generally tend to increase as a 
person gets older, and then at older ages the earnings decrease due to retirement. 

Estimated Limited Loss Settlement Value Retatlvltles 
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Figure 1 !: Claimant age 
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Estimated Limited Loss Settlement Value Relatlvltles 
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Figure 12: Claimant Age (smoothed) 

Injury Type by Attorney Involvement 

In addition to the impacts of individual variables on the ultimate settlement value, 
combinations of factors can have interaction impacts on the final claim settlement amount 
which can differ from the combined effect of the individual factors. For example, 
Figures 7 and 8 discussed attorney involvement and injury type, respectively. For a claim 
that did not involve an attorney, the resulting settlement value was 45% of the value of a 
claim that did involve an attorney. When considered in combination with injury type, 
this assumes that all injury types are 45% smaller when an attorney is involved, unless 
this assumption is specifically relaxed. Figure 13 shows the result of specifically 
considering this interaction. As can be seen, the presence of an attorney does not have a 
constant effect when considering different types of injuries. The difference ranges from a 
29% increase when dealing with fractures (code 9) to 124% when dealing with other 
sprains and strains (code 8). 
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Figure 13: Attorney involvement by injury t2,.'pe 

Final Limited Claim Settlement Value Model  

An analysis of each ofthe significant variables was conducted to determine if there were 
any of the variables that could be simplified, either by grouping of levels of the factor or 
by fitting era  continuous curve. Also, a series of interactions were tested to determine if 
they were significant in the final model. After the final limited claim settlement value 
model is developed, an expected limited claim value is calculated for each record in the 
dataset. An example of this calculation is shown in Attachment I. This limited claim 
settlement value will be combined with the expected excess claim value determined in 
the next section to reach an overall final expected claim value. 

Excess Claim Settlement Value Model  

The purpose of developing an excess claim settlement value model is to account for the 
presence of large claims in the database in a way that recognizes the fact that certain 
characteristics are more likely to generate large claims than others. We began by 
generating a model to determine the likelihood of a large claim occurring. This model 
was developed based on a logistic error structure, with the response variable being 
whether or not the claim pierced the threshold ($25,000). A logistic model is generally 
used for the analysis of a yes/no type response variable. We then looked at particular 
claim characteristics to determine if the presence of certain levels of some characteristics 
had higher likelihood of large losses than others. The large loss load for each claim was 
then determined by taking the average excess loss for the base risk and adjusting this 
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excess loss based on the likelihood of  a large loss occurring. Below, we show examples 
of  the relative likelihood oflarge losses for several claim characteristics. 

Presence of an Attorney 

Again, similar to the limited claim value model, the presence of  an attorney significantly 
increases the likelihood of  a large claim. When an attorney is present, the likelihood of  a 
large loss nearly doubles. 
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Figure 14: Likelihood of large loss when an attorney is present 

Neck Injury 

The situation can occur where the results of  the large claim fi'equency analysis might 
show results that are opposite the results of  the limited claim severity. The presence of  a 
neck injury causes a larger limited claim severity. However, the presence of  a neck 
injury is about 15% less likely to produce a large loss (Figure 15). 

309 



7~ 

Predicted Large Loss Likelihood 

~ 2 . 1 %  

q NUdI~ 

~ n l h  imcm 

Figure 15: Likelihood of large loss with a neck injury 

Accident Year 

The accident year was found to be significant in the limited claim settlement analysis, 
and the older claims had a predicted limited severity of  about 25% higher than the base 
accident year. However, as can be seen in Figure 16, large claims are twice as likely to 
result from older claims as from less mature claims. This is to be expected, since it is 
more likely that the more complicated, expensive claims will take longer to settle. 
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Figure 16: Accident year large claim likelihood 
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Final Large Claim Load 

The final large claim load is calculated by taking the base predicted excess claim amount 
and adjusting it for the calculated likelihood of  a claim turning into an excess claim as 
determined by the excess claim model. This calculation is different than the limited 
claim severity example discussed earlier due to the use of  the logistic regression model. 
Taking the product o f  individual relativities cannot be directly applied here because of  
the upper limit on the likelihood of  1.0. The formula for the calculation of  the likelihood 
of  large loss has natural limits o f  0 and 1. For each factor in the excess model, a 
parameter estimate is developed. The sum of  the parameters for risk characteristics o f  
particular claim is then added to the logistic parameter estimate for the base risk, and then 
the exponent of  the negative of  this sum is calculated. The final probability is then the 
inverse of  one plus the exponent of  the summed parameter. See attachment 2 for the 
formula and an example of  the calculation of  the final large claim load. The final 
expected claim settlement value is simply the sum of  the modeled limited claim 
settlement value and the modeled excess claim settlement value, also shown in 
Attachment 2. 

Evaluating the Overall Model Fit 

There are a number of  statistical diagnostics that can be applied in order to evaluate the 
overall fit o f  the model to the data. These measures include the difference between the 
observed and fitted values (errors), the standard errors of  parameter differences, the chi- 
square test and the f-test. The last three tests mentioned here are best suited for 
evaluation of  particular factors which may or may not be predictive in the modeling 
process. There is also the evaluation of  the overall model structure which assists in 
determining if the overall model has been fit with the proper error distribution. In this 
particular modeling exercise, we modeled the limited claim settlement value data with a 
Gamma error term. To review the appropriateness of  the Gamma model, we looked at 
residual plots (difference between actual and predicted claim settlement values) to 
determine whether or not the Gamma assumption makes sense. 

Figure 18 shows the resulting residual plot for the limited claim severity model. The 
residuals have been transformed to adjust for any scale parameter differences in the 
model so that a better determination can be made regarding the fit o f  the model. 
Generally, you would look for a residual plot which is symmetric about 0 on the y-axis 
and has no obvious asymmetrical tendencRes about the x-axis. If you look at the left side 
of  the residual plot in Figure 17, the plot looks reasonable, with a fairly even distribution 
around 0, and with no obvious distortions, such as a fanning in or fanning out of  the plot. 
However, if you look at the right side of  the graph, you will see what appears to be a 
severe distortion in the residuals. This cut-off along the right side o f  the graph is due to 
the fact that we are modeling a capped severity. All o f  the obse~'ed severities have been 
cut offat  $25,000, which causes the residual graph to appear truncated. 
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Because we are accounting for the excess claim load in a separate model, this residual 
graph would be acceptable. If there had been other distortions, such as a funnel shaped 
graph going either way, then these could have been potentially addressed by adjusting the 
distribution of the error structure. Another potential problem one might see with a 
residual plot is what appears to be two distinct sets of residuals, aggregating at different 
places in the residual plot. In this case, there may be a problem with the homogeneity of 
the underlying data, and segregating the data into more homogenous groups might be the 
answer. For example, if  we attempted to model bodily injury settlement values along 
with property damage settlement values, we might see a residual plot with two distinct 
groups of residuals. 
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Figure 17: Transformed residual for Limited Clama Severity Model 

Applications 

There are a number of applications of this type of model to the insurance industry. One 
potential application would be its use as a tool for claims adjusters in attempting to 
determine reserve estimates for claims that are made to an insurer or self-insured entity. 
Once the claim comes in, there are certain characteristics that can be determined. These 
characteristics could then be used in the claim model to determine an estimated 
settlement value for the claim. This estimate would not be a replacement for the 
judgment of the claim adjuster, however, the results of this model would be available as 
another estimate to assist the claim adjuster in making a final estimate. 
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Also, there are certain characteristics of the claim that generally lead to larger claim 
settlement values. As a result of the claim settlement value model, claim persons could 
be alerted to claims which could potentially become high value claims, and then spend 
relatively more of their time working on the settlement of these claims. The claims 
model may simply confirm current common knowledge among claims personnel, such as 
the presence of an attorney or a fatality would cause the likelihood of a large claim to 
increase dramatically. It can also provide additional insight into drivers of larger than 
average claim settlements, especially when considering interactions. 

GLM could also allow users to determine trends in claim settlement value estimates. Not 
only will insurers be able to determine the trend in overall claim settlement values, but it 
can also be determined if certain factors are increasing in importance over time in 
estimating the overall claim settlement value. For example, we noticed earlier that the 
presence of an attorney caused the limited claim settlement value to nearly double. If that 
relationship between claims with and without attorneys were to be begin to increase from 
a 2 to I ratio with this analysis to 2.25 to I with next year's analysis and 2.5 to 1 with the 
analysis after that, then the company.may need |o determine why the relativities are 
trending that way. 

Another benefit of this type of claims settlement value model is that the insurer can make 
use of its own data to determine estimated ultimate claim settlement values. While there 
may be other models available which have been developed based on data that represents 
more of the industry, the use of company-specific data can be another valuable estimate 
that reflects the type of business that the insurance company writes. There may be 
differences in the claim settlement culture ofthe company or the type of business the 
insurer writes which would make a company-specific model valuable. 

Conclusion 

There are many benefits that the actuary brings to the insurance company. Many of these 
benefits are thought to be primarily in the area ofratemaking and reserving. However, 
the ability of the actuary to analyze past statistics and use them to help understand future 
occurrences has application beyond traditional areas of ratemaking and reserving. Better 
understanding how to estimate the ultimate claim settlement amount can assist the claims 
person in better estimating claim reserves. The key here is that the actuary can use his or 
her unique skills and provide information to claims and other areas. One important tool 
in providing this assistance is GLM. As actuaries continue to appreciate the potential 
wide applications of this analysis procedure, innovative solutions can provide value to 
many areas of the insurance company. Also, this analysis procedure could be applied to 
many different types ofdatasets to model different response variables. 
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A b s t r a c t  

A multi-level factor (MLF) is a rat ing factor with a large number  of 
levels, each of which we want to rate separetely even though man)'  of 
them do not have a sufficient amount  of data.  Examples include Car 
model, Geographic Zone and Company (in experience rating).  

Rating of M LFs is a s tandard situation for employing eredLbdity thec, ry. 
Traditiotial credibility theory models M LFs as random effects, but  does 
not t reat  the situation where there are also ordinary rating factors (like 
Sex and Age class) alongside with the MLF. The mm of this paper  ts 
to show how such a s i tuauon can be handled by combining credibility 
theory and GLM. The method can be seen as an extenston of the 
classical Buhlmann-Straub approach. 

The method is presented via an example of experience rat ing in bus in- 
surance, while the theory and more general results are given in Ohlsson 
and Johansson (2003). 
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tLgnsfbrsakrmgar m~utoalcc group. E-mini bjorn joham~on,~.lansforsakringar.se 

316 



1 M u l t i - l e v e l  f a c t o r s  a n d  c r e d i b i l i t y  

In non-life insurance rating, it is customary to use Generalized Linear 

Models (GLMs) to est imate price relativities for a number of rat, ing 

factors under a multiplicative model. The rating factors are either 

categorical with a few levels (e.g. Sexll or a grouping of a continous 

variable (e.g Age group, Mileage class). In case enough data  is not 

available for some group, one can merge groups to get more reliable 

estimates, nora bene at the price of a less detailed tariff However, 

for rating factors with a large number of levels without an inherent 

ordering there is no simple way to form groups with sufficient data  

We introduce the term multi-let, elfi~ctor (MLF) for such rating factors 

and next give some examples. 

E x a m p l e  1.1 ( C a r  m o d e l )  In private motor car insurance it is well 

known that  the model of tile car i,~ an important  rating factor, both 

for third-party liability, hull and theft. In Sweden there is a common 

basic grouping where car models that  are technically very close to each 

other are put in the same class. Nevertheless, we are left with several 

thousands of car model classes, some of which represent popular cars 

w~th sufficeut data  available, whereas most classes have moderate or 

sparse data.  Even after taking into account, auxiliary variables like 

weight, effect and brand the car model remains an important  rating 

factor. There is no sensible way to group the models a pmori and 

there is not enough data to do a relevant postermr grouping. Hence, 

cat model is a typical MLF. [] 

E x a m p l e  1.2 ( E x p e r i e n c e  r a t i n g )  Using the customer as a rating 

factor is another important  example of an MLF. In the commercial 
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lines it is important to base the rating to some extent on the indi- 

vidual claims experience, even though there is often not suffient data 

for separate rating of each company. This is the classical situation for 

which North-American actuaries like Whitney and Mowbay introduced 

credibility estinaators m the earl)' 1900's. In the private lines, Lemaire 

(1995) and others use (European type) credibility estimators for the 

construction of optimal bonus/malus systems, with the customer as 

MLF. [] 

E x a m p l e  1.3 (Geograph ic  area)  In order to get risk homogenous 

geographic areas one often has to use a very fine subdivision of the 

country, based on for instance ZIP codes. Ncighbouring areas can have 

quire different risk profiles and hence a prior grouping can be very hard 

to achieve and we are again left, with an MLF. [] 

As already indwated in example 1.2, a way to solve the rating problem 

for MLFs is to use cred2bihty theory. However, classical Biihhnann- 

Straub credibility theory does not treat the important situation where 

we have ordinary rating factors (non-MLFs) besides the MLF This is 

the problem considered in the present paper, and the proposed solution 

is to use a combination of GLM and credibility as will now be outlined. 

2 E x t e n d e d  C r e d i b i l i t y  P r e d i c t o r s  

For simplicity, we will describe tile method in terms of a simple example 

from bus insurance. For a general treatment we refer to Ohlsson and 

Johansson (20031. 
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We consider data  for 1993-1998 from the h3rmer Swedish insurance 

company Wasa on 624 bus companies. Here we have just two ordinary 

rating factors Age (with five cla~sses of bus age) a,ld Zone (a s tandard 

subdivision of Swedish parishes into seven zones). Note that  geographic 

area is not used as an MLF here, as would be tile case if ~e operated 

on the parishes themselves. Our MLF is the company itself and hence 

we are looking for a proper experience rating in the presence of the 

ordinary rating factors Age and Zone 

As is s tandard in insurance applications of GLMs, we perform a sep- 

arate analysis of claim frequency and average clami cost. For brief- 

ness, we will only consider claim frequency here. Hence let }q~a be the 

observed claim ['requenc',' for the buses of company k in Age class 

operating in Zone j ,  i.e. }'~jk is the number of claims divided by the 

exposure weight tL,,~e measured in policy years. The multiplicative tar- 

iff contams a base rate p, plus factors a, Ibr Age and flj for Zone. In 

credibility theory, the MLF is modelled by a random risk parameter,  

which suggests that  we should introduce a stochastic factor (random 

effect) /--'k for Company in our model in order to get credibility-like 

results. (This idea was introduced in the actuarial liLerature by Nelder 

and Verall, 1997.) The multiplicative model for the expected claim 

frequency hence becomes 

E[~jklL"~ = uk]-- ~,o,fiju~ (1) 

where ct,o = ] and .g3o = 1 for some base classes io and 3o and E(Ut)  = 

1, since /.'~ should be a pure random effect - -  the systematic part 

being taken care of by I£. Furthermore. the L;~.'s are supposed to be 

independent and identically distr ibuted with common variance a - 

Var[Uk]. Note that  t',j '-- E[}';3k] =/lai~dj . 

Conditionally on Ua, }~j~ is assumed to follow a (w-weighted} Poisson 
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GLM with mean given by (1) and hence with variance \'ar[Y]~xlUk = u~] 

= a2puu~/u:,j~, where cr 2 is the overdispersion parameter  (in GLMs 

usually called ¢ and possibly set to one beforehand). 

As in traditional credibility theory, we look for est imators (or rather 

predictors) Uk of U~ which are optimal in the meaning of mean square 

error, i.e. which minimize E[l(.:k - Uk)2]. In Sectmn 2.3 of Ohlsson and 

Johansson (20031 it is shown - -  as a special case - -  that  the solution 

to this problem is given, under certain conditions, by the credibility 

formula 

~ = z ~  + ( t -  zk).  1 (2) 

where 

and the credibihty factor  zk is 

~'~'i.j Wl3kYt3k 

~--I, 3 [b'i3klAI 3 
(3) 

~ ' J  WvkPij (4) 
Zk -- ~ , , j  ~'U~U,~ + a2/a 

where )~i.j extends over all tariff cells (z,j)  where company k has at 

least one bus. Note that  E[U~IU~] = Uk, and that  ~ is the ratio 

between the number of claims by company k and the corresponding 

expectated value in a tariff with just  Age and Zone as rating factors. 

Hence, 5~ is a credibility weighted average of our empirical experience 

of the company, ~ ,  and the number 1 - -  the latter implying rating of 

the company's  buses by their tariff values for Age and Zone only. 

Note that  we get high credibility if we have large exposure in terms of 

expected number of claims w,jk~,~ or if the variance between companies 

o is large compared to the within company variance a 2. 

Note also that  in the case of very high credibility, i.e. z~ ~ 1, equation 

320 



(2) becomes 

i , j  : . j  

which we recognise as the estimating equations for the ML estimates in 

a Poisson GLM (equivalent to the method of margi,ml totals). Hence, 

the credibility estinaator in the case of high credibility is nothing but 

the ordinary GLM estimator.  This is an appealing property since high 

credibility occurs when there is enough data for the company k. 

Remark. If we disregard the ordinary rating factors Age and Zone, 

so that /% = /.z, i~ is not hard to see that  /1 • 5~ reduces to the ordi- 

nary Biihlmann-Straub credibility estimator,  see Ohlsson and Johans- 

son (2003), Section 2.3:1. 12 

The proof of (:2)-(4), in a general setting, is given in Ohlsson and Jo- 

hansson (.'2003). It is based on a,l extension of the famous theorem by 

Jewell (1974) on exact credibility. A fundamental assumption is that  

some suitable transformation of Uk follows the natural conjugate prior 

distribution of the GLM distribution (here: of the Poisson distribu- 

tion). In a forthcoming paper we will show how ~k can alternatively be 

derived without distributional assumptions as the optimal hnear pre- 

dictor - -  in analogy with the original result by Biihlmann and Straub 

2.1 E s t i m a t i o n  o f  v a r i a n c e  p a r a m e t e r s  

It remains to est imate the variance parameters a 2 and a. We use an 

approach with unbiased estimators based on sums of squares, similar 

to the one proposed in classical crOdibility theory (see e.g. Goovaerts 

and Hoogstad, ].987, p. 48). The derivation is given in Ohlsson and 
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,Iohansson (2003) - -  here we just, present the results in our special case. 

Let 
1 ( } . ] j ~ -  ~ ) 2  

L,J 

where nk are the number of tariff cells ( t , j }  where we have wO~ > O. 

For each k this gives a separate unbiased est imator of a ~. As an overall 

est imator  we suggest 

Next we present an unbiased est imator of a = \'ar[Uk], 

fi = ~"~-k u3~(~k - 1) 2 - /x'6 "~ C7) ~k a'k 

where ff,~ = )-~i.j w,~kp,j and K is tile number of co,npanies Note that  

this est imator  is unb,ased on]3' when Pu is assumed known. In practice 

we est imate /~,~ in a GLM and hence the est imators are not strictly 

unbiased. 

2.2 A n  a l g o r i t h m  

Nelder and Verall (1997), using a different approach based on hierarchi- 

cal likelihood, suggested iteration between GLM parameter  estimation 

for ordinary rating factors and prediction of random effects Uk. In our 

example iteration is also reasonable since there mtght be confounding 

between the MLF and the ordinary rating factors (e.g. a good company 

might operate mainly in one zone and t,his might lower tile factor for 

that  zone). We get the following algorithm tbr simultaneous rating of 

ordinary factors and MLFs. 

(0) Initially, let fik = 1 for all k. 
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(1) Est.imate p, o, and ;3~ in a Poisson GLM, using a log-link and 

having log(tim) as offset-variable. This yields fqj = fld,.g3j. 

(2) Compute b "° and ;,, using fl,j from Step 1. 

(3) Compute i~k for k = 1,2 . . . .  K, using the estimates from Step 1 

and 2. 

(4) Return to Step 1 with the offset-variable log(fi~) from Step 3. 

Repeat Step 1-4 until convergence, which in our exper,ence often takes 

just a few iterations. 

Notice that  the computation of ML estimates in ordinary GLMs re- 

quires iteration between the estimating equations for the different rat- 

iqg factors. Together with the observations made in connection with 

equation (5) this means that in case of very high credibility the algo- 

rithm will be equivalent to the one for computing the ML estimates 

when all rating factors arc treated as ordinary GLM factors. 

3 N u m e r i c a l  r e s u l t s  

In Table 1 we show tile relativities for the ordinary rating factors Age 

and Zone, first after running a GLM with these covariates alone, then 

after 30 iterations of the algorithm with Company ms MLF. We see 

that use of the algorithm results in a substantial change in the rating 

factors for Zone 

Next, we list the credibility estimates for a selection of companies in 

Table 2. 
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Ratzn 9 
factor 
Bus Age 

Zoue 

Level 

0-2 yrs 
3-5 yrs 
6-8 yrs 
9-11 yrs 
12+ yrs 
1 
2 
3 
4 
5 
6 
7 

Estzmated relativities 
GLM onl~l Algorithm 

2.64 3.05 
1.90 1.78 
1.77 1.78 
1.42 1.37 
1.00 1.00 
1.00 1.00 
1.82 1.03 
1.43 I 41 
1.32 0.94 
2.28 1.39 
1.44 1.08 
0.-10 0.95 

Table 1: Estimated values for ordinary rattng factors in bus insurance. 

In this rather simple example,  the ordiqary rat ing factors explain quite 

little of the variatioq in tile da ta  and consequeqtly quite high credibility 

is given even to bus companies  with a limited amoun t  of data.  The  

es t imated  values of the dispersion parameters  are 02 = 1.12 and fi = 

1.00. Note tha t  only the ratio 82/¢~ = 1.12 enters into the formula for 

the credibility factor zk - -  this value is qui te  low in our experience. 

Nevertheless,  at the lower end of the table credibility is low and uk is 

close to one, which means  tha t  one has to rely on the ordinary rat ing 

factors for these companies.  

For an example  of tile use of the above algori thm in private car insur- 

ance, see Section 4 of Ohlsson and Johansson  (2003) 
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k w ,~ ~ rite zt¢ 
1 219.81 1.81 1.80 0.98 
2 269.40 0.90 0.90 0.98 
3 181.84 1.36 1.35 0.97 
4 102.60 1.16 1.15 0 97 

i ! ! : i 
201 12.01 0.00 0.45 0.55 
202 7.33 0.75 0.86 0.55 
203 5.13 0.75 0.86 0.54 
204 9.52 2.31 1.70 0.54 

! ! ! i i 
401 1.89 2.96 1.46 0.23 
402 2.43 0.00 0.77 0.23 
403 1.90 0.00 0.77 0.23 
404 3.22 0.00 0.78 0.22 

i i i i ! 
601 0.11 0.00 0.98 0.02 
602 0.17 0.00 0.99 0.01 
603 0.08 0.00 0.99 0.01 
604 0.14 0.00 0.99 0.01 

i ! i : ! 

Table 2: Selected bus cornpantes, k, with their number of pohcy years w.~, 
e.rper~ence values ~ ,  credibility predictors f~k and credibHtty factors zt:. The 
eompantes are ordered according to Zk. 

4 C o n c l u d i n g  r e m a r k s  

The  method  presented in this paper can be seen as either a way to work 

with random effects in GLMs or as a way to introduce fixed effects into 

the credibility framework. In any case, combinat ion of GLM and cred- 

ibility is a very useful and rather simple tool for s imul taneous  analysis  

of ordinary and multi-level factors, with many  potential  applicat ions 

in different lines of business. 
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Summary 

This paper provides a case study in the application of  generalised hnear 
models ("GLMs") to loss reserving. The study is motivated by approaching 
the exercise from the viewpoint of  an actuary with a predisposition to the 
application of  the chain ladder ("CL"). 

The data set under study is seen to violate the conditions for application of  the 
CL in a number of  ways. The difficulties of  adjusting the CL to allow for 
these features of  the data are noted (Sections 3). 

Regression, and particularly GLM regression, is introduced as a structured and 
rigorous form of data analysis. This enables the investigation and modelling 
of a number of  complex features of  the data responsible for the violation of  the 
CL conditions. These include superimposed inflation and changes in the rules 
governing the payment of  claims (Sections 4 to 7). 

The development of  the analysis is traced in some detail, as is the production 
of  a range of diagnostics and tests used to compare candidate models and 
validate the final one. 

The benefits of  this approach are discussed in Section 8. 

Keywords: chain ladder, generalised linear model, GLM, loss reserving, 
regression, superimposed inflation. 

1. Introduction 

Taylor (2000) surveys many of  the methods of loss reserving. Although the 
chain ladder ("CL") (Chapter 3) is, in a number of  ways, the most 
elementary, it is also still the most widely used by practitioners. 

This method is based, however, on a very restrictive model whose conditions 
are likely to be breached quite commonly in practice. When this happens the 
method is liable to material error in the loss reserve it generates. 

i f  such error is to be corrected, the model itself must be subjected to some 
form ofcorrective action. This may be difficult on two scores: 

• The CL falls within the category of  model labelled phenomenological 
by Taylor, McGuire and Greenfield (2003). This means that it reflects 
little of  the underlying mechanism of claim payment, and consequently 
the required form of  correction may not be readily apparent. 

• Even if the required form of correction can be identified, perseverance 
with the CL may be more tedious and less reliable than its 
abandonment in favour of  a fundamentally different approach. 

The present paper is concerned with a data set that manifestly fails to meet the 
conditions trader which application of  the CL is valid. It then examines the 
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sorts of  corrections reqmred, and how they might be implemented most 
efficiently. 

It should be pointed out that there has been no necessity to trawl through 
numerous data sets to locate one that breaches CL assumptions. The data set 
used here relates to the Auto Bodily Injury claims of one of the Australian 
states. The consultancy with which we are associated deals with such claims 
in four states, and it is fair to say that any one of  these could have been used as 
the example for the present paper. 

The viewpoint taken will be that of  a reserving actuary with a predisposition 
to the application of the CU The validity of  tts application to the subject data 
set will be examined (Section 3), as will the materiality of  the potential error it 
introduces. Analysis of  the data set will then be directed to the identificauon 
of the various breaches of the CL conditions, and their consequences for a loss 
reserve. 

The ultimate purpose of this analysis is not to produce a diatribe aga,nst the 
CL as such, since this may provide a perfectly useful piece of methodology 
under appropriate conditions. Rather, the purpose is to demonstrate how 
Generalised Linear Models ("GLMs")  can provide a structured and rigorous 
form of data analysis leading to a loss reserving model. 

T h e  d a t a  s e t  

The data set relates to a scheme of  Auto Bodily Injury insurance in one state 
of  Australia. This form of insurance is compulsory, and includes no 
component of  propeR' coverage. 

The form of  coverage, and other conditions under which the scheme operates, 
are legislated, but it is underwritten by private sector insurers subject to these 
conditions. Premium rates are partially regulated by the promulgation of 
acceptable ranges. 

Insurers that participate m the underwriting are required to submit their claims 
data to a centralised data base. The data set used in the present paper is 
extracted from this data base. It comprises a unit record claim file, contaimng 
the following items of information: 

• Date of  injury; 
• Date of  notification; 
• Histories of: 

o FinalisecL,'unfinalised status (some claims re-open a~er having been 
designated finahsed), mcludmg dates of  changes of status 

o Paid losses 
o Case esttmates 

• Various other claim characteristics (e.g. injur2, ., type, injury severity, 
etc) not used m the present paper. 
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The scheme of insurance commenced in its present form in September 1994, 
and the data base contains claims with dales of injury from then. It is current 
at 30 September 2003. 

The purpose of  the present paper is to illustrate loss reserving by means of  
GLMs, rather than to carry out a loss reserving consulting assignment. For 
this reason, analysis will be limited to finalised claims. Some justification for 
this course will become apparent as the analysis develops, but there will be no 
attempt to demonstrate beyond doubt that it is the best. 

A consequence of  this approach is that (for almost all purposes) data are 
required only in respect of  flnalised claims. Exceptions are that: 

The ultimate numbers of claims to be notified in each accident quarter 
have been estimated outside the paper, and will here be taken as given. 
In respect of  each accident quarter, the total amount of losses paid to 
30 September 2003, whether relating to finalised or unfinalised claims, 
is used to obtain estimates of  outstanding claims in Sections 3.2 and 
7.6. 

Wherever paid loss amounts are used they have been convened to 30 
September 2003 dollar values m accordance with past wage inflation 
experienced in the state concerned. This is done to eliminate past "normal" 
inflationary effects on the assumption that wage inflation is the "normal" 
inflation tbr this type of  claim. Henceforth, any reference to paid losses will 
carry the tacit implication that they are expressed in these constant dollar 
values. 

Naturally, claims inflation actually experienced differs from wage inflation 
from time to time, and is the subject of  estimation in Sections 7.3.2 and .7.3.3. 
The excess of  claims inflation over wage inflation is referred, to as 
superimposed inflation ("SI"). 

Appendix A. I provides a triangular summary of  the paid loss data in the usual 
form. In conventional fashion, rows of the triangle represent accident 
quarters,  columns development quarters,  and diagonals experience 
quarters (or quarters of  finalisation). Development quarters are labelled 0, 
I,..., w~th development quarter 0 coinciding with the accident quarter. 

Let Pu denote claim payments in the (i,j) cell. Let C o denote their cumulative 
version: 

C,, = ~. P,~ (2.1) 
l=O 

Similarly, pVj and Cv,j denote the corresponding quantities in respect of just 
finalised claims. Appendix A.2 provides a triangular summar), of these. Each 
cell of  the triangle contains the paid losses, whether paid in that quarter or 
earlier, in respect of claims finalised in the cell. 
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3.1 

Let F,j denote number of  claims finalised in the (id) cell. They are set out in 
Appendix A.3. Let G.j denote theu" cumulative version. Define average sizes 
of finalised claims, incremental and cumulative respectively, as follows: 

S,j = pFj / F.j (2.2) 

Tij = cFtj / Gij- (2.3) 

Appendices A.4 and A.5 display these average claim sizes. 

T h e  c h a i n  l a d d e r  

Age-to-age factors 

Appendix B derives age-to-age factors from the data of  Appendix A. 

The age-to-age factor linking cells (id) and ( i j+l)  in the triangle of cumulative 
paid losses is 

RF,j = cF,d.I  / cFaj. (3. I ) 

These factors are tabulated in Appendix B.I. 

Likewise, the age-to-age factor linking cells (id) and ( i j+l)  m the triangle of 
cumulative average claim sizes (Appendix A.4) is 

Qu = Ti,.i.i / T,I. (3.2) 

These factors are tabulated in Appendix B.2. 

Average age-to-age factors are displayed in Appendices B.I and B.2. 
Conventionally, these are taken over various past averaging periods, as some 
sort of test of stability of  the factors over time. 

Figures 3.1 and 3.2 chart the average age-to-age factors, showing clear 
indications of instability. In development periods 3 to about 10, the factors 
show a clear tendency toward higher values for more recent experience years 
(except the latest year, where they are lower). 
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Figure 3.1 

Paymen ts  in r espec t  o f  set t led c la ims:  age- to -age  
f ac to r s  f o r  v a r i o u s  ave rag ing  pe r iods  
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Figure 3.2 

Paymen ts  in r espec t  o f  set t led c la ims:  age- to -age  
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3.2 Sensitivity of loss reserve 

While Figures 3.1 and 3.2 demonstrate that different averaging periods lead to 
different age-to-age, factors, and therefore to different loss reserves, the 
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materiality of  the differences is not apparent. Table 3.1 sets out the loss 
reserves calculated according to the various averaging periods. 

Inspection of Appendix B. 1 reveals that, while the age-to-age factors generally 
showed increasing trends over recent periods, those recorded in the September 
2003 experience quarter (the last diagonal, were particularly low. Table 3.1 
includes an examination of  the effect of including or excluding this quarter's 
experience from the averaging. 

Omission of the September 2003 experience prevents estimation of a loss 
reserve for that accident period. Therefore, the loss reserves set out in Table 
3. I relate to all accident quarters except that one. 

Table 3.1 
Loss reserves according to different averaging periods for age-to-age 
factors 

Averaging period 

All experience quarters 
Last 8 experience quarters 

Allexperience quarters except September 
2003 
Last8 experience quarters except September 
2003 

Loss reserve at 30 September 
2003 (excluding September 

2003 accident quarter) 
$B 
1.61 
1.68 

1.78 

1.92 

Table 3.2 
Loss reserve dissected by accident period 

Accident quarter 

Sep 00 

Sep 0 I 

Sep 02 
Dec 02 
Mar03 
Jun 03 

Total 

Loss reserve at 30 September 2003 
(excluding September 2003 accident 

quarter) 
SM 

176 

165 

171 
124 
59 
58 

1,785 
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The sensitivity of  loss reserve to averaging period is considerable. The largest 
estimate is 19% larger than the smallest. However, a more detaded 
examination of  the loss reserves quickly reveals that the tree sensitivity is 
much greater than this. 

Table 3.2 sets out an accident quarter partial dissection of the "'All experience 
quarters except September 2003" reserve from Table 3.1. It is quite evident 
that the loss reserve is distorted downward in respect of  the latest accident 
quarters. 

This is due to the low cumulative paid losses at the end of this quarter, as 
evidenced by the low age-to-age factors in this quarter, which serve as the 
baseline for forecasting future paid losses. 

The usefulness of  the reserves in Table 3.1 is unclear in the presence of  this 
factor. It is natural to correct for it by adjusting any loss reserve at 30 
September 2003 (still excluding the September 2003 accident quarter) by 
forecasting it on the basis of  paid losses to 30 June 2003. Specifically, this 
consists of: 

• calculating a standard chain ladder loss reserve at 30 June 2003; and 
then 

• deducting the forecast September 2003 quarter paid losses included in 
that reserve. 

This makes sense only for reserves based on averaging that excludes the 
September 2003 experience quarter. Table 3.3 augments Table 3.1 to include 
such corrections. 

Table 3.3 
Loss reserves corrected and uncorrected for low September 2003 quarter 
paid loss experience 

Averaging period 

All experience quarters 
Last 8 experience quarters 

All experience quarters except September 
2003 
Last 8 experience quarters except 
September 2003 

Loss reserve at 30 September 
2003 (excluding September 

2003 accident quarter) 
Uncorrected Corrected 

$B $B 
1.61 
1.68 

1.78 1.94 

1.92 2.35 

Table 3.4, again dealing with the "All experience quarters except September 
2003" case, shows that the corrections introduced into the last two rows of 
Table 3.3 do at least remove the most obvious implausibility in the trends of  
those loss reserves over recent accident periods. 
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This comes, however, at the cost of  a considerable widening of the gap 
between the two versions of  the chain ladder that respectively use all 
experience or just the last 8 experience quarters with the exception of the last. 
The larger of  these two estimates is now 21% larger than the other, compared 
with 8% previously. 

Table 3.4 
Loss reserve by accident quarter 

Accident quarter 

Sep 00 

Sep 01 

Sep 02 
Dec 02 
Mar 03 
Juo 03 

Loss reserve at 30 September 2003 
(excluding September 2003 accident 
quarter) - corrected as in Table 3.3 

SM 

96 

121 

137 
119 
101 
114 

Total 1,943 

It is submitted that the actuary attempting application of  the CL to the example 
data set is now confronted with a bewildering array of  models, correctmns to 
models, and corrections to the correcuons. 

The principal facts are that: 

There are clear time trends in the data; 
One can attempt to deal with this by limiting the data on which the 
model relies to those of  recent period. Here the example of averaging 
over the last 8 experience quarters is used, but there is no clear 
guidance to prefer 8 over say 4, or 6, or some other number. 
In any event, the last experience quarter appears fundamentally 
different from the preceding 7, and the extremely ad hoc procedure of 
dropping it has been adopted. 

While the CL can be applied to any choice of  data set, there is no apparent 
criterion for reliable choice of that data set. Moreover, the CL's  
phenomenological treatment of  the trends is deeply unsatisfying. These trends 
must have a cause that resides somewhere in the detailed mechanics of  loss 
payment. However, the formulaic nature of  the CL renders it incurious as Io 
these details. 
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3.3 The effect of operational, time 

It is common for the above type of  instability to occur when rates of  settlement 
of  claims are changing over time. Berquist and Sherman (1972) suggest 
adjustment to loss reserving methods to take such movements into account. 

They refer to "ultimate claims disposed ratio" to denote the proportion of  an 
accident period's claims settled, and suggest that its outstanding claims should 
be in some way commensurate with the complement of  settlement time. Reid 
(1978) introduced the term operational time to take the same meaning, and 
this terminology will be used below. This quantity is also referred to 
sometimes as "settlement time"• 

Let N, denote the estimated number of  claims incurred in ace=dent quarter i, 
i.e. the number ultimately to be not=fled in respect of  this accident quarter. 
Then the operational time associated with (the end of) the (i,j) cell, denoted t.~ 
is 

t,j = G,j / N,. (3.3) 

Figure 3.3 plots how the operational times associated with various numbers of  
development years have changed over past accident quarters. It is seen that 
the operational time attained after 2 development years (i.e. at the end of 
development year I) increased from 33% for the September 1994 accident 
quarter to the 54% for the December 1998 accident quarter, and then declined 
somewhat for subsequent ace=dent quarters. 

S~milar trends affected development years 2 and 3, but not lower or higher 
development periods. 

Figure 3.3 

Operational times for various development 
periods 
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Figure 3.4 superimposes the plot of  the quarterly age-to-age factor 3:2 on that 
of  operational time at the end of development quarter 3. Figures 3.5 and 3.6 
make the corresponding comparisons for age-to-age factors 7:6 and 11:10 
respectively. In the first two of  these cases, increases in age-to-age factors 
appear to coincide with increase in operational time, though the correlation is 
far fiom perfect. 

Figure 3.4 

Quarterly age-to-age factors 3:2 and operational 
times at end of development quarter 3 
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Figure 3.5 

Quarterly age-to-age factors 7:6 and operational 
times at end of development quarter 7 
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Figure 3.6 

Quarterly age-to-age factors 11:10 and operational 
times at end of development quarter 11 
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An ahernative means of controlling for changing operational times is to 
replace cumulative payments by cumulative average claim sizes in the 
analysis. The cumulative average claim size (of finalised claims) associated 
with the (id) cell, given by (2.3), may be expressed by means of  (3.3) in the 
alternative form: 

Tij = [cF,j  / t,j] / Ni. ( 3 . 4 )  

This shows that cumulative average claim size is a multiple of  cumulative 
claim payments per unit of operational time. Such claim sizes might be more 
stable than payment based age-to-age factors in the presence of changing 
operational times. 

Figure 3.7 plots the cumulative average claim sizes to the end of development 
quarter 3, for the various accident quarters, against the corresponding 
operational times. It is found that average claim sizes are not in fact 
insensitive to variations in operational time, but appear to display a better 
correlation with operational times than do age-to-age factors. 

It will be seen later that this occurs because the claim sizes associated with a 
particular accident quarter tend to increase with increasing operational time. 

A similar improvement in correlation is obtained for development quarter 7, as 
displayed in Figure 3.8. The corresponding results for development quarter I l 
are displayed in Figure 3.9. 
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Figure 3.7 

Quarterly cumulative average claim size and 
operational times at end of development quarter 3 
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Figure 3.9 

Quarterly cumulative average claim slze and 
operational times at end of development quarter 11 
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4.1 

Exploration of triangular data on average claim size 

Claim development measured by development quarter  

The obsen,ations made on Figures 3.7 to 3.9 suggest that an average claim 
size analysis might be preferable to chain ladder analysis. Figures 4.1 to 4.3 
therefore explore certain trends in average claim size. Each plots log(average 
size of finalised claims) against some variable. The triangular form of data is 
retained. 

Figure 4.1 plots log(average size of finalised claims) against development 
quarter. This could have been carried out as a routine averaging process, but it 
proved efficient, and in fact more integrated with later sections, to obtain these 
averages through a modelling process. 

Consider the model: 

log S u = [3j + Eij, (4. I ) 

where 

c.j - N(0, o), (4.2) 

the % are stochastically independent, and the I~j, o are constants. 

Equivalently, 
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Sij - logN(13j, o) (4.3) 

For this model, simple regression estimates of  the ~j are equal to the arithmetic 
means (taken over i) of  the observed values of the log S 0. Figure 4.1 could 
have been derived in this way. EMBLEM software (see also Section 6) has 
been applied to fit the regression model (4.1) and (4.2) to the data, and the 
resulting estimates of  the Igj plotted against j (see Figure 4.1). The same 
software is used to produce the remaining plots in this paper. 

Figure 4.1 
Average claim size by development quarter 
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Figure 4.1 shows quite clearly how the average size of  fmalised claims 
increases with development quarter, as foreshadowed in Section 3.3. 

Figures 3.7 to 3.9 illustrated how (cumulative) average sizes of  finalised 
claims have varied with accident period. Any such effect can be incorporated 
in the model represented by (4.1) and (4.2) by extending it to the following: 

log S O = ~aj + 13ai + eij, (4.1a) 

where the 13j in (4.1) are now denoted 13aj (the superscript d signifying that 
these coefficients relate to development quarters), and the accident quarter 
coefficients 13ai have also been introduced. The relation (4.2) is retained. 

It is worth noting in passing that exponentiation of (4.1 a) yields 
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E[Sij] ffi K exp ~ .  exp [B'i, (4.4) 

where K is the constant, E[exp eij]. 

This is a model with multiplicative row and column effects, and hence is very 
closely related to the chain ladder. It is the same as the stochastic chain ladder 
of Hertig (1985) except that Hertig assumed the following in place of (4.2): 

~j - N(0, oj). (4.2a) 

Though related to the chain ladder of the type discussed in Section 3, models 
of this type differ from it, as was established by the exchange between Mack 
(1993, 1994), Mack (2000), Verrall (2000) and England and Verrall (2000). 

Stochastic versions of the chain ladder have received extensive treatment in 
the literature (England and Verrall, 2002; Mack, 1993; Mack and Venter, 
2000; Murphy, 1994; Renshaw, 1989; Verrall, 1989, 1990, 1991a, 1991b, 
2000). 

The coefficients 13aj and [3ai are no longer obtainable by simple averaging, but 
they are obtainable from simple (i.e. unweighted least squares) regression. 
Figure 4.2 gives the plot of the ~ai against i. 

Figure 4.2 
Regression estimate of trend in average claim size by accident quarter 
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The plotted values become less reliable as one moves from left to fight across 
the figure, because one is considering steadily less developed accident 
quarters. Hence the downward plunge at the right of  the plot can be ignored. 
The indication is then that, when allowance for a development quarter trend of  
the type illustrated in Figure 4.1 is made, there remains an increasing trend in 
claim sizes over time. 

The possibility of  a time trend has been incorporated in the model in the form 
(4.1a), in which the specifc time dimension to which it is related is accident 
quarter, i.e. a row effect. It is possible, however, that the trend occurs over 
finalisation quarter, i.e. a diagonal effect, represented as follows: 

log Sij ffi ]3 d + [3 f + Eij, (4.1b) 

where k = i+j = calendar quarter of  finalisation, and (4.2) is still assumed to 
hold. 

FiRing this model to the data yields Figure 4.3 as the plot o f  the [3 f against k. 
This also indicates a time trend. Adjudication on which of  (4.1a) and (4.1h) 
provides the more appropriate representation of  the trend may not be easy. 
This question will be deferred until Section 7 when rather more modelling 
apparatus is in place. 

Figure 4.3 
Regression estimate of trend in average claim size by finalisation quarter 
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4.2 Claim development measured by operational t ime 

The use of  operational time as a measure of  claim development was 
introduced in Section 3.3. The models of  Section 4. I may be re-formulated on 
the basis of  it. 

The operational time defined in (3.3) related to the end-point of  time 
represented by the (i,j) cell. This was appropriate to the context of  average 
claim sizes that were cumulative to that point. In the context of  non- 
cumulative averages, as currently, the mid-value of  operational time for the 
cell is more appropriate. This is 

r, =~Et, +,,.,.,1 
=*Fg +o,,_,]/N, 

(4.5) 

with the convention in the case j=0 that ti..t = GI..I = 0. 

The quantity TO is a continuous variate in the sense that it may take any value 

on the continuum [0,1]. It will be convenient, to convert it to a categorical 
variate by recognising.ranges of  values in which it mtght lie. 

For the present example, the interval [0,1] has been divided into 50 sub- 
intervals, [0%,2%), [2%,4%) ..... [98%,100%], labelled by the values 
1,2,...,50. Then each cell average size S,j may be written in the alternative 
notation S,t, where t is the label corresponding to the mid-quarter operational 
time T o . 

Then the re-formulation of  model (4.1) in which j is replaced by T v as a 

measure of development is as follows: 

log S,t = 13, + e,t, (4.6) 

with 

ei, ~ N(0, o). (4.7) 

the corresponding re-formulations of(4. I a) and (4. I b) are as follows: 

log S,, = I~dt + 13°i + E;zt (4.6a) 
log Si, = ~d + 13r k + E,,. (4.6b) 

The three models (4.6), (4.6a) and (4.6b) produce the plots in Figures 4.4 to 
4.6 in place of  4.1 to 4.3. 
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Figure 4.4 
Regression estimate of trend in average claim size by operational time 

Note: The observation at operational time 53 should be ignored as it relates to 
a point with no data. 

Figure 4.5 
Regression estimate of trend in average claim size by accident quarter 
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Figure 4.6 
Regression estimate of trend in average claim size by finalisation quarter 

It is interesting to note, in connection with Figure 4.4, that the use of 
operational time appears also to have simplified the relation between average 
claim size and the measure of development of an accident quarter. Indeed, 
average claim size appears closely approximated by an exponential function of 
operational time over the interval of roughly [ 10%, 100%]. 

The actuary responsible for loss reserving against the example data set will by 
now have reached the following position: 

Any conventional application of a paid loss CL is dubious (Section 
3.2). 
It appears that analysis of average claim sizes may be preferable 
(Section 4.1). 
It may also be desirable to take operational time into account somehow 
(present sub-section). 
The incorporation of a paid loss development pattern (as a function of 
operational time) together with the simultaneous identification of a 
time trend was achieved in Figures 4.4, 4.5 and 4.6 by means of 
regression. 

Further progress by means of modification ofa CL model appears difficult in the face 
of these observations. 
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5.1 

Mode l l ing  individual  c la im data 

Regression models 

If one is impelled toward some form of regression modelling such as in 
Section 4.2, there is an argument that the regression may as well be carried out 
by reference to individual claim data as to the triangular summaries used there. 
The same models as applied in Section 4.2 can be formulated in terms of 
individual claims, and the use of  data summaries then seems unnecessary and 
artificial. 

As a preliminary to this, it will be useful to express (4.6) and its variants in a 
form more conventional for regression. Thus, (4.6) may be written as: 

log S,~ = X,, [3 + ~,,, (5. I ) 

where [3 is the vector of  quantities [3t, viz. ([31, [3., ..... [3so) r, with the superscript 
T denoting matrix transposition, and X,, is the row vector (X,,i, Xit2 ..... X,,~o) 
with X,~m = I if operational time label m is associated with Si,, and X,~,, = 0 
otherwise. 

Thus the operational time variate in (4.6) is represented as a 50-vector of  
binary components. Regression variates of  this type are often referred to as 
class variates, or factor variates. The numerical values corresponding to the 
binary components are called levels. Factor variates enable further 
simplification of the regression equation, with (5. I) being written as: 

log S = X [3 + ~, (5.2) 

where log S is (with a slight abuse of notation) the column n-vector of  all 
observations log S.,, taken in any convenient order, X is the nx50 matrix 
formed by stacking the n row vectors X,t, taken in the same order as the log S,t, 
and ~ is the n-vector of  the c.,, also taken in the same order. 

Let Y, denote the size of  the r-th fmalised claim. This claim will have 
associated values of  i, j and k=i+j=calendar quarter of  finalisation. It will also 
have an associated value of  t=operational time at finalisation. Let this 
collection of observations on the r-th claim be denoted Jr, j,, I~., tr. 

The quantity tr may denote operational time specifically, or it may be 
converted to the categorical form described in Section 4.2. The latter is 
chosen for the purpose of the present paper. 

The model described by (4.6) and (4.7) requires very little modification for 
application to individual claims. Expressed in the form (5.1), it becomes: 

log Yr = X~ [3 + ~;r, (5.3) 

with 
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5.2 

~r -- N(0, (J) (5.4) 

where Xr is the value of the operational time class variate applicable to the r-th 
claim and ~r is the stochastic error term eit associated with it. 

Just as (5.1) was notationalIy contracted to (5.2), so (5.3) may be abbreviated 

to: 

log Y -- X l~ + e, (5.5) 

The general idea underlying the models of Section 4.2 is that Yr takes the 

form: 

log Yr = function(ir,jr,kr,tr) + stochastic error (5.6) 

and that this may be written in the linear form (5.3), and hence (5.5), with Xr 
denoting a row composed of variates derived from Jr, jr, kr, tr. These may or 
may not be factor variates. 

Basic t rends 

Consider the model represented by (5.3) and (5.4), with Xr denoting the 
operational time factor variate discussed there. Ordinary least squares 
regression estimation'of [3 yields Figure 5.1, which plots the components 13~, 
[32 ..... ~50 of  [3 against their associated midpoint operational times 1, 3 ..... 99. 

Figure 5.1 
Individual  claim regression estimate of t rend in average claim size by 
operational t ime 

/ 

349 



Not surprisingly, Figure 5.1 closely resembles Figure 4.4, although Figure 5.1 
exhibits greater smoothness due to the fact that it is based on about 60,000 
observations, compared with ½x38x39=741 in the case of Figure 4.4. 

The other models of Section 4.2, namely (4.6a) and (4.6b), may also be 
adapted to the form (5.3) and (5.4). The adaptation of (4.6a), for example, 
yields a version of (5.3) in which Xr comprises factor variates for operational 
time and accident quarter respectively. Figure 5.2 plots the components of the 
parameter vector 13 relating to accident quarter. 

Figure 5.2 
Individual claim regression estimate of trend in average claim size by 
accident quarter 

3.4o~ 

The adaptation of (4.6b) is similar but with Xr comprising factor variates for 
operational time and finalisation quarter respectively. Figure 5.3 plots the 
components of the parameter vector 13 relating to finalisation quarter. 

The trends displayed in Figures 5.2 and 5.3 differ somewhat from those in 
Figures 4.5 and 4.6. Presumably, the additional information included in the 
regression through the use of individual claims has improved their estimation. 
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Figure 5.3 
Individual claim regression estimate of trend in average claim size by 
finalisation quarter 

5.3 Stochastic error term 

The model (5.3) and (5.4) contains the stochastic error term ~, which by (5.4) 
is assumed normally distributed. That is, Yr is assumed log normally 
distributed. This is a convenient assumption for the conversion of  a 
multiplicative model for Yr to an additive model for log Yr- However, one 
should check whether it is in accordance with the data. 

This question may be investigated by means of  residual plots. The residuals 
naturally adapted to the normal distribution are the Pearson residuals, defined 
as follows. 

Consider the general model (5.5) and let ~,~ denote the regression estimates 

of  13, a respectively. Define 

Ix = E[log Y] = X 13 (5.7) 

and 

O=x#, (5.8) 

the estimate of  Ix, and hence the fitted value corresponding to Y. 
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The Pearson residual associated with observation Yr is 

Rr P = (log Yr -- ~r ) / ~½ (5.9) 

where ~ is the following estimator of V[RPr]: 

n 2 

= ~(log r,-~r) /("-P) (5.I0) 
r-I 

with p the dimension of the vector l~, i.e. the number of regression parameters. 

The Pearson residuals should be approximately unit normal distributed for 
large samples subject to (5.4). Figure 5.4 plots them for the model underlying 
Figure 5.3, indicating substantial negative skewness. This is confirmed by the 
alternative views of the residuals presented in Figures 5.5 and 5.6. 

Figure 5.4 

This suggests that the logarithmic transformation has over-corrected for the 
long tail of the Yr, i.e. these observations, while fight skewed, are shorter 
tailed than log normal. In this event, the choice of working with log 
transformed data, as in (5.5) is a poor one. 
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Figure 5.5 Figure 5.6 

. 

6.1 

The exponential dispersion family and generalised 
linear models 

The exponential dispersion family 

One actually requires a distribution of  the 8r that lies between normal and log 
normal in terms of  long-tailedness. The exponential dispersion family 
(EDF) of  likelihoods (actually quasi-likelihoods) provides a comprehensive 
family within which to search for a distribution with suitable tail length. 

The EDF comprises the following family of quasi-likelihoods (Nelder and 
Wedderbum, 1972): 

f(y;0,k) = a(k,y) exp ~. [y0 - b(0)] 
(6.1) 

where 0,k are parameters and a(.) and b(.) are functions characterising the 
member of the family. 

It may be shown that, for this distribution, 

E[YI0,L] = b'(0) (6. I) 
Var[YI0,L] = b"(0)/L (6.2) 

Denote b'(0) by ~t(0) whence, provided that la(.) is one-one, 

Var[YI0,L] = V0t)/L (6.3) 

for some function V(.) called the variance function. 

Many applications of the EDF restrict the form of  the variance function thus: 

V(la ) = ~t p (6.4) 
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6.2 

for some constant p_>0. This likelihood w,ll be referred to as EDF(p). 

the quantity ~p = I /k  is called the scale parameter .  

Special cases of  the EDF are: 

p=O: normal 
p=l:  Poisson 
p=2: gamma 
p=3: inverse Gaussian. 

GeneraHsed linear models 

Now let Y be a random n-vector, as m Section 5. Suppose YhYz,...,Yn to be 
stochastically independent drawings from the EDF likelihoods 

f(yr;0r,k) = a(L, yr) exp k [y,O, - b(0,)] (6.5) 

where the same k, a(.) and b(.) apply to all r. 

Suppose further that It(0,) takes the form 

I t ( 0 r )  = h'l(Xr~) (6.6) 

for some one-one function h(.), called the link function, row p-vector X, and 
column p-vector I~. 

With the same slight abuse of  notation as occurred in connection with (5.2), 
the n relations (6.6) may be stacked into the form 

It(0) = h~(Xl~) (6.7) 

where 0 is the column n-vector with r-t.h component 0, and X is an nxp design 
matrix. The n-vector XI~ is called the linear response. 

This specification of  the vector Y ~s called a Generallsed Linear Model 
(GLM) (Nelder and Wedderbum, 1972). GLMs are discussed by McCullagh 
and Nelder (1989). Note that the general linear model arises as the special 
case o fa  GLM with normal error term and identity 1,ink function. 

The parameter vector I~ may be estimated by maximum likelihood. Generally, 
closed form solutions are not available, but various software products perform 
the estimation, e.g. SAS, S-Plus, EMBLEM. This paper uses the last of  these, 
an interactive package produced by EMB Software Ltd of  the UK. 

Maximisation of  the likelihood L[YI0,k] is equivalent to minimisation of  the 
so-called deviance D[Y[0,k] where 
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6.3 

D[y ]0,~.] = -21ogL[y 10,~,] 

= -2~=, {k [y,O, -b (O,  )]  + log a (k,y,)} (6.8) 

Residuals 

In the more general setting o fa  GLM, the Pearson residual (5.9) becomes 

R: .~(Y, - ~,)/[(~V (l~)] '~ (6.9) 

where the observations are now the Yr instead of the log Yr, [3 is the estimated 

value of 13, O=h1(X 0 ) is now the fined value defined in parallel with (5.8), 

with XI3 now called the linear predictor,  and 

= D[Y I*,~.]/('-P). (6.10) 

Note that, for the identity link and normal error, (5.10) and (6.10) are the 
same. Then (5.9) and (6.9) are also the same since, )'or the normal case, V(V.) = 
It °= 1. 

Interpretation of Pearson residuals may be difficult for non-normal 
observations. Since the residual is just a linear transformation of the 
observation, any feature of non-normality, such as skewness, will be carried 
directly fi'om one to the other. 

An alternative form of residual is often helpful in these circumstances. Note 
that the deviance (6.8) may be written in the form (argument suppressed for 
brevity) 

O=~a, (6.11) 
e . l  

where 

dr = -2log Lr (6.12) 

with log Lr the contribution of Yr to log L. 

Now define the deviance residual 

.d~ R, ~ = s g n ( Y , - I t )  , (6.13) 

The advantage of devmnce residuals is that they tend to be closer to normal 
than Pearson in their disuibution. A variant is the studentised standardised 
deviance residual 
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7.1 

R, ss° = R, D/[~(1- z, )j1" (6.14) 

where zr is the r-th diagonal element of the nxn matrix x(xTx)IxT. These 
residuals tend to have a distribution close to unit normal. 

Application of GLM to data set 

Loss reserving with GLMs 

Although the use of  GLMs in loss reserving is not widespread, it is also not 
n e w .  

The use of  general (as distinct fiom generalised) linear models can be seen in 
Taylor and Ashe (1983), Ashe (1986) and Taylor (1988). These two authors 
were in fact using GLMs for loss reserving consulting assignments during the 
1980's. 

The general linear model is also inherent in the loss reserving of De Jong and 
Zehnwirth (1983), based on the Kalman filter, and the related ICRFS software 
(Zehnwirth, 2003), marketed since the late1980's. 

Wright (1990) gave a comprehensive discussion of  the application of  GLMs to 
loss reserving. Taylor, McGuire and Greenfield (2003) also made use of  
them. 

All of  these models other than in the last reference were applied to summary 
triangles o f  claims data, such as used in Section 4, rather than individual 
claims. 

7.2 Choice of  error distribution 

As suggested at the start of  Section 6. I, one requires an error distribution that 
lies between normal and log normal in terms of Iong-tailedness. 
Experimentation might begin with a gamma distribution. This is a more 
reahstic distribution of claim sizes than normal, its density having strictly 
positive support and positive skewness. It is, however, considerably shorter 
tailed than log normal. 

Consider the gamma (i.e. EDF(2)) GLM corresponding to (5.5). It has the 
same X and 13, but observations are Y, instead of log Y,, and the link function 
is log. For example, the particular form of  this model adapted to (4.6b) is as 
follows: 

Y, - EDF(2) (7. I ) 

E[Y] = exp XI]. = exp [xd[5 a + X~'l~ f ] (7.2) 
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where X d and X f are factor variates for operational time and finalisation 
quarter respectively. 

Fitting this model to the data set yields the residual plots set out in Figure 7.1• 

Figure 7.1 

r 

Comparison of Figure 7.1 with 5.4 reveals that the use of  a gamma rather than 
log normal error has corrected the most obvious left skewness of the residuals. 
However, Figures 7.2 and 7.3 give more detail of  the residuals and indicate 
that they are not altogether satisfactory. 

Figure 7.2 Figure 7.3 

The studentised standardised residuals are expected to resemble standardised 
unit normal residuals. The largest 1,000 of these (from 60,050 observations) 
would numerically exceed 2.4. Figure 7.2 conforms reasonably well with this 
requirement, displaying residuals numerically exceeding a threshold value of 
roughly 2.6. 
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However, extreme values, up to 12, appear, indicating a much longer tail than 
normal. This abnormality in the residual plot is emphasised in Figure 7.3, 
which displays the largest 100 residuals. The unit normal range for these has a 
threshold value of about 3.1. the observed threshold exceeds 4, and all 100 
residuals are positive. 

Figure 7.6 

These properties of the residual plots indicate that the distribution of claims 
sizes is longer tailed than gamma. As indicated by (6.3) and (6.4), a larger 
EDF exponent p will generate a longer tail. Therefore, one experiments with 
values of p>2 (gamma). Figures 7.4 to 7.6 are the residual plots for EDF(2.3) 
corresponding to Figures 7.1 to 7.3. 

Figure 7.4 Figure 7.5 
. . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  
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Figure 7.7 

× . 

Figure 7.4 shows that the shift to the longer tail of EDF(2.3) has over- 
compensated somewhat for the right skewness, producing a degree of left 
skewness. Figure 7.5 shows little change in the threshold value of the largest 
1,000 residuals. However, Figure 7.6 shows considerable improvement in the 
treatment of the extreme tail. 

The final choice of claim size distribution needs to balance these observations. 
Generally, the improved treatment of the tail would be expected to improve 
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7.3 

7.3.1 

robustness of  the parameter estimation such that this more than offsets the 
unwanted skewness near the centro: of  the distribution. The choice of  
EDF(2.3) will be retained for the remainder of this paper. 

There is a practice, common among actuaries, of separately analysing "small" 
and "'large" claims, however defined, on the ground that the latter group are 
liable to distort the averaging processes inherent in modelling. It is worth 
remarking that the explicit incorporataon of  a (relatively) long tailed error 
distribution in the model (such as EDF(2.3) as above), and the adoption of  a 
procedure for parameter estimation that is consistent with this distribution, 
may eliminate the need for this practice. 

Figure 7.7 displays a further residual plot in which residuals are plotted in 
box-whisker form against operational "time. The boxes correspond to the range 
between 10- and 90-percentiles, and the markers on the whiskers are placed at 
the 5- and 95-percentiles. 

Once a tentative choice of claim size distribution has been made, it is 
necessary to examine plots of this type against each independent variate. 
These examinations seek two things: 

• Trendlessness from left to fight (horizontality of the box centres) 
• Rough equality of dispersion (boxes all of  about the same size). 

Violation of  the fast requirement indicates some dependency of the dependent 
variable on the independent vanate, not already accounted for in the model. 
The second requirement checks for homoscedastleity, i.e. that (6.3) holds for a 
value of q) that is constant over the entire range of  the independent variate 
under scrutiny. 

Refinement of the model design 

Operational time 

The model discussed in Section 7.2 still has the very elementary form set out 
in (7.1) and (7.2). The factor variate X a, defined in Section 5.1, has 50 levels, 
which means that ~d contributes 50 parameters to the model. Inspection of  
Figure 5.1 indicates, however, these 50 parameters can be closely represented 
as linearly related to operational time over much of  the latter's range. 

Write (7.2) in the form: 

E[Yr] = exp Xrl~ = exp [Xa,~ a + XrrlB f ] (7.3) 

where X a, and X r, are the values of the factor variates X a and X f assumed by 
the r-th observation. 

Now replace this by the form: 
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E[Yr] = exp Xr[3 = exp [[3dl t~ + 13a2 max(0,10-tr) + 13a3 max(0,tr-80) + xfl3 f ] 
(7.4) 

where tr is the value of  operational time applying to the r-th observation, and 
[3dl, 13a2 and ~d3 are scalar parameters. 

This is equivalent to representing the operational time trend in Figure 5.1 as a 
piecewise linear trend with breaks in gradient at operational times 10 and 80. 
The factor variate has been replaced by a set of  continuous variates. 

This enables operational time to be accommodated in the model by means of 
just 3 parameters, rather than 50. The factor variate representation of  
finalisation quarter is retained for the time being. 

I f  the model (7.4) is fitted to the data, with error term EDF(2.3), as suggested 
by Section 7.2, the operational time component of  (7.4) is as shown by the 
piecewise linear plot in Figure 7.8. It is superimposed on the factor variate 
plot in the figure. The correspondence between the two representations is seen 
to be quite good, indicating that the 3-parameter representation captures 
essentially all the information of  the 50-parameter one. 

7.3.2 Superimposed inflation 

Similar economies in the representation of  finalisation quarter can be made. 
Figure 7.9 shows the plot of  the parameter vector I~ f in the case of  a factor 
variate fitted in the presence of  the continuous representation of  operational 
time, as in (7.4). 

Figure 7.8 
Continuous operational time variate 

Figure 7.9 
Factor variate representation 
of finalisation quarter 

The trend displayed in the left portion; especially the left-most point, may be 
discounted, since the finalisation quarters here relate to the top left diagonals 
of the data triangles in Appendix A and contain comparatively little data. As 
might have been expected, Figure 7.9 is similar to Figure 5.3 over the range of  
finalisation quarters common to them. 
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One possibility would be to fit a linear trend from the beginning of  1997. An 
appropriate choice of  model for the earlier finalisation quarters is unclear but, 
in view of  the small quantity of  data represented here and its antiquity, the 
model chosen is unlikely to affect estimation of  a loss reserve unduly. 

Consequently, Figure 7.10 relates to a model in which the linear trend 
assumed to apply to finalisation quarters from 1997 onwards is cavalierly 
assumed to apply to the earlier ones also, though with a step in claim sizes 
occurring at the start of  1997. 

In this case, (7.4) is replaced by: 

E[Yr] = exp [a + [~dl t~ + lid2 max(0,10-tr) + 13a3 max(0,tc-80) + 13fl kr 
+ 13 f I(kr<97Q1)] (7.5) 

where kr is the number of  the finalisation quarter applying to the r-th 
observation, ct, 13 q and [~f2 are scalar parameters, and generally I(.) is the 
indicator function defined as follows: 

I(c) = 1 if condition c holds; 
= 0 if  it does not. (7.6) 

The constant ct now becomes necessary, having previously been absorbed into ~f. 

Figure 7.10 
Continuous finalisation quarter variate 

Figure 7.11 
Additional break in 
finalisation quarter trend 

the 

The comparison in Figure 7.10 between the trend of  constant gradient over 
finalisation quarter and the corresponding factor variate hints at an increase in 
gradient over the more recent finalisation quarters. Figure 7.11 therefore 
represents an alternative model in which the gradient changes at the end of  the 
September 2000 quarter. 

Formally, the model (7.5) is replaced by: 
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E[Yr] = exp [a~  13el t, + 13d2 max(0,10-h) + 13a3 max(0,te--80) + [3fl I~. 
13f2 max(0,k, - 2000Q3) + [~r I(kr<97QI)]. (7.7) 

One will need to make a choice between models (7.4), (7.5) and (7.7), and 
possibly others. The choice can be made on the basis of  the so-called 
information criteria, which reward goodness-of-fit but penalise additional 
parameters. For example, the Akaike Information Criterion (ALL") (Akaike, 
1969) is defined as: 

AIC = D + 2p (7.8) 

where D denotes deviance and p number of  parameters. Models with low 
values of  the AIC are to be preferred. 

Table 7.1 gives values of  the AIC for the three models under consideration, 
showing that: 

The factor variate model is dramatically inferior to the two involving 
continuous finalisation quarter variates; and 
Model (7.7), allowing for a change in gradient of the trend is the best 
of  the three. 

Table 7.1 
AIC for different models of finalisation quarter effect 

Model of finalisation quarter effect 

Factor variate (7.4) 
Constant gradient trend (7.5) 
Change in gradient of trend (7.7) 

AIC 

-14,517.6 
-14,566.6 
-14,567.1 

7.3.3 Interaction terms 

The trend over finalisation quarter measures the increase in claim sizes in real 
terms over calendar time, and may therefore be interpreted as SI. Figure 7.1 I 
indicates that the preferred model estimates the factor of  increase as about 
exp(0.22) over the 3 years fi'om September 2000 to September 2003, or 
equivalently more than 7% per annum. 

While it is quite possible for smaller bodily injury claims to inflate at this rate, 
it is less usual for the larger and catastrophic claims. A question arises, 
therefore, as to whether larger and smaller claims might be subject to differing 
rates of SI. 

If operational time is adopted as a proxy for distinguishing between large and 
small claims, then one might investigate whether different operational times 
are subject to different rates of SI. This is done by searching for statistically 
significant interaction effects between operational time and flnalisation 
quarter. 
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For this purpose, the 0-100 range of operational time is divided into the 
following 7 bands: 0-6, 6-14, 14-22, 22-40, 40-60, 60-80, 80-100, denoted 
b~,...b~ respectively. Let X bt denote the banded operational time factor 
variate, and let xbtr be its value for the r-th observation. 

The following model is then fitted: 

E[Yr] = exp [X"r~ ~t + xb'® ~r~13 b'®cf] (7.9) 

where X" represents the set of  three continuous operational time variates 
appearing in (7.7), X ~r represents the set of three continuous finalisation 
quarter variates in the same expression, and X b' ® cf denotes the 2 I-component 
vector of  variates formed as the cartesian product of  the 7-component X b' and 
3-component X or. Cartesian products of this b'pe are called interaction 
variates in GLM parlance. 

Model (7.9) may be written in the equivalent form: 

E[Yr] = exp {~ + ~dl tr + [3d2 max(O, lO-t,) + [3d~ max(O,t.,-80) + 

y ,  I(t~ ® bm) [[3~, k,+ [3rm~ max(O,k~ - 2000Q3) + 13fm3 I(Iq<97QI)] (7. I O) 
m - I  

whose square bracketed member retains the same functional dependency on 
finalisation quarter as in (7.7), but separately for each operational time band. 

f n l  Note that the coefficients [3rm~, [3 ,,a, ]3 ,,o represent SI in operational time band 
bm. 

Figure 7.12 provides a display of  the interaction term when (7.9) is fitted to 
the data. Here "'opband7(m)" denotes band bin. For each of  these bands, the 
model's linear predictor, as defined in Section 6.2, is plotted for t,=O. Features 
of the plot are as follows: 

• The general level of  claim size is seen to increase with increasing 
operational time band (as in Figure 7.8) 

• While Figure 7.11 indicated the period since September 2000 to be 
subject to an increased rate of SI, it is now seen that this is confined to 
the operational time bands b,,, bj, and b~, which cover operational times 
6..40. As hinted at the start of  the present sub-section, the increased SI 
does not apply to the larger claims settled at the high operational times. 

• The rate of  Sl over recent periods, which is measured by the gradients 
of  the paths appearing m Figure 7.12, peaks in operational time bands 
b3 and b4, i.e. in the range 14-40. 

The last remark suggests that the interaction terms represented by the 
summation in (7.10) can be simplified by means of  continuous variates. An 
example of  such a simplification is the following: 

363 



E[Yr] = exp {it + 13dl tr + [~d2 max(0,10-t¢) + [~d 3 max(0,tr--80) 
+ 13fl k~ +13 % max(0,k~- 2000Q3) + 13 q I(k~<97Q1) 
+ r(t0 [1~%+ 1~2 max(0,k~- 2000Q3)]} (7.11) 

where 

"t(t) = min( 15,max(0,t- I 0)) - min(15,max(0,t-25)) (7.12) 

i.e. 7(0 describes a function that is zero everywhere on the interval [0,100] 
except on the sub-interval (10,40), where it describes an isosceles triangle of  
height 15. 

Figure 7.12 
Interaction between SI and operational time 
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It can be seen that (7.11) comprises (7.7) plus a further term representing 
additional SI in the operational time range 10-40, at a rate that increases 
steadily fTom 0 at operational time 10 to a peak at operationaI time 25, and 
then declines steadily to 0 at operational time 40. 

Fitting this model to the data produceslhe SI profile illustrated in Figure 7.13. 
Figure 7.14 provides the same type of  display of model (7.11) as appears in 
Figure 7.12, and facilitates the comparison of  model (7.11) with model (7.10). 
Here "opband7(m)" is as in the earlier figure, and "+opband7(m)" denotes the 
corresponding plot for the continuous model (7,11), i.e. the plot of the average 
linear predictor against k for tr=0 and tr® bin. 
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Figure 7.13 
Profile of SI allowing for SI x operational time interaction 
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Figure 7.14 
Interaction between continuous SI and operational time variates 

90 100 

8.0 - ~ - ~ -  

• 4, 4, 4, • $ ' 4 '  
V V ' I ' ~ '  e e $ '$" 4'  e , $ .  v ,~ ,i, e e $ e .* $, * • * * ~ . 

• ~ ( 4 )  

365 



The simplified model (7.11) is seen to produce a reasonable fit to the more 
elaborate (7.10). It would not be acceptable as it stands, as there are 
systematic discrepancies, particularly in relation to opband7(1). However, 
certain aspects o f  this model will be superseded in Section 7.3.4, and so 
detailed improvement of  it is not pursued here. 

7.3.4 Accident quarter effects 

Section 7.3.3 has already noted the change in rate o f  SI at the end of  
September 2000, and how the rate changed much more at the low operational 
times than others. In fact, the legislation governing the scheme changed at 
precisely this date. 

All subsequent accident periods were subject to limitations on payment of  
plaintiff costs, whose expected effect was to eliminate a certain proportion of  
smaller claims in the system. Larger claims were expected to be unaffected. 
The scheme of  insurance, as modified by these changed rules, will be referred 
to as "the new scheme". Prior accident quarters make up the "the old 
scheme". 

This strongly suggests that some or all of  the SI observed at low operational 
times after September 2000 might constitute an accident quarter (row) effect 
rather than finalisation quarter (diagonal) effect. In this connection, it is noted 
from Figure 3.3 that virtually all of  the exceptional operational times (<40) 
after September 2000 relate to the new scheme. 

It is worthwhile returning to the average claim size data in respect o f  the new 
scheme. This is done in Table 7.2. 

Table 7.2 
Average sizes of claim finaHsations for old and new schemes 

Accident Average claim sizes (in 30/09/03 values) in development quarter 
quarter 0 I 2 3 4 5 6 

$ $ $ $ $ $ $ $ 

Dee-9~ 547 6,035 8,934 11,699 18,397 18,062 26,086 32,13~ 
Mar-0( 5,050 5,185 6,958 14,904 13,504 20,746 22,489 27,87 c. 
Jun-0C 2,910 4,177 7.433 10,275 13.895 18,916 26,206 32,89~ 
Sep-0C 6.512 7,116 9,917 14,163 24,034 27,392 41,85] 
Dee-0( 221 24,393 29,70( 
Mar-01 792 2,5 20,672 29,574 39,96~ 
Jun-01 1,271 ~ ~ 16,207 21,294 34,237 40,81,~ 
Sep-01 1,258 12,012 21,726 25,997 26,019 38,15( 
Dee-01 1,355~ ~ 11,374 19,439 22,548 35,709 28,962 
Mar-02 1,594 ,018 14,700 16,768 26,827 26,851 
Jun-02 1,017 [.~ 8,669 12,905 17,750 25,063 
Sep-02 3,484 ~ i ~  5,982 14,379 18,852 
Dee-02 8,102 ~ 6,493 10,714 
Mar-03 1,182 ~ 2,931 
Jun-03 2,327 
Sep-03 103 
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7.4 

The heavy horizontal line in the table marks the passage from old to new 
scheme. Claim sizes are seen to decline instantaneously and substantially on 
introduction of  the new scheme. 

The shaded area marks one in which the reduction in claim size is maintained. 
Below this shaded area, however, claim sizes increase rapidly, and by the 
December 2002 fmalisation quarter (the fourth last diagonal) are in excess of  
their old scheme counterparts. 

The immediate reduction in claim sizes by the new scheme is certainly a row 
effect, and needs to be modelled as such. The subsequent increase in claim 
sizes can be viewed as either: 

• a diagonal effect limited to low operational times (as in Section 7.3.3); 
or 

• a row effect limited to low operational times. 

In view of  its likely origin in the new scheme, it is perhaps better regarded as 
the latter. This is the view taken in this paper, and reflected in the final model 
fitted to the data in Section 7.4. Details of  the trend identification are similar 
to the examples dealt with above, and are not given here. 

Final model 

The final model fitted to the data set takes into account the issues discussed in 
Sections 7.1 and 7.2, and also includes a seasonal effect whereby the sizes of  
claims t'malised in the March quarter tend to be slightly lower than in other 
quarters. It takes the following form: 

E[Y~] = exp {a + 13d I If 4- 13d 2 max(0,10-t~) 
+ 13d3 max(0,t,,--80) + 13d4 l(h < 8) [Operational time effect] 

+ 13~ l(k~=March quarter) ]Seasonal effect] 

+ 13tl k¢ + 13r2 max(0,1~. - 2000Q3) 
+ 13c3 l(k,<97Q 1 ) [Finalisation quarter effect] 

+ k~ [13~f] t¢ + 13~f max(0,104,)] [Operational time xfinalisation 
quarter interaction] 

+ max(0,35-tr) [13~1 + 13=2 i(ir > 2000Q3)]} [Operational 
time x accident quarter interaction] 

(7.13) 

where i, is the accident quarter applying to the r-th observation. 

The model form (7.13) is set out in a series of  components that isolate the 
different types of  effects, labelled in italics on the right. 

Comparison of it with (7. I I ) shows that: 
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• It retains the concept o f  an operational time x finalisation quarter 
interaction, though this now: 
o has its peak rate of  SI shifted from operational time 25 to 10; and 
o this profile o f  SI applies to all finalisation periods, not just those 

that fall within the new scheme. 
• There is heightened SI in the new scheme, but affecting all operational 

times, not just the low range. 
• A part of  what previously appeared as heightened SI in the new 

scheme is now accounted for as an accident period effect, with a one- 
offshift  in claim size at introduction of  the new scheme, the size of  the 
shift being largest at the low operational times and gradually 
decreasing with increasing operational time, until petering out at 
operational time 35. 

Table 7.3 compares the AIC for model (7.7) with the final model, showing a 
considerable improvement achieved by the latter. 

Table 7.3 
AIC for final model and model (7.7) 

Model of finalisation quarter effect 

Model (7.7) 
Final model (7.13) 

AIC 

-14,567.1 
-14,588.9 

7.5 Validation of final model 

While (7.13) may appear the best model achievable, it needs to satisfy a 
number of  routine tests before its final acceptance. These are concerned with 
the properties of  residuals, and are illustrated in Figures 7.15 to 7.20. 

Figure 7.15 Figure 7.16 

Figures 7.15 to 7.17 test for two things: 
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Trendlessness, from left to right, with respect to the major variates, 
checking that no systematic trend in the data remains uncaptured by 
the model; and 
Homoseedastieity, i.e. constant dispersion from left to fight. 

Both of  these tests are concerned just with trends rather than with the 
magnitude of  the residuals. Hence standardisation is unnecessary (though it 
would do no harm), and just deviance residuals are displayed. 

The possible trend at the extreme fight of  Figure 7.17 is, o f  course, based on 
very little data, as it relates to just the last three accident quarters. It has been 
ignored for the purposes of  the present paper. 

Figure 7.17 Figure 7.18 

Figure 7.19 Figure 7.20 

. . . . . . . . . . . . . . . . . . . . . . . .  7 . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figures 7.18 to 7.20 are concerned with the distribution of  the residuals, with 
the same considerations as discussed in relation to Figures 7.4 to 7.6. Indeed, 
there is little difference to the naked eye between the two sets of  graphs, 
showing that, once the EDF(2.3) error structure has been chosen, the rather 
extreme change in model from (7.2) to (7.13) has had little effect on the 
distribution of  residuals. 
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7.6 Forecast of final model 

Table 7.4 repeats Table 3.3, but supplemented by the loss reserve forecast by 
model (7.13). The following assumptions are made for the purpose of this 
forecast: 

The experience of  f'malised claims of  an accident period is indicative 
offls ultimate average claim size. 
Future SI is as experienced to date in the new scheme. 
Future rates of  claim finalisation are about the same as experienced 
over the most recent 8 quarters. 

The first of  these assumptions is fundamental to the forecasting methodology. 
it might be violated if, for example, at specific operational times, one observed 
a trend over time in the ratio of  average amount paid to date on open claims to 
the average paid on finalised claims. 

The second assumption has a major influence on the forecast, the third little 
influence. 

Table 7.4 
Loss reserves corrected and uncorrected for low September 2003 quarter 
paid loss experience 

Averaging period 

Chain ladder models: 
All experience quarters 
Last 8 experience quarters 

All experience quarters except September 2003 
Last 8 experience quarters except September 2003 

GLM (7.13) 

Loss reserve at 30 September 
2003 (excluding September 

2003 accident quarter) 
Uncorrected Corrected 

$B 

1.61 
1.68 

1.78 
1.92 

2.23 

$B 

1.94 
2.35 

The GLM (7.13) generates a loss reserve near the top of  the range of  CL 
results. While there is reasonable agreement with the CL version derived from 
the experience of  the last 8 quarters but one and corrected for the anomalous 
experience of the last quarter, this is a very detailed choice, and one has no 
means of determining this model to be superior to many other contenders. 

For example, why 8 quarters? Why not 67 Or 10? Why correct for just the 
last quarter ofexperience? Why not the last 2? In any event, Table 7.5 shows 
that, while this version of the CL may produce a total resen, e similar to that of  
the GLM, its composition by accident quarter is very different. 
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The former produces a reserve for the last accident year that is 19% higher 
than the GLM. This would lead to much higher estimates of  average claim 
size, and hence to quite different pricing decisions for future underwriting 
periods. 

Table 7.5 
GLM and CL loss reserves by accident quarter 

Accident quarter 

Sep 94 - Dec 98 

Mar 99 - Mar 02 

Jun 02 
Sep 02 
Dec 02 
Mar 03 
Jun 03 

Loss reserve at 30 September 2003 (excluding 
September 2003 accident quarter) 

GLM (7.13) CL based on last 8 experience 

$M 

283 

1,122 

154 
159 
160 
173 
179 

quarters except the last - 
corrected 

200 

I,I 74 

183 
199 
201 
206 
192 

Total 2,229 2,354 

The validation devices represented in Figures 7.15 to 7.17 have the common 
feature that they are all l-dimensional summaries of  residuals. While the 
residuals may be trendless over the single dimension, finahsation quarter, and 
may also be trendless over the single dimension, accident quarter, it is possible 
thai there are pockets of  cells within the 2-dimensional triangle ,n which they 
tend to be systematically of  the one sign. 

Figure 7.21 provides a simple test of  such an eventuality. For each cell of  the 
accident quarter/development quarter triangle, it records the ratio: 

Observed average size ofclaim finalisation / GLM fiued average size. 

These ratios are colour coded: red if greater than 100%, blue if less. The fact 
that the numerical values of  the ratios are too small to be legible in the figure 
as reproduced here does not detract from its value A cursory examination o f  
its colout patterns indicates a generally random scatter of  red and blue. 

There is no apparent congregation of cells of  one or other colour in particular 
locations within the triangle. This confirms the trendlessness of  the residuals 
over the whole of  the 2-dimensional array. 
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Figure 7.21 
Colour coded ratios of observed to fitted average claim sizes 

Ratio of  observed to average claim size in development quarter 
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. C o n c l u s i o n s  

The foregoing sections have dealt with a case study involving a loss triangle of  
obvious complexity. It contains multiple trends. 

The triangle has been approached initially from the viewpoint of  one with a 
predisposition to application of  the CL. The trends then manifest themselves 
in the form of  non-constancy of  age-to-age factors over accident periods. 

The complexity of  the data set is reflected in the model of  claim sizes fitted to 
it, which includes the following, in addition to the expected variation with 
operational time: 

• a seasonal effect; 
• SI whose rate varies with operational time, and also passes though one 

change-point; 
• recognition of  a new scheme affecting accident periods after its 

introduction, but with an effect that varies with operational time. 

It is extremely difficult to accommodate such trends within the CL structure 
and estimate them efficiently. However, the GLM (7.13) adopted here does so 
parsimoniously, using just 13 parameters. This compares with the 73 
parameters implicit in a CL applied to a triangle of  dimension 37 even before 
the recognition of  any trends. 
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The GLM is one example of  a model with a fully stochastic specification, as 
opposed to the CL which is usually approached in practice as an algorithm 
(though the stochastic formulations mentioned in Section 4.1 may be noted). 
The stochastic framework provides a set of  diagnostics that may be used to 
compare candidate models in a forntal and organised manner, and to 
validate the model finally selected. 

The stochastic framework also allows a choice of the distributional form 
from which observations are assumed drawn. This enables an informed 
treatment of  outliers. 

These properties of  the GLM are seen to be more than academic as this model 
generates a loss reserve that differs vastly from some CL applications. While 
one CL model is found to produce a somewhat similar reserve (Section 7.6), 
there is no apparent reliable basis for distinguishing that model as superior to 
other CL models. 

In any event, though the CL model in question appears to produce a total loss 
reserve that is approximately correct, its dissection by accident period appears 
quite wrong. Specifically, it over-estimates average claim sizes of  recent 
accident periods by margins approaching 20%. Such estimates, if 
incorporated m the business process, would be liable to lead to quite incorrect 
pricing decisions for the ensuing underx,,xiting penods. 

Finally, but not of  least significance, one emerges from the GLM fitting 
process described in Section 7 with a greatly enhanced understanding of  
one's data. Data exploration forms an integral part of  the process, and the 
GLM provides the framework within which such exploration can be carried 
out efficiently. 

The CL on the other.hand provides a sausage machine, a rigid and unenquiring 
algorithm. This is an advantage in terms of  required resources. Only 
relatively low-skilled resources are required to apply it in its unmodified form. 
A serious disadvantage to be set against this is that it may produce a totally 
wrong result, that it may give precedence to process over substance. 

The CL model may be described as a muhiplicative model with categorical 
accident and development period effects. This is a very simple design, which 
is highly convenient if justified. It is, however, a design that relies on an 
assumption ofan  identical process affecting every accident period. 

Beyond this, it is phenomenological in the sense that there is no specification 
of  what that process is. If evidence appears that the CL design is invalid, the 
lack of process specification leaves one with no indication of  how the design 
should be modified. 

One may attempt modification on some empirical basis, such as trending age- 
to-age factors, but the empiricism ~tself is a recognition of the lack of 
understanding of  the process. Indeed, because of this, there is in our view a 
strong case for abandonment of  the CL immediately its simple design is found 

373  



to be violated. One is likely to be better served in this case by an attempt to 
build understanding of the process and then select the model design 
accordingly. 

These arguments are presented not in the spirit of  an anti-CL diatribe, but 
rather in recognition of  the fact that, when the CL (or indeed any other h~ghly 
standardised model des~gu) turns out to be a poor device in practice, 
alternatives are required and use of  a GLM may well be an effective 
alternative. 
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A.I Incremental paid losses 

Append ix  A 
Paid loss data 

occident 
quar'.er 0 

development q,arter ($0OO I 
1 2 3 4 5 6 7 8 9 

Sep-9~ 
Dec.9~ 
Mar.9. ¢ 
Jun-9E 
Sep-9. = 
Dec.9~ = 
M~r-9E 
Jun-9( 
Se~-9( 
Dec-9( 
Mar-9~ 
Jun-97 
SeO-9~ 
Dec-97 i 
M~r-981 
Jun-9E 
Sep-9~ 
Oec-9~ 
Msr-~ 
Jun-~ 
Sep-99 
Dec-99 
Mar-O0 
Jun-00 
5ep-00 
Dec-00 
Mar-01 
Jun-01 
Sep-01 
Dec-01 
Mar-02 

1 61 273 934 1.320 1.017 492 393 1.111 2.0918 
40 416 1,362 2.348 3671 2.823 2.207 3.031 5.083 4.987 
30 581 1.352 2.452 1.678 1.704 2 603 4.747 3.078 3.868 
24 493 1.641 1.504 1.972 3.581 3.318 3.248 4.805 5.714 
28 689 876 1.973 2.639 3.823 2.588 4.270 5.290 7.363 
59 239 751 1.698 2.526 2.209 3.319 4 812 4.316 4 181 
30 268 1.300 2.016 2.732 3.036 3.317 4.058 3 614 3.978 
27 488 1.444 1.715 2.492 3.405 3 534 3 471 4.759 8.035 
19 459 1.188 2.383 3 485 3.097 3 346 5.426 6.796 6.364 
7 315 1.439 2.278 3213 2900 5.411 4.532 4.548 5.668 

56 381 1.216 2.615 2.290 3.195 5.206 6.497 4.561 7.066 
7 488 1.813 2.054 2.970 3.433 5.971 4.222 6.311 4 334 

45 557 1.270 2.763 2.714 4.640 3.783 5.336 6.592 10 645 
45 447 1.734 2.767 4.107 3.660 5.290 8.830 7.564 6 157 
17 385 1.593 3.050 3344 4.132 5.526 5.433 4.802 5.677 
29 746 1.830 3.100 3 599 5.265 7 271 4.743 6.868 4.533 

100 678 1.582 3 172 4.391 8.865 5 132 8.321 9.431 7.880 
54 533 1.599 4 207 6 823 8.897 10.541 7.628 5.492 5.131 
28 721 2.393 4.798 5.052 7.237 6 378 5.879 4.394 6.118 
92 725 2.517 3.238 5455 5.472 7.317 4.549 8.027 6.979 
65 649 1.419 3.913 3531 6.699 5.169 7.277 7.891 16.651 
55 740 2.094 2.694 5.952 3.925 6.103 6.780 11.315 7.334 
75 666 1.364 3.879 2.758 5.350 6.112 7.328 6.486 7.222 
60 571 1.527 2.133 4.521 5.852 8414 6.501 9.512 6.807 
76 810 1.156 2.825 3.602 8.354 7.015 10.612 9.707 9489 
40 476 762 1.578 3 394 3.905 5 606 6.412 8.394 8.060 
42 382 950 2.411 3 240 5.281 6 840 10.038 7.674 8.413 
71 629 1.203 1.857 4.116 5.433 9.705 7.721 10.723 6.983 
63 999 1.180 3.101 4.923 7.240 7.068 8.900 6.862 
59 635 1,209 2.517 5.749 5.112 10.178 7.201 
54 687 1.164 3.446 2.814 7.077 5.729 

Jun-02 134 762 1.513 2.062 4.099 5.285 
Sep02 67 719 1.316 2.630 3.243 
Dec-02 94 475 978 1 650 
Mar-03 71 473 689 
Jun-03 56 450 
Sep03 45 
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accident 
quarter 10 

oeve~opmen= quarter (SO(X)) 
13 14 15 16 ! I 

Sep-94 1 101 1,413 1,839 1,170 1,493 805 2,153 932 1,865 73c 
Dec.94 4.569 6.094 8.931 4,781 6,972 3.183 6.695 5,344 3.563 1.66~ 
Mar.95 6,165 6,640 2,973 4,302 5,603 5,982 5,248 4,287 3,473 5,55C 
Jun-.85 12,655 5078 5.760 6,620 7,086 8.035 5,216 3,832 5,322 2,93E 
Sep-95 4,589 4,753 6.304 6.085 6,043 5.016 10,251 5,847 4.274 2,83C 
Dec-g5 7,169 6.308 8.881 4.183 4.446 5.274 4.247 3.703 4.917 2,65( 
Mar-96 4.491 5.647 5 015 6.081 5,736 4,635 4.857 4,756 3,793 3,224 
Jun-96 5.366 5.246 6,932 7,495 5.589 4,762 9.615 3.532 3,362 2.067 
Sep-9~ 6.984 6.170 5.031 9.244 5.783 4 996 4.842 3,730 2.297 4.424 
Dec-96 5.834 6.767 8.576 4.098 7.389 2 687 3,886 1.880 4.534 7.37~ 
Mar-97 5.654 6.678 5,797 4.207 4.167 5.396 3 236 5.807 12.137 3.909 
Jun-97 5,225 3,730 7 353 3,374 5,833 2,744 3,950 3,817 2,499 2.69,4 
$ep-97 3.615 10.34t 4.479 5.755 3.072 5.046 3.969 2.822 2.666 3.847 
Dec-87 6.860 4.670 4.775 4.734 3.146 4.016 5.570 2.002 2.779 2.021 
Mar-g8 4.215 6045 3.188 6,368 3.316 3,345 4.198 3.334 2.685 4.675 
Jun-98 5,476 5,212 7,386 4,765 7,866 4,308 6,153 3455 5,819 1,793 
Se1~98 4,g92 6,735 7,242 7.403 9.829 8.446 7,969 6,711 7.192 2.693 
Dec-98 6,237 6,806 10,558 5.085 6.570 4.882 5,377 2,669 4.702 3,00~ 
Mar-99 8.260 6,386 5,277 7.161 4.647 3.459 4,264 4.344 2.455 
Jun-99 8,428 4,465 6,050 7,378 12.514 5,076 5,091 4 303 
Sep-69 8.427 6.730 7,886 9.256 5.401 7.277 5.676 
Dec-99 7,274 7,858 9 303 5,688 5 800 6,527 
Mar-00 7.803 11,137 11.257 5040 5.261 
Jun-00 8,162 8,265 7,600 5,867 
Sep-60 10.347 8 534 8.310 
Dec-60 8.487 9,557 
Mar-01 6.164 
Jun-01 

accident 
quarter 20 21 22 

developmentq~aner(5000} 
23 24 25 26 

Sep-94 1.708 1,866 314 777 176 281 
Dec.94 2.587 3.694 2.678 3.154 1.827 430 
Mar.95' 1.915 1,441 366 1,878 364 1,244 
Jun.951 4,419 2,653 3.034 799 332 597 
Sep-95 1,780 2,542 1,305 829 1,587 1,317 
Dec.95 2,843 764 761 297 1,361 2,814 
Mar-961 896 1,278 1,652 2,242 4,731 682 
Jun-961 1,882 1,755 7,218 2.366 3,323 861 
Sep-96 3.733 2.530 7.858 2 628 1.218 1.103 
Dec-96 972 1 594 2.057 1 644 1.051 1.149 
Mar-9; 1,488 4,174 1 330 3 695 410 976 
Jun-97 2,406 2,387 2,706 1,725 2,431 785 
Sep-97 2,585 5 581 1,455 1 868 1 740 
Dec-9~ 3221 5013 887 1.711 
Mar-9E 2,529 2 058 1,413 
Jun-9 ~= 2,426 3,088 
SOp-9E 5,601 
Dec.9E 

1.566 124 505 25: 
222 1.296 749 54; 
304 594 638 1,74~ 

1,635 611 2,043 3.81' 
758 1.368 583 1,47: 
512 745 1,276 14 c, 

1,331 1,229 821 1 11~ 
1,768 712 144 9~ 
3.441 783 694 
1.858 105 

641 

acodept 
quaMer 30 31 

5ep94 522 1 
Dec-94 1,147 145 
Mar-9~ 1,892 2,062 
Ju~-95 444 3,270 
Sep-95 1 082 2.675 
Dec-95 190 947 
Mar-9(3 541 
Jun-96 

development quarter !$OO0} 
32 33 34 35 36 

-63 108 
2.272 400 

88 191 
190 26 
41 

1 
74 

678 

2 
557 

I 
i 92j 
I 
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A.2 Incremental paid losses in respect of  flnalised claims 

accldeLnt I deveropment querier of tlnal~satJon I$0001 
quarter j o 1 2 3 4 5 6 7 8 9 

Sep-94., 0 0 14 145 524 1.254 771 429 351 707 1.852 
Dec-94 i 3 5 277 552 1.474 3.334 2.404 1.125 2.683 4.341 4.203 
Mar-95 3 3 211 850 1.834 1.320 1.101 2.158 3.360 2.341 4.804 
Jun-95 00 197 906 1 032 1.122 2.302 3.466 2.519 4.032 3352 
Sep-95 09 293 423 862 2.141 3.461 2.323 2.710 4.087 3.792 
Dec.95 54 4 120 212 1.081 2.000 2.055 2.594 3.368 2.876 6.20e 
Mar.g6: 0 O 105 794 1.466 2.345 2.280 2.987 2.049 4.942 3.889 
Jun-96 O 0 178 869 1.209 1.760 2 353 1.953 4.481 4.497 3.499 
Sep-96 53 145 743 1.741 1.963 2497 3.941 4.155 5.150 5.827 
Dec-96 0.0 127 910 1.367 1 559 3.490 4.873 3.801 4.398 4.188 
Mar-97[ 0 0 96 447 1.216 2.738 2.725 2.883 6.002 4.588 4.830 
Jur~97 00 133 762 2.239 2.817 2.446 4.554 4.041 6.119 5.324 
Sep-97 04 77 895 1.881 2.285 3.567 3.319 4.841 6.014 7.102 
Dec-97 10.0 172 1.063 1.785 3.062 3.647 4.147 7.040 8 524 6.175 
Mar-98 0 0 134 820 2.298 2.288 4.212 4.079 5.667 5.645 6.262 
Jun-98 0 0 201 1.010 1.987 3.540 3.935 7.108 5.173 6.683 3.59! 
Sep-98 5 8 157 838 2.314 3 376 5.839 4.785 7.974 5.220 5.438 
Dec-98 0.0 104 859 3.027 6.470 6.290 8.646 6.389 8.235 3.714 
Msr.g9 O 4 215 1.327 3.884 4.278 7.361 4.166 8.488 3.916 3.60G 
Jun-99 0 2 192 1.798 2.708 4.636 5.046 5.928 3.868 5.073 5.491 
Sep-99 02 231 861 3.100 3.046 4.407 3.779 4.531 7.213 12.155 
Dec-99 1 6 368 1.58.1 2.234 4.581 2.727 4.513 5.496 10.138 8.289 
Mar-O0 15 1 311 724 2.966 1.877 3.610 4.475 7.277 5.305 8.413 
Jun-O0 5 8 192 959 1.500 2.626 4.407 8.700 5.428 9.670 6.131 
Sep-O0 0.0 339 612 1.438 2.294 7.234 5.698 10.923 7.560 7.947 
Dec-00 0 4 71 259 977 2.511 3 448 5.808 5.079 6.537 6.60g 
Mar-O1 0 8 62 387 1.750 2.478 5.230 8.033 9.273 7.673 7.299 
Jun-01 3 8 217 574 1.317 3.501 4.791 8.593 7.265 9.867 6.865 
.Sep-O 1 6 3 176 502 2.258 4.280 8.135 5.126 8.279 5.131 
Dec-O 1 1 4 121 502 1.524 4.918 4.307 9.820 5.098 
Mar-02 11 2 141 632 2.558 2.280 6.599 4.457 
Jun-02 6 1 189 763 1.265 3.337 3.860 
Sep-02 7.0 175 528 2 171 2.375 
Dec-02 32.4 128 383 1.081 
Mar-03 7.1 96 111 
Jun-03 9 3 39 
Sep-03 0 4 

Note: Paid losses in finalisation quarter x include all amounts paid in quarters up to 
and including x for claims finalised in x. 
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arc=dent development quarter of flnwmation ($000) 
quarter 10 11 12 13 14 15 16 17 18 

Sop-94 1.169 1.192 1.381 1.065 1.149 1.437 1.250 481 926 2.62~ 
Dec-94 3.439 3 270 5.306 10.651 7.187 4.929 4.616 4.471 8.490 3.10( 
Mar-95 5.531 5.555 5.758 3.769 3.443 5.781 3.887 6.597 5.242 5.36; 
Jun-95 3.898 6.602 11 973 6.055 4.933 6.079 7.011 7.515 4 888 5.30( 
.Sop-95 5.332 4.648 5.253 8 834 2.824 6.063 8.382 7.525 6.979 2.82 t 
Dec-95 4.295 4.173 7 276 4.211 7.421 5.877 7.486 3.928 5.070 3 58: 
Mar-�6 3.039 4.596 5.485 6.140 3.394 7.740 3 876 8.296 2.885 4.32E 
Jun-96 4.438 6 842 7.675 5.985 5.869 7.775 8.456 3.315 3.505 89; 
Sop-96 4.038 7.355 6.985 9.914 7.170 4.608 3.632 3.378 3.166 1.85; 
Dec-96 6.361 5805 6.119 4.438 8435 3.231 2.410 2.775 3.280 3.05C 
Mar-97 7.444 6.571 6.903 4.754 2.866 3.287 2.015 3.962 5.238 5.091 
Jun.97 4.742 4.314 7.397 3.176 3.282 4.055 3,707 2.844 3 510 2.62.; 
Sop-97 6.485 10.205 4452 6.501 3.640 2.103 2.039 4.868 2.341 5.02. ¢ 
Dec-97 6.292 3.413 7.127 2.846 2.826 4.147 4.940 5.124 4.838 1.52E 
Mar-98 2.623 4 810 3.227 2.481 5 689 5.258 2.633 3 344 2.715 4.69 c 
Jun-90 5.203 3.783 4 OB4 6.255 7.258 7.690 6.548 4.481 5.312 2.087 
Sop-98 5.117 3.893 7.186 7.966 5.599 11.969 7.303 7.723 7.488 10.00 c . 
Dec-98 4.587 5.634 9425 6.373 8.626 4.608 6.539 4.038 4.868 6.18~ 
Mar-99 4.916 9.749 5.366 8 804 5.391 3.899 3.736 4.402 2.483 
Jun-99 11.923 4,247 7.727 4 678 9.901 6.165 4"279 7.077 
Sep-99 9.317 8.123 8.999 7.495 6.069 0.988 4.428 
Dec-99 9.088 7.461 8.498 4.853 7.232 6.023 
Mar-00 6.589 6.830 11.414 6.911 4.560 
Jun-O0 8.683 7.055 7.845 5.033 
Sop-00 10.856 9.088 7.014 
Dec-00 8.466 8.389 
Mar.01 6.256 
Jun-01 

accident development quarter of flr~alLssUon I.~V000~ 
quartet 20 21 22 23 24 25 26 27 28 29 

Sop-94 1.164 1.956 1.219 970 672 252 712 9 %265 1.414 
Dec.94 2.619 4.602 2.271 2.610 1.556 2.682 253 825 610 1.318 
Mar-95 1 957 1.618 1.326 658 1.033 741 4.524 675 421 472 
Jun-95 3.270 1.673 8.170 2.822 850 1.295 1.362 2.958 1.286 1.070 
SOp-95 1.469 3.770 426 2.141 1.934 1.547 1.183 631 7.640 816 
Dec.95 2.073 2.000 1.702 201 2.263 3.465 1 538 356 311 738 
MO~-96 510 1.096 1.137 2.827 1.604 1.265 722 2.736 1.011 4 683 
Jun-°~5 6.680 1.443 3.234 7.912 3.951 1.476 2.503 1.631 500 809 
Sop-96 4.437 2.836 3.828 4.531 2.256 1.533 1.817 4.079 1.814 
Dec-96 2,642 6.086 6.398 1.682 %136 1.169 3.231 2.130 
Mar-97 5,736 2.574 13 854 2.865 2.180 466 2.401 
Jun-97 4.744 1.863 3.693 814 1.772 697 
Sop.97 3.184 2.226 6 450 3 056 1.862 
Dec-97 3.744 1.581 2.566 929 
Mar-98 3.518 2.732 1.189 
Jun-98 1.592 2.262 
Se~98 3.478 
Dec-98 

acc.dem development quarter o1 I;nal*sation I$0001 
quaner 30 31 32 33 34 35 36 

Sep-94 140 0 1 009 0 8 
Def... 94 1.147 1 935 1.076 1.827 1.166 
Mar-95 2.932 1 329 298 1.787 %156 
Jun-95: 1.398 1.603 914 963 
Sop-95 1.143 327 84 
Oec-951 862 397 
Mar-96 147 
Jur=-98 

O 6~  
0 
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A.3 Numbers  of  claim flnalisations 

acddenl 
quarter 0 1 2 

deVelopmenl quarter of finaltssUon 
3 4 5 8 

SelP94 0 6 26 36 
Dec-94 2 37 69 151 
Mar-95 2 39 101 163 
Jun-9fi 0 47 110 95 
Sep-95 2 51 51 67 
Dec.95 6 21 32 127 
Mar-96 0 16 113 173 
Jun-96 1 37 126 ' 143 
Se~9(] 1 33 103 167 
Dec-9~ 0 32 115 141 
Mar-97 2 22 68 143 
Jun-97 0 21 99 240 
Sep-9? 5 19 140 • 191 
Dec-91 2 48 125 197 
Mar-98 0 33 122 198 
Jun-9~ 0 40 130 188 
Sep-9~ ~ 27 113 228 
Dec-91~ 0 20 129 272 
Mar-99 1 54 160 335 
Jun-99 2 44 225 226 
Sep-9~ 2 55 116 273 
Dec.9~ 3 65 180 193 
Mar-OC 3 69 107 204 
Jun~C 3 49 138 150 
SepOC 0 55 89 146 
D e c ~  3 29 68 135 
Mar~ l  2 28 91 184 
Jui~01 3 71 102 173 
SeD-01 7 53 103 195 
Dec-01 2 49 101 145 
Mar-02 ? 58 96 180 
Jun-02 6 55 96 110 
SepO2 5 57 94 154 
Dec-02 4 44 63 106 
Mar~3 7 40 42 
Jun~3 4 28 
Sep-03 7 

53 37 32 22 35 73 
200 130 52 131 192 115 
~02 67 141 173 99 125 
53 147 226 130 ~50 126 

189 216 155 171 126 139 
185 184 173 135 135 176 
174 185 139 122 184 133 
148 177 128 191 147 126 
150 171 222 148 149 136 
159 246 193 154 157 10S 
246 205 149 187 123 139 
215 180 176 158 166 116 
175 217 170 190 181 161 
242 188 205 178 181 126 
196 239 171 187 143 146 
256 220 264 163 168 110 
227 270 208 257 138 119 
381 302 306 190 147 98 
304 338 196 164 109 79 
307 236 193 108 116 103 
214 201 148 152 162 279 
253 155 173 173 282 170 
140 179 202 268 155 192 
192 238 333 ~70 242 134 
167 307 215 264 168 164 
240 203 255 182 185 138 
219 260 208 237 186 184 
225 232 260 181 198 157 
202 242 205 221 145 
259 204 278 182 
148 252 167 
192 162 
130 
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accident 
qua~er 10 11 12 

developmentquanetofflna,satJon 
13 14 15 16 

Sep-g¢ 30 26 32 26 32 18 ~9 13 9 
Dec-94 104 100 142 136 104 68 49 48 61 
Mar-9~ 96 135 137 100 75 84 60 63 39 
Jun-9~ 95 134 118 77 77 81 72 64 53 
Sep-9~ 157 126 98 ~07 77 68 56 61 39 
Dec-9~ 126 104 111 79 79 62 57 37 41 
Mar-gE 101 96 109 83 56 81 49 54 34 
Jun-gE 111 101 126 89 75 64 61 37 35 
Sep-gE 95 121 109 117 88 66 44 36 26 
Dec-9( 136 99 124 69 81 56 24 24 15 
Mar-9] 112 108 98 82 49 40 23 28 31 
Jun-9~ 98 95 141 54 42 37 27 20 42 
Sep9~ 117 122 77 57 41 28 27 55 36 
Dec-9; |29 71 80 45 39 41 67 55 38 
Mar-9~ 91 76 53 43 46 61 42 35 25 
Jun-gE 111 79 64 69 114 72 80 55 49 
Sep-gE 93 72 101 ~44 75 89 80 61 53 
Dec-9E ?8 89 165 74 74 53 50 33 44 
Mar-9~ 1Q6 197 105 116 67 42 45 54 21 
Jun-9~ 225 89 135 75 78 64 52 50 
Sep-9~ 138 138 130 90 64 65 47 
Dec.9~ 162 130 122 87 81 64 
Mar-OC 123 124 113 106 61 
Jun-0( 132 112 131 65 
$ep-O0 t16 141 116 
Dec.O0 144 114 
Mar~ l  127 
J u n ~ l  

10 
27 
38 
48 
26 
31 
20 
11 
13 
33 
39 
24 
42 
20 
27 
30 
46 
46 

accidenl 
qua~er 20 21 22 

developmentqua~erofl/nallSafion 
23 24 25 26 

Sep-gz 9 10 12 8 7 3 
Dac-O~ 33 34 25 18 9 8 
Mar-9~ 20 23 12 10 6 5 
Jun-9~ 27 17 15 8 7 3 
Sep-9E 20 26 6 14 10 17 
Dec-9E 22 22 t2 2 22 15 
Mar-9( 9 13 15 29 14 10 
Jun-~  18 16 33 26 21 7 
Sep-g( 16 29 25 21 10 11 
Dec-9( 24 29 15 18 13 10 
Mat.9~ 34 30 20 15 12 9 
Jun-97 31 15 18 14 15 8 
Sep-97 20 17 10 17 9 
Dec-97 18 24 19 15 
Mar-9~ 22 28 16 
Jun-9E ~9 21 
Sep-9~ 37 
Dec-9E 

1 1 4 
3 6 7 

10 8 5 
13 17 10 
12 9 6 
15 6 3 
5 12 11 

16 13 4 
7 12 5 

10 6 
8 

accident 
quarter 

Sep-9z 
Dec-9Z 
Mar-9 = . 
Jurt-9': 
SepgE 
Dec.gE 
Mar-9~ 
Jun-9~ 

development quarter of finaliSalkon 
31 32 33 34 35 36 

1 0 5 0 1 0 
6 7 2 3 ;' 1 
8 5 1 3 7 
8 5 4 5 
4 4 2 
7 7 
2 
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A.4 Incremental average sizes of I'malised claims 

acc~ent 
quarter 0 

Sepg= 

development quartet of flnaliSaIJon 
1 2 3 4 5 6 7 8 9 
2,382 5,594 14,548 23,662 20,845 13.393 15952 20,187 25,30~ 

Dec-94 1.735 7.483 8.005 9.761 16.670 18 .494 21.625 20.482 22.610 36.551 
Mar.95 1.636 5.401 8.415 11.250 12939 16 .427  15.306 19.423 23.650 38.43:: 
Jun.95 4.201 8.235 10.865 21.174 15 .658  15.338 19.380 26.883 26.601 
Sep.95 433 5.741 8.280 12.863 11.326 16 ,024  14 .984  15.849 32.440 27.28; 
Dec-95 9.060 5.734 6,634 8.514 10.810 11.168 14 .994  24.945 21.316 35.26." 
Mar-96 6.532 7.028 8.476 13.478 12 .324  21.493 16.797 26.858 29.23 c 
Jun.96 4.820 6.896 8,456 11 .891 13 .291  15.259 23.460 30.592 2776; 
Sep-96 5.307 4.384 7.214 10.427 13.090 14 .603  17.752 28.077 34.566 42.841 
Dec-96 3.967 7,915 9.696 9.805 14.188 25.250 24.684 28.015 39.88; 
Mar-97 4,351 6.578 8.504 11.132 13 .294  19.350 32.097 37.282 34.74E 
Jun-97 6.340 7.701 9.328 12.174 13 .587  25.875 25.577 36.860 45.901 
Sep-97 73 4.063 6.393 9.849 13.056 10,439 19.525 25.478 33.226 44.11.. 
Dec-97 5.013 3.749 8.501 9.059 12.652 19 .397  20.226 39.553 47.096 49.00¢. 
Mar-98 4.069 6.720 11.608 11 ,671 17 .624  23.852 30.306 39.476 43.02E 
Jun-98 5.032 7.769 10 .571  13 .827  17 .887  26.926 31.734 40.262 32.68; 
Se1~98 5,828 5,832 7,420 10.149 14,871 21,627 23.007 31,026 37,829 45 701 
Dec-98 5,181 6,660 11,127 16 ,982  20,827 28,255 33,628 50 ,021  37,89E 
Mar.99 401 3,986 8,292 11.595 14 ,073  21,779 21,256 39,558 35,930 45,57; 
Jun-99 111 4,363 7,990 11,984 15 102 21,380 30,718 35,818 43,731 53,31. = 
Sop-99 97 4.207 7,420 11 .354  14 .234  21.926 25.532 29.806 44,528 43.57E 
Dec-g9 547 5,663 8,785 11,578 18 ,108  17,596 26,086 31,767 35,942 48,75~ 
Mar-00 5,050 4,509 6.763 14,539 13 ,408  20.166 22,155 27 .151  34.228 43 82C 
Jun-00 1 940 3.922 6.948 10 .001  13 .678  18.518 26.t 27 31.930 39.958 45.75E 
Sep-O0 6.157 6.876 9.850 13.739 23,564 26.500 41.375 45.000 48,45iE 
Dec-00 147 2.464 3.807 7,235 10.462 16 .988  22.767 27.905 35.336 47.88¢. 
Mar-01 396 2.231 4,251 9,510 11,317 20,115 29,005 39,125 41,250 39.67C 
Jun-01 1.271 3.060 5.628 7.615 15.559 20.652 33 .051  40.138 49,832 43.731 
Sop-01 898 3.317 4,878 11 ,581 21,188 25.352 25.003 37,460 35.387 
Dec-01 678 2,463 4,966 10 ,511  18.989 21 ,111  35,324 28,008 
Mard)2 1,594 2,429 6,579 14,210 15,408 26,188 26,690 
Jun-02 1.017 3.443 7,947 11.497 17.380 23.825 
SoI~02 1.394 3,072 5.600 14.098 18,272 
Dec-02 8.102 2.g05 6.081 10.007 
Mar-03 1.013 2,392 2.652 
Jun-03 2.327 1,400 
Sep-03 59 

Note: Each entry is calculated as the quotient of the corresponding entries in 
Appendices A.2 and A.3. 
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accident development quarter o1 finalisatlon 
quarter 10 11 12 13 14 15 16 17 18 1 ~  

Sep-94 38,981 45,863 43,155 40,948 35,968 79,834 65,785 37,000 102,906 262,77: 
Dec-94 33,065 32,703 37,365 78,315 69,106 72,480 94,207 93,147 139,178 114,82' 
Mar-95 57,613 41,147 42 ,031  37,687 45913 68,820 64,777 104,722 134,404 141.22, = 
Jun-95 41.032 49.272 101,466 78.637 64 070 75.045 97,381 117 429 92,234 110,54~ 
Sep-95 33.960 36.892 53.606 82.564 36.676 89 167 149,679 123 365 178.941 108.49<, 
Dec-95 34,086 40,123 65.550 53,308 93 ,931  94,785 131,331 106,164 123,663 115,56( 
Mar.96 30,093 47,875 50.320 73,979 60,599 95,555 79.094 153,636 84,868 216,39i 
Jut',-96 39,983 67.740 60,913 67,250 78,248 121,485 105,823 89,806 100,151 81,51,= 
Sep-96 42,509 60,787 64.080 84.732 81,474 69,821 82 547 93,824 121 783 142,84¢. 
Dec.96 46,771 58.639 49.350 64,319 104,134 57.695 100.423 115,642 218.638 92,43,= 
Mar-97 60.464 51.580 70,439 57 ,971  58.495 62,164 87.609 141,490 168.964 130.54E 
Jun-97 48,392 45,413 52,464 56.820 78,146 109,606 137,301 142,201 83,567 109,26z 
Sep-97 55,427 83 ,651  57,813 t14,059 88.783 75094 75,506 88,514 65.035 11965; 
De¢-97 48.775 48,073 89.093 63,252 72.469 101.136 73.730 93.165 134.379 76.37~ 
Mar-96 31,026 63 286 60,886 57,705 128,024 86 192 62,702 95,530 108,612 174,02,; 
Jun-98 46,875 47 ,891  63 ,811  76,160 63,667 106.801 81,854 81,477 108,414 69,581 
Sep-98 55,025 54,074 71,146 55,322 74,652 134,479 91,283 126,607 14t,252 217,591 
Dec-98 58,810 63,307 57,124 72,602 116,566 86,935 130781 122,363 110,631 134,531 
Mar-99 46 377 49.490 51.105 75,895 80.459 92.833 83,014 81.526 118.236 
Jun-99 52,992 47,720 57,234 62,371 126,934 96,335 82 298 141,547 
Sep-99 67,518 59,729 69 ,221  83,279 94 824 138,272 94.214 
Dec-99 56,099 57.395 69,656 55,780 89,260 94,104 
Mar-00 53,568 55,077 101,005 55,766 74,750 
Jun-0O 65,777 70 ,131  59,887 77,433 
Sep-O0 93,585 64,453 60,465 
Dec-O0 58,789 73,588 
Msr-01 49.258 
Jun-01 

ecciden! 
quarter 

Sel~94 
Dec-g4 
Mar-95 
Jun-95 
Sep-95 
Dec-95 
Mar-96 
Jun-96 
Sep-96 I 
Dec-96 I 
Mar-97: 
Jun-67 
5ep-97 
Dec.97 
Mar-9~ 
Jun-9E 
Sep-9E 
Dec-9E 

development quarter of nnalLsstton 
20 21 22 23 24 25 26 27 28 29 

129.349 195.633 101,579 121,257 95.978 84.158 712,264 6,764 316,169 282,728 
76.351 135,363 90.855 145.01'1 172.933 335.296 84.477 104.109 87098 146445 
97,834 70.355 110,518 65.824 172,169 148,164 452,372 84 ,431  84,166 78.663 

121,116 98.383 411.325 352,690 121,433 431.789 104,799 174,005 128565 374.070 
73.437 144,986 71.009 152,943 193.406 91,006 98.609 70.139 1.273300 116.584 
94,241 90 905 141,654 100,275 102 849 230,998 102,517 59,253 103,639 105,413 
56.632 84 235 75 ,801 97.496 114 575 126.450 144,4o~ 227.986 91.890 780,581 

371.135 90,167 98.013 304 316 188 162 210,866 156.466 140.817 124 941 202.313 
277.303 97.799 153.110 215.742 225.660 139.336 259.511 339.882 362.793 
110.092 209.851 426.546 93.455 87416 118.887 323.074 355,008 
168.714 85.802 692.725 190.969 181 670 51.736 300.116 
153.029 124.170 205.154 58.125 118.166 67.164 
159.195 130.970 644.990 179,757 206.663 
207.985 65.860 135.046 61.946 
159.924 97,586 74.291 
54,887 107,701 
94,013 

acooent devetopmenl quarter Of I]nallSatton 
quarter 30 31 32 33 34 35 36 

Sep94 139,507 201,849 6,200 633,54E 
Dec.94 191.107 276.459 537.824 608,937 166.449 
Mar-95 366.509 265.796 297.888 595.605 165.077 
Jun-9E 174,706 320,567 228,814 192,673 
SaP-g- = 285,658 81.622 41,975 
Dec-95 123,129 56,756 
Mar-9~ 73,749 
Jun-9E 
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A.5 Cumulative average sizes of  finalised claims 

acodent 
qua~er 0 

Sep.94 

development quader of flnahsabon 
1 2 3 4 5 6 7 8 9 
2,382 4,992 10,O51 16,013 17 ,144  16,512 16 .454  16,983 10 895 

Dec-94 1,735 7,188 7,710 8,906 12,289 13,659 14 305 15 .353  16,798 18,904 
Mar-95 1,636 5218 7,492 9,500 10 ,382  11,219 12,156 13 ,752  14,856 17,769 
Jun-95 4,201 7,027 8474 10 ,681  12,300 13.312 14 ,289  16 ,261 17,463 
Sep-95 433 5,540 6,889 9229 10 ,330  12,465 12.999 13 ,539  15,856 17.217 
Dec-95 9,060 6.473 6,560 7.894 9.348 9,951 11.150 13 ,308  14 ,391  17.520 
Mar-96 6 532 6.967 7,831 9 896 10,575 12,472 13 ,044  15.342 18.834 
Jun*96 0 4,693 6.386 7,350 8827 10.077 10,950 13 ,462  15,756 16,992 
Sep-96 5.307 4.411 6.518 8666 10 .127  11.352 13.030 15 ,268  17 .781 20.444 
Dec-96 3.967 7,056 8,348 8.866 10.755 13,913 15 ,508  17,148 18.982 
Mar-97 0 3,988 5,902 7,485 9,350 10,529 12,103 15 .761 18,073 19,878 
Jun-97 8,340 7.463 8,706 10.003 10 857 13,696 15.420 18 256 20,595 
Sep-97 73 3,232 5930 8,039 9,695 11,654 13,113 15.236 17 ,764  20,691 
Dec-97 5,013 3,802 7,197 8.189 9.954 12,173 13,816 17 ,689  21 ,591  23,909 
Mar-g8 4.069 6,156 9.214 10 .091  12 .376  14.422 17 ,014  19.506 21.899 
Jun-98 5.032 7.125 8934 10 .974  12 .798  16.195 18 ,203  20,769 21.622 
Sep-98 5.828 5,832 7.105 8.986 11 .227  14 ,470  16,123 19,001 20,769 22,638 
Dec-98 5,181 6,462 9,476 13 ,042  15 ,172  t8,Oll 19 ,865  22,908 23,704 
Mar-99 401 3,921 7,174 9,867 11 .364  14,317 15,297 |7,861 19 ,046  20251 
Jbn-99 111 4,178 7.343 9.453 11 .610  13 .827  16 .471  18 .029  20,075 22270 
Sep-gg 97 4,083 6.314 9,399 10.966 13.525 15.286 17,187 20,535 24 548 
Dec-99 54? 5.438 7.867 9.491 12632 13.538 15.662 17 .994 21.420 24.242 
Mar-O(~ 5.050 4,532 5.866 10.485 11.268 13 .537  15.462 18 ,135  20.015 23,024 
Jun-OG 1,940 3.807 6.088 7.815 9.931 12585 16,673 18 .711 22,105 24027 
Sep-0G 6,157 6,601 8,237 10 .247  15,598 17,993 22,959 25,583 27,965 
Oec-OC 147 2.247 3.308 5,564 8.038 10,718 14 .011 16,279 18 ,991 21.764 
Mar-01 396 2.108 3.719 7.213 8.928 12 ,638  16,070 20.516 23.242 25.132 
Jun-01 1,271 2,987 4,517 6,053 9,779 12,909 17,822 21 ,061  25,003 26,830 
Sep01 898 3,035 4,199 8,220 12 ,898  16,656 18 ,355  21,793 23,229 
Dec-O 1 678 2,393 4,103 7,231 12,708 14,964 20,417 21,549 
Mar-O; 1.594 2,339 4,867 9,799 11,4°J6 16,493 18,368 
Jun-02 1,017 3,204 6,104 8,326 12,113 15,168 
Sep-O~ 1,394 2.936 4,541 9.289 11.943 
Dec-O~ 8,102 3,338 4,895 7,392 
Mar-03 1,013 2.187 2.406 
Jun-0 '~ 2,327 1,516 
sepo.~ 59 

Note: Each entry is calculated as the quotient of  the corresponding entries in the 
cumulative versions of Appendices A.2 and A.3. 
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acc,Klent developtnent quartet ol fAnalisatlon 
quarter 10 11 12 13 14 15 16 1;' 18 19 

20,617 22,362 23,993 25009 25,757 27,768 29,204 29 ,401  30 ,661  34,9~ Sep-9.4 
De¢.94 20,149 21.127 22.745 27,587 30,180 31.840 33.555 35.118 38.475 39,54! 
Met-95 21 ,221  23,385 25,236 26,077 27,034 29,176 30,433 33,089 35,283 37,47; 
Jun-95 19,362 22,414 28,933 31 .471  33,054 35,096 37,678 40,509 41,987 43,71( 
Sep-95 19,202 20,740 22,820 26.683 27,127 29 ,471  33098 35,970 38 ,821  39,73~ 
Dec-95 19.126 20 ,681  23.969 25.423 28,658 31,021 34 211 35.687 37,896 38,86~ 
Mar-95 17.833 19,842 21.992 24.643 25,838 29.038 30,390 33.953 34,863 36.75; 
Jun-9e 18,903 22,338 25,450 27,703 29,900 33,174 35,568 38,827 37,783 38,03; 
Sep-96 21,969 25,109 27,755 31,827 34,050 35,309 36 ,391  37,448 38,554 39,23~ 
Dec.g6 21.610 23.995 25,888 27 .421  30.852 31.657 32.530 33 .571  35.010 35.97.' 
Mar-97 23.616 25,624 28,365 29.807 30.618 31 .78~  32.496 34.169 36.422 38.36( 
Jun-97 22.449 23844 26,211 27.212 28.400 30.034 31.587 32 .761  33.868 34.79( 
Sep-97 23,287 27,649 28,965 31,627 32,885 33,510 34 ,101  35,618 38,145 37,85, = 
Dec-9? 25 .891  26,823 29,637 30 .471  31,354 32.864 34.259 35.866 37,593 37.96~ 
Mar.98 22,443 24,381 25,550 26,364 29,045 30,977 31,698 32,885 33,878 35,83~ 
Jun-98 23.323 24.447 25.853 27.720 29.796 32.505 34.362 35.550 37 .151  37,58; 
Sep-98 24.430 25.647 28,126 30,086 31,698 35.929 37.904 40.254 42 526 45,87 c. 
Dec-98 25.128 26.817 29,114 30543 33 ,281  34.477 38.460 37.612 38.895 40.61¢. 
Mar.95 21 .751  24.426 25.730 28.300 29.799 30.915 31.885 32.969 33.687 
Jun.98 26.143 27.187 29.188 30.382 33.865 35 .661  38.726 38.977 
Sep-g9 27.956 30,259 32.784 34.953 38,727 39.693 40.821 
Dec-99 27.095 29,127 31.526 32,508 34 ,571  36.233 
Met-00 25.312 27.402 31.828 33,107 34,348 
Jun-O0 27 .121  29.666 31,622 33.047 
Sep-,00 32,466 34.928 36,449 
Dec-00 25,134 28,391 
Mar-01 26,907 
Jun-01 

accident developmen! qtaarter o1 {]naliSatlon 
quarter 20 21 22 23 24 25 26 27 28 29 

Sep.94 36,560 39,432 40.749 41.871 42,523 42 737 43,882 43.822 45,668 47,66(~ 
Dec.94 40223 41,852 42.462 43,372 43,944 45084 45,142 45.314 45,456 45,895 
Mar-95 38 121 38,515 38,972 39,113 39 ,531  39,814 41,957 42,133 42,242 42,354 
Jun-95 44.799 45,267 48,065 49,302 49,558 50,137 50,493 51,538 51,919 52,715 
SelP95 40.072 41,417 41.504 42.266 43,000 43.393 43,711 43.824 47.334 47,56~ 
Dec-95 39 .501  40.083 40.707 40.768 41,457 42881 43,326 43,374 43,463 43,677 
Mar-g6 36,844 37 ,161  37,457 38.333 38.866 39.302 39,562 40,677 40,953 43,122 
Jun-g6 41.104 41,503 42.435 45.794 47.254 47,81t 48,650 49.225 49.370 49,663 
$ep96 4~,126 41.934 43280 45.016 45.878 46.365 47,071 48,724 49.461 
Dec.96 36.870 39,359 42,218 42,868 42,950 43,307 44 ,651  45,543 
Mar-97 40659 41,350 47,936 49,0~3 49,807 49,816 50,806 
Jun-97 36 645 37,303 38 802 38,935 39,517 39,702 
Sep-97 39,027 39,776 42,661 43,762 44,454 
Dec-97 39 .431  39 .731  40,579 40.729 
Mar-98 37,230 38,082 38.372 
Jun-98 37 801 38,437 
Sep-98 46 609 
Dec-98 

accident development quarter of nna[isallon 
quarter 30 31 32 33 34 35 36 

Sep-94 47.814 47,814 49,096 49.096 49.025 49.025 49,994 
Dec-94 46,315 47,088 47,559 48 366 48,760 48,737 
Mar-95 43.683 44,250 44 380 45 223 45,649 
Jun-95 53.195 53 .851  54,193 54 531 
Sep95 48.014 48,078 48,073 
Dec-95 43,950 43,994 
Mar-96 43,152 
Jun-96 
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B.I Age-to-age factors based on 

A p p e n d i x  B 
A g e - t o - a g e  factors  

paid losses in respect of finalised claims 

accident 
quader 

Sep-Sul 
0 I 

development quarter of finallmation 
2 3 4 5 6 7 8 
11.18 4.28 2 83 1.40 1 16 1.11 1.20 1.4~ 

Dec-94 80 70 2.97 2.77 2 45 1 43 1 14 I 29 1.37 1.2( 
Mar-gS 65 38 4.97 2.72 1 46 1 26 1.41 1.46 1.22 I 3E 
Jun-05 5.59 1.94 1 53 1 71 1.62 1 28 1.35 1 2; 
Sap-95 339 23 2,44 2,20 2 36 1,93 1 32 1 29 1 33 1,2~ 
Dec-95 3 22 2,21 3 79 2 36 1,59 1,47 1 41 1 25 1,4~ 
Mar-g8 860 263 1 90 1,48 1,43 1 21 1 41 1 22 
Jun-96 5,87 2 15 1 78 1,59 1 31 1 54 1 35 1,2C 
Sap-g6 28.26 5 95 2 95 1 75 1.54 1 56 1.38 1.34 1.2~ 
Dec-96 8 17 2,32 1,65 1 88 1 65 1 31 1 27 1 2¢ 
Mar-g7 567 324 258 161 140 15g 1,28 12 "~ 
Jun-97 6,73 3,50 1 84 1 43 1,56 1 32 1,38 1 20 
Sap-97 212 34 12 54 2.93 1 80 1 69 1.38 1 40 1.36 1.31 
Dec-97 18.20 6 82 2.43 2.01 1 60 1.43 1 51 1 41 1.21 
Mar-98 7.11 3.41 1 70 1 78 1.42 1.41 1 29 1 25 
Jun-98 6,02 2,64 2 11 1,58 1,67 1 29 1,29 1 12 
SalP98 2802 6 13 3.31 202 1 87 1.38 1 48 1.21 t 1B 
De¢-98 9,29 4 14 2 82 1 60 1 52 1 25 1,26 1 0g 
Mar-99 538,07 7 15 3 52 1 70 1 76 1 24 1 31 1,14 1,11 
Jun.99 883,69 10 35 2,38 1 99 1 54 1,41 1,18 1,21 1 19 
SAD-89 1.195 05 4 72 3 84 1.73 1 61 1 32 1 2g 1 36 1 45 
Dec-99 225,16 5 28 2,15 2 09 1 31 1,39 1 34 1 47 1 28 
Mar-00 21,54 3 22 3,82 1,47 1 61 1 47 1,52 1 25 1 32 
Jun-O0 34 02 5 84 2,30 1,g9 1 83 1 90 1,30 1 41 1 18 
Sep-O0 2.81 2.51 1 96 2.54 1.48 1 62 1 26 1 22 
Dec-O0 162 87 4 60 3,95 2,92 1,90 1,80 1,39 1 36 1,27 
Mar-01 79 90 7,12 4 89 2 13 2,12 1 61 1 58 1 30 I 22 
Jun-01 57 97 3,60 2,66 2 66 1 85 1 83 1 38 1,38 1 lg 
Sap-01 28 96 3 76 4 30 2 45 1 85 1.38 1.45 1.19 
Dec-01 90,03 8 11 3 44 3 29 1 61 1 86 1,24 
Mar-02 13,62 5 15 4 26 1 68 2 17 I 38 
Jun-02 32,02 4 90 2 52 2,50 I 69 
SelP02 26 13 3 89 4 g6 '1.82 
Dec-02 4,94 3 39 2,95 
Mar-03 14,49 2,00 
Jun-03' 5 21 
sepo3; 

taSt 1 year 8 65 3.78 3 36 2 22 1 82 1 69 1 40 1.30 1.22 
lasl 2 years 14 19 4 03 3 51 2.34 1.94 1 63 1.43 1 32 3 26 
last 3 years 17 61 4 12 3 30 2.14 1.70 I 55 1.38 1.29 1 22 
last 4 years 24 20 4 59 3 10 2.09 1 76 1 51 1 37 1 29 1 22 
all ~ars 32.10 5 18 2 97 2.02 1 69 t 48 1 37 1 30 1.23 
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deVelopment qdarler of finallsafJon 
13 14 15 16 171 03 10 

BCCldont 

quarter 10 1 l l  17 12 
SelP94 1 19 1 16 
Dec.94 1.17 1 14 1 20 
Mar-95 1.31 1.24 I 20 
Jun-95 1 21 I 29 1 41 
Sep95 1 27 1 18 1 17 
Dec-g5 1 21 1 17 1 25 
Mar.96 1 15 1 19 1 19 
Jun-96 1 21 1 27 1 24 
Sep-96 1.15 1 24 1.19 
Dec-96 1 26 1 19 I 17 
Mat-97 1 29 1.17 1 18 
Jun-97 1.17 I 13 1 20 
Sep-97 1.22 1 28 1 10 
Dec-97 1 18 1,08 1 16 
Mar.98 1 09 1 14 1 08 
Jun-98 1 16 1 10 1 10 
Sop-98 1 14 1 09 1 16 
Dec.98 1 10 1,12 1 17 
Mar-99 1,14 1 24 1,11 
Jun-99 1.34 1 09 1.15 
Sop-99 1 24 1 17 1 16 
Dec-99 1 23 1.15 1 15 
Mar-a0 1,19 1 10 1 24 
Jun-O0 1 22 1,16 1 14 
Sop-O0 1 25 1.17 1 I1 
Dec-00 1 27 1 21 
Mar-01 1 16 
Jun-01 

1.11 1 11 
1 33 1.17 
1 11 109 
1 15 1.10 
125 106 
1 12 1 18 
118 108 
1 15 1 13 
122 113 
1.10 1 18 
1.10 1 06 
1,07 1,07 
1 13 1,06 
1 05 1.05 
1,06 1 13 
1 11 1 14 
1 15 1 09 
1,08 1 13 
1 16 1 08 
1,08 1 16 
1,11 1 00 
1.07 1.10 
1 10 1.07 
108 

1.12 1 09 
1.10 1 08 1.07 
1.14 I 08 1.13 
1.12 1 12 1 11 
1.13 1.16 1 12 
1 12 1 14 1 06 
1 18 1,08 1 15 
1 15 1,11 1 05 
1 07 1 05 1,05 
1 06 1 04 1.05 
1 06 1,04 1 07 
1,08 1 07 1,05 
1 03 1 03 1,07 
1 07 1 08 1 08 
1.10 1 05 1.06 
1.13 1 10 1 06 
1.18 1 09 1 09 
1.06 1.08 1 05 
1 06 1.05 1 06 
1 08 1 05 1 08 
1 11 105 
1 08 

1 06 
113 
1 09 
1 07 
1,10 
1 08 
I 05 
1.05 
1 04 
I 05 
1 08 
1 06 
1 03 
1.07 
1.04 
1 07 
1.08 
1.05 
1 03 

1 Ie 
104 
1 OE 
1.07 
1 04 
1 O5 
1.07 
1.01 
1.02 
1 05 
1.08 
104 
1 07 
1 02 
1 07 
1 O3 
1 1(~ 
106 

Last 1 year 
last 2 years 
last 3 years 
last 4 years 
all years 

I 22 1 17 1.15 1 09 1 10 1 08 
1 23 1.17 1.15 1.10 1.11 1 10 
1 20 1,15 1 14 1 10 1,10 1 09 
1.19 1 15 1.15 I 10 1 10 I 09 
1 20 1,17 1 17 1 12 1,11 1,10 

1.06 1 07 1.06 1 07 
1 07 I 07 1.05 1.06 
1 06 1 06 1 06 1 05 
1 07 1 07 1.06 1.05 
108 107 106 105 

accident 
quarter 

development quarter of flnallsat,on 
20 21 22 23 24 25 26 

SelP94 
Dec.94 
Mar-95 
Jun-95 
Sep-95 
Dec-95 
Mar-06 
Jun-96 
Sap-g6 
Dec-96 
Mar-97 
Jun-97 
Sap-97 
Dec.97 
Mar-98 
Jun-98 
SeP-98 
Dsc-98 

1 06 1 10 1.06 1 04 1 03 1 01 
1 03 1 06 1.03 1.03 1 02 1 03 
1 03 1 02 1.02 1.01 1 01 1 01 
1 04 1,02 1,07 1,03 1 01 1 01 
1 02 1,05 1 01 I 03 1,02 1 02 
1 03 1 03 1 02 1,00 1 03 1 04 
1 01 1.02 1 02 1 04 1 02 1 02 
1 09 1,02 1 04 1 00 1,04 1 02 
1 06 1,03 1 04 1 05 1,02 1,02 
1 04 1 08 1 08 1 02 1 01 1.01 
1 08 1 03 1,17 1 03 1,02 1,00 
1 07 1 03 1 05 1 01 1 02 1 01 
1 04 1 03 1.08 1 03 1 02 
1 05 1.02 1 03 1 01 
1 05 1.04 1 02 
1 02 1.03 
1.03 

1 03 1 00 1 05 1 05 
100 101 101 101 
106 101 101 101 
1 01 1 03 1.01 1 02 
1 01 1.01 1 08 1 01 
1 02 1 00 1 00 1,01 
1 01 1 03 1 01 1,06 
1 03 1,02 1 00 1,01 
1,02 1,04 1 02 
1 04 1,02 
1 02 

la811 year 
lasl 2 years 
last 3 years 
Ilast 4 years 
Jail ),ears 

1 04 1.03 1 04 1 02 1 02 1 01 1.03 1 03 1 01 1 02 
1 05 I 04 1 06 1 04 1 02 I 02 1 02 1 02 1 02 1 02 
1 05 1 03 1 05 1 03 1.02 I 01 1 02 1 02 1 01 
1 04 1 02 1.06 1 01 1 01 
104 
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acddenl development ¢~Jeffer o1 finehsBI,On 
quarter 30 31 32 33 34 35 

Sep-94 1.00 1 00 1 04 1 00 1.00 1 00 
Dec-94 I 01 1 02 1 01 1 02 1.01 1.00 
Mar-95 1.04 1 02 1 00 1.02 1.01 
Jun-95 1.01 1 01 1 01 1 01 
Sap-95 1 01 1.00 1 O0 
Dec-95 1.01 1 00 
Mar-96 1 OO 
Jun-96 

1 02 

ast 1 year 1.01 1.01 1.01 1 01 1 01 O00 00(~ 
as1 2 years 1 00 1 01 1.01 
asl 3 years 
esl 4 years 
zll years 

B.2 Age-to-age factors based on average sizes of  finalised claims 

accident eevelopmers quaffer 01 flna,sa~on 
quarter 0 1 2 3 4 5 6 7 8 

1 00 Se1>-94 2.10 2 01 1 59 
Dec-94 4 14 1.07 1 16 1 38 
Mar-95 3 19 I 44 1 27 1 09 
Jun-95 1 67 1.21 1 26 
Sap-g5 12 80 1 24 1 34 1 12 
Dec-95 0 71 1 01 1 20 1.18 
Mar-96 1 07 1 12 1.26 
Jun-96 1 36 1 15 1.20 
Sep-9~ 083 148 133 1.17 
Dec-96 1.78 1.18 1.06 
Mar-97 1.48 1.27 1 25 
Jun-97 1.18 1 17 1.15 
Sap-97 44.24 1.84 1 36 1.21 
Dec-9T 0 76 1.89 1 14 1 22 
Mar-98 1.51 1 50 1 10 
Jun-98 1.42 1 25 1.23 
Sap-98 1 00 1 22 1 28 1 25 
0eC-98 1 25 1.47 1 38 
Mar-99 9 78 1 83 1 38 1 15 
Jun-99 37 55 1 76 1 29 I 23 
Sap-99 41 93 1 55 1.49 1.17 
Dec-99 9.93 1 45 1.21 1.33 
Mar-00 O 90 1 29 1.79 1 07 
Jun-0O 1 96 1 60 1.28 1 27 
Sap-00 1.07 1 25 1.24 
Oec-OO 15 27 1 47 1.68 1.44 
Mar-Ot 5.33 1.76 1 94 1 24 
Jun-01 2 35 1.51 1.34 1 62 
Sap-01 3 38 1 38 1 96 1.57 
Dec.Ol 3.53 1.71 1 76 1 76 
Mar-02 1 47 208 201 1.17 
Jun-02 3 15 1 91 1 36 I 45 
Sap-02 2 11 1 55 2 05 1 29 
De(;-02 041 147 151 
Mar-03 2 16 1 10 
Jun-03 0 65 
SepO3 

1 07 096  
1 11 105 
1.08 1 08 
1 15 1 08 
1 21 1.04 
1 06 1.t2 
1.07 1.18 
1.14 1.09 
1.12 1.15 
1 21 1 29 
1 13 1 15 
1 09 1 26 
120 1 13 
122 1 13 
123 1 17 
1 17 1 27 
129 111 
1 16 1 19 
1 26 I 07 
1 19 1 10 
1 23 I 13 
1 07 1 16 
1 20 1 14 
1 27 1 32 
1 52 1 15 
1 33 1 31 
1.42 1.27 
1 32 1.38 
1.29 1 10 
1.18 1 30 
1 43 1.11 
1 25 

107 
113 
1 07 
1 04 
1.19 
1 05 
1.23 
1.17 
111 
130 
113 
1 16 
1.28 
1.18 
1.12 
1.18 
1.10 
1.17 
1 O9 
1.12 
1.15 
1 17 
1.12 
1.28 
1 16 
1.28  
1.18 
1.19 
1 06 

103 I 11 
109 1 13 
1 0 8  1 2C 
1 14 1 07 
1 17 109 
108 122. 
1 18  1 1C 
1 17 I.OE 
1.18 1.15 
111 111 
1 18 1.10 
1.18 1.1 q 
1.17 1 16 
1.22 1 11 
1.15 1.12 
1.14 1.04 
1.09 1 09 
1 15 1 03 
1 07 1 06 
1 11 1 11 
1 19 1 20 
1 19 1 13 
1 10 1 15 
I 18 1 09 
1 11 1.09 
1 17 1 15 
1 13 108 
1 19 1.07 
1 07 

ast 1 year 
ast 2 years 
ast 3 years 
a$I 4 years 
all years 

0.78 1 54 1.71 1 39 1 29 1 23 1.17 1.14 1 10 
1.23 1 59 1.72 1 42 1 34 1 24 1.18 1.14 1 12 
1 50 1 51 1 63 1 35 1 28 1 21 1 18 1.14 1.10 
1.74 1.81 1.53 1 32 1 27 1 20 1.16 1 14 1 10 
2.65 1 43 1 39 1.27 1 21 1 16 1.18 1 14 1 I1 
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acOdent 
quarter 

SeD-94 1.09 
11 12 

1 08 
1 05 1 08 

developmem quarter of flrlallSatJon 
13 14 15 16 

I 04 1 03 1 08 1.05 1 01 1 04 1.1~ 
1 21 1 09 1.05 1 05 1.05 1.10 1 0." 
1 03 1 04 1 08 1 04 1.09 1 07 1 0( 
1 09 1 05 1 06 1 07 1.08 1 04 1 0~ 
I 17 1.02 I 09 1 12 1 09 1 00 1 0; 
106 113 108 110 104 105 102 
1 12 105 1 12 105 1 12 103 10E 
1.09 1.08 1 11 1.07 1.03 1 03 1 01 
1.14 1 00 1 04 1.03 1 03 1 03 1 O; 
1 06 1.13 1 03 1.03 1 03 1 04 1.0~ 
1 05 1 03 1.04 1 02 1 05 1 07 1 0~ 
1 04 1 04 1.06 1.05 1.04 1 03 1 0~ 
1 09 1 04 1.02 1.02 1 04 1 01 1 0E 
I 03 1 03 1 05 1.04 1.05 1 05 1.01 
1 03 1 10 1.07 1.02 1 04 1 03 1.0~ 
1 07 1 07 1,09 1,06 1,03 1,05 1 01 
1 07 1 05 1.13 1 05 1 06 1.06 1 0E 
1 05 1 09 1 04 1 06 1 03 1.03 1.04 
1 10 1 05 1,04 1 03 1 03 1,02 
1.04 1.11 105 103 106 
1 07 1 05 1 08 1 03 
1.03 I 06 1 05 
1.04 1 04 
1 05 

Dec-04 
Mar-95 
Jun-95 
Sep-95 
Dec-95 
Mar-96 
Ju~96 
Sep-96 
Dec-96 
Mar.97 
Jun-97 
$ep-97 
Dec-97 
Mar-98 
Jun-98 
Sep-98 
Dec.98 
Mar-99 
Jun-99 
Sep-99 
Dec-99 
Msr-00 
JurvO0 
,Sep-O0 
Dec-00 
Mar-01 
Jun-01 

1 07 
1 19 1 10 
111 116 
1.12 1 08 
1.09 1.08 
1 06 1.11 
1 I1 1 18 
1,07 I 14 
1.14 1.11 
1 19 1 00 
109 106 
1 13 1 19 
108 104 
I 02 1 09 
I 08 1 05 
1 08 1 05 
I 06 1 07 
107 1 12 
117 104 
1.14 1 08 
1 12 1.07 
1 10 1.08 
I 13 1.09 
1 16 1 08 
1 15 1 13 
1 07 

1 07 

1 00 
1 29 
110 
I 16 
111 
114 
l i t  
1 08 
1,11 
1 10 
1 05 
1.10 
1 O5 
1 06 
1 10 
1 09 
1 05 
I 07 
1 0 5  
1.08 
1 16 
1 07 
I 0 4  

ast 1 year 1 13 1 09 1 09 1 05 1.07 1 06 1 04 1 05 1 04 1 05 
ast 2 years 113 109 108 105 1.07 1.07 104 1.04 1.04 104 
asl 3 years 1.11 1 08 1 00 1 05 1 06 I 06 1 04 1 04 1.04 1 04 
asl 4 years 1 . I0 1 08 1 08 1 06 1.07 1.06 1 04 1.05 1.04 1 0~ 
all yearn 1.11 1 09 1 09 1 07 1 06 1.06 1.05 1.05 1 05 1.04 

accident 
quarler i j ] 

developfnent quarter of flnalisa~on 
23 24 25 26 

Sep-94 1 04 1 08 1.03 1 03 1 02 1 01 
Dec-94 1 02 t.04 1.01 1 02 1.01 1 03 
Mar-95 1 02 1 01 1 01 1 00 1 01 1 01 
Ju~95  1 02 1 01 1 06 1 03 1 01 1 01 
Sep-95 1 01 1 03 1.00 1 02 1.02 1 01 
Dec-95 1 02 1 01 1 02 1 00 1 02 1.03 
Mar-96 I 00 1 01 1 01 1 02 1 01 1 01 
Jun-00 I 08 | 01 1.02 1 08 1 03 I 01 
SelC-96 1 05 1 02 1 03 1 04 1 02 1 01 
Dec-96 1 02 1 07 1 07 1 01 1 01 1 01 
Mar.97 1 06 1,02 1 16 1 02 1,02 1 00 
Jun-97 1 05 1 02 1 04 1 00 1 01 1 00 
Sep97 1 03 1.02 1.07 1 03 1 02 
Dec-97 1 04 1 01 1.02 1 00 
Mar-98 1.04 1.02 1 01 
Jun-08 1 01 1 02 
Sep-98 1 02 
Dec-96 

1 03 
100 
1 05 
101 
101 
101 
1 01 
1 02 
1 02 
1.03 
1.02 

100 
1 00 
1 00 
1 02 
I 00 
1 00 
1 03 
101 
104 
1 O2 

104 
1.00 
1 O0 
101 
1 08 
100 
1.01 
1 O0 
1 02  

104 
1.01 
I 0C 
1 02 
10Q 
1.00 
1.05 
101 

asl 1 year 1 02 I 02 I 04 1.01 1 01 1 01 
ast 2 years 103 102 105 1.03 1.02 101 
ast 3 years 1 03 1 02 1 04 1.02 1 02 1 01 
ast 4 years 1 03 1 02 1 04 1.02 1 02 
all ~ a r s  1 03 

1 02 1.02 1 01 I 02 
1.01 1.02 1 01 1 02 
1.02 1.01 1.02 
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8cr..~ en! 
quanor 

oevelopment quarter of flnallsa,on 
31 32 33 34 35 

~p -94  1 CO 1 CO 
Dec.94 1 01 1 02 
Mar-95 1.03 1 01 
Jun-gE 1 01 1 01 
SeD-gE 1.01 1 CO 
Dec-9E 1.01 1 00 
Mar-9~ 1.00 
Jun-gE 

1 03 1.00 1 CO 1 00 
1.01 1 02 1 01 1.00 
1.00 1 02 1 01 
1.01 1.01 
100 

I 0:, 

lasl I year 
last 2 years 
last 3 years 
last 4 yeats 
all years 

1 01 1.01 
1 01 1 01 

100 101 101 100 
101 

1 O: 
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We actuaries, detectives o f  the first order, are presented wnth a most intriguing case: numerous, 

grisly bodies of  dead insurance companies and physicians' practices in public view, various signs 

of  intrigue and foul play abound, suspects galore, an abundance of  alibis, and an endless supply 

of  opinions on how the culprit(s) must repay their debt to society. This case of  the medical 

malpractice crisis is complicated because there is not only no consensus on "who durmit?" but 

not even an agreement on '~,hat happened?" This is the situation we are currently faced with in 

the medical malpractice insurance industry. There is evidence scattered all over the medical 

malpractice insurance landscape, but there is no agreement at all on the cause, the culprit, the 

motives or the appropriate sentence. 

The Suspects 

First, let's identify some of  the suspects. Like any good murder mystery, this case presents an 

abundance of  suspects. First, there's the stereotypical bad guy: the trial attorneys. Despised by 

many members of  the (insurance) community (except the claimants) they stand accused of  

causing run away large losses due to out o f  control juries encouraged by their wily tactics. Their 

very livelihood is being threatened by caps on non-economic damages and even worse (gasp!) 

caps on attorney contingency fees. 

The medical malpractice insurance industry's hat is only slightly less black than the attorneys. 

Their reputation for poor investment strategies, destructive price competition, a preference to pay 

defense attorneys rather than patients with negative treatment outcomes, grossly inaccurate 

reserve estimates, and general mismanagement is "widely held and is leading to a variety of  

lawsuits against medical malpractice insurance company directors, officers, and managers, both 

insolvent and not. Insurance companies are threatened with constraints on thenr abnlity to adjust 

rates as well as increased solvency regulation ifconx icted of  their accused crimes. 

The doctors and other healthcare providers are accused of  crying wolf over increased costs trends 

that are actually less than the rate at which health care inflation is increasing their revenues. 
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They are also accused of being the victims that are at the root of the crime. They are accused of 

not doing enough to reduce the negative patient outcomes. Then when the negative outcomes 

occur, they protect one another through self-governing mechanisms such as medical panels and 

review boards. Their resistance to reporting malpractice events to public, national, or state 

databases is also sometimes characterized as "'protectionism." The call for damage caps without 

corresponding loss prevention initiatives is viewed quite negatively by some investigators of the 

matter. In the eyes of those who accuse the health care providers, the increased premiums they 

are experiencing are not only appropriate it is the logical result of their behavior. 

The list of potential suspects and accessories also includes state insurance regulators, rating 

agencies, and even the public at large (that's right everybody did it!). State regulators are 

accused of not monitoring rate adequacy and solvency sufficiently. Rating agencies threatened 

downgrades to single state medical malpractice insurers that didn't diversify or expand 

geographically. The logic for accusing all of us is that the current sense ofenmlement in 

American culture is enabling the runaway jury awards. 

Signs of Intrigue 

The most obvious signs of intrigue and wrongdoing are related to the widespread lack of 

available or affordable medical malpractice coverage around the country. From an insurance 

perspective, this problem began with an extreme deterioration of medical malpractice insurance 

underwriting results. As can be seen in the graph below, the combined operating ratio for the 

medical malpractice insurance has deteriorated almost 70 points in 8 calendar years. 
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Table 1. Medical Malpractice Calendar Year Combined Operating Ratios 

170 ~' I 

1991 199l 1993 1994 IC~5 1996 1997 1998 1999 2000 2001 Z002E 

II~t~dica, ~,t~tpracti*~ [ 

Companies experiencing underwriting results of this magnitude basically had two responses: exit 

the line or increase rates. As can be seen in the table below, some insureds have seen significant 

rate increases in the last five years. General surgeons in Broward County, Florida for this carrier 

have had their rates triple since 1998. 

Table 2. Example Annual Rate 

Year 

2003 

2002 

2001 

2000 

1999 

1998 

1997 

1996 

Changes - Broward County, FL General Surgeons 

Premium Annual Change 

213,763 30.0% 

164,437 40.5% 

I 17,049 12.7% 

103,859 27.0% 

81,765 17.2% 

69,786 12.1% 

62,259 -7.3% 

67,141 +5.7% 

16.7% Annual Average 

Source: Medical Liability Monitor 

As previously mentioned, another option available to insurers was an exit from the market - 

either voluntarily or not. Some carriers did not survive the dramatic balance sheet impact of 
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operating results similar to the results shown in Table I. A total of almost 8% of the 1998 

countrywide direct written premium for medical malpractice coverage has left the marketplace 

due to insolvencies. The table below highlights several major medical malpractice insurer 

insolvencies over the last five years. These involuntary departures by themselves would have 

been more than enough to materially impact the availability of any insurance market; but there 

were other market dislocations. 

Table 3. Major Medical Malpractice Insurer Insolvencies 

1997 AM Best 1997 Countrywide 

Company Rating Market Share 

Frontier A- 2.5% 

PHICO A- 2.5% 

Reliance A- 0.8% 

Reciprocal Group A 0.8% 

Fremont General A- 0.6% 

Legion A- 0.5% 

Operating results, adverse reserve development, and the inability to achieve acceptable rate 

levels caused several companies to voluntarily withdraw either from specific states, specific 

specialties (e.g. OB/GYNs or emergency room physicians) or from the medical malpractice 

market entirely. The three most significant of these countrywide departures, St. Paul Companies, 

Zurich/Farmers and MIIX, accounted for over 15% of the countrywide medical malpractice 

premium in 1998. 

Table 4. Major Medical Malpractice Insurer Exits 

1997 AM Best 1997 Countrywide 

Company Rating Market Share 

St. Paul Companies A+ 6.8% 

MMI Companies (merged w/St. Paul) A 2.8% 

MIIX A 2.8% 

Zurich Group A+ 1.8% 

Farmers Group A- 1. I% 
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As if the insolvencies and voluntary exits did not reduce capacity enough, the medical 

malpractice industry is highly sensitive to the ratings assigned by industry rating agencies, 

particularly A.M. Best Company. This is the result of many hospital corporate by-laws requiring 

both physicians with hospital privileges and the hospital itselfto maintain malpractice coverage 

with an insurer rated A- or better. Therefore, when A.M. Best downgrades a medical 

malpractice insurer below A-, the downgrade creates an impediment that can severely impair the 

insurer's ability to provide ongoing malpractice coverage to many insureds. This is not to imply 

that non A-rated carriers do not write medical malpractice insurance. Rather there is a great deal 

of time and expense that must be expended to address the concerns of insureds, sometimes 

including the additional expense of engaging an A-rated fi'onting cartier, when a company loses 

its "A'" rating. A number of previously "A-rated" malpractice insurers are currently rated below 

A-. These carriers include: AP Capital, SCPIE, MLMIC Group (including OHIC), Florida 

Physicians Group, and Connecticut Medical Insurance Company. Together, the downgraded 

companies account for about 20% ofthe 1997 market share. 

These three groups, the liquidated, the voluntary exits, and the downgraded, combined suggest 

that over 40% of the 1997 medical malpractice insurance market share has either exited the 

industry or had their ability to grow and compete for business impaired due to changes in their 

Best rating. In states where one or more of the exited carriers, such as St. Paul, PHICO, or 

MIIX, had a commanding market share the market dislocation effect has been even more severe, 

sometimes up to 70% or 80% of the total market. 

Like a cascade of dominos, these significant increases in medical malpractice insurance costs and 

decreases in coverage availability ha~.e caused health care providers to respond in a variety of 

ways to the increased costs of doing business. The American Medical Association, insurance 

trade press, and even the national media at times have widely publicized some of these responses 

which have included significant reduction in coverage limits, the discontinuation of risky 

procedures, relocations of physician practices to neighboring states with more faxorable 

malpractice laws, early retirements by physicians, and m more extreme cases to hospital closures 

and marches on state capitals. 
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Problems with the Available Evidence 

Why do we have so much trouble definitively identifying a cause for the current problems of the 

medical malpractice insurance industry? One of the biggest complications is the lack of a robust, 

countrywide experience database. Insurance Services Office, Inc., a national statistical agent and 

rating bureau for medical malpractice, does not have the market share in medical malpractice 

they have in personal lines and some standard commercial lines. One main cause of this reduced 

credibility in the ISO data is the flight of medical malpractice from standard insurance carriers to 

alternative market mechanisms and other non-ISO reporting companies. These programs include 

captive insurance companies, risk retention groups, and other self-insurance programs. 

Other malpractice databases such as the National Practitioner Data Bank (different reporting 

standards by state) and Jury Verdict Research (claims settled by trial only; incomplete 

geographic coverage) have significant limitations that reduce their effectiveness as diagnostic 

tools for examining causes of the current market emergency. 

Another issue contributing significantly to the complexity of the problem is the significant 

degree of variability in results and environmental changes by state over time. In some cases, 

numerous changes were implemented closely enough to one another in time that advocates of 

each reform claim validation. A classic example is in California where the sweeping medical 

malpractice reforms of MICRA and the vast insurance rate regulatory changes of Proposition 

103 are both credited with the successes in the state by advocates of the competing reforms. In 

other states, particularly some of the more troubled states, there have been so many insolvencies, 

government programs, and other changes it's hard to say any of them have truly succeeded. It is 

equally difficulty to confidently say that a particular measure wouldn't have succeeded under 

different conditions. 

There are a number of factors that can impact the claims characteristics of a state's medical 

malpractice system including the presence and details of joint underwriting authonties, patient 

compensation funds, caps on non-economic damages, restrictive rate regulator3,' approaches, 

domestic healthcare provider-owned mutual companies, and many others. The presence, 

specifics, and timing of these factors are different for each state which makes it very difficult to 

transfer the results from one state to another. 
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Exacerbating these problems is the reach and strength of the influence of two of the leading 

suspects: the health care providers and the trial bar. Health care providers (through associations 

such as the American Medical Association and the American Hospital Association) have a 

tremendous stake not just in the determination of the cause, but also the solution. It is an 

oversimplification of the problem, but if the primary cause of the "crisis" is the trial bar, 

"runaway" juries, or any other external factors, then the likelihood of reforms, including caps on 

damages (especially non-economic damages) is increased. 

Because of the close relationship between health care providers and their malpractice insurers 

(partly due to the growing importance and market share ofprovider-owned insurers), their 

interests are closely aligned. If damage caps and other cost controlling measures such as medical 

review boards, arbitration, patient compensation funds, and caps on attorney contingency fees 

are implemented, insurer rates decrease and more importantly the potential for profitability 

increases. 

On the other hand, if the allegations of the trial bar such as destructive price competition by 

insurers (with the contribution of poor regulatory oversight), irresponsible investment strategies, 

poor loss reserving discipline, increasingly risky medical procedures, and a lagging focus on 

reducing adverse patient outcomes are found to be significant contributors, then reforms that do 

not impact patient recoveries (and lawyers' fees) will be given more consideration. These 

reforms might include more reporting requirements of adverse patient outcomes and tighter rate 

regulatory requirements. Both groups have tremendous income at stake in the "medicine" the 

industry takes for its problems. They are both exerting tremendous political and media pressure 

to influence the perception of the cause and the remediation states choose to implement. 

The Approach 

Because of the concerns stated above regarding countrywide data and the appropriateness of data 

from one state, the approach taken in this study is to focus on a large database for a single state 

in an attempt to make some inferences about the medical malpractice insurance market in that 

state. Another goal of the study is to demonstrate how a Generalized Linear Modeling (GLM) 

approach can assist in evaluating claims trends for commercial lines of insurance more generally. 

One state with robust, readily available medical malpractice claims data is the state of Florida. 

Our approach will be to look at an industry-wide Florida database that contains a variety of 
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health care provider and claim characteristics. The analysis will use GLM to reflect the impact 

o f  each factor when all factors included in the model are reviewed simultaneously and also to 

identify any interactions between characteristics. 

A general discussion of  GLM is outside the scope of  this paper, and the existence of  several 

excellent writings in this area makes an effort along these lines on my part unnecessary. For the 

purposes of  this paper, it will suffice to say that GLM is a statistical approach to developing a 

model that explains how a group of  explanatory variables can be used to estimate or predict a 

dependent or response variable. For this analysis a number of  claim and health care provider 

characteristics will be used to predict closed claim severities and a couple of  additional response 

variables. In most ratemaking exercises, GLM takes ratemaking or underwriting characteristics 

(e.g. territory, class, credit) and uses them to predict claim frequencies, severities and pure 

premiums. GLM also provides ihe capabilities to fit polynomial curves, manually override 

indicated factors, and regroup explanatory variables (e.g. zip codes, credit scores). 

The greatest advantage GLM has over traditional one-way loss ratio analyses is the reflection o f  

interactions between explanatory characteristics. As a simple example, consider the following 

fictional one-way severity results: 

Table 5. Example State F Average Severity by Territory 

Territory AveraRe Severity 
Metropolitan $27,600 
Urban $32,400 

There would a natural tendency to assume that something was different about the urban territory. 

Similarly, a one-way severity study was conducted for the v.vo classes insured by a company: 

Table 6. Example State F Average Severity by Class 

Class Avera8e Severity 
Tree Surgeon $24,000 
Shrub Doctor $36,000 

So, based on this informalion there is also apparently a severity problem with the shrub class. 
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These one-way analyses make the assumption that the distribution by class and territory are 

uniform. Assume the actual results looked as follows: 

Table 7. Example State F Average Severity by Territory 

Te rrito ry 
Metro Urban 

Class Severity. Weight Severity. Weight Total 

Tree 24,000 70% 24,000 30% 24,000 
Shrub 36,000 30%" 36,000 70% 36,000 
Total 27,600 32,400 30,000 

Because of the distributional bias between territories by class, the identical severities by class, by 

territory disguised themselves as a territory problem. Imagine if this example had been pure 

premiums instead of severities. The pricing actuary relying on one-way analyses would have 

imposed territory and class relativities that in concert would have significantly over-priced 

urban, shrub doctors. Please don't miss the other problem in this simple example: if the rates in 

total were adequate, the tree surgeons in the Metro territory would be under-priced by a similar 

percentage! 

It would be natural to ask, "'Why hasn't this GLM approach been used more commonly in 

medical malpractice?" The initial focus of GLM in both Europe and North America has been on 

personal lines pricing. There are at least three key reasons for this emphasis. Personal lines 

rating plans are more complex and thus more in need of an understanding of the interactions 

bem'een variables, particularly factors such as credit that are highly correlated to other factors. 

Second, personal lines, especially personal automobile, have more premium, more pohcies, and 

more claims than commercial lines and thus provide more data. Finally, the impact that GLM 

can have on personal lines has already been demonstrated by companies that have used this type 

of analysis to create a sustainable competitive advantage and profitable growth. Now that GLM 

for personal lines pricing is quickly becoming an industry standard approach, new applications of 

GLM are constantly emerging tbr such applications as agency management, claims analysis, 

utilization review, and commercial lines class plan analysis tbr such lines as business owners 

(BOP), workers compensation, commercial automobile, and medical malpractice. 
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Our Evidence 

Starting in 1974, the Florida Department of  Financial Services Regulation - Office of  Insurance 

Regulation, has maintained a Medical Professional Liability Closed Claim database. This 

comprehensive database is readily available to regulators, insurers, trial attorneys, health care 

providers, and other parties interested in the current medical malpractice crisis. In July 1999, the 

original database was replaced with a new closed claims database with a slightly different 

format. As a result, some fields contained in one database are not continued in the other, some 

fields use slightly different entries for the same information, and some fields change definition 

slightly even though they look the same (e.g. count3' fields). As a result, there were several 

fields that required some coordination of  similar fields, and others that resulted in an entry of  

"NO RESPONSE" from one source or the other. A total o f  almost 65,000 claims were 

ultimately used in the analysis. 

The new version o f  the Florida database contains the following fields that were identified as 

potentially useful in the analysis. The table also contains an example from the database and 

some useful notes on the fields. More information on the database is available from the Florida 

Office of  Insurance Regulation and is also provided when the data is produced for a nominal fee. 

Table 8. Florida Database Fields 

Fields 
I. Injury Location 
2. Injury Location Detail 
3. Occurrence Date 
4. Report Date 
5. Patient Date of  Birth 
6. Injured Patient Sex 
7. Severity oflnjury 

Example(s) 
Hospital Inpatient Facility 
Labor and Delivery Room 
6/5/198 I 
10/24/1984 
6/5/1981 
F 
Permanent: Major 

Notes 
Individual Facility named as well 
More detail for hospitals 

Emotional Only, Death, and several 
classes of  temporary and permanent 

8. Suit Date 
9. County of  Suit 
I 0. Insured County 

I1. Fin Meth Desc 
12. Stag-e_o f_Desc 
13. Final_Date_Disp 
14. Court Desc 

15. Arbttration indicator 

16. Insurer Type 

10;24; 1984 
Dade 
Dade 

Settled by parties 
More than 90 days after suit 
12/21/20O I 
No Court Proceedings. 

Not subject to Arbitration. 

Primary 

Can be used as an indicator tbr suits 
These two were combined to assess 
geographic differences using county 
of  suit as primary, if provided. 
Also reflects court and arbitration 

Reflects settlements for plaintiffs and 
Defendants and directed verdicts. 
Also shows the results for arbitration 
eligible claims 
Actual Insurer Named as well 
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Table 8. Florida Database Fields (cont.) 

Fields Example(s) 
17. Insured Type Physicians and Surgeons 

18. Provider Specialty 
19. Insured Occ. Limits 
20. Indemnity Paid 

80267-PEDIATRICS 
$100,000 
$100,000 

2 I. Loss Adjustment $184,549 
22. Loss Adjustment Other $57,001 
23. Non-Economic Loss $ 100,000 

Notes 
e.g. Hospital, Dentist, Podiatrist, 
HMO, Corporation, Ambulatory 
Surgical Centers 
This is a field that required scrubbing 
Aggregate limit available as well 
Additional detail between medical 
loss, wage loss and other; both paid 
to date and future is available 
Defense Costs 
Other ALAE 
This field was only partially utilized 
and required some modification 

There is a tremendous amount of specific detail related to the facility and indisidual health care 

provider involved in the claim in the database. This data is not relevant to this analysis. 

Although using the physician detail to assess the impact of"repeat offenders" on overall costs is 

certainly a conceivable use of the database. There is also more detail related to the patients' 

conditions and diagnoses that adds to the robustness of the database, but was viewed as too 

granular to be useful for our purposes. 

Several additional values were computed to simplify our analysis. First, a report lag was 

computed as the number of years from the occurrence of a claim to the first report of the 

incident. The time from occurrence to the filing of a lawsuit was also computed. Similarly, the 

settlement lag was calculated as the time fi'om occurrence to settlement of a claim. Two 

additional response variables were also computed. 

This study focused on examining three questions with three response variables: 

I) What factors influence overall claim seventy? (measured using total loss and ALAE), 

2) What factors increase the proportion of non-economic damages in a loss? (measured 

as the ratio of non-economic damages to total pure losses (excluding ALAE)), 

3) What factors increase the proportion ofdet~nse costs in a claim? (measured as the 

ratio of ALAE to total damages) 

These are by no means the only response variables that could be used for this data. Other 

severity metrics (total non-economic damage dollars, total ALAE or just defense cost dollars, 

medical losses only, wage loss, etc.) could certainly be modeled easdy using this data. Given the 
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AMA's  fascination with claims over $1,000,000, data looking at the fi'equency and severity for 

these claims could also be constructed with meaningful results. Losses above this or any limit 

(adjusted for inflation or not depending on the analysis goal) could be modeled effectively from 

this data to examine large loss propensities or to compare them to overall claim characteristics. 

The Results of the Investigation 

The first widely disputed question is, "How much are severities increasing annually?" The 

Florida database contains two pertinent dates: occurrence date and settlement date. Both of  these 

dates were converted to calendar years for the purpose of  our study. The results by settlement 

year show a tremendous increase during the 1990s as can be seen in the following table which 

shows the distribution of  claims and predicted severities from the GLM. 

Table 9. 
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The overall severities appear to have leveled offsomewhat  in the last few years al~er dramatic 

growth in the 1990s. Even more alarming are the results by occurrence year. Part o f  the cause 

for alarm in the following table is that most o f  the claims for the more current occurrence years 

remain open and are not in the database yet. A lower average severity for closed claims to date 
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would have been expected for the more recent occurrence years due to the larger average 

severity for open claims with longer settlement lags. 

Table I0. Predicted Severities by Occurrence Year 

P r e d i c t e d  V a l u e s  ...... ~ [,,, 

...... 1 I 1  

IZ i i . .  
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Occ_Year 

- 1 4 %  

- v O %  

The higher severity by settlement lag described earlier can also be seen in our GLM results. 

Results o f  this kind could be effectively utilized in loss reserve analyzes examining the impact o f  

inflation on closed claims over an extended settlement period. You will also notice that all 

settlement periods over IO years were grouped together due to the sparsity of  the data. 
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Table  I I. Predicted Severities by Sett lement Lag 
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Next, the consistency o f  this behavior across different types o f  injury was investigated. As you 

can see, the permanent claim classes; grave, major and significant; all predict substantially 

higher claim severities than the other injury types. These results by severity o f  injury were found 

to be consistent by type o f  health care provider and location o f  injury. 

Table  12. Predicted Severities by Claim Type  
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How about different categories of health care provider? The next table shows a significant 

amount of variation in average severity by physician type. In particular, classes such as 

cardiovascular disease, neoplastic diseases, emergency room physician, gastroenterology, 

neurology, obstetrics/gynecology, pediatrics and pathology all produced higher predicted 

severities while dentistry, allergy, diabetes treatment and podiatry all predicted much lower 

severities than average. 

Table 13. Predicted Severities by Specialty 
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A number of critical concerns related to claim settlement environment can be addressed by the 

results o fa  GLM analysis of the Florida data including: 

• the potential impact different courts geographically (by county), 

• the impact on severities caused by a claim going to suit, and 

• the impact on severities caused by the use of arbitration. 
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The issue of geographic differences presented some fascinating results, while the results by type 

of claim resolution and arbitration impact (shown in tables 14 and 15) were reasonably intuitive 

with severities of claims resulting from judgments for plaintiffs three to four times those with 

judgments for defendants. Also, court disposals had lower severities than arbitration cases which 

were in turn lower than settlements agreed to by the parties. This behavior is also extremely 

stable by settlement year. 

Table 14. Predicted Severities by Claim Resolution 

Predicted Values 
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Table 15. Predicted Severities by Arbitration Impact 

P r e d i c t e d  V a l u e s  
180(]0 - 

1 6 . 0 ~ 0  • 

14000, 

12(;00, 

IO.Q(X} • 

8.000 • 

6.000. 

4.QO0 • 

2000. 

O" 
DIs~eO ol t 

I . I 
f/U'b=U a tJon  D~SDOS~ of by C ou='t NO RESPON SE SET FLED BY PAR T~ES 

FIN_M ETH_DESC 

140% 

120% 

100% 

60% 

6O% 

4O% 

20% 

0% 

While not a key discussion point at this stage in the debate, variances by sex and age, along with 

their interactions were investigated to identify any differences in severities. Particularly, note the 

slightly higher average severities for male patients between the ages of 30 and 60. The theory 

that this could be the result of higher wage loss payments for men versus women in this age 

segment is currently being investigated. 
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Table 16. Predicted Severities by Age and Sex 

P r e d i c t e d  V a l u e s  
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Two of the interesting results from, the ALAE to loss + ALAE ratio analysis relate to the 

dramatic differences by severity of claim and by settlement lag. The results are summarized in 

Tables 17 and 18. Table 17 shows that emotional and temporary claims result in a much higher 

ratio of ALAE to Loss and ALAE. Table 18 shows that the ratio of ALAE to Loss and ALAE 

increases as the settlement lag increases and exceeds 80% by the time the claim has been open 

I0 years. 
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Table 17. Predicted ALAE to Loss and ALAE Ratios by Claim Type 
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Table 18. Predicted ALAE to Loss and ALAE Ratios by Settlement Lag 
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Easily the mosl disconcerting element of the non-economic damages study was the skyrocketing 

of non-economic damages to total loss by occurrence year as is seen in iable 19. 
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Table 19. Predicted N o n - e c o n o m i c  d a m a g e s  to total loss by Occurrence Year 
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Many additional insights can be gleaned from GLM model and analysis, but hopefully these 

exhibits have shown the highlights and demonstrated the usefulness of GLM for this type of 

analysis. 

Enhancements 

Licensed physician counts by year, county, and specialty are available for a nominal fee fi-om the 

American Medical Association. The Florida Closed Claim database could easily be augmented 

with this exposure data to create an ideal data set for modeling frequency characteristics in a 

manner very similar to the approach shown in this paper. 

Applications 

A GLM severity analysis of the type shown in this paper could have multitude of potential 

applications. It could be used to assess the value added to the claims process by different claims 

offices, "managed care" operations offering provider networks for such services as auto glass 
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repair, defense attorney sen, ices, and health services generally or just for prescription drugs or 

medical appliances. These types of"utilization review" GLM applications have some 

fascinating results when applied to workers compensation and commercial automobile programs. 

A more detailed understanding of  changing severity trends is an obvious use o f a  GLM severity 

analysis. These analyses also have applications in pricing and reinsurance program design. 

Medical malpractice insurers can apply this type o f  analysis to the development of  enhanced 

classification and territory relativities or underwriting guidelines. Claims departments can apply 

the results o f  this type of  analysis to change their approach to different types of  claims and 

reserving actuaries can use some elements of  this type of  study in some loss reserving methods, 

such as the Berquist-Sherman method. 

Conclusion 

In retrospect, the original goal o f  the paper, to identify "Who Dunnit?" was patently 

unachievable. No single analysis o f  a single database, no matter how rigorous, could hope to 

resolve this issue. Hopefully tliis paper has done something even more dangerous. It is my hope 

that this paper has demonstrated just one of  the many applications of  GLM. I have taken some 

liberties with all o f  the parties involved in this crisis. Please recognize this as an attempt to bring 

a little humor to a somewhat dark and emotionally-charged situation. As an actuary, I can think 

of  no more noble a professional goal than to introduce an actuarial technique that can help 

prevent the pain, suffering, arid misery that so many will have to endure in the nex___.!t crisis. 

Hopefully, GLM will be one of  the tools our professional can take into the future to accomplish 

just this end. 
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Introduction 

This paper explores the concepts underlying the valuation of  an insurance company in the 
context of  how other (non-insurance) companies are valued. Among actuaries, the value 
of an insurance company is often calculated as 0) adjusted net worth, plus (ti) the present 
value of future earnings, less (i,0 the cost ofcap*tal. Among other financml professionals 
(e.g., chief financial officers, investment bankers, economists), value is often calculated 
as the present value of future cash flows. Th,s paper will discuss both methods and 
explain under what circumstances the two methodologies derive eqmvalent value and 
under what circumstances the results of  the tv.'o methods dwerge. This paper also 
addresses recent developments m the insurance industry that could affect valuation, 
including the NAIC's codification of statutory accounting principles, fair value 
accounting, and the Gramm-Leach-Bliley Act of  1999. 

The authors acknowledge Da~,id Appel. Ph.D., Director of  Economics Consulting 
Practice for Mdhman USA, for his cxtcnswe contributions to this paper. 
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S E C T I O N  I - Va lua t ion  F r a m e w o r k  

Why Value a Company? 

Valuation of  a property, 'casuahy insurance company is an important feature of  actuarial 
work. Much of  the work arises from merger, acquismon,  and divestiture actr,'tty, 
although the need for valuation artses from other sources. An insurance company 
valuation mtght be prepared for lendmg mstttutions or rating agencies. It mtght be 
performed as pan of  a taxable I,quidatton of  an insurance company, reflecting the value 
of  extst ing insurance policies  m force. A valuation might also be prepared for the 
corporate management  of  insurance companies  m order to provtde the clearest picture of  
value and changes m value of  the company  over a given time period. 

The assumptions underlying the valuation and, therelbre, the computed value may differ 
for different usesL As such, the purpose of  the valuatton and the source of  the 
assumptions should be clearly ~denttfied. 

Basic Principles o f  Valuation 

Before discussing valuation methodologies,  we introduce some basic principles. 

I. The value of any business has two determining factors. 

i. The future earmngs stream generated b', a company ' s  assets and liabtltues. 
ii. The risk of  the stream of  earnings. This a sk  ts reflected m the cost to the entity of  

acquiring that capital, measured by the investors '  required rate of  return (i.e., the 
"'hurdle rate"). 

2 For a gtven level o f  future risk, the greater the expected profits 2, the greater the value 
of  the business. 

3. For a given level o f  future profitability, the greater the xolat ihty (and, therefore, the 
higher the hurdle rate), the lower the value of  the business. 

4. A company has value in excess  of  its invested capital only when future returns are in 
excess of  the hurdle rate. 

When a company ts expected to produce an earnmgs stream that ytelds a return on 
invested capital that is less than the hurdle rate, the economic value of  the reqmred 
capital is less than its face value. In this case, the logical action would be to l iqmdate 
assets. 

i For example, in an acquismon, Ihe purchaser may be able to lower expenses, grow a business faster 
because of the purchaser's current busmess, reduce the effective tax rale, or reduce the cost of capttal for 
the acquired or largel entity These assumpttons v, ould ser'.e to increase value of the target entity. These 
same assumptions may not be valid for valuing the larger entily as a stand-alone business unit. 
" Expected profits refer to the present value of the e~pecled earnings stream. 
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Valuation Methodologies 

There are t,.so methodologies  prevalent in valuation hterature that form the basis of  our 
discussion of  msurance company ~ aluatton: 

(i) Discounted Cash Flow ("DCF"I  
(fi) Economic Value Added ("EVA")  

A DCF model discounts free cash flows to the eqmty holders at the hurdle rate. The 
starting capital of  the enti ty is not a direct element m the valuation formula s. 

An EVA model begms with the starting capital of  the entity and defines value as: 

Value = Initial capital invested + PV of expected "excess returns" to equity investors 

Sturgis 4 refers to two methods in his paper on valuation: 

I. The discounted value of  maximum stockholder do.'ldends. 
" Current net worth- plus the d~scounted value of  future earnings less cost of  capital 

The first method corresponds to DCF methodology. The second method is also discussed 
by M~ccolis ° and in other actuarial hterature as. 

A N W  + PVFE - C O C  

Where: 

ANW 

P~,'T E 

C O C  

= adjusted net worth (statutory capital and surplus with a series 
of  modifications) 

= present value (PV) of  future earnings attributable to ,n-force 
business and new business 

cost of  capital = PV of  [(hurdle rate × required starting 
capital for each period.) - ( investment earnmgs on capital 
excluded from future earnings)] 7 

' If Ihe starling capitol of the emil) ts higher (or Iov, er t than capital reqmred, it v,d[ gcncrmc a posmve (or 
ne£a[lt el cash 1]o'~. tO the investor al "'lime zero." 
4 Roberl W Slurgls. "'Aclu~nal Valuallon of Propcrl),Casuah) Insurance Companies" 
'~ Throughout this paper, we use the lerms captlal, cqull), n¢l worlh, and surplus interchangeably 
t' Robert S Miccohs. "'An In'.estigation of  Methods. Assumptions. and Risk Modehng for the \'aluatlon of 
Property. Casual b Insurance Comp,lmcs'" 
: I f  future earnings mclude in'~estment income on capflal, the cost of capital calculation will be modtl]ed to 
be equal to the presera ',aluc or(hurdle rate ~ s l a k i n g  capflal each period L 
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This second method is a fonn of  the EVA model,  in which P V F E  - C O C  equals the 
present ,.alue of  expected excess returns. 

D i s c o u n t e d  C a s h  F l o w  

A company ' s  value may be determined by discounting flee cash flows to the equi D 
owners of  the company ~' at the cost of  equity, or the hurdle rate. Free cash flow is often 
defined as the after-tax operating earnings of  the company,  decreased by earnings thai 
will be retained m the company,  or increased by capital releases to maintain an 
appropriate level of  capital to support ongoing business of  the compan.~. 

After-tax operating earnings usually consti tute changes m capital during a period, other 
than capital infiasions or d]smhuttons.  For property. 'casualty insurance compames,  
howe`.'er, there are gains and losses m surplus due to "'below the hne" adjustments ° that 
do not flow through statulor 7 earnings. Capital  changes associated with the change m 
unreahzed capital gems or losses, the change in non-admitted assets, the change in 
statutory, reinsurance penah]es, the change in foreign exchange adjustment, and the 
change in deferred income tax must be considered along with after-tax operating earnings 
,.','hen evaluat ing free cash flov..s. For the va luauon formulas discussed throughout this 
paper, after-tax operating earnings include these direct charges and credits to statutory 

surplus 

A company creates value for its shareholders only when it earns a rate of  return on 
m`.'ested capital ("ROIC")  thai exceeds its cost o f  cap~tal or hurdle rate ROIC and the 
proporhon of  after-tax operating earnings that the company invests for grov, th drive free 
cash flow. which m turn drives value For some industries, regulator).' or statutory 
restrictions create an addmonal  cons]deter,on that l imits divtdendable free cash flow. 

The DCF value of  the business is often projected as I,,so separate components:  (a) the 
value of  an explicit  forecast period and (b) the value of  all )'ears subsequent to the 
exphcn Ibrecast period (the "'terminal value"). Projecuons for the forecast penod, ,.,.'hich 
is usually five to ten years *°, typical ly include detailed annual earnings projecuons that 
reflect revenue proiechons, loss and expense projections, invesimem income prqiectmns, 
tax hahd]ties, after-tax operating earnings, assets, liabilities, inmal capital  and the 
marginal capital that needs to be inxested m the company to grow the company at the 
expected annual gro~,.ah rate. ]* 

s Free cash flows are released in Ihe form of dlvlderld'S or olher Caplla) releases to Ihe eqmly owners 
¢' "Be}oN the line" refers Io the Lrnder'.~rmng and haveslmenl Exhibit in the SlalUlOr) Annual Statement 
prescribed by the NAIC Direct charges and credits to .,urplus are ,hov, n below ihe line for Net Income. 
v, hleh la the stanlng polm for regular la.,,.ablc income 
~t, Five Io ten )'ears is typical because be)ond Ehat period It is usually IOO speculall,.e to projccl detailed 
financials. A long-term earnings gro'.,.lh r.de and a corresponding capual gro~lh rate are ~,elecled to derr,'e 
'.alue be)ond the forecast penod 
H Sechon 4 - Sample Company \ alual~on addresses these eamings forecasts m detail and pro'.ldcs an 
example 
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The value of  the forecas t  pe r iod  is: 

n × ~'OEx -(C~-_...._ 2 g~ )  

FC° + ~==1 ( I + h )x 

Where: 
n = the number  of  years m the forecast period (usually 5 to 10 years) 

OE, = after-tax operating earnings m year x (including gains and losses in capital  
that do not flow through earnings) 

g, = expected growth rate of  capital m year ,c 

C,.t = capital  at the end of  year x - l ;  this equals capital at the beginning of  year x 

C~.t × gx = incremental  capital required to fund future grov,,th 

h = hurdle rate 

FC, = free capital  at ume  zero - this represents capital that may be either released 
from the company at the valuation date if  the company is over-capitahzed or 
infused into the company at the valuation date if the company ~s under- 
capital ized 
= SCo - Co, the difference between SC0, the starting capHal of the enuty, and 
Co. the capital needed at the end of  year zero:beginning of  year I 

The value of  the second component  of  DCF value is often referred to as the t e r m i n a l  
value. The terminal value can be developed using a s imphfied formula based on (at 
projected after-tax net operating profits in the first year after the forecast period, (b) the 
perpetual grov,'th rate, and {c) the hurdle rate. 

~.~ OE., i ~ C ~ i I ×g) 
T e r m i n a l  va lue  = 

x=n+l~ ( l ~ h )  "r 

l('ltere. 

n 

C, 

g 

= O E . .  I - ( C ~  ×g) 
(h-g)(I  ~-hD ~ 

= the number of  periods in the forecast period 

= the capital at the end o f the  last period of the forecast period 

= the expected perpetual growth rate of capKtal 

= the hurdle rate 
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OE..t  = after-tax operating earnings in the period after the forecast period 

O E , . t -  (C, × g) = free earnings, equal to after-tax earnmgs less amounts needed to 
be retained m the company to grow the capital at rate g. 

This terminal value calculation gives credit for earnings into the future in perpetuity. 
Sometimes a higher hurdle rate is used for the terminal value than for the forecast period 
to reflect the increased uncertainty assoctated with operating earnings many years in the 
future. A discusston of  considerations related to the selection of  the hurdle rate is 
provided in S E C T I O N  3 - P a r a m e t e r i z i n g  the Va lua t ion  Model .  

The terminal value can be thought of  as the present value of  the free earnings (in the 
period after the forecast penod)  mult ipl ied by a price to earnings i"P,,'E') ratio. The P/E 

I 12 
ratio is determined by the hurdle rate, h, and the growth rate, g, and ts equal to - -  

h - g  

I 
If  the hurdle rate is 15% and the growth rate is 5%, then the P,'E ratio - -  - 10. 

. 1 5 - . 0 5  

In practice, the P/E ratio underlying the Terminal Value calculat ion can be selected by 
reviewing sale prices of  recent insurance company transactions relative to earnings. 
Relatmg that P/E factor to an ~mplicit growth rate and hurdle rate may make the price to 
earnings ratio more intumve 

Economic Value Added 

The value of  a company can be written as the sum of the equtty invested and the expected 
excess returns to investors from these and future investments 

V a l u e  = Initial  capital  invested  + PV of  expected  "excess  re turns"  to equip'  investors  

The expected "excess returns" m each period are defined a s  

(rate of  return on capital invested - hurdle rate) × capital invested 

= after-tax operating earnings - (hurdle rate x capital  invested) 

To calculate EVA, we need three bastc inputs: 

I. The level o f  capital needed for each period to support the investment,  both initial 
cap,tal invested and additional capital to support growth. 

12 The expected growth rate will iypicMI) be betv, een 0% and vhe selected hurdle rave. If. hov, ever. the 
growth rave g v,,ere less than 0%. the resulnng P,'E ravto would decrease las h - g increases) 
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2. The actual return earned on thai investment m each period, i.e., the after-tax operating 
earnings or ROIC. (Again, operating earnmgs include gains and losses in capital that 
do not flow through earnings.) 

3. The selected hurdle rate 

These are the same inputs as required lbr the DCF model. 

To detern'~ine mltml capital invested, v.e start ,,v~th lhe book value of a company The 
book value of an insurance company, however, is an amount that reflects the accounting 
decisions made over time on how to deprectate assets, '~.hether reserves arc discounted. 
and conservatism in estimating unrecoverable reinsurance, among other factors. As such, 
the book value of the company may be modified m the ",aluation formula to adjust for 
some of the accounting influence on assets and habilities. 

In valuing an msurance company, the m~tial capital invested ~s represented by the 
statutory capital and surplus 13 at the valuation date, modified with a series of adjustments 
discussed later m th~s paper. The surplus after modifications is often referred to as 
adjusted net worth (ANW). The capital needed to support growth is funded by retained 
earnings for the DCF model and reflected through the Cost of Capital calculation for the 
EVA model. 

To evaluate the ROIC. an estimate of after-tax income earned by the firm in each period 
is needed. Again, the accounting measure oroperatmg income has to be considered. For 
an insurance company valuation, th~s component represents the projection of future 
statutory earnings of the insurance entity, modified in consideration of initml valuation 
adjustments made to statutory capital, and inclusive of all direct charges and credits to 
statutory surplus. These earnings will include the runoff of the existing balance sheet 
assets and habilities along with the earnings contributions from new and renewal business 
written This component may also include investment income on the capital base. ~4 

The earnings ,.,,'ill reflect a specific growth rate Iwhlch could be positwe, flat or negative) 
that must also be reflected m grov,'th in capital needed to support the business The ROIC 
represents the after-tax operating earnings in each penod (including any "'below the line" 
changes to capital during the period) as a ratio to the starring capital for the period. 

The third and final component needed to estimate the EVA Is the hurdle rate 
Considerations in the determination of the hurdle rate are discussed in SECTION 3 - 
Parameterizing the Valuation Model. 

For the EVA model, "'excess returns" are represented by the excess of (a) the operating 
earnings m each period over (b) the product of the starting capital for each period and the 

t~ The redsons for us ing ~,tatulor) account ing  ','31tiCS Inslcad of  GAAP or other  accounl lng  ' .a[ues ale 
d iscussed  m S E C T I O N  3 - Pa rame tenz ing  the Valua t ion  Model  
14 If inve.;rmenr m c o m e  on the capvtal base  is excluded f rom earnings ,  the coM o f  capital calculat ion "~lll be 
modtf ied  accordingly.  This  ts discus_.,ed further m S E C T I O N  2 - Valuat ion Results :  EVA ".ersus DCF 
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hurdle rate. 15 Recall that a company has value m excess of  its capital invested only when 
ROIC exceeds the hurdle rate for the company Therefore, a company has positive 
"'excess returns" in a period only '`,,'hen the after-tax operating earnings for that period 
exceed the product of  the hurdle rate and the required capital at the beginning of  the 
period 

In the ', aluatton formula: 

ANW + PVFE - COC, 

the term 

PVFE - COC 

represents these "'excess retums." 

"'Excess returns'" have positive value only when the future earnings exceed the "'cost of  
capaal." In this case, the "'cost o f  capital'" represents the present value of  the (hurdle rate 
x starting capital) for each period for which earnings are projected. If investment 
earnings on the capital are excluded from future earnings, then the "cost of  capital" 
calculation will be the present value of  [Ihurdle rate × starting capital) - investment 
earnings on the capital]. 

WMle the two calculations of  excess returns should be mathematically equivalent, there 
are numerous practical advantages to including eammgs on the capital in future earnings. 
First, the earnings projections ',,,'ill be more m line wtth historical earnings so one can 
review the reasonableness of  the projections relati~.e to past experience. Second, 
allocation of  assets between capital and liabilities is unnecessary Third, one does not 
need to allocate taxes, tax loss canj'fo~'`ards and other factors between investment 
earnings on capital and ali other earnings. 

In S E C T I O N  4 - Sample  C o m p a n y  Valuation,  this paper v.,ll demonstrate that the two 
methodologies, DCF and EVA, produce equivalent '`'alues when specific conditions 
hold. It' These conditions a r e  

I. The starting capital and after-tax operating income that is used to estimate free cash 
flo'`vs to the firm for a DCF valuation should be equal to the starting capital and after- 
tax operating income used to compute EVA. (For insurance company valuations, 
after-tax operating income should include "'below the line" gains and losses in capital 
that do not flow through eammgs.I  

i~ If operating earnings exclude investment income on dapllal, lhen the investment income on capital '~lll 
be subtracted from term ('bl. 
" Asv.alh Damodaran. "'lnveslmcm Valuation Tools and Techniques for Determining Ihe Value of An~, 
Asset." Second Edmon 
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2. The capital invested that ms used to compute excess returns in future periods should be 
the capital invested at the begmmng of the period: 

Excess Returnt = after-tax operating income, - (hurdle rate × capital in*' ested,_ ~) 

3. Consistent assumptions about the value of the company' after the exphcmt forecast 
period are required. That means that for both models, capital required, earnings 
grov,'th rate, and the hurdle rate must be consistent in computing the terminal value. 

4. The hurdle rate for the explicmt forecast period must be the same as the hurdle rate 
after the exphcit forecast period 

Relative or Market Multiple Valuation 

While the value of a company may be derived from the DCF or EVA valuatmon 
methodologies, there are other more stmplistic methods that are often used to corroborate 
or supplement more sophisticated models. In relative valuation, one estimates the value 
of a company by looking at how similar companies are priced. Relative valuation 
methods are t:,'p~cally based on market-based multiples of balance sheet or income 
statement values such as earnings, revenues, or book value. 

Comparable Compames 

The first step in the market multiple approach is to identify' a peer group for the subject 
company,. To select insurers for the peer group, it is common to rely' on data for publicly 
traded insurers that meet certain cnteraa based on premmum volume, mix of business, 
asset size, statutory, or GAAP equity, and regulator)' environment These criteria are 
intended to assure that the peer group ms reasonably' comparable to the subject company. 
In selecting the criterma, however, .t is important to balance precmsion and sample size. 
While the anal.,,'s.s could be restricted to only those insurers that ,,*,,ere v.rtually ~dentmcal 
to the subject company, the sample size would hkely be too small to yfield meaningful 
resullSl 

Valuatton Bares 

The market multiple valuation method estimates the "market price" of the subject 
company' by reference to the muluples of mrs peer group. For example, if the peer group 
average rauo of price to earnings per share is 15 0, and the subject company's most 
recent annual earnings are $10 million, then the estimated market value of the sublect 
company' is $150 million Typically, several ahemative ratios wdl be used m perlbrming 
a market muhmple valuation. In most instances, the ratios emp[oyed include an operating 
multiple (such as the pnce.'eamm~s tattoo), a revenue multiple (such as price,'premium or 
price.,'total re*'enues), and a balance sheet muh~ple (such as the price book value ratio). 
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A relative valuation is more likely to reflect the current mood oflhe market because it is 
a measure of relative value, not intrinsic value. ~7 While these methods serve a valuable 
purpose in the formulation of an opimon on the price the market may be willing to pay, 
they provide little guidance on the returns that will be achievable and the extent to which 
capital outlaid now can be repaid. 

i, Aswalh Damodaran, 'lln'.esiment Valuation Tools and Techniques for DeJerminmg the Value of Any 
Asset." Second Edttion 
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S E C T I O N  2 - V a l u a t i o n  Resul ts :  EVA versus  DCF 

Introduction 

The following examples  dlustrate the DCF and EVA valuation methodologies and derive 
rele~.ant conclustons related to use of  the two methods. Th~s section focuses on the 
mechanics and propemes  of  the DCF and EVA valuation calculations. S E C T I O N  4 - 
Sample  C o m p a n y  Va lua t ion  wdl provide a property/casualty insurance company 
example.  

We will demonstrate two equivalent forms of  the EVA model. The first form, "'EVA{a)" 
wdl  follow the basic EVA formula structure in which. 

excess returns = after-tax operating i n c o m e -  (hurdle rate x capital  invested) 

The second form, " 'EVA(b)," will use the following defmttlon: 

excess returns = after-tax earnings on msurance operations excluding investment mcome on capital 
-((hurdle rate -average investment rate for capital) ,~ capital invested) 

Excess returns for EVA(a) and EVA(b) are eqmvalent  m theory. However,  while 
EVA(b) is d~scussed m actuarial literature on company xaluat~on, ~ there are a number of  
advantages to using the EVA(a) model in practice. The advantages, previously disclosed 
m S E C T I O N  I, are: 

( I )  The earnmgs projections ',,,'ill be more in line with h~storical earnings so one can 
review the reasonableness of  the projections relative to past experience. 

(2) It is not necessary to allocate assets between capital and liabdities. 
(3) It ts not necessary to allocate taxes, tax can3,forwards and other factors between 

investment earnings on capital and all other earnings. 

Basic Model Assumptions 

We will use the following assumptions to demonstrate the basic calculahons for the DCF 
and EVA models  apphed to a property, casuahy insurer. 

• The capital  at t ime O, just prior to projected sear  I, is $100. For a property. 'casualty 
insurance company,  this amount is the surplus. 

• We tested expected growth rate values of  g = 0% and g = 3%. 

• Investment income return on capital is 4% per annum. 

• The hurdle rate is 15% per annum. 

i,~ Roberl w 5iurgts. "'Actuana] Valuanon of Property Casuah~, Insurance Compames" 
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• Capital is determined based on a premium to capital ratio of 2:1. 

• We separately ~dentify total earnings as investment income on the capital and 
earnings from insurance operations. ~° 

• The investment income on the capital component equals the product of the investment 
income percentage and the capital at the beginning of the year. 

We show the insurance operation earnings component as a percentage of premiums 
earned for the year. Premium-related earnings encompass unde~'riting profits and 
investment earnings associated ,.vtth all non-capital assets. 

For projectmn scenarios in which the hurdle rate ~s exactly achieved, earnings are 5.5% 
• h -  

of earned premmm" J For projection scenarios in which the hurdle rate ns not achieved, 
earnings are 5% of premmm. When earnings exceed the hurdle rate requirement, this 
percentage ns 6%. 

We compiled projection scenarios using ~ 'o  time horizons• First, s,.e estimated the 
company's value using a 10-year forecast period. We also esttmated the continuing ~,.alue 
using the present value of  earnings beyond 10 years using the same model assumptions. 

This ttme horizon ,s important m valuing an actual company The 10-year forecast 
period value will be based on detailed financial project,ons by line of business as shown 
in SECTION 4 - Sample Company Valuation. The terminal value ',,,'ill be based on the 
simplified assumptions with respect to (i) expected growth m earnings by future period 
and (*i) expected changes in capital required by lhture period. 

Total Earnings Equal Hurdle Rate and the Company is Not Growing 

Table I displays the company value results fc, r the three models in v, hich the annual total 
earmngs relatwe to capital equals the hurdle rate and neither the company's capital nor 
busmess is growing. Exh~b,ts IA, lB. and IC show the calculations leading to these 
results. 

"~ A number of judgments regarding asset allocauon and lax allocation must be made ro do thts in practtce. 
:'~ 55% = 15% hurdle rate less 4% investmenl income on capttal, yteldmg I1%. whtch is divtded b.',, 
premium-to-surplus ratio of 2. 
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Model 

DCF 
EVA(a) 
EVAtb) 

Table I 
Valuation Results 

Total Earnings Equal Hurdle Rate 
No Growth 

10 Vear Terminal In Perpetui~' 
Forecast 
PeriodZl Value (Total) 

75.28 24.72 100.00 
100.00 0.00 100.00 
100.00 0.00 100.00 

The In Perpemin., results are 100.00, equal to the starting capital of the company. 

For the DCF model, the ~,alue calculation simplifies to OEt - 0  = (100 × 15°.,5) ~ 15% = 
h-0  

I00. For the EVA(a) model, Exhibit IA shows that for each forecasted year the total 
earnings are exactly offset by the cost of capital. This result, of course, follows because 
both earnings and cost ofcapltal are 15% of each year's starting capttal of 100. The same 
progress=on is demonstrated by the EVA(b) model except earnings are only 100 × 1 I% 
(earnings on insurance operations only) offset by cost of capital of 100 x ( 15% - 4°'0). 

As noted m the Basic Principles of Valuation sect=on, a company has ,,alue in excess of 
its capital invested or hurdle rate only when future returns are in excess of the hurdle rate 
requirement In the DCF model, the present value of the perpetual cash flow is equal to 
the starting capital because annual earnings of 15% of capital, discounted at 15°'o 
annually, yields the starting capital In the EVA models, excess returns are alv,'ays 0 and, 
therefore, the only contribution to value is the cawtal 

Looking at the modeled time periods ( IO-year forecast period and terminal value) reveals 
a fundamental difference in the DCF and EVA models. The DCF model must be 
computed ,t  perpetta~." (forecast period plus terminal value) to capture the capital value 
in the company. The EVA models, however, recognize the value of the capital 
"tmmedlately" as it incorporates the capital amount d~rectly in the value computation. 
Therefore. the EVA model will produce higher esnmates of value than DCF when 
earmngs are not valued in perpetuio,. 

Total Earnings Equal Hurdle Rate and the Company is Growing 

Table 2 displays the company value results for the three models m which the annual total 
earnings relative to capital equals the hurdle rate and the company's capital and earnings 
are growing by 3% per annum. Exhibits 2A, 2B and 2C show the calculations leading to 
these results. 

-" Excess earnings are 0. so value for Ihe EVA methods is equal to lhe starting capllal 
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Table 2 
Valuation Results 

Total Earnings Equal Hurdle Rate 
Earnings (and Capital I Growing ~, 3% per annum 

. . . .  [ I0 Year Terminal In Perpetuilv 
f V l O U e l  . I Forecast Period Value (Total) 

DCF 66.78 33 22 ] 00.00 
EVAea) 100.00 0 00 100.00 
EVA (b} 100.00 0.00 100 00 

The results in Table 2 are nearly identical to the value results shown in Table I m which 
no business growth was modeled. Basically, the EVA models behave exactly the same - 
the earnings each year are exactly offset by the cost of  capital. Incorporating growth into 
the model only changes the earnmgs and cost of  capital amounts for each )'ear, not the 
difference between the t~vo values. However, this basic demonstration still emphasizes 
the relationship of earnings to hurdle rate as the determmant of  value, posittve or 
negative, in conjunction with starting capital. 

The components of  the DCF model result do change from a no-growth to growth 
assumptton. The value amount for the 10-year forecast decreases and is exactly offset by 
an increase in the terminal value. The "'total" m perpetut~' amount, however, is not 
affected by growth because annual earmngs are still equivalent to the hurdle rate. 
Growth, however, shifts more of the company's value to later projected years at the 
expense of  earher projected years. This "value shift" occurs because the DCF model 
accounts for capttal growth vta a remvestment of a portion of  annum earnings, thereb)' 
reducing free cash flows. 

Funding Capital Growth: Comparing the DCF and EVA Models 

The DCF and EVA models have different treatments of  the costs assoczated with growing 
the capital base of  the company. We think of the DCF model as a reinvestment for 
grov,'th process and the EVA model as a capital borro~ ing process. 

Exhibit 2A, Column (8) shows the annual capital reinvestment amount necessary for the 
DCF model to account for the 3% growth m capital. The capital remvestment amount is 
taken from current )'ear earnings to fund the following year starting capital - Column (2) 
equals Column (8) shifted one year. The DCF model fully funds capital growth, thereby 
reducing "free cash flows" for valuation. 

In the EVA models, the cost for growing the capital zs a part of  the cost of  capital 
calculation. For the EVA(a) model, Exhibit 2B, Columns (lOa) and (lOb) show the 
components of  the cost of  capital related to the imtial and additional capital for growth, 
respecttvely. The growth-related earnings reductton equals the product of  the hurdle rate 
and the cumulative additional capttal amount beyond the initial capital. This increment 
can be thought of  as the interest payment on "'borrowed" capital used to fund business 
growth 
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Although the negauve cash flov,,s necessary to support capital growth are different for the 
DCF and EVA models, the present ',alues of the cash flows are identical when considered 
m perpemio'. The DCF model reinvestment to grow the capital is a larger offset to 
earnings in earl,,,' forecasted years than the EVA model required return on additional 
caDtal amounts. By the 9 'h forecasted .`"ear, though, the EVA model capital growth cost 
(Exhibit 2B, Column 10b) overtakes the DCF model reinvestment amount (Exhibit 2A, 
Column 81. 

Total Earnings ,'~'ol Equal to Hurdle Rate and the Company is A'ot Growing 

Table 3 d,splays the company value results tbr the three models ,n the scenano in which 
the annual total eammgs relative to capital does not equal the hurdle rate and the 
company ]s not growing Exhibits 3A, 3B, 3C, 4A, 4B and 4C show the calculations 
leading to these results. 

Table 3 
Valuation Results 

Total Earnings Not Equal to Hurdle Rate 
No Gro`.`. th 

10-Year Terminal In Perpetuity 
Model Forecast Period Value (Totall 

Earnings Less Than Hurdle Rate 
DCF 70.26 23.07 93.33 
EV,4fa) 94.98 (I 65) 93.33 
EI, A{b) 94.98 (I.65} 93.33 

Earnings Greater Than Hurdle Rate 
DCF 80 30 26.37 106.67 
Et(4¢a) 105.02 1.65 106.67 
EI"Afb) 105.02 1.65 106.67 

Table 3 reaffirms the ot perpetuirv equivalency of the DCF and EVA models. Like the 
pre',lous examples, the lO-year and terminal values are different between the DCF and 
EVA valuauons but the tn perpetui O" `.'aluauons are equal. The equivalency of the DCF 
and EVA models in perpetuity wdl be shown on an algebraic basis in the Appendix. 

When the earnings are nol equal to the hurdle rate there is a marginal ,,alue (posm',e or 
negafi`.e) in addmon to the initial capttal As expected, when hurdle rate reqmrement 
exceeds earnings, the value of the company drops below the value of the starhng capital 
($100 in this example) L~ke~lse, ,.','hen earnings exceed the hurdle rate. there is 
addluonal value be}'ond the mmal capital In Exhibits 3A, 3B, and 3C, the total annual 
earnings is 16% and the cost of capital ~s dictated by the hurdle rate, 15%. leaving an 
excess return on capital of 1% for each year m the future. The present `.'alue of the I% 
margmal profit m return on capital of I00 is 6.67 in perpetuity. Referring to Exhibits 4A, 
4B. and 4C, a I% marginal loss m return on capital of I00 leads to a value decrease of 
6.67. 
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Total Earnings Not Equal to Hurdle Rate and the Company is Growing 

Table 4 displays the company value results for the three models m the scenarios in which 
the annual total earnings relatree to capital does not equal the hurdle rate and the 
company's  capital and earmngs are growing by 3% per annum. Exhibits 5A, 5B, 5C, 6A, 
6B, and 6C show the calculations leading to these results. 

Table 4 
Valuation Results 

Total Earnings Not Equal to Hurdle Rate 
Earnings and Capital Growinl. ~ ~ 3% ?er annum 

. . . .  I 10 Year Terminal In Perpetuily 
t,loneJ I Forecast Period Value ~Total) 

Earnings Less Than Hurdle Rate 
"~'~ 30.45 91 67 DCF 61 .,~ 

El",,l(a) 94.43 (2.76) 91.67 
EI/A(bl 94 43 12.76) 91.67 

Earnings Greater Than Hurdle Ra|e 
DCF 72.35 35.99 108 33 
El'~4(a) 105.57 2.76 108.33 
EVA(b) 105 57 2.76 108.33 

The impact of  growth on the company's  value is to increase the portion of value 
contributed in the future. If the company's  earnings are not achieving the hurdle rate. 
growing the business further lowers value. When earmngs exceed the hurdle rate, growth 
produces increased value 

The DCF model results show that capital growth, necessary to support business and 
earnings growth, reduces free cash rio',,,' in the short term in return for an increase in 
future earnings. Looking at the Earn,ngs Greater Than Fhtrdle Rate scenario, the 10- 
)'ear forecast period '.alue with no gro.`~ah is 80.30, dropping to 72.35 with 3% annual 
growlh However. the comparable terminal value amounts increase from 26 37 to 35 99 
yielding an m perpet,ti O, gam in total value of I 66 with growth (108.33 ~Jth 3% gro.`.`th 
versus 106 67 ,,vlth 0% growlh). In the earl), projection years, the reinvestment earnmgs 
to grow the capital (thereby reducing free cash flows) exceed the marginal increase in 
earnings on the additional capital. This reverses itself in later projection )'ears, resulting 
in higher terminal values. 

Comparison o f  DCF attd EVA Models 

The parametenzattun of  the DCF and EVA models presented in the paper cause the 
models to produce equal xalue if considered in perpetuity. The parameters selected to 
populate the models should be eqm.`alent as they are independent of  which model is 
used. For example, the appropriate hurdle rate does not depend on the model selected. 
The Appendix discusses the fomlula assumptions necessary to ensure the equwalency 
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property The eqmvalency of these valuation methodologies ts expected because each 
model is measuring the same value comnbutors, just using different formula structures. 

In the DCF model, the starting capital is used only to determine free cash flow at time O. 
The principle of a DCF valuanon is that an investment, a company for our discussion, is 
~orth the value of its future earnings. If the capital leads to future earnings (by 
investment and supporting profitable business), then value wtll emerge. If future 
earnings are less than the hurdle rate, then the capital invested m thts entity is less than ~ts 
face value"". 

The EVA model (both tbrms, EVA(a) and EVA(b)) includes the full starting capital for 
its determination of value, but at a cost represented by the Cost of Capttal calculation. 
Column 10a m the EVA model calculations (Exhibits IB, 2B, 3B, 4B, 5B, and 6B) shows 
the cost of the initial capztal. The present value of this negatzve cash flow m perpetuity 
exactly offsets the value contributed by immediate recognition of the capital m the EVA 
formula. If the capital does not provide earnings equal to or greater than the hurdle rate 
in the form of excess profits, then the capital does not substantiate its value and is worth 
less than 100 cents on the dollar. 

That the EVA model counts the initial capital amount as value and the DCF model does 
not leads to significant differences in value contributors between the forecast period value 
and the terminal value. Tables I, 2, 3, and 4 all shov,, that the lO-year forecast period 
results for the EVA model are close (and sometimes equal) to the in perpetmO' time 
frame results. In the EVA model, therefore, excluding earnings beyond a certain time 
period does not have a material effect on value. In contrast, a s~gnificant portion of the 
value indteated by the DCF model ts captured as terminal value. In these examples, in 
which the total earnings of the company are set close or equal to the hurdle rate, the EVA 
model approaches in perpena O, value faster 

Table 5 shox~s model value results in which earnings related to operations are 0.0%. 

Model 

DCF 
El"4(a) 
EVA~b) 

Table 5 
Valuation Results 

Earnings on Operations =0.0% 
Total Earnings = 4.0% (Investment Only) 

No Growth 
I0 Year 

Forecast Period 
l'erminal 

Value 
In Perpetuity 

(,Total) 
20.08 6.59 26 67 
44.79 118.13) 26 67 
44.79 q 18.131 26 67 

: :  The '.alue o f  capital is ,.~,ollh I00 cents on the dollar I f  .',ou can relea.,,e the capttal at l ime zero 
Otherwise, lhe captlal is v.orlh the present value ol'lhe dlstnbutable earnmgs generated b',' the capxtal. If 
dtsrributable earnings represent a return Io~er than the hurdle rale. then capital i_,. worth less than IOO cents 
on The dollar 
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For a scenario in which the company's earnings potentml is low. the DCF model 
produces value closer to the m perpetutty value in the 10-year period than the EVA 
model. The DCF model is not "fooled" by the value of the stated initial capital in the 
short term. The DCF model considers only the earnings potential of the capital, not the 
capital itself The result is further exaggerated when growth is incorporated as shown m 
Table 6. 

Table 6 
Valuation Results 

Earnings on Operations = 0.0% 
Total Earnings = 4.0% (Investment Only) 

Earnings and Capital Growin~ @ 30/. ,er annum 

Model I 10 Year Terminal In Perpetuio' 
I Forecast Period Value ~Total~ 

DCF 5.57 2.77 8.33 
EVA(a) 38.78 (30.45) 8.33 
EVA(b) 38.78 (30 45"1 8.33 

Comparison of EVA(a) and EVA(b) 

We present tv,,o versions of the EVA model. EVA(a) and EVA(b). The EVA(a) version 
defines excess earnings as the difference in after-tax operating income and the cost of 
invested capital. After-tax operating income is recognized for the company as a whole: 
the amount is not segregated into investment versus operational earnings. L~kewise, the 
cost of capital rehes on the product of the "'full" hurdle rate and the amount of capital. 

The EVA(b) model formula defines earmngs and cost of capital differently. The EVA(b) 
model formula does not include investment earnings related to the capital as earnings In 
the context of a property/casualty insurer, earnings are only underwriting earnings from 
premium written and investment income on assets supporting the habdlties ensuing from 
writing insurance policies. Under EVA(b), earnings are lower, but so is the cost of 
capital The cost of capital is the hurdle rate less the investment income rate the company 
will earn on its capital, m a sense, the shortfall in investment earnings relative to the 
hurdle rate. 

From the basic valuation examples presented in this section, the two forms of the EVA 
produce identical results. EVA(a) follows from financial valuation fundamentals. "~ 
EVA~b) is often regarded as the "'actuarial valuation method." Sturgls ''~ describes the 
economic value of a property/casualty insurance company as composed of three parts: (i) 
current net worth, plus (it) the discounted value of future earnings, less (iii) cost of 
capital, where future earnings and cost ofcapttal are defined per our EVA(b) model. 

:~ McKmsey & Company. Inc. "'Valuatton Measuring and Managing the Value of Compames.'" Third 
Edmon 
:4 Robert S. Mtccolis. "'An In,.estlgatton of Methods. A:.,sumptlons. and Ri~k b.todehng for the Valualton of 
Propeny.'Casualty Insurance Companies" 
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Mtccolis describes a computation s~m]lar to Sturg~s to determine an insurer's economic 
value (t) adjusted surplus, plus (it) discounted value of future earnings, less (m) cost of 
capital. Miccohs, however, is unclear regarding the computation for the cost of cap,ta]. 

We consider the EVA(a) model to be the preferred structure for applying the economic 
value added model. EVA(a) is more stra,ghtforward to apply and avoids potential 
comphcattons It relies on financial est,mates of  earnings that are comparable to actual 
financial projections for a property.'casual~,., insurer. To use the EVA(b) model, one must 
attempt to *solate the source of earnings between amounts earned from premium ~ ritten 
and investment income on the cap,tal. This approach further necessitates an allocation of 
invested assets betv.een those supporting the liabthties and assets underlying the capital 
and surplus. In addition, splitting earnings into ,ts "'component" parts raises potent,al tax 
application quest,ons that complicate the valuat,on process. 
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S E C T I O N  3 - P a r a m e t e r i z i n g  the Va lua t ion  Model  

Accounting 

Insurance companies  m the Umted Slates use mulhple  forms of  accounting. Statutory 
accounting pr inoples  ISAP) are used lbr reporting to state regulator3' authormes and 
g.enerally accepted accounting principles (GAAP) are used for reporting to the Securmes 
and Exchange Conumssmn and the public Tax accounting underhes the computation of  
taxable income. SAP focuses on the current solvency of  an insurance company and its 
abd~ly to meet ~ts obhganons.  Due to th~s locus on protectmn of  pohcyholders,  assets 
and habi lmes  are general ly valued conservat ively on the statutory balance sheet, although 
the result ~s dependent on specific company or financial conditions. 

Historically, noteworthy difl'erences between GAAP and SAP Ior properly, casuahy 
insurance companies related to: 

1. Deferred acqmsit ion costs  f ' D A C " )  
2. Deferred tax assets ("DTA")  and liabflines ("DTL")  
3. Premmm defie,ency reserve C'PDR") 
4. Valuation of  bonds 

• Deferred acqmsit ion costs 

The asset assocmted v,'tth DAC recogmzes that the unearned premium reserve 
("UEPR")  may be overstated because it funds expenses  le.g., agents '  commissions)  
that have are typlcal l )  prod at the begmmng of  the pohcy and have already been 
incurred on the income statement. As the unearned premium reserve is earned, this 
overstatement disappears. ' -  Statuto D' accounting does not permit recognition of  the 
• ~alue of th~s asset umd it materializes m future statutory earnings. In isolauon, this 
difference m the treatment of the DAC asset '~,ould cause G A A P  equity alv, ays to be 
greater than or equal to SAP eqmty. 

• Deferred tax assets and liabilit ies 

Deferred tax assets and habflities are created primarily from taxes calculated on 
earnings reflecting discounted reserves and lax l iabi lmes related to unrealized gains 
(losses) For a growing company, the tax calculation results m an "'overpa)Inent'" of  
taxes mmal ly  related to incurred losses, offset by a lower payment in subsequent 
)'ears ',,.hen claims are paid• This difference ~s solely a n m m g  issue, as the total 
amount of  taxes that will be paid for profits associated with a block of  business or 
block of  assets does not change• The prepaymen! of  taxes (or tax credit for unrealized 
losses) is corrected as the business runs o f fo r  the assets are sold. 

:~ For a going concern. ~e ackno'o, ledge thai HI is replaced b) eqml )  in Ih¢ unearned premmm reserves for 
ihe followmg year's busme~,s 
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With the introduction of DTA and DTL for statutory accounting, these assets and 
liabdit~es are nov,, recogmzed on the balance sheet before the business runs off or the 
assets are sold. For many companies, tfus change increases their statutory capital 

• Premmm deficiency reserves 

The PDR is reqmred when the unearned premmm reser',e is expected to be 
insufficient to fund the future loss and expense payments originating from those 
policies. This reserve v'ill reduce statutory capital. 

• Valuation ofbonds 

In general, SAP requires bonds to be held at amortized cost lalthough bonds that are 
not "in good standing" are carried at market value). GAAP, on the other hand, uses 
amorttzed cost for only "held-to-maturity'" bonds, which the company has both the 
intent and abihty to hold to maturity. For those bonds in the company's active trading 
portfolio, GAAP requires market value treatment on the balance sheet 

With the codification of statutory accounting prmciples, which became effective Janua D, 
I, 2001. deferred tax assets, deferred tax liabdtties and prentmm deficiency rese~'es were 
recogmzed on the statutory balance sheet. The most significant difference that remains 
relates to deferred acquisition costs. 

As stated in Actuarial Standard of Practice (ASOP) No 19. for insurance compames, 
statutory. (or regulatory) earnings form the basis for determining distributable earnings, 
since the avadabdlty of dividends to equity owners ts constrained by the amount of 
accumulated earnings and minimum capital and surplus requirements. Both of these 
amounts must be determined on a statutory accounting basis. Distributable earnings 
consist of statutory earnings, adjusted as appropriate m recognition of minimum capital 
and surplus le',els necessary, to support exKsting business. Therefore, statutor?, accounting 
determines the earnings available to the eqmty ov"ners. 

While future earnings calculated according to GAAP or another bas~s wdl often be of 
interest to the user of an actuarial appraisal, the free cash flow calculations contemplated 
v"lthin the defmmon of actuarial appraisal in ASOP No. 19 should be developed m 
consideration of statutory earnings, rather than some other basis. 

GAAP earnings and G,,M~P net worth, however, are often the basis of the relative 
valuahon methods involving market multiples. 

As the major difference between GAAP and SAP accounting ts DAC. '..`hich may be 
recogmzed as an asset on the GAAP balance sheet immediately instead of through future 
earnings, GAAP net worth is typically higher than SAP net '..`'orth. SAP net worth may 
be greater, howe',er, ',,.'hen the amortized ',alue of bonds in the SAP asset portfolio is 
higher than the market value of bonds in the GAAP asset port foho. 
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Estimating Free Cash Flows or Value Added 

Estimating free cash flows for a DCF valuation or changes in value of the company in 
each period for an EVA valuation requtres the use of al~er-tax operating earnings from 
accounting statements• However, accounting earnmgs may not represent true earnings 
because of  hmitations m accounting rules and the finns'  o~ n actions• 

For a property/casualty insurance company, changes in the equity of  the firm derive from 
not only (a) after-tax operating earnings (net income m the statutory income statement) 
and (b) capttal infusions or distrthutions, but also from (c) "'below the line'" adjustments 
to capital. These adJustments represent items that do not flow through the statutory 
income statement for changes ]n unrealized capttal gains/losses, changes in non-admitted 
assets, changes tn provtsions for reinsurance, change in foreign exchange adjustment and 
changes in deferred income taxes• To the extent that these adjustments increase 
(decrease) the equity of  the firm, they also mcrease (decrease) free cash flows for the 
DCF valuation methodology and increase (decrease) excess returns for the EVA 
valuation methodology. 

For a property/casualty insurer, esumating after-tax operating earnings (including "below 
the line" statutory, adjustments to capital) typically requires rigorous analysis. For the 
purpose of analysts, the sources of  future earnings can be sub-dwtded mto two broad 
categories the runoffof the  extstmg balance sheet and future written business. 

Runot]'of the Existing Balance Sheet 

The runoff of  the existing balance sheet produces earnings associated with (1) 
• - ~6  • 

underwriting profit imbedded in the UEPR",  (u) investment income on the assets 
supporting (at the loss reserves (inclusive of all loss, allocated loss adjustment expense 
and unallocated loss adjustment expense reserves) and (b) UEPR liabilities until all the 
associated claims are paid, and (tit) investment income on the cap.tal base supporting the 

• 2 7  runoffof the  business. 

The earnmgs associated w,~th new (or renewal) business derives from (i) the unde~ 'n t ing  
profit generated by the business. (is) the mvesunent income on the assets generated by the 
premium, supporting loss reserves and UEPRs until all of  the claims are paid. and (ili) 
investment income on the capital base supporting the writing of the new business. 

Developing financial projections (income statements, balance sheets, and cash flows) 
related to running off the existmg balance sheet liabilities, assuming no new or renewal 
business is written, will provide the basic elements for valuing the company in runoff. 
The key factors mvolved are It) the payout of  the loss reserves, (it) the uh~mate losses 
and expenses associated with the unearned premium reserve, (iii) the payout of  the losses 

:~ profit imbedded m the UEPR represents underwnting profit and profit associated wnh the prepaid 
expenses (eonespondmg to the deferred acquismon cost asset estabhshed for GAAP accounnng). 
.,v For an EVA ~aluanon. if one proJects earnings v, lth a capual ba~e of zero (an EVAtb) scenano). Ihls 
component ,a.'lll be zero• 
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and expenses assocmted ~̀. tth the unearned premium reserve, (i`.) the capital needed each 
)'.'ear to support the company in runoffand Iv) the m'.estment y~eld earned on assets untd 
all claims are paid and all capital is released In practice, when running offa  company 
that writes personal lines business, renewals may be mandated for several )'ears by the 
regulator2, .' authorities. In those instances, running off the company might also reflect the 
writing of some renewal business 

When it is important to understand the value associated with the runoff of the business 
separate from value assocmted v.lth the ',,.'riling of  nev.. (or renev.'al) business, v.,e 
recommend the tbllov.'ing approach. Value the company m runoff reflecting the level of 
capital required to run offthe company. Then, `.'alue the company reflectmg earnings and 
capital needs assocmted v.,ith maintaining the company as a going concern That is, 
earnings projections and capital needs are developed for the combination of running off 
the existing balance sheet and writing nev, business. The value of solely ,,,.'riling new 
business should be computed as the difference bet`.`.een the two valuations. 

The suggested approach is beneficial on both a practical and theoretical basis. On a 
theoretical basis, the valuation of the runoff company relati`.'e to the going concern 
tmpro`.es the determination of capital required for new business. On a practical basis, 
both ','aluations v.,dl use the same starting balance sheet 

Future  ||'fillet1 Bztsltte,$s 

For property/casuahy insurance companies, in contrast with life msurance companies, the 
distraction between new and renewal business is often not meamngful for de`.'elopmg 
financial proJections for future written business. For direct `.vrtters of personal lines 
business, however, for whom the initial cost of acquiring new business and the associated 
expected loss ratio differs substantmlly from the expenses and loss ratios assocmted '.`.'tth 
renewal business, the distinction betv.'een nev.. and renev.al business may be very 
important for developing financial projections 

Fmancml projections are usually developed by hne of busmess or business segment that 
corresponds to the detail m which the company being valued provides its premmm 
forecasts. The key elements to be estimated by year are: 

B)' hne of business: 

• Gross ,.,.ritten premium 
• Net written premium 
• Acctdem .','ear gross and ceded loss and loss e~pense ratios 
• Gross commissions and ceding commissions 
• Other o`.erhead expenses {premium taxes, general and administrative expenses, other 

acqmsition costs) 
• Collection schedules for premium 
• Payment schedules for commissions and other o`.crhead expenses 
• Payment pattern for gross and ceded accident year loss and loss adjustment expense 
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• Collection pattern for ceded reinsurance recoveries 

For the book of business in total: 

• Investment yield on investible assets 
• Capital needed to support the enure book of business 
• Federal income taxes apphcable to earnings 

The primarj' contributors to in',estment earnings are the t~mmg differences between the 
collectmn of premium and the payment of claims and loss adjustment expense. For most 
lines of business, there is little delay m premium payment by the pohcyholder When 
premtums are pa~d m installments, howe',er, or when audtt premiums represent a 
s~gmficant port~on of the ulttmate collected premmm, ~t is important to exaluate the lag 
because of the resulting impact on the investment income calculation Reinsurance 
recoveries may need to be projected on a contract-by-contract basis ffthe indemmfication 
terms var3, significantly. 

In determining the future earnings from new and renewal business, projected loss and 
expense rauos are the most important components to be modeled. As Miccohs '8 and 
Ryan & Lamer ''~ note in their papers on valuation, issues to be considered m the 
projection of future loss and expense ratios include: 

• Changes in price levels 
• Trends in loss severity, clatm frequency, and exposure base 
• H~storical industry results 
• Underwnting cycles 
• Target rates of return 
• Expected future growth rates 
• Degree of competition in market 
• Regulator3' environment 
• Exposure to catastrophes 
• Changes in ceded reinsurance (coverage. terms, pricing) 

Present i'alue qf F, lture Earnings 

Once the future earning stream (including gains and losses m capital that do not flow 
through earnings) from rurmmg offthe existing balance sheet and future written business 
has been estimated, it ts discounted to present value at the selected hurdle rate For an 
EVA valuation, the future earnings stream is used directly without consideration of 
capital infusions or distributions. For a DCF valuauon, the future earnings stream (a) less 

~SRoben S Miccolis. "An Invesugatlon of Methods, -Xssumptions. and Risk Modehng for the Valuarton of 
Propeny,'Casually Insurance Companies" 
:~J P Ryan and K.P W. Lamer. "The Valuauon of General Insurance Companies" 
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earnings retained for cap!tal growth or (b) plus additional capital released represents free 
cash flows. 

Adjusted Net JJ'orth ("ANB"") 

In ~,alumg a company, it is common practice to adjust the equtty of the firm at time zero 
to consider value (positive or negativel associated with reserve deficmnctes or 
redundancies, market value of assets, non-admitted assets, and slatutory provts~ons for 
reinsurance, among other factors. 

The adjustments to statuto~' equity in the computation of ANW for an EVA valuation 
(and free cash flow at time 0, "'FC0," for a DCF valuation) represent an effort to adjust the 
starttng statutory balance sheet to its true market value. These adjustments described by 
Miccohs and Ryan & Lamer and summarized belo`.', represent an attempt to recognize 
the market value of some items on the statutory balance sheet. For example, common 
adjustments include reflecting assets at market value and eliminating goodwill In 
contrast, there are usually no comparable adjustments for liabilities. For loss reserves 
and unearned premium reserves, market value would reflect future investment income 
plus a proviston for risk. Instead, any value assoctated with the liabilities (other than 
adjusting reserves to thetr actuarially indicated amount) ts recogmzed through the present 
~,alue of future earnings 

Since statuto~, accounting determines free cash flo'.'.'s to m,,'estors, one could support the 
position that adjustments to the eqmty of the firm at ttme zero should be linuted to tax- 
affected reserve adjustments (to bring carrted.reser, es to the actuarial indicated le`.'el) and 
other changes that "'true up" the statutory balance sheet. Adjustments to statutor).' capital 
to compute ANW that are not permitted under statutory accounting will not change 
statuto~' capital and, therefore, ,.,,'ill not affect free cash flows. Many financial experts, 
however, insist that assets be adjusted to their market value at the date of valuation. 
Further, goodwill carried on the balance sheet is almost always eliminated for valuation, 
even though it Is now a statutor).' asset. Experts continue to disagree on how these 
adjustments should be handled for valualton 

E,ther way, if the net ~orth or the equity of the firm is adJusted to recognize non- 
admitted assets, or reflect the market value of all assets, then the firm's future earnings or 
changes m capital must be adJusted to prevent double counting this `.'alue For example, 
if all assets are marked to market for the ,.'aluation, then future earnings of the firm must 
not reflect an3,' realized gains or losses assocmted with assets unless the market values 
change. Further, .f non-admmed assets are added back to the starting net worth of the 
firm, then any capital increases assocmted `.`.'lth the recognition of non-admitted assets 
must be ehmmated from future financial projections. 

.Any adjustments to the starting capital to determine ANW ',','ill cause the EVA and DCF 
valuation results to diverge unless the same adjustments are made for both valuation 
methodologies. Othe~ise,  for DCF. these values '.̀ .'111 be recognized on a discounted 
basis through future earnings or "'below the hne'" adjustments to equity. For EVA, the), 
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wtll be recognized at time zero, thereby reflecting no present value discount Jn the 
computation of value. 

The common adjustments to the starting capital ("SC0") for valuation are listed below. 
Only items 1 and 6 are conststent with statutory accounting principles and, therefore, will 
have the same effect on EVA and DCF valuations. The other adjustments to ANW, 
unless also assumed to impact SC0 for DCF, thereby affecting FCo, wdl cause the EVA 
and DCF valuation results to diverge. The direction (positive or negative) of the 
difference between the EVA and DCF valuauon result will be dependent on the direction 
(positixe or negative) ofthe tax-affected adjustments for items 2.3, 4 and 5. 

I Loss reserve adequacy 

For a property,'casualty insurance company, pohcyholder clatm obligattons are 
usually the largest liability on the statutory balance sheet. As a result, 11 is crtttcal to 
assess the reasonableness of the carried loss and loss adjustment expense (LAE) 
reserves as of the valuation date to meet unpaid clmm obligattons 

Adjustments for the loss reserve posit~on should be made dtrectly against statutory. 
equity as of the valuation date for both DCF and EVA valuations. Adjustments to the 
carried loss reserves will impact ANW for an EVA valuation and FC0 for a DCF 
valuation 

2. Market value of assets 

Traditionally, the majority of property.casualty insurance compames' investment 
portfolios have been placed in bonds, especially U.S. Treasut 3' or other federal 
agency instruments. SAP requires bonds "in good standing" to be valued at 
amortized cost. For the purpose of a valuation, however, bonds should be valued at 
market value in order to reflect what an independent buyer would actually pay to 
purchase the securities. 

Common and preferred stocks, which represent the next largest portion of most 
property/casualty insurance compames" portfolios, are recorded at values provided by 
the NAIC's Securities Valuauon Office. These values are t,sgically equal to market 
value and thus are less likely to reqmre an additional adjustment. Other investable 
assets should also be adjusted to market value, but are a much smaller component of 
the total portfoho and thus the adjustments are likely to have a smaller impact on the 
adjusted net worth. 

3. Inclusion of non-admitted assets 

Some states do not admit certain assets on the statutory balance sheet because the],' 
either do not conform to the laws and regulations of the state or are not readily 
convertible to hqu.d assets. Exclusion from the balance sheet results in a charge to 
statutory equity For the purpose of a valuation, however, one should include any 
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portion of non-admitted assets that has financial `.alue and may be convertible to 
cash. 

Examples of non-admitled assets include: 

• Agents' balances overdue by 90 days or longer 
• Bills receivable that have not been taken for premium 
• Furniture, equipment (other than electronic data processmg [EDP] eqmpment and 

software), and supplies 
• Leasehold impro`.entents 

In some cases, there may be overlap with the adjustment of assets to market value 
For example, ',,.'hen the market value of real estate ~s below its net book value, the 
excess of book over market '~alue *s recorded as a non-admitted asset while the 
admined asset, which underlies the amount of statutor) surplus, is equal 1o the market 
value Care should be taken to ensure that there is no double-counting. 

4. Accounting goodwill 

SAP for purchases define goodwdl as the difference between the cost of acquinng a 
subsidmr3', controlled, or affiliated entity and the purchaser's share of the book `.alue 
of the acquired entity. Positl`.e goodwill exists when the cost of the acquired entity is 
greater than the purchaser's share of the book value. According to codified SAP, 
hov, e`.'er, poslti`.e goodwill from all sources Is hmited m the aggregate to 10% of the 
parent's capital and surplus (adjusted to exclude an,,' net positwe good,a.'ill, EDP 
equipment and.software). 

Assets Ior goodwill are generally assumed to ha~.e zero value until such `.'alue 
emerges through future earnings. 

5. Pro'.is~on for reinsurance 

SAP produce a "'provision for reinsurance" that is calculated m Schedule F of the 
NMC Annual Statement and is carried forward to the statutory balance sheet as a 
liability. This provision is intended to be a measure of conse~'atism to reflect 
unsecured reinsurance placed ,.v~th unauthorized companies and collect~bdity issues 
with all reinsurers. 

In a valuation, a more detailed revie`.`., ofcolleetibdity ~ssues ~s worthwhile m order to 
estimate any additions (or further reductions) to eqmty to reflect a more rigorous 
esttmate of reinsurance reco`, erables. 

6 Tax issues regarding all of the above 

An,,' adjustments to the statutory balance sheet may also have a corresponding ~mpact 
on the company's federal income tax habdlty. The federal tax liability, or deferrable 
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tax asset, is based on statutory net income and a series of  adjustments. Any 
adjustments made to statutory equity for valuation should be tax-affected 

In mergers or acquisitions, taxes are parttcularly difficult to address because one must 
consider the tax position of  both parties. 

Hurdle Rate 

The hurdle rate used in a valuanon should reflect the cost to the firm of  acqmring the 
capital necessary to make the acquisition or perform the transaction in question 
Typically, this value will be provided by management based on its appraisal of  the 
acquisition's relative risk and required return. When not pro~,~ded by management, the 
hurdle rate can be estimated using a variety of  security valuation methods. ~n In enher 
case, ,,'.,hen establishing the hurdle rate, ~t is important for the analyst to consider several 
issues including the folio,,,` ing: 

I. Risks attributable to business activities of the acquisition 

The risk attributable to the business activities of  the acqmsmon determines the cost of  
the capital required to make the acquisition. This risk measure should not be confused 
with the nsk associated with the acquiring entity, which may be different. The risk of  
a finn, in total, reflects a '.~eighted average of  the nsks of its underlying business 
activnies and the cost of  capital of  an3.' particular activity may differ from that of  the 
finn as a ',','hole. 

2. Consideration ofmuhiple  hurdle rates 

If the target acquisition in engaged in several acnvmes (e.g., different lines of  
business) of  varying risk, it may be appropriate to consider projecting several streams 
of  free cash flow and discounting them at different rates. An alternative to this 
approach may be to allocate capital to business act~v~t3., in such a way as to equalize 
risk across lines. If this approach is used, then a single discount rate for all cash flows 
may be appropriate. 

One reason to consider the latter approach is that one can generally obser,,e the hurdle 
rate only for the firm as a ,,'.'hole. and not for its component parts. Thus, the hurdle 
rates reflect the average risk of  the f inn's  activities and are not necegsarily 
appropriate for any single business. If there ,,,`ere large samples of  pubhcly traded 
finns specializing in particular lines of  business, then it would be possible m theot3' to 
obsen'e  the hurdle rate for those specific activities. In practice, however, there are a 
limtted number of  publicly traded lr/surers and they tend to be multi-line finns 
involved in a wide variety of  businesses (many of  which have substantially different 
risk profiles). These considerations support using a single hurdle rate reflecting 

,0 The most prominent models in ~ldespread use are the capnal assel pncing model (CAPM~ and the 
dr, ldend valuahon model isometimes known a,~ vhe DCF or Gordon gro'o.lh modell. Both models are 
de~cnbed In numerous sources, including ]nvcslmenl Valuation by Damodaran. 

4 4 3  



average risk activities, and then adjusting the amount of  required capital so that the 
risk of the acquisition is equivalent to the average risk of the firm. 

3. Method of financing the acquis,tion 

If the aequ~sitton is to be financed w,th a mix of debt and preferred and common 
equity, then the appropriate hurdle rate should reflect the weighted average after-tax 
costs to the firm of acquinng capital through these vehicles. The capital structure 
underlying the acquisition, and not necessarily the existing capital structure of  the 
acquiring entity, is the relevant issue. For example, ira firm ts currently financed w,th 
a mix of debt and equib,, but intends to pursue an acquisnion financed solely by 
eqmty, then the relevant hurdle rate is the equity cost of capital. 

4. Consistency with other assumptions 

The discount rate depends on relati`.'e risk, `.`.'hieh in turn depends on several factors 
that may be related to other aspects of  the valuation. For example, m additton to the 
intrinsic risk of its specific business activmes, the cost of  capital for a firm ~ill 
depend, among other things, on the firm's leverage and mix of  assets. Both of these 
factors, however, will have an impact on the projected free cash rio,,,.' that forms the 
foundation of  the valuation. There must be consistency betv, een the assumpttons used 
to develop the cash flows and those used to develop the d scount rate 3 . 

Capital Needs 

The capital reqmred to support an insurance company is a key assumption m the 
valuation process 

For the DCF methodology, capttal reqmrements dictate the amount of  capital to be 
retained in the company to support ongoing operations, thereby determining distributable 
earmngs and associated value. For the EVA methodology, capital requirements dictate 
the capital that underlies the cost of  capital calculation. The higher the capital 
reqmrement, the h~gher the cost of  capital element of  the valuation formula. 

Property,'casualty insurance eompames are subject to statutory capital requirements. 
Statutory capital requirements are determmable through the property.'casualty insurance 
industry's risk-based capital (RBC) requirements. The results can be viewed as 
minimum capital requirements. Often, larger capital investments are required to satisfy 
the financml rating agencies such as A.M. Best, Standard & Poor's, and Moody's in order 
to mamtam desirable financial ratings All of  these factors are considerattons in 
determining capital requirements for `.'aluation. 

Premium-to-surplus ratios, loss reserves-to-surplus ratios, and multiples of  RBC ha*.e 
been used in '.'aluation to determine capital needs These are typically based on 

.~l The dlscounl rale is often ~ tev.ed as lhe sum of  a rtsk-free rate and a market risk premium (CAPM)  The 
value o f lhe  market nsk premmm is a ~opic o f  debate among financial economists 
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comparable ratios for "'peer companies," which are companies with premium volume and 
lines of  business comparable to the subject company. In these instances, it ~s essential 
that the selected capital that match or exceed RBC requirements. 

In actuarial and finance literature, there are man)' articles and papers related to capital 
requirements and capital allocation for insurers. Theories about capital requirements 
range from simplistic rules of  thumb (e.g., maintenance of  a prenuum-to-surplus ratm of  
2.0) to intricate risk models. 

In practice, ~t ~s common for insurance compames to maintain a level of  capital that is 
suffictent for a desired financial rating. 

Cost of Capital 

We defined the cost of  capital ("COC") as the present value of the starting capital m each 
period multiplied by the hurdle rate. The COC ts used to measure excess returns in each 
period for the EVA valuation methodology. Excess returns are computed as the 
difference between operating earnings in each period (inclusive of gains and losses in 
capital that do not flow through earmngs) and the COC. This concept is more thoroughly 
discussed in SECTION I - Valuation Framework  and SECTION 2 - Valuation 
Results: EVA versus DCF. 

Economists and other financml professionals equate the term cost of  capital with the 
hurdle rate. Care should be taken in using and understanding the meaning of the term in 
a particular context. 
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SECTION 4 - Sample Company Valuation 

This section presents a detailed example of valuing a property,'casuah~, insurance 
company. The modeled valuation ,a ill focus on: 

Modehng aspects of  a property/casualty insurer gwen current financial 
statements, investment assumptions, underwriting assumptions for current and 
future business, and loss and expense payment assumptions: 

• Determination of future earnings from projected financml statements based on 
selected surplus and business volume constraints; 

Apphcation of DCF and EVA valuation approaches using an existing balance 
sheet and projected financial statement amounts (balance sheet, income statement, 
and cash flow exhlbltsl: 

Testing the sensmvlty of  indicated value to changes in key assumptions Irisk- 
based capital-to-surplus requirement, loss ratios, investment yield, hurdle rate, 
growth rate}. 

Our objective is to provide a thorough and functional discussion of the valuation of  a 
property,'casuahy insurance company valuation and a basic discussion of the development 
of  earmngs projections. The actuary or other professional preparmg the valuation will. of  
course, undertake extensive anal.',s~s to develop premium, loss. and expense assumptions. 
investment yields, and other factors to project earmngs. We present man,,' assumptions 
"'as gtven" without further explanation. 

Valuation Est imates Based on Financ ia l  Model  Restdts  

The valuation results for the sample company, Primary Stock Insurance Company or 
"'PSIC". rely on two basic assumption sets: 

1.. Financial modeling assumptions underlying financial statement projections, and 

2. Valuation assumpttons underlying the apphcatlon of  the DCF and EVA 
methodologies yielding value estimates of  PSIC based on the financial statement 
projections. 

Exhibit 7 shows the value esttmates tbr PSIC for each method and the prmctpal 
components for applying the valuation formulae. The fundamental financial amounts 
entering the valuation calculations are current and future year-end surplus esttmates and 
future total income estimates. Basic financial modehng assumptions will be discussed 
later in th~s section: the primary focus ~s the application of  the valuation methodologies 
with the modeled surplus and income amounts g~','en specifc valuation assumptions 
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The valuation assumptions are  

1. A valuation date of  December 3 I, 200 I. 

PSIC's risk-based capital ("RBC") indication at each year-end dictates the 
statutory surplus at the respective year-end. The example uses a surplus-to-RBC 
relationship of 2-to-I where the RBC indication is the Company Action Level 
( 100% of  the RBC calculation ).32 

3. A hurdle rate of  15% per annum for all future 3,'ears. 

4 After the explicit forecast penod ending December 31, 2011, we assume the 
surplus and total company income w ill increase at 2°,,'0 per annum indefinitely. 

For each valuation methodology, future valuation amounts are modeled in two d=stinct 
time periods the exphcit forecast period ( l0  years for the example, 2002 through 2011) 
and all subsequent years (2012 and laler). For our sample company valuation, the 
explicit forecast period income and surplus estimates (via the RBC calculation) rely on 
financml modehng procedures. Valuation md~cauons for all subsequent )'ears were 
estimated using the respectwe method's value formulae starting one )'ear after the explicit 
forecast period. For the DCF method, this calculation develops to the terminal value. 
For the EVA method this calculation develops the "'continuing value added" after the 
explicit forecast period 

Both models yield value of approximately $88 mdlion as of  December 31, 2001 The 
comparison of the value components for the two methodologies parallels observations 
made m SECTION 2 - Valuation Results: EVA versus DCF about the scenano in 
which a company achieves more than/he hurdle rate and is growing 

The EVA method recognizes value amounts in the forecast process faster than the 
DCF method. As of  the end of the explicit tbrecast penod, through 201 I, the EVA 
method value estnnate is $73.9 mdhon ($42.1 million surplus plus $31.8 mdhon as 
the present value of future xalue added m years 2001 through 2011). 1he DCF 
method value estimate is $54.7 million representing the present value of free cash 
flow for 3,ears 2001 through 201 I. 

The present value of the remxestment cost (retained earnings) of  $21.9 mdhon (for all 
years) for DCF equals the present value of  the cost of  grov~lh capital for EVA. The 
DCF reinvestment cost oxer the 10-year exphclt forecast period ($18.97 million) is 
greater than the EVA cost of  growlh capital during the same period ($10.14 million). 
The difference is offset m modeled arfiounts for 2012 and subsequent - $2 96 mdlion 
for DCF and $11.79 mdl,on for EVA. ~3 

" Feldblum. "NAIC Propeny,'Casuah) Insurance Company Risk-Based Capital Reqmremenis'" 
~DCF(Ig97-~2.96)=EVa.(1014*II 79)=2193 
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The following diagram shows the steps in the development of value presented in Exhibit 
7. 

Starting 
Surplus 

I 
I ~' )ear 

Forecast  In¢onle. 

• Ulldeln, t r i l l ng  a s sumpt ions  

• Inves tment  a s sumpt ions  

• Cash f l ow  assumDllons  

next 
forecasted 

)'ear 

Delermine  Year-End Surplus :  

• RBC relat ionship used m this 
e , tample 

v • Re~xewpremxum-lo-surp lus  
• Review loss and LAE. Io-  

Surplus 

Valuation Contribuuon of the Exphcit Forecasled Period 

DCF: EVA: 

How much of the income 
musl be left in the company 
to alloy, growth" 

Remaining mcornc tS flee 
cash flo'~. The model 
shov, s the free cash l"lov,' as 
a PSIC th',=dend to 
in~ estors 

Ho',,, much of  the Income 
represents odthuonal ,.alue 
generated by the company 
abo~e the expected return 
cnteda of the hurdle i'~te" 

• value added ~ income less 
cost of czpxtal 

• cost of capital = surplus at 
beg of~,ear ~ hurdle rate 

I 
e~.Dhcll forec3sl period comDlele 

Value After Exp]ictt Forecast Period 

DCF: terminal ~ l u e  
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Valuation Estimate 
DCF: total of  PV (using huldle rarel of free cash flows 

EVA: total of px, (using hurdle mtel of, .alue added by )ear * 
starting Surplus 
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The recorded statutory surplus for PSIC as of  December 31, 2001 Is $45.00 million. 
However, this amount exceeds the selected capitahzatlon standard result of  2.0 × $21 07 
million (the RBC indlcatton at December 31, 2001) or $42.13 million. The "'excess" 
surplus is recogmzed as free cash flow,'value added for both DCF and EVA at December 
31, 2001 (time O) and our valuation models begin with a statutory surplus of  $42.13 
million. For the EVA model, the surplus of  $42.13 milhon is recognized immediately as 
value. It is also the basis of  the Cost of  Capttal calculation in the first period. For the 
DCF model, the surplus of  $42 13 million contributes to value only through the 
investment income it earns in subsequent periods. 

No other adjustments were made to the starting surplus for valuation. Camed reserves 
were assumed to be at the actuanally indicated amount. There was no difference between 
market value and book value of investments and no other adjustments were deemed 
warranted. 

After establishing PSIC's adjusted net worth, the valuation process requires the total 
statutory income and RBC amounts for the first future projection year, 2002, from the 
fmancial model constructed for PSIC. Exhibit 8, Changes in Statutor2, .' Surplus. shows the 
estimated future income for PSIC during 2002 to be $10.44 milhon. The PSIC valuation 
model includes income from two categories: statutory, net income and changes in 
unreahzed capital gains. Exhibit 9 shows the computation of statutory net income. 
Unrealized capital gains stem from increases in market value for preti:rred and common 
stock investments. 

T h e  projected RBC for year-end 2002 ~s $23.25 million leading to a December 3 I, 2002 
required surplus of  $46.5 mdlion. Exhibit 12 shows PSIC's RBC calculation. Dunng 
2002, the required surplus increases by $4.37 million, from $42.13 mithon to $46.51 
mdlion. 

The DCF methodology determines value from free cash flow estimates; for 2002 free 
cash equals $10.44 million of  income less earnings retained to fund surplus growth of 
$4.37 million. Exhibit 8 shows the $6.07 million free cash flow ($10.44 - $4.37 = $6 07) 
as a stockholder dividend. The contribution to value of  the 2002 free cash flow is the PV 
of $6.07 million using the 15% hurdle rate. 

The EVA methodology values returns in excess of  the cost of  capital. For 2002, excess 
returns equal $10.44 milhon of income less the cost of  capital of  $6.32 million, or $4.12 
mdlion. The cost of  capital equals the surplus as of  the end of  the prior year, $42.13 
mdlion, muhiphed by the hurdle rate of 15% The contribution to value of the 2002 
excess returns is the PV of  $4.12 million using the 15% selected hurdle rate, or $3.59 
million. 

As shown on Exhtbit 7, the application of the DCF and EVA methodologies gwen the 
total income, RBC, surplus projections, and valuation assumptions is repeated for each 
year in the 10-year exphcit forecast period. The PV of  free cash flow for the DCF 
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method during the 10-year period is $54 69 mdhon. The PV of excess returns for the 
EVA method through the 10-year period is $31.81. The PV of excess returns plus the 
starting surplus of  $42.13 mdhon yields the EVA indicated value through year 10 of 
$73.94 milhon. 

The All Years value of PSIC under both valuation methods includes the PV contribution 
of value amounts beyond the exphclt forecast period. The amount shown in the "Total 
'12 to ~," column m Exhibit 7 rely on perpetuity formula calculations rather than annual 
detaded financml projections for 2012 and subsequent years Appendix and SECTION I 
- Valuation Framework show these formulae for both methods and the algebraic 
denvatton. The key assumptions for these calculations are: 

The expected annual growth rate of  surplus and total income after 2011 is 2% 
Thus, the imphcitly projected surplus for 2012 is $77.86 mdhon × 1.02 = $79.42 
mdhon and the income for 2012 is $18.71 mdhon × I 02 = $19 08 million. 

• The hurdle raze is 15% for calculating the cost of  capital for the EVA method and 
for determining the PV of  2012 and subsequent ~.alue amounts. 

Both methods produce a valuation result of  $88.03 milhon 

DCF 
( I ) Present value of free cash flow dunng the exphclt $54.69 

forecast period 
t2) Termmal value (present value of free cash flow 33.33 

subsequent to the exphc~t forecast pertod) 
Total $88.03 

EVA 
(I} Adjusted net worth (starting surplus) $42.13 
~2) Present value of value added amounts during the 31.8 I 

explicit tbrecast period 
(3) Present value o fcontmumg value added 14.08 

subsequent to the explictt forecast period 
Total $88.03 

Overview o f  the Financial Model 

The property,'casuahy msurer financial model for the PSIC valuation performs all of  the 
necessary computations to produce prospective statutory and GAAP financml statements. 
The major functions of the model are  (~t runoff of  loss and LAE reserves, (it) payout of  
loss and loss adjustment expenses stemming from the earning of the unearned prermum 
reserve, (hi) esumatlon of the level of  future wnuen premium and assocmted earned 
premtum and application of the loss and expense ratio assumpttons, (iv) calculation of 
investment income, and (v) calculation of federal income tax due. 
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There are two items of note before discussing the details of PSIC financial model 
projecttons. First, the model does not reflect all the changes resulting from the NAIC's 
codlficatton of statutory accounting principles An example is the recognition of a 
statutory asset or liability for deferred taxes. Even without these items, the financial 
model results provide sigmficant insight into the constderations and calculations for 
valuing a property/casualty insurance company Second, the GAAP balance sheet and 
income statements are provided Ibr the interested reader. The G,,-L~P results are not 
discussed In the text because the valuation estimate relies exclusively on amounts 
computed using statutory accounting. 

Exhibit 1 I ts the Detailed Statutory Balance Sheet for PSIC The "'Actual 2001'" column 
shows amounts from PSIC's December 31, 2001 statutory Annual Statement. Balance 
sheet items are either the sum of amounts from individual lines of business or for PSIC in 
total. Investment and cash amounts, items t la) through (Ig) and the Total Investments & 
Cash subtotal, are not segregated by line, neither are capital and surplus 

The remaining assets (receivables) and liabilities (payables and loss, LAE, and unearned 
premium reserves) are the sums of individual line of business amounts. In this example, 
PSIC ,,,,rote and continues to write three lines of business: workers' compensation, auto 
liabdtty, and general liability, all on a primary basis. Exhibits 18, 19, and 20 show the 
December 31, 2001 baPance sheet amounts and business assumptions for the workers' 
compensation, auto liability, and general liability books of business, respectively. 

The largest single balance sheet item from the line of business data is the net loss and 
ALAE rese~'e Sheet 6 fbr Exhibits 18, 19, and 20 shot  the loss and LAE reserves as of 
December 31, 2001 for accident ,,'ears 2001 and prior for each hne of business. Sheet 5 
for each line of business shows the payment patterns for the respective 2001 balance 
sheet reserve amounts 

Sheet 4 for Exhibits 18, 19, and 20 shows the other balance sheet items associated with 
each line of business as of December 3 I, 200 I. 

Exhibit 9 is PSIC's Statutory Income Statement. Exhibit 8, Change in Statutory Surplus, 
uses net mcome from Exhibit 9 The annual change in statutory surplus equals net 
income plus change in unrealized capital gains. Net income has three basic components: 
underwriting income plus investment income less federal income taxes (The PSIC 
model does not include any "other income" amounts ) PSIC's underv,,r~tmg income 
equals the sum of mdr,'idual line of business underv, firing income amounts. Investment 
income and federal income taxes are computed for PSIC in total. Investment income 
includes investment income on the captial along ,,,,lth the assets generated by line of 
business. 

Sheet I for Exhibits 18, 19. and 20 provides the underwriting income b) line of business. 
Sheet 2 provides the calculation notes for the components of the line of business 
underwnting income. The principal assumptions are: 
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Net Earned Premmm 

• Direct written premium ("DWP") annual growth is 4°,'0 
• 50% of DWP is earned m year written, 50% m the tbllowmg year 
• Workers compensation and general liabtlity have excess reinsurance; 10% 

of the DWP ~s ceded 

Net Incurred Loss and LAE 

• As shown in Sheet 4 of Exhibits 18, 19. and 20, the selected loss and LAE 
ratios for each hne of business are: 

Dtrect ALAE to ULAE to Ceded 
Loss Loss Loss Loss 
Ratto Ratto Rauo Ralto 

~,~,'orkers" Comp 70.0% 8.0% 8 .5% 100.0% 
Auto Ltabiht3, 64 0% 8.5% 7.5% N/A 
General Liabihty 68.0% 15.0°,I, 8 5° '0 100.0% 

These gross loss, gross LAE, and ceded ratios are applied to the December 
31, 2001 unearned premium rese~'e and earned premium generated by 
forecasted wr,tten premium. 

Total Underwriting Year Expenses 

As shov, n m Sheet 4 of Exhibits 18, 19, and 20, the underwriting expense 
ratios for each line of business are (DWP = direct v,,ntten premium, CWP 
= ceded v,'ritten premium): 

Agents' Premium Other Underwriting Reinsurance 
Commtssion Tax Expenses Commissions 

(%D~A'P) I%D~,~, P) I%DEPI  {%DWP. I%C~ P~ 
Workers" Comp 10.0% 3.0% 3.0% 2.25% 0.0% 
Auto Llabihty 15 0% 2.0% 2.25% 3.25% N'A 
General Ltabdtty 12 5% 2.0% 4 0% 1.0% 0.0% 

Investment income is shown in row (5) of the Statutory Income Statement tExhibit 9). 
The sources of investment income are realized cap,tal gains, interest income, and 
dividends. The annual y.eld rates (pre-tax) for each asset type are: 

Realized Capital Gains 

Preferred Stocks 2 5% 
Common Stocks 4.0% 
Real Estate 4.0% 
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Interest Income 

Taxable Bonds 6.0% 
Non-taxable Bonds 4.0% 
Cash 3.0% 
Real Estate 4.0% 
Other 2.0% 

Dividends 

Preferred Stocks 5.0% 
Common Stocks 2 0% 

The distribution of invested assets and cash ts: 

Taxable Bonds 42.0% 
Non-taxable Bonds 24.0% 
Preferred Stocks 1.0% 
Common Stocks 25.0% 
Cash 5 0% 
Real Estate 1.0% 
Other 2.0% 

Total 100.0% 

Invested assets held at the beginning of a forecasted year will earn a full year of 
investment income based on the above yield percentages Investment income ts also 
earned on new cash generated by PSIC's insurance operations. The financial model 
assumes that cash from operations is collected and invested at the mid-point of each 
forecasted year. The collected cash is invested according the distribution of invested 
assets and cash sho~n above. Thus, the dtstnbutton ts constant for all forecasted years. 

Cash flows from operations are shown in Exhibit 13. Premium collections, loss and LAE 
payments, and underwriting expense payments are modeled for each line of business. 
Sheet 3 of Exhibits 18, 19, and 20 shows the cash flow from underwriting for each hne of 
business, respecti,,ely. In addition to the premmm, loss, LAE and underwriting expense 
assumptions, the line of business underwriting cash flow relies on the following 
assumptions: 

• Loss and LAE payment patterns for each line of business shown m Sheet 5 of 
Exhtbtts 18, 19, and 20, respecttvely. The payment patterns apply to reserves 
carried as of December 31, 2001 and loss and LAE incurred in 2002 and 
subsequent accident years 

• Lag of I month m collection of direct premtum. 

• Lag of  3 months m paying ceded premium. 
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• Lag of I month m collect,on ofceded loss recovery. 

Federal income tax is the final component for computing net statuto D, income. The PSIC 
model follov.,ed the 2001 mstrucuons for computing federal income tax lbr U S. 
property/casualty insurance compames. 

Total income for xaluatlon equals net statutory income plus unrealized capital gains as 
shov, n in Changes m StatutoD' Surplus, Exhibit 8. Unrealized capital gains are computed 
as total annual capital gains ,n eqmty investments less realized capital gains The capital 
gain percentages are. 

Preferred Stocks I 1.0% 
Common Stocks 9.5% 

SenMtiviO' Testing 

Table 7 shows the sensniv~ty of DCF and EVA value estimates to changes in underlying 
assumpnons. Exh,b~t 21 shows addinonal detail related to each of these ahernative 
scenarios 

For ease o f  reference, the assumptions underlying the base case are listed below: 

• Starting capital as o f  December 31,200] = $42.13 mdl ion 
• SurpIus-RBC ratio = 2 0 

• Workers '  compensation loss ratio = 70% 

• Auto liability loss rauo = 64% 
• General liabdlty loss rauo = 68°'o 
• Average investment .~%ld = 4.26% (weighted average of yields by asset type) 
• Premmm growth = 3% 
• Hurdle rate = 15% for explicit forecast period and subsequent )'ears 
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T a b l e  7 

Sensitivil .v Tes t ing  of A l t e rna t i ve  A s s u m p t i o n s  

Base Case 

Change in Assumption 
Surplus-RBC ratio = 2.5 

Base loss ratios +2% 
Base loss ratlos -2% 

Investment yield + 100 basis pts 
Investment yield -100 basis pts 

Premium groe,'th : 0% 
Premnum growlh = 60 b 

Hurdle rate +3% 
Hurdle rate -3% 

DCF Model 
2001- 2012 
2011 torso 

54.7 33.3 

Total 

88.0 

43 I 34.7 77.7 

46 0 30.4 76.4 
63 3 36.2 99.5 

67.6 39 8 107.5 
41.6 26 8 68.4 

58. I 26.3 84 4 
52 4 37.3 89.8 

48.3 20.9 69 3 
62 5 56.4 118 9 

EVA Model 
2001- 2012 
2011 to 

73.9 14 I 

Total 

88.0 

67.3 104 77.7 

66.0 10.4 76.4 
81.8 17 7 99.5 

86.9 20.6 107.5 
60 9 7.5 68.4 

72.5 I 1.9 84 4 
74.6 15. I 89.8 

63.2 6.1 69.3 
87.5 31.4 118.9 

Table 8 shows the changes in value implied by the alternative assumptnons. S E C T I O N  2 
- Valua t ion  Resul ts :  EVA versus  DCF dnscusses lhe similari t ies and differences of  the 
models" structure and results using varying assumptions.  
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Table 8 
Changes from Base Case in Valuation Estimates 

Surplus-RBC rauo = 2.5 

Base loss rauos +2°'o 
Base loss ratios -2% 

[nxestment vleld + 100 basis pts 
Investment yneld -100 basts pts 

Premium growth = 0% 
Premmm grov.'th = 6% 

Hurdle rate "*'3% 
Hurdle rate -3% 

DCF Model 
2001- 2012 
2011 to ~ Total 

411.6~ 13 110.3) 

(8.7) (2.9) (I 1.7~ 
8.6 2 9 I 1.5 

12 9 6.5 19.4 
(13.1) (66) (19.61 

3.4 17.0) (3.6) 
(2.3) 4 0 1.7 

(6.4) (1241 (18.81 
78 23.1 309 

EVA Model 
2001- 2012 
2011 to or, Total 

(6.711 (37t (10.31 

[80) C3.7) (11 7) 
7.9 3.6 II 5 

12.9 6.5 19.4 
(13 1) 16.61 ~196~ 

(I.41 (2.2) ~361 
0.7 I.I 1 7 

II0.7) f8.01 118.81 
136 173 30.9 

These tables show that company value is very sensitive to changes in the assumptions 
underlying the valuation. Every sensitnvity test alters value by at least 10%, except for 
the premium growth assumptions Large changes m premium growth assumptions had 
small nmpact on value because the underwritmg profits of  the insurance company are 
modest. This is apparent in Exhibit 9, which shov,,s the underwriting mcome contribution 
to pre-tax operating income for 2001 through 201 I. 

The hurdle rate for the entire valuation period ~s also a key assumption. Decreas,ng the 
hurdle rate from 15% to 12% for all projection periods increases value by 35%. 

An mcrease m the required surplus (ransmg the surplus to RBC ratio from 2.0 to 2.5) 
lowers value. Thns result is logical m that the higher the capital required, the lower the 
free cash flows lbr DCF and the higher the cost of  capital for EVA 

Value .s also vet2, " sens.tive to changes in the investment yield for the asset portfolio. 
Th,s result is logical for this company m that over 95% of the pre-tax operating income ns 
related to investment income 1as shown in Exhibit 9). 

Valuation results ,.,,'dl always be sens,tive to small changes m loss ratios as shown m 
Tables 7 and 8. A reduction m loss ratio of  2°,,0 for each hnes of  business results m a 
increase in value of  13%. 

Since the value of  any company is a function of  the assumptions used, as noted in 
SECTION I - Valuat ion F ramework ,  a xaluatton report should dead )  identify the 
source of  eve~, assumption. The report should s p e c ~ '  whether the assumption ',,.'as 
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provided by the subject company, derived from historical experience, provided by a 
potential investor, or developed from other sources. The source of  an assumption may be 
an indication of  whether the assumption is conservahve, optmustlc, or unbtased. 
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S E C T I O N  5 - Recent Changes  and Other  Considerat ions  

There are a.variety of  changes that have occurred over the past 15 )'ears that may affect 
the valuation o f a  property/casuahy insurer. While man',' of  these changes may not affect 
valuanon methodology, they are relat ively he`.`, developments  that require consideration 
in the determination of  value. 

Accounting ~ 

• Codification 

The starting point for valuation based on EVA and DCF methodologies ts the statutory 
balance sheet. One significant change with respect to the determination of  statutory 
surplus is the recent codification of  statutory accounting prmcJples ("SAP"). 

With the introduction of  codified SAP, there are at least tv,,o key changes that affect 
statutory surplus for man)' companies:  (i) the treatment of  deferred taxes, and (it) the 
requirement to establish a premium deficiency rese~'e. Both of  these changes mitigate 
the differences betv,,een statutory, and G.~&P accounting. 

Codified SAP no`.`.' reqmres the accrual of  a deferred tax asset ("DTA")  or l iabdlty 
("DTL"). Consider  a company that purchases one share of  stock on January I, 2001 for 
$100. If the company holds the stock and it apprecmtes to $1,000 as of  December 31. 
2001. the company will be required to accrue a DTL for the unreahzed capital gain. (The 
DTL ts calculated as t × [I .000 - 100], `.,,,here t is the corporate tax rate.) Conversely,  the 
determination of  federal taxes using discounted loss reserx, es results in the accrual of  a 
DTA As a result, a company ' s  statutory surplus is affected by necessary adjustments for 
DTA's and DTL's 

A premium deficiency reser',e ("PDR")  is required to supplement the unearned premmm 
rese~'e  I"UEPR")  ',,.hen the UEPR is inadequate to fund for future habflmes related to 
the unearned e~posure 

Each of  these changes resulting from codif icanon affects the starting statutory surplus m 
a valuation and, as a result, the en tuy ' s  future earnings. Prior to codification, a shortfall 
m the UEPR or the value of  a DTL or DTA would have been reeognized in furore 
earmngs as losses are incurred or assets are sold. Co&fied S.M ~ reflects the associated 
value ~mmedmtely on the balance sheet. In computing `.alue prior to codification, the 
value assocmted with the PDR, DTA, or DTL `.`.ould have been recogmzed on a 
discounted basis through the present value of  future earnings component of  the DCF or 
EVA valuanon methods. After cod~ficanon, value associated with the PDR, DTA or 
DTL is as recorded m the statutory balance sheet 

~ (')ne mlghl question "o.h) accounting changes should affect value. As statutory earnings and SlalulOl~' 
capital influence free cash flo~s Iv, hen eaher captzal can be released from a compan) or additional capital 
conmbutlons are requlredl, accountmg changes thai affecl statutory income or sTatuTory surplus influence 
~alue. 
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• Fair Value Account ing 

Financial assets and l iabdities are accounted for m numerous ways under current U.S 
accounting rules. For property/casualty insurance compames there is G A A P  accountmg, 
statutory account ing and tax accounting Each of  the various measuring approaches has 
~ts advantages and disadvantages.  In general, GAAP accounting for proper ty/casuahy 
insurance companies  is accounting for a "'going concern." It reflects adjustments  that 
make insurance financials comparable to other industries Statutory account ing is a more 
conservattve form of  accounting to meet regulator), requirements targeted at proteclmg 
policyholders.  Tax accountmg ts the basts of  the tax calculation. 

H~stoncally, many financtal assets were accounted for at cost or amortized cost. These 
values are readily avadable  and vertfiable. Many financml habiht les  were at ult imate 
settlement ,,alue, which is a value that m many cases is contractually set and thus readily 
avai lable and auditable 

The adoption of  Financial .Accounting Standard ("FAS") 115, which requtres market  
value account ing for assets held m a "'trading portfolio," led to the discussion of  fair ~,alue 
accounting tbr financml assets and liabilities. W~th the adoption of  FAS 115, several 
parties raised concerns wttb requiring assets to be held at market value when the 
habihttes were not reported at market values. Since then, the Financial Account ing 
Standards Board has staled a ,,tslon of  having all financial assets and liabili t ies reported 
at fair value, which is considered an economic value. 

The "'fair value" of  an asset or liability could be defined an estimated market value or as 
the actual market value when a suffictently acttve market exists If no suffictently s imtlar  
assets or l iabilit tes exist by which to esumate  a market value, the est imated market value 
is based on present value of  future cash flows adjusted for risks. 

Fair value account ing is most commonly  an issue for financial assets or liabihties. 
Financial assets are general ly either cash or contractual rights to receive cash or other 
rmanoa l  assets. Financial l iabilit ies are general ly obligations to provide financial assets 

Fair value accounting may have an  important influence in valuing propeny~casualty 
insurance companies.  If  a fair value accountmg approach ~s adopted for statutor), 
accounting, recognition of  many flows wdl be accelerated relative to statuto D' 
accounting. As such, the introduction of  fair value accounting will  change the value 
esttmates derived from the methods described in this paper, with value est imates 
increasing if  accelerated revenues are higher than accelerated expenses  and value 
est imates decreasing when the reserve is true 3"~. 

~~ The impact on ~.alue is rele',.anl ",,.hether these accelerated re'-.enues and expenses are recognized in the 
income statement or solely as a direct adjustment to burplds. AS both afler-lax operating income and 
amount of capllal affect free cash riots, either change could influence ~.alue 
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For example, any imbedded value associated w~th investment income on the loss and 
LAE reserxes or profit in the unearned premium reserve would be reflected in fair value 
accounting al the time the loss or unearned premium rese~'e is reported. However, fair 
value accounting, at least imtially, may not consider cash flows and associated profits 
with pohcy renewals or new business. Therefore, the fair value accounting net worth of 
an insurance company, initially, may approximate its runoff value. 

Regulatory Changes 

• Risk-Based Capital Requirements 

In 1993, the NAIC adopted RBC standards for property/casualty insurers. These 
standards are used by regulators to help to tdenlify insurers that require regulatory 
attention and, as a result, the standards may be viewed as minimum capital reqmrements. 
As such, these reqmrements affect valuation because they can form a key determinant m 
the amount of  capital a company must hold. Further changes in RBC could affect 
insurance company valuations if there are changes in required capital levels. 

• Gramm-Leach-Bliley Act 

The Fmancml Services Modernization Act of  1999 (Gramm-Leach-Bliley Act or 
"'GLBA") enabled closer alignment of  insurance companies and other financial 
institutions such as banks and securities Inms. A primary feature of  GLBA is that a bank 
holding company or foreign bank that meets certain eligibd~ty criteria may become a 
financial holding company ("FHC"). FHC's are authorized to engage in a range of  
financial activmes such as insurance agency and under,.,.riting acti~,ities, merchant 
banking acti`, ities, and securities underwriting and dealing. 

To date, GLBA has not had a significant impact on the property:casualty insurance 
industry because there are very few affiliations of  insurance companies `.vith other 
financial restitutions. The 1998 merger of  Cmeorp and Travelers Group to form 
Cmgroup was the first merger between an insurer and a bank since such mergers ,,,.'ere 
prohibited in 1933. (In August 2002, however, C,tlcorp spun off the property/casualty 
operations of Travelers to end the affiliation of  the banking instituuon and life insurance 
operation with the property/casualty insurance operation.) There has been no subsequent 
merger activity between property/casualty insurers and other financial institutions since 
the Citicorp merger. 

Nonetheless. if a property/casualty insurer were affiliated with an FHC, the affiliation 
might affect certain assumptions related to the valuation of  the insurer. The Federal 
Reser'.e Board, v.,h~ch regulates FHC's, is prohibited from directly imposing capital 
requirements on insurance affiliates, but it does estabhsh capital requirements for FHC's. 
These FHC capital reqmrements may have an implicit influence on the capital le`.el o fan  
insurance subsidiary. 
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Stochastic Analysis of Insurance Company Financial Results 

A unique feature of  property and casualty insurance ~s the stochastic nature of  claim 
emergence and settlement. In general, it is difficult to predict the timing of cash flows 
related to policyholder claims. While almost every line of business has the potential to 
generate unexpected clmm experience, catastrophic insured events are parhcularly 
difficult to estimate due to the low frequency and high severity of  these events. These 
events may have a severe and adverse ~mpact on the operating earnings of an insurer and 
thus should be considered during the financial prt~ection process. There are two broad 
approaches to modehng future financml projections: scenario testing and stochastic 
modeling. 

Scenario testing is a deterministic approach in which results are projected from a specific 
set of  condiuons and assumptions. With this static approach, the user defines a scenario 
that reflects assumptions about various components of  the company. The user is able to 
define the spectfic interrelationships of  components and evaluate the impact of  changes in 
different factors on the financial projections. This approach produces results that are easy 
to explain and easy to modify by incorporating one or more alternative assumptions. 

Stochastic modeling has become increasingly popular in recent years for the 
property/casualty industry via dynanuc financial analysis ("DFA"). Underlying 
stochastic models are probabihty dtstributions for each of  the stochastic variables 
reflected m the model. Based on the probability distributions and a random number 
generator, the stochastic model produces a range of outcomes from which probabilities 
may be determined for the results. Its flexibility and ability to test the impact of  a wide 
range of variables simultaneously make it an appeahng approach. With respect to the 
implementation of  stochastic modeling, however, the probability distributions for the 
stochastic variables and the correlations between components are critical to a meaningful 
model. 

Over the past ten to fifteen years considerable emphasis has been placed on the DFA of 
insurance company financml results to evaluate capital needs, capital allocation, ceded 
reinsurance structures, and the risk assocmted with specific business imtiatives. Since 
valuation formulas include the present value of  future earnings, stochastic modeling of  
insurance financml results would seem like a natural adjunct to valuation. 

In practice, valuing an insurance company is often undertaken m a limited timeframe. 
Valuation ~s usually based on expected value results for earnings with sensitivity, tests 
related to changes in premium growth rates, changes in loss ratios, changes in hurdle 
rates, and changes in annual investment yields. 

The contnbuuon from stochastic modeling for valuation is that it would provide better 
definition of"risk" (the distribution of possible outcomes around the expected value) and 
could be used to derive betier estimates of  the cost of  capital. 
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Exposure to Natural Catastrophes 

As noted by Gorvett, et al. ~, exposure to natural catastrophes has had a ",'e~' s~gmficant 
~mpact on the performance of the property/casualty insurance industry worldwide. As a 
result, the major catastrophic events during the past fifteen )'ears have accelerated the 
evolutton of the modeling of natural catastrophes and also led to a recent proposal to 
create a pre-funded catastrophe reserve on the statutory balance sheet. 

Though the range of sophlsticat,on of catastrophe models ,.'aries widely, there are three 
essential elements of most models regardless of whether the model is determimstic or 
stochastic. First, there must be an estimate of the intensity of the underlying hazard 
Th,s estimate is often mmulated based on historical information about catastrophes 
related to the particular hazard Second. for the underlying hazard, the model reqmres an 
est,mate of the total damage caused by the hazard. For a gi','en hazard, the damage 
estnnate is primarily dependent on the geographical location of the risk and the value and 
construction type of the structure affected by the hazard The final key element is an 
estimate of the loss to the insurer - this is based directly on the Iocauon of pohcies 
written and limits provided. 

For the purpose of insurer valuation, the pnmar2, .' benefit of catastrophe modeling is 
related to scenario testing. While it is beneficial to understand the expected average 
seventy of natural catastrophes, catastrophe models are unable to help identif3' the future 
timing of these events. As a result, the future earnings stream of an insurer with 
sigmficant insurance exposure to natural catastrophes is much more d,fficult to predict. 

Due to the immediate and extremely adverse ,mpact catastrophes may have on the 
balance sheets of property.'casualty insurers and reinsurers, there has been a recent NAIC 
proposal to estabhsh a tax-deferred pre-funded catastrophe rese~'e. The intent of this 
proposal is to establish a simple mechan,sm by which insurers and reinsurers can 
prudently manage risk created by exposure to natural catastrophes Th~s mechanism is 
intended to reduce the uncertainty related to the future earumgs stream of insurers with 
significant e,~posure to natural catastrophes. The focus of the current proposal is on 
exposure of propert~ insurance coverages to natural mega-catastrophes (e g,  Hurricane 
Andre,.,.' in 1992) that are expected to occur in the future. 

As currently proposed, this "rese~'e'" can be more appropriately viewed as segregated 
surplus For the purpose of solvency regulation, the pre-funded nature of this rese~'e is 
also expected to come w~th restrictions on ho',s tt may be taken down over t~me. 

This reserve and tts funding mechamsm wdl lead to addttional conmderations related to 
the determination of starting capital and titture earnings for the purpose of a valuation If 
the catastrophe reserve is immediately funded out of existing capital and as a liab,lity, the 
entity's starting capital for the purpose of ','aluat~on ',vdl be reduced. If, howe',er, the 
reserve is conmdered to be segregated surplus, the value of the company ,.'.'ill not change. 
An ahernative pre-fundmg approach is to contribute a percentage of premiums to the 

~" CAS - Foundations of Casuah~' Actuarial Science, 4 + edit,on, Chapter 10 I"Specml Issues") 
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catastrophe reserve fund This would have no impact on starting capital, but would affect 
future earnings. The direction of the change, however, is uncertain. 
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SECTION 6 - Closing 

The valuation of a property, casuahy insurance company is an important feature of  
actuarial work. Much of the actuarial literature on valuation focuses on the method 
referred to throughout th~s paper as Economic Value Added Other financial sen ice  
professionals, however, often rely on a discounted cash flow approach to valuation. One 
of the pr,nc~pal retentions of this paper is to demonstrate that, with a common set of  
assumptions, the EVA and DCF modehng approaches will produce equivalent ,,,alues. 
For both methods, the key factors underlying value are (1) the projection of future 
income, (2) the required capttal, and 13) the hurdle rate. Developing future mcorne 
estimates, appropriate growth assumptions (and the resultant capital needs), and the 
appropriate hurdle rate for the entity required sophisticated anal vs~s. Furthermore, there 
are aspects of  valuation, such as the determination of adjustments to the starting capital of  
the entity, for which experts have varying points of  vtew. Recent changes such as the 
development of  fair value accounting principles wdl provide further ideas on the 
valuation of assets and liabflmes of  a property,'casualty insurance company. 

We hope thai this paper wdl help actuaries and other financial professionals to explain 
the valuation process for property;casuahy insurance 
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A P P E N D I X  - Demonslration of Algebraic Equivalence of EVA a n d  DCF 

The general expression for value based on the Discounted Cash Flow {DCF) approach ts. 

(DCF-I) Vah,e = FC o + ~ tOE, - AC, ]x (1 + It I" 
J = l  

where. 

FC,, 

OE, 

AC, 

= Free cash avatlable at time 0 to be released to shareholders 

= After-tax operating earnings generated in time period x 

= Change m required capnal over time period x = C, - C,,.t, 
,,,.'here C, = reqmred capital at the end of time penod x (this is equtvalent to the 
reqmred capital at the beg,nnmg ofttme period x+l ) 

h = Hurdle rate (required return on capital} 

Equal,on DCF-I represents the sum of the free cash available at time 0 and the present 
value of future free cash flows. ~.here future free cash flo,*s (OE., - AC,,) are defined as 
after-tax operating earnings less the amount of required capital remvestment. For ease of 
,llustration. v.,e have made the simpli~,mg assumption that all cash flo'.vs occur at the end 
of the period. 

Distributing and separating Equatmn DCF-I into o.',o separate sums, '.'.'e produce. 

(DCF-21 I"ahte=FC,,+ ~OE,×{ l+h) - '  - y AC, x(l+h)-" 
v = l  ~ = t  

If v,.e assume that both operat,ng earnings and capital grow at constant rate g, then: 

OE, =OE,_~ x(I + gl=OE, x l l * g l  '-I 

and 

C, = C , q x ( l + g ' ) = C  0 x ( l + g l ' , s o  

• .~C, =C, -C,_~ =C,_~ xg =C o x ( I  + g)'-~ xg 

Substautmg into equation DCF-2, the DCF value becomes: 
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{DCF-3) Vah,e=FC,~ +~'OE, XU+g') ' - '  x ( l * t l ) - ' - ~ 2 C o x g x ( l + g ) ' - '  x ( l + l , ) - ' .  
T-I  i~1  

By factoring out the constants, this equation is rewritten as: 

(DCF4) v~h,~ = FCo + i T ~ - i ~ L ~  J ~i 7 ~ ~ L-ji-$--~j . 

Note that g, the growth rate, will always be less than h, the hurdle rate. As a result, the 
sum of the infinite geometric series can be solved easily as A - ( I - R), where A is the 
first term in the series and R is the multiplicative factor used to generate the next term in 
the series. 

1 I + h  
The sum converges to , which may be rewritten as h - g 

0 + h) 

When we substitute this into Equation DCF-4, the ( I +/f) terms cancel, so the formula for 
value based on a DCF approach becomes: 

O E  I C,.j x g 
(DCF-5) Value=FC o4 {h-g) (h-g) 

This is appropriately v~ewed as the sum of all free cash flows, or initial capital plus the 
present value of  future earnings, minus the present value of  future required cap.tal 
reim estntents. 
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The general expression of EVA is: 

( E V A - I )  Value=SCo + ~loE,-(hxC,_l)lx(l+h)-'  
i=l 

where: 

S G  = Starting capital, this is equal to the sum of  free capital and required capital at 
time 0 ( F G  and Co, respectively, as defined in the DCF discussion) 

OE,, C~, and h have the same definitions as in the DCF discussion. 

This formula represents the required capital at the valuation date (time = 0) plus the 
present value of  future economic profits. Economic profits for time period x are defined 
as after-tax operating earnings {OE,) reduced by the cost of  capital, which is the product 
of  the hurdle rate and the required capital at the beginning of  each period (h × C,). 

Distributing and separating Equation EVA I ] into two separate sums, we produce: 

(EVA-2) l"alue=SC o + y OE, x ( l + h l - ' - y _ ( h x C r i l l X ( l i l i h )  - '  

J=l ~=1 

Based on a constant growth rate g for both after-tax operating earnings and capital and 
the identities defined above in the DCF discussion, the formula for EVA value is restated. 

(EVA-3)  l'ah,e=SC o + ~OE, x(I  + g),- i  x{I + h}-' - ~ h × C  o x{I  +g)'-' x(I  +h)-' 
t~l i=1 

By factoring out the constants, this may be rewritten as: 

+ o , ,  
CEVA-4) v,,t.e=SCo F-~LI~+/,)J ~ ~L]T~-)J 

Again, we use identities defined in the DCF discussion to simplify Equation EVA-4 to 
the following: 

OE I h X C~ 
(EVA-5) I,'alue=SC,, +(h_g)  (h -g}  
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This can also be expressed as:  

(EVA-6) Value=SC o + OEI 
( h - g )  

or 

or 

or 

or 

_ _ _  (h -g  + g)×Co 
(h - g )  

OE I ( h - g ) x C  O gxCo 
(EVA-7) l"alue=SCo+ (i,_g ) (h-g) -(h-g) 

+ O E  I g x C O 
(EVA-8) l'ah,e=SC o (h_g)-Co ( h - g )  

O E  I g x C o 
(EVA-q) Value=FCo +Co + ( l~_g)-C o (h-g)  

(EVA-10) Value=FCo-~ OEI gxC° 
(h-g)  [h-g)  

This is the same result as for the DCF model ,  as shown in Equation DCF-5. 
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0 

Bas ic  Valuat ion Examp le  
D i scoun ted  Cash F low Mode l  

( I )  (2) 

Required Capital at 
Prelected Ind=al Growth m Beginning 

Year Capital Capdal 
1 100 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 0 

OJsceunted Totals 

I 
Scenario Assumptions: I 

Total Earnings: hurdle rate exactly achieved 
Annual Growth: 0% 

(3) (4) (5) (6) (6a) (6b) (7) (8) (9) 

After-tax After-tax After-tax 
Total Investment Investment Total 

Required Discount Premium After-tax Income Income Income Available 
Factor Earned Investment on on From After-tax 

at Dunng Income Original Addrtional Insurance ReqLured Net 
of Year 15% Year on Capdal Capdal Capital Operabons Reinv. Income 

100 0.870 200 4 4 0 11 0 15 
100 0.756 200 4 4 0 1 t 0 15 
100 0.658 200 4 4 0 11 0 15 
100 0.572 200 4 4 0 11 0 15 
100 0497 200 4 4 0 11 0 15 
100 0432  200 4 4 0 11 0 15 
100 0.376 200 4 4 0 11 0 15 
100 0 327 200 4 4 0 11 0 15 
100 0 284 200 4 4 0 1 t 0 15 
100 0247  200 4 4 0 11 0 15 

Exh ib i t  1A 

(lO) 

Indicated 
Value 

(7) = 5 5% of (5). selected so that earnings achieve the hurdle rate exactly; 5.5% = [hurdle rate - investment yield] .'- premium-to-surplus ratio 
(8) = (3) - following year's (3): difference between required cap,tal at the begmn=ng of year and required capital at beginning of following year 
(9) = (6) * (7) + (8) 
( t0) = (9) 
(11 ) = Exphcd forecast penod value 
(12) = Terminal value 
(13) = (11) + (12) = Value Kn perpetuity 

(11) Yrs. 1-10 100 20.08 20.09 0.00 55.21 0 00 75 28 75 28 
(12) Terminal Value 0 6 59 6 59 0.00 18.13 0.00 24 72 24 72 
(13) All Yrs 100 26 67 26 67 0 00 73 33 0 00 100 00 100.00 

(1) - selected j udgmentally for illustration purposes 
(2) = (3) - previous year's (3). for year 1. (3) - (1) 
(3) = (5) + 2 0. where 2 0 represents the target premium-to-surplus rabo 
( 4 )  - factor to discount from the end of the projected year to the beginning of year 1 at the hurdle rate (15%) 
(5) = 200 for first projected year; subsequent years increased by the selected growth rate 
(6) = (3) x selected investment yield of 4%. (6a) = (6) muitiplJed by the ratio of mlbal capital to (3). (6b) = (6) - (6a) 
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Basic Valuation Example 
Economic Value Added (a) Model 

J ScenaHo Assumpuons: 

Total Earnings: hurdle rate exact/y echJeved 
I Annual Growth: O~J 

(1) (2) (3) {4) (61 {6) {6a) (6b) (7) 

A f  er-ta.w Afer  tax After-tax 
Tota# Investment Investment Tot~ 

RequLred Requcred D,scount Premium An~4a.~ Income Income Ino0rne 

Exhibit 1B 

(8) (9) (10) (10a1 (tOo) (11) (11a) (11b) (12) 

Hurdle Hurdle 
Hurdle Redu,red Required 

AvadaOle RedueeO Return Rofum Tofa# Coat Cc~I 

Pr(~e¢ted 

1 
2 
3 
4 
5 
6 
7 
9 
9 
10 

D~?,counte~ T ~ s  
(13) Yrs 1-10 
(14) Terrnlna# Val~e 
(15) AZI Yrs 

Growth Cap,tat at Factor E~'ned I n~ t r nen t  on On From Afer-tax Ratum on o n  C(~t of of 
Imba# ,n Be,gmnLng at Dunng Income Ong,na# Add,bona# Insurance RequEred Nel on Ong,na# Add,bonal of Ong,na# AdCldmon~ Indcaled 

Ca~tat Cao,t~J of Ye~ar 15% Y ~  onCapdal C~ota# Caprt~ Operabons Renv Income Ca~la# C&mtat Cap,tal Ca~da# Capda# C~p,t~ v&ue 
100 0 100 0870 200 4 4 0 11 0 15 (15001 (1500) 000 (1100) t i t 0 0 )  000 

0 100 0756 200 4 4 0 I I  0 15 (1500) 11500) 000 f1100) (1100) 000 
0 100 0650 200 4 4 0 1,1 0 15 (15001 11500) 000 (1100) (1100} 000 
0 100 0572 200 4 4 0 11 0 15 (15001 (1500) 000 (1100 t ( l l 0 0 )  000 
0 100 0497 200 4 4 O 11 0 15 (1500) (15001 000 (1100) ( |100)  00O 
0 100 0432 200 4 4 0 I I  0 15 (1500~ (15001 000 (1100) (1100, 000 
0 100 0376 200 4 4 0 I1 0 15 (1500~ (15001 000 (1100) (1100) 000  
0 100 0327 200 4 4 0 11 0 15 t15,00i (1500) 000 (1100) (1100l  000 
0 100 0284 200 4 4 0 11 0 15 i l 500 )  (1600) 000 (1100) I t l O 0 )  000  
0 100 0247 200 4 4 0 11 0 15 (1500) (15001 0.00 (1100) (1100) 000 

100 20 06 20 08 
0 659 659 

100 26 67 26 67 

( 1 ) - sa#ecteo luagm enta#1y for ,[lustratol purposes 
(2) = (3) - ~swous year'e (3). b"  year I. (3) - (1) 
(3J = (5) - 2 0..,,,,hens 2 0 represents the ta~je( preen,urn.to-surplus rat=o 

000 5521 000 7528 (7528) 175281 000 ( 5 5 2 h  (55211 000 10000 
000 tO 13 000 24 72 (24 72) (24 72) 000 (15 13) {10 131 000 000 
000 7333 000 10000 l l 0000 /  (10000) 00O (7333) (73331 000 10000 

14 ) - faclor to dLscoJrtt from the ~no of the proje~ed year 1o the beg=nnlng of yea( 1 ~1 the hurdle ,~e  (15%) 
(5) = 200 for first prolected year. suosequent ye~s ,ncre3sed by the satected gro.vth rate 
(61 = (31 = s~ected investment y=ela of 4%. (6a) = (6) mulbphed by the rabo of =nL'J~ ca~ta# to (3) (6b1 = (6) - (6a) 
(7) = 5 5% of {5). sa#ect ed so that e~rn=ngs achTe.~ the hurdle rate meetly. 5 5% = [hurale ,'ale - revetment .pela J * pre~lu rn-to-s~Jrplus rat,o 
(8) = (3) - following yeats (3) a=klemnce bet'~een requ=red capda# at the beg,nnmg of year ~ a  requ=red cap, la# at beg=nning of ~low~ng year 
(9) = t6) + (7) • (8) 
( 1 0 ( = ( 3 ) , -  15% (hurdJe tale). (10a) = (10) mul'aphed by the ratio Of =n,hal capita# to (3). (10o) = ( |0) • (t0a) 
(11) = (6) * (t0). (1 la) = (6a) + (t0a) (11b) = (6D) - (10b) 
(12) = ~ 1 ) * [(6) + ( 7)] - ( 10t. EVA (a) does nol reduce the COSl of CaDital 1o reflect =n vl~b'n en t ,ncom e e~lX'rle(i on capll~ 
(13) Forecast Period Value 
(14) Te~'~mat Value 
(15) = (13) • ( 14 ) Value m Peq)euiP/ 
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Basic Valuation Example 
Economic Value Added (b) Model 

I Scenano Assumptions: 

Total Earnings: hurdle rabe exactly achieved 
Annual Growth: 0% 

(11 (2) (3) I4) t5) (6) (6a) (6b) (7) 

Alle~-tax After-tax A~e~-i,ax 
TOlaJ Investm elll fnvestnl e~11 TO~ 

Required Required Discount premium Atle¢.tax Incenle Income I ~ e  

Exhibit lC  

(8) (9) (10) (10a) (10b) (11) (11a) (11b) (12) 

Hurdle Hurdle 
Hurdle Requ=red Required 

Av'aJlable Re~u~recI Remm Return Tofal Cos1 Cost 

pro;ected 
Year 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

D~sc~nted To(als 
t13) YtS 1-10 
(14) TennmgJ Value 
(15) All yrs 

Growm Cap=tal al Faclot E~l'ned Inve~menl On an From AnerJ.ax Re~Jm on on Cost of of 
In=hal =n Begmn,ng at Du~ng Income Ong,n= AddmonaI Insurtmce Requtred Net on Ong=nal AclaLl~onal of Original Addd~nof Inclmatecl 

Capr~J Ca~od31 of year 15% Ye~ o n ~  C,,;~p~t,Td ~ Opera]ons Remv Ipcc~e Capdal Capdal Capd, al ~ C a l ~ l  Crapdal Value 
100 0 100 0870 200 4 4 0 11 0 15 (15001 (1500) 000  (11oo) I I IQOI  000 

0 100 0756 200 4 4 0 I1 0 15 (1500) 11500) 000  11100) (1100) 000  
0 100 0658 200 4 4 0 I1 0 15 (15001 (1500~ 000  (1100) (1100) 000  
0 100 0572 200 4 4 0 11 0 15 (1500) [1500) 000  11100) (1100) 000  
0 100 0497 200 4 4 0 11 0 15 (1500) (1500) 000  (11001 (1100) 000  
0 100 0432 200 4 4 0 11 0 15 (1500) (1500) 000  (1100) 11100) 000  
0 100 0376 200 4 4 0 11 O 15 (1500) [1500) 000  (1160) (1100) 000  
0 100 0327 200 4 4 0 11 0 15 (15001 [1500) 000  (1100) 11100) 000  
0 100 0284 200 4 4 0 11 0 15 41500( (1500) 000  (1100) (1100) 000  
0 100 0247 200 4 4 0 11 O 15 I1500) [1500) 000  (1100~ [1100} 000  

100 20 08 20 08 
0 6 59 6 59 

100 2667 26 67 

( I ) - selecte(:I judgmentally for illu sb-'~ Jon puqxT~s 
(2) = (3) - pre~nous years (3) for ye~ 1. (3) - ( I ) 
(3) = (5) + 2 0 where 2 0 reprE~e~ls the ~ prenllum-to-surl~us rago 

000 5521 000 7528 (7526) 17528) 000  (5521) 15521) 000  100.00 
000 1813 000 2472 t2472) {2472} 000 (1813~ {18131 000 000 
000 7333 000 10000 ( t0000) (10000) 000 (7333) (73331 000 10000 

(4) - Paclor to discount from ~ ena of the proiec~ed ye~ to the begmnulg of ye~ 1.31 ~ hurdle fade (15%) 
(5) = 200 for nrsl proleC~ed ye~.. subsequent years i n ~  Dy Ihe selected growlh re~ 
(6) = 13) • selected inve~menl yl~:l of 4% (6a) : (6) m~tt~,ed by the r'~JO of m t ~ l  capdaJ to (3) (6b) : (6) - (6a) 
(71 = 5 5% of [5) salected so thai e~rlJngs ach,e,~.e the hurdle rate exactly. 5 5% = [hurdle rate - mve~m~d y~idJ - premlum-Io-surptus ratio 
18) = 13) - ~6o.wng ye~'s (31, alf~tence ~ required capttat m Ine oegJnnEng of year and mqutred capdal at beglnmng of followtng ye~ 
(9) = 16) - (7) + (8) 
(10) = (3) • -15% (r~urdle rate) (10a) = (10) multJpGed by the rago of m,bal capdal to (3) (10b) = (10) • (10a) 
(11) = (6) ÷ { 10) (1 la) = (6a) • (10a). (1 lb)  = (6b) ~ (10b) 
112) = ( I ) 6 (7) * ( 11 ). EVA (O) reouces t.Ple Cost of ca~ lal COmponent 1o refle~ in ~Bslm erd tnconl e ~ on capd,tJ 
113) Forecast Pen(x] Value 
(14) TemlrnaJ VaJue 
(15) = (13) - (14) ValL.e tn PeqOeludy 
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Bas ic  Valuat ion Examp le  
D iscoun ted  Cash  F low  Mode l  

I 
Scenario Assumptions: 

Total Earnings: hurdle rate exactly achieved 
Annual Growth: 3% 

(1) (2) (3) 

Total 
Required 

Requ~'ed Capdal at 
Projected Initial Growth =n Beginning 

Year Cap=tat Capital of Year 
1 100 0 100 
2 3 103 
3 3 09 106 09 
4 3 18 109 27 
5 328 11255 
6 3.38 11593 
7 3.48 11941 
8 3.58 122 99 
9 3.69 126.68 
10 3.80 13048 

D=scounted Totals 
(11) Yrs 1-10 100 
(12) Terminal Value 0 
(13) All Yrs 100 

(4) (5) (6) 

Discount Premium After-tax 
Factor Earned Investment 

at During Income 
15% Year on Capital 

0.870 200 4 
0 756 206 4 12 
0.658 212.18 4.24 
0.572 218 55 4.37 
0.497 225.10 4.50 
0.432 231 85 4.64 
0 376 238 81 4.78 
0 327 245 97 4.92 
0.284 253 35 5.07 
0.247 260 95 5 22 

(1) - selected judgmentally for iflustrat;on purposes 
(2) = (3) - prewous year's (3); for year 1. (3) - ( I)  
(3) = (5) 12. where 2.0 represents the target premium-to-surplus rabo 

I 
(6a) (6b) (7) (8) (9) 

After-tax After-tax After-tax 
Investment Investment Total 

Income Income Income Available 
on on From After-tax 

Original Additional Insurance Required Net 
Capital Capdal Operahons Reinv. Income 

4 0 11 (3) 12 
4 012 1133 (309) 1236 
4 0.24 11.67 (3 18) 12.73 
4 037 1202 (328) 1311 
4 0.50 12 38 (3.38) 13.51 
4 0.64 1275 (348) 1391 
4 0.78 13.13 (3.58) 14 33 
4 0 92 13.83 (3.89) 14 76 
4 1 07 1393 (380) 1520 
4 1.22 14 35 (3.91) 15.66 

E x h i b i t 2 A  

(10) 

Indmated 
Value 

(7) = 5 5% of (5). selected so that eam,~gs ach~eva the hurdle rate e~cacUy. 5 5% = [hurdle rate - investment yield] + premium-to-surplus rabo 
(8) = (3) - following year's (3). difference between required cap=tat at the beginning of year and required capital at beginning of following year 
(9) = (6) + (7) + (8) 
(10) = (9) 
(11 ) = Expiiot forecast period value 
(12) = Terminal value 
(13) = (11) + (12) = Value in perpeturty 

(4) - factor to discount from the end of the projected year to the beginning of year 1 at the hLcdle rate (15%) 
(5) = 200 for first projected year. growing by growth rate 
(6) = (3) x selected investment yield of 4%: (6a) = (6) multip5ed by the ratio of mttial capital to (3). (6b) = (6) - (6a) 

22.26 20 08 2.19 61.22 (16.70) 66 78 66.78 
11.07 6.59 4 48 30 45 (8 30) 33 22 33.22 
33.33 26.67 6.67 91 67 (25.00) 100.00 10000 
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Basic Valuation Example Exhib i l  28  
Economic  Value Added  (a) Model 

PrOleC:t ed 
Ye~" 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Discounted Totals 
(13) Yrs 1-10 100 
(ta) Ten*nrnal Va~ue 0 
(15) AJl Yrs 100 

11) - sedected ~udgme~la~ty tot dtus~ahon purposes 
(2) = (3) - pre..,~us years (3). for ~e~ I, (3) - (1) 
(3) = (5) ° 2 0 where 2 0 InI~Or~t$ the tBrge4 pfemlum-lO-sclrplus i'abo 

I 
Scenano Assumptions. 

rorel Earnings: hurdle rare exactly achieved 
Annual Growlh: 3% 

(1) 12) (3) (4) (5) (61 (6a) (6b) 17) (81 

Alter -tax AI~I~" tax Aft et.ta.~ 
Tolal Investmenl fnvesun ent Tolal 

Requ=red Required DEScount Premium Ailer-[ax Income tho0me Income 
Growth Cap,(a( al Fac[~' Ei~rmed Investment on on From 

Ind.al ,n Begmn,ng ~1 Dunng Income Ongrna~ Adad,onal Insurance Required Net on 
CapJtal of Ye~ 15% Ye~ onCagllal Cap~lal C,l~ltal Ol:~'abons Remv Inc~ne Caprlal Caprlal Capdal CaPital Capital Capdal Value 

1O0 O 100 0810 200 4 4 O I1 (3l 12 11500p (1500) 0OO ( l t O 0 j  i l t 0 O )  000 
3 103 0756 206 412 4 012 1133 13OCJ) 1236 11545) (~500) 1046) 111 33} 111.00) (033} 

309 10609 0658 21218 424 4 024 1161 t318) 1273 (15911 11500) 1091l (1161) 11100) (067) 
318 10927 0572 218.55 437 4 037 1202 [326) 1311 (16391 11500) 11391 11202) (11001 11021 
328 11255 0491 22510 450 4 050 1238 [3~3) 1351 (1658i 115001 (1861 (12.38p 11100) l l  35) 
338 11593 0432 23186 464 4 064 1275 l ' la61 1391 11739~ 115001 (23g) 11275) 11100) (I 75) 
346 11941 0.376 23881 478 4 076 1313 (358) 1433 (1791t l l 5 0 0 )  (291'~ (1313) 41100) 12131 
358 12299 0321 24597 492 4 092 1363 136~) 1476 t1645) 11500) (345) 11353) t1100) 1263~ 
369 12668 0284 25335 607 4 107 1393 1360) 1520 11900) 11500) 14OO~ 113931 ~ l t 00 )  1293) 
380 13048 0247 26095 522 4 122 1435 (391) 1566 (1957) 11500) (457) (14 3~1 11100) (3351 

(gJ 110) (10a) (10D) I l l )  ( l l a )  111b) 112) 

Hurdle Hurdle 
Hurdle Requlrecl Required 

A~aJlable Requ,red Retum Return Total Cost C ~ t  
/~ef.tax Re~um on on C4~t Of of 

Ong,nal Add,bonal of OngLnal Aadl110Ela] Inoc.a~eo 

22 26 20 08 
1107 659 
33 33 26 67 

219 6122 116;'0) 6678 18346) (7528) 16~9) 16122) (55211 (601) t0O0O 
448 3045 18.30) 3322 (4152) (2'~ 72) 11681) (3045) 11813) 11232) 0O0 
667 9167 (250'3) 10000 i l2506~ ~100001 (2500) (9161} (7333) (18331 100.00 

t4) faofor Io dlSCOUnl from the end of tne prolecJed ye~ to the begErLnlng Of ye~ar 1 al Ihe nurole rule (15%) 
(5) = 200 for i~rsI prolecleo ),ea/" subr,~lue~t yea~ increased by the selec~e¢l growth ,"ale 
(6) = (3) ~ S~eCted ,nvestrnerd yleJd of 4% (6a) = (6) mulllpSed by Ine rallO of indlal capital Io (3). (6D) = (6) - 46a) 
(7) = 5 5% of (5) selected so that emnin(Js ac.nle,,,e the hun:lie r~e ~ 5 5% = [hurore ra~e - inves1menl yield] * prl~'lJum.to-surplus ra',JO 
(8) = (3) - followlng yeads (3). dLffere~ce between required Caplial al the beghnnlng of ye.~ and reqb:red c~pdal a] bOglnnlng of foflowlng ~t~lr 
(9) = (6)  * (7)  * (6)  
(10) = (3) • -15% (hurdle rule). (lOa) = (10) muIbphed by the raOo of in;ual capda110 (3). (16b) = (10) - (IOa) 
(1 I) = (6) * (10) (1 la) = (6a) ÷ (lOa) (| lb)  = (6b) * (lOb) 
(12) = ( I ) * 116) * 17)l " (10). EVA (a) does no1 reduce the c,~l  of capdal Io reflect investm enl rncorne earneq on caplial 
(13) Forecasl Peflod Value 
114) Terrnlnal Value 
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Basic Valuation Example 
Economic Value Added (b) Model 

Scenario AssumpUons 

I Total Earnings: hurdle rate exactly achieved 
t AnnuaIGrow~h. 3% 

(1) (2) (3) (4) (5) (6) (6~) (6b) (7) 

After.lax A3er .lax Aflef.~3x 
To~al lnvestrn erlt invet~b11 e~lt Total 

Requ,red Requlre~ D i g h t  Prernlum After-lax Income Income Income 

Exhibit 2C 

(81 (9) (10} (10a) (10b) {11) (11a) ( l iD )  (12J 

HurCl~ Humte 
Hurdte Requlreo Required 

Available Required Ratum Relum Total Cost Cost 
Growth Capital et Factor Earned In,,,estmenl on on From Affer-ta~ RebJm on on C ~ t  of of 

P,~olecled ' InlfJal ,n Beginning al Dunng Inc.c~e Ongmal Adalto~aJ Insurance Required Net on Original Add,uonal Of Ong,nal Addrtional Indicted 
Year Capital Capital of Year 15% Yea~ onCa,oilal C,apdal Caprial ODe~a~ons Renv Income Ca~oltal Capl[al CaDllaJ Cap[lal CaDiLet Capital Value 

1 100 
2 
3 
4 .  
5 
6 
? 

8 
9 
10 

D.scpunlon Tatals 
(13) Yrs 1-10 100 

O 100 O 870 200 4 4 
3 103 0 156 206 4 12 4 

309 10609 0659 212.18 424 4 
3 18 109 27 O 572 213 55 4 37 4 
328 11255 0497 22510 450 4 
338 11593 0432 231.65 464 4 
343 11941 0376 23881 478 4 
3 58 12299 0 327 245 97 4.92 4 
369 12668 0284 25335 507 4 
360 13046 0247 26095 522 4 

(14) T~rnll~ll Value 0 
(15) AJI Yrs 1 O0 

( I ) • selected luogm enl~,0y for illustr al~:~ purposes 
(2) = (3) - prewous year's (3). ~ "  ye;3r I (3) - (1) 
f 3) = (5) * 2 0 where 20  reDresenls Vie largel preen,urn-Io-surDlus r~lo 

22 26 20 03 
I I07 659 
3333 266? 

0 11 (3) 12 (15001 (1500) OOO (11001 (11001 OOO 
0.12 1133 (309) 1236 (1545) 11500) (0451 (1133) (1100) (0331 
024 1167 (316) 1213 (15911 (15001 ~0911 (1167) (1100) (067( 
037 12"02 (3261 1311 i1639) (1500) (139i  (1202) (1100) (1021 
050 1236 (333) 1351 (1686J (1500} ~136) (12391 (11L~0) ql361 
0.64 1275 (348J 1391 i17391 (15001 i239)  (1275) (1100) ~1 75) 
078 1313 1358) 1433 (1791) (1500) 1291) f l3131 [tl.OO) (2131 
092 1353 [369) 1476 (1645) 11506) (345) (1353) (110~) (253~ 
tO7 1393 1380) 15.20 11900t ( lS0O) (400) 11393) [11 CO) ~293) 
122 1435 (391) 1566 (1957) (lS0O~ (4.57~ (1435) (1100) {335~ 

219 6122 (1670) 6678 15348) 175261 (319) (6122) [5521) (5011 10000 
448 3045 (830) 3322 (41521 (2472] 11681) (3045) (1313) (1232) 000 
667 9167 (25001 10000 112590) [1OO00) 12500) (9167) {7333) 11833) 10000 

(4) - factor [o discOUnl from Ir=e end of lne prolec~ed year to the Deq,nnlng of ye~" 1 at tile Ilur01e rate (15%) 
(5) = 200 for t ~ [  pro~ecled ye~. subse~ dent years , n ~  by the select ed growth rate 
(6) = (3) • selected mvestmenl yletd of 4%. (6a) = (6) mulbl~ion by the rabo ¢ff inLtJal capital Io (3): (6b) = (61 - (6a) 
(7) = 5 5% Of (5) selecteo so thin e~'~ln0s achieve the hurdle rate e.x~cl/y. 5 5% = {-hurdle r~e investment y~etd] - premium-tO-surplus r '~o 
(8) = (3) - follow=ng veers (3). d,ffere~ce batWe~l I~Qulreo Capllal at [he beginning Of ye~ at~d requ,red c¢~dal at beg=nnlng Of k:~lOwUlg yea,' 
(9) = ¢6) + (7) • (8) 
(10) = (3) • -15% (hurOle rate). (t0a) = ( t0)mumphed by the ratio of imbal capllal to (3) (10b) = (10). (10a) 
1111 = (6) * (10) (1 la) = (6a) * (10~). (110) = (6D) + (100) 
f 121 = ( 1 ) ° (7) * ( I 1 ). EVA (b) reduces the ccd;t of CaDdal compon~11 to rL~ECI . n vl~J'n ent income e~rned on c a ~ l  
(13) Forecast Peflod V&ue 
(14) Tem~mal Value 
(15) = (13) * ( 14 ) ValtJe Ln PerDelu, ty 
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Bas ic  Valuat ion Examp le  
D i scoun ted  Cash F low Mode l  

I 
Scenario Assumptions: 

Total Earnings: hurdle rate more than achieved 
Annual Growth: 0% 

(1) (2) (3) 

Total 
Required 

Required Capztal at 
Projected Initial Growth in Beginning 

Year Capdal Capdal of Year 
1 100 0 100 
2 0 100 
3 0 100 
4 0 100 
5 0 100 
6 0 100 
7 0 100 
8 0 100 
9 0 100 
10 0 100 

D~scounted Totals 
(11) Yrs 1-10 100 
(12) Terminal Value 0 
(13) All Yrs 100 

(4) (5) (6) 

D=SCOL~t Premium Affe~tax 
Factor Earned Investment 

at Dudng Income 
15% Year on Capital 

0,870 200 4 
0 756 200 4 
0 658 200 4 
0 572 200 4 
0 497 200 4 
0 432 200 4 
0 376 200 4 
0 327 200 4 
0,284 200 4 
0 247 200 4 

(1) - selected j udgmentally for illustration purposes 
(2) = (3) - previous year's (3), for year 1, (3)- (1) 
(3) = (5) - 2.0, where 2 0 represents the target premium-to-surplus ratto 

I 
(6a) (6b) (7) (8) (9) 

After-tax After-tax After-tax 
Investment Investment Total 

Income Income Income Avadable 
on on From After-tax 

Ongvnal Addrhonal Insurance Required Net 
Capital Capital Operabons Reznv.  Income 

4 0 12 0 16 
4 0 12 0 16 
4 0 12 0 16 
4 0 12 0 16 
4 0 12 0 16 
4 0 12 0 16 
4 0 12 O 16 
4 0 12 0 16 
4 0 12 0 16 
4 0 12 0 16 

E x h ~ i t 3 A  

(10) 

Indicated 
Value 

(8) = (3) - following year's (3). difference between required capital at the beginning of year and required capital at beginning of following year 
(9) = (6) + (7) + (8) 
(10) = (9) 
( 11 ) = Exphcrt forecast penod value 
(12) = Terminal value 
(13) = (11 ) + (12) = Value in perpetudy 

(4) - factor to discount from the end of the projected year to the beginning of year 1 at the hurdle rate (15%) 
(5) = 200 for first projected year. subsequent years increased by the selected growth rate 
(6) = (3) x selected investment y=eld of 4%: (6a) = (6) muttiphed by the ratio of mrhal capital to (3), (6b) = (6) - (6a) 
(7) = 6% of (5). selected so that earnings exceed the hurdle rate requirement 

20.08 20 08 0 00 60.23 0.00 80.30 80 30 
6.59 659 000 1977 000 26.37 2637 

26 67 26 67 0 00 80 00 0 00 106 67 106 67 
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Basic Valuation Example 
Economic Value Added (a) Model 

J Scenarlo Assumptions: 

Tolal Earnings. hurdle tale more fflan achieved 
I atln~l Growth: 

(1) (2) (3) (4) (5) (6) (6a) (6b) (7) (8) 

Aftet-ta~ After.tax Altm'-ta~ 
Total ~nve~tmenl ~veatme~l TOtal 

ReQuired Redutmd D~,~ount premium Aftes.la~ Income trcome rno0me 
GrOWth Capital at Factor E+zrned ~' ,ves tm~l  on on From 

bUbal ~n ~innmg Income Onomal Ad(:lltlO~ Insuranc~ Required Prolecled 
Year 

I 100 0 100 0870 200 4 4 0 
2 0 100 0 756 200 4 4 0 
3 0 1 O0 0 658 200 4 4 0 
4 0 160 O 572 200 4 4 0 
~-. 0 100 0407 200 4 4 0 
6 0 100 6 4 3 2  200 4 4 0 
7 0 100 0376 200 4 4 0 
8 0 100 O 327 200 4 4 0 
9 0 100 0 284 200 4 4 0 
10 0 100 0 247 200 4 4 0 

D,sco~n(ea T~a~ 
(13) Yrs 1.10 100 20 06 20 00 
(14) Terminal Value O 6 59 6 59 
(16) All Yrs 100 2667 26~,7 

(I)  - selected lUdgmenta~ fo~ dlus~t~on purpeae~ 
(2) = (3} - ~'evlou s year's (3). foe year 1 (3) - ( 1 ) 
(3) = (5) - 2 0. where 2 0 represents the large1 prenuum-~-suq)lus ratio 

Exhibit 3B 

(0) (10) (10a) 110b) (11) (11a) (11b) (12) 

Hurdle Hurdle 
Hur0le Requ.red Requ+recl 

AvaJtable Requ.red Return Return T o ~  Cost Cosl 
Afl~.tax Return On on COSl of of 

Dunng Nel on Ongzr~ Adcl~clal of Orlg,nal Al~ddlOnal InO'~cated 
Capgal C~Ol~l of Yesr 15% Yeaf o~Capltal C~ I~ I  C ~ I ~  Operal]~s Re~rl~ blcome CaDd~l Cap~al Capital Capital Capital Capllal Value 

12 0 16 (1500) (1500) 000 (1100) (1100) 000 
12 0 16 (1500) (1500) 000 (1100} ( l l 0 0 j  000 
12 0 16 (1500) (1500) 000 (1100) (1100} 000 
12 0 |6 t1500) (150Oi 00Q [1100j (1100) 000 
12 0 16 (1500) (150Oj 000 [1100) (1100) 000 
12 0 16 (1500) (1500) O00 (1100) (1100) 000 
12 0 16 11500) t1500) 000 (1100) (1100) 000 
12 0 16 (1500) (1500) O00 (1100) (11.00} 000 
12 0 16 (1500) (1500) 000 (1100) (11.00} 0.00 
12 0 10 (1500) (1500) 000 (1160} (1100) 000 

000 6023 0O0 80.30 (7528) 17528} 000 (5521) (5521} 000 10502 
000 1077 000 2637 12472~ (2472~ 000 (1813/ (1813) 000 165 
000 8000 000 1066;' t lO000) (t0000~ 000 f7333~ 17333) 000 10667 

(4] . f:act~ tO dlscount f~m the end of the p t o ~ e ( l  year TO the beg,nnmg of yem 1 at the hurdle rate (15%) 
(5) = 200 f~ first ~ ' ~ c m d  year. subsequent years ino'eased by the selecled growth rate 
(6) = (3) • 5~ecteo inves~-~l yreld of 4% (6a) = (6) mu~p~,ed by the raIJO of i;ld],al r.~lDrtal to (3). (6b) = (6) - t6a) 
(7) = 6% of (5). selected so thai earnings exceeo trle hurdle rate requirement 
(B)=(3) fOllOv.~ngyear's(3) d~e1`enc~bet'~-~requ~edcaD'tala1thebegLnnlngofyearan~tequlreaca9i~a~a1~eg~nnmgof followlngyeax 
(9) = (6) • (7) * (8) 
(10) : (3) • -15% (rlurd]e rats). (10a) = (10) mulbpbed by the rabo of ,nmal capdal to (3]. (10b) = (10) - (10a) 
(I I) = (6) * (10) (I la) = (6aj + (t0a). (11b) : (Tb) + ~10b) 
(12) = ( I} . [16) ° (7)) + (10). EVA (a) does nol reduce the cost of capll~J to reflect investment income earned On capita 
(13) Forecasl Per]oa VaJue 
(14) T e~n a'~al Value 
(15) = (13) • (14) Varue in Peq:~tu~ 



-.,J 

Basic Valuation Example 
Economic Value Added (b) Model 

I Scenar/o Assumptions: 

Tolal Earnings" hurdle tare more than achieved 
Annual Growth: 0% 

(I) (2) (3) 14) (5) 16~ (6a) 100) (7) 

Ariel-tax AJlet-tax Af[e¢.tax 
Tet~l t r i v e t  blve~b'~e~l Tet~l 

Re¢llJit~cl Require00Cscount Premium After.tax Ino0me Income Income 

Exhibit 3C 

(9) 110) (10a( 110bl (11) 111a) 111b) (12) 

HurOle Hurdle 
Hurdle Requlrea ReClu,reo 

A~a~1~le Rec~ulred Retum Retum Total Co~t Cost 

Pro~ecJed 
Ye~ 

I 

2 
3 
4 
5 
6 
7 
8 
9 
10 

Disc~JnreO Totals 
(13) Yrs 1.10 
(14) Terminal Vatue 
(15) All YI~ 

Growth Capd~ at Factor Earned blvesOneet On on From Af~er-taJ¢ Return on o~ Cosl of of 
Ininat m BegznnLng at D1Jnng roconle Ongznat Aod~"~al Insurance Required Net on Ongzn~ Aoddzonat Of Ongzr=al Ax:le~bona] Ix~lcated 

CaDtal Capital of Year 15% Year Or1 Capdet Capital CaDdal Operat=ons Remv hlcome Ca~ta~ Capctet Capnal Capdat Capdal Ca,ottaJ VaJue 
100 0 100 0870 200 4 4 o 12 0 16 11500) t l~O0) 00o (1100) 11100j 000 

0 100 0756 200 4 4 O 12 0 16 (1500) (15001 000 (1100) i l l 0 0 1  000 
0 100 0658 200 4 4 0 12 0 18 11500) 11500) 000 ~1100) ( I )001 O00 
0 100 0572 200 4 4 O 12 0 16 11560) (1500) 000 11100) (1100) 000 
0 100 0497 200 4 4 0 12 0 15 11500) 11500) 000 11100) ;1100) 000 

. 0 100 0432 2~1 4 4 0 12 0 10 11500) 11500) 000 11100) (1100J 000 
L 0 100 0376 200 4 4 0 12 0 16 11500) [1500) 000 11100) (1100) 0.00 

0 100 0327 200 4 4 0 12 0 16 11~00) f1500) 0O0 [11001 ( l lOO) O00 
0 100 0284 200 4 4 0 12 0 16 t1500) ~1500) 000 111001 1111101 000 
0 100 0247 200 4 4 0 12 O 10 11500) (15001 000 (1100) 11100) 000 

100 2008 2008 060 6023 000 8030 f75281 f75ZSJ 000 [5521) 15521) 000 10502 
0 659 659 000 1977 000 2637 (24721 (2472} 000 11813) (1813) 000 105 

'~00 2687 2667 0OO 8000 000 10667 (100001 II0000~ O00 (7333) 17333~ 000 10667 

{1) - selected lUdgn'~nle]]y (c~ ,llus~J'alJon purposes 
(2) = (3) - prevoJs ~'ear s (3). lot year 1. (3) • 11) 
(3) = (5) * 2 0. ',,/hem 2 0 rlL=present5 the target Dremaurn-to-surplus rat~ 
(4) - factor [o 01$count [Toril t.ne e~ld Of the prosecxed year to the ce9,nn,ng o1 year 1 at the hurdle rate (15%) 
(5) = 200 for first projeeteo year SO~'~qt.renf yeax~ tncteasod by the se~cte¢l grQ, wtn rete 
(6) = (3) • select eo investment y~elO 014%: (6a) = {8) rl'~inplied by the ret~o Of inrtzal capdal fo (3). (6D) = (6) - (6a) 
(7) = 6% Of (5). selected so thai eam,ngs exceed the hurdle rale requ,reme~t 
(8) = (3) - fo~lowmg year's (3). d,ffemnce between required c a p r i  at the beginning of ye~ and requzred caD,tat at 6eglnnlng of following year 
(9) = (6) - (7) • 18) 
(10) = (3) • -15% (hurdle rate) (10a) = 110) mutbplmd by the raIJo of Lnzba] capita] to (3). (10b) = 110) • (10a) 
111) = (6) • (10) 11 la) = (6a) • (1Oa). 111b) = (6b) + (10b) 
112)=11) • t7) + (11) EVA(b) mcluces the CeSt Of r.a,o~tat compo~e~llto R,Sect investment mco'ne e3rned on capital 
( 13t Forecast Penoo VaJtJe 
(14) TermLnad VaJue 
(15) = (13) + [t4) Va~ue in Peq~ulty 
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Basic Valuation Example 

Discounted Cash F low Model  

(1) (2) 

Scenario Assumptions: 

Total Earnings: hurdle rate not achieved 
Annual Growth: 0% 

(3) (4) (5) (6) 

Total 
Requ(red Discount Premium After-tax 

Required Cap~talat Factor Earned Investment, 
Projected Inmtial Growth m Beginning at Dunng Income 

Year Cap,tal Capdal of Year 15% Year on Cap,tal 
1 100 0 100 0 870 200 4 
2 0 100 0.756 200 4 
3 0 100 0.658 200 4 
4 0 100 0.572 200 4 
5 0 100 0 497 200 4 
6 0 100 0.432 200 4 
7 0 100 0 376 200 4 
8 0 100 0 327 200 4 
9 0 100 0 284 200 4 
10 0 100 0.247 200 4 

Discounted Totals 
(11) Yrs. 1-10 100 20.08 2008 000 
(12) Terminal Value 0 6.59 6 59 0 00 
(13) All Yrs. 100 2667 2667 0.00 

(1) - assumed 
(2) = (3) - previous year's (3): for year 1. (3) - (1) 
(3) = (5) + 2 0. where 2.0 represents the target premium-to-surplus rat=o 

(6a) (6b) 

After-tax After-tax 
Investment Investment 

Income Income 
on on 

Onginal Additional 
Capital Capital 

4 0 
4 0 
4 0 
4 0 
4 0 
4 0 
4 0 
4 0 
4 0 
4 0 

(4) - factor to d,scount from the end of the projected year to the beginning of year 1 at the hurdle rate (15%) 
(5) = 200 for first projected year. subsequent years increased by the selected growth rate 
(6) = (3) = selected investment yield of 4%: (6a) = (6) multiplied by the ratKo of ,ndtal capital to (3). (6b) = (6) - (6a) 
(7) = 5% of (5), selected so that earnings are less than the.hurdle rate requirement 

I 
(7) (8) (9) 

After-tax 
Total 

Income Avadable 
From After-tax 

Insurance Requxred Net 
Operations Remv Income 

10 0 14 
10 0 14 
10 0 14 
10 0 14 
10 0 14 
10 0 14 
10 0 14 
10 0 14 
10 0 14 
10 0 14 

E x h ~ i t 4 A  

(10) 

Indicated 
Value 

(8) = (3) - following year's (3). difference between required capdal at the beginning of year and requ, red caprtal at beginning of following year 
(9) = (6) + (7) + (8) 
(10) = (9) 
(11) Forecast Penod Value 
(12) Terminal Value 
(13) = (11) + (12) = Value in Perpetu~ 

50 19 0.00 70.26 70 26 
16.48 0.00 23 07 23 07 
66.67 0 00 93 33 93 33 
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Basic Valuation Example 
Economic Value Added (a) Model 

Scenario A-~urrlptlons. 

I Total Earnings: hurdle rate nor  achteved 
I Atlnual GrowfJs: 0% 

~1) (2~ (3) (4) (5) (6) (6a) (6b) (7) 

Alle~.ta~ After-lax Afte~-ta~ 
Total Investment b~vesbne~lt Total 

Requlrep Required Dis¢curlt Premium After.tax ~ Income Income 

Exhibit 413 

(9 )  f l 0 )  (tOa) (1Ob) (11) (11a) (11b) ( 1 2 )  

Hurdle Hurd]~ 
Hurd~ Requrrep Requ]req 

Avadaole Required Return Ratum TotaJ Cos( Cost 

Prqected 
Ye~ 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Dl~OounRd Totals 
(13) Yrs 1-10 190 
t14) Termrnal Vatue 0 
(15) PJJ Yrs 100 

(1) . selected ludgrn~talh/ for illusT~dtJC~ purposes 
(2) = f3) - pre~ous ye3xs t3l tot" year 1 13i - (11 
(3) = (5) " 2 0 where 2 0 represents me targat Premzurn-to-surplus rarbo 

G r o w  Capdal at Facl~ Eaened I n v ~ e n l  on on From Nter.tax Return on on Coat of of 
Inrbal m Begmntr~J at Dunng Income Ongln31 Aodibonal Insurance Requtred Nat on OnQina] Aoorbmat of OngtnaJ A~oJbOnat In~,cateo 

Ca~tat Cap,~J of Ye~ 15% Ye~ onCaprlat Cazpdat  Capdal Operabons Remv Income Capdat Calxlat Capdal Capdat Capdat Cal:)~) Value 
100 0 100 0870  200 4 4 o 10 0 14 {1500) (1500) 0 0 0  (11 001 (11 00) 0 0 0  

O 100 0756  200 4 4 O 10 0 14 (1500) (1500) 0 0 0  (1100) (1100) 0 0 0  
O 100 0668  2(:0 4 4 0 10 O 14 (15~) )  (1500) 0 0 0  (1 t00 )  (1100) 0 0 0  
0 100 0572 200 4 0 14 (1500) f l 5  00) 4 0 10 000  (1100) (1100) 6 0 0  
O 100 0497 200 4 4 0 10 O 14 11506) (1500) 000  (1100) (1100) OO0 
0 100 0432 200 4 4 0 10 0 14 115001 l l 5 0 0 )  000  II1CJO~ (1100) 0 0 0  
0 100 0376 200 4 4 0 tO O 14 (15001 l l 5 0 0 )  O0O (1100) (1100) O00 
O 100 0327 200 4 4 0 t0 0 14 (1500) (1500) 0 0 0  (11001 ( l | O 0 )  O00 
O 100 0284 200 4 4 0 10 0 ;4 (1500) (1500) 0 0 0  (1100) 11100) O00 
0 100 0247 200 4 4 0 10 0 14 (1500) 11500~ 0 0 0  (1100) (1100) O00 

20 08 20 08 
6 5 9  659  

26 67 26 67 

0OO 5019 0 0 0  7026 (7528) (75281 0QO 15521) (5521~ 0 0 0  9498 
0O0 1648 0 0 0  2307 (2472) (24721 0QO (181.~) (1813) 0O0 -165 
000  6667 000  9333 I10000) (100001 000  (7333) (73331 O00 9333 

(4) - factor 10 d~COunt Irotn I.he ena at the i ~ e d  year Io the beglnn~lg of year ) =11 the hurdle rate (15%) 
(S) : 200 fo~ f,r,u proleaed year. subc, eque.rd yearn mcm3sed by the satecteq 9mwt,n rate 
(6) = (3) • selec~d meestmetlt yiek'f of 4%. (Ta) = (6) mu~plxed by me ratio of ;l~Vjal cap,lal to (3). (6b) = (6) - (6a) 
(7) = 5% of (5) seleC~O so mat earnLxlgs me less man me hurdle rate re~ulreq~nl 
(8) = (3) - fatlOWtng yea¢s (3) thfference between required c a p r i  at the begznnuqg of yeax and re~ulreq Cap~J at beginning of fo~lo~ang year 
(9 )  : ( 5 )  • (7 )  • ( 8 )  
( i o) = (3) • - 15% (humte raze) (IOa) = ( I O) mulll~,ecl by ~ e  rabo of m~al capllal to (3). (10b) = ( I O) - (10a) 
( I 1) = (6 )  * ( 1 0 ) .  ( 1 l a )  = 16a) • ( l O a ) .  ( 1 l b )  = (6b )  * ( lObl 
(12) : (1) * (6) " (7) * 1101 
(~3) Forecast Period Value 
(14/Terrnmal Value 
(15) = (13) .  (14) Vatue tn Perpe~dy 
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Basic Valuation Example 
Economic Value Added (b) Model 

I Scenat/o A~sumptmns: 

Total Earnings: hurdle rare not achieved 
I Annual Growth: 0% 

(1) (2) (3) (4) (5) (6) (6a) (6b) (7) 

After .ta= A/te~.¢ax Nler.tax 
Tof~d ~vestmeof blve~1~le~l t Tofat 

Requtred Requ~¢l D.scouni Pre~um After-ta.~ t~ome Income Ino0me 

Exhibit 4C 

(8)  (9)  (10)  (10,1) (10b) (11)  ( l l a )  ( l i b )  (12)  

Hurdle Hurdle 
Hurdle Reqmred Required 

Avad,zble Required Ret~'n Rofum TO~f COM Coat 

Protected 
Yl~t 

1 
2 
3 
4 
5 
6 
7 
8 

,% 
D.scourded Totat~ 
(13) Yrs 1.10 100 2008 2008 
(14) Terrnulal Vahm O 6 59 6 59 
(15) All Yr~ 100 2667 2667 

(1). selected ludgmentaJ1y for i I IuS~o~ purposes 
(2) : (3) - p rmr~s  ye~'s (3). for ye3r 1. (3) - (1) 
(3) : (5) - 20. where 2 0 repres~ts the targm prem=urn-lo-suq)lus ratio 

GrOwth CaPita[ at Factat Earned ~lVeSto1eflt on on From AJ~e~" tax Return On on Cost of ot 
mrt]al In Beginning at Dunng Income Ongmal Aed,t~oo.at Insurance Requ, red Ne~ oct Onc~nal Ad0,~o~al ol Original Aochuonat tnchc~ted 

Cclpd~ Ca~tal of Yest 15% Ye~" on ~ Cap~al ~ OpetaJJot~s Rl~nV blcotr~ ~ I  Capltal C~odal Capital Capltal Cal~tol Value 
100 0 100 0870 200 4 4 0 10 0 14 (1500) (1500) 004] (1100) (1100l 000 

0 100 0756 200 4 4 O 10 0 14 (1500) (1500J 000 (1100) ( l lOOI  000 
0 100 0658 200 4 4 0 10 0 14 (1500) (1500) 000 I I ID01 (1100) 000 
0 100 0572 200 4 4 0 10 0 14 (15001 f1500) 000 l l lOOJ (1100) 000 
0 160 0497 200 4 4 0 10 0 14 (1500) (1500] 000 (1100) ( I t 00 )  000 
0 100 0432 200 4 4 0 10 0 14 t1500) (1500) 000 (1100) (1100) 000 
0 100 0376 200 4 4 0 10 0 14 (1500) (1500) 000 (1100) (1100) 000 
0 100 0327 200 4 4 0 10 0 14 (1500) (1500) 000 [11001 (1100) 000 
0 100 0284 200 4 4 0 10 0 14 (15OO) (1500) 000 ( t l 0 0 )  (1100) OO0 
0 100 0247 200 4 4 0 I0 0 14 (1500) (1500) 000 (1100) ( t lO0)  0.00 

0OO 5019 000 7026 (7528) (7528) OO0 (5621) (5521) 000 9498 
000 1648 000 2307 (24721 12472) 000 (18131 (1813) 000 -165 
000 6667 0O0 9333 (10000) iI000O) O00 (7333~ (73.331 O00 93.33 

(4} - factor 11004SCOU nt from the erld Of We ptojecreO ye~t" to the beginning of ye~ 1 at the hurdle rate (15%) 
(5) = 200 for first prolected year., subsequent years .nc~eased by me selected growth r=-~e 
(6) = (3) • seleoed inve~tme~t yield of 4%. (6~) = (6) mu~pbed Oy me raLO (d In,T~l C, a l ~  tO (3]. (6b) = (6) - (6a) 
(7) = 5% of (5). select ed so that earnings am less I,nan the hurdle rate r equ,recne~t 
[8) = (3) - foltov~ng year's (3); d,fference between reQurre¢l caprtal at me beginning of year and req uueO CSl~tal at beg=nnzng of foUowmg year 
(8) = (6)  • G )  • (6)  
( I o) = (3) . • 15% (hurdle rate). (10a) = ( 1 O) mulbplleo by the rat~ of mmal capital 1o {3). ( I Ob) = (10) (10a) 
( I  l )  = (0)  * (10).  ( I  la )  = (6a} * (10a).  (1 lb )  = (6D) • (10b) 
(12) = (1) * (7) " (11). EVA (b) rethJc~ the COSl of capital co~ponetnt to reflect tnvesb"nent income ~ e d  On ~ p ~  
(I 3) F(~'ecast perexl Value 
(14) Term~al Value 
(15) = (13) + (14) Vatbe m Perpeto,ly 
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Basic Valuation Example 
Discounted Cash F low Model 

(1) (2) 

Scenario Assumptions: 

Total Earnings: hurdle rate more than achieved 
Annual Growth: 3% 

(3) (4) (5) (6) 

Total 
Required 

Required Capital at 
Projected In ,e l  Growth m Beginning 

Year Capdal Capital of Year 
1 100 O 100 
2 3 103 
3 3 09 106,09 
4 3,18 109,27 
5 328  11255 
6 338  11593 
7 348  119,41 
8 3 58 122 99 
9 3 69 126,68 
10 380  13048 

D~scounted Totals 

Discount Premium After-tax 
Factor Earned Investment 

at Dunng Income 
15% Year on Capdal 

0.870 200 4 
0 756 206 4.12 
0.658 212 18 4.24 
0 572 218 55 4 37 
0497 225 10 4.50 
0 432 231 85 4.64 
0.376 238 81 4.78 
0.327 245 97 4.92 
0 284 253 35 5.07 
0 247 260.95 5.22 

(11) Yrs. 1-10 100 
(12) Terminal Value 0 
(13) All Yrs 100 

(1) - selected judgmentally for ~llustrabon purposes 
(2) = (3) - prewous year's (3): for year 1. (3) - (1) 
(3) = (5) ~ 20 .  where 2 0 represents the target premium-to-surplus ratio 
(4) 
(5) 
(6) 
(7) 

I 
(6a) (6b) (7) (8) (9) 

After-tax After-tax After-tax 
Investment Investment Total 

Income Income Income Available 
on on From After-tax 

Original Additional Insurance Required Net 
Cap=tel Capital Operations Reinv Income 

4 0 12 (3) 13 
4 0 12 12.36 (3091 1339 
4 024  1273 (3 18) 13.79 
4 037  13.11 1328] 14.21 
4 0.50 13 51 (3 38) 14.63 
4 064  13.91 (348) 1507 
4 0 78 14.33 (3 58) 15.52 
4 092  1476 (369) 1599 
4 1 07 15.20 (3 80) 16.47 
4 1.22 15 66 (3.91) 16 96 

Exhib i t  5A 

(10) 

Indicated 
Value 

(8) = (3) - following year's (3). difference between requ=red capital at the beginning of year and required capital at beginning of following year 
(9) = (6) + (7) + (8) 
(10) = (9) 
(11 ) = ExpkcJt forecast period value 
(12) = Terminal value 
(13) = (11 ) + (12) = Value in perpetudy 

- factor to discount from the end of the projected year to the beginning of year 1 at the hurdle rate (15%) 
= 200 for first projected year; subsequent years =ncreased by the selected growth rate 
= (3) * selected investment y=eld of 4%. (6a) = (6) multiplied by the ratio of initial capital to (3); (6b) = (6) - (6a) 
= 6% of (5). selected so that earnings exceed the hurdle rate requirement 

22 26 20 08 2.19 66 78 (16.70) 72.35 72 35 
11 07 6 59 4 48 33.22 (8 30) 35.99 35 99 
33.33 26.67 6.67 100 00 (25.00) 108 33 108 33 



Basic Valuation Example 
Economic Value Added (a) Model 

I S¢enat/o Assumptions. 

Total Earnings: hurdle rate more then achieved 
Annual Growth: 3% 

( i )  ~2) (3) (4) (5) (6) (6a) (6b) (7) 

Ailer.tax A~er.ta~ Atler.ta~ 
TOtat ~e~b~e~t b~veStole~l TOf~I 

R~tolred Requtreo D~couet Pre~n~um Altet-t,~ Income Income Income 

Exhibit 5B 

(9) (9) (10) (101) (10b) (11) (11a) (11b) (12) 

Hurdle Hurdle 
Hurdle Required Required 

Avez~le Requzred Return Retum Total Cost Cost 

Protected 
Yem 

1 
2 
3 
4 
5 
6 
7 
8 
9 
I0 

D,scounled Totals 
(13) yrs 1-10 
(14) Te~mlnal Vatbe 
(15) AJl Yrs 

Growth Capilal at Factow Ea='ned ~vesT~neJlt on On From Att~-toJ Ratum on on Cost of of 
InLtral rn Beg,nnmg al Dunng Income Ong~nat Ado,lJonat Insurance Required Nat on Ong,nal AdddlOnat of Onglnal AddlbOnal tod~:ated 

Capdat Capital atYea~" 15% Ye&" ~lCapitat Cepitat Capdat Operaborms Remnv Income Cap,taJ Cal~tat C~pdat Cal~tol Capilat Capdal Value 
100 0 100 0870 209 4 4 0 12 t3) 13 (1500) (1500) 000 (11001 (tlOOJ 00O 

3 103 0756 206 412 4 012 1236 (309) 1339 (15 45) (1500) (045/ (11 33) (11 001 [0 3 ~*) 
309 10609 0658 212.16 424 4 024 1273 (318) 1379 11591) f1500) (0911 {1167) (11001 ~067) 
318 10927 0572 21855 437 4 037 1311 (328) 1421 116 39i (1500) (1 39) 11202) (1100) 1102i 
32B 11255 0497 22510 450 4 050 1351 (338) 14.63 116 69) (15 001 (188) (12 38) (1100) (138) 
338 11593 0432 23185 464 4 064 1391 (345) 1507 t17 39l (15 00t (2 39) (12 75; (11 00} (1751 
348 11941 0376 23881 476 4 078 1433 1358) 1552 117~1) (1500) (291) (13 1- ~) ( t l  0~l (2 13,1 
358 122.89 0327 24597 492 4 092 1476 (36cjt 1599 (1845) (15 00r 1345/ (1353) (11 00) 125.3) 
369 12668 0284 25335 507 4 1 07 1520 1360! 1647 (19001 (1500) (400) (13931 (11 00) (293) 
380 13048 0247 26095 522 4 122 1660 1391) 1696 (1957) (15 00) (457) (14 351 (11 00i (33~) 

100 2226 20 08 
o 11 07 6 59 

100 33 33 2667 

2 19 6876 (16 701 72 35 (9348) ~5  28) (9 19)(51 22) 155 21) (6 011 105 57 
4 48 33 22 (8 30) 35 99 14T 52l (24 72) (16 81) (30 45) (18 13) ( ]2 321 2.77 
6 67 10000 (25 O0) 10833 i125 001 1199 001 (25 00) (91 67) (7,3 33) (18 33) 108 33 

(1) - satect ed luOg mmltaJly for inu$tf~1~rl purpose~ 
(2) = (3) pre',nous years (3). to~ year 1. t3) - ( I ) 
(3) = (5) * 2 0. where 20 re~resL=qts ~ target premium-to-surplus ra�o 
(4) . fac=ot to piscounl ftonl the encl of ~e ptolecled '/ea~ Io the begznnEng of year 1 =-'1 the nurdle rate (15%) 
(5) = 200 for 5z'st pi'otectoo year. sol~e~u¢~11 years iPicxea%ed pi/the ~l(~too gfq3wto rate 
[6) : (3) • sek~c~ecl inves~lerlt y=elcl of 4%. (6e) = [6) muRrpf~d by ~e  ratio of inltJal capdat to (3). t6o) : [6) - [6a) 
(7) = 6% of (51 satected so (oat earnuTgs e~ceed the nuKIle rate requlPefnefl[ 
(8) = (3) - foal(owing year's (3) d,ffetence be r ,~ f l  required capital at tile beglnrung of yea=" and required capd31 at oeg,nn,ng of fOllo~ng year 
(9) = (6) + (7) - (8) 
(10) = (3) • -15% (rlurdle rate). (10a) = (10) mutbphed by the ratmo of mLtlat capital to (3). (IOD) = (10) - (t0a) 
(11) = t6) * (10). (1 la) = (Be) • (10a). (t ID) = (6b) * (lOb) 
(12) = (1) * ((6) + (7)) + (10). EVA (a) oo~  ru~ reduce the o~1 of caprt~ to reflect mves~nenl income earn(K) on capita 
(13) F~er..asl Period Value 
(14) Teml~at Value 
(15) = (13) • (t4) Value in Pl~l)etotty 
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Basic Valuation Example 
Economic Value Added (b) Model 

I 
Scenarlo Assumptions: 

Total Earnings" hur~e rate more than achieved 
Annual Growth. 3% 

[ I )  (2) [3) (4) (5) (6) (6a) (6b) {71 

A~ef-ta~ Afler-ta~ After.tax 
TotaJ b~vesthlea~t In yes)meier TOtal 

ReQulreCl R6qulrecl Discount Pren'uurn AJ1e~.tax Income Income ~o0me 

Exhibit 5C 

(81 19) (10) (t0a) (100) (11) ( t la )  (1113) (12) 

Hurdie Hur0fe 
HurCtie ReClulrea ReClUlreCl 

Av&1,~ie ReqL~tred RerJrn Relum To faJ  Cost Co~;t 

Pro~ect ecl 
Year 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

D,sc~nt�d .Totals 
(13~ Yrs 1-10 
(14) Tea'rillnat VaJ~le 
(15) .NI Yrs 

GrOwth C~pltal at Factoi Ea='~eo [ztve~tmenl on or1 From A f le t -~  Return on on Cost of of 
~ l ]a l  =n Begmn=ng al Dunn9 Blcorne OngmaJ AOa,ttonat b~su~ance Requtmd Nat on Ongtnat Add,t]onat of Ongmal AddJbonal Inclcated 

Capital Caps)at of Ye3r 15% Yeaz on Cat.tat C a p r i  Capata l  OperafJccs Remv ~ Cap=tat Cap=tal  Cat)fiat Cap,tat Capdat Capital VaJue 
100 0 100 0870 200 4 4 0 12 A31 13 (1500) (1500l 000 (1100) (1100) 000 

3 103 0756 205 4.12 4 012 1236 t30'3) 1339 (1545) (15 00) (0 45) (11 ~,3) (11 0o) (033) 
309 10609 0658 21218 424 4 024 1273 (3 18') 1379 t1591~ (15 00) (091) (1167) (1100) 1067~ 
316 10927 0572 21855 4.37 4 037 1311 (328) 1421 r ig  391 (15 0O) (1 39) (1202) (1100) 11021 
328 11255 0497 22510 450 4 050 1351 ~338) 1463 t1688) (15001 (188~ t1238) (1100~ I1 38~ 
338 11593 0432 23185 464 4 064 1391 (34~J 1507 (17 3c~1 (15 60/ (2 39) (12 75) (11 00) t17=~) 
348 11941 0376 23881 478 4 078 1433 i3.58) 1552 (1791~ LI500) (2911 t13 13) (11 00~ (2131 
358 12299 0327 24597 492 4 092 1476 (369~ 1599 (184~,) 11500) i3451 (1353) t l l 00~  12531 
3.69 12668 0284 25335 507 4 )07 1520 1380) 1647 i l9001 (1500) (400) ~1393) r l l 0 0 )  12.93] 
380 13048 0247 26095 5.22 4 122 1566 1391) 16.96 11957) t1500) 1457) t1435) i l l  C~O) (335) 

100 22 26 20 08 
0 11 07 6 59 

100 33 33 26 67 

219 6678 11670) 7235 (8348) (75281 t819) (8122) (5521) (601) 10557 
448 3322 t830p 3599 (4l 52~ {24 721 f16 811 13045! (16 13'~ (1232) 277 
667 10000 (2500) 10833 (12500J i lO000) (2500) (9167) (7333) (18331 10833 

(lJ - seiec~d ludgmentafly for dlusffabon purposes 
121 = (3) - pre~ous year's (3) for yeaz 1, (3). (1) 
(3) = (5) ° 2 0 where 2 0 represents the target prenuum-to-surpius rabo 
(4). facto~ Io d,scou nt from ~e  encl of t~e projeeteo ye.3r to the beginning of yea," 1 =-1 eLe hurdle rate ( 15%( 
f5) = 200 fo~ first i~'oiected year SubSequenl years ,ncze~-.,ecl by the se4ecte<l g,'owth ra~e 
(6) = (3t • sereete<l =nvestmonl yreld of 4% 16a) : (6) mUltlpheO by the ratio of ,l~d]al cap,at 1o (3). (6DI = (6) - (Sa) 
(7) : 6% of (5) seiected so IJlal earnings exoeed the hUrdle rate ,'eclLJirernent 
(8] = (3l • following years (3) dJfference fretwe~n requ,md capztaJ at the beginning of yem and reEtoir~l C¢IDKaI at Deglnnmg of ~odlowng yeal 
(9) = (6J * (7( * (8) 
(10) = (3) • - t5% (nurdie rate). (10a) = (10) muftrlPlleO Oy the rabo of mtTtal capital to (3). (10D) = (18) - (10a) 
(11) : (6) ° (10), (1 la) = (6.1) • (10a) (11bj = (60) ° (10D) 
(12) = ( 1 ) - (7) - ( t I ) EVA (b) reaLcer, the co~t of r.~pltal componef~t to re8ecl i f l V ~ S ~ t  i ~  eclnleQ OR C.,<~ i ~ 
(13) Forecast Pe~d Value 
(14) TetrmnaJ VaJue 
(151 = (13) + (141Val~e m PecpetlJJr¢ 
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Bas ic  Valuat ion Examp le  
D i scoun ted  Cash F low  Mode l  

(1) (2) 

Scenario Assumptions: 

Total Earnings: hurdle rate not achieved 
Annual Growth: 3% 

(3) (4) (5) (6) 

Total 
RequEred 

Requzred Capital at 
Projected Initial Growth in Beglnn=ng 

Year Capital Capital of Year 
1 100 0 100 
2 3 103 
3 3,09 106,09 
4 3,18 109,27 
5 3,28 11255 
6 338 11593 
7 348 119,41 
8 3 58 122 99 
9 3,69 126 68 
10 380 13048 

D~scounted Totals 
(11) Yrs. 1-10 100 
(12) Terminal Value 0 
(13) All Yrs. 100 

Discount Premium After-tax 
Factor Eamed Investment 

at During Income 
15% Year on Cap=tal 

0 870 200 4 
0.756 206 4 12 
0658 212 18 4 24 
0.572 218.55 4 37 
0497 225.10 4.50 
0432 231 85 4 64 
0,376 238 81 4 78 
0 327 245,97 4,92 
0 284 253,35 5 07 
0,247 260 95 5 22 

(I)  - selected judgmentally for illustration purposes 
(2) = (3) - previous year's (3). for year 1. (3) - (1) 
(3) = (5) + 2.0. where 2.0 represents the target prem=um-to-surplus ratio 

I 
(6a) (6b) (7) (8) (9) 

After-tax After-tax After-tax 
Investment Investment Total 

Income Income Income Available 
on on From After-tax 

Original Add~onal Insurance Requtred Net 
Capital Capital Operabons Re=nv  Income 

4 0 10 (3) 11 
4 0.12 103 (3.09) 11 33 
4 024 1061 (3 18) 11.67 
4 0 37 10 93 (3 28) 12 02 
4 0.50 11.26 (3 38) 12.38 
4 0.64 11.59 (3.48) 12.75 
4 078 1194 (358) 1313 
4 0.92 1230 (369) 1353 
4 1.07 12 67 (3 80) 13 93 
4 1.22 13.05 (3.91) 14.35 

Exh ib i t  6A 

(10) 

IndJcated 
Value 

(8) = (3) - following year's (3); difference between required capital at the beginning of year and required capdal at beginning of following year 
(9) = (6) + (7) + (8) 
(10) = (9) 
(11) = Explidt forecast penod value 
(12) = Terminal value 
(13) = (11) + (12) = Value in perpetudy 

(4) - factor to discount from the end of the projected year to the beg~nntng of year 1 at the hurdle rate (15%) 
(5) = 200 for first projected year. subsequent years increased by the selected growth rate 
(6) = (3) ,, selected investment yield of 4%. (6a) = (6) multipSed by the rabo of inrbal capital to (3): (6b) = (6) - (6a) 
(7) = 5% of (5). selected to be lower than the hurdle rate 

22.26 20 08 2 19 5565 (16 70) 61 22 61 22 
11 07 659 4.48 2768 (8.30) 3045 3045 
33 33 26,67 6 67 83 33 (25 00) 91,67 91,67 
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Basic Valuation Example 
Economic Value Added (a) Model 

J Scenar/o Assumptions. 

Total Earnings" hurdle rate not achieved 
Annual Growth. 3% 

(1) (2) 13) (4) (5) 15) (6a~ (Sb~ (7) 

AJler.tax A,~er .tax Aflef. t~ 
TOtal Investment ~ ~'~.di"ne~ I TO, at 

ReeuKted ReCidlred D,scounl premium Afle~.tax Income Inco'ne bcome 

Exhibit  6B 

(0) (9) (10)  (10a) 110b; (11) (11aJ (1101 (12)  

Hurdle Hurdle 
Hur0~e Reduzmd Requzred 

Avadable Required Retum Retum Total COSt COSt 

Pmleczed 
Ye<~ 

1 
2 
3 
4 
5 
6 
7 
8 

;o 
D,scounted Totals 
113) Yrs 1.10 
(14) l"errnmat V~Ue 
(15~ All Yrs 

Growth Capdat an Factor Earned blves~ment ~ ,  on From Ntec-L-~ Return On on Cost of of 
I~d~ =n Bt, cj~nnzng o"1 Dunng Mcome Ongmal Addl6onal Insurance Requzred Nat on Onganal Additlottal of Ongmat AdazbOnal Indcated 

Ca~dat C~Oltal Of Ye<~ 16% Ye3r onCapdal Cap,tal Capital OperatJ~lS Reznv blcome C~0rklJ CapltzJ CaPdal CapzTal Capdat CapdzJ Value 
100 0 100 0870 ~ O  4 4 0 10 (3) 11 11500) {1500) 000 111001 11100) 000 

3 103 0756 206 412 4 012 103 (309) 1133 11545) 11500) (045) (11 33) i l l  00) (033p 
309 10609 0658 212Z8 424 4 024 1061 1316) 1167 11591) 11500/ t0911 [1167J ( l t 0 0 )  (067) 
318 10927 0572 21855 437 4 037 1093 (325) 1202 116 391 I I5  001 (I 39J 11202) (1~ 00) 1102) 
328 11255 0497 22510 450 4 050 1126 1336) 1238 ( I1~ 881 (15 00l (1 88) (12 38) {1100) 1138) 
338 115g3 0432 23185 464 4 064 1159 (3a8) 1275 t l i  391 t15 00) (2 39) (12 75) (11 00) 1175~ 
348 11941 0376 23881 478 4 078 1194 1358) 1313 (17 91) (1500) 1201) (13 13J 11100) 1213) 
558 12299 0327 24597 492 4 092 1230 1359~ 1353 11845) 11500l (345) (13531 l i t  001 12531 
369 12568 0284 25335 507 4 107 1267 (380) 1393 (1900) 115001 1400~ i1393) ( l l 001  (293) 
350 13048 0247 26095 522 4 122 1305 t391J 1435 11957) (1500) 1457) 114~)  11100) 1335) 

100 2228 20 08 
0 11 07 5 59 

100 33 33 26 67 

219 5565 116 70) 6122 18346~ (75281 18 19) (6~ 22) (55 21J {601) 9443 
448 2768 (8301 3045 14152) (2472) (1581) (30451 11813) 112 32~ -277 
657 8333 (2500) 9167 112500) (10000l (2500) 19tSTI 17333J (18331 9157 

(I)  se~ectecl lUO9 mentagy for ,lustrat]on purposes 
(2) = (3) - plevlouS years (3) for year t. (3) - (1) 
(3) = (5) - 2 0. wrlere 2 0 represents Ihe targez premilJm-to.surptus raIJO 
14) - lactor to d,~c(xJnl from the encl Of the projecteo ye~ 1o I~e beg,nmng Of yeez I at the IlurClle ra~ (15%) 
(5) = 200 for first prolectecl yeas., subsecluenl years incteasecl by ~e selecJe0 growln rate 
(6) = (3) • selected mvesune~l ~ of 4% (6a) = 16) muil]phed by Ule ratio Of mlba] capital 1o (31.16b) = (5) - (6a) 
(7) = 5% of (5). selected so ~ earnings are tess ~an Ule hurdle rale requrre~er~l 
(8) = (31 - follo~eng tears (3). d,fference oetwee~ reClUlred capital at t~e beginning of year and reclu,recl caNat at oegmnmg of fol~mng year 
(9) = (5)  - (7) + (8) 
(10) = (3) • - 15% (rlurole rate) (10a) = ( I 0) n'zulb DIIL~Q by Cle rabo o~ pllbat Capl[al to (3). ( I 0D) = (10) - (10a) 
I t  1) = (6J • (10).  (1 l a )  = (Sa) • (10a) .  (11b)  = (6b)  * (10b)  
(12) = ( 1 ) * [(6) * (7)] + ( I 0). EVA (a) does not reduce ~e  Cost o~ CapztaJ to leflecl invesb'~ent income eaxneo on caprta 
(13) Focecasl Pet~xl Vatue 
114} Temlznal Va~Je 
115) = (13) * 114) Vatue m Perpetudy 



GO 
-.,J 

Prelected 
Ye~ 

1 
2 
3 
4 
6 
6 
7 
8 

~ n t e d  TOtalS 
113) YIS 1 10 100 
(14) Terrn~al Value 0 
{15J All Yrs 100 

(11 . selected sudgm~ta~ for ,Pusb~on purooses 
(2) = { 3) - prewous yet, rs (3) for year I. {3) - ( 1 ) 
{3) = (5) ° 2 0. where 20 reore~snLs the target p~e~um-to-surplus r a ~  

Basic Valuation Example Exhibit 6C 
Economic Value Added (b) Model 

F 
cenano AssumpUons: 

Total Eamthgs" hurdle rate nof achieved 
Annual Growfh: 3% 

(1) (2) (3) (4) [5) {8) (Ta) (6D) 17) (8) (9) (10) (1Oa) (10b) 111) {11a) 11113) 112) 

Affef.la~ Anef taJ AJter.ta~ Hurdle Hurdle 
Total I~vesthlenl k~vc~e~[  T ~ l l  Hurdle Required Requz~cl 

ReClULreo Redulred OlSCOqJnt Premium AJ~ef.tax Income Incc~e Inco'r~e AvaJlable Required Return Return TOtal Cost COSt 
Growth Caprtal at Factor Earned Investmenl o1~ on From After.lax Return o~ on Co~t Of Of 

b"mLal in BegLnning al Dunng Income Or=cJmal AdclitlonaJ Insurance ReduireCl Net on Ongmal Ado=hemal of Ong,nal A d d , ~ a l  ~,d~,eted 
Capdal CaDd~ Of Year 15='= Yea= o~ Caprlal C&OI~J Cap=l~ O[0~'afJO~lS Re~nv I]')o0~e C a p ~  Capdal Caprlet Capital C, ap=ta) Cap~ll V~tt,le 

100 0 100 0870 200 4 4 0 10 (31 11 (1500) (1500j 000 (1100) {1100} 000 
3 103 0756 206 4 12 4 O 12 103 4309) I I  33 (1545) 11500) (045) 111 33j 111 00) 10331 

309 10609 0658 21218 424 4 024 1061 (318) 1167 11591) f15 00~ (091) (1167) 11100) 1067) 
318 10927 0572 2 i855 4.37 4 037 1093 (328) 1202 i l6391 11500) (I 39) {1202} t t t  00) (102) 
326 11255 0497 22610 450 4 050 1126 (338) 1238 116 88) 11500) (1 981 (12 38) (11001 1138) 
338 11593 0432 23185 46,4 4 064 1159 (348) 1275 [17 391 [15 00) (239)(1275)  (1100) 11751 
348 11941 0376 23881 478 4 078 1194 (350) 1313 t l i 9 t  I t15 00) 1291) 11313) (1100) 1213) 
358 12299 0327 24597 4.92 4 092 1230 13691 1353 11845) (1500) (345) 11353J 111.00) {253) 
369 12660 0284 25335 5OZ 4 107 1267 {3~0) 1393 11900) 11500) 14OO) (1393~ (t1001 (293) 
380 13048 0247 26095 522 4 122 1305 1391) 1436 11957) 11500) 14571 (1435) ( l109J 1335) 

22 26 20 00 
11.07 6 59 
33 33 26 67 

219 5565 L16 70) 6122 (03481 175 29~ t6 19) i61 22) 155 21J (6011 9443 
448 2768 1030) 3045 C41521 (2472) 11681) [3046) (1813) t12321 -277 
667 8333 (2500) 9167 (12506l tl00OO) 12500) 19167) (7333) 11833) 9167 

(4) factor to alscounl f l~n the e~cl of the prolected year to the Deglnnmg of year 1 al tne hurdle rate (15%) 
(5) = 200 for first prelected year,, sbbSeqlJenl years irlcreaseo ~t the selL~cted growlh rote 
(5) = (3) • s~ec/J~l rnvestme=qt yLe~cl of 4% (6a) = 161 muitlplzecl by ble rat=o Of inlbal Capita] Io {3) (6b) = (6) • 16¢1) 
(71 = 6% Of 15). s~ected so tflet earnings are less than me hurdle r~e requ=re, ment 
(8)=(3) lOhoWmgyea£sf3) d~e~ence~nrequiredcap~ta~a~nebegmnmg~fye~.an~requrrec~capr~a~a~begmn~n~f1~i~w~ngyea~ 
(9) = (6) + P') ¢. (8) 
( 1 Q) = (3) • • 15% (hurdte rate). ( I 0a) = ( I 0) mulbpl=ed by the ra~o Of m d ~  caprtaJ to (3), ( I 0b) = (10) - ( I Oa) 
( I I I = (6) - (10) (1 la) = (6aj * (10al (1 tb) ; (6b) + (10b) 
(12) = (1) * (7) * { 11L EVA (D) r,~thJces the COGI Of C¢lprtad cor;tpoIlent 10 P~.'flecl investme~11 irlcome eafned ol'l CaDd~ 
(13) For ecas, t PenOCl Value 
(14) Term~al VallJe 
115) = (13) • 114) Value ¢R Pe'l~HUIty 



Primary ~'OCk Insurance Company 

V a / u a U o n  Es(Irna~l# as of  December 31. 2001 

E ~ m g  Sm~ng Sur~ls 

53~ r ~ a ~  R e ¢ ~  I Z  l i e 1  2 ~ 9  

Sr~aet 

M o n / t o n n g  a t ~  Se~¢ ~r, 9 Surp~Js 

,, s t o m a  ~ , ~ ,  

is, ~ ,o ReC ~l.= ~000"* ZOO e~. :000",. ZOO 0% ZOO 0",~ ZOO ~ ' ,  7OO 0", ZOO 0",. 2OO 0% *"000", .too 0"-, 

2~1 2 , 1  2 1 ,  a ! ~  27S 27~* .~94 , ~ 4  273 271 2 " ~  

~ ' ~ r  

1 ~ o  OafO 0 ? ~  0 ~ 8  0 ~  O4e" 04 ]a  O~?e OS~7 0 ~  

£stm~n~ff Future Income 

F.Jp~lll.dAnnulJPe~p~EuMGirowmRmmof ZO'. ] 
~DJ~ & lnCOmo ,A~fM ZOfl 

A~ca~o. o~ DCF ~ o d  

2 N ~  0~?0 t l ~  y l ~ )  l O ~  11717 1:614 114o7 14 i ~  148~4 15~1  

App~cmma or  EVA M e U l a ~  

42 n ,  

b i as  : ; 7 5  ~062 ,744  , )D2  a O ~  |6a2 ] ) ' , )  )OaO 2 ' ea  , l e ~  2 ~ e  e,  c4~ 

e ~20 e 1.~o 6 3 ~  6 ~20 e 3~o e ~2o 6 ~ e ~:o e 3~0 S )20 

5491 4?CO , t S ~  3 S l ]  1 t42 ~ 1 ~  217e 20~S l ? U  1 ~  ~1.717 10414 4~1~1 

~ As~S ~ , s  ~&eo s ~ o  elAA ~430 ~ ,16  e s ~  ~ s l  ~ 1 1  

99 ~ 9  

488 



Primary Stock Insurance Company 

Calculation Notes for Valuation Estimates as of December 31, 2001 

S~e l  2 

(111tom Pnmary  Stock b~s~rance Combanys  121'31,~01 Peaked batance sheet 

(2) s81Octe(] Stamng surplus fol  f ~ re  income prOlOCbons b[tSe~ On the SeleCted 200 0% $~rPl~JS to knthcaTecl RBC rabo 

(3) : ( I )  - ( 2 )  

(4) selected surplus based on the setecteo 200 0% surplus to ,rid.cared RBC rauo 

(5) calculated RBC at the Company  Aoflon Level - I)aSed on Exhibit 12 for 2002 ano subsequent  

(6) setec~on of 20O O% surlolus to RBC rauo for Oeterminlng required l u rp lU l  GI eac~ year eno 

(7) cumurnve  inc~Basa in (4) f rom start]n 0 surplus (4) - {21 

{8) NPW for all Imas - (4) 

(9) rmJ teSS and LAE resor,,es fOr aJl hnes * [4) 

(10) f rom E~ lD i t  8. l ine (11) 

( I 1 ) is selecU~q hurOle rate of 1S 0% used for detaml ,n lng Co i l  o1 C ap,tal ,n EVA  method and the preach1 value of l u c re  earnings and ~alue aoaeo 

{ 12) a I 000 at 12~1t01.  for f ~ r8  yearn = ( I 0 * 1,5 0%) raised to (2001 - year) eJqoonent 

(13 )= {101  

(13p'.) : (13) • (12) for eacrl year  Total 01 to ' I  1 Is Re  total o l  the est ,matas by year  Total "12 t o -  = i 131~Oll ' ~ 1-  Gtowlh  Rate1 - ~Hurdle Rata - Growl~ Ra[e j  • L 121201, 

AJl Years - Total 01 ta '11 + Total 12 t o -  

(14) annua] change in (4) 

{14pv) = (14) • (12i  for aac~ year  Total 01 to 11 IS the Iota, of t~e esumaTes oy year, Total 12 tO -  = ,41.-o., ' Growth Rate - (~urdla Rala - Growth Rate) • (121~o1, 

~JI Year's - Tote; "01 t o ' l  1 - Total "12 I 0 -  

(15) m { 13 )  - (14) 

(15pv) = (13pv) - (14p'v) 

( 1 6 )  - ( 2 )  

( 17 )= (10 )  

(17pv) = { 17) • (12) for each year;. Total "01 to "11 ,s the tatar of me eel ,males by y~sr Total 12 t o -  = ; ~7P~o,, • 11- GrOwth Rate) - iHurdJe Rate * Grov..m Ratej  • ( 12}~o1, 

AJI Years = Total "01 ¢o 11 * Total '12 t o -  

[1B) u ( l g )  ~ (20) 

(18p.,,) = (19pv) • (20pv) 

( 1 9 )  = ( 2 )  • ( 1 1 )  

(19W) = (191 • (12) for eaCh year  Total 01 [o '11 .s the tOtal of the es l .ma~s  Dy year' Total "12 ~o -  : (16) • { 12)..o:1 

AJI Yea rs .  Total 01 1o '11 + Total 12 IO -  

(20) : (7)~.~ r . .  • (1~) 

(20pv) : (20) * (12) for each ~a t  Total 01 I0 11 is me total of me  esumates  by year. Total 12 to - -  : [ {4)2~1, • H~n:le Rate - (HurOle Rata - Gro~lJ~ Rate) - (16) ] • ( 121..~11 

ALl Years : Total 01 to "11 * Total "12 1o -  

(21) = (17) - ( 1 8 }  

(21pv) = ( 17~,1 - (1Spy) 

(22) = 06 )  * {21pv)~ .m  

489 
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Primary Stock insurance Company 

Chan(les In Statutory Surolus 

(1) Net Income 

(2) Changes in Unreahzea Cap Gains 

(3) Changes in Non-adrr, dled Assets 

(4j CapitaJ Paid In 

(5) Increasein Surplus Notes 

(6) Pnnclpa~ Repayment 

(7) Other Surplus Adlustmenls 

(8) ContrlbutlopS Io Mesl P/S Targel 

(9) Contnbutions tO Meet R/S Target 

(10) Change in Slatotory Reserve 

(11) Subtotal: Company Income 

(12) D,wde~qds to Stockholders 

(12) Total Surplus Adjustments 

Actual 
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Exhibit  8 

2011 

$8.531 $6933 $8.111 $8.909 $9.592 $10.160 $10 697 $11.218 $11 726 $12.218 512.715 

O 3 512 3943 4 278 4.563 4.816 5 055 5,288 5,522 5,758 5998 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 O 0 0 O 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 (2) I 0 I 0 0 0 

18,713 8,531 10445 12.054 13.187 14.153 14.9;'7 15.752 16.507 17.248 17.976 

0 (6 0701 (7,232) (9,153) (10,6251 (11,7171 (12,6141 (13,4071 (14,136) (14,8241 (15501) 

$8.531 $4.375 $4822 $4034 $3528 $3.260 $3.138 $3100 S3.112 $3.152 $3212 

Calculation No fes • 

( I )  = Afler-l~o( ne~ income from the st~duto~ income slalement (Ext'.bll g) 

(3). (41. (5), (61 (7) are set Io $0 

(111 = sum of hnes (11 through (101 

(12) IS the n',a~mum dn,lderzd th81 satisfies required surplus based on nsk-based capital mullJpte of 2, 

(13) = (111 ~- (12) 



Primary S~ock Insurance Company F-~d~l 9 

~ U t o r V  rnc0me ~;tatm'nent 

(1} Nel Earned Prm'~zum 

(2) Nel bCUrTed Losses & LAE 

(3) UndePavnbng E~penses 

(4) Unde~nltlng InCOme 

(5) In~es~nent Income 

(5) Ob~er Income 

(7) P o l i c ~ d e l  Dr~clemds 

(8J Pm-Ta, Operating Income 

(9) Feden~llncome Tax 
(10) NeZ Iz,~ome 

200t 2002 2003 2004 2005 2006 2001 2008 2009 20t0 2011 

$82.385 $85.880 $89.100 $92.671 $~.379 $100.234 $104 244 $108412 SI I2  749 Sl17.259 $121.952 

63.988 66.547 09 200 7t.974 74.856 77 850 00.963 84 200 87 571 91.074 94 719 

18.022 18.743 19 492 20 271 21 083 21 927 22 803 23 71.~__66 24 664 25 650 26.676 

$375 $390 $408 $426 $440 $457 $478 $496 $514 $835 .$557 

11.000 10 410 11 685 12 683 13.525 14 277 14 984 15 677 16.360 17.068 17.780 

0 0 0 0 0 0 0 0 0 0 0 

_o _o o_ o_ _o o_ o_ _o o o_ o 

$11.375 $10 800 $12 093 $13.109 $13.965 $14.734 SI5.462 $16 173 $16.882 $17.603 $18 337 

$8,531 $8 93._~3 $8 I 1_,.~1 $8909 $9,592 $t0,160 $10 65.._~7 $11 210 $11,726 $12r210 $121715 

Calculation Notes: 

(1) = sum of net earned premzurn for all Imes of business 

(2) = sum of nel recur!co losses and I..aE for all lines of business 

/3) = sum of under, w~ng e~0enses Ior all imes of business 

( 4 )  = ( 1 )  - ( 2 )  - ( 3 )  

t6} = sez to $0 for ~ company 

(7) = sel to $0 for me company 

( 8 )  = t 4 )  • ( 5 )  * ( 6 )  - ( 7 )  

H O )  = ( 8 )  - (9 )  



Primary Stock Insurance Company F..x~bd 10 

Summary Statutory Balance Sheet~ 

( 1 ) In ~-steo ASset'. 

(2) O~er ASsets 

(3) Total ASsets 

{4} Net Loss & LAE Fbesef~s 

;5) Nel Uneamecr Premium Reserve 

(6~ Other Llab, umes 

(7) TOtal LlaD,hl]8S 

(8) Suatulor~ S u ~ u s  

(9) Total IJabdmes & $urpJus 

200t 2002 2003 2004 2005 2006 2001 2008 2009 2010 201t 

$185.216 S213 090 S233.984 $251.262 $260 218 $279 994 S293.292 S306 473 S319 754 $333 2!O $346972 

$192.716 $219918 $241.111 $258693 $273.962 $288.059 $301.609 $315214 $328.85. ~ , $342.700 $356.826 

$107.086 $126 175 $140.678 $1c.2.257 $161 965 SI70.680 $178.971 S187.110 $195.250 $203474 $211 810 

42 000 43 680 45.426 47.244 49 134 51.100 53 143 55.269 57.479 59.T78 62 169 

~ 3679 3530 ~ 4 129 ,~207 ~ ~ 4.796 

6150.585 $173412 $189.783 $20J.331 $215 072 $225909 $230.401 $246026 $257.353 $268.048 $278.962 

~ . 1 3 1  ~p46 506. $51 328 $55 362 $58.890 ~62.150 ~65.288 ~68.388 ~71.500 1 ;74 .65~ '  ~;77.864 

S192 716 S219 918 $241.111 $258.693 $273 962 $288 osg $301 689 $315 214 $328.053 $342 70t;) $356 820 

4~ 

r~J 

CiIcufation No£es. 

( I )  Exhibit I I. lane { I )  

(2) = (premium ReCel¢a~e i Rece,vab4es from Relnsuter~ • Other ASSetS) from ~ l b d  11 

(3) =(1) +(2) 

(4) Exftd~t 1 I. Line (8) 

(5) E~BDIt 11. [JN@ (9) 

(6) = [{10) + [I I) * (12} + (13) 4 (14)J from E~h,bd 11 

(7) = (4} ~ (5) + (6) 

(8) = (31-17)  

(9) : (7J • (8) 



Primary Stock Insurance Company 

Actual 
Detailed Statutor¢ Balance Sheet 2001 

Exhtb[t11 
Sheet1 

2002 2003 2004 2005 2006 2007 2008 2009 20t0 201t 

~D 

(la) Taxable Bonds 

(lb) Non-taxable Bonds 

(Ic) Stocks - Pref(~Ted 

( Io3 Stocks - Commo~ 

(le) Cash 

(lf) Reat Estate 

(lg) Other Income Preducing Assets 

(1) Tofal lnvesUnents & Cash 

(2) Prernzum Roce~va~e 

(3) Recel~bles horn Reinsurers 

(4) Oh'let" Assets 

(5) Total Assets 

(6) Net LOSS Raser~e 

(7) Net LAE Rasefv~' 

(8) Net LOSS & LAE Reser~ 

(9) Net U ~ e d  Premium Reserve 

~10) Expenses Payable 

(1 I) Income Taxes Payable 

(12) D~dends Declared arzd Unpaid 

(12a) Pdlcyholclets 

(12b) Stockbdders 

(13) Balances clue Reinsurers 

(14) OIt~' Llabddzes 

(15) Total LiMMI~es 

(16) Capital 

(17) Surplus Nates 

(18) Unosstgned Funds 

(19) Pol?cy'nolder Surplus 

$77,791 $69,496 $98.273 $105.529 $111.512 $117.596 $123,152 $128.718 $134295 $139.956 $145.726 

44.452 51.142 56.156 60.303 63.892 67 199 703r~ 73.554 76741 79.975 83.273 

1,852 2,131 2,340 2,513 2,662 2,800 2,933 3,065 3,198 3 332 3,470 

46,304 53273 58,496 62,616 66,555 69,999 73,323 76618 79,939 83,308 86,743 

9,261 10,655 11,699 12,563 1 3 , 3 1 1  14,000 14665 15,324 15,988 16,662 17,349 

1,852 2,131 2,340 2,513 2.662 2,800 2,933 3,065 3,198 3,332 3,470 

3,704 4,262 4,680 5,025 5,324 5,600 5,866 6,129 6,395 6,665 6.939 

$185,216 $213.090 $233.984 $251.262 $266.218 $279,994 $293,292 $306.473 $319 754 $333.230 $346.972 

$7,500 $6,500 $6,760 $7,030 $7,310 $7,602 $7,907 $6,222 $8 552 $6,894 $9,249 

0 328 .367 401 434 463 490 519 547 576 605 

0 0 0 0 0 0 0 6 0 0 6 

$192,716 $219,918 $241,111 $258,693 $273 962 $288,059 ,~301,689 $315,214 $328,853 $342,700 $356,826 

$79,567 $98.763 8113.298 $124.727 $134,151 $142,471 $150.267 $157.814 $165.275 $172.717 $180,202 

27.518 27.412 27.380 27 530 27.812 28.208 28.703 29.296 29.983 30.757 

107.085 126.175 140.678 152.257 161.965 170.680 178.971 187.110 195.258 203.474 

42.000 43.680 45,426 47,244 49.134 51,100 53,143 55,269 57.479 59,778 

1.000 1.030 1.061 1.093 1.126 

0 967 996 1.050 1.093 

0 0 0 0 O 

0 O 0 O O 

500 1.560 1,622 1,687 1.754 

0 0 0 0 0 

1,162 1.196 t 236 1.275 1.316 

1.143 1.191 1 236 1.288 1.345 

31.608 

211.810 

62 169 

1.359 

1.404 

0 0 0 0 0 0 

0 0 0 0 0 0 

1.824 1.898 1.973 2.053 2 135 2.220 

0 O 0 0 0 0 

$150.585 $173.412 $189.783 $203.331 $215.072 $225.909 $236.401 $246,826 $257.353 $268049 $278.962 

,$40.000 $40.000 S40,000 $40.000 $40.000 $40.000 $40.000 $40,000 $40.(~0 $40.000 $40.000 

O O 0 0 O 0 O O 0 0 0 

2.131 6.506 11.328 15.362 18.890 22.150 25.288 28.388 31.500 34.652 37.864 

$42.131 $46.506 $.51.328 $55.362 $,58.890 $62.150 $65.288 $66.388 $71.500 $74.652 $77.864 

(20) Total Liabdities and Surplus $192.716 $219.918 $241.111 $258.693 $273.962 $288.059 $,301.689 $315.214 $328.853 $342.700 $356.826 



PHmary Stock Insurance Company Exh ib i t  11 

S h e e t  2 

Calculation Notes for Detailed Statutory Balance Sheet 

.p., 

( la )  = 42 0% of ( I )  Total In~stnnerlls & Cash ( le )  = 5 0% of (1) Total In '~stmenls & Cash 

11 b) = 24 0% of (1) Total In'~strn~lts 8 Cash (1 f~ = 1 0% of (1) TOt.,-,I I rT~tmer11$ & Cash 

11c) = 1 0% Of (1) Tetal Investmerlls & Cash ( l g )  = 2 0% of 11) Total In,,~slrnents & Cash 

( l d )  = 25 0% of ( I )  Tolal Investments & Cash 

(1) 2001 vah.~ ts =nput. subsequent values = pnor yem value * net cash =n" * c h = ~ 9 ~  tn unrealtzed capital ganes'" 

12) 2001 value is input, subsequent values = pnor y~ar value * (~lrect wrdte~ premium for all I,nes- dlre(:t premxum cetlesled for all lines 

(3) 2001 value is input, subsequent values = pnor ~ a r  value + ceded less & LAE pazd- ceded lass & LAE r ~  

(4) value set to $0 for al~ years 

( 5 )  = (1 )  - (2) * (3) ÷ (4) 

( 6 )  = 

(7 )=  

(8) = 16) + (7) 

(9) 2001 vaJue ts inpul, subsequeril values = pnor year value • ne~ ',.mtlen prenatml for all hnes- net P_.3rned p~emJLcn 1or all lines 

110) 2001 value aS input, subsequent values = pnor yem value • (agenls' conv~ssions * ~ ~cleP,~n~ng expenses + prer~um l a ~ s )  for all 5nes- unde~n t i ng  exioe~es paid" 

(11) 2001 value fs input, subsequent values = prior yea1" v~ue * federal income tax- ledetal income t,~< pa=d" 

112) values set 1o $0 Ior all yeats 

(13) 2001 value is Lnput, Subsequent values = prior ~ v'alue + (ceded written premium- premnum ceded * relnsurallce cormTeSSlOn- reinsurance commission paid) for ~1 ilne~ 

(14) value set 1o $0 for all yea~J 

(15) = (8) + (9) +110) - 111) * (12a) ¢- (12b) * 113) ÷ 114) 

(16) 2001 ~ralue us input, subsequent ~ lues  = prior year value * capital pa=0 m "  

(17) 2001 value is input, subsequent values = pnor year value + Increase in Surplus No tes " -  Pnnopal  Repayment"" 

118) = 1 1 9 ) -  ( 1 6 )  - 117) 

119) = (5 )  - ( 15 )  

(20) = (15) ,=- (10) 

• Value is from Exhibit 13 
"" Value as from ~ n ~ l  8 
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Pr/mary Sfock Insurance Company 

Rlsk-Basecl Capital 

INVESTED ASSI~T RISK 

Bonds 
Common S Zod,.s 
Preferred Stod~s 
Cash 
Real Estale 
Srton.Tet'm Investments 

CREDN R~K 

FzKeo-b'~0me RBC 
Fqun'f .ASS~ RBC 

Exhlbd 12 

FaCtOr 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

03% $140638 $154.429 $165 832 $175.704 $184765 $193.572 $202.272 $211036 $219.931 $229.001 
15 0% 53 273 58.496 62 816 69 555 69.999 73,323 78 618 79,939 83 308 86,743 
2.3% 2,131 2340 2513 2662 2800 2.933 3068 3198 3332 3,470 
03% 10655 11,696 12.563 13311 14.000 14.665 15,324 15,988 16662 17.349 

100% 2.131 2,340 2,513 2.662 2,800 2.933 3,065 3.198 3.332 3.470 
0 3% 4 262 4.680 5.025 5.324 5 600 5,866 6 129 6,395 6,665 6,939 

$487 $512 $550 $583 $613 $642 $671 $700 8730 $760 
$6.253 $ 9 , 0 6 2  S9.731 $10311  $10,844 $11,35g $11.870 $12 384 $12.906 $13 438 

Relnsuranr.e Ceoed (ex@ US aft;bates goofs) 100% $29.35g $32092 $34.694 $37 198 $39653 $42.090 $44 523 $46.950 $49410 $51.880 
NI Other Recewaoles 

PREMIUM RISK 

Total of B'f-I.Jne RBC 
P;emlUrn Concen1~ltzon Fac~ 

RESERVE RISK 

Total of By-Une RBC 
Reserve Conc~t~on Fac~ 

GROWTH RISK 

Three-Year Average Growth 
Net Wntten Pref11ium 
Net LOSS & LAE Reserves 

CrechtRBC 

Premlum RBC 

Rese~/e RBC 

Grow~RBC 

INDICATED RBC 
(upper eno of Company Action Leve~) 

ADJUSTED SURPLUS 

Rabo to Authorized Contxol Level 

10% 0 0 0 0 0 0 0 0 0 0 

$2936 $ 3 . 2 0 9  $ 3 . 4 6 9  $3720 $3965 $ 4 . 2 0 9  $ 4 . 4 5 2  $ 4 . 6 9 6  $ 4 . 9 4 1  $5.188 

$5,111 $ 5 . $ 3 7  $6987 $8469 $6972 $7 510 $ 8 . 0 7 8  $ 6 . 6 8 1  $9.318 $9 994 
0 357 0 357 0 357 0 357 0 357 0 357 0 351 0 357 0 357 0 357 

$4 125 $ 4 . 4 6 9  $4832 $5 2~8 $5.627 $6061 $6520 $7.006 ST 521 $6.066 

$23.909 $26 565 $28.728 $30 561 $32.218 $33.795 $35.341 $36 886 $38.444 $40.025 
0430 0418 0412 0410 0410 0410 0410 0410 0410 0410 

$19 821 $21.927 $23660 $25 152 $26.515 $27.913 $29.086 $30.357 $31 63g $32.941 

4 0% 4 0% 4 0% 4 0"~ 4 0% 4 0% 4 0% 4 0% 4 0% 4 0% 
225% $87360 $90.854 $94.48g $98 269 $102.200 $106 267 $110 537 $114 960 SI19.550 $124.3A3 
450% 126.175 140.678 152.257 161 963 170679 1 7 8 9 7 0  187.110 195,258 203.474 211 810 

$6 $0 $6 $0 $3 $0 SO $0 $0 $0 

$23 253 $25 664 $27 601 $29 445 $31 075 $32.644 $34.194 $35 750 $37.326 $38 932 

$46.506 $51 328 $55 362 $59.890 $62.150 $65,208 $68 388 $71 500 $Z4,652 $77.864 

400 00% 400 00% 400 00% 400 00% 400 00% 400 00% 400 00% 400 00% 400 00% 400 00% 



Pr /ma ry  S tock  Insurance Company 

Cnsh Row  from 01=,era(lolls 

i l l  D~rl~ Premium Co l I ~  

121 Prera~Jm Ce(led 

13) N~ P r ~  C~1~  

(41 R~rLsgro~cO Co~lmLlllortl P~o 

fS) Intm~f & DN,oer, os 

t6) Rea~,ze<= Cmo~u¢ Gains 

t ~) C&o,tal RIIc~r.~l</ 

lel Ca~,ta, Co~r,o~¢~= 

191 ~ al Su="l~l=~ Notl~ 

1 I0) C~  ~corne 

(1 f) TOMI ColJecled 

112) Gross Losses P8'~ 

q13) L~s  R ~  nec~,veo 

1141 Net LOSSes Pa,o 

11¢-~ G~o~s LAE PSI'= 

r 161LAE Recover=Is R echoes 

(171 Net L~E Pa~d 

[ 161N Or,-~mlTI O~ ASlmS Put c~ss~ 

Ex~,~b~t 13 
Sheel  1 

Actual 
2001 2002 2903 2004 2905 290e 2907 2908 ~ 2010 2011 

$90 E~,?, $94600 $97064 91 O0 E,~,~ $I05 008 $I09 208 $113574 9118116 $19841  $~27 75~ $132869 

4981 5180 6426 6684 6652 7230 7518 7 8¢"0 6132 6458 8796 

69991 89420 906~  940~1 ~1 (~  101978 1C~ 05~ 110298 114709 119296 124073 

0 0 O O O 0 0 0 0 0 0 

9400 8344 9366 10165 10840 11443 12.010 125~5 13119 13680 14251 

1600 2066 23~6 2~18 2685 2834 2674 3.112 32~9 3388 3529 

0 0 O 0 0 0 0 0 0 0 0 

0 0 0 0 O 0 0 0 O 0 0 

0 0 0 0 0 O 0 0 0 0 0 

0 O 0 O 0 0 0 O 0 0 0 

Sc j6~ I  99¢~ 830 $102341 $1L'6 96 :$11~1  $116 259 $121 040 $12~ 97~ 5131.0~7 6136 3~5 $141 853 

~8  806 $40 358 $47 610 $53 360 S.~ (386 $61 983 ~ 395 $68 E.39 S71 831 679 063 S79 39: 

34~,l 3540 ,=~95 ,=526 aB38 51 ;  v 5410 56~5 3966 628 t  658E 

39402 ~e18  =3d15 48034 ~248  ~85~  ~ '  6~,~ 62944 ~6P~1 £ :d~  71 811 

10600 11027 114~  11849 12~.~ 12707 13169 13 ¢~2 141=.8 14692 1~,2~ 

0 60 167 254 3~a 400 ~ 507 ~ 607 655 

10603 10 cJ~? 11329 115~  119.~ 12307 12714 1314~ 13600 14065 14601 

0 0 0 0 0 0 0 0 0 0 

; lgl  Tc~a, u,'~eN, nlr, lO E Cent, e l  pine 17.993 16113 19461 2023~ 21 t ,~O 21091 22.76; 22676 24¢25 25609 25633 

1201F~le~BI Incorr e T~,J¢ P EgO 2133 2900 39¢.,3 4146 4~d3 4~4  4717 4~  5106 $329 6~  

( 2119tO¢ ~ nol,.ler D ~'¢le~'lOS P 6J,.1 0 6070 ?232 9153 10625 1171" 12614 1'3 d~,7 141~  14~4  15~1  

1~)  P~ , c~ {~  O l~ {~ l  Pa~ 0 O 0 0 0 0 0 O 0 0 0 

123) Pr,nCzpa, R eoayme~ 0 O O 0 0 0 0 0 0 0 C' 

124) In=~ell E ,qoe,~e 0 6 O O 0 0 0 6 0 0 0 

(25) To,if Paid $66 131 $75 468 ~85 390 $93967 $101 I1~ S107 2rd5 1112; '0/ 1118 0~.~ $1~  316 S126 646 1134109 

1261NOI C83P, from O~ arsllOnJ~ ~ 8.50 .~t~4 362 $16 951 513 000 $10 393 ~ ~ $8 243 S? 863 S? "5~ S 7 718 S;r 744 

NET CHAPdGE w CASH ~ ~ 91 394 $1 044 ~ $ '46 ~ ~ S~9  ~ ~674 

496 



Primary Stock Insurance Company 

Calculation N O I I . !  for Cash Flow from Operations 

I 11 = D l roc l  P r o m  ~,'~ C~,ea.d for aJl , n u  

12~ = P r e r n r ~  C o a e o  to,' a,] I r e s  

( 3 j -  I 1 ) -  (2 )  

4 j  j i ~ o ~  C ~ m l S  j ~  p ~  f ~  ml i l ,no$ 

( 7 )  , s ~ e  se~ Io  SO for el, 

18} ~m~e se t  to SO ~G, ~I years  

rg l  vok ,e  ~ zo ~ h=,. s,l ¢iWal 

t '10~ . ~ . e  se t  t o  150 tcr  a l l  ~ezrs 

i l i i  • 13 )  • 14 )  * iS /  - i 6 t  • i 7 ,  • 181 • 19 )  • ( I 01  

t 12) • G r i n s  L o s s ~  Pa,a  ~oe aJi unes  

1131 - LOSS R e c ~ r e s  ROC~IvBd for S" l ines  

(141 • (12)  - ( 1 3 l  

t151 = ~ s l  A ~  P a l a  for ul) , , r .~  * U L A E  P a d  for adl hnes  

( 161 • ~,LAF. R ecove~.es R ocor .  4~3 fcI a l l  I ,nes 

l l 7 } .  ,151 - , 16 ,  

t 19) u n a e n , , n l ~ g  E ~ o e ' ~  Pa .a  for oi l  L m  

12g} = 7 5 %  • F e d e r a l  Inccn~e T W  • p r O "  year F e(I,nrol i n ~ r n e  T ~  P a l a D i n  

121 ) 15 trbe to  El~u'rlum (3 Iv ,~ona If..sl SatsdiflOs f ~ r  ~1(I S,.it plUS O a y4~I o n  ~,Sk .OBSeO ~,Ial mLIII,DIB of 2 0 

1221 v ~ l ] ~  ~ t o  SO lot" SII yOg~S 

t251 = 114} o 117) . 1181 • ( l g  I • i ~ 0 ) .  i ~1 }  • i ~ l  • t 2 3 1 .  t241 

E x h l b l t  1 3  

S h e e l  2 

497 



GAAP Fm~c~rs O~IjpJ~ 

J~ 

@0 

Primary Stock Insurance Company ,~dllbl| 14 

GA,AP Income Sf.at~m 9n! 

(11 Nel Earned Prem~m 

(21 Nm It'cuffed LC~,SeS & LAE 

(31 Nm unclen, WTl,ng Eiq, e~ses 

(4) Unoe~vd~ulg Incorne 

(5~ Inves~menl IncOme 

(6~ OUle~ income 

i71 Po~yn~cler Dr~d~'l¢r!, InCurrea 

i8~ Pre-Tax Operatllg Income 

(9~ Federal rncot'~e Tax 
IlO) Net Incon~,e 

2001 2002 2003 2004 2005 2006 2007 2008 2000 3010 2011 

$82.385 $85680 $89108 $92671 SEG.370 $100234 $104244 $108.412  1;112.749 $117.259  $121952 

63 988 66.547 89 208 71.974 74 856 7 ? 850 80 963 84.200 87 571 c~1 014 94.719 

~8 401 ~ le ~ 3  ~ ~ 2248o ~ 24311 29.286 26296 

$704 $732 S686 $714 $741 $769 $801 $835 $867 $899 $937 

$11 000 $10410 SII 685 $12 683 S 13.~25 $14.277 $14 984 SI5677 S 16.~.:38 $1 ?.060 $17 780 

0 0 0 0 0 0 0 0 0 0 0 

0 Q O_ Q g _0 _0 0 O 0_ O 

$11 704 $ 1 1 . 1 4 2  $ 1 2 . 3 7 1  $13.397 SI4 268 S 15.046 $15785 516.512 $17 235 $17 g67 $18.717 

2926 3 1 o__! ~ 3 7.__~ ~ ~ T.._~7 ~ ,4 39__.99 4 oo___! ~ ~ 9215 
S8778 $8 04..,,,,_~11 $8.910 $9 66_,.__1 $10 ~89 $10853 $ I t 38,,~,_.66 Sll.911 512433 SI2r061 $13 502 

Calculmnon Nares" 

( 1 ) = sum ol net e~led prem,um for all Iin e4J of t~J ~"IeSS 

121 = sum ol net mculTed losses ~nd L.6E for" ~11.1~ of bu ,~n e~s 

r 3~ = sum (~ GAAP unoer,~'lt mg ex~en se~ for a8 [~leS of ousmess 

( 4 )  : ( I )  - ( 2 )  - ( 3 )  

[6) : set IO $0 tot the company 

(7) : set 1o ~0 lot the company 

(81 : ( 4 )  * 15 )  * ( 6 )  - ( 7 )  

(101 = 10) - 101 



GAAP Fm~oals  Outp~ i 

Primary Stock tnsurance Company 

S u m m a p / G ~ p  palance Sheet 

( | j Invested Assets 

(2) Ceded Loss & t..AE Resen~  

(3) ceded Un e.am ed Prlem zLim R e s e ~  

(4) 0018r ASSOaS 

(51 Tot,~I Asse~ 

16) C.COSS LOSS & LAE R es~'ves 

(Tt G¢~ s Unearned PremcJ m R e3et~s 

(8) Other L m~aem 

i9) TOtal L ~ l b l ~  

t 10) TOtad C.a~odal & Su~>~JS 

(11) TOt~ LmD~bes & SurpkJS 

CIIcuta~on Note~. 

I I ) E~llbzt 16. Line (1) 

(2l EJ~llbd 18 Line (2) * Line (3) 

(3) Ext, Dd 16 Line(41 

E Xhlbd 15 

2001 2002 2003 2004 2005 2008 2007 2008 2009 2010 2011 

$185216 $213090 $233.084 $281.282 $266 218 $279994 $293.292 $3~5.473 8319.754 $333230 $346.972 

26.t 34 29030 31 725 34.293 36 783 39,1~) 41.600 44 004 48 412 48,034 51 275 

3 000 3.120 3 245 3 375 3.510 3.650 3.796 3 947 4.105 4.269 4.4A0 

14.1(XJ 13770 14 347 14939 15 8~} 18 188 18 841 17524 18 235 10 cJT0 

$228 450 $259 010 $283 302 S303 869 $322 044 $339.020 S355 529 $311.948 $388 506 $405 303 $422 421 

$133 219 $155 205 8172.403 $188 850 $198 726, $209869 $220 570 $231.114 S241.670 $252 308 $263.085 

45.CO0 46.800 48 672 50 619 52.644 $4.750 56 939 59 216 61.584 64.047 66 609 

lsoo 2791 ~ 2o7o LPJ,Z 1592 L_~_~ 119o IOO5 ~ 586 

$179710 $204.7c~6 $223.458 $239239 $253.187 $266.211 $278893 $291.520 $304.259 $317161 $330280 

48 731 54214 59 844 64 630 68 857 72.809 76 635 80 428 84.241 88142 

$228 450 $259 Ol0 $283 302 $303.869 $322.044 $339.020 $355.529 $371.948 $388.506 S405 303 $422.421 

(4) - (PremlLz*rn Re~-nrablo * Rec, errabtes tT(Xn Reinsurers • ~ Assets( from E.dl~d 16 

i5) = ( I )  * (21 * 13) • (41 

(61Ex~d)Lt 16. Line (IQ) * Line (11) 

(7) E~lbd 16 Line(t2) 

(8) = [(10) * (11J ~ (12) + (13) * (14))from ~ d ~  t6 

(9 )  = (6 )  • ( 7 )  * ( 8 )  

( 1 0 )  = (51 - (8) 

( I  I )  - ( 9 )  * (10i 



Primary Stock Insurance Company Exhibit '16 

Sheet 1 
Actual 
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

D ~ i l e d  GAAP Balance She~ 

(I)  Inves~ients&Cssh $185.216 $313.090 $233.984 $251 262 $266.218 S279.994 $293.292 $306.473 $319.754 $333230 $346.972 

(2) Ceded Un~JCl Losses 26.t34 28.392 30 531 32 598 34 618 38.628 38.641 40 666 42 710 44.780 46.878 

(3) Ceded UnpaJd LAIE 0 638 1 194 1.695 2 145 2.562 2.959 3 338 3 702 4 054 4 397 

(4) Ceded Unea~ed Pre~zum Rese~es 3.000 3 120 3.246 3.375 3 510 3.650 3.796 3.947 4 105 4.269 4 440 

(5J P='emzum$ Recewable 7.5(0 6.500 6.760 7.030 7 310 7.602 7.907 8 222 8.552 8.89.4 9.249 

[6) Deleted A c q u ~ o n  Costs 6.600 6.942 7220 7.508 7809 8.121 8444 8783 9.136 9.500 9880 

(7) Reo~vat)fes from RmnSumrS 0 328 367 401 434 463 490 519 547 576 605 

(6J Other Assets 0 O 0 0 0 0 O 0 O 0 0 

(9) TotalAssets $228 450 $259.010 $283.302 $303.869 $322 044 $339.020 $355 529 $371 948 $388 506 $405.303 $422 421 

f J1 
O 

i I0) GrossUnpSIdlOSSes $105.701 $127.155 $143829 $157325 $168769 $179099 $188.908 $196480 $207.985 $217.497 $227.080 

t 111 Gross Unpaid LAE 27.518 28 050 28.574 29.225 29 957 30 770 31.662 32 634 33 685 34 811 36.005 

(12) G,'o~ Unearned Premmm Reserve 45.000 46.800 48 672 50 619 52 644 54.750 56.939 59.216 61 584 64 047 66 609 

(13) Pi'errllUm De6oet'lcy Reserve 

( 14} Expenses Payable 

(15) Balances Due Reinsurers 

(16) DJ~nde~ds Payaole 

( 16a} Pobcyholoe~s 

(16b) SIoclulocfers 

(17) Feoetal Income Taxes Payaole 

(17al C,JiTe~l 

(I 7D} Deferrea 

(18) Surplus Notes 

(19) Accrued fnlerest 

(20) Other LLabrlrb~,~ 

(21) Total Liabilities 

0 0 0 0 0 0 0 0 0 0 0 

1.000 1 030 ; 081 t.093 1 126 1.162 1.198 1 236 1 275 1.316 1.359 

500 1 560 1.622 1 687 1 754 1 824 1 898 1.973 2 053 2 135 2.220 

0 0 0 "  0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 O 0 

0 967 996 1.050 1.093 1.143 1 191 1.238 1.288 1.345 1.404 

0 (766) i I  296) (1.760) (2156) (2 537) (2 .9031  (3257) (3.611) (3.990) (4397) 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

$179.719 $204 796 S223 458 $239 239 $253 187 $266.211 $278 893 S291 520 $304.259 $317.161 $330 Z60 

f 22} CSDIMI 

(23) Unreahzeo Cap=tal Gains 

124) Retained Earnings 

(25) Total Capital & Surplus 

(28) Total Llabd~tJes & Surplus 

$,rp 000 ~0.000 $40 000 $,~0.(00 $40 000 ~0 000 $40 000 S'IO.O00 $40 O~ T~40.O00 ~0 000 

0 3.512 7.456 11.733 16 296 21.112 26.167 31 455 36 977 42 735 48.733 

8.73| 10.702 12 389 12.897 12.561 I 1.697 10 469 8 973 7 270 5 407 3.408 

$48.731 $54.214 $59.844 $64 630 $68.857 $72.809 $76.636 $60 428 $84 247 $88.142 $92.141 

$228 450 $259.010 $283 302 $303 869 $3221344 $339.020 S355 529 $371.948 ~388.506 $405.303 $422 421 



Primary Stock Insurance Company Exhlbdr 16 

S h e e t  2 

~J~ 

Calculation Notes for Detailed GAAP Balance Sheet 

(1) ShOV,~ al detail on Exhibit 1 I 

(4) 2001 value is input  subsequenl values = prior year vatue * (GWP - NWP + GEP - NEP) f(~ all lines 

(5) 2001 value is znput subsequenl values = prior yeaz value * DWP f ~  all lines - D,re~ Premzum Collected for aft hnes 

18) 2001 value is .nput. subseqt..enz values = p r ~  y e ~  value * [undeP.vnlJng expenses (sta~tJtoty) - underw~mlg expenses (GAAP) - rel,%ur ance octnmls~on (GAAP)} for all lines 

(7) 2001 value is =nput s,~bsequerll values = pnot year value ° ceded loss & LAE paid - ceded loss & LAE received 

(8) value Sel to $0 tot aft years 

(9) = ( I )  * (2) - (3) ° (4) • (5) • 18) * (7) • (8) 

(12) 2001 value z$ Lnput. subsequent values = pnor year value * GWP for all I~nes - GEP for aP ~nes 

( 14j 2001 value .s mpuL subsequent values = ~ yeaz" value * (agents' c o m m z s s ~ s  + other unoee.vntlng e x ~ s e s  + p r e ~ u m  taxes1 fo~ all Iznes - Ur~le i~nbng Expe~lses P'o~" 

(15) 2001 value is mpt~1, subsequent values = p ~ r  year value + (ceded .,,mtlert prerreum - wempJm ceded • reL,lsurance coctu'eassuDn - relx'lsurai'tce co~,11t~lO~ paid) for ali I~es 

(16). 116a). (16b) values sel Io $0 1~ all years 

(17a) 2001 valtm ~ ml~ l .  SubseQuent values = pro"  year value ° Federal Income Tax - Federal Inoome Tax Paid'  

(18) 2001 value ~ input, subsequent values : prior year value * Increase in Surplus N ~ e s -  - Pnnopa l  Resayment -  

(19) unpalo pnnopal  and imeresl as~.caated .,~lth ( i B) 

(20) value set to $0 for ag yems 

(21) = (10) * ( I  I) * 112) • (13) + (14) * (15) * (16a~ * (16el * (17a) * (17D) - ( 1 8 )  + ( 1 9 )  * i 2 0 )  

(22) 2001 value is mPuf. $ubseq~n t  values = prior yeax value * Cap,ml pazd i n "  

(24) = (25) - 122l - ( 2 3 )  

(2 ,5 )  = ( 0 )  - (21) 

(26) = (21) • (25) 

• ValUel$ Pl'om ~Jellbll 13 

- Value ¢s ttom F.xhiblt 8 



PHmary Stock Insurance Company ExhiD=t 17 

r, J i  

Chanaes in GAAP Net Worth 

(1) NeT b~corne 

~2) StorJ~holder Dz~oends ~curred 

(3) Ottler Surplus Adlustrrmnts 

(4) Change cn Retained Earnings 

(51 Capdal Con~out]ons 

(6) Chanqe ,n Unre.ahzed Capda] Gains 

(,'~ Change =n Net Worth 

Calculation Notes: 

( i )  = GAAP Net Inco~le 

(3) value sel to S0 foe aJI years 

( 4 )  = ( 1 )  - ( 2 )  • (31 

(5) value sel I0 60 for aJI years 

(7) = (4) • (51 • (6) 

ActUal 
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20 t l  

$6.778 $8.041 $8619 $96GI 10.289 St0 853 $11.386 $11611 $12 433 $12.961 $13.502 

0 6070 7.232 9.153 10.625 11.717 12.614 13407 14.136 14824 15.501 

0 0 0 0 0 0 0 0 0 0 0 

$8 778 $q 671 SI 667 S506 ($336) ($864) ($1.2261 ($1 496) (S1 703) (61.8631 ($1.999) 

0 0 0 0 0 0 0 0 0 0 0 

0 3 512 3 943 4 278 4.563 4 816 5.056 5.206 5 522 5.758 5.996 

$8.778 65 483 $5.630 $4 786 $4.227 $3 952 $3 827 $3.792 S3 819 S3 895 $3 969 



Primary Stock Insurance Company Exhtbd 18 
Sheet  I 

Workers Compensation 
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

I 
Statutory Underwriting Income for L / h e  of  Business 1 

J $30 199 (A) Net Eameo Premmm $27.640 $28642 $29.187 630979 $32218 $33507 $34847 $36241 $37690 

(B) Net Incurred Loss encl LAE 21.650 22516 23415 24354 25328 26.340 27393 28490 29626 30.815 

i(c, Total Undetwn~ng E~enses 5676 5903 6.139 6385 6640 6906 7182 ~ 7768 8079 
/ [ml Un~rwrlrJnglncome $ 21.._.4.4 $223 323:3 $2a0 $ 25.~00 $261 $27_.2 $291 $2~:3 $30:3 

Modeled Amounts 

(1) Dlrecl Wnnen Premium 
12) Direct Eamecl Pro. lure 
(3) Ceaeo Wnlten Premium 
(4j ceaea Earned Prem,um 
(5) Net  Written Pr~'mlum 
(8) Ne! Earned Premium 

(7) D,recl In~un~¢l Losses 
rE) Ce¢ma incu~ea Losses 
(9) Nel incuneo Losses 
(I0) Direct InCurma ~ E  
( 11 ) Coded ALAE 
(12) Net Incu~eo ~LAE 
( 131 Gross InCurred ULAE 
(t4) Net incurred LOSS & LAE 

16) Agents' Commies*one 
16) Other UnclerWntln 0 E~0enses 
171 Premium Tams 
18) Reinsurance Comm,ss,ons 
r19) TOtal Unaerwrlt;ng Expenses 

$31200 $32445 $33748 $35.096 $36.500 $37950 S39478 $41.Q57 $42699 $44406 
30600 31824 33097 34.421 35788 37230 38716 40268 41 B78 43.554 

3120 3.245 3375 3510 3.650 3796 3.948 4106 4.270 4441 
3060 3.182 3310 3442 3580 3723 3872 4027 4186 4365 

26050 29203 30371 31556 32960 34164 35530 36.951 38429 39.967 
27540 28642 29787 30679 32.215 33507 34847 36.241 37600 39199 

21420 22.277 23.185 24.096 25059 26061 27103 28188 29315 30.488 
3060 3162 3310 3.442 3580 3723 3.872 4627 4188 4.3.c5 

18380 19095 19858 20653 21479 22338 23231 24.161 25127 25133 
I 714 1782 1853 1.928 2005 2085 2188 2255 2345 2.439 

245 255 265 275 286 268 310 322 335 348 
1469 1527 1.588 1653 1719 1.787 1858 1.933 2010 2091 
1821 18~4 1969 2.048 2130 2215 2304 2396 2492 2561 

21.650 22516 23415 24354 25328 26340 27.393 28490 29.629 30.815 

3120 3245 3375 3510 3650 3.796 3948 4106 4270 4441 
1020 1685 1.752 1522 1.895 1971 2050 2132 2217 2.306 

936 973 1012 1053 1065 1.139 1.184 1232 1.261 1332 
0 0 0 0 0 0 0 0 0 0 

5,676 5,903 6r13g 6366 6640 6908 7.182 7,4~0 7,768 8,076 

$97.976 
662716 $66.999 $70848 674575 $79303 682058 685937 $99864 $93879 ? 9680 

17172 18.539 16570 21175 22486 23811 25156 26520 27.002 29303 

3060 3182 3310 3.442 3580 3723 3872 4027 4T65 4.356 
1.620 1685 I 752 1822 1895 I 671 2050 2132 2217 2308 

873 955 993 1033 1074 I 117 1162 1208 1256 1.307 
0 0 0 0 0 0 0 0 0 

51553 5,822 6,065 0,267 6,546 6,511 7,064 7367 7,601 , 

Modeled GAAP Amounts 

(20) Gross Reserves 

J 121) Ceood Reserves 

(22) Ager~ts" Commies,one 
t231 unaerv, nung FJ~enses 
(24) Premium Tax 
~25) ReJnsJrance COmmlSsLons 
(26/ Total Undenvrtf n R Expenses 
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Primary Stock Insurance Company Exh ,~  18  

Shee t  2 

Workers Compensation 

Calculation Notes Sza l ' u l o r y  Underwriting Income, Modeled Amounts, and Modeled GAAP Amounts 

(At  = (6~ (B( = (1~) IC)  = ¢19~ ~D~ = (A) - (B ) -  (C) 

11 ) = 2001 DWP • lann~al g row~  rais]  ' ~ "  ;uol, 

(2~ = (pnor year UEPR;  + (eame¢l% • DWPJ 

(3) = excess ceded %.  DWP 

(a) = excess ceaed % • DEP 

iT~ = (21 - 14( 

(7~ = GEP • expected loss rauo 

18) = L4) • cedea loss muo  

(01 = )7 )  - 18] 

(10) = 17) • Gross ALAE tO lOSS % 

[111  = [ (IB) * ~7) ] " ( 1 0 )  

(12 )=110)  -~111 

113l = ~7) • Gross ULAE to =OSS % 

( 1 4 /  = (g )  • ( 1 2 j  • 031  

(15~ = DWP • ~gents comm,ss ,on  % 

(10) = Amo.r~i  of £~d  under~nzzn 0 o (% of DEP • DEP)  " (% of DWP • DWP)  

(17) = DWP • Prem,,Jm ~ % 

(18) = Re=nsurance c~mm,ss,on % .  ,3) 

) 1 0 )  = 115 )  * (161  * 117 )  * (1B)  

(22) = Bus lnesseameo ln  lWyea r% • DWP .Agen t s ' commlss ,on%+  2001GAhP  Deferred CommLsslon m2002 
= Agen t . 'COmmiss ion  % • DEP motheryea~ 

i231 = (16) • [ I  - Deferreole %]  * (16) • BLxslness eame0  ,n l i t  year % • Deferrat~e % • 2001 GAAP Deferred UNV E~oense ,n 2002 
: q 16, • [ 1-Defernat~e %] * DeferrsDle % • [~ 16) • Business earned .n Is1 year % * ( 1 -BUS,heSS earned ,n 1st year %~ • pnor fr  116)J m other years 

(24) = Bus,ness eameo  in 1" yea, % • DWP •P rem.Jm TaK % - 2001 GAAP Deferrea PremLum Ta~ ,n 2002 
= Prem,um T~LI % • OEP J/~ omer  ).ears 

(25j  = (4) • RelnsumnC~ Comrnlss lon % 

(26J = (22) - (231 * ( 2 4 )  o (251 
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Primary Stuck Insurance Company  

Workers Compensat ion 

E x h , b a 1 8  

S h e e t 3  

2002 2003 2004 2008 2006 2007 2008 2006 2010 2 0 t l  

$39 668 

I Underwr~ing Cash Flow For LJnes o f  Bus~esa  

(A) Total Co~lected 826 510 $29 130 S30 298 $51 508 $32 768 S34 079 $35 442 $38.859 $38.333 

(B) Nel LOl l  and LAE Payments 18 114 19 017 20 911 21.945 ;2  924 23 892 24.901 25 039 27 010 

(C) Unde~lrd,ng ExPense PeLd 5668 5893 8128 6374 6.628 8894 7169 7457 7754 

tO) Cash Flow from Under.Rifle 6 $4.730 $3 620 63 257 63 18..~99 $3.218 83293 $3372 63 46..~3 63 56..~99 

M o d e l o d  Amounts  

;1) Gross Prem,um Collectz~ 
12) Premium Ceded 
~3~ Net Premium ColleC18a 
L 4) Reinsurance CommllsLOn8 
r$) ro~ll ColleCted 

L6) Gross Losses Pald 
[7) LOSS Reco,,erles RecnJ*,,ed 
{8) Net LOSS Paid 
[9) Gross ALAE Pa~a 
(10) ALAE Recoveries Recer~O 
[ 11 ) Net ALAE Paid 
(12) ULAE Paid 
(13) Net LOSS & L.AE Plymarll~l 

(14) Agents' Corniness,one 
115) Ot~er Underwnbng ¢:xpenSel 
(16) Premium T B ~  Paid 
(17) UnderwrltJnfl E~er l se  Paid 

$31 100 $32 344 $33 638 634.684 639 3B3 $37 838 $39.352 $40 625 $42 562 $44 269 
2.590 3 214 3.342 3 476 `3 615 `3 788 3.610 4 066 4 229 4 308 

28 610 29 1`30 30 206 31 508 32 ?68 34 079 35.442 36 859 38 333 39.868 
O O O 0 0 O O O O 0 

26 510 29.1`30 30.268 31 508 12 768 34 079 35 442 36 859 38 335 39.868 

15 990 17 834 16 277 20.405 21 42t 22.411 23.430 24 477 25 554 26 677 
1.880 I 962 2 143 2.254 2 413 2 540 2 870 2 806 2 947 3.095 

14.304 15842 17134 18121 1900B 16871 20760 21671 22607 23582 
1 279 1.427 1 542 1 633 1 714 1.703 I 974 1 958 2 044 2.134 

18 61 87 114 130 144 15.~ 167 180 194 
1 281 1.366 456 1 818 1.584 1 646 1 710 1.761 1.864 1 940 
2 546 2 400 2 322 2 306 2.332 2.372 2 422 2 477 2.556 2 609 

18.114 19 017 20 611 21 945 22 924 23 892 24 601 25.639 27.010 28.131 

`3.110 3235 3364 3499 3638 3784 3935 4095 4258 4427 
1 620 1 686 1.752 1 622 1.895 1 971 2 050 2.132 2.217 2 306 

936 973 1.012 1 953 1 095 1 156 1.184 1 232 1 281 1 332 
5,666 5r89`3 6,128 8,374 6,628 6,894 7,169 7~457 71754 8,065 

CalcuM~on Noles. 

(A)=(5)  (BJ a (13) (C)=(17)  (O) = (A) " (B ) -  (C) 

(1) = DWP • [1 - Monthly Premium ColleCt,On Lag 112} ° 2001 Direct Premium Unco.eCmd in 2002 
B OWP • (I - Montmy Premium ColleCtion Lag r 12) * pnor /ear DWP • MOnmly Prom,urn ColleCtion Lag I 12 m order years 

(2) = CedeO WP • (I - Monthly Cethn 9 Premium Lag ,' 12) * 2001 Ceded Unearned Premium ,n 2002 
= Ceded ',~P • {1 - Monbhly CeOm6 Premium Lag i 12) • peer year Ceoed'~'IP. Prem,um CorleCflOn Lag I 12 motneryea~ 

(3)  • {1) - (2) 

(4) a ReJnsumnc~ commlssmn % • (2) 

(S) * (3) • (4)  

( 8 ) = ( 6 )  - ( 7 )  

(11)  = (6)  - (10)  

(1'3) = (9) • (11) * (12) 

114) = Agents' commission from CaSh flow • ( I - Mon~ly Premium ColleCtion Lag I 12J ÷ 2001 Unpa,o Agents Comm,sslon in 2002 
. Agents' comm[ l l lon"  • ( I - Monthly premtum COdlecbon Lag, 12) - ;)nor year Agents commission" • Monthly' premium Co�ecbon Lag i 12 m other red, 

( I 5) = r ,~¢l  unaenNn0ng$ + (% Of DEP • DEP) * L% Of DWP • DWP I 

(16) = D W P .  Premium mA % 

(17) = (14) ~ (16} i (16~ 
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Financial Modeling Assumptions 

Workers Compensallon 

Modeling Assumptions for Current and Future Business 

Amounts as of 12t31/01 A.ssumpltons for Future BuSmoss 

Gross Uneameo Premium $15 000 Gross Wrlllen Premium in 2002 $31 200 
Net Uneameo Premium $13..500 Annual Growlrl Rate of BuS,rless 4 00% 
Ceoeo Unearneo Prem,,Jm 1 500 
Gross Premium UncoJlecled $2 500 Percent of Business Earned in I st Year SO 00% 
unpalo Agent s Cornm,ss,on 250 Prem, um Cocecbon Lag (,n months) 1 
Csoeo Premium Not Yet Rem,.eo 250 
Ceoeo P~O Losses Net Yet Coil 0 Expects¢l Loss Ral,o 70 00% 
Ceoeo P~O ALAE Net Yel Coil 0 Gross ALAE as a % of LOSS 8 00% 
Reinsurance Comm Net Yet Coil 0 GroSs ULAE as a % of LOSS 8 50% 
GAAP Defened Comm,ssion 1 500 
GAAP Deferreo U/W Expense 0 Agenls' Commlss+o;t as % of DWP +0 00% 
GAAP Defe.eo Premium Ta~ ,=05 Premldm Tax as % of DWP 3 O0% 
GAAP Deferrecl Reins Cornm,s$,Gn 0 olrter Underw,l,ng Expenses 

Fixed $0 
Variable (% of DEP) 3 00% 
V~nab=e 1% of DWP) 2 25% 
% DefenaDm 0 0O% 

Reinsurance (pet oct Excess) 
Pmcent of premium ceoeo 10 00% 
Lag ,n CeOing Premium tin months) 3 
Ceoed LOSS Rallo 100 00% 
Ceoed Loss Coilecbon Lag (,n monlrls) 1 

LOSS and LAE rese~es are cameo at norn, nal l un0,scounteal ~arue for Ostn SAP and GAAP 

' Reserve strengthening" edlustment$ are noi needea ulbrt~lle lOSs anO LAE amounts ao not ceter,orete 
improve over brne 

Exhibit 18 

Sheet 4 

506 



Financial Modeling Assumpfions 

Workers Compensaflon 

Pa~rnent Panems fGr LOSS ano 

Accldenl 

Year ÷ Gross Ce~eo 

0 21 00% 8 00% 
1 30 00% 18 00% 
2 14 00% 9 00% 
3 10 00% 9 75% 
4 4 00% 4 25% 
5 3 00% 3 25% 
6 2 00% 2 25=:* 
? 2 00% 2 50% 
8 1 78% 2 80% 
9 1 50% 2 50% 
10 1.50% 2 75% 
11 1 28% 2.50% 
12 ~ 00% 2 25% 
13 1 00% 2.50% 
14 0.75% 2.00% 
15 O 75% 2.25% 
16 0 50% 1 75% 
1 ? O 50% 2 0 0 %  

q 8 O 50% 2 25% 
19 0 25% 1 25% 
20 O 25% 1 50% 
21 O 25% 1 50% 
22 O 25% I 50% 
23 O 25% 1 5096 
24 O 25% I 50% 
25 O 25% ~.50% 
28 0 25% I 50% 
27 0 25% 1 50% 
29 O 25% 1 50% 
29 0 25% 1 50=:;. 
30 0 28% 1 50% 

Exhlb~ 18 

Sheet  5 

LOSS Paymenf and Discounting 

I,~1~'esl Rale for D~SCOdrle(:l TG~ Reserves 

IRS 

.25 00% 
33 00% 
16 00% 
12 00% 

4 00% 
2 00% 
1 50% 
0 75% 
0 75% • 
O 75% 
0 75% 
0 7596 
O 75=:6 
O 50% 
O 50% 
1 00% 

Ac~denl 
Year Rate 

1982 7 20% 
1983 7 20% 
1984 7 20% 
1985 7 20% 
1986 7 20% 
1987 7 20% 
1988 7 77% 
1989 9 16% 
1990 8 37% 
1991 700% 
1992 7 00% 
1993 7 00% 
1994 ? 00% 
1995 7.00% 
1999 7 00% 
1997 7 00% 
1998 7 00% 
1999 7 00% 
2000 7 00% 
2001 700% 
2002 7 00% 
2003 7 00% 
2004 7.00% 
2005 7 00% 
2006 7.00% 
2007 7 00% 
2008 7 00% 
2009 7 00% 
2010 700% 
2011 700% 

Total 100 00% 100 00% 100 00% 
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Exh,bd 18 

Financial Mooellng Assumpgons Sheet  6 

Workers Compensation 

Prior Years" InformaUon 

I Esemetea ~ U..ma,. L . . . . .  o L ~  ~ 1~31,01 I [ Pa 0 LOSS..d ~ E  ~ 12,31,01 ] 

ACoOenl Gross Ceded Net Gross Ceded N ~  Gross Ceded Net Gross Ceded Net 
Year LOSS LOSS L(~S ALAE ALAE ALAE ULAE Loss LOSS LOSS ALAE ALAE ALAE ULAE 

1982 8971 1.282 7.689 718 0 718 763 8740 1.089 7657 700 0 700 740 
1083 0 330 1.333 7.997 746 0 746 793 9 073 1.113 7 980 728 0 728 761 
1084 9 703 1.386 8.317 776 O 776 825 9 412 1 140 9 272 753 0 753 783 
1085 10 091 1.442 8.649 807 0 807 859 9.738 1.153 8 584 779 0 779 806 
1986 10 494 1.499 9 995 840 0 840 892 10.075 1.189 8 905 906 0 806 830 
1987 10 914 1.559 9.355 873 O 873 928 10.423 1.189 0 234 834 0 834 853 
1989 11.351 1.622 9 729 908 0 908 8~5 10.755 1.200 9 555 860 0 860 868 
1989 11.805 1.688 10 118 944 0 ~14 1 005 11 097 1.214 9 882 888 0 988 873 
1990 12.277 1.754 10 523 982 0 982 1.044 11.418 1.219 10 199 913 0 913 868 
1991 12.768 I 824 10944 I 021 0 
1992 13.279 I 897 11 382 1 062 0 
1993 13.810 1 979 11 837 1 105 0 
1994 14.362 2 052 12.311 1 149 0 
1995 14.937 2 134 12.803 1.195 O 
1996 15.534 2 210 13.315 1.243 0 
1997 16 158 2 308 13.848 1.292 0 
1998 16 802 2.400 14.402 I 344 0 
1969 17474 2496 14.078 1.398 0 
2000 18 173 2.595 15.577 1.454 0 
2001 18.900 2 700 16.200 1.512 0 

021 1.085 11.747 1.227 10 520 940 0 940 857 
082 1.129 12.051 I 228 10 822 964 0 c~54 835 
105 1.174 12.325 1 223 11.102 986 0 988 810 
149 1.221 12.603 1 221 11.382 1 008 0 1.008 769 
195 1.270 12.846 1 216 11.620 1 028 0 1.028 736 
243 1.320 13049 1 209 11.839 1.044 0 1.044 713 
202 1.373 |3 248 1 206 12.042 1.080 0 1.069 687 
344 1.428 13 274 1 176 12.097 1.082 0 1 062 657 
398 I 485 13 108 1.117 11.988 1.048 0 1048 624 
454 t 545 11 813 909 10 904 945 0 945 587 
512 1 607 3.969 216 3 753 318 0 318 546 

I LOSS and LAE Rese~es (~ 12t31/01 I 
Nm 

Ac~det~l G r ~ s  Ceaed N ¢  Gro~* Ceded Net Earned 
Year LOSS LOSS LOSS ALAE ALAE ALAE ULAE Premium 

1982 224 192 32 18 0 18 23 12.815 
1983 257 220 37 21 0 21 32 13.328 
1984 291 246 45 23 0 23 41 13.881 
1985 353 288 65 28 0 28 51 14.416 
1988 420 330 90 34 0 34 62 14.992 
1987 491 370 121 39 0 39 z4 15 592 
1988 598 422 174 48 0 48 96 16 216 
1989 708 472 230 57 0 57 130 18.864 
1990 859 535 324 69 0 89 177 17.539 
1991 1 021 597 424 82 0 82 229 18 240 
1992 1 228 669 560 98 0 98 293 18.970 
1993 1485 750 735 119 0 119 384 19729 
1994 1 759 831 928 141 0 141 452 20 518 
1995 2 091 918 1 174 187 0 107 533 21 358 
1998 2488  1010 1476 199 0 199 607 22182 
1997 2 908 1 102 1.806 233 0 233 687 23 080 
1998 3 528 1 224 2.304 282 0 282 771 24 003 
1999 4 369 1 370 2.989 349 0 349 881 24 963 
2000 8361 1 688 4.873 509 0 509 958 25 902 
2001 14.931 2.484 12447 1 194 0 1 194 1.060 27 009 

TO~I 40 367 15 728 30.640 3 709 0 3 709 7 503 
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Primary Stock Insurance Company Exhl0d 19 

Sheel 1 
Auto Liability 

2002 2003 2004 2009 2006 2007 2008 2009 2010 2011 

Statutory Unciarwrll ing I n c o m e  fo r  Line o f  Business 

(A) Ned Earned Premium 930600 $31.824 933097 934.421 $35798 $37230 

(6) Net Incurreo LOSS end LAE 22718 23.626 24571 29553 26.576 27639 

J(C) Total UnOerwnung Expenses 7.007 7.287 7578 7881 8.197 8,c24 

(]D) Underwnf]ng Income 987.~5 $91.~11 994.~8 $987 $1025 9106_,._Z7 

638719 $40269 $41.879 $433~ 93~32r'954 
29745 29896 31091 

9 89,,_,~6 0.22o ~ • 

s,  ,o__~8 9~.~92 $1 ~9..._~9 91 247j 

Modeled Amounts  

( I ) Direct Wn~en Premium 
(2) D:recl Earned Prom:urn 
(3) Cedeo Whiten Premium 
(4} Cedeo EBmQa Premium 
19) Net W n ~ n  Prem,um 
(8) Net £amed Premium 

(7) Direcl Incurred LosSes 
(0) Cedeo Incun'ed Losses 
(9) Net Incurred Losses 
(;0) D~recl Incurrea ALAE 
111 ~ Cedeo ALOE 
(12) Net Incurred ALAE 
(13) Gross Incurr~J ULAE 
(14) Net Incurr~l Lois & LAE 

(15) Agent~" Commissions 
(16) Other Unaer,vntJng E~penses 
(17) Premium Taxes 
(19) Reinsurance CoqylmlSSlOn$ 
(19) Total Undenvr~n 9 F-~nses 

$31200 $32449 933746 935096 $36.500 $37.960 939.478 $41097 $42700 $44408 
30600 31824 33097 34.421 35.708 37230 39719 40268 41.979 4355,1 

O 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

31200 32448 33.746 35096 36.500 37960 39479 41057 42.700 44408 
30600 31924 33.097 34421 35 ;'98 37230 38710 40.268 41870 43954 

19.584 20367 21192 22.026 22911 23827 24780 25772 26903 27.975 
O O 0 O O 0 0 0 0 O 

16584 20367 21.182 22029 22.911 23.827 247BO 25772 26803 27.879 
1665 1731 1000 1872 16'47 2029 2106 2191 2278 2399 

O 0 0 0 O 0 O 0 0 0 
I 695 1.731 I 000 1972 1.947 2025 2106 219/ 2278 2369 
1489 1928 1.599 1.652 1718 1797 1.859 1.933 2010 2.091 

22718 23.626 24.571 2~ 553 26.576 27639 29745 29996 31.091 32335 

4680 4.967 5062 5.264 5475 5694 5922 6.159 6405 6.681 
1703 1.771 1.941 1915 1992 2071 2.194 2.240 2330 2.423 

624 649 675 702 730 759 790 821 854 888 
0 0 0 0 O 0 0 0 0 O 

7T007 7287 7,578 7881 81197 9524 8966 9,220 9989 9972 , , , , , 

Modeled GAAP Amounts  ] 
{20) Gross Reserves S29 347 $33.470 $38 52 $42.146 $44.953 $47 388 $49.672 SS1.90dl S$4 083 $56 2 
~21) Ceded R . , , - ~ ,  o o ~ o o o o o o 

{22) Agents Commiss,onl 4 590 4 77,1 4 905 9 ~63 S 370 5 585 5 809 6 040 0 282 6.533 
(23) Unoe,~ntmg E~0enses 1 703 1.771 I 941 1.915 1.992 2 071 2 194 2 240 2.330 2.423 
(24) Premium Tax 012 630 662 689 719 745 774 805 838 871 [~29J Reinsurance t"omm,sslons 0 0 O 0 0 O 0 0 0 0 
(20) TotalUnderwrftlngF_.xpenses 6,905 7 10 7~468 7,766 0,079 8,401 8,;'36 9,005 9,450 9r927 
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Primary Stock Insurance Company Exh ib4  19 

Shee t  2 

Auto Uabnity 

Calcutaflon Notes Statutory Underwriting Income. Modeled Amounts. and Modeled GAAP Amounts 

(A~ = (6~ (B I=  (14) (C) = (19) (D) = (A) - (B ) -  (C) 

t I I = 2001 DWP • isnnu81 growth t e~ )  '~b .-co,, 

r2~ : (pTLor yesr UEPRI  * (earned% • Dv~'Pt 

(3) : recess cOOed %, • DWP 

/4) = e~cess ceooo % • DEP 

15 )~ (1 )  - ( 3 )  

16) = ~21 - (41 

t7) ; GEP • e~oc led  loss rabo 

(8) = (41 • cede~ loss ra~o 

( 9 )  = (7~ - ( 8 )  

( 1 0 )  : (Tj • Gross AIJ~E to loss % 

(11 )= [  f01~ (T j ]  • (10) 

( 12 )= (10 j - I 11 )  

(13) = {? ) • Gross ULAE to loss % 

(141 .  (91 - 1121 * ( 131  

( 1 5 )  : D~P • Agents" comm.ss ,on  % 

116; = FIx~d uqaery*ntmg$ * (% of DEP • DEP( • f% of DWP • DWP)  

(17) n DWP • P rem, .m  tax % 

(181 = Rc~nsurat~ce commlss lo~  % • (3) 

~19~ : (15) * (161 * (17) - [ 18) 

{22) = Business earned rn I "  fear  % • DWP .Agents"  comm,ss lon  % - 2001 GAAP Deferreo Comm,ss ,on  ;n 2O02 

= A0en ts ' comm,ss .on  % • DEP /notlleryeers 
(23) = (16) • 11 - Defer'raole %] • t16) • B~s,ness earneo .n 1st year % • Oererrable % - 2001 GAAP DeferTeo U,~N E~qoense ,n 2002 

= L16) • [1-Deferrab le  %]  * Dofemal~e % • [(16) • Business earned ,n 1111 year % * (1 -Bus iness  earneo m 181 year %) • pnor '# (16)] in other year5 
(241 = Business earned In 1 w year % • DV~'P .P remmm Tax % * 2001 GAAP De fe .ed  P rem.Jm TO~ it) 2002 

= Premium Tax % • DEP .n o~e r  rears  

(25J ~ (41 • Reinsurance Commiss ion  % 

i26) = (221 • (23) - [24) ~ (25) 
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Primary Stock Insurance Company  Exhd:)d 19 

Shee~ 3 
Auto  Liabi l i ty 

2002  2003 2004 2005 2006 2007  2008  2006 2010 2 0 t l  

Underwr i t ing  Cash F low For  Lines o f  Bus iness 

IA~ Total Co~lecte~ $32400 s32396 $33692 $35040 

tB) Net Loss an(] LAE Payments 12526 16503 19519 21.928 

tC) UnoerwwJng Ex~e~Ba Palo 7062 7279 7570 7873 

VO) Cash Flow from UnderterHJng $12 01,,~,~22 $8 S 1,,.,~.4 $0 60.._~3 $5239 

$38442 $37.899 $3941.5 $40001 $42632 S44996133? 
23770 25205 26460 27664 28913 30172 

e 10s ~ ~ 9.21o 

s4.4~4 s~ ~.~_~. $4 oe._...~s $4J_~E $4~4o s~.2o~ 

Modelocl Amoun ts  

l j  Gross Prem,um ColleCted 
2) Prem,~m Ced~I 
3) NOt Prom,urn ColleCted 
4) Re, nsurance COmmlsssof~s 
rS) Total Collecfod 

6) Gross Losses Pa,d 
7) LOSS Recover, as R a c a , ~  
8) Net LOSS PalO 
9) Gross ALAE PaLd 
10) aLAE Recovenes Received 
I 1) NO1ALAE Paid 
12) ULAE Pa,d 
r? 3) Net L o u  & LAE Paymen~l 

:14~ Agents' Comm,ss,ons 
:15) Other Ur~darwnbn 0 E)q0enses 
:16) Premium Taxes Paid 
i17) Undonvrlfln~ Expenae Paid 

Calculation Nofes" 

$32.400 $32.398 S33692 $35040 $36.442 $37.899 $39.a15 $40.991 $42632 $44537 
O 0 0 0 0 0 0 0 0 0 

32.400 32.3~6 33692 35040 36442 37.899 39415 40991 42.632 44.337 
O 0 0 0 O O O 0 0 0 

32400 32396 33.692 35040 36.442 37699 39.415 40.591 42652 44337 

10006 13.674 16.472 18684 20.352 21620 22730 23777 24.801 25.951 
0 O 0 0 0 0 0 0 0 0 

10006 13674 16472 IB 684 20352 21829 22730 23.777 24561 25951 
851 1.102 t 400 1558 1.730 1838 1032 2021 2.113 2206 

O . 0 0 0 0 0 0 0 0 0 
551 1162 1400 1500 1730 1.636 1052 2021 2113 2206 

1.660 1667 1647 1656 1688 1.738 1790 1866 1,639 2.015 
12526 16503 19510 21928 23 ??0 25205 26450 27654 28.013 30172 

4735 4.859 5054 5256 5466 5685 5913 0149 6.395 6050 
1703 * 1771 1841 1915 1092 2071 2154 2.240 2350 2423 

624 640 6?5 702 730 759 790 821 854 888 
71062 7r279 7,570 7,873 0,188 0,515 8,857 9r210 9,579 9 961 

tA) =15J (8~=113! (C)=( I ;~  (D)= {A) - (BI - (CI 

(1) = DWP • ( 1 - Monthly Prem,um COqleClJOn Lag i 12) + 2001 D,tect Premium UnCoIleclBd it12002 

= DWP • (1 - MOn~l t Premium Colrec~on Lag t 12) * pdor yeBr DWP • Monthly Premium Co]leCbon Lag ! 12 ,11 Other years 

(2) = Ceded WP • (1 - ~onthly Ceoln 0 Prem,um Lag 112) * 2001 Ceded Unoamed Prom,um m 2002 

~ C e O e o W P . t l  -Month lyCed lngPremmmLag112)*pnoryearCederd~,P .  PremlL, mCol leCbOnLag/12 mo~ertear~ 

(3}=(1)  -12) 

(4~ = Re,~suranca commlss,on % • (2J 

(5) = 13) * (4) 

(8 )  = (6J - (7) 

(I 1) D (9) - (10)  

(13) : {8~* (11) ÷ (12) 

(14) : Agents" comm,sslon from casr~ no~ • (1 - ~tonUlly Premium Cotlect,on Lag t 12) • 2001 U,~)alO Agents CommiSsion ip 2002 

= Agents' commlss,on* • ( 1 - MOnml~ Prern,um C~loC~on Lag r 12) * Prior year Agents commission" • Monthly PrSmlum Coll~bOn Lag i 12 ,n other yeal 

(15) : Fl~¢l ~Jnder~lmg$ * (% of DEP • DEP) * (% of DWP • DWP) 

(16) = DWP • Prem,.m Ls~ % 

(17) = (14) * (15) * i l 6 )  
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Financial Modeling Assumptions 

AUtO IJablllty 

Modeling AssumpUons for Currant and Future Business 

Amounls as Of 1.:)J31101 Assumohons for Future BuSiness 

GROSS Unearned Premium $15 O00 Gross Wrltlen Promhum in 2002 
Net Uneameo Premium $15.000 Annual Grow~ Rate Of Business 
Ceded Unosmet:l Premium 0 
Gross Premium Uncol l ee teo  $2 500 Percent of Business Famed In 1St Year 
Unpaid .~,gent's Corr, mlsslon 250 Premium Collection Lag (,n momhs) 
Ceded Prom,urn Net Yet Re~dleo 0 
Ceoeo P~d LosSes Net Yet COIl 0 Expecleo Loss Ratio 
Ceoeo Pabd ALAE Net Yet COd 0 Gro¢~ ALAE as O % of Loss 
Relrlsurance Comm Nor Yet COll. 0 Gross ULAE as 8 % of LOSS 
G/~P Doferrecl Commission 2.250 
GAAP Defeaeo UNV Expense 0 Agenls' Commlssron as % of DWP 
GAAP Deferre¢l Premium Tax 300 Premium Tax as % of DWP 
G,t*~P Deferred Retns CommL~s.~ 0 Omm' Unaen~nlJng Exi~enses 

Fixed 
Variable (% of DEP) 
Vsnaole [% of DWP) 

Reinsurance (per oc¢. Excess) 
P(~r.,(~l of Dremlum ¢4~eo 
Lag m Cooing Prenllum (m monfl~sl 
Cooed LOSS Rado 
COSed LOSs ColleCl,on Lag un months) 

LOSS and LAE reserves ere cer r led  Ell nominal (unoIscounted~ value for bOth SAP ano GAAP 

"Rosetve svengtne~,ng' aoluslme~ts ate nc~ neeOe~ alllmam Io~s and LAE amounts do i~ot Oetsnorets Ot 
impro~e over ~me 

Exhlbrt 19 

Sheet 4 

$31.200 
4 00% 

50 00% 
05 

64 00% 
8,50% 
7 50% 

1500% 
2 00% 

$0 
2 25% 
3 25% 

0 00% 
O 

#DIVI01 
1 

512 



Financial Modeling Assumptions 

Auto Liability 

Pan'merit Pattern8 for Loss ana LAE 

.e, cc=Oent 
Year * Gloss Ceded 

0 26 00% 22 00% 
1 20.00% 23 00% 
2 1800% 1600% 
3 1300% 1800% 
4 8 00% 10 00% 
8 4 00% 4.00% 
6 2 00% 3 00% 
7 1 00% 2 00% 
8 1.00% 1 00% 
9 1 00% 1 00% 

10 0 00% 0 00% 
11 0 00% 0 00% 
12 000% 000% 
13 000% 000% 
14 0 00% 0.00% 
15 0 00% 0.00% 
18 000% 0 0 0 %  
17 0 00% 0 00% 
I 0 0 00% 0 00% 
19 O 00% 0 00% 
20 0 00% 0 00% 
21 0.00% 0 00% 
22 0 00% 0 00% 
23 O 00% 0 00% 
24 O 00% 0 00% 
28 O 00% 0 00% 
26 0.00% O 00% 
27 0 00% 0.O0% 
28 0 00% 0 00% 
29 0 00% 0 00% 
30 0 00% 0 00% 

Exh ib i t  19 

Shee t  5 

Loss Payment end Discounting 

Inletesl Rate for Disc~JnlecI Tax Reserves 

IRS 

30 00% 
29 0O% 
19 00% 
10 00% 

6 00% 
3 00% 
1 00% 
1 00% 
0 50% 
0 50% 
0 00% 
0 00% 
0 00% 
0 00% 
0 00% 
0 00% 

Accldenl 
Year R~e 

1982 7 20% 
1083 7 20% 
1984 7 20% 
1985 7 20% 
1986 7 20% 
1987 7 20% 
1000 7 77% 
1900 8 18% 
1090 0 37% 
1991 7 00% 
1992 7 00% 
1993 7 00% 
1994 7 00% 
1995 7 00% 
I 9~6 7 00% 
1997 7 00% 
1098 7 00% 
1999 7.00% 
2000 7 00% 
2001 7 00% 
2002 7.00% 
2003 7.00% 
2004 7 00% 
2005 7 00% 
2008 7 00% 
2007 7 00% 
2008 7 00% 
2000 7 00% 
2010 7 00% 
2011 7 00% 

Totar 100 00% 190 00% 100 00% 
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Exhlbrt  19 

Financial Modeling Assumpgons Sheet G 

Auto LlabllJfy 

Prior Years" InformMlon 

J Esumazes o~ UITzmaEo LOSS and LAE (~ 12,'31,01 J I Pa,o LOSS and LAE (~ 12/31,01 J 

Accident Gross Ceded Net Gross Ceded Net Gross C:eaea Nel Gross Ceaed Net 
Year LOSS LOSS LOSS ALAE ALAE ALAE ULAE LOSS LOSS LOSS ALAE ALAE AI.AE ULAE 

1982 4 557 0 4 557 387 0 387 342 4.557 0 4 557 387 0 387 342 
1983 4 739 0 4 739 403 0 403 355 4.739 0 4 739 403 0 403 355 
1984 4 928 O 4 928 419 0 419 370 4 928 0 4 929 419 0 419 370 
1985 5 126 O 5.126 438 O 436 384 5 120 O 5 128 438 0 436 384 
1985 5 331 O 5.331 453 O 453 400 5 331 O 5 331 453 0 453 400 
1987 5.544 O 5.544 471 0 471 418 5 544 O 5.544 471 0 471 418 
1988 5.768 0 5.766 490 0 490 432 5 768 0 5 766 490 O 490 432 
1989 S.996 0 5 998 510 0 510 450 5.998 0 5 996 510 O 510 450 
1990 8 235 0 8 238 530 O 530 488 8.236 O 6 236 530 0 530 468 
1991 6 485 0 6 485 551 0 551 486 6.485 O 6 485 551 0 551 458 
1992 6 745 O 8 745 573 O 573 50~ 6.745 0 6 745 573 0 573 505 
1993 7015 O 7015 598 O 598 526 7015 0 7.015 596 0 596 500 
1994 7.295 0 7 295 620 O 620 547 7 222 0 7 222 614 0 014 492 
1995 7.587 O 7.587 645 O 645 569 7 435 O 7.435 832 0 632 484 
1996 7.891 O 7.891 671 O 671 592 7854 O 7.654 851 O 851 473 
1997 8.206 O 8.206 098 O 698 615 7 796 O 7 796 653 O 563 452 
1998 8.534 O 8.534 725 O 725 640 7 788 O 7 766 680 0 660 416 
1999 8 876 0 8 878 7~4 0 754 656 7.387 O 7 387 526 O 828 366 
2000 6 231 0 9 231 785 O 785 892 6.482 0 6 462 549 O 549 277 
2001 9 600 0 g 600 818 0 818 720 2 496 O 2 496 212 O 212 72 

.[ LOSS and LAE Reserves ~ 12131,01 J 
Net 

ACCK:Ient Gross Ceaed Net Gross Ceded Net Earneo 
Year LOSS L(~S LOSS ALAE ALAS ALAE ULAE Pr£~mlbm 

1982 0 0 0 0 0 0 0 7 120 
1983 0 0 O O 0 O 0 7 404 
1984 0 O O O 0 O 0 7 701 
1985 O O 0 0 0 O O 8 009 

O O 0 0 0 0 0 8 329 1986 
987 O 0 0 O 0 O 0 8 662 

1988 0 O 0 0 0 0 0 9.009 
1989 O 0 0 O O 0 0 9.369 
1990 0 0 O O 0 0 0 9.744 
1991 0 0 0 0 O 0 0 10 133 
1992 0 0 0 0 0 0 0 10.539 
1993 0 0 0 0 O 0 26 10.960 
1994 73 O 73 6 O 6 55 11.399 
1995 152 O 152 13 O 13 85 11 955 
1996 237 O 237 20 0 20 118 12 329 
169 "t 410 O 410 35 0 35 154 12 822 
1998 768 O "r68 65 0 65 224 13 335 
1699 1.509 0 1.509 128 0 128 300 13.868 
2000 2.789 O 2.769 235 O 235 415 14 423 
2001 7.104 O 7.104 804 O 604 649 15 00O 

TOt~ 13022 0 13022 1 107 0 1 107 2.026 
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Primary Stock Insurance Company Exhzba 20 

Sheet 1 
General Liability 

2002 2003 2004 2006 2006 2007 2008 2009 2010 2011 

Statutory Underwri t ing Income for  Line o f  Bus iness 

(AI Nel Earned Premium 527.540 $28642 $29787 $30979 532216 513507 $34946 $30.240 . $37690 

~B) Nel recurred Loss and LAE 22179 23066 23.958 24949 

[C) Total Unoen./nt,ng Expenses 6060 6302 6554 6817 
ID) Underwriting income 

$39 199 

257090946 26 7373864 28062 7668 28 7974185 , 30829335431.569 8625 

~$699) (3726) t $ 7 5 5 1  13787 )  ($8z81 (5850) ($884) 1$91,.,_._99) (5957J IS99~5) I 

Modeled Amounts  

I t D , r l~ l  WnUen Premium 
:2~ D~r~-'t Earned Premium 
3) Ceded "~ntten Premium 
:4) Ceded Earned P em urn 
15) Nef VVnrlen Pmmmm 
'8) Net Earned Premium 

:7) Direct inc.rmo Losses 
8) CodeQ InCurTOO LOSSES 
,8) Nel Incur~¢l LOSSES 
:10j D.recl InC~rreO ALAE 
I 1 ) Ceded ALAE 
12) Nel IncL, rred ALAE 

:13j Gross Incurl~cf ULAE 
'14/Net Incurrod LOll & LAE 

;15} Agents Commies,one 
16) Other Under*nbng ExPenses 

,17) Prem,um Tams 
;18) Reinsurance Commissions 
I19) Total Underen~ting EJ~ensel 

551.200 532448 $33.746 $35086 $56500 $37959 $39477 $41057 $42999 $44408 
30600 31624 33.097 34421 35798 37230 38718 40267 41978 43.554 

5120 3245 3375 3510 3650 3796 3.948 4.106 4270 4.441 
3060 3182 3310 3442 3580 3?23 3872 402;' 4.188 4355 

28.080 29203 30371 31588 32850 34.163 ]5.529 36951 38428 39967 
27.540 28642 28787 30679 32218 ]3.507 34848 36240 37.690 39199 

20808 21.640 22506 23.405 24343 2 = . 316 26328 27382 28.477 29617 
3.060 3~82 3310 3442 3580 3723 3872 4027 4168 4355 

17.748 16458 19196 19964 20763 21.5fl3 22456 " 23355 24289 25262 
3121 324(5 3376 3511 3651 3797 3 ~;4,9 4107 4272 4443 

459 4?7 497 516 537 ¢~58 581 604 628 653 
2662 2769 2879 2995 3114 3239 ]368 3503 3644 3790 
1.769 1839 1913 1.990 2.069 2152 2238 2327 2421 2517 

22179 23066 23988 249'=8 25946 25084 28.082 26185 39354 31.569 

3.900 4056 4218 4.36? 45,63 4745 4.935 6.132 5337 5.551 
1536 1597 1661 1728 1.797 1859 1943 2021 2.102 2186 

624 649 875 762 730 759 790 821 654 888 
0 0 0 0 O 0 0 0 0 0 

6060 6,302 5,654 6,817 7,090 7~373 7,669 7,974 9,293 8,625 

I Modeled 8 s01 

GAAP AmounLS 

120) Gross Reser'~s $66.142 $71933 $77.179 $82003 386613 991095 $95505 $89.902 $104346 

(25) Ratnsurance Commiss.ons 91088820 

t211 CSdOd Reserves 11856 13.188 14.423 15586 16704 17789 18848 19893 209]2 21.972 

(22) Agents Commlss,ons 3825 3978 4 1 3 7  4303 4475 4654 4840 5033 5.235 5444 
(23) Upoe.~nbng E~oenses 1536 1597 1.661 1728 1787 1889 1.943 2021 2.102 2186 
(24) Premium Tax 582 636 662 688 716 745 774 805 838 871 

0 0 0 O 0 0 0 0 0 
(28~ TotalUndery~rlflnBExpeneae 5~943 6,211 6,460 6719 6,888 7,268 7,557 7,859 81175 , 
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Primary Stock Insurance Company 

General Liability 

Calculation No tes  Statutory Underwriting Income, Modeled Amounts, and Modeled GAAP Amounf~ 

~AI : (5) (B) : ,,14) (Cj : (19) (Ol : (~) - (8) - (C) 

(I) : 2001 DWP • (annuBl growth m~),Mm - ~, 

(21. (prior year uEPR) - (eamecr% • DWP) 

(3) : excess ceo~ % • DWP 

(41 : e~ess  ceoed % • DEP 

15)= (1) - ( 3~  

(01 : ( 2 )  - ( 4 )  

('7) : GEP • e :Dec lm:  loss rat,o 

(8) : (4) • ceded loss rabo 

(9) : (7) - (8) 

(10) = ('7) • Gross ALAE Io ~oss % 

(11) : I (8) - ~7) ) • (10) 

(12) = 110) - (11) 

( 131 : (7) • GroSS UI-AE (0 lOSS % 

114) a (91 + (121  + (13) 

t 15 ) :  D¢¢P • AgenLs c¢,mm,ss,on % 

(16) = F ,md  ~nclei',vnong$ * (% of DEP • DEP) • (% of DWP • DWP)  

(17) : DVvP • P remium ~% 

( I BI u Reinsurance commiss i on  % • 131 
t19) : (1' :)  - (16) ° (17) • (18) 

(22) : BL, SlnOSS earned in 1" year % • DWP .Agen ts  commiss ion  % + 2001 GAAP Geferreo Commiss ion  ,n 2002 
= Agents commlsS ,On% • DEn  itlot~eryears 

123) = (16) • (1 - Deferrable %]  i (16) • Business eamea  in lS l  year % • Deferrable % * 2001 GAAP Defened UP~ ' E~oonse in 2002 
= (16j  • [ l -Oefen 'ab le  %]  - Deferratse % • [(16) • BuS,heSS eameo  in (st  year % • ( $-B.~SlneSS earned in lS! ~ttaar %) • •nor F (16)] In other years 

124) = B~smess earned ,n I "  year % • DWP .PnBmlum Tax % • 2001 GA.'~P Deferre,o I : ' remlum Tax ,n 2OO2 

= P rem,umTax% N DEn  In o~er yearS 
(251 u 14) ~ Ro insursnr~  Comm,ss lon  % 

(26) : 122) ° 123) * &241 * (251 

ExmbTt  20  

Sn~  2 
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Primary Stock Insurance Company Exh~bd 20 

Sheet  3 

General  Liabil i ty 
2002 2003 2004 2006 2006 2007 2008 2009 2010 2011 

I ( $28,510 $29 130 $30 298 $31 508 $32 768 $34 078 $35 441 536 859 

~B) Nm Loss and LAE Payments 

(C) Unoer~vnfJng EJq:eBnsa Pa~cl 

ID) Cash Flow tram U n d e ~ n g  

Underwr i t ing Cash F low For  Lines o f  Business I 

I :A) Total Collecteo $36 333 $39 868 

17.145 19 624 19 999 21 310 22 469 23.602 24 728 25.849 26 964 29 109 

L ~ ,  ~ ~ ~ 7075 ~ ~ ~ 8276 .eo~ 

Modeled Amounts  

[1) Gross Premium Collected 
[2) Premium Ceae0 
[3) Nel premium Col~ectoa 
[4) Ralnsumnr.o Commies,one 
(S) Total Cohecte<J 

(6) Gross LOSlmS Pa,d 
(7) LO~ Reco',enes Recm.,,eo 
{8) Net LOSS Pa,d 
(9) Gross ALAE Pa,o 
( I 0) ALAE Reeovenes Recerveo 
(11) Nel ALAE PalO 
(12) ULAE Pa,(I 
(13) Net L o l l  & LAE Payroln~ 

(14) Agents Commisslons 
[I 5) Other Unde~,a,~ng E~penses 
(16) premium TSJa~$ PalCl 
(17) UnderwHUn B Expense Paid 

$31 100 $32 344 $33 638 634 984 $38 383 $37 837 639 351 $40 925 $42 562 $44 265 
2.590 3 214 3 342 3 476 3 615 3 759 5.910 4 068 4 220 4.398 

28 510 29 130 30.298 31.508 32 768 34 078 35 441 36 859 38 333 30.868 
0 0 0 0 0 0 0 0 0 0 

28 5~0 29 130 30.296 31,508 52 768 34.078 35 441 36 859 38 333 39 969 

14 362 16.102 17 611 18 997 20.210 21 355 22.479 23.583 24 668 28.769 
I 854 2 205 2 383 2 554 2 714 2 970 3.025 3 180 3 334 3.481 

12.508 13899 15228 16443 17499 18485 19454 20405 21334 22279 
2.154 2415 2642 2850 3.031 3.203 3372 3.537 3700 3865 

42 106 167 220 270 31 I 352 391 427 461 
2112 2.309 2475 2630 2761 2992 3020 3146 3273 3.404 
2 525 2.416 2 298 2.237 2 212 2.225 2 254 2 299 2.357 2.427 

17 145 18 624 19.999 21.310 22 469 23 602 24 728 25 848 26 984 28 109 

3525 4043 4205 4373 4548 4.730 4919 5.116 532Q 5533 
1 536 1.597 I 661 1 728 1 797 I 866 1.943 2 021 2 102 2.106 

824 649 6"P5 702 730 759 790 821 854 988 
5~985 6289 6,541 6,803 7,075 7,358 7,652 7,959 8276 8r607 

Calculation Nora:  

(A) © (5) (B)=(13) (C)=t17)  (D ie  tAI - ( B ) -  (C~ 

(1) = DWP • (1 - Monlnly Premium CGtlectlon Lag I 12) * 2001 Direct Premium UncolleCtea m 2002 

= DWP • ~ 1 - Monthly Premium Co0ectlon Lag t 121 * pnor year D'e'4P, Mon~ly Premium Co0ecY, on Lag 112 motPeryear~ 

(2)= CeoeclWP • (I - Monthly Ceomg Premium Lag I 12) - 2001CeOed Unearned PPemium fn2002 

: Cedeo '~/P • (1 - MCl~Ully C(5.Cllfl 9 Premium Leg t 12I * Dpor y~ar Cedoo WP • Pl'emlum COllecIJon Lag t 12 m otheryears 

(31 = (1) - (21 

(4) - Re~nsuranca commLsslon % • {2 I 

(5) = (3) * (4) 

( 8 )  = (61 - ( 7 )  

(11)= (9) - I10) 

(13) " (8) o (I 1) - (12) 

t14) = AgentS" cocnm,ssLon from cash flow • (1 - Monmly Premmm COlleCtion L80 i 12) * 2001 Unpatd Agents Comrnlsslon fn 2002 

= Agents" commiss ion" ,  (1 - Nlonully Premium Collm:tlon Lag i 12) o Pnor pear Agents" Comm,ss,on" • Moilthly Premlum ColleCtion Lag ! 12 fn other years 

(15) - FlxeO ~,nder*en~ang$ * (% of DEP • DEPt - (% of OWP • DWPj 

(16) = DWP • PremLum tax % 

(171 = (14) * (15( • (18) 

517 



Financial Modeling Assumptions 

GenemlL~blllty 

Modeling Assumptions for Current and Future Business 

Amounts as of t2,'31,01 A.ssumped~s for Future BdS, nosS 

Gross Unearned Preen,urn $15 000 Gross Wnften Premium ,n 2002 
Net Unearned Prem,um $13 S00 Annual GrOWth Rate of Business 
Ceoeo Unearned Premium 1.500 
Gross Prem, um Unc~lected $2.500 Percent of Business Earned ,n I sl Year 
Unpa,d AGenTs Comrn,sSlOn 250 Premium Coilecbon Lag (,n monms) 
Cede(] Premium NOt YOt Remllled 250 
Ceded Pa,d Losses Not Yot Coil. 0 Expected LosS Rabo 
Ceded Pala ALAE Not Yot COIl 0 Gross ALAE as a % of LOSS 
Re,nsurance Cornm Not Yet Coil 0 Gross ULAE as a % of LOSS 
GAAP Deferred Comm,sslOn 1 8,"5 
GAAp Deferred U,W Expense 0 Agents CocnmJsslon as % Ot DWP 
GAAP Deferred Premium Ta~ 270 Premium Ta.I as % of DWP 
GAAP Deferred Reins Comm,ss,on 0 01n~ Underwnt,ng Exgenses 

FBeo 
Variable (% of DEP) 
vstkable {% ot DWP) 

Re,nsurance fper oct Excessj 
Pefosnl of premium ceoed 
Lag in Cl~ltrlg Pret111bm {in mOnths) 
Ceded LOSS Rallo 
Cedeo Loss ColleCbOn Lag (in monlhs) 

LOSS and LAE resen/es are carr,ed at nom,na~ (bna,scour~led~ value fo~ oolb ,SAP ana GAAP 

'Resen,e slrengmenlng" a01ustments ate not needed, ulhmeta loss and LAE amounts ao nol dot en(xale or 
Impro~'e over t,me 

Exhlb~ 20 
Sneer 4 

$31 200 
4 00% 

50 00% 
1 

68 00% 
15 00% 
8 50% 

12 50% 
2 00% 

$0 
4 00% 
1.00% 

10.00% 
3 

100 00% 
1 
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Financial Modeling AssumpUons 

General  UablliXy 

Payment Panems for LOSS and 

ACCident 
Year * Gross Ceaea 

0 15 00% I0 00% 
1 19.00% 14 00% 
2 17 00% 12 00% 
3 12.00% 1000% 
4 10 00% 9 00% 
5 6 00% 8 25% 
8 5 00% 8 25% 
7 4 00% 5 25% 
8 3 00% 4 50% 
9 2 00% 3 50% 
10 I 75% 3 50% 
11 I 50% 3 50% 
12 I 25% 3 50% 
13 1 00% 3 00% 
14 0 75% 2 50% 
15 0 50% 2 00% 
16 0 25% 1 25% 
17 0 0 0 %  000% 
18 0 00% 0 00% 
19 0 00% 0 00% 
20 0 00% 0 00% 
21 0 00% 0 00% 
22 0 00% 0 00% 
23 0 00% 0.00% 
24 0 00% 0.00% 
25 0 00% 0 00% 
26 0 00% 0 00% 
27 0 00% O 00% 
28 0 00% 0 00% 
29 0 00% 0 00% 
30 0 00% 0 00% 

EXhlDtt 20  

Shee t  5 

LOSS payment and OiscounUng 

Inlereal Rale for O,scountea TSX Reserves 

IRS 

17 00% 
21 00% 
19 00% 
11 00% 
9 00% 
5 70% 
4 00% 
3 50% 
2 50% 
2 00% 
1 75% 
1 50% 
1 00% 
0 50% 
0 50% 
0 00% 

Acoaenl 
Year Rate 

1982 7 20% 
1983 7 20% 
1984 7 20% 
1995 7 20% 
1988 7 20% 
1987 7 20% 
1988 7 77% 
1989 8 16% 
t990 8 37% 
1991 7 00% 
1992 700% 
1993 7 00% 
1994 ? 00% 
1995 7 00% 
1998 7 00% 
1907 7 00% 
1999 7 00% 
1999 7 00% 
2000 7 00% 
2001 7 00% 
2002 7 00% 
2003 7.00% 
2004 7.00% 
2005 7 00% 
2006 7 00* * 
200? 7 00% 
2008 7 00% 
2009 7 00% 
2010 7 00% 
2011 7 00% 

Tolat 10000% 10000% 999'5% 
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Financial Modeling Assumptions 

General Llablllfy 

[ EsUrnates of Ulbrnate LOSS aria LAE ~ 12131,01 J J 

Acc~0enl Gross Cedeo Net Gross CeOed Nel 
Year LOSS LOSS LOSS ALAE ALAE ALAE ULAE 

1982 8 "114 1 282 7.433 1 30;' 0 1 307 741 
1983 9.063 1 333 7.730 1.359 0 1 359 770 
1964 9.426 1 389 8 039 1 414 0 1 414 901 
1988 9.803 1 442 8 361 1 470 0 I 470 933 
1986 10.195 1 49~ 8 695 1 529 0 1 829 867 
1987 10 802 1.589 9 043 1 590 0 1.590 901 
1988 11 027 1.622 9 405 1 854 0 1.654 937 
1989 11 468 1.688 8.781 1.720 0 1 720 975 
1990 11.926 1.754 10.172 1 799 O 1 789 014 
1991 12403 1 8~.4 105~9 1.801 0 1 861 054 
19.~2 12 899 1 897 11 003 1.935 0 1 935 099 
1993 13 418 1 973 11 443 2 012 O 2 012 140 
1994 13 952 2 052 11.900 2 093 O 2.093 188 
1995 14 510 2 134 12 378 2 177 0 2.177 233 
1996 15091 2219 12.871 2284 O 2.264 
1997 18 694 2 308 13 386 2 354 
1998 16 322 2 400 13 922 2 448 
I999 16 978 2 496 14 479 2 546 
2000 17 854 2 596 15 058 2 649 
2001 18 360 2.700 15.660 2 754 

Exhzb, t20  

S h e e t 6  

Prior Years" Information 

Pa,o LOSS and LAE ,~ 12131101 J 

Gross CeaeO Nm Gross Ceclea Net 
LOSS LOSS LOSS ALAE ALAE ALAE ULAE 

8.714 282 7 433 307 0 1 307 733 
8 063 333 7 730 1.359 O I 389 788 
9 426 386 8 039 I 414 O 1.414 777 
9 803 442 8 361 1 470 O 1 470 900 

10 198 499 8 895 1 529 0 1.529 823 
10.578 540 g 036 1 588 0 1.886 84? 
10.644 889 9 375 1642 0 1 642 882 
11.296 1.889 9 708 1 094 0 1 664 897 
11.628 1.600 10 028 1.744 6 1 744 912 
11.939 1 601 ~0 338 1 791 0 1 791 928 
12 222 1 598 10624 1.833 0 I 853 643 
12 476 1593 10 893 1.971 O 1.871 958 
12 690 1 585 11 111 1 904 0 1.904 949 
12 769 1.582 11 217 1 915 0 1.915 925 

283 12.678 I 498 11 178 1 901 O 1 901 898 
0 2 354 1.334 12 398 1.414 10.955 1 860 O 1 860 800 
0 2 448 1.387 11 915 1.320 I0.598 1 787 O ; 787 664 
0 2546 1.443 10 664 1 148 g 548 1 604 0 1.604 577 
0 2649 1 501 9.003 935 8 069 1 351 0 1.351 450 
0 2 754 1.561 2.754 270 2 484 413 0 413 312 

Net 
ACc,~enz Gross Ceded N ~  Gross Ceoeo Net Earned 

Year LOSS LOSS L(~S ALAE ALAE ALAE ULAE Premium 

1982 0 0 O 0 0 0 7 12 815 
1983 0 O 0 0 C 0 15 13.328 
1984 0 O O 0 O 0 24 13.881 
1985 0 0 0 0 0 0 33 14.416 
1988 O 0 0 6 O 0 43 14 992 
1987 27 19 7 4 0 4 54 15 592 
1988 83 53 30 12 0 12 75 16 216 
1989 172 97 75 26 0 26 88 18 864 
1990 298 183 145 45 0 45 101 17 539 
1991 465 223 242 70 O 70 127 18 240 
1992 677 299 378 102 0 102 154 18 970 
1993 939 390 559 141 O 141 182 19 729 
1994 1 256 487 789 188 O 188 237 20.518 
1995 1 741 581 1.180 281 O 261 308 21.338 
1996 2.414 721 1693 362 O 362 385 22.192 
1997 3 296 894 2 401 494 O 494 534 23 080 
1998 4 407 1 080 3 327 fi81 0 661 8~4 24 003 
1999 6 281 1 348 4 933 942 O 942 860 24 963 
2000 8 650 1 682 8 989 1 298 O 1.298 1 080 25 962 
2001 15606 2430 13176 2341 O 2.341 1248 27000 

Total 48 312 10 408 35 904 8.947 
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Pr~ma~y S~ock In lUnm¢! Company 

Valuation Ew~mam as of December 31. 2001 Surplus ~o RBC Ratio of 2 5 

I 
*s ~o I j  EkmMd S~elUT~f~ Saxt~um O I ~J'~ I • I 

n . O p K ~  ,3mSO¢ ~ 12,31'01 ~BC NV.~ 

E '~.=l i  21 
S h N I  

A~onno~ng ~ n d  S * b c o n g  5 ~ r ~  

61 s~* .  ~ . sc  R~  

s ~ ,s  S ~ s ~ s ~17~o s 741 .~  J r~ :~ l  I J )~o  I H too  ~ ~ O l S  I S )  H 3  | . 0 1 5  

~ I ~ G  2312~ 2~8%' 2 1 1 1 1 3  ~ ) l s a  ~ 1 ~  32|8O ~ . o  MOO, 3 , ; 6 3  ] S i l ~  

zso o',,. a~o c ~  z~o o ~  ~.,o o,,, ~so ~ lso 0% :~o o'4 1".o o ~  ~ o',, ~ o-,, :60 O',. 

20~ 11~ 111 111 211 2 t |  21e ~17 21~ 217 *..T6 

E ~  ~ C u u ~  i n c o m e  

110,"4 12701 q~9S8 14916 i5852 166'~2 7 102~5 ?1005 I ~ , 1  

H u m J l  R m ' l  @ SU'~I, 

: .  i b * ¢ ' ~  I.~¢1. n . .  

f .~pKI~ A~nu.i P W p I ~  Gi~'O*m Ra~e or :~ ~" I 

L~gYI P / , r  ~ r l l  ~ ' ~  F I ~  

. . . . . . . . . .  ~ . . . .  : 7 .  . . . . . . . . . .  "11 ' 1 . . . . . .  

i ? f f ? l l  4 ~ 9  s o s l  ~ 1 9  602T ~.UdO s [ o l  SlOO 46o l  I 2 T !  369~ a l O ~  ~46"~6 ???[,4) 

~ o ~  imon  o f  E Y A  M g m o 0  

117i T m r  C~)ncoJ~ ~ I ~ : ~  

01~.,',J1, zoo. ~.*.-,g zoo 7 v ~ ,  y ~ t  AS 

~671 ;  110r ,  , 2 ~ 1  I ) * ~  l .  ole .~es~ , H ~  , . ~ 1  I | z > s  , i o o i  , t T e ,  

e i T o  e 8 .2  63;* s i 18  5 s ~  so?5 . s15  .22,? )e~e 3.05 "~6.9  ~? l s e  6o807 

sa?o  ~ 7 4  ~lOS 4~17 l~zo  1116 ;o?o zse~ ~2.6 10~3 3 e ~ :  ,1020 P~2 n21 

sa3 1 7 ~  ~555 3 ~ 1  i1~? 41=0 50~4 5 0 ~  6107 

tT Tg~ 
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Primary Stock Insurance Company 

Calculation Notes for  Valuation Estimates as of  December 3f, 2001 

E~,car 21 
Sham 2 

t I I f rom P r lma~  Stock Insurance Company 's  12/31,01 booked Dais nee sheet 

(2 / se lec ted  stortm 0 surplus for tut~re ,ncome projecbons based on b~e s~e~ad 250 0% surplus to ind,Ca~¢l RBC rat io 

( 3 )=11 )  - ~2) 

(4~ se lec t l~  surplus based on ~e  setoc1ed 250 0% surplus I(3 ,nP,CA~tS~ RBC rat,O 

(51 calculetod RBC a l  the Compan~ Acbon Level - aaSed on E~l lpd 12 for 2002 and s~Dseq~en! 

16) sefecuon of 250 0% s~rplus to RBC rauo for oemrmln ,ng  nXlu,mO surplus 8!  each y~lar and 

17) ¢umulaI jve ,ncmase  In {41 f rom s to~ng  surplus (4) - (2) 

~aJ NPW for a~i I ,nes - 14( 

(SJ nel  lOSS and LAE reserves for all l ines * 141 

(10) f rom E ~l,pl l  8. l ine ( 11 ) 

11 j is selected hurdle ram of I 5 0% 1~se(] for dateml ln lng Coal of Capital in ~'¢A method and me presen! m lue  of fulure esm,ngs  and ta lus added 

(12) : 1 000 al 12/31,01 for fut)Jre years : 11 0 ~ 15 0%) raised to (2001 - year) e~nen l  

( ; 3 ) :  [10~ 

,13p~l : i 13) • (12) for each year Total 01 to '11 is b~e tomJ of me  esumates  o f  pear TOtoJ '12 t o -  = {13]7o,1 • (1 * Growt~ Rate) - tHuroto Rate - Growth Rate) • ( 12).,o11 

All Years = Tolal "01 to '11 • Total 12 t o -  

(14) annual c~ange m (4) 

i 14D~) = (14) • 112) for each year TOtal 01 to 11 I$ f i le tOtal of the esumates by pear Total 12 t o -  = (4)~1, • Growth Rata - (H~r~to Rate - Grow'm Raze~ • (12)2o,q. 

AJI Years = Total "01 to 11 * To te  '12 t o -  

( 15 )= (13 ) - ( 14 )  

(15p~) = (13p¥) - (14pvl 

(161 : (21 

~17) = (10 )  

(17p~) = ( I ? )  • ¢ 12) for each year Total 01 to "11 is me  total of the es~matos Dy year  TOlal 12 to - = {17);0H = (1 • Growth Rate) * (Humle Rate - Grow'm Re(a) • 112)2Cl1 

All Year= = Total 01 to '1 I - Total 12 t o -  

( 18 )  = (19 )  * 120) 

(1Spy) = (19pv) • (20[ov~ 

(19J = (2) = (11) 

(19pv) : (101 • (12) for each ~ear Total 01 to "11 IS me total of the esumates  b f  year, Total 12 to - : ~ 16~ • ( 121~o1,. 

All Years = Total 01 t o ' t  I * Total 12 Lo -  

I20)  = (7)~; .  ~ • 11 I )  

(20p•)  = 12O} " (12) for each yea~. Tots, '01 to 11,8 me  ~Otal of Ihe eshma~ss by year Total "12 to - -  = [ ( 4~1  , u hurOle Rats - (Hur~to Rate - GrowlJl Rate) - (18l  ] • (12)~o1, 

~JI Years = Total '01 to 11 * Total "12 t o -  

(21) = (17) - 418) 

(21pvt = t 17pv) - ( 18p~ 

~22) = (16) • (2 I pv )~  , ~  
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primal), SIOCA Inaurance Company 

VMua~on Estimates a s  of  December 31, 2001 Using B a s e  L o s s  R n f / o s  * 2 %  

E ~ b h m g  Sm~ng S ~  

E ~ , ~ I  2 t  
S ~  3 

M o ~ ' o ~ n g  encf 54mc :~n~ S m p ~  

m ~ t . m =  I ,  i~ tc  R , ~  

I 41.131 S lT3J8 J ~ 1 ~  S ~ ? ~  S ~d'~8 I ~ ] 4 ]  S aTS?~ I 7 0 ~ 0  $ ? ' 1 ~  I ~7470 S a0871 

2 1 ~ 1  2 3 8 ~  ~ 3 ~  20&80 ~ 3 7 k  32111 3 3 7 ~  3 ~ 4 N  37~14 ] nT iS  4 0 4 ~  

154 1TO 213 2?4 2?4 ~?4 I ? 3  l l 3  212 212 271 

E~m~m~cl Fu~crm lncom~ Du.n u 

IG, T o ~ l C = ~  r ~  ~ gO06 i~ (~92 11864 126.2 131~4 ~ 1.404 ~ S l ; ,  1 ~ 4 3  16 S4[* I I ~ |  

HWT)~ Rife (} 12.'3 I r  

i~f ~ ~ ~ lc~  ~ lb~ l~ l  i 0~  0~?0 07~  065a o s ~  049? 043~ 0 1 ~  0~27 o l ~  0~47 

[ x p ~ ¢ ~ l ~  A n n  u a / P e r i l  ~ W  G r G w m  R m  ~ ~ 0 ~  t 

i ) i T ~  Conlpan~ h ~  I r , ~  

14l n ~ n ~  c ~ L m  Q , ~  C o ~  5 = S '  s ~ / ,  , ~ e ~  I=a~ 5~s~ s s ~  128~ 1 2 ~  3 1 ~  3 ' 0 '  

2 m  ~ 2  413~ 4931 5180 SO~ 478S . 4 ~  4104 3 7 ~  3a25 4 ~ o  3OS~ ?e357 

App6c ~ i o n  ~ EVA M , r o o d  

4~ 131 

~ u l  " l e ~  l o s s  : , los  ?.~.2 e T ~  6z~7 5 ~ 8  s , , e  , , o ,  4 ~  ~ 7 8 1  3 ) " 3  'aO *'~." 

S4IS I ~  e 1~5 3 e l i  ~ le2  2732 23?6 2 ~  I l U  1 ~  31717 10414 421~1 
781) t~T2 2 ~ 1  2 ~  ]311  311~ 4 ~  4 ~  s=01 

; ~ s  ~ 1~1o 161~ 2 & ~  2 2 ~  ~ 1  l a ' 8  I t ~  I ~ )  13~4 23a le  ,040T 34 ~Z~6 
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Pr;marv Stock Insurance Companv 

Calculation Notes for Valuation Estimates as of December31, 2001 

Shoe1 

( 1 ) f rom Pr imary S [ (~k  Insurance Company 's  12'31/01 boo~eo balance sheet 

(21 setacleo starbng surplus tar fuhJro raceme prolecbons Passe on the sefocTea 200 0% surplus fo md,caleo RBC reflO 

(3 )= ( I )  - ( 2 )  

(4) SeleCtee Suf'muS rased  on the selected 200 0% surplus to ind ,Cdl tad  RBC rat,o 

(5~ CalCdStea RBC at me  Compan  t Act ion Le,~l  - baseo on EJOIIt:-t 12 for 2002 ene subseQt,ent 

(6,  select,on of 200 0% surplus tO R0C rauo for de te~ lnmg  mqu,rea surplus at each year end 

17) cumblaPve increase in (4) f rom s ta i n  0 Surplus (4) - (21 

t0) NPW for ail l ines * (4) 

(9) net loss and LAE resenms for all l ines ° (4) 

I10) f rom Ed l , p l l 8  hn8 (11 )  

111 ) i$ Selectee h~rale rate of 15 0% used for detan'n,nlng Cos1 of C apdal m EVA  me.hod and me prosenl vahue of tu~ure earnings and Value aodea 

(12) = 1 000 at 12~J1/01: for future years : (1 0 * 15 0%l raised to (2001 - yeat~ el(panenl 

113~ = (10) 

( 13pV] = ( ~ 3) • ( t 2 )  for each yea r  Total '01 be 11 is me  tOtal of the es~matas Py year  Tom1 12 to - = ( 13 ~o,, • ( I • Growth Rats)  - (I-t urdta Rate - Growth Ram)  • ( 12h, o,, 

All Years = Total "01 It) '11 - TOtal '12 tO-- 

~14) annual change ,n ~4) 

{ 14p-/) = t 14) • (12) for each year: Total 01 to '11 is the [Oral of me  estlrhates by year;. TOtal "12 tO - = (4).~,, • Grow~l  Rate - (Hurdle Rele - Gn~ ,~  Rate) • ( 12)?o,t 

NJ Years = Total "01 to 11 * Total 12 tO-- 

~15 )= (13 ) - (T4 )  

(15pv) = (13pvl - L14pV) 

(16) = {2) 

( 17 ) : ( 10 )  

( 171)', ) = ( 17 ) • ( 121 for each year Total 01 t o '  11 is tha 1oral of me  esumatas  by year T oral '12 II0 - = ( 1 ? F.O,, • ( 1 • G r o,*,~h Rata1 - IHum le  R eta - Gro* ' th  Rate~ • ~ 12 ~ ,1  

Al l  Years = Tom1 01 to "t  I * TotJ31 12 I o -  

(18) = L19) * (20) 

( 1Bp~'t = t 19pv) * (20pv) 

(19) = (~) • t11) 

(19¢)v) = ( 101 • (12) for cact i  year. Total 01 ta "11 is me total of the eslJmatos by year Total "12 t o -  = ~16) • ~12)~,,  

Al l  Years = Total 01 I0  '1 t - Total '12 t o -  

;20) = { 7 )~  ~ l  • (11) 

t20pv) = (20) • ~ 12) for each year  Total "01 Io  11 Is me  tOtal of me es~lrna~s Oy year  "total 12 t o -  = [ (4)..o,, • HurOta Rata - (Hurota R'ata - Growlh Rate) - (16) ] • (12)~o,, 

AJl Years = Total "01 to 11 * Total "12 to - 

(21) = (17) - t 10)  

(21Dr I ~ !17pv) - (18pvl 

(22) = 116) ~ (21p~),= , , ~  
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Pr /ma ry  S tock  Insurance Company 

Valual~on Es~mates as Of December 31, 200t Using Base  Loss  Radios .2% 

I~1 Es~a~hNnO SUrmg Surplus 

Monm0* l ng  w~cf SoMe  L, ng  S urp~u~ s .  c~ t~.,~ i or  
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Primary Stock Insurance Coml~anv 

Calculation Notes for Valuation Estimates as of December 31, 2001 

E~ t21  
Sheel 8 

( I f  f rom Pnmaw STOCk InlurancA~ Company 's  12/31/01 Peeked DalanCe shet l l  

(2) selected s~n ,ng  surplus for f~l~re *ncome PCOleC~ons based on the selec/ed 200 0% surplus to Indicated RBC ra~o 

(31 = (1) - t2) 

(4) seeectao surprus baaed on me selectee 200 0% surplus to IndlcaTea RBC robe 

(5) calculated RBC el me Compapy A~bon ke~  - baseo on EX~ID11 12 for 2002 ace $tJt:<~edusnt 

(6) se, ecbon of 200 0% surplus to RBC rabo for ( :e tarm,nmg requlreO surplus at each year end 

(? l  CumUlat l~  increase in ,',4) f rom start ing surplus. (4) - (2) 

(8) NPW for all l ines ° (4) 

(9) net lOSs ano LAE reseeaes for all I,nes - (4) 

(10) f rom E~ ,b . t  8 hne (11) 

( 111 is selecta~ hurdle rata of 15 0% used lo t  ae lern l lmn 0 Coal of C aD,tal .n EVA method and me present ",~luO of future earnings and value eddea 

(12) = 1 000 ol 12/31/01 for future fears  = (1 0 o 15 0%) raised to (2001 - year) a~Donent 

(131= (10 )  

(13pvl = 1131 • (121 for eac~ year Total 01 to 11 ,s ~e  total of lhe asumabas by f ea r  Total "12 t o -  = 113)10. • (1 + Growlh Rata) - tHut¢ll8 Rate - Growth Rate;  • (12~70,1 

AJI Years ; Total "01 to '11 * Total "12 to - -  

(14) annual Change m t4) 

(14pv) = (14) • (12) for each fear.  Total '01 fo '11 ,S ~e  total of the esbma ta l  by year  TOtal "12 to - = (4) 0 , , .  GrowlJ~ Rate * (H~rOle Rate - Growl~ Ra ta ) .  ( 12)01h 

AJl Veers = Total 01 TO'I 1 • Total 12 t o "  

(15) = ( 13 ) - ( 14J  

(15p~,) = (13p',,) - t14pv) 

t 16) = t2p 

(17) = 1101 

( l?pv )  = (171 • (121 for each fear.  Total 01 Io  I 1 IS me  tOtal of the esametes  Dy year, Total 12 m-  - ( 17~o, 1 • t 1 ÷ G ,owm Rate) - (Hun~le Rate - G row~  Rate) • (12 )~ , ,  

AJI Years = Total 01 ta "11 * Total 1210 -  

(18) = ( 19J *  (2Q) 

(18Dr1 = ( IPpv)  ° (20pvI 

( 19 )= (2 )  • t11) 

(19Dr) = (10) • (12) for each year" Total 01 to "11 IS me  ~ te l  of the esbmates  by year Total "12 t o -  = (10) • 112)'to,1 

Al l  Yeans = Total '01 10"11 + TOtal "12 t o -  

(201 = (7)~. ,  . .  • I l l )  

(20pvl = 120) • i 12) for each ~a r  Total 01 Io '11 is bee total of me  es~mstas  by f ea r  Total '12 t o -  = [ (4~.01, • H. ro le  Rate - ( ~u~ ,e  Rala - Growm Re~e) - (16'1 ] • (12)2o,i 

Al l  Yea rs .  Total '01 TO 11 * TOTAL 12 TO- 

(2ql  = (17) - (~8) 

(21pv) = ( 1 7 p v )  - (1SPY) 
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Prlma~y S t o c k  Insurance Company 

ValuaZ~on E s ~ m a t e s  as of  Decomber 31, 2001 Using Base Investment YlelCs *lOObp 
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Primary Stock Insurance Company 

Calculation Notes for Valuation Estimates as of December 31, 2001 

Sneel 8 

(1 ( f rom Pnma~y 5t(~:~ Insuranc8 Company 's  12/31tD1 booked balance sheet 

[21 selected Starting surprus ~or future ,ncome pro;ecbons Dosed on me  seJecled 200 0% sumlus  to ,nd,cateo RBC rat.o 

( 3 )= ( I )  - (2) 

(4) selected eumlu= basea on the salecte~ 200 0% surplus 1o ind,c~ted RBC rebo 

(5~ CalCulateo PBC al me Company  Acl,on Le~e~. based on Em,o l t  12 for 2002 ona suoseqt ,en t  

(61 setocuon o1 200 0% suq~lus to RBC nsgo for aeterm.nlng requ,reo surplus at each year end 

(7) cumula l ,v8 ~n~reasa .n (4) f rom s ta i n  0 surplus 14) - (2) 

(81 NPW for all l ines * (4t  

(9) net loss an(: LAE r l se r~s  for oil I,l~es * (41 

(10 j  f rom F-~,D=t 8 l ee  (11) 

( 11 ) Is seleCtm: hurdle role of 15 0% used for Oeteml,nln o Cost of C8 p.tal in EVA  method ano the presenl  value of fut~r8 earnings one .mluO ad[Iod 

(12} = I 000 at 12/'31/01 for f~tore years = (1 0 * I 5 0%1 ra l |e~ to (2001 - year) e~onan l  

(13) o (10 )  

( 13p~} = (13) • {12) for each year  TOtal 01 to 11 .s me  total of the asbes tos  by year. Total 12 t o -  : (13)?0, I • f i  * GrOv.ln Rate) * (H~rdle Rate - Growm Rata) • (121;~,z 

N I  Year= = TOtaL 01 tO 11 * TOtal 12 t o .  

(14] annual Change m (4) 

(14pv) = ; 141 • 1123 for each year Total '01 to 11 Is me total of the est, mates  oy year Total "12 t o -  = L4)~o,, • Growth Rate + (Humle  Rats - Growth Rate) • I t 2)to,, 

AJI Year= = Total '01 tO "11 - Total '12 t 0 -  

( 15 )= (13 )  -~14)  

(15Dr) = ~ 13pv) - ( 14Dr ) 

(16) = (21 

(~7) = (10) 

(17pv) = (17) • I12) for each year Total '01 to I 1 is ~ 10181 01 the 8sbmates  Dy year  Total 12 t o -  = (17).~o,1 • (1 * Clrov, th Rate) - (r lurthe Rata - Growlh R~te) • ( 1~11  

AJI Years : TOtal '01 tO 11 * Total '12 t o -  

(18) : (19) * (20) 

(18p~) : (19pv) * (20pv) 

t 1~ )  : [21 • (11) 

(19pv~ : ~ 19) • (12) for eacrt tt~ar Total 01 to '11 is me  total of me  est imates by yea .  Total 12 t o -  : ; 16) • ( 12 j~ , ,  

hJI ~¢m~ = Total 01 to '11  • "rotal "12 t o -  

120) : ( 7 )~  • (11) 

t20pv) = (201 • ( 12~ for each year~ Tote; '01 to 11 IS me Iotat Gt ~e  est imates hy year  Total 12 t o -  = [ (4J.-o,, • ~ur~le Rate - IHurple Rate - Growth1Rat~ - (161 ] .  (12}~:.1 

All Years : Totat '01 to 11 • T~tal 12 f o -  

(21) : ( I ~ )  - (10] 

( 21~ )  = (17pv) - 118Dv) 

t22) : 116) * (2 Ipv)~. , ,m  
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Primal?/$lod I n su ranco  Company 

Va lua t ion  EslrJmafeJ |s of December 31, 2001 Using Base  I nves rmen f  Yield| .lOObp 
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Primary Stock  Insurance Coml~anv 

Calculation Notes for Valuation Estimates as of December 31, 2001 

Em,~'t 21 
¢..n eat 10 

(11 f rom Prlrpar~ Stock Insbrance Company 's  12J31101 Gogkea balance sheet 

(2) selected starung surplus for future ,ncome pro;ect, ons oased OP the Se l~  200 0% surplus to i nd l ca~J  RBC r~llO 

(3)=~1J - ( 2 )  

(4) setectea surgllJS Dosed on me se~actecz 200 0% st, t~luS 1o inaLcafed RBC ratio 

15J c.81culateo REIC at me  Company  ActlCn Le~ l  - DaSe~l on E~,DI t  12 for 2002 and subsequent  

(6) select ion of 200 0% surplus IO RBC robe for aeterm,n,ng reqLJ,red sl~rplbs al eacrt year end 

171 cbm~tati~im increase in 141 f rom $tart,~g surp l .s .  14) - (2! 

(8) NPW tot all I,nes - (4;  

(9) ne~ loss and LAE rese r~s  for all l ines - (4( 

10( t ram E,(h,bll 8 hrte ( I I ) 

( 11 ) ,S selectea nurdze role of I S 0% used )or oaten11Jmng Cost of C apltar in E vA  method and me present value of fixture eamlt~gs and ~ l ue  aadeo 

(121 : 1 000 s t  12'3 i i01 for t ~ ra  yearn = (1 ¢ - 15 0%( ra,sed to (2001 - year) e~0onent 

,13Dr) = (13) • (12,, 1or eacn year Total 011o 11 is me  tOtal of Ine est imates Dy year Total "12 t o -  = 113~:o,, " ( 1 .  Growth Rate) - (~urdle Rate - G row~  Rate) • (12).-o. 

AJI Cears : Total 01 IO"11 * Total 12 I o -  

1141 annual change ,n [4) 

( 14p~ : 1141 • ~ 121 for each year. Total '01 to '11 ,S t/le tOtal of ~e  est imates Oy year  Total 12 (O -  = (4).'oi, = Growth Rate - (H~rdle Rate - Growt~ Rate) • (12);~,1" 

AJI fears  : Total "01 Io I t ° TOtal " 1210 -  

115 )= (13 )  -114~ 

(15Dr) : (13D~) - 114pv) 

(16) = 12) 

(17) : (10) 

(17pv I = (1 ~1 • (12) for each year Total 01 tO I I iS the tOtal of the est imates I)y ~a r  TOtal 12 tO "  = ( 17%.~11 • (1 ~ C1ro~th Rate1 - (Hurdle Rate - Grcr,~tn Rate) • (12)~o,~ 

AJI Years a Total "01 to 11 - Total '12 1 o -  

( 181 = I I ~ )  • ( 2 0 )  

(18DW = 119Dr) + ~0pv )  

(19~  = (21 • 111) 

( l gpv )  = i Ig )  • (12 i  for aacrl year T@tal 01 to '11 is me  to~l of me esl~malas t ) y / ea r  Total 12 t o -  : ( 161 • (12)2~1 ,: 

All Years : Total 01 I0 "11 - Total 12 IO -  

)201 = 17 )~ ,  . .  • (11) 

t20pvl  = (20) • (12) Ior each year, rotor  '01 t~ I I is me total of me estJmams I~ f ea r  TO[El '12 to--  = J t4h0, t  • Hurdle Ram • LHgrale Rate - Grow'd1 Ramt  - (16~ J • (12);~,, 

All Years = TOtal 01 m 11 * Total "12 I o -  

t211 = (17) " (18J 

121p~) = 117p¢) - (18Dr) 

(221 = (16) • (21pVl~ . t ~  
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Primary Stock Insurance Company 

V a l u a l ~ O n  Estimate! OS Of December 31, 2001 Using B a l e  Hurdle R a t e  + 3 %  
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Primary Stock Insurance Companv 

Calculation Notes for  Valuation Estimates as o f  December 31 ,  2001 

5,~ee~ ~2 

( I~ f rom Pnmary Stock Insurance Company 's  12 .~ I rp I  boOk~l  oarance sheet 

(2) selected stett ing surplus for f~(1Jr8 inCOmO prolOCbons oaseO on the selected 200 0% surDl~s Io  In0,c.ateo RBC rl~tLO 

(3) ° (~) - r2) 

(41 set eCtoCl SUmlUS ~ d  on ~ seleCted 200 0% sarprus I o  JndLcatad RBC rabo 

(5) Calculale~J RBC 81 tea Company  ACbOn Levlel - ease0 on ~ i b t l  12 for 2002 ana subsequent  

(6) selecbon of 2OO O% surprus to RBC rsuo tar determin ing requlrea sunolus at each year ano 

(7) cumulabu~ increase in 14) f rom s te~ng  surplus. (4) - 12) 

(8) NPW for all l ines - (4} 

(9) he1 loss and LAE resen t s  for all l ines - (4) 

110) fro.n1 EJ011blt 8. l ine ( 11 ) 

( 11 ) ,s selecmd n.rcl le rate Of 18 0% uSeO for aetarm,n,ng Cos1 of Capttel m EVA methc( I  an0 me prssent  valoe of fu lcra eam,ngs  and ~ra]ue added 

(12) u I 00(] at 12/31,01. far fdturB yearn = ( I  0 • 16 0%)  ralsea Io (2001 - year) e~ponent 

~13) a (10 )  

(13pv) = (13) • (12) for each year. Total '01 to 11 ,s me  total of the est imates Dy yea~ Total "12 10 -  = (13),-o,, • {1 ° Growto Ratel  - (Hurdle Ram - Growth Rate1 • ( 12);01,. 

Al l  Years = To~d '01 to '11 • TOtal "12 IO-- 

(14) annual crtange in (4) 

(14pv) = ~ 14) • (12.~ for each year  TOtal 01 IO '11 'S me  total of me eslJma~es by ),ear Total 12 t o -  = 14);~,1 • Growln Rate • (HurUte Rate - Growth Rata) • ( 12Fa,,. 

Ah Yea rn :  Total 01 Io I1 • TOtal I ~ , t o -  

(15) : ( 1 3 )  - (14~  

(15p¥) : (13pvl - (14pv} 

( 16 ) : ( 2 )  

( 17 )= (10 )  

(17pv) : (17) • (12) for each yea r  Total 01 to '11 .S me  total of the es(,mates b't year Total "t 2 t o -  = (17):0,, • t 1- Growth Rate) - (HLJrdle Rate - Growlh Rate) • i 121~,, 

All Years = Total 01 to ' I  1 * Total '12 t o -  

( 1 8 )  = ( T 9 )  - (201  

( laDy) ~ (19pvl * (20pv) 

( 19 )= (2 )  • (111 

(19pv) n (19) • (12) for each yean ToteE "01 to 11 is t~e total of the esLmates  Dy year  Totez 12 to - = ( 161 .  ( 12)2ot I 

All Years = Total "01 to 11 + Total 12 to - -  

(20) = ( 71~  ~ • ( 11 ) 

(20p~) = (20J • (12) for each year  TO~I 01 to 11 ,S me  ~ ta l  of the est ,mates Dy year Total "12 t o -  = I (4);~,1 • Hurdle Rate o (Hurdle Rate - Growl f l  Rate) - (16) ] • (12):1~,1 

AJI Years = Total "01 to '11 i Total '12 t e -  

l21)  = (17~ - (18) 

(21pv) = (17pv) - (1SPY) 

t22) = t 16) * (21pv)~ . *m  
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p~trnary Stock Insurance Company 

ValuaUon ~sUma~ a s  of December 31, 7901 Using B a l e  H u r W e  R a t e  - 3 %  
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PrimarY Stock Insurance Company 

Calculat ion Notes for  Valuat ion Est imates as o f  December 31, 2001 
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Calculation Notes for Valuation Estimates as of December 3 f ,  200t 
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Abstract 

This paper presents a general approach and specific aspects of  the ',aluation o f  P/C Insurers. 
It combines corporate finance, the economics of  P/C Insurers, and actuarial versus financial 
viev, s. Although the primary purpose o f  the paper is to investigate the acquisition va]uation 
o f  P/C Insurers, its conclusions are applicable to other areas as well. 

We discuss strategic aspects such as the purpose o f  valuation, moti~,.ation for acquisitions, 
status quo valuation, valuation o f  synerg3, valuatnon o f  control, ~,aluation of embedded (real) 
oplions, and so forlh. 

We introduce the main valuation methods and their applications to the P,'C Insurance 
Industry. We develop the application o f  the EVA-based valuation approach. We examine the 
accounting versus the economic approach, the determination o f  Net Asset Value, Cost o f  
Capital, cash flow projeclion, scenarno testing ~,ersus stochastic analysis, the inputs o f  cash 
flow modeling, sensitivi~' anal~,sis, the valuation o f  embedded options, and so on A special 
focus will b~ limitalions o f  the valuation, including critical analysis o f  key assumptions. 

The appendix includes a case stud)' of the acquisition of a P/C insurer from the Central / 
Eastern European region (CEE). Practical aspects of experience with the CEE are presented. 
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!. Introduction 

The assessment of the value of P¢C Insurance Companies represents one of the traditional 
tasks of actuaries. The subjects interested in this issue range from investors, through 
company management to regulator).' bodies and rating agencies. The particular interests of 
an) of those parties determine the respective ~.aluation objective. The valuation might be 
performed due to M&A purpose, internally as a base for an adequate risk and financial 
management or as a financial assessment executed by regulators and rating agencies. 

This paper presents a general approach and specific aspects of the valuation of P,'C Insurers. 
It combines corporate finance• the economics of P/C Insurers. and actuarial versus financial 
views. The paper balances the theoretical and practical aspects. Although the primary 
purpose of the paper is to investigate the acquisttion valuation of P~C Insurers, tts conclusions 
are applicable to other areas as ~.ell. 

We are not restricted to a precise and complex ~.aluation model x,,ith all possible actuarial and 
financial inputs. The success of a valuation model is not determined by its complexity'. 
Valuation should be based primarily on the investor's point of vie,,,,,. Logic and a manager's 
intuition pla). a substantial role. Decomposition of an acquisition price may make it more 
acceptable. The application of other valuation methods is beneficial to confirm acqutsitton 
price. 

The first section contains key features of the economics of P/C Insurers with respect to 
relevance and implications for valuation. In the next section, v,,e distinguish between strategic 
and actuarial/financial aspects. Here, ',,,,e discuss strategic aspects such as the purpose of 
valuation, motivation for acquisitions, status quo valuation, valuation of synergy, ~,aluation of 
control• valuation of embedded (real) options, and so forth. Thirdl), ,.,,e describe valuation 
methods of Corporate Finance and tts application to P/C Insurance 

The core of the paper, Section 5.2. shifts to the actuarial and financial aspects of the valuation 
process. We examine the application of an EVA-based valt~ation to P/C Insurers, the 
accounting versus the economic approach, the determination of Net Asset Value, Cost of 
Capital. cash flov+ projection, scenario testing versus stochastm analysis, the inputs of cash 
flo~.', modeling, sensiti,, it).' analysis, the valuation of embedded options, and so on. 

A special focus ,.,,ill be limitations of the valuation, including critical anabsis  of key 
assumptions. Identification of key value drivers in the actuarial and financial assumptions 
and a detailed sensitivity analysis are necessan.'. Scenario testmg is used in cash flow 
projections because of a possible information deficit of parameters. 

The appendix includes a case stud), of the acquisition of a P/C insurer from the Central ,' 
Eastern European region (CEE). Practical aspects of experience with the CEE are presented. 
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2. Economics of P/C Insurance and Consequences for 
Valuation 

In th~s section, we recall key theoretical fundamentals for the basis of  P/C insurance. We 
highlight significant principles for the basis of  the P,C valuation. 

The common features o f  financial institutions may be seen in the mix o f  asset and risk 
transformation. We make the follov..ing hypothesis based on the specific nature o f  risk and 
asset transformation. The financial institution's mix of  business and its position in the 
economy should be c learb  identified and reflected in the ,,aluation. 

Does this hypothesis mean that the valuation of  P,'C insurers and financial institutions are 
based on different principles than those applied to non-financial institutions? Insurers. as 
financial intermediaries, pla3. a substantial role in market economies• There is no substantial 
difference between P."C insurance companies and non-financial firms v, ilh respect to 
o~,,.nership. The majorib '  of  P/C insurers operate as joint-stock companies. This fact 
determines Ihe objective from the im.estor's point o f  ,,ie',,.. According to the traditional 
microeconomic approach, both P/C insurers and other non-financial firms run their business 
with the objecti ' ,e of  maximizing shareholder value. 

This starting assumption !mplies thai the P..'C ,,aluation should be based on general valuation 
principles developed in corporate financeL This requirement is in line with the im.estor's 
point of  view. We discuss the implication in Section 4. The next step takes the specifics o f  
the insurer into consideration. ',,.ith respect to their role in the econom~ and the nature o f  the 
insurance business• We do this in order to correctly appl3 ,~aluation principles• 

We identif) specifics of  the PIC insurance industn' ,,,.ith substantial consequences for 
valuation. 

I) The stochastic nature of the insurance process 
Key stochastic ~.ariables include number of  claims, claim amounts,  claims occurrence, and 
payoff  patterns. The valuation model should take this uncertainb into account. For 
actuarial apphcations,  stochastic analysis or deterministic scenario testing and sensitivib' 
analysis may be used. 

2) The long-term nature of the insurance business 
This aspect is closel.~ related to the previous one. The time horizon o f  cash outflow to 
settle incurred claim events can range from months to decades. Ac[uaries cannot rel~, 
exceptionally on accounting statements, v,h~ch by definition represent a short-term and 
retrospective point o f  viev.. The ~,aluation o f  PtC insurers should take a prospective and 
long-term vie~,s. 

3) The specific structure of the insurer's assets and liabilities 

i The valuallOn principles are the same ~halcter compan.v is concerned See Damodaran A. The dark side of 
~.alualion: '.alton 8 old lech. ne'.,. Itch. and ne'.~, econom.', companies: Prentice Han . 20111. p 454 ••Three 
fundamentals determine the ~.alue or a business a firm's capacity to generate cash I1o'~. from e,lStlfl~ 
in'.eslmems, the e,pected ~o'¢.th in these ca,,,h Ilov, s o,.er lime. and the uncerlainl~ whether or not cash I'1o',~. 
::ill be Lzenerated zn the first place '" 
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The specific structure of insurance assets and liabilities with respect to maturity, degree of 
risk, uncertaint)., and liqmdit3' are of key importance for both NAV determination and 
cash flow projection 

4) Marke t  imperfections 
Market imperfections lead to an understanding of the information asymmetry bet~een the 
insurer and its clienls, the existence of moral hazard, adverse selecnon, and the negati~.e 
consequences of bankruptcy. All of these items justif') the existence of state regulation. 

5) Stale regulation 
The statutory sob, one) requLrements must be full) reflected in the ,~aluation process. An 
example is seen in adjustments to NAV determination. 

6) Rating Agencies 
Appraisals and reports performed by rating agencies have a substantial influence on how 
investors and the general public view the company. The agencies are a source of 
information for the valuation process, mainly in appreciating the adequac) of the 
acquisition price. 

7) Dependence on the legal environment 
Besides the economic aspects c,f risk transfer, any insurance contract involves legal 
aspects as well. The long-term nature of insurance is substantially affected by certain 
long-term liabilities such as products liability and environmental claims. Future judicial 
decisions should be considered in the stress testing the valuation model. 

8) Dependence on macroeconomic development 
The greater the time dela) inherent in the insurance process, tile more sensiti~e the 
compan) 's  results on ke) macroeconomic variables such as inflation, interest rates. GDP 
growth, stock market developments, and so on. Sensitivity testing is used to model 
various scenarios of future economic development. Stress testing models extreme cases. 

To summarize, the long-term nature of insurance, its stochastic character, information 
as)mmetry, the close connection to macroeconomic developments, and dependenc~, on state 
regulation introduce a substantial amount of uncertainly and complexit), to the valuation. We 
stress that a "long-term prospective approach must balance the inputs from accounting 
statements, ,,,.h~ch represent a short-term view. An economic approach balances the actuarial 
and financial tools. Neglecting an)' of these points in the valuation may lead to misleading 
assumptions ,.qth a substantial impact on decision making. 
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3. The Acquisition Valuation Process of a P/C Insurer 

3.1. Strategic Issues 

In this section, we briefl) describe the theory of the strategic aspects of the acquisition 
valuation. 
Certain strategic issues should be addressed before starting the valuation modeling. Factors 
such as motivation, expectation, restrictions, and psychological tears are more qualitative than 
quantitative. They are difficult to quanti~' but are at least implicitly considered in the model. 
The valuation process consists of two interconnected parts: 

I. Strategic 
It is the task of  a manager to analyze the motives o f  an acquisition, possible synergy and 
di~,ersification, control issues, impro~,ement o f  operational efficiencies b.~ managerial knov,- 
how via restructuring o f  an acquired finn, and the consideration o f  other strategic options. 
In this respect, actuaries and financial analysts are dependant on subjective managerial 
input. 

2. Actuarial/financial 
The valuation task is delegated to actuaries and financial analysts once the necessary 
strategic issues are analyzed. The correct valuation model is based on the managerial 
assumptions and inputs of the strateg3'. 

Strategic part •l Actuarial / financial part 

Valuation model 

Reconsideration of O u t p u t s  ., 
strategic assumptions 

Figure I : Valuation process of P/C Insurers  

The strategic issues below are a simplified summary of v, ays in v, hich actuaries and financial 
analysts depend on decision-makers. 

• Moti',es for an acquisition 
• Expected short, middle, and long-term impact on groxslh (sales, cross-selling) and 

profitability (economies of  scale) 
• Risks connected v, ilh the acquisition 
• Other expectations and aspects of lhe acquisitnon 
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3.2. Mo¢i,,ation for an Acquisition 

We distinguish the following basic mom.'es for acquisition of a PtC Insurer, based on 
Damoradan 's  classification 2. 

I. Excess Capilal of Acquiring Firms 
The posit~,e developments of  the stock markets at the end o r  the 1990's boosted the 
capital of  man.~ insurance companies and led to capital in excess of the economically 
needed le~.els. Managers.  tr2,. ing to find adequate m~.estment opportunities, have launched 
a v, ave of  M&A actis rues. If e',.cess capital '.'.ere the onl) motivation, the acquisition 
,,~,ould be ver2,.' risky as the inputs may be s~gnificantly overestimated. Excess capital as a 
moti~,ation is primarily determined by the demand-side, ~,,,hich ma~ automatically push the 
acquisition price to inadequate levels. 

2. Undervaluation of Target Firms 
The presumption here is the abili b o f  the acquiring company to recognize that firms are 
unden'alued b,. financial markets. Such abilit 3 suggests access to better information than 
is a',ailable to other iusestors in the market. We note that acceptance o f  this motive 
denies the validi b' o f  the efficient market hypothesis This acquisition mot~s,e suggests a 
speculati,,e investment, making a profit from the disparity in purchase price and sales 
price rather than a strategy. 

3. Synergy  
S~ nerg) is defined as the positive value-added b~ combining t~so firms. Many managers 
consider s vnerg2, as the primau., molb.e for M&A acti~.ities. Although it is a popular 
jusufication, man~ studies have shown thai ~ n e r g y  effects oflen overestimate the 
valuation. We should carefull~ analyze the extent to which synerg2, effects are adequate 
as inputs to the model Traditionall3, positi,.'e s snergy effects are distinguished by 
economies o f  scale (Ios,,er relati~.e costs) and grov, th s.~nerg~ (higher grosslh) in the 
following areas: 

• Distribution (cross-selling opportunities. E-business, tied agency networks) 
• Operations (the company ' s  infrastructure, IT-infrastructure, managerial know- 

how') 
• Unden,,'riting and claims settlement (expertise. good reputation) 
• Asset management  (kno,,s-ho~s) 

4. Diversif icat ion 
Diversification' reduces the s,olatiht) of  the compan.,. 's earnings. Together ,,sith synergy 
effects, di,,ers~fication is often mentioned, as a leading mouse lbr acquisition. The 
quantification of  diversification can be ve~ questionable. Ne~.ertbeless, sve idenlify areas 
'.,.here diversification benefits may be found: 

" See Damoradan A In'.eslmem Valuahon Tools and Techmque~, for Determining the Value of An~ Assel. 
John I.I.'dey and Sons. Inc.. 2002 
3 Tradltionall.'~. Ihere is a dRscusslon m Ih¢ flnanclal theory and pracuce as Io '.,.berber the dl'.ersiflcalion effects 
on lhe companies" level ~e neghgible or nol According IO the I'in[mclal tbeor~ based on the h:.pothesis of 
¢l']]clenl markets V~IIhouI an) trancacuorl costs, the di~er>ificatlon reduces onl.,, the compan~'-spccll]e risks. 
v,h~ch can be dr~erslfied b 3 im.'e.;lors creaung diversified m'.eslments portfolios Based on this. iI '.'.ould mean 
thai the contribution.r; resulting from the dl,.ersificmion ,;hould not be re',~.arded and Therefore '.alued on Ihe 
comp.]n.'*'~; le'.el in the aCqUlSiIion process. 
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• Extension ofan existing product offer 
• Sound portfoho structure (e.g. property ~s. liability products, reducing exposure 

in auto business) 
• Extending the base of existing clients 
• Creation of larger, homogenous portfolios 
• Cross-industry acquisition (other financial institutions such as life insurers or 

asset management firms) 
• Territory diversification (cross-border transactions) 

5. Effects of Control 
The effects of control include posiuve value-added from the restructuring of poorly 
managed firms. I f  there are easily identifiable operational deficiencies in the target 
company which can be improved in the short-term or middle-term future, the',' should be 
considered in the valuation. 

6. Managerial Self-Interest 
Besides the economic factors, there are psychological aspects stemming from the 
manager's incenhve to increase personal pov, er. 

7. Tax Considerations 
Tax considerations may be seen as a special case of s],nergy if the combined finn pa,,s 
less tax than the separate firms v, ould pay. As an example, a profitable firm ma,, acquire 
a firm with tax deducttble losses. 

8. Increased Market Power 
Market pov,.er depends on the concentration and competitiveness of  the insurance market. 
The higher the market power, the higher the possibili~' of  influencing market 
developments such as price. 

9. Regulation 
The acquisition may allow the combined firm to better meet statutor~ solvency 
requirements. This may be the case ,,*,.hen a ,,,,ell-capitalized compan) acquires a v~eaker 
company. 

10. Embedded Options 
The initial acquisition investment may include the option of future im.'estments. The 
initial investment is the necessary condition for exercising the option. Examples include 
expansion, entering nev, markets, or the sale of  nev,, products. Section 4.6 addresses real 
(embedded) options in more detail. 

A clear message should be that the nrethodologs' and results of  valuation modeling depend 
criticall.~ on an analysis ofacqmsition motives. In practice, there is a combination of motives. 
The analysis of  motivation may capture o'ther strategic issues. Excluding an anal)sis of 
motivation from the overall valuation analysis may result in misleading valuation 
assumptions 

3.3. Decomposition of the Valuation Process 
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We ma,, analyze the motP,'es of an acquisJtton once they are identified. Appropriate 
conclusions are made regarding the quantificauon of strategic valuation inputs and their 
incorporation into the model. Approprmte questions ma) be: 

• When to consider tile effects of s) nerg) 
• Hov, to evaluate s)nergy 
• R~sks inherent in synerg3' ,,aluation 
• Who should pay for the positi~,e added-value of synergy 
• What portion of the total acquisition price is the s.'.nerg) premium 
• What are the assumptions underbing synergb premium 

Similar questions may be asked for diverstfication, control effects, and real (embedded) 
opttons. 

Damodaran's classification (see (7)) suggests the follo'.ving decomposition of the valuation 
process to make the price determination transparent. 

The value of  a company V = VSQ + CP + SP + EO 

I. Status Quo Valuation (VsQ) 

The target company is valued according to current financial, actuarial, and business inputs 
as ,.','ell as managerial know-hov,. In other v, ords, we suppose there is no change in the 
compan) 's  operations. This first step provides a base from ,.,,hich the control and synergy 
premium is estimated. The ',ariable k"s 0 is the value of a compan) based on Status Quo 
Valuation. If the investment is speculat~.e and the motive is unde~'aluation, Vs.) is the 
maximum price to be paid. 

2. Valuatiou of  Control Premium (CP) 

The ~.alue of control premium is the difference be.t~,een the ~,alue of an optimall) managed 
firm and the value resulting from Status Quo Valuation: 

Control Premium (CP) = Value of an optimally managed firm - Vsc:. 

CP results from the right of the acquiring firm to take necessary steps in restructuring to 
improve the target company's operational efficiency. If the acquisition moti',e ts control, 
the acquiring company should be v, illing to pa) the value of control premium. 

3. Valuation of Synergy Premium (SP) 

SP represents the positive added-,,alue from combining tv, o firms and includes 
diversification premmm. Theoretically, synerg) premium (SP) is calculated as: 

S)ncr~ '  Premium (SP) = Value of the combined firms - Value of the target firm - Value of 
the Acquiring Firm 

SP is based on the presumplion that the ~,alue of the combined firms is greater than the sum 
of the values of the acquiring firm and target firm operating independentl) : 

V (A+B) > V (A) + Vt.B) 

548 



The acquiring compan.,,'s flexibilit3, in reaching the desired positive synerg.v effects 
determines the v.,illinbmess to pay the synergy premium. The acquiring company is less 
willing to pay the premium if it sees many possible targets affording the required synerlL~, 
effect. In other ',,,ords. the more flexibility you have, the less )ou need to pa.~. Note that it 
is also possible to reach the desired synerg3' effect by internal (organic) growth. The 
acquiring firm is not restricted to the acquisition of established entities. 

4. Valuation of Embedded Options (EO) 

The value of options to expand initial in~,estments via new markets or ne,,~, products, to 
postpone expansion, or to abandon projecws should be taken into consideration. Traditional 
d~scounted cash flow models do not consider the value of options '.,.hich are often embedded 
in investments. Section 4.6 discusses the ~,aluation of real (embedded) options in further 
detail. 

In general, there are two possible ~ays to consider the value of control / s3,nerg.v / 
diversification effects and real l embedded) options in the valuatton process. The easier v.a) 
is an implicit inclusion of underwriting, financial, operational, and other business inputs. 
The second wa) is to exclude these effects and model them separatel.~ as outlined abo',e. 
An explicit treatment enables us to better understand the impact of particular valuation 
assumptions and to analyze the adequac) of control / synerg3 / diversification weights on 
acquisition price. We ma) viev, explicit treatment as a more transparent and a safer ,~,.ay to 
re,new assumptions. Hov.ever, v.e must be a',,.are of certain d=fficulties. The 
decomposition approach may incorporate some inputs more than once. Its usefulness 
depends critically on the analyst 's abdity to explicitl) define inputs for each step of the 
proposed valuation process, without creating uncertain b by implementing speculati,,e 
inputs. 

3.4. Summa~,  

An)' valuation is, to a certain extent, a subjecti~,e task. Strategic inputs, v.h~ch describe soft 
terms such as expectations, are the subjectb, e factors. For this reason, the valuation stud.,. 
should emphasize all ke), strategic assumptions and their corresponding implications. 

The following are key outputs of the strategic process which must be pro,,ided to actuaries 
and financial analysts. 

• Expected growth rates for each product line 
• Improvements to operalions (cost cuttings) 
• Necessary im.'eslments for the operations 
• Cross-selling opportunities 
• S~nergy / diversification effects 
• Growth syner~'  
• Economies of scale 
• Embedded options in the acquisition 

Strategic inputs are criticall.~ influenced by the particular t ,ne  period o,.er which the valuat=on 
occurs. We strongl) recommend not considering the inputs as fixed because of this time 
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dependence. The preparalion of several scenarios or sensitivil)' analysis of  ke~ strategic 
inputs pro,,ides feedback to the decision makers. 
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4. Valuation Methods and Applications to the P/C Insurance 
lndust~' 

4.1. Introduction 

In this section, we introduce the main theoretical approaches to the ,,aluation of  companies. 
The valuation methods are very '.'+ell knov, n. see Damodaran (7). We discuss underlying 
principles in order to appl) them correctly. We discuss specifics in the application to P/C 
Insurance, including advantages and disad~,antages o f  each method. An o,.erview is justified 
in that an anal)st  does not rel.v solely on one method when valuing a compan.s. Other 
approaches are taken into consideration to confirm the range o f  poss=ble outcomes and to 
check the correctness of the valuation assumptions. 

The value of  a company is defined as the difference be~','een the '~alue of its assets and the 
value of  its liabilities. Tv.o basic questions arise. 

I. Identification o f  the terms of  the assets and liabilities 
2. Assigning values to particular assets and liabilities 

The identification task is to recognize all assets and liabilities. Assets represent future 
economic benefits resulting in cash inflows, v, hile liabilities represent future economic 
burdens resulting in cash outflows. A portfolio of  assets ranges from tangibles, such as 
buildings and equipment to intangibles, such as goody, ill. s trate~' ,  business opportunities, 
and employees. Questions to be asked are: 

• Which assets should be included m the valuation? 
• Hov. should intangible assets, such as the firm's abilil3.' to generate future profits 

(goodwill) be reflected? 
• Does flexibilit) in decision-making and other business opportumties (real options) 

constitute an asset? If so, u.hich conditions must be fulfilled prior to inclusion? 
• When should a liability be recognized'? 
• How should a potentml risk (liabilit2,.) be recognized? 
• Which leading principles should be follov, ed in the identification of assets and 

liabilities? 
• How should a conservative approach balance a probabihstic approach? 

One sees that the basic framev.ork o f  the identification task is crucial. Substantial uncertainly 
can arise from the identification process itself The second task then consists in assigning 
appropriate ~.alues to all assets and liabdities 

There are man) approaches to both tasks The ,,arious approaches, the valuation methods, are 
determined by under l )mg principles in identi~'ing and saluing assets and liabilities. We 
follow corporate financial theory to distinguish the following basic valuation methods. 

• Book ",alue approach 
• Stock market approach 
• Relative '~aluation 
• Discounted cash rio,,,, approach (DCF) 
• Option-pricing theory 
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To create a general framework, v,e recognize certain criteria by which ',,.e classif,, the 
', aluation methods. 
An),' valuation approach apphes these classification criteria to various extents. 

Prospectl~,e vs. retrospective approach 
Some ~,aluation methods, such as DCF, are based exclusi~,el.,, on the prospective 
valuation. A retrospective valuation, such as the book ,.alue approach, follows 
primaril) from past events. 

The source and character of the inputs 
Either the objecti','e or the subjective character of the valuation predominates. The 
former utilizes publicl) available data from accounting statements (book value 
approach) or the stock markets (stock market approach) On the other hand, cash flow 
projection ~DCF) is based predominantly on anal}sts' subjective assumptions about 
uncertain future. 

3. Accounting vs. an economic approach 
This aspect is closely related to the source and character of the inputs. The ,.aluation 
methods and applications vat,.' to the extent that the)' follow the accounting or the 
economic approach 

4. Underl.~ ing theory 
Another distinctive criterion is the analyst's degree of dependence on a particular 
financial theor).. We may follow a theor3 in its strict form. such as the efficient 
market h)pothesis or stock market approach. We may also include rules of thumb 
such as P/E ratios. There is alv, a3.s a particular financial theor), underlying a ~.aluation 
model. How rigorousl) it is applied depends on the anal)'st. 

In the following sections, we introduce tile principles of methodologies, modified forms of 
which are ",~.idel) used in practice. The intention is not to pro~,ide an extensive coverage of 
the field. We emphasize the aoplicabilit), and limitations of each method and related issues to 
be taken into consideration We focus on the application to P,'C Insurance. 

4.2. Book  V a l u e  A p p r o a c h  

The book value approach is the most straighffom'ard of the methods. Accounling statements 
are analyzed and adjustments are made to better reflect the market en~.ironment. The ,,alue of 
the company is deri,,ed by deducting the value of the liabilities from the value of the assets 

Value  = V a l u e  o f  asse t s  - Value  o f  Liabil it ies 

The ~ssue is ho',~, to value the particular items of assets and liabilities. It is advisable to make 
relevant market revaluations since an exclusive reliance on accounting prices does not give an 
adequate picture. In concrete terms with respect to P/C Insurers. ~t means pa)'ing special 
attention to the following items. We present more detail in the discussion of accounting 
principles ~,s. economic approach of Section 5.2 I 

• Financml investments (book ~,s. market values) 
• Goodwill (value of future business) 
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• Treatment of deferred acquisition costs (DAC) 
• Exclusion of assets which ha~,.e no connection to future business 
• Recei,,.ables from reinsurance and direct insurance 
• Claims reserses (reserve adequac,,, reserve discounting) 
• Unearned premium reserve (premium deficiencies) 
• Treatment of equalization and catastrophe resen'es 
• Tax considerations (taxes, deferred taxes) 
• Other market adjustments (cleaning of the balance sheet) 

The pros and cons of the book value approach ',,,ith respect to P/C Insurance are summarized 
as follov, s: 

("*-) Simplicity, clarity, transparency 
(+) Few assumptions as to future uncertainty are needed 
(-) Primarily based on accounting assumptions 
(-) A retrospective approach contradicts the long-term nature of the P,'C insurance 

business and the in',estors' point of ~, Jew 
(-) Accounting prices may not reflect a current market en', ironment 
(-) It may not consider the value of future profits and other intangible assets 

We find the largest disadvantage of the book ,,alue approach, with respect to the valuation of 
P.'C insurers, to be the focus on accounting statements as the primar), source of information. 
The book value approach is a static and retrospective approach. It contradicts the long-term 
nature of the P.'C insurance business and the investors' point of view. Market adjustments to 
relevant insurance assets and liabilities are a possible solution to this drav, back. Another 
disadvantage is that values of certain intangible assets, such as the value of future business. 
business opportunities, and strategic options are not considered. There is a risk that these 
assets may not be captured properly. 

Despite these objections, the book value approach is ,,videl~ utilized in practice and occupies a 
more or less important place in any acquisition study. We note that the principles of the 
approach are a basis for the determination of NAV and are the first component of an EVA- 
based valuation methodology. 

4.3. Stock ~,larkel Approach (Efficient Market Hypothesis) 

According to the stock market approach, the ~,alue of  a company ~s determined by the price at 
which its shares are being traded. .' 

Value = Number of shares * share price 

The number of shares is immediately available if we neglect special cases such'as  stock 
market programs for managers or emplo3ees Problems can occur with the approprmte 
selection of share price. Should we utilize the current price or an a',erage? What should the 
time horizon be for an average price'?. Anal)sts often prefer an average price over several 
months. There is no parlicular rule. It depends on the particular situation. 

The application of a stock market approach is the simplest approach. It has a ve~ strong 
theoretical background, the efficient market hypothesis. It implicitly assumes that the markets 
are efficient and that market price represents an unbiased estimate of true ,,alue. The 
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pioneering work in this field '.,.'as performed b3' E.F. Fauna (I 5) The theory is based on many 
restrictive assumptuons distnnguishing strong, semi-strong, and v, eak forms of market 
eMciency but has far-reaching consequences for valuation. In an efficient market, the 
expected return from an3, investment will be consistent in the long-term v, ith the associated 
risk of thai investment. The exlent to '~bich v,e accept the ,,alidil2. " of an efficient market 
h!pothesis v, ill influence several steps of our valuation (e.g determinatnon of terminal value 
and projected ROE vs. CoC). 

The strict underl.,,ing assumptions of the h3'pothesis suggest there are risks inherent in the 
application of the method. Firstly. u.e must carefully analyze to ",',bat e',.tent the assumptions 
are fulfilled Are the markets reall3' efficient? If not, to ,..,hat extent can v.e rely on the 
nnformation provided b3' a stock exchange? We must consider hov. share prices are 
determined and vshich factors influence the price-determinatnon process. Several 
psychological effects lead to over-,~alued or under-valued shares. 

The analysis of adequate share price represents a substantial part of nm.estors" decision 
making Recent de~.elopments in the stock markets show that there is a tendency to 
substantiall) overestimate the ,.aluation inputs at "'good times" and underestinnate the inputs at 
• "bad times" Howe~.er, the phenomenon of over- / under-,.aluation is not a concern limited to 
the application of a stock market approach to valuation. If im, estors" expectations are too 
optimistic or pessimistic, it ',~,ill probabl) influence the assumptions of other valuation 
methods as ~,,ell. Ne~.ertheless, ,.,.hat matters is that ex-anle anal3"sis of share price adequacy 
be a key objective v.ben utuhzing the stock market approach. 

The pros and cons of the stock market approach are summarized as follows: 

t+) It is the simplest approach 
(+) Objeclix it3' in the application of publicl.~ available inputs 
(+) No valuation assumptions are needed, other than valndnb' of the efficient market 

hypothesis 
(-) It relnes exclusivel3' on the efficient market h)pothesis 
(-) The strong assumptions of the efficient market hypothesis are not fulfilled in practice 
(-) The share price ma3" not reflect the compan,, "s long-term perspective 
(-) Uncertainly' as to hov. share prices are determined 
(-) Related issues of under- ' over-~.aluatnon ofshare price 

The share price alone is rarely an adequate basis for valuation. There are man) risks resulting 
from the xeD strong assumplnons of the theoD. Hov.ever, the share price is a signnficant 
price =ndicator in any acquisition ~,aluation process and is usually the outgoing (minimum) 
price for negotiations, above v, hicb the acquisntmn prnce is determnned. 

4.4. Relative Valuation 

Although ,.~.e tr3' If de',clop a sophnsticated valuation model, in reality the prices of most 
assets are detemlined in tile market by a comparnson to prices of similar assets. In a qunck 
valuation, most analysts ',',ill probably utilize the principles of relative ,,aluation. In relati~,e 
*,alualion, the value of Company A is derived from the value of a comparable Company B or 
a set of comparable firms, a peer group. The relative ~.aluation methodology utilizes standard 
~.ariables such as earnings, book ~.alue, profits, and sales We define a relative measure or 
multiple to be the ratio of value or price to a standardnzed *.ariable. 
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(Value of Company A / standardized variable of Company A) = (Value of Company B / 
standardized variable of Company B) = Relative Measure (Multiple) 

4.4. I. Gene ra l  Overview of  Relative Measures 

In fact, there is an unlimited range o f  possible relative measures. The only condition for a 
relative measure is that ~t be economically rele'.ant and justifiable for the particular case. The 
following measures predommate. 

I. Earnings multiples 
The value of  an asset is related to the cash flow it generates. An example is the price- 
earnings ratio (P/E), which expresses the share price (P) to current or expected 
earnings per share (EPS). 

P 
P/E = - -  

EPS 

2. Book Value multiples. 
An example is the price-book value ratio (PIBV) obtained by divtding the share price 
(P) by the book value of  equity per share (BV). 

P 
P / B V  = - - .  

B I , '  

3 .  Revenue multiples 
The share price or ',alue of  a company may be related to revenue or sales as a measure 
of  business ' ,olume. Often utilized is the price-sales ratio (P/S), where market value 
per share is divided by revenues per share (S). 

P 
P/S = - - .  

S 

4.4.2. P/C Insurance Industry Specific Relative Measures 

All three o f  the above categories are seen in the P/C insurance industry. Sales ratios express 
the value o f  a company as a multiple o f  gross v, ritten premium or net written premium. P/E 
ratios and book value ratios are also used. 

Note that PIE ratios and book value ratios are determined from accounting quantities such as 
earnings and book ,,alue of  equi b .  Accounting principles serve as a first approximation o f  
compan)  value. Premium, as the denominator o f  sales or revenue ratios, is not as dependent 
on accounting rules. Man) practitioners prefer sales ratios. 

We demonstrate the application o f  relati'+e ',aluation by means of  a decomposition which 
relates value to premium This procedure reveals tile implicit assumptions underl) ing a gl,,en 
relative measure. For s implicib,  denote premium b) P, not to be confused with tile same 
abbreviation for price. We express compan~ ~,alue (V) as related to premium (P). We do not 
distinguish between gross and net premium. 

Consider a group of peer companies ',,.ith ratio V'P The task at hand consists of tv,  o parts: 
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• Determine a V/P ratio for the valuated company based on a peer group analysis 
• Anal)ze the underlying assumptions 

Decomposition of  the V/P ratio into relevant driving factors makes this a feasible task In the 
first step, v.e suppose that the value V, as determined by the (V/P) ratio, corresponds to the 
sum of  discounted values of  future cash flows or profits. In other words, we utilize the DCF 
approach. Ifv, e replace cash flo',vs by profits, assume that all profits are to be distributed, and 
suppose an infinite time horizon with stable profits, the ,~alue is gi~.en in perpetuib b) the 
form: 

V = Profit / CoC (4. I ) 

where. CoC = cost ofcapttal  
Profit = expected profit at time t = I. 

For the sake ofs impl ic ib ,  the profit ' ,ariable is defined as follou, s: 

Profit = P - L - C ÷ IR (4.2) 

where: P = premium 
L = claims 
C = COSTS 
IR = in,~estmenl result. 

V = Profit / CoC = ( P -  L -  C + IR) / CoC. 

Substituting equation (4.3) into the V,'P ratio, ,~,'e obtain: 

(4.3) 

V , ' P =  I • __Pr° f i t  _ I . P - L - C + I R  _ I * ( I - L , , ' P - C , ' P + I I L , ' P ) .  ( 4 . 4 )  
CoC P CoC P CoC 

The sum (L/P + C/P) is the combined ratio. We further define the investment result (IR) as 
the product of rnvestment yield (IY) and the state of  the in,,estment portfolio (I). 

IR = I • R. (4.5) 

The im, estment portfolio (I) as a percentage o f  premium (P) is knov.n by the term asset 
leverage (AL). 

A L  = I ,  P. (4.6) 

Substituting the relationships (4.51 and (4.6) into equation (4.4), v,e obtain: 

I 
V.P=  *[(I  - combined ratio) + A L"IY). (4.7) 

CoC 

How do ,,*,e interpret this equation? It is derb.ed from the equilibrium relationship betv, een 
relative measure (V/P) and the value determined by the DCF approach. We lhereb) express 
the V.P ratio in relation to: 

556 



• CoC (a measure of investment risk) 
• Combined ratio (a result ofthe underwriting) 
• Investment yield (a result of im, estment) 
• Asset leverage (a measure of t ime dela~ in the insurance process, a function of product 

mix)  

Based on this ratio decomposition, v.e better understand the assumptions underl~.ing a gi,,en 
relative measure. The decomposition also elucidates structural differences among companies 
including portfolio structure, combined ratio, and average time delay of insurance processes. 
Complicating factors include growth in profits and retained profits but the principles in a 
more complicated analysis v.ould be the same. 

We illustrate this t3pe of ratio decomposition with some real figures. We extend equation 
(4.1) by a parameter representing growth rate of profit. If profit is assumed to grow at a flat 
rate of g% over an infinite time horizon, the DCF approach yields a value (V) given b~ : 

V - Profit for g = gro',~,ah rate of profit. (4.8) 
C o C - g  

Equation (4.7) is modified accordingly: 

I.," I 
- -  * [( I - combined ratio) + AL*IY). (4.9) 

P CoC - g 

A rule of thumb v~idely used by practttioners is that the value of an insurance company moves 
in the range of 1:3 times annual premium. Based on equation (4.9), ~s'e explore this rule of 
thumb v, ith respect to changing combined ratio and grov, lh rate of profit. The other 
parameters remain fixed. 

V I P  ra t io  in d e p e n d e n c e  o n  c o m b i n e d  ra t io  a n d  g r o w t h  ra te  o f  p r o f i t s  

VIP = [1 / (CoC - g)l " [(1 - combined ratio) + AL'IY), where: 
V/P Value (V) as related to prem=um (P) 
CoC Cost of Capital 
G Growth rate of profits 
AL Asset leverage (I / P) 
IY Investmenl yield 

Assumptions: Parameters: 
CoC 9% Combined rat. 
IY 5% Growth (g) 
AL 2.0 

95% 96% 97% 98% 99% 100% 101% 102% 103% 104% 105% 

5% 3,75 3.50 3.25 3,00 2,75 2.50 2.25 2.00 1.75 1,50 1.25 

4% 3,00 2.80 2.60 2.40 2.20 2.00 1.80 1.60 1.40 1.20 1.00 
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3% 2,50 2.33 2.17 2.00 1.83 1.67 1.50 1.33 1,17 1.00 o.83 I 
2% 2.14 2.00 1.86 1,71 1.57 1.43 1.29 1.14 1.00 0.86 0.711 
1% 1.88 1.75 1.63 1,50 1.38 1.25 1.13 1.00 0.88 0.75 0.63 I 
0% 1.67 1.56 1.44 1.33 1.22 1.11 1.00 0.89 0.78 0.67 0.561 

I 
Under the assumptions of this simplified model, the V/P ratio of 3 corresponds to either a 5% 
growth rate and 98% combined ratio or a 4% grov, lh rate and 95% combined ratio Although 
reD' simple, this type of scenario anal)sis provides very strong conclusions concerning the 
implicit valuation assumptions. 

What mailers in a relali~,e measure is the set of assumptions. The assumptions are the same in 
the DCF approach, all cash flow components of the profit, gro~,sth in profits as a cash flov., 
and risk. The decomposition expresses the assumptions in a transparent, explicit form. 

The application of relative valuation is a simple but good rule of thumb for the appreciation of 
value adequac), enabling us to restrict the range of possible outcomes. However. there are 
dangers. What are the main risks of the method? The method of relating one firm's value to 
that of a comparable firm b) means of one financml parameter is simplistic. This assumption 
is made in retail industries w=th relative ease. An application of the assumption to P/C 
Insurers omits key structural differences. 

• Product m~x 
• Risk profile 
• Compan) size 
• Differences in distributmn channels, target audience, and organizational infrastructure 
• Differences in life cycles 

Additionally, the method automaticall) assumes that the ,,alue of the other compan2r is 
"'correct". For these reasons, v,e ad',ise a decomposition of the relative measure to get an 
explicit set of assumptions concerning profilability, gro~,th in profitability, and risk. 

Tile advantages and disadvantages of relatke ~,aluation are summarized as l'ollo~,s: 

(+) Quick and quite simple calculation 
(+) Restricted number of explicit ~,aluation assumptions 
(-) Hidden valuation assumptions 
(-) Possibl.,. difficulties in finding comparable firms 
(-) Inherent assumptions regarding the "'correct" value of comparable firms 
(-) Appropriateness (economic rele~.ance) of tile relati~.e measure for the determination of 

value 

As an exclusive measure lbr the P,'C IndustD, the relative measure approach is simplif)ing 
and thus ver). dangerous. It omits structural differences. We theretbre strongly emphasize the 
anal) sis of hidden ,,aluation assumptions. Its simphcity allows the use of the measure as an 
additional method supporting the basic and more sophisticated valuation model. 

4.5. Discounted Cash Flow Approach (DCF) 
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The various modifications of the DCF approach serxe as a basis for the majority of valuation 
models. The leading principle of the theor), is the rule of present value. The ~,alue or an) 
asset is determined by the present value of the expected future cash flow. 

The basic ,.aluation equation of the DCF approach is written as follows: 

,Z..r CF, 
Value = zx (4.10) 

,o, (I + r ) '  

'.,,'here: T = lime horizon o'~er v~hich there is cash flow on the asset 
CF~ = cash flow in time period t 
r = discount rate reflecting the risk of the cash flow. 

DCF models are classified into tv, o main bpes  of model. The first approach '.'alues the 
shareholders equib The second branch values the debtor's equit2,' as ,,,,ell. The difference in 
the two models lies in the relevant cash flows and in the discount rate applied to those cash 
flov.s. In the first model (I), the discount rate is the cost of equib', the rate of return required 
b) shareholders. In the sec'ond model (2), the ~.alue of the firm is obtained by discounting at 
the cost of debt ~,'.eighted on the average cost of equit3'. 

The first model, a di,..idend discount model (DDM), assumes di,, idends to be the only relevant 
cash flov,. A strict al~plication of the DDM is too restricti~,e since man)' firms do not pa)' 
adequate di'.'ldends. Free cash flow to equib is a broader defimtlon, see Damodaran (7). We 
consider the specific asset-liability structnre of financial sen'ice firms and choose the first 
approach for PIC Insurance companies. We value the cash flow to equib b) discounting at a 
selected cost of equit)', the cost of capital (CoC). 

~ CF to equm , 
Valueofequity = ~ ~ "  . (4.t t) 

A discussion of key inputs is deferred: 
• Cash flow projection (Section 5.2.3) 
• Discount rate CoC (Section 5.2.2) 
• Comparison ofthe DCF and EVA approaches (Sectton 5.2 I) 

r 

The advantages and disad,, anlages of the Discounted Cash Flov. approach are summarized as 
follows 

(÷) Prospective valuation of future profit 
(+) A full theoretical justification: "The value of an) asset is determined by the present 

value of expected future cash fows."  
(+) The basis for major valuation models in practice 
(-) Several assumptions estimated for a long time horizon (cash rio'.,, deterlnination. CoC) 
(-) Sensiti~,ib' to inputs 
( - )  Single scenario approach v, ith no ~ ariabilib' ilt future cash flows 

Traditionally, there has been broad agreement in the financial theory that tile ,,alue of a firm is 
determined b) the present value of expected cash flov, s and titus DCF serxes as a basis for 
any valuation model Ho','.e,,er. several theoretical objections have recently been raised 
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concerning an exclusi,,e application of the DCF model. DCF does not capture the variability 
of cash flows, ",,,hich pla~s a very substantial role in the valuation of strategic issues 
Embedded options (real options) include the flexibilit2, .' to expand projects, to postpone 
additional expansion, or to abandon projects. 

4.6. Option Pricing Theory (OPT) 

Thesis: "'Firms sometimes in',est in proJects because the investments allo,,,, them either to 
make further investments or to enter other markets in the future. In such cases, we can view 
the mitial projects as ) ielding options allov,.ing the firm to invest m other projects, and the.,, 
should be v, ilhng to pa) a price for such options. Put another way. a firm ma) accept a 
negative net present value (NPV) on the initial project because of the possibilil) of htgh 
positive NPV on future projects." (Damodaran A.: Investment Valuation: Tools and 
Techniques for Determining the Value of An.,, Asset; John Wile) and Sons, Inc.; 2002, p. 
796 ) 

The 1990s witnessed a full acceptance of th~s thesis. The cash Ilov,'s of certain assets are 
contingent upon fulnre events. Such assets are referred to as real opttons and are 
characterized b) tv, o basic aspects of the oplton. 

• The value of the first asset is derived from the value of a second asset 
• The cash flov. of the asset is contingent on the occurrence or non-occurrence of an 

event 

Traditional DCF models underestimate the value of real options. Thus, option pricing theory 
has become a necessary tool to reflect these specific cases in the ~,'alualion. We present the 
fundamental principles of option pricing theory. The pioneering v, ork into option ',aluation is 
connected v, ith the papers written b.v Black-Scholes ( I ) and Merton (26). 

Definition: Options pro,, ide the holder '.,, ith the right to buy (call option) or sell (put option) a 
specified quanttty of an underl.,.mg asset at a fi~ed price (strike price: exercise price) at 
(European option) or also before (American option) the expiration date of the option. Since it 
is a right and not an obligation, the holder can choose not to exercise the right and allow the 
option to expire. 

The value of an option depends on the following factors 

I. The relationship bev.,,een strike price and the current value of the underlying asset. 
The higher the strike price, as compared to the current ,,alue of the underl)ing asset, 
the h~gher the option price. 

2. The variance In the ',alue of the underlying asset. The higher the varmnce in the value 
of the underlving asset, the higher the price of the option 

3. Time to exptration. The greater the time to expiration, the more valuable the optton. 
4. Risk-free interest rate. The rate ~s connected to opportunit3, costs over the lifetmte of 

an option. 

The ~,alue of an oplton in financial theory is determined b3 the well kno',,,n Black-Scholes- 
Merton formula. We present the binomial option pricing model, a discrete counterpart to the 
continuous Black-Scholes-Merton model. In a binomial tree, the option price is assoctated 
v,,ilh the upv.ard or dov, nv, ard movement in stock price. The simplest case is the one-step 
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binomial tree where the stock price mo,.es either up or  dov.,n role one o f  two positions and the 
option price takes on at most one of  t~,,o associated values .= 

The binomial model  provides insight to the logic o f  option pricing theory in a case stud.~ o f  
the motor third pa rd  habil ib '  (M-TPL)  market  o f  the Czech Republic• 

BOX: Case Study - Application of Option 
Pricing Theo~' 

There was demonopolizahon of the Motor third party habddy (M.TPL) market in the 
Czech Repubhc 3 years ago It can be understood as a special case of market share 
acquislhon. 
First, we assume that according to the analysis' calculations this kind of acqu=s~tton ~s 
connected w=th the negative NPV of -50 mid. The management has to make the 
dec=sion as to whether the company should invest in this protect or not. 

If the decision were based only on the rule of the positive net present value, the 
company would not make this investment. On the other hand. execuhve management 
argues with the thes=s that the acquisition is connected with the unique opportunity of 
further expansmon in the future. This aspect was not considered in the NPV calculation. 
Managers build on the assumptions that the Czech insurance market is 
underdeveloped and a substantial growth ~n all branches can be expected In their 
views, the acquired M.TPL chents' base represents the cross sell=ng opportunities If 
that ms the case. and the company does not make the investment, it gives up the right 
(option) of a good outgoing position in the expected future expansion, in other words, 
acquisition of M-TPL market share Implicitly includes the option to expand as 
well. 

What is the value of this embedded option to expand? 

Let us assume that the costs connected with the additional expansion in the future 
would be 500 mid (strike price) and at the moment the current NPV is esttmated at 400 
mid (current value of an asset, t=0), The option wdl be exercised only if the NPV at 
time of expiration (t=2) exceeds the costs of expansion (strike price), 

NPV of entry Into M-TPL market -50 

Option to expend! 
Costs of expansion - Call stnke price 500 
Borrowing mterest rate 10% 

Furthermore, we assume the following binomial process (the expected development of 
NPV over the next two years). 

t=0 t=l I=2 

p, Ipv~Urrenl ICall price Probab,hty~pv~Current ~Call price /!Probab,litylNPV ICurrent ~Call pr,ce 

• For more on binomial trees '.,.¢ refer to Hull J C Options. Futures. & Other Derwah~.'es. Prentice Hall. 1999. 
Chapter 9 
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Explanation" The value of the call option ~s arrived at by applying arbitrage theory. 
We can rephcate the cash flow from the option as a combmahon of borrowing and 
purchase of underlying asset (current NPV). 

Value of the call = Current NPV " Option delta - Borrowing needed to replace portfolio, 

where" Option delta = (C,j - Co ) / (NPV u - NPVo ) 
Borrowing needed to replace portfolio = Option delta " NPVo / (1~ i ) 

NPVu = the value of NPV if current NPV goes UP 

NPVo = the value of NPV if current NPV goes DOWN 
Cu = call price of Option d current NPV is NPV u 

Cc = call pnce of option if current NPV is NPVo 

Running the calculation backwards. At the exptrat~on I~me t=2 the option value (call 
prtce) ~s given by the positive difference between current NPV and strike price. Going 
back to the present, we can calculate the opt=on value at the time t= l .  based on the 
above equations Looking at the lower branch of the binomial process, the value is 
obviously 0 (current NPV at the brae t=l can go from 280 to 364 or 196 vs. stdke price 
= 500) In th~s Case, the option would not be exercised The ophon value for the upper 
branch at the hme t=l (current NPV of 520 can move on to e~ther 676 or 364) rs given 
by the above equations 

Ophon delta = 176 I (676-364); Borrowing = Opbon delta " 364 I (1+10%): Value of the 
Call = 106,7 
Simdarly. we can calculate the value of expansion option at the lime I=O. 

Conclusion: 
NPV of entry into M-TPL market -50 
Value of option to expand 64,6 
NPV of entry into M-TPL market with option to expand 14,6 

The company should enter into the M-TPL market although the value according 
to the NPV calculatton is negative. That is because of the acquisition of the 
option to expand, The value of this option Is estimated to be higher than 
negative NPV from entry into M-TPL market. 

It is important to keep ill utind Ihat v,e meet v,.ith.real (embedded) optmns in dail) life. In 
fact, options are present an.,,v, here we have a certain amount of flexibility at our disposal in 
decision-making 

DCF-based models assume a pass=',e treatment of assets and liabilities but managers ha',e 
many opportunities to change a pre-defined course in reaction to current de,~elopments Real 
options are then crucially important and their values can be substantial. Real options quanti~ 
the ~.alue of strategic aspects in a very sophisticated v~a.,,. Managers v,,ho ha~,e familiarized 
thentsel,,es ',~ith option pricing theory justif2,, their im.'estments b,, the value of embedded 
options. Therefore, we must appl~ the valuations ,.er3' carefully. It means correctly 
identifi, mg an3. real option to be considered in the ,,aluation. As an example, if the option is 
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freel) a~ailable to all market participants, ~t should not represent an option to be considered m 
the valuation. 

The advantages and disad,.antages of the OPT approach are summarized as follov, s: 

(+) Overcomes the drawback of DCF by reflecting the ~ ariability of future cash flo~s 
(÷) Full theoreticaljusttfication in main-stream financial theory 
(+) The application is becoming a standard tool in specific areas 
(+/-) Aver). sophisticated model 
(-) Requires many valuation assumptions, including variabdit), parameters 
(-) Sets a high requirement on anal.',sts" and decision makers" capabilities 
(-) Vet). sensitive to inputs 
(-) Is easil) manipulated and misused 

The theoretical concept of real ophons was imtiall~ used in the ,,aluation of start-up 
companies and fast growth sectors such as new econom) and biotechnolog,.~, sectors. OPT is 
also recognized in the ~alue of a company as a call option. Stockholders act as holders of an 
option on the compan.v's assets with a strike price at the level of the compan) 's  liabilities. 

V a l u e  

S t r i k e  p r i c e  = A s s e t s  
L i a b i l i t i e s  

Figure 2: Value as a call option on company's  assets 

In the P/C IndustD'. it potentiall~ changes the v.ay of thinking of an investment. The crucial 
contribution of real option valuation is the recognition of the flexibility m decision-making. 
Real options ma.,, be equated v.'ith future opportunities and dangers. Option pricing theory 
offers an opportunity to embrace this aspect of the valuation process. 

4.7. Conclusion 

We have briefl) presented the main theoretical methodologies for the valuation of a firm v.ith 
special emphasis on an application to the P'C Insurance industry. We introduced the models 
in their strict form. stressing underlying assfimptions. We discussed how the models are to be 
applied, as ',,,ell as the limitations and inherent risks. 

Analysts use a ',vide range of valuation methods m practice, derived by modifcat ions and 
combinations ofthe basic models. The models differ in underl~ ing theory, basic assumplions. 
complexit3:, and outcome. We cannot say v.hich valuation model is best. It al,.,.ays depends 
on the specific case. What matters is the precise application of the selected model v.ith 
respect to its underlying assumptions. Although ','.e usuall3 rel~ on one basic valuation 
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methodolog), which is a combination of se~,eral methods in the '~aluatton model, it is 
ad,,isable to not restrict oneself to only one method. We strongly recommend the application 
of methods other than the basic valuation method to uncover inconsistencies m the inputs. 
We should also confront the results of~,~,hatever methods we choose. Do the results meet our 
expectations? Are the results reasonable? 

In the next section, v..e present the Economic Value Added (EVA) approach as a modification 
to basic valuation methods. EVA is v.idely used and pla)s an important role in practice, h 
follov, s primarily from the principles of DCF. Ftrstl~, we discotmt the excess of future profits 
net of the costs of holding capital. Secondly, v,'e consider the current state of in~.ested capital, 
the NAV determination, where the principles of a book value approach are recognized. EVA 
methodolog.,, has become a vet). popular tool in financial management for profitabilit) 
measurement and valuation. The task is to justif2,, our thesis that this approach ser~es as a 
good basis lot the valuation modeling of P."C Insurers. 
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5. EVA as a Basis for the Valuat ion of  P/C Insurers 

In the previous section, v,e created a frame,,~,ork of  basic ,,aluation methods as developed in 
corporate finance This framework pro',.ides coherence to the Economic Value Added 
melhodolo~ ,,se present here. We explore tbe EVA-based ,,'aluatnon as a methodolol~' built 
upon traditional DCF models. An EVA valuation approach extends the DCF approach b3, a 
further consideration o f  in,~estor's needs. EVA is a measure o f  surplus ~,alue created by an 
investment. It is defined as profit adjusted by the cost of  holding capital. 

In this Section, xs.e firstl) examine the theoretical background of  EVA. We then de~.elop, step 
by step, a valuation methodology for P.C Insurers. 

5. I. Theoretical  Background 

The EVA methodolog) ',','as created at the beginning of  the 1990"s by the consultancy Stern, 
Stewart & Co. Stev, art defined EVA as "'operating profit less the cost of  all capital employed 
to produce those earnings '" .  We note that the concept of  economic profit brings nothing nex,, 
to economic theory 6. EVA methodolog) is ',,,ndel) used in financial management for the 
measurement of  profitabilit2, and the valuation of  a company. 

We can  summar ize  the main  thesis o f  the EVA approach as follows: 
"The  EVA valuat ion  a p p r o a c h  meets one of  the most impor t an t  requ i rements  consisting 
of  the preference of  the inves tor ' s  point of  view instead of  that of  the compan) ."  

5.1.1. The EVA-based Valuat ion  

We deri~,e the basic equations o f  the EVA xaluatlon approach• In its simplest form. EVA is 
defined as Profit after Tax (PAT) earned on invested capital and adjusted by the costs o f  
holding capital, reflecting in~.estors" opportunity costs• The cost of  holding capital is defined 
as the product of  invested capital and the requnred return on inxested capital• 

EVA~ = P a T ~ -  CoC * Invested Capital~.t (5.1) 

'.',here: EVA~ : EVA in )earl  
PaTt = Profit after Tax in ",'ear t 
Invested Capntal,.~ = capital provided by im,'eslors at the end of  the pre,, ious .,,ear (= at 

the beginning of  the current year) 
CoC = Cost o f  Capital (equity). 

We need three basic inputs to calculate EVA: 
I. After tax profit generated on invested capital 
2. The rate of  CoC (discussed further in the text) 
3. Invested capital 

Either the book ,~alue of  equity or Net Asset Value (NAV). follo,,,,ing the economic approach 
to ~,aluation. can be used to define in~,ested capital• The economnc approach to valuation 

Ste',,.an. G.B. The Qucsl for Value Harper Collms 1991. New York. 
* A basic course of microeconomtcs co~.ers the topic ol'¢conomlc profit, taking into [ICcOUnl expensed costs and 
opponumt.v costs fe.g. cost:; of capttah 
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better reflects investors" requiremenets and the market environment, v,e operate exelasi~,ely 
with NAV. 

EVA, = PaTM - C o C  * NAV:.I. (5.2) 

Positive EVA implies a company ' s  ability to generate profits above a level required by 
im.estors for a gr ,  en level of risk. The company, therefore, brings additional (added) value to 
in,,estors. Negatt','e EVA ts interpreted as a negative message to investors, expressing that 
profits are not comparable to other inxestments v, ith the same risk or opportunity cost. 

Dividmg equation (5 2) by the NAV yields a reformulation o f  the basic equation in relative 
terms: 

EVA "NAV = PaT / N A V - C o C  * NAV / NAV. (5.3) 

PaT / NAV represents return on invested capital, v,'hich v,'e denote for slmplicib as ROE7: 

EVA / NAV = ROE - CoC (5.4) 

EVA = ( R O E -  CoC ) * NAV (5.5) 

where. ROE = return on im.ested capital ('NAVI. 

Equation (5.51 is to be understood as follov, s. The compan) generates positive added value if 
the return on invested capital (ROE) exceeds the cost of  capital (CoC). It implies that EVA 
can be increased either through higher operating efficienc) under the same level o f  risk. 
increasing ROE, or by reaching the same profit by Iov, ering the risk to decrease CoC. 

Next. Market Value Added (MVA) is defined as tile present value o f  future EVAs: 

r El:4, EI'A r 
MVA = ~ + " (5.6) 

,_-'77,= (l+CoC)' CoC*(l+CoC) r 

M V A  = ~ PaT, - C o C *  NAI,,_, ~. PaTr. , - C o C *  NAI," r 

, . i  II+CoC)'  CoC*( I+CoC)  r 
(5.7) 

,,',here: EVAI = EVA m year t 
T = No. of  ' ,ears oser  v, hich EVA is explicitl) estimated (from the period T+I 

calculated as perpetuity} 
CoC = Cost of  Capital (equib)  
NAV..I = (market) value of  invested capital at the end of  previous .'.'ear 
PaT. = Profit after Ta'., in year t. 

Based on the EVA methodolog,,, the xalue of  a company (V) is defined as the sum of  in,,ested 
capital (NAV) and the present value of  future EVAs (MVA): 

~," = NAV o + MVA (5.8) 

Throughout tills Ie.*.L ~,¢ understand Ih¢ lerm ROE to mean return on in'.ested capital, represented b) NAV 
according IO the economic 3pprol]ch 
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where: NAV0 = (market) value of in,,ested capital as of appraisal date. 

r El:4, El':4r. ~ 
V = NAVo  + ~,=, [I +~oC)' ~ CoC'(I  + CoC) r" 

(5,9) 

V = N A V o +  ~PaT,-CoC*NAI'~_,  PaTr.I-CoC*N.4Vr 
,=, (I+CoC)' ~ CoC. ( I+Coc)r  (5 I0) 

In other v.ords, the value of a company is determined on one hand by the current state of 
invested capital (NAV), as the difference between the (market) ,.alues of assets and liabilities, 
and on the other hand b5 the discounted excesses of future profits above the level of.',ield on 
alternative investments (CoC). B~ this equation, the valuation task is d~vided into tv, o 
separate steps: 

Determination of NAV. 
Projection of future cash Ilow including the detennination of discount rate (CoC), 
consisting of explicit cash flov. modeling and determination of terminal ~.alue (TV). 

EVA, My, i v" I 

On future 
business 

On existing 
business 

Figure 3: Main fealures of EVA-based valuat ion b 

EVA vs. DCF approach 

We have alread) several times mentioned, that EVA-based valuation approach is deduced 
from DCF. What is the interrelationship between DCF and EVA-based valuation approach.'? 
For simphcity, let us assume the infinite horizon (present value of future profits calculated as 
perpetuity) So, the values o fa  compan) are defined as follows. 

According to EVA 
By the EVA approach, assuming an infinite horizon ',~,ith stable profits, the ,.alue of the 
company (V) is deri~.ed from equation (5.10). 

s The ~alucs of EVAs arc dcplclcd alrcad.~ at thclr discounted ~alucs 
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V =NAV0 + E I , : 4 ~  = N A V 0  ÷ 
C o C  

= PaT~ 

CoC 

Pa T, - C o C  * ?,'.4 ~'.~ _ C o C  * N.41'~ + Pa F, - C o C  * N.4 I~ 

C o C  CoC 

( 5 . i i )  

2) According to DCF 
Subst i tut ing cash-r low in the basic DCF equation (4.9) by after  tax profit distr ibuted to 
shareholders  and a s s u m i n g  an infimte horizon v.~th stable profits, ',~e obtain a perpetuit.,,. 

V -  PaT~ . (5.12'i 
C o C  

Conclusion: (5.1 I.) = (5.12.) 
We have just  proven for infinite horizon q v.~th stable profits, there is no difference betv~een 
EVA-based  valuat ion and DCF.  
Generall.,,, v,e suppose in the theoretical models  the distribution o f  profits to shareholders.  
Hov, ever.  in the valuat ion models  we  vet3 often a s sume  that profits are retained in the 
company  to f inance addit ional growth.  Therefore,  we must  a lways very precisel,, keep the 
same treatment o f  distr ibuted / retained profits across the whole valuation ~u. Let us illustrate 
both ex t reme cases,  ei ther  full distr ibution or  full retention o f  profits, v, ith regard to DCF and 
EVA on the follo~.ing example•  

Comparison between EVA based valuation and DCF 

Inputs: 

NAVo 100 ROE,..,o 12% 

3oC 10% ROE,.,, 10% 

T 

Distributed profits: NAV t = NAV H 

DCF EVA based 
approach approach 

Discounted Discounted 
NAV~ PaT EVA PaT EVA 
100.0 
100,0 12,0 2,0 10.9 1.8 
100,0 12,0 2.0 9.9 1.7 
100,0 12.0 2,0 9.0 1.5 
100,0 12,0 2,0 8.2 1.4 
100,0 12.0 2,0 7.5 1.2 

Retained profits: NAV t = NAVt. 1 + PaT t 

DCF EVA based 
approach approach 

Dtscounted Discounted 
NAV, PaT EVA PaT EVA 
100.0 
112.0 12,0 2,0 1.8 
125,4 13.4 2.2 1,9 
140.5 15.1 2,5 1,9 
157,4 16.9 2,8 1,9 
176,2 18.9 3,1 2,0 

'~ ~A'e :~.uuld come to the .;ame conclusion• if '.,.e used for Ihe first se~eFal .'.ears explicAI modehng and Ibr the rest 
ihe calculation of lermmal xalue as p,crpetuit.v (Ihis can he pro'.en in the ~ame v.ay) 
,o As a v,.arnmg remark, ho:,. e', er obvious• the author,, met Ihe practical ~.aluatton apphcailoos. ~ hlch cunsidered 
retained profits both as a componenl of discuunled cash 11o','. and the item increasing NAV and thus terminal 
~.31ue. 
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100.0 
100.0 
100,0 
100.0 

1 100.0 

~.um (t = 1 ..... 10) 

11 100.0 
l'erminal Value 

I 
~IAVo 

I 
~/alue 

12.0 2,0 6,8 
12,0 2,0 6,2 
12,0 2,0 5,6 
12,0 2,0 5,1 
12.0 2.0 4.6 

733 12.3 

10.0 3.5 
38.6 

112f3 

1.1 197,4 
1.0 221.1 
0.9 247.6 
0.8 277.3 
0,8 310.6 

341.6 

100.0 

112,3 

21,1 3,5 
233 3,9 
26,5 4,4 
29,7 5,0 
33,3 5,5 

31,1 10.9 
1193 

119p7 

Remarks:  In the case of retained profits, the value of invested capital (NAV) at the end of a 
period is given by the sum of the x alue of in,,ested capital at the beginning of that period plus 
retained profits. Since we are d=scounting onl) the cash flov. to shareholders, this case 
implies that the ,,alue according to DCF is gi~,en only b'. the terminal value. The crucial 
vulnerability of DCF can be seen in the weight, which is given by the terminal value. The 
higher portion of retained profits, the higher share of terminal value on the total value in the 
DCF applications. Although from the theoretical standpoint both EVA and DCF are deri',ed 
from the same background and therefore should bring the same results, we find EVA-based 
valuation as better reflecting the practical needs (see chapter 5.1.2). 

Remark:  Comparison of  Miccolis concept with EVA (see Miccolis (27)) 
The Miccolis concept concerning valuation of P/C Insurance Companies based on the term of 
economic (respecuvel.,, actuarial) value is de'~eloped from the same fundamentals as EVA 
based valuation. 

Economic value = Current net worth ( I ) + some adJustments (2) + discounted value of future 
earnings ( 3 ) -  costs of capital (4) = NAV (1+2) + MVA (3+4) 

Miccolis offers the same approach. The key contribution of EVA is a full acceptance and 
incorporation into current Corporate Finance Theor). 

5.1.2. Main Advantages of  the EVA-based Valuation Approach 

In the following paragraphs, we explain v,h) EVA - ",,.'hen correctly applied - can represent a 
good theoret=cal Iool for valuation of P/C insurers and can offer some advantages as compared 
with DCF. One can ask. ',,.hat are the unique aspects in the application of EVA-based 
~.aluation for P/C Insurers The most probable ansv, er, that there is nothing special, can be at 
the first glance surprising. But when looking at this issue in a more detail, this feature is 
becoming the biggest advantage of EVA applications. In fact. the clarit) and understandable 
interpretation makes EVA a very useful tool for valuation in insurance industry as v, ell, 
building upon the traditional discounted cash flow models. Generally, we can identi~' the 
following key arguments for the application of EVA-based valuation in the P/C Insurance 
industr)': 

2,0 
2,0 
2.1 
2.1 
2.1 

19,7 

I00.0 

119~7 
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I. Consistent with Shareholder Value tv|anagement. An emphasis is placed on the investors" 
needs. The EVA approach enables us to clearly identify the in',estors" requirements and 
expectations v. ith regard to risk-re'.'.ard trade-off. It makes the valuatton transparent. 

2. Consistent with a traditional accounting approach. Furhermore, the importance of CoC, the 
discount rate, is seen more easily in this approach. 

3. Consistent ~ith current corporate finance theoD'. The EVA methodology is thoroughly 
de',eloped and full))) integrated into current corporate financial theor}.. It is consistent w~th a 
firm's accounting statements. 

-I. Consistent x,.tth an actuarial approach. EVA as a tool for the measurement o f  profitabilit) 
and for ~,aluation purposes is easil) incorporated into actuarial DFA models. 

5. The economic approach is easily incorporated. The valuation analysis is derived from 
accounting statements and is thus easily transformed into an economic point of vie',,,, for NAV 
determination and consecutive cash flow projection. 

6 Standardization and general acceptance. The simplicit.v of the leading principles and 
comprehensibility has contributed to the general acceptance of the theor.'. What would be the 
contribution of a theoretical approach if nobod) understood it and therefore did not trust its 
results? 

7. The decomposition of an EVA xaluation allows a clear understanding of the components of 
the acquisition price. Adequac)' of the acquisition price can easdy be seen from the tv, o 
components NAV and discounted future profits. The NAV, the difference between assets and 
habilities, is the current state of invested capital. Future expectations of profitabilit.', are 
calculated as the discounted excesses of future profits. 

8. Treatment of terminal ,.alue. The determination of terminal value in a DCF application is 
problematic The treatment ofterminal ~,alue in the presented EVA-based valuation approach 
is based on the assumption that in the long term infinite horizon, the compan.', 's abilit) to beat 
the market in reaching a higher return on invested capital (ROE) than the average 
corresponding to CoC is restricted (see 5.2.3.2). This imphes that the terminal value in an 
EVA application should be set to zero, under the assumptton that ROE = CoC in the long 
term In comparison to the DCF approach, EVA represents a safer and more controllable tool, 
ensuring no o,,erestimation of future late profits and terminal value. 

9. A clear link between the profitabilit.~ and the ,,aluation o f a  compan.v EVA provides a 
clear connection between a performance measure for a gi~.en time period, the flow, and the 
value of the compan.', at a particular point in time, a state. 

5.2. The Application of an EVA-based Valuation to P/C Insurers 

We ha',e established a comprehensi',e theoretical frame~,,ork for EVA-based '.aluations, 
provided a comparison to the DCF approach, and described key contributions of this approach 
to the valuation of P,C insurers. We nov, shift our attention to creating procedures for an 
application to the P,'C Insurance industry. Appendix C provides an illustrative case study of 
an acquisition o fa  P/C Insurer from the CEE region, highlighting specific considerations. 
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We start ,,,,ith the determination of NAV from the basic equation (5.9) of the framev~ork we 
ha~.e developed. 

EVA, E~'Ar. , 
V = N A V u +  ,~"7~ (I ~-'--CoC)' ~ C o C * ( I ÷ C o C )  r"  

~'e compare the accounting and economic approaches to a valuation. An economic approach 
is preferable to an accounting approach since it better corresponds to the character of the P/C 
insurance business and the in~,eslors" point of ',iew. We then consider the issue of cash flow 
projection including the determination of the appropriate discount rate CoC. Figure 3 of 
Appendix A illustrates the main features of an EVA-based ',aluation of P/C Insurers. 

5.2.1. Determination of Net Asset Value (NAV) 

The value of equity, reported in accounting statements and follo~ving accounting standards, 
generally results from the application of ,,aluat~on principles to insurance assets and liabilities. 
There are other factors that potential investors should take into account. Net Asset Value 
(NAV) captures both the accounting term of equity and factors not captured by statutoD' 
accounting. 

NAV = (Market)  Value of Assets - {Market) Value of Liabilities 

The '~alue of NAV is the difference betv,'een assets and liabilities and depends on hov, 
particular items are valued. Accounting statements are the primat)' information source for the 
determination of NAV. However, NAV is an economtc approach to ~.aluation, including 
factors such as market values, best estimate adjustments, current market en,~ironment, and 
other factors to correctl.,, reflect the investors' point of v,e~,.. NAV includes the objective of 
the decision-makers. 

Generally. the determination of NAV consists of several steps: 
• Valuation of insurance assets 

= investments; other assets 
from statuloD accounting to economic approach 

• Valuation ofinsurance liabilities 
= technical reserves . 

from statutory accounting to economic approach 
• Other factors to be taken into consideration - e.g. sol',ency and other operational 

deficiencies 

To illustrate the interrelationships between indi'.idual steps and resulting, implications with 
respect to the determination of NAV, see also the I'ollo~ing figure representing the logic 
structure of this chapter. 
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Information source: 
Particular 

accounting standards 

Anal.vsis of: I I Adjustments to 
Ii Ke.,. principles ofapphed I I particular items 

acc standards 
21 Apphcalton o[ acc standards I I 

in the ~.alualed ¢nll['+ I [ 
I I 

/ ~ ~  Determination I 
+ . /  / I  of NAV 

E ' ' Mmual clonslszenc~ 

I projection 

Figure 4: Primary implications of our approach 

Accounting Standards and the Economic Approach 

Knowledge of accounting standards is not sufficient for our purposes. We must go into 
further detail and explore hov, the accounting principles '.,.'ere applied and interpreted in the 
compan,,'s books Many accounting experts are convinced of the exactness of accounting 
information and say there is onl'. one "true and fair" picture of boy, to report the financial 
condition of a firm. Hov..e'+er. there is alwaa.s a certain amount of uncertainty in this respect. 
It occurs mainly in the accounting of financial services firms where there is a substantial time 
dela.~ inherent in the business and room for differing interpretations (e.g. reserve adequac)). 
We also admit the danger of creative accounting, which after the recent accounting scandals 
seems to be possible anywhere, including countries with long and established traditional 
accounting systems. 

NAV determination considers not only proven accounting principles but also the way in 
which they were applied and interpreted in a particular company. 

The second part of this statement cannot be underestimated in the valuation process. We are 
of the opinion that a cerlain amount of skepticism towards information provided b~, 
accounting statements makes sense and can be beneficial for the valuation process. As 
discussed in Section 2, this rule of a little skepticism is becoming important in the P.'C 
Insurance business. 

Differences betv, een accounting standards arise primarily, from thew respective objectives. As 
an example, consider the differences between SAP and U.S.-GAAP. SAP se~'es as a basis 
for state super'+ision and focuses primaril) on surplus adequacy, the compan','s ability to 
meet obhgations to policyholders. Therefore, the balance sheet is a major concern. GAAP. 
on the other hand. is based on accrual accounting and provides information concerning the 
components o fa  compan', 's earnings. There are accounting standards ',,,'hose objectives are a 
basis for tax calculations, and so on. 
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The objecti~,es of an accounting standard further determine its underlying principles. In this 
respect, one criterion for classification can be the extent to which best estimate practice 
(market point of view) vs. the prudence of accounting principles (conser',atism) are used. 
Accounting standards can also vary from the ',,.'eights that are gi',.en either to accrual 
(malching concept) or cash flow principles. Furthermore, the valuation at historical costs vs. 
market (fair) values shows the inconsistency between accounting standards. We can also find 
accounting standards with some specific instruments and tools for insurance business, v, hich 
can be contradictory to other accounting principles (e g. equalization reserves). 
With regard Io unification m the field of P/C Insurance accounting, there are currentl.', two 
leading accounting standards - US-GAAP in North America (but also for Europeans 
companies which are traded on the U.S. stock markets) and IAS in Europe (currently for 
insurance business under reconstruction). 
There is agreement that the trend ',~,ith respect to valuation of insurance assets is in the 
direction of application of(fair) market prices. On the other hand. concerning the valuation of 
technical reser',es, the standards follow the principle of conservatism and do not alloy, the 
discounting of reserves. Furthermore, unforeseen losses ! profits are recognized immediatel~ 
(e.g. premium deficiencies). The booking of equalization reserves is generally not allowed 

The Economic Approach 

One oftbe theses of our approach emphasizes the preference of tbe economic approach, being 
in line ,,,,ith the investors' point of vie.,,... This hypothesis ~,.as also supported in the analysis of 
specifics of the P/C Insurance business and their impacts for valuation, where v,e have 
intuitivel) accepted the necessit)' of implementing an economic approach to ~,.aluation, as 
better reflecting the specifics of P/C Insurance business. We are really convinced that the 
long term nature of the insurance business, uncertainty, and dependence on the legal and 
economic environments imply that the valuation methodolo~' is an application of the 
economic approach. In our view. accounting standards cannot capture all the factors. 
But we ha'~e not defined this term yet. At the first glance, ever2,one has a certain ~dea of,.,,hat 
under an economic approach is to be understood. But there is no unified definition of this 
term in the economic practice. The economic approach should generally extend the 
accounting information using the analyst's best estimate adjustments and other factors 
that need to be taken into consideration to correclly reflect the investors' point of view. 

Based on that, we could define the economic approach according to the follov,'ing principles: 
I. Long-term, prospective approach 
2. Market ~,aluation, best estimate practice 
3. The rule ofpresent value (time value of mone2, ) 
4. More priorib' given to cash-flow rather than accrual accounting 
5. More focus on the balance sheet instead of P&L 
6. All knov, n faclors must be considered 
7. All knov, n uncertainty must be considered 
8. Partly subjective character highlighting the analyst 's role 

Theoretically, we could make the following ver~ strong statement. A clear application of the 
economic approach, and an inclusion of all current factors in the NAV determination lead to 
the valuation of a company determined only by NAV. In this case, NAV ',~ould implicitl', 
include the firm's abilit~ to generate profits corresponding to the risk of an in,,estment, above 
a "'normal" level. Goodwill is an example. The second component of our valuation equation, 
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the discounted excess of future profits ~,MVA) from cash-flow projections, ~,.ould correspond 
exactly to the level of cost ofcapital, v, ith an implication that MVA is zero b,, definition. 

Of course, precise applications of an economic approach in the valuation models are only a 
theoretical issue However. understanding this extreme case is important for the application 
of a particular economic approach in practical situations. We must further state the necessity 
of consistency betv, een the NAV determination and cash-fire,, projections in the economic 
approach (see Figure 4). ]'h~s consistenc> must be fundamental to valuation modeling v. ith 
decisive practical implications. 

To clari~' the entire complex relationship of valuation by accounting principles vs. the 
economic approach, we shay,, detail from several balance sheet items as well as other factors 
considered in the NAV determination. 

I. I n v e s t m e n t s  I. L iab i l i t i e s  
I) Fixed income 

- available for sale 
- held to maturil)' 
- trading 

2) EquiD' securities 
- available for sale 

- t rad ing  
3) Short term inveslments 
4) Mortgages and other loans 
5) Investment  real estate 

I I .  O t h e r  a s s e t s  
- thereof: DAC 

I) Claims reserves 
2) Unearned premium r e s e n e s  
3) Equalization and catastrophe reser~'es 
4) Other Liabilities 

II. S h a r e h o l d e r ' s  equity ( N A V )  

- thereof: other deferred expenses 
Figure 5: Simplified balance sheet of P/C Insurance Company 

The analyses of balance sheet items as sho',~,n on the figure above will be explored ~,.ith 
respect to: 

I. Country accounting standards (CAS) represented b.'. Czech accounting standards as the 
base information source 

2. US-GAAP (pla3. ing more and more important role in Europe as '.',ell) 
3. Economic.approach 

Our goal is not to pro',ide readers with a comprehensive description of precise accounting 
treatment. On the other hand, the presented o,,erviev, will be aimed at some selected specifics 
and their impacts and consequences for valuation in order to record the most problematic 
issues and to keep the complexit) of the paper. Whereby the strongest emphasis will be 
placed on the application of the economic approach. 

Issues to be addressed are as follows: 
Investments (book ~s. market  values) 
Treatment of  DAC 
Other  assets (w/o DAC) - e.g. deferrals  
Receivables from reinsurance and direct insurance 
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Claims reserves (reserve adequacy, reserve discounting) 
Unearned premium reserves (premium deficiencies) 
Equalization and catastrophe reserves 
Solvency requirements (statulory, RBC) 
Other operational deficiencies 
Treatment of goody, ill (elimination) 
Tax considerations (taxes, deferred laxes) 
Other market adjustments (cleaning of balance sheet) 

Investments 
The treatment o f  m~.estments across different accounting standards can ',.,a O' in man) respects. 
First, the classification by in',estment classes and the subsequent accounting valuation is o f  a 
big concern. Furthermore. the dentations of  book and market values, the issue concerning 
recognition o f  changes in market values in P&L and balance sheet and so on represent the 
areas in v,'hich analysts should be interested. The differences in investment valuation can be 
,,ery substantial. For instance, under US-GAAP, most bonds and equities are carried in a 
balance sheet in market values, except for "held to matur i t )"  ~hich is carried in amortized 
costs. But there are still certain items in an investment portfolio, such as real estate, ,a, hlch are 
',aiued at historical costs. On the other hand, under Czech accounting standards (until 2001 ) 
',',ere the unrealized losses recognized both in P&L  and balance sheet immediately after the.', 
occurred, v.hile unrealized gains (hidden reserxesl were forbidden to be considered either in 
P&L or in balance sheet (£he principle of  prudence). Hov, ever, the ~'.orld'.~. ide trend moves on 
to umfication in the direction of US-GAAP, representing a more market-orientated approach. 
Therefore, the clear idenhfication o f  valuation principles utilized in the accounting approach 
to investments is a critical assumption for the further treatment o f  investments in the 
economic approach. 
But not onl} the used accounting standards should ser~.e as an outgoing base for investments 
valuat+on according to economic principles. There are other factors such as market l iquidity, 
information as,,mmetry on the market, the availabil ity o f  credit ratings or market efficienc.',, 
v.hich should be taken into consideration, as '.',ell. It is clear that all these points are of  less 
importance in the de',eloped markets, which 'aorks efficiently. But ,,~hen valuing an 
investment portfolio of an insurer from a de'.eloping econom.',, it can be a crucial issue and a 
point of many struggles between negotialmg parties. Here, ',~e can find the cases that despite 
of the a~,adability of market prices ~e cannot use since the', do not reflect the rea[i~ due to 
e.g low market hquldttv. 
Generall), '.~e can sa', that the less liquidity and efficiency in the market, the higher space 
(and probabl', necessity) for analyst's adjustments above book and "'quasi-market" prices. 
To sum up, the valuation of investments according to an economic approach should follow as 
much as possible market prices (where available), whereby other factors need to be taken into 
consideration as ~ell. " " 
The above statement has been related Io investment portfolio of an insurer covering technical 
reserves. In addiuon, an insurer can hol d s t ra tegic  investments  in subsidiaries, ,.,.here the 
valuation differences between accounting standards can be completel.', different. The best 
way is to exclude these inxestments and to value them separately. In th~s case, the role of 
analysts ','.'hen ,.aluing according to economic approach is even more important. 

Deferred acquisition casts (DAC) 
Genera[I.',, the accounting standards allow to defer the policy acquisition costs, follo,.~.mg the 
accrual principle of malching ber,~een premium incom~ (as earned premium) and the 
corresponding expenses (matching concept). The range of polio.', acquisition costs ho,.~.eser, 
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which are supposed to be deferred according to earned premium income, can vaD' 
substantially. Under SAP for instance, the pohc)' acquisition costs are included into P&L as 
the) are incurred (no DAC). On the other hand, under US-GAAP both commissions for 
renewals and nev. business and internal acquisition expenses are to be deferred in proportion 
to earned premium. The Czech accounting standards represent in this respect a compromise: 
here onl'. commissions from he.`', business are allo~,.ed for delerrals. 
Concerning the application of  economic approach. ',~e do not see any problem with deferrals 
of policy acquisition costs, under the assumption that there is a clear link belv, een DAC and 
future business. Furthermore, if the time horizon for amorhzation of  DAC is restricted to one 
rear.  it should not pose a problem for the valuation model to keep the consistent treatment 
with cash flow projection as well. 

Other assets (wlo DAC) 
We also recommend ve D careful analysis of  other assets (v,/o DAC), which can include some 
very doubtful items. Generall ' . ,  the majoril..` of  other assets are carried in historical costs. 
First, we v.ould suggest d~.iding this part of balance sheet into those items. '.shich are 
connected to the insurance business, and the remaining ~tems, not directly influencing the 
insurance business The next criterion for classification o f  other assets should be, .`,,hether 
the)' reall) result in future economic benefits. Whate~.er kind of  other assets not directly 
connected ~,.,ith insurance business, '.'.e propose to value them according to the economic 
approach as conservati',el.', as possible, mainly ',',hen the effects on future business are 
negligible. The .`aluation at liquidating prices ~,.e find as the most feasible solution in this 
respect 
Furthermore. v.e ad',tse pa) ing  close attenuon to all deferrals (excluding DACI and other 
similar items. The) can be treated under different accounting standards in a different ~a.', 
completely. The detailed analysis o f  these items, ',sh~ch can be shown in the balance sheet 
either explicitl) or are hidden under tangible properLv (and amortized), should not be also 
underestimated. The clear connection to future business Iprofits) would be the decis]',e 
criterion. We are convinced, that an anal).st cannot go too far v.rong b.'. following the 
principle thal all doubtful assets are to be charged directl) against NAV. 

In summaD, s~e see the following main rules, s,.hich are to be applied by the transmission of  
other assets into economic approach: 
• Clear connection to insurance business 
• Clear connection to future p rof t s  
• Elimination of  an) accounting pla.',ing ',.`ith deferrals 
• Preference of  cash-riov,' to accrual accounting 
• Contro',ersial items are to be excluded from N A V  

Receivables from reinsurance and direct insurance 
All recei',ables either from reinsurance or direct insurance should be according to economic 
approach reclassified with respect to probabilit)' of  getting mone.~ back. The appropriate 
revaluations should be charged directly against NAV. In the case of  recei',ables from 
reinsurance, we can use the rating as a measure of  default probabilit.',. 

Claims reserves 
Concerning valuation of  claims reser',es, ~,,e must explore t',,.o issues: discounting and 
reser~.es adequac.,,. Generall.~. the accounting standards require claims reserves to be 
estimated at their uhimate amounts, in ~.`htch claims are expected to be settled. There can be 
some exceptions. '.,,here reserve discounting is allov, ed - e.g. under US-GAAP mainl.', for 
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claims ,.,,ith fixed and determinable payments (e.g. pensions from worker ' s  compensation). 
Hov.eser. the majornty of  claims reserses are valued '.*,ithoul reflecting time '.alue o f  money. 
The reason for non-d~scounting is that most claims rese~'es are estimates and the amount and 
timing o f  the payment cannot be determined '.*.ith cerlainty (principal of  conservatism). 
Howexer, non-discounting means that expenditure is not matched with corresponding income. 
While all claims provisions must be provided ~*..hen the premnum is earned, the investment 
income. *.*.hich may be used to pay' the claims, is not recognized until a later accounting 
period. This leads to different results (and equity, development) in both cases. 
Let us illustrate the isst.e of  profit recognition on the follos~ing figure. It is based on the 
assumption that claims reser*.es v.ere set correctl,, (no run-off resuh)  You can see that in the 
case of  non-dTscounting the profits are recognized later on. 

Premium earned period 

Cumulalive orofil 

Run-off of claims reserves 
• 9 ID 

Discounled 

i t t I -"'"'""" 
a , ~ t  1 1  °...........'"'"'""" 

""'"'"",.........,... ............,,........-"" "'"'""" 

"""'""-.. ...'"'" Non-Dlseounled • .. ......-" 
"'"'-.......,......,,."" 

..--....- 

Time 

Cumulali~¢ joss 

Figure 6: Profit recognition - discounting vs. non-discounting o f  claims resen'es  

Based on the definition of  economic approach to valuation, it is obvious that reserve 
discounting is Fully consistent with this concept. Hov, ever, v.e can meet many possible ways 
in practice ho',*, to cope ",,,ith this issue in the valuation modeling. Besides the theoretical 
correctness, ',,,e must always take into considerations other practical aspects as v, ell. 
Neverlheless. *.,,.hat ah*. ays matters is the mutual consistency o f  the selected treatment. 
Fnrst, we can keep claims reserves exclusively at discounted values, ",*.hat represents the most 
sophisticated solution requnring ',er) precise and consistent treatment across the *.,.hole 
valuation model. In this case, we must be aware of  the fact that any' change in the 
assumptions regarding future interesl rates or inflation v, ould immediately impact, besides 
cash flow projection, the value oFNAV as well. The other way is to keep rese~e  discounting 
on a separate account, enabling to balance both transparency and economical correctness. 
Last but not least, if *.re decide not to consider rese~'e discounting nn the valuation model, 
then we must keep in mind that all changes in variables effective from the future must be 
reflected later on in the cash flow projection. 

Reserve a d e q u a c y  is the other acluarnal issue. Although man} accounting standards are 
derived from assumptions of  a best estimate (neither o,,erestimation nor underest imauon) 
*.aluation practice, the principle of prudence ns applied more widely than the best estimate 
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approach in man.,. European countries. Whatever accounting standard is applied, a detailed 
analysis of reserve adequac.', is required. 
Following the economic approach, we must consider all reserve redundancies or deficiencies, 
directl.,, impacting NAV. It means, that according to the economic approach the valuation of 
claims reserves should follo,.~, best estimate pracuce, ensuring the correct states of the 
outgoing balance sheet as of the date of appraisal. 

Unearned premium reserves 
Concerning premium deficiencies (~,.hen the earned premium from business m force is not 
sufficient to cover expected claims and expenses), some accounting standards IUS-GAAP. 
IASI require creanon of premium deficiency reserves immediatel', after they are recognized. 
On the other hand. there are man',' other accounting standards (e.g. Czech accounting 
principles), which do not address this issue so precisel.~. The application of premium 
deficienc.', reserve means the direct recogmt~on of expected future losses in the balance sheet 
against the decrease of NAV. That is fully consistent v, ith the economic approach. 

Equalization and catastrophe resen'es 
This item represents one of the most contro,,ersial points, on :,,hich different accounting 
bodies have not completely agreed yet. In many European countries, Ihe insurers are still 
obliged Ior allo,.,,ed - depends on interpretation) to create equahzation and other similar 
reser,,es in order to smooth the fluctuations in claims de,,elopmem. 
But according to both leading accounting standards (US-GAAP. IAS). thts type of reserve 
does not represent a certain habilit2, and therefore is not booked as such. On the other hand. 
both standards, supported by the state regulation ('sob.ency, RBC applications), argue that 
catastrophic risks are to be zmplicitl.',' included in the required level of capital. In an economic 
approach to valuation, these items are nol recognized as liabilitmes, consistent with US-GAAP 
and IAS. We must reclassify them as NAV in cases where they are booked as liabilities. 

Solvency requirements 
At the beginning, it is v, orlh distinguishing between statutom2, sol,~enc 3 required b) the state 
supervision and the required risk capital (risk sob.ency), resulting from the risk profile of an 
insurer. 
First. as far as the statutory solvency requirement is concerned, it is for sure that an)' deficit in 
this respect musl be fully considered in the determination of NAV. The required statutor-: 
solvency is vet),, often Iov, er than that one corresponding to the risk profile of an insurer, 
~vhose level should support continuing business under the defined probabilit) of failure over a 
certam period. Once ,.,.e determined the level of required risk capital, the negative gap as 
compared ,,~,ith current available capital must be fully reflected in the delermination of NAV. 
We propose to deduct the ~ hole capital deficienc.s from NAV of a target compan.', in order to 
determine the acquisition price. The explanation for it can be found in the argument, that the 
total costs of an acquisition consist not onl) of the paid acquisition price but also the 
additional capital injections, '~,hich are necessar) to co',er undercapilalisation. In order to 
insure future profits (ongoing concern), the target compan.', must be adequatel.', capitall), 
equipped. In other words, the acquiring company must provide the target company v. ith 
additional capital to generate future profits from an acquisition. When '.~e deduct the deficit 
m solvency from NAV (as a component of acquisition price) and consequenll) suppose 
capital increase (in fact another component of acquisition price), we are sening the consistent 
outgoing level of capital for cash flow projection. All the relationships concerning solvenc) 
requirements and their impacts on valuation are illustrated on the following figure. 
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Undercapitalized company [ ~[ Ongoing of business is not ~ Capital increase 
NAV0 ] "[ ensured ~ CI 

N A V I  

~[ Ability to generate future ] ~[ MVA 

Figure 7: Solvency requirement considerations 

Other operational deficiencies 
If there are some deficiencies in the operational part of  the target company, which in fact 
represent liabilities requiring future investments, and are not shown in the accounting 
statement, they should.be reflected in the NAV determination according to the economic 
approach as well. The ongoing concern should be the criterion for recognition of operational 
deficiencies (the company's insufficient IT-infrastructure). 

Elimination of goodwill 
We are of the opinion that goodwill should be eliminated from the assets, when determining 
NAV according to the economic approach. Goodwill, in its theoretical sense, represents the 
ability of a company given by its staff, market position and operational and sales 
infrastructure to generate future profits. Of course, this ability matters in the valuation. But 
in our concept it is considered on another place - in the cash flow projection. If we kept the 
value of goodwill in NAV, we would count it twice (once under NAV and for the second time 
in cash flow projection). 

Other market adjustments (cleaning of the balance sheet) 
Under this item we understand all other analyst's adjustments, which are in line with the 
applied economic approach to valuation. They can result either from "creative" or else 
doubtful accounting, with the aim of cleaning the balance sheet as of the date of appraisal. 
For instance in the CEE region, the authors met with several cases of distrustful accounting, 
creating an artificial picture about business volume and so on. Therefore, it can sometimes 
prove very difficult for outsiders to become fully aware of the real economic sense hidden in 
the information provided by accounting. 

Tax considerations 
All above adjustments should be also considered with respect to their relevant tax impacts. 

Summary of NAV determination (from accounting to the economic approach to valuation 
Equity (from statutory accounting) 
+/- market adjustments to investment portfolio covering technical reserves 
+/- market adjustments to strategic investments 
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- elimination of goodwill 
÷1- treatment of DAC 
+E- market adjustments to other assets 
+/- reser~.es adequac,, of claims reserves 
+ / -  reserves discounting 
+/- premium deficiencies 
+ elimination of equalization reserves 
- sol,,enc.,, deficiencies 
- other operating deficiencies 
+/- tax consideratmns 
NAV 

5.2.2. Determination of Cost of Capital  (CoC) 

One of the most important inputs to cash flo',,, projection is the appropriate rate at v.hich 
future cash flows are discounted (Cost of Capital - CoC). Given the specific capital structure 
of PIC insurance companies (since premium ~s received in ad,,ance, there is no need for debt 
financing), the determination of CoC involves onl) the quantificauon of the cost of equity 
capital. CoC is to be interpreted as the rate required by investors to make an investment in the 
firm's eqmt.`.. Investors' expectations ,.,dth respect to risk and return are reflected in this input. 
From the managers' point of ,,iev,. on the other hand, n represents the minimal return to be 
reached. Although the setting of the discount rate is alwa)s partly arbitrary m the valuation 
modeling, the majority of models are deri`.'ed from the principles of the Capital Asset Pricing 
Model ICAPM). We introduce this basic concept of financial theor). After that, v.e address 
some issues specific to P,'C insurance companies. 

5.2.2.1. The CAPM 

The Capital Asset Pricing Model ICAPM) ~s deri',ed from the assumption that '.~,e can 
distinguish between firm-specific divermfiable risk and s',slematic (market) risk, which 
affects all im.estments m the market and cannot be diversified. The in,,estor is re`.~arded onl) 
for s,,stematit: (market) risk, since firm-specific risk can be avoided through diversification. 
The theoretical foundations for the CAMP '.,.ere established b,, the paper v, ritten b.~ H. 
Markowitz (24). Here. Markov, itz presented the theoretical concepl of portfolio 
diversification and thus gave birth to the modem portfoho theory. The CAPM itself is 
connected with three names of W Sharpe (30). J. Limner (23) and J. Tre)nor. The) extended 
the Markov, itz mean-variance model by introducing the beta factor (the risk premium as a 
function of beta). 

According to the CAPM, the expected (required) return on securit.`. Unvestment) R. is given 
b) the sum of the risk free rate and the risk premium. 

Rj = Risk free rate + Risk premium (5.13) 

The risk premium depends on the systematic risk (= market risk which cannot be ehminated 
through diversification). It ,s the contributton of the securit) (investmentj to the o,.erall 
market risk. measured by the factor beta. It can be v.ritten as: 

Ri = Rt + p * I E(Rm) - Rr l  (5 .14)  
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where. R, = the required re tu rn  on the security (investment) 
R[ = Rtsk free rate 
[ E(Rm) - Rf] = Expected market risk premium 
E(Rm) = Expected return on market portfolio 
13 = Beta of the securib' (investment), defined as the portion of the total market 

variance v, hich is explained by Ihe security [investment). 

Replacing the required return on the securit) (investment) R, by the rate of  CoC, v,e can 
~rite: 

C o C  = Rr + [~ * [ E(Rm)-  Rr]. (5.tS) 

We need three mputs to CAMP to determine the rate of  CoC" 

T h e  Risk Free Rate 
The risk free rate is the yield on a risk free asset. An asset is risk Free ff its expected 
return can be determined v. ith certaimy. The implication is that there is no default and 
reinvestment risk. Therefore, the risk free rate should be optimall~ calculaled from 
govemmem zero-coupon bond. Concerning the maturity of  such a bond, both models 
use the short term y=eid on T-Bills and long-term ytelds on, government bonds We 
recommend that the maturity (duration) of  the risk free asset should correspond to the 
duration of  the cash flov, o f  the in'~eslment. An acquisition valuation utilizes the yield 
to maturib'  of  a long-term (e.g. 10-15 5'ear) gox ernmem zero coupon bond. If there is 
no zero coupon bond with the above characteristics available in the market, the pasoff  
pattern can be decomposed as a series of zero coupon bonds. 

The  Risk Premium 
The risk premium is the additional rate requwed b) investors to im, est in the market 
portfolio (in the original ,,ers~on of  the CAPM it =s understood to be overall weahh in 
the economy). It measures ',,.hat insestors, on average, demand as an extra retunl for 
investing in the market portfolio relative to the risk free rate. In pract=ce, we usually 
estimate the risk premium b) considering the historical performance of  stock market 
indexes as compared to the yields on risk free assets. Since both the risk free rate and 
the yield on market portfolio rmplicitly include the effect of changing inflation rate. 
the historical risk premium is already net of  inflation effects. We use a historical 
aserage over a long time horizon in the calculation The geometric mean seems to be 
more appropriate than the arithmetic mean. Generall),  the risk premium is assumed to 
be in the range of  6%-8% ~t. 

Beta 
Beta measures the risk that the investment adds to the market portfolio. Beta of an 
asset is defined as the covariance of  the asset (R.) v.ith the market portfolio (Rml 
divided by the variance of  the market portfolio. 

L, For mslanc¢, m the case of determmalion of CoC for a P C Insurer from Ihe devclopmg counlrms (¢ g. CEE 
region) v,¢ can face the problem 01" no available Iran,parcnl historical data for the calculallofl o f  market risk 
premium and insurance bda., b{ere. ~.~.e can e=ther use one of  lhe modificd approaches for de'~elopmg economies 
or the information pro'.ided by rating agencies (risk prermum resuhing from coumry so', erogn rating) or our 
ot~ n anal} sl's estimation. 
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[~ = coy (R~, R,) / v a r  (Rm) = c o r r  (R,., Ri) * {3" (R,) / O (Rm). (5.16) 

h tells us what portion of the total market variance is explained by the respective asset 
It is clear that the higher the correlation between the respective asset and the market 
portfolio ~+ and the higher the standard deviation of  that asset, the higher the amount of 
s~stematic ask which is inherent in that in'+estment as compared ',~ith the overall 
market 
In the CAPM, the risk premium for an in,.estment is captured by the beta factor. Beta 
is usuall3 estimated b) regression of  historical data. 

In summau', when. 
13 > I : the asset is characterized b) higher fluctuation than the market portfolio, 
is thus more risk)', and the investors require a higher return than on the overall 
market portfolio, 
13 < I: the asset is characterized b) lower fluctuation than the market portfolio, is 
thus less risky, and the investors require a lower return than on the overall 
market portfolio. 
13 = I: the asset is characterized by the same fluctuation as the market portfolio, 
and is as risk) as the market portfolio 

Cri l ic ism of the C A P M  

Recently, se',eral objections have emerged to the standard version of  the CAPM. They 
concern both the praclical evidence and its theoretical foundations. There are several studies 
in the financial literature den' , lag the empirical vahdit.,, of  the CAPM (e.g. market anomalies 
such as size effect, January effect, etc L~). Concerning the theoretical foundations, academics 
argue that the static (single-period~ CAPM does not full) address the issues. This criticism 

is resulted in Merton's  intertemporal CAPM and the consumption CAPM of Breedon . 

An alternatjse theou,, to the CAPM is represented by the Arbitrage Pricing Model (APT). The 
theoretical foundations of  the APT were established in the paper of  S. Ross (28). Like the 
CAPM, there are Iv,'o sources of  risks: firm-specific (di'+ersifiable) and market (systematic. 
undiversifiable). The expected ask premium is affected b) undiversifiable risk. While there 
is onl) one source o f  market risk captured in the market portfolio m the CAPM, the total risk 
premium under the APT consists of  multiple risk premiums, each one relating to a specific 
market risk exposure. 

Despite all the objections, the key contribution of the Capital Asset Pricing Model (CAPM) is 
that it provides an insight to the relationship between required return and risk. It recognizes 
that only market (systematic. undiversifiable) ask matters. The distinction bet~seen 
diversifiable and undi,,ersifiable risk. as the basic underlying assumption of  the CAPM. has a 
timeless v.",lid ity. 

': It imphes the smaller dl'.ersff~canon effect b~.' adding Ihe asset to the markel ponloht). 
'~ For instance, see lhe '.,.ork of Fama E F.. French K R Size and Book-m-Market Fa¢lors in Earnings and 
Relurns. Journal of Finance 50. Ig~5 The.', sho',,.ed iha| slo+,:ks of small compames and those ,.,. ah a high book- 
to-market r:.tllO re:lch abo'.e a,eragc return +, 
" Menon R C An Inlerlempt~ral Capll31 Asset Pn+:ing Model: E,+:onomelrica+ 'k'ol 4 I. No 5. September 1973. 
" Brecden D T An Interlemporal Capital As,.el Pricing Model t¢llh Stochastic Con+.umptlon and In,.estmenl 
Oppononlties. Journal of Fmanci~l Economics. September 19~q 
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Currentl,',, the CAPM represents the standard and most v,'idel,, used model for measuring 
market risk in practice. Because of its elegance and simplicity, it is also v, idel.,, accepted 
among practitioners in the P/C Insurance industr3. 

5.2.2.2. Applications to the PIC Insurance Industry - Selected Issues 

The following questions are a big concern to actuaries 

What should the required rate of CoC be for the P,'C insurance industr3? 
What is the riskiness of the P/C insurance companies as compared with other 
corporations? 

There are no unique answers to these questions. On the one hand. we find arguments 
justt~'ing a higher rate of CoC. assuming that P.'C insurance companies are more risk,, 
because of their long tailed business, catastrophic risks, and Iov,'er transparency to investors. 
On the other hand. the analysis of historical betas refutes these arguments. This issue is not 
completely sol',ed either in theory or in practtce. Hov.ever. we beheve there ~s no systematic 
reason to treat the determination of CoC in a completely different ',va~, than in other 
industries. This statement ]s in line ~,.ith our thes~s that the higher or lower riskiness of the 
P/C insurance industr3, should be considered primarily in the appropriate amount of risk- 
adjusted capital. The implications are as tbllows" 

Risk profile =:. Risk adjusted capital =:. Required rate of return (CoC). 

With regard to the application of the CAPM in the P.'C insurance industr3 'n', v.e briefly 
address the follo~,, mg issues, which are often discussed among the practitioners: 

Insurance Betas 
We generally assume that the beta of the valuated compan• is the same as the industry 
beta. Nevertheless, we must keep m mind that such a simplification neglects the 
differences in the risk profile both on the investment side (asset risks) and the 
under'.sriting side (underwriting risks) Generally, the betas for the P/C insurance 
mdustr3, are estimated to be less than I. 

The LOB Specific Discount Rate 
In some valuation models, ~se meet v.ith LOB specific discount rates, rellecting 
differing risks b.', LOB. Recalling the implication of the previous paragraph, R2sk 
profile =:. R~sk adjusted capital =:. Required rate of return (CoCt, we prefer to apply 
the same rate of CoC across the entire finn. First, we consider only the systematic risk 
of the particular LOB in the amount of risk-adjusted capital. Thus, the riskier LOB 
implies a higher amount of required.capital and a higher expected (required) profit 
margin. Then. the risk-adjusted profitabdtt.,, is compared to the benchmark orthe CoC 
for all LOB This procedure is fully consistent ',,.ith the EVA-based valuation 
approach. Here. the item costs of holding capital, as a product of CoC and risk- 
adjusted capital ~7, implicitly include the riskiness of a particular LOB. 

Conclusion 

~' For further dlscus.qons ',~.e are refermg to Felblum $.. Thandt N. Financial Pricing Models for Propen:,- 
Casualu, Insurance Producls. rhe I'ar~et Relurn on Captl~l. CA'5 Paper. 2003 
~ As a remark '.~.e assume that the invested capital ts allocaled IO [.C)I~ on a risk-adjusted basis. 

583 



The rate of CoO is the critical input in any DCF IEVA'I based ',aluation It represents the 
discount rate of future cash flo,,ss. In an EVA-based valuation, the alternative costs of holding 
capital are reflected m this input. Although its determination follosss a particular theoretical 
concept, usuall.v CAPM. the resulting rate is alwa)s arbitrat3.' and is influenced by subjective 
factors as bell.  Many questions specific to the business of insurance arise in an application to 
the P/C insurance mdustr3. For this reason, the rate or Cost of Capital and its individual 
components should be anal3zed ve~' carefull,, and tested by sensiti,,it2,.' anal3sis. Small 
changes in this parameter substantially impact the range of possible outcomes. 

5.2.3. Cash Flow Projections 

Cash flo,.,, projections together with CoC determine the second component of an EVA-based 
',aluation approach termed Market Value Added (MVA). MVA is defined as the sum of 
projected profits net or costs of holding capital at discounted values. MVA can be a 
substantial part of the acquisition price value. The calculation consists of explicit cash rio'.,. 
modeling and determination of terminal value, which ~s discussed later in this paper. 

V = NA\.,0 ÷ MVA = NAV0 ÷ , ~/.. _ _ E  l",.I, + E l ' 4 r .  , 
,~ (1 + CoC)' C o C * ( I + C o C )  r 

We ,,,,'ill focus on the most important aspects of the cash riot'.' projections ofP, C Insurers The 
projection of cash flows sets a higher modeling standard than. as an e\ample, the 
determination of NAV. which is influenced mainl) by the accounting methodology and the 
scope of the particular economic approach 

The anal.vsis orcash flow projections starts with t~,.o basic assumptions: 
I. Ongoing concern. The assumption that the entit.', ,sill run its business as an ongoing 

concern has a basis in the purpose of the acquisition valuation. 
2. Consistenc.', The cash flow projections should be consistent with the NAV 

determination v.ith respect to the valuation principles, e.g. economic approach ",s. 
accounting standards. 

For an ongoing concern, the future cash flov, s can be divided into: 

• Run-offofexist ing business 
• Future business 

What are the crucial issues with respect to run-off business'? Recall how NAV was derived 
and all the factors included in the economic approach The runoff of existing business is 
substantiall.,, influenced b> the extent to which the economic approach is utilized in the NAV 
determination For instance, if  ",,.e utilize a clear economic approach including the 
discounting of reserves, then the runoffof  existing business, except for the unearned premium 
reser,.'e ~, ~ould already be fully considered m NAV. Hotvever. as tse ha',e said before, the 
application of a clear economic approach does not al~'.a)s fit the needs of practical valuation 
modeling. For that reason, we are precise in following the exact appraisal principles of NAV 
determination. 

'~  D~:pgnds on Inlerprelatlons Under  certain c i rcumstances ,  run-off  from unearned premium reserve can be 
underslood onl.~ as  an apphcal=on o f  accrual  prm..:lple in a¢cotlnlln~. I malching } So. the economic sense behind 
that i,~ shghll.v dllTerenl from Ih¢ run-ol'l" o f  c la ims  r,a~er,.e.~. 
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The run-off of existing business consists of the following t'~,. o items: 

Run-off of unearned premium reserve. Unearned premium reserve (UEPI represents 
the deferral of v, ritten premium, according to pro-rata temporis. The release of UEP ~s 
related to the incurred losses in that the incurred loss is written as a claims ratio to 
earned premium in the cash flov, calculation. The calculation includes operational 
expenses and the release of DAC. Investment income is included since it is generated 
from assets co',ering both unearned premium rese~'e and claims reser'.es. The 
projection of UEP run-off should be in hne v,'ith all premium deficiencies ! 
redundancies in the NAV determination. In other v, ords. UEP run-offcan be seen as a 
matching concept in the accounting 

Run-off of claims reser,,es. The discounting of reserves is a key parameter in the run- 
off of claims reserves ~9. The ,.alue of the run-off equals zero if the discounted 
reser,..es are best estimate values since realized m,.estmenl income is offset by the 
amortization of the discount. If the claims reser'.'es are undiscounted, the run-off 
consists of the investment income that the assets supporting the undiscounted claims 
reserve yield. We assume the reserves are set up correctly. 

The tail of the run-off of existing business is of crucial imporulnce for cash flo~.,, projection. 
The long-term nature of the insurance business necessitates that the anal',st examine the 
impacts of variables such as inflation, claims inflation, or interest rates on the run-off of the 
reser~,e. 

We now explore the various aspects of cash flov. projection taken into consideration ",,,'hen 
creating the appropriate valuation model. 

5.2.3.1. Scenario Testing vs.  Stochastic Analysis 

The first question to address is whether to calculate cash-flow projechons based on scenario 
testing, stochashc analysis, or a combination of both. There are man.~ studies discussing the 
advantages and disadvantages of both approaches ',sith respect to the objectives of the 
applications (e g. for details see Feldblum (17). (23)). We briefl.', describe the relevance of 
the issue to valuations. 

Scenario testing represents the deterministic approach to modeling, ,.,.here static set of input 
'.ariables is used. The sets of input assumptions are determined by an analyst as reasonable 
scenarios of the future development. Therefore. the mutual consistenc,, betv.een inputs is of a 
great concern. We can use a deterministic model to answer: "What happens, if ...?" 
questions. Furthermore, the extensions b,, sensiti'~il.,, and stress testing are of a big 
contribution. 
The authors of (23) summarized the main advantage of deterministic scenarios as follows: 
"'One advantage ofdetermimstic scenarios is that the.', can be tailored to reflect management's 
judgment and develop a consistent, plausible expectation about the future. Therefore, it is 
important that the economic variables describing the scenario be consistent v. ith each other 
and with the underwriting and other ~.ariables. as v.ell." 

'~ Besides the e~.-posl adequac.', of claims reser:es re~,Ulllng from the SlOCha_~lic characler o( lhe insurance 
process 
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Stochastic anal)sis,  on the other hand, uses '~ariables thal are selected randoml) from 
probability d~stributions. It enables you to quantify some function of  the variables, such as 
probability distribution of  profit, NAV and so on. When using stochastic analysis, v,e must 
pay close attention to the correct set of  interrelations between variables. 

What conclusions are to be taken concerning scenario testing and stochastic analysis in 
respect to the ' ,aluation purpose? 
It is clear thai stochastic anal)sis can pro~,ide some pieces of  information (e.g. probability 
distributions). ',,,hich '.~e cannot obtain from scenario testing On the other hand, the necessity 
of  correct and consistent inputs is much higher m stochastic anal)sis. That is the ke). 
assumption [f it is fulfilled, the application of stochastic analysis for valuation o f  PIC 
Insurers can be ',e{2,. useful. Otberw~se, v, hen this assumption is not fulfilled, the results from 
stochastic anal)sis could lead to some misleading conclusions. 

[n our point o f  v~ew, there are always some limitations cuncerning the access to correct data 
and their correct interpretation in the acquisition valuation process (possible information 
deficit o f  an analysl). Based on this thesis, we would prefer to base the valuation modeling 
on the scenario testing approach w~th the maximum attention paid to the sensitivit) anal)sis 
o f  key actuarial and financial parameters. We find this v.ay as a safer one, eliminating the 
risk o f  "garbage in, garbage out". In other v,'ords, it is no black box for an anal)st. 
Furthermore, the acquisition '.aluation is more sensiti'.e to and more influenced by strategic 
inputs The inputs are. b). definition, o f  a psychological nature and the contributwons o f  
stochastic anal,,, sis could be eliminated to a cerlam extent. 

Other factors influencing the selecuon of  a correct ,,aluafion model include the availability of 
data. the transparency and reliahd~t.', of  data. historical time series, transparency of  definitions 
used, and so on. 
In summaD', the cons~stenc) of inputs as ',,,ell as the serhng of correct relationships between 
them belongs to the highest principles, v, hich are subordinated to others. When creating a 
' ,aluation model (either deterministic or stochastic), there must be a lwa)s  considered the 
harmon)' betv, een the quality of  available data and the requirements for complexit) o f  a 
' ,aluation model as the highest priority 

5.2.3.2. EVA Time Horizon and  Termina l  Value 

The selection o f  the time horizon over which EVA is explicitl) estimated should take into 
accounL on one hand, the long term characler o f  insurance process, ,,,,'here the payout pattern 
of  clmms rese~es  is of  a crucial ~mponanee and the anal )s t ' s  ability to set correct 
assumptions for the far future, on the other hand. 
Generall),, in the insurance industr), the rule is that the explicit cash flow modeling is 
reasonable up to 15-20 .','ears. Above this level, all assumptions are becoming too speculative, 
so the determination of  terminal ~.alue comes into question. Ho',~,ever, within this 15-year 
le',.el of  explicit modeling we ~.ou[d also recommend identification o f  the initial phase over 
',~hich some aggressive assumptions (e.g. gro'xth rates, s',nerk.~.' effects) are acceptable." We 
are of the opimon, that this initial phase should not exceed 5 )ears,  as the period o,.er ',~.hich 
the assumphons can be estimated ~ith the highest correctness. Then, the inputs during the 
second phase should be assumed in a more conservati~,e manner. 
In this respect, v,e recommend establishing a controlling mechanism, such as the positive gap 
bet',,een ROE and CoC. This gap should decrease tov,'ards the end of  the modeled horizon. 
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As already mentioned, the EVA based valuation approach offers a "~ery elegant treatment of  
the terminal value. 

We assume that after a long time period, e.g. 15 ~,ears, there is no reason that the return on 
eqmt3 should exceed the cost o f  capital :°. In other words, the company v, ill operate at a level 
of  profitabdily equal to CoC. Under this assumption, the terminal '~alue equals zero. 

ROE = CoC =~, EVA = 0 ==~ T E R M I N A L  VALUE = 0 (5.17) 

Terminal value is often overestimated in the acquisition price when the '~aluation follo',,,s a 
traditional DCF approach. Follo,.'.ing (5.17), we can be sure o f  no o',erestimation of  the 
terminal value in an EVA based approach. 

ROE >>CoC Decreasing gap 
e.g. 5 years <ROE --~ CoC) 

Isl ahase 2nd phase 
Pq 

ROE = CoC 
t, EVAs = 0 =:, TV = 0 

p P 

Explicit  modeling of EVA - e.g. 15 years  Te rmina l  value (TV) 

Figure 8: Periods of cash flow modeling (an example) 

5.2.3.3. Inputs to Cash Flow Modeling 

Once v.e decide on the valuation model and the time horizon of  the model, x,,e shift to the 
identification o f  inputs to the cash flow projecuon. Inputs are categorized b) the general 
economic environment, legal and political stabilit3, industD specific factors and 
de~.elopments in the insurance market, and company specific factors. Figure I in Appendix A 
illustrates this point. 

Each le'~el of  this hierarchy requires different data sources and also difl'erent treatment in 
respect to impacts and consequences for valuation. This classification (hierarchy) also 
corresponds to the scope to ,.,.hich the inputs are controllable and influenceable by the 
acqmring compan) in the middle, respectively long term. While the first three classes of  
factors are to be understood as e~:ternall) determined and therefore unmfluenceable (by 
industry-specific factors under the assumption of  complete competition m the insurance 
market), the last group of  inputs - company-specific - can be in the middle term to a certain 
extent controllable and manageable b.', the management of the company. 

I. Faelors  of macroeconomic development 

Generally. the insurance industD belongs to the most exposed sectors to macroeconomic 
de'.elopment. The variables such as inflation, risk free rate. term structure of interest rates, 
stock market index, growth o f  GDP and so on can substantmlly influence the characteristics of  
both existing and future business. Taking into account the long-term character of  the 

:5 Th,s assumption results from the applicalzon of efficient market h.,.polhems 4 see chapter .I 3 for deta,lsl 
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insurance business, e,,en small changes in an), of  those parameters matler. For thai reason, it 
is necessary to implemenl into the valuation model the relationships belween economic 
variables and under ' r i l ing  and in',eslmems parameters. The valuation model should at least 
embrace the follov, ing interrelalions. There is usually a close correlalion belween inflalion 
and risk free rate. Risk free rate determines through the ).ield structure of interest rates the 
investment income and through Cost of Capital the discount rate. On the other hand, inflation 
correlates to claims inflation, as a parameter impacting on the ultimate value of claims 
reserves. Furthermore, stock market index is in the long term determined b). nominal grov.th 
or GDP, consisting of ils inflationar), and real component Next, the investment yield on 
stocks influences Ihe tale required b), investors to make an investment - Cost of Capital and 
SO OIl. 
Putting together all key interrelations, ~,,'e should be prepared For ansv, ering questions: "'What 
happens, i f  ...". For that reason, a detailed sensitixil~, anal.,,sis is needed, under the 
assumption that the established relations between key variables are also a subject o f  
uncerIainty and should be tested on sensifivit.', as well. Moreover. stress testing on some 
extreme developmems (long recession, deflation, inllalionar?, shocks, etc.) could identify 
some too large risk exposures. 

2. Factors of external legal and political development 

The perceived stability in respect to legal and pohtical development significantly influences 
how the countr?., is appreciated among the potenlml in,,eslors. Among others, this aspect 
determines the country risk premium (e.g. according Io rating), as a component of Cost of 
Capital. With regard to valualion, v,e recommend testing the impacts of changed risk 
premium on the present value of future cash flov.. Furthermore, it is ad~.,isable in the case of 
the developing economies to consider the possibilily of extreme events (e.g. political 
instability), impl)ing Ihe application of stress testing. 

3. Factors of insurance markel development 

For the cash flow projection industD-specific inputs are vet?,.' important as well. Here. v.e 
point out the expected grov,,,lh of lotal insurance markel (insurance penetralion - Iota] premium 
as % of GDP). selling restrictions and limitations for applied growlh rates. Furthermore. the 
prediction of insurance market structure could provide us v, ilh some necessao inputs v.hen 
projecting growth rates on the le,.el per lines of business. In some models, there are also 
incorporated the characlerist~cs concerning undenvriting cycles (hard vs. soft market). 
Finally, we should also take into account less quamifiable factors such as trends in the stale 
regulalion, integration of financial sen'ices and so on 

4. Factors of,*aluated enli~' 

The first task regarding company-specific factors consists of Ihe identification of the inputs to 
be considered in the valuation model. The relevant classification could folio,.,, the iv, o- 
dimensional basic hierarchy. First. the insurance process and its particular components 
represent one criterion for classification. According to that. v,.e could distinguish the 
follov, ing areas of compan.,,-specific inputs: 

• Analysis of premium assumptions ~ premium module 
• Anal.,,sis of expenses assumptions ~ expenses module 
• Anal.~ sis of claims assumptions => claims module 
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• Analysis of investments assumptions =:, investments module 

The next criterion for classificat=on results from the subject setting the assumptions. Here, we 
must explicitly treat the strategic inputs (to be delivered by management) as compared v.ith 
the underwriting / financial inputs (responsibilit) of  actuaries and financial analysts). 
Strategic inputs, as discussed in Section 3, have connections mainly to premium and expenses 
(respecti',el) claims) modules: 

• Growth rates above market level 
• Growth rates vs. claims ratio assumptions 
• Synergy/diversification effects 
• Growth synergy 
• Economy of scale 
• Embedded options 

Ever). valuation model should start '*'*ith the premium module, ,.,,here the assumptions 
concerning growth rates of premium per lines of  business would be the covering output. The 
growth rate of the premium should be in the next step broken dou.n into the growth rate of 
number of  nov, business, the growth rate of average premium of nov, business, the average 
grov, th rate of premium in the portfolio (valorization rate) and the cancellation rate (porlfoho 
outflow). Furthermore, the assumptions about payment pattern are beneficial. The premium 
module should be also linked to industr)'-specific factors (grov, th of market premium etc.). 
With the premium module are very closely connected the parameters of expenses. Usually, 
the expenses are modeled separately for commissions, other acquisit=on expenses (both are 
modeled as variable ratios related to written or earned premium) and operational expenses, 
which need to be divided into fixed and variable parts. Just in the fixed part of operational 
expenses we can identi~ together v, ith the applied growth rate of premium the effects of 
economy of scale. 
The claims module includes besides the claims ratio of accident / calendar .','ears also the 
modeling of run-off of claims rese~'es and the assumption about payout pattern. It is 
advisable to hnk the ultimate value of reserves to claims inflation (see connections to 
macroeconomic factors). 
Finally, the investment module should be completely connected to the macroeconom~c 
module. It includes CoC calculation, projection of investment ',ields per investment classes, 
portfolio structure and reinvestment rules. 

The sources for compan)-specific inputs are predominantly: 
• Analysis of historical performance (development, trends, etc.) 
• Risk portfolio analysis (underwriting, investment and operational risks) 
• Analyst 's expectations 

Implementation of cash flow model 

Once we have identified key factors infuencing cash flow projection, we must put them 
together and build up a valuation model. Whereb) the setting of relationships and 
interdependencies poses the most significant requirement. Here, the feasibility of selected 
dependencies is of a crucial importance. Typically, the whole model o fa  P/C Insurer consists 
of the consecutive dependencies creating a modular construction, where the first '*ariable 
influences the second one which is connected to the third one and so on I.for example, see 
Figure 2 in the Appendix A). Next, by setting the relationships between ~..ariables, it is worth 
keeping in mind their implied consequences on the total result. On the one hand, there are 
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factors *.,.hose impacts on the total result are due to dependencies and relationships partly 
compensated and thus reduced by the opposite change in other factors. On the other hand, a 
change in one parameter can cause the consecuti,,e changes in other parameters affecting lhe 
result predominantly in the same direction (dependencies even mu]tipl.', the initial effect). In 
order to be sure that the model ',.`orks as we intended, it can be a good logical exercise to 
anticipate all the effects resulting l'rom an initial change in one parameter. In our point o f  
~,ie~. an anal sst should al',~a.',s be able to intuitively Ibresee the impacts o f  an.+,' change in 
underlymg assumptions on total result l',ve are speaking about deterministic model). 
Otherv. ise, the valuation model, despite its deterministic character, is beeommg a veo 
difficult controllable "'black box" v. ith the implications on its credibility. 
Consequentl), we also recommend setting up some checking mechanisms on the le,.el o f  
respective modules and dependencies between them. For instance, the)' can be in the form of  
difference ratios, such as the difference between proJected premium gro~+.th rate and market 
grov,'th rate (cheek of  adequac~ o f  applied gro.`~th rates), the gap bet,seen ROE and CoC or 
the d~fference betv.een prendum growth and growth rate o f  expenses leffect o f  economy o f  
scale). 

Finally. we must establish several output sheets in the valuation model, ser',ing for lhe 
presentation purpose: 

• P&L statenlent 
• Balance sheet 
• Ke.', financial indicators (solxenc) and capital requirements. NAV,  internal rate o f  

return, etc.) 
• O',ervie.`,. of  main valuatlon assumptions etc. 

5.2.3.4. Scenario Testing and Sensitivily Analysis 

At the beginning of this chapter, it is ',,,'orlh rentembering that v,.e suppose Ihe exclusive 
application of deterministic modeling. Based on the completed valuation model ',,,,hh all the 
~.armbles and interrelations. ',~.e staff constructing ,.arious scenarios 
The main ad,,antage of scenario testing consists in the possibdit,, of reflecting se,.eral 
analysts' respectivel.', management 's judgments concerning Future de.`:elopment. That is 
under the assumption that the variables are in each scenario consistent with each other 
(macroeconomic. underv.riting, investments variables etc.) Generally, the selection of 
scenarios should conmder the environment in which the insurer operates as a whole. It should 
reflect the reasonable expectation about future development The analysts must ensure the 
feasibdit.v of assumed interactions bet,.~.een variables. For example, an increase in interest 
rates x,.ould not be probabl.', in line ',.`ith the decrease in discount rate (CoC) and so on. Due 
to the character of deterministic mc, deling (pard.,, subjective determination of scenarios), there 
is a risk of either too Favorable or ad',.erse set of assumptions For thal reason, different 
scenarios are to be prepared, ranging from opt.mistic to pessimistic ahernati'.es. On the other 
hand. in order to keep the valuauon stud.'.' sufficientl) effective and manageable, it is practical 
to v.ork .`'.Jth the limited number of scenarios (e.g. ma.,Jmally 5 scenarios) 

First. ~..̀ e staff v. ilh a base-case scenario as an outgoing base lbr further alternative scenarios 
and sensmvity testing. The base-case scenario consists of the most probable valuation inputs 
concerning expectations about future development. ,.'.~th the primary focus on the mutual 
consistent.,, between the '.ariables. The inputs to base-ca~e scenario are determined according 
to best estimate practice. In the next step, it is recomntended to develop also the v,,orst-case 
scenario as the combination of se',.eral adverse but still reasonable assumptions, in order to 
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explicitly present the extreme range of possible outcomes and to '.,,am against potential 
dangers of an acquisition. In addition to base case scenario, v,e continue building up 
additional (3, 4) a l l e r n a l h e  scenarios, consisting of alternative selections of one or more 
particular variables and their particular values. We are of the opinion that the application of 
ahernative scenarios comes into question maml3` m the case of analysis of various strategic 
inputs. For example, v,e can explore the effects of changed grox'.th rates, syner~'  effects, 
claims development or CoC. The reason behind that is to draw the attention of the decision 
makers to the impacts of some crucial (e.g. strategic) assumptions, pointing out the 
uncertainty inherent in the valuation. 

While different alternati~.e scenarios should embrace several simple modifications of base- 
case scenario reflecting the aualyst's judgments about the potential changes in assumptions 
(mainly strategic inputs), the contribution of sensitivity analysis  offers the possibilit.', of 
going further into detail, ",,,ithout loosing the necessary transparency and clarity with regard to 
presentation purpose. 
Not onl? analysts, but also decision makers, should be interested in the issues ',,,hat happens ~f 
something other happens In order to ansv, er this kind of questions: "'What happens, if ...?", 
we must adjust the model for applications of sensitivity testing, which is usually linked to 
base-case scenario. 

We see the main contributions of sensiti,,it3, analysis for the ",.aluation of P/C Insurance 
companies: 

,, To emphasize that the outcomes of the valuation models are dependent on the 
particular set of assumptions; if the',' are changed, the results are also different: there 
is either "no correct" or "'no '.~rong" outcome. The importance of selected valuation 
assumptions is to be always pointed out. 

• To highlight the uncertaimy inherent in the ,.aluation. 
• Consistent ,.~ith the stochastic and long term character of insurance business. 
• The possibihty of identifying ke~ value dri',ers, as the ',ariables mostl.', affecting the 

results. 

We should test the sensitwity on at least the follo'.,.ing areas of inputs and their respective 
components: 

• Premium gro',,,th rates (he'.'. business, avg. premium, cancellation rate) 
• Claims development (accident claims ratio, run-off result, payout pattern, claims 

mflalion'l 
• Expense ratios (commissions, other acquisition expenses, fixed vs. variable part of 

operational expenses, economy of scale) 
• Discount rates (CoC, risk free rate. risk premtum) 
• Investments 3,ields t3, ield structure of interest rates, risk free rate, inflation rate, stock 

market index) 

Sometimes it cannot be satisfying to test the variables under the fixed interdependencies. It 
can be also '.e~' beneficial to test the sensiti',.ity of a variable, while isolating the related 
effects on other variables (other variables are kept constant = no interdependencies). Based 
on this, we can ehminate the combined effects from the model and explore separatel3` the 
change in one parameter, without affecting others On the one hand. v.e can test the change in 
inllat~on rate including the corresponding effects on risk free rate. interest rates, investment 
income, CoC, claims inflation and ultimate ~.alues ofclaims reserves and so on. On the other 
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hand, ,.'.e can exclude all the relationships and test the change in inflation only in relation to 
claims inflation affecting ultimate values o f  claims reserves. 

As alread} mentioned, one of  the conclusions from sensiti',ity anal)sis should be the 
identification of  key value dri~,ers (NAV, CoC, gro',~th rates, s.vner~..', diversification and 
control effects and so on). which substantial[} impact the determination of final value. 

Finall}. '.~,e can implement into the valuation stud} the appendix to sensitivity anal)sis - stress  
testing - consisting of  selecting se'~eral extremes, but stdl reasonable, assumptions about 
future de~,elopment and the potential ~mpaets on the insurer 

5.Z.4. Decomposition of the Acquisition Price 

After v.e have prepared several scenarios and tested ke) variables for sensiuvit}, comes the 
question whether the results are reasonable and plausible. We should man anal}zing the 
acquisition price ,.~,ith the follo,.,.ing questions. 

• Do we understand the outcomes o f  the valuation model? 
• Are the.`.' in line ~ith our expectations? 
• How can ",,,e apprecmte that the resulted outcomes (acquisition price) are adequate? 

One of  the possible solutions can be to break dov, n the acqmsition price into the particular 
components and then all the components appreciate separatel} step b} step. It enables better 
understanding &the  sources that generate the acqmsilion price (value). 

The primaD decomposiuon of  acquisition price is alread} defined b} the basic equation of  the 
EVA-based ,,aluation approach. 

r E$:4, EV4r .  ~ 
V = NA\ 'o  .4- MVA = NAVo + 'S" - -  + 

,= ( l + C o C ) '  C o C * ( l + C o C ~  r 

According to that, we dlstingmsh bet'.,,een: 
• NAV. as the difference between Imarket) values of assets and liabilities. It represents 

the state of in',ested capital as of  the appraisal date. 
• Discounted ~,alues of future profits net of costs of holding capital (MVA), consisting 

of the period of explicit modeling and the terminal value. 

Already this basic decomposition can reveal some ke} connections. It is certain that the first 
component - NAV - is the safer one wnh respect to the adequac} of  the acquisition price. 
MVA, on the other hand. is created to a large extent b} expectations about the future 
dexelopment. It is wonh emphasizing, that there are no recommendations ,.~ hat should be the 
correct portion of value of  "'positi'.e expectations about the future" - MVA. Hov, e,.er, '.,,e 
should anal}ze the adequacy of  MVA as related to the total value {V = NAV + MVAj ve~' 
carefull}. The higher the share of MVA. the more aggressive the acquisition seems to be. 

Nevertheless, we can do a small logical contemplation Let us suppose the case ofdistributed 
profits and infinite horizon with the same assumptions concerning ROE and CoC over the 
whole infinite. We are interested in the relauonship betx,.een ROE and CoC and the 
corresponding impact on the proportions bev,',een NAV and MVA on the total ',alue (V). 
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Going out from equation (5.7), v.e can easnly prove that" 

M\ 'A  = NAV * (ROE - C o C ) ) C o C .  (5.181 

Substituting the term NAV from 115.18) into ~5.8) ~ ields: 

MVA / V= (ROE - CoC) / ROE.  (5.19) 

Follov, ing the equation (5.19), the share of  MVA on the total VALUE (V) is given b~ the 
excess of  ROE above CoC as related to ROE For g~',en CoC = 10%, ~e can illustrate this 
dependency on the follov, ing graph. 

MVA as a portion of total value in dependence on 
ROE (CoC = 10%) 

70% [ 
60*/0 

,~ 50%. 
> ,oo/. I 

- iii;i.I/ 
10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 

ROE 

Figure 9: Dependency between the por t ion of  MVA on the total ~alue and  R O E  (CoC = 
10%) 

You can see that the share o f  MVA on the total '..alue (NAV + MVA) e',,ceeds 50% if the 
projected ROE is higher than 20%. 
Th~s example clearl,, illustrates the connection bet~,.een the h~gh share of  MVA on the total 
value and the corresponding positive expectations about the future, as embodned in the 
projected ROE ratio. It is up to analysts to appreciate whether the portions o f  MVA are still 
realistic or not. See also Appendix C illustrating the ',alue in dependence on ROE and CoC 
for 15-year and infimte horizon. 

In the next step. we can further break down the ",alue of  MVA according to the ' .aluation 
process as described in Section 3.3: 

• Status quo valualion 
• Valuation of  s.~nerg2.. / diversnfication effects 
• Valuation ofeffects  ofcomrol  
• Valuation o f  embedded options 

It means to explicitl) model all the assumptions concernnng s.',nerg.', .' dhers i f icat ion and 
control effects and to follow all the consecuti,.e steps (for details see chapter three). Then, we 
could decompose MVA into: 
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• Value based on status quo valuation 
• S.~nerE, ," dhersification acquisition premium 
• Cont ro l  acquisition premium 
• ~,alue ofembedded options 

There is ah~.a)s a danger that a high acquisition price is justified by high ~,..eights of synergy / 
divers~ficauon and control acqmsition premium and ',alue of embedded options. Thus, such a 
decomposinon should provide detailed insight into this issue in order to avoid either too 
positive expectations or an)' double counting of ke) items (e.g high gro'.~.th rates are 
considered both m the status quo valuatmn and in the overestimation of synerg) effects). For 
that reason, a careful discussion about the structure of acquisition pace is necessaD. 

5.2.5. Applicalion of other  Valuation Methods 

Although the 'aluation modeling is usually based on the DCF (EVA) approach, the final 
acquisition price is in practice al'.~ays compared with benchmarks given b) either relative 
valuation or stock market approach. For that reason, a simple application of both is 
beneficial. It could pro ' ide us ,.,nth some important information about the adequacy of 
acquisition price, as well. For details see Section 4. 

5.2.6. Presentation of Outcomes 

The last secnon or the ~,aluation process is to be de'. oted to the presentation of outcomes. The 
analysts should not m any case underestimate this point. Without tr?.'mg to present here the 
comprehensi'.e issue, the set of information provided to decision makers ',,ith respect to 
valuation process should include the following pans: 

• Summary of key assumptions on x~hich ,,aluation '~as based 
• Risks inherent in valuation 
• Presentation of selected scenarios tin the form ofsimplif ied P&L and over, ie'~, of ke.'. 

financial mdicators) 
• Presentauon o f  conc lus ions 

• Recommendations to Board of Directors 
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6. Summan' and Final Considerations 

6.1. Summa~' 

In the presented paper, we tried to capture the ',,,hole issue of acquisition valuation of P'C 
Insurance companies as comprehensive as possible. The paper .`,,as aimed at analyzing the 
acquisilion valuation of P."C Insurers from different perspecti,.es..`,.'hereby some aspects were 
only roughly suggested, without going too much into detail. We did not v, ish to present the 
next m a long line of other alread.', existing actuarial models of the P.,'C insurance business. 
On the contrar.'., the presented study can be complementar3, to those models. It should 
provide actuaries '.vith different insights into this topic from various perspectives, which are 
not so often discussed in the actuarial profession. The paper should ser~.e as a theoretical 
background, combining both the kno'.,.ledge of corporate finance and economics of P/C 
Insurance. Moreo,.er, we tried to balance theoretical and practical aspects..`,.'hereby 
sometimes v,.e only, outlined the practical imphcations and consequences and let on the reader, 
if interested, to explore a particular problem more deeply. Our approach was primarily 
derived from the financtal perspecti,,e, on .`~,hlch the actuarial models should build up. 

In the first part, v,e discussed the specifics of the P/C Insurance business '*lth the aim to 
define, besides other generall,, accepted financial principles to valuation, the basic playground 
for Ihe valuation of P,'C Insurance companies Subsequentl). ,..`e explored the strategic part of 
the acquisition process," highlighting the importance of s.vnergy, diversificauon and control 
effects. Here, we emphasized the appropriate conclusions and consequences for .`aluatton 
modeling. Then. the short description of basic valuation methods, as applied in corporate 
finance, v.as conducted '..`'ith the conclusion to base our valuation approach on the EVA 
principles. After comprehensi~.e theoretical introduction, '*e dealt v.ith two components of 
EVA-based valuation: determination of Net Asset Value (NAV) and cash flov, projection 
(MVA). Here. the connections to either applied accounting methodolo~' vs economic 
approach to valuation '.,,ere discussed, ",,.ith the focus on consislenc.v between NAV 
determination and cash flow projection. Finally, '.,,.e explored different aspects of cash flow 
modeling. This paper concludes with some final cons~derauons. 

6.2. Final Thoughts about Limitasions of Valuation 

It is for sure. that there is no unique valuation approach for P/C Insurers. There is no "'the 
onl) correct" approach. There is no "'completel) wrong" approach. Nevertheless, we could 
summarize se~,eral principles to be fulfilled, ~hatever ",aluation approach (model) is 
concerned. 

I. Reflection ofin,.estors' point of view 
2. Reflection of specifics or P.'C insurance business 
3. Reflection of strategic aspects 
4. Preference of economic approach 
5. Conservatism concerning future development 
6. The consistency of a model matters 
7 Clari b' and transparency of a model is subordinated to its complexit', 
8. To emphasize the assumptions on v.hich a particular result is based 
9. There will be always a large piece of uncertainb 
10. To keep "the big picture" 
I I. Reflection of outsiders' point of vie.̀ .̀ . 
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12. No model can foresee future 
13. Logic and managerial intuition ~ ill always pla', an important role 

Furthermore. v,e must be av, are thai e',ery ',.aluation process runs in the real time under the 
current external environment. It can substantmllv influence the expectations, as one of  the 
ke~ determinants o f  valuation inputs (time-dependency of  ,,aluation). Therefore. the 
appreciation o f  the same fact can vary at different periods completely. Valuation ',,,ill be 
always partly subjective and v, ill bring different outcomes depending on concrete 
personalities of analysts and decision-makers. With regard to the determination o f  final 
acquisition price, v.e are pretty sure that just the inputs determined by expectations and other 
strategic aspects are more important than an). other (actuarial) assumptions. In addmon, to 
avoid an',' misunderstanding and misleading interpretations, e',eD' ,.aluation should strongly 
emphasize its underl.,,ing assumptions, v, hEh can be ve~ changeable o' ,er t~me. We are 
com.inced, that this changing environment is becoming more and more important in the areas, 
which has been found up to no,.,, as quite deterministtc and predictable. 
To sum up, we must alv,,a.'.s keep in mind the uncenamt.,. (undetermmability) of  external 
en', ironment conceming future de,,elopment. This fact, on the one hand, gi'~es reasons for the 
existence o f  insurance industr', as a risk transformer, but on the other hand implies the 
uncertainl) inherent in the ~,aluation. Whatever the detailed ,,alualion model, v,e cannot by 
definition embrace the ,.,.hole complexit.', of  external world. Hov, e~,er, there are still 
remaining some principles that are timeless. 
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G l o s s a r y  o f  K e y  T e r m s  

Actuar ia l  / financial par t  of valuation process: Following the strategic part. it includes 
analysis of  actuarial, financial and in',estment ~.aluation inputs and their appropriate reflection 
m the ',aluation model. 
Book value approach: The value o f  a company is arri',ed at b) analyzing accounting 
statements, whereby different adjustments of particular items can be made to better reflect the 
market end, ironment 
Control effecls: The',' are given b~, add,tional positive value from restructuring of  poorl.', 
managed firms. 
Cost of capital  (CoC): Gi'.en the specil]c capital structure of P'C insurance companies, the 
determination of CoC in,.olves only the quantification of the cost of equity capital. CoC is to 
be interpreted as the rate required b) investors Io make an investment in the firm's equity. At 
this rate future cash rio'.', is discounted and thus investors" expectations concerning risk '~s. 
rev, ard tradeoff are reflected. 
Discounted cash flow approach (DCF): The leading principle of DCF is the rule of present 
',alue. The value of an) asset is determined b)' the present ,,alue of the expected future cash 
flow. 
Diversification effects: There are given by the reductmn of volatihty. 
Economic approach to valuation: The long-term, prospectb, e approach to ,,aluation, v.hich 
reflects both the current market environment and investors' poim of ~.iew. The economic 
approach should generally extend the accounting information using the anal)st 's  best estimate 
adjustments and other factors that need to be taken into consideration to correctl) reflect the 
in'. estors' point of ', ie~. 
Economic Value Added (EVA): EVA is defined as Profit after Tax (PAT) earned on 
invested capital and adjusted b.'. the costs of holding capital, reflecting im.'estors" opportunity 
COSTS. 
Embedded option: See Real option 
Equity: The book value of equity, as reported m the accounting statements, results from the 
application of valuation principles to insurance assets and liabilities according to particular 
accounting standards (see Valuation according to accounting principles). 
EVA based valuation: Derb, ed from the principles of DCF. the value of a company is 
determined by the sum of invested capital (NAV). as the difference betv, een the (market) 
values of assets and liabilities, and b v the discounted excesses of future profits (MVA) 
Investors '  point of view: The valuation based on in',estors' point of vie~,, primaril) goes out 
from the thesis that the companies are running their businesses with the obiect~ve of 
maximizing shareholder value from the long-term point of '¢ie~. 
Marke t  Value Added (MVA): MVA is defined as the sum of discounted future EVAs 
Net Asset Value (NAV): In comparison with the accounting term of equit), the 
determination of NAV. as the difference between (market) values of assets and liabilities. 
points out current market environment as '.veil as other faclors, v, hich need to be taken into 
consideration to correctl) reflect in'.estors' point of viev,. NAV is determined b) the 
economic approach (see Valuation according to economic approach). 
Option Pricing Theon ' :  If the im.estment embodies a strategic option such as flexibili b to 
expend a project, to postpone additional expansion or to abandon a project, the value of such 
an option (see Real option) should be deduced from Option-pricing theory. 
Real option: Tradttional DCF -based valuation methodologies may fail in including of some 
strategic aspects, v,'hich are embedded in the in,.estments, such as flexibility to expend a 
project, to postpone addmonal expansion or to abandon a proJect. Since the underlying assets 
are represented by real investments (business opportunities), we speak about real options 
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(embedded options). Because of the simdarity to financial options, their valuation follows 
Optmn Pricing Theory. 
Relative valuation: h goes out from the principle that the value of a company is derived 
from the value of a comparable compan). It utilizes s[andardized varmbles such as earnings, 
book value, profits, and sales 
Stock marke t  approach:  Following efficient market h spothesis, the xalue of a compan.', is 
determined b'. the price at v, hich its shares are being pubhcly traded 
Strategic part of valuation process: h includes anal.,.s~s of moti'.es behind an acquisition. 
its possible s x nergy, diversification, and control effects. Usualb.  managers are supposed to 
pro'..]de strategic inputs. 
S.vner~ effects: The)' represent the additional positive value from combining two firms. It 
causes the whole to be greater than the sum of the parts" ViA + B) > V(A) + VtB ). 
\ ' a luat ion according to accounting principles: The primaD' emphasis is placed on the 
information provided b) accounting statements tcompare ~,.ith Economic approach to 
xaluation) 
Value decomposilion: The decomposition of the ,,aluation process into the consecutive steps 
makes the price determination transparent ~sratus quo. control and synerg), premium. ,,'aloe of 
embedded options) 

600 



Appendix A: Figures 
Figure 1: Inputs to Cash Flow Modeling 

External environment 
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Figure 2: An Example of Interdependeneies between Variables 
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Figure 3: EVA-based Valuation Approach - Value Decomposition 

I Applied definition of economic approach I 
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of CoC projection of terminal value 
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Appendix B: 

Value in Dependence on ROE and CoC 
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Appendix C: 
Case study: Acquisition of P/C Insurer from the CEE Region 

In the appendix, v,e extend the paper by a discussion of the acquisition valuation process of a 
P/C Insurer from the CEE region. It is dentonstraled on an illustrative case study. The 
organization ~s as follows. In the first section, v,e idemi~' se',,eral specifics to be emphasized 
by analysts, v, hich the authors find as Ihe most rele,,ant. We draw the appropriale 
consequences for the given valuation task. Next, we |bllo',s the procedure from the chapter 
5.2 and illustrate the presented valuation approach on a case stud) of the acquisition valuation 
of P/C Insurer from the CEE region. 

1. Specifics of the Valuation Process 

Although the basic valuation principles are the same whate',er insurance compan.', is 
concerned, there are certainly some particular aspects to be taken into consideration ',',hen 
speaking about emerging markets. Here, v,e go out from the thesis that a precise 
identification and anal)sis of all such specifics is of a crucial importance (prerequisite) for the 
correct application of the valuation procedure as introduced throughout the paper. Generally. 
~e  find the following specifics to be taken into account in respect to the valuation procedure 
in emerging markets, as represented by the CEE region. 

I) Economic environment 
First, the changing economic environment is of a key importance. The emerging markets are 
vet3., often characterized by higher inflation, higher currency fluctuations, instability of 
balance of payments, budget deficits etc. Any instability must be reflected in the mainly 
count~, risk premium as a pan of Cost of Capital"'. 

2) Legal environment 
The legal environment is also de',eloping ve~, quickly in these countries. It concerns of both 
commercial te.g. commercial code) and insurance law (e.g. state regulation, ne,,s definitions 
of insurance contract). It is just the stabilny of the legal and institutional frame'.~,ork (e.g. the 
level of enforceabilit~ of Ihe law) that subslanliall) affects the intlow of foreign investments 
into emerging markets. Thus, the legal and institutional environment plays an important role 
in the acquisition strategies. 

3) Political risk 
This aspect is closel) connected to the previous one. It =s obvious thai the amount of political 
uncertainty also affects the setting of an appropriate discount rate (CoCI. 

Remark: With regard to the CEE region we must point out the continuing approaching of the 
local economies to the EU level (expected access in 2004) m all abo',e-mentioned aspects 
(economical, legal and political stab)lit', ) 

4) Capital markets 
The standard allocation and pricing functions of capital markets is still being established. 
Capital markets are characterized by several inefficiencies: information as~mmet~,  lower 
market liquidity, higher transaction costs, and so on. In addition, the role of stock markets is 

'= AS a special case, ~¢ c3n mennon the t aluallorl process in the hlghl~ inllatlonar) ¢conomy 
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substantially underde~,eloped. All these factors affect both the investment importunities for 
insurance companies and the valuation of an in'.estments portfolio. 

5) Underdeveloped insurance markets 
The insurance markets are underdeveloped in the most emerging economies, offering good 
perspectives for high grov..th in the future (e.g. aggressive acquisition polic)). Th+s aspect 
represents very often the leading acqmsilion motive. The product mix ~s usually characterized 
by less amount of liability coverage as compared v.ith properly hnes (predominantly car hull). 
We must also consider the level of market competiti`,eness. There can be sexeral market 
imperfections, v, hereby information asymmetry plays a substantial role The market 
concentration can be also quite large with a l'ex,. "'big market pla)ers'" 

6) Regulation of insurance markels 
The state regulation is characterized b) ongoing standardizalion tprofieienc) of the regulator)' 
staff, regulation standards etc.) 

7) Emciency of PlC Insurance companies 
Generally, the operational part of P~C Insurers is distinguished by less efl'iciency That is the 
reason, x,,h), the acquisition is usually connected with several necessary restructuring steps 
(costs cuttings, reduction of staff etc.}. Consequentl), the combined ratio consists of higher 
portion of expense ratio at the expense of claims ratio than it is usual in the de,,eloped 
markets. Therefore. ~t can be a crucial issue for the cash flov, projection to correcll) estimate 
the speed of the standardization process (decreasing expense rauo + increasing claims ratio). 

8) Accounting standards 
Usually. the credibilit) of information provided by accounting is supposed to be Io,.ser than in 
the developed economies. The anal)sis can ver) often meet `,~ith ver) creati'.e bookkeeping 
',,,hat makes their task more difficult. 

9) QualiB.' of data forcash flow modeling 
The anal) sis can also face with problems concerning the access to correct and rehable data for 
the cash flow projection. The historical time series, if available, are ver), onen spoiled due to 
all the changes in the external environment. Therefore, the information sources must focus 
rather on an ex-ante (expectation-based) approach than on the anal)sis of historical data. 

In summar')', the acquisition valuation process in emerging markets can be 'characterized by 
higher uncertainty in all significant ~.ariables (external environment.' insurance market, 
company's specifics). On the other hand, there are large growtli perspectives and other 
strategic opportunities. 

The o,.er.,iev, of all relevant factors including the corresponding consequences for ',aluation 
procedure is recapitulated on the following table (F~gure 9). Some of them v.ill be d~rectly 
considered in the presented case stud) 

| .  

I.I 

Factor Consequence for valuation 
External environment 
Higher lluctuation of key maeroeconomlc CoC determination:.eventually reflection 
variables of inflationao' environment 
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1.2. 
1.3. 

2, 
2.1. 
2.2. 

Institutional and legal framework CoC determination 
Continuing approaching to the EU 

Insnrancemarkel 
Underdeveloped ins. market 
State regulation (increasing requirements) 

23 Competitiveness (hig, her concentration) 
3. Insurance companies 
3.1. Lo~,er operational efficienc'. 
3.2. 

3.3. 

3.4. 

35 

• 'Rauos standardization" 

Product mix (dominance of properl', 
products,) 
Cred~tworthmess of accountint~ 
- hidden liabilities 
- "'artificml" business volume 

- creative bookkeeping; 
Reliability and quality of internal data 

Figure 9: Overview of relevant specifics 

2. C a s e  s t u d y  

Increasing economical and legal stabilit,, 
standardization of respective inputs 

Hig, her grov.th rates to be expected 
Uncertain b concerning strenglhening 
(chanl~in~,) rules 
Reflection of the market power 

E.~ cost cuttings 
Higher costs ratio vs. relatively low 
claims ratio; to correctl 3 reflect 
cou~ erg, ence to more standard levels 
Taking into account large risk exposures 
against one product (e.g, car hull) 
NAV determination 
Anal,vsis of rese~'es adequac), 

: Profitabilib' anal',sis of volume-driven 
i business 
Cleanin~ of balance sheet 
CF modeling must be based rather than on 
historical experience on the anal3 sis' 
expectations 

No'.,., '.,.e explore the case stud,,' of an acquisition o fa  PIC Insurer from the CEE region I. In 
the first pan, we begin v.ith the strategic purl ~,shere v.e define the outgoing strategic 
assumptions. The.,. create a general frame~,.ork for the consecuti'.e valuation modeling 
(actuarial / financial part). 
The key emphasis is placed on the proper application of ke3 assumptions, the correct 
reflection all the specifics and the appropriate interpretation of results. We concentrate only 
on se,,eral selected issues (economic adjustments by NAV determination, base case scenario, 
sensltivit3, ana!3sis etc.), s,..hereby some aspects will be omitted or assumed as g~ven. By no 
means, it represents a comprehensive valuation stud). 

2.1. Slralegic Part 

Let us assume that a foreign insurance compan~ is interested in entry into an insurance market 
from the CEE region through the acquisition of already established company. The 
management of the acquiring company specifies the follo'.qng set of strategic inputs, which 
corresponds to the long-term expectations. The inputs provided b) management can be 
divided into the follo'.~ ing areas. 

I. Economic environment 

' we do nol specil'y an~ panr.:ular country. Hov.e,.er. there can be idenlu'icd se,.eral links to Prague. 
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Because of the general convergence towards the EU economic environment, v.e expect a 
stable economic en',ironment in the long term (GDP growth above the EU le~.el, price 
stabilit), etcA. 

2. Insurance market 
The grov,'lh opportunities of the insurance market are the leading moti',es behind the 
acquisiuon. According to the management, v.e can go out from the assumption that the 
insurance penetration (market premium as % of GDP) should reach the current level of the 
EU of 3% in the long term. 

3. Company specific inputs 

Growth: The strategic target is to increase the current market share of 8,5% (e.o. 2001 I to 
15% m 15 )'ears. More concretel), v,e expect the high-grov, th period during the first 5 )ears. 
After that. v..e suppose the decreasing positi'.e gap betv.een the company and market gro',~th 
rates. It leads to the market share stabilization in the long run. 

Product mix: Slightly increasing share of liability products ~s assumed 

Operational costs: The substantial impro',emenls in the operational pan of the business are 
expected in the middle term Icosts sa', ings, h~gher operational efficiency I. 

Economy of scale: Both the grm~.th abo',e the market le',el and the increasing operational 
efficiency v, dl ha',e positive impacts on the economy of scale. Whereby, the strategic target 
is to push do~,. n the current expense ratio of 33% to the desired level of 25% in the long term. 

Claims development:  The hardening market competition leads to the increasing clmms ratio 
in the long run up to 75-77%. 

In addition, management addresses the following issues: 

I) What are the lower and upper boundaries for the acquisition value iser,.ing as a base for 
the negotiations ~'? 

2) ~ hat are the ke) value dri',ers? 
3) What are the main uncerlamties and risks inherent in the acquisition "~ 
4) What happens i f  the strategic assumptions about market and company growth ~,.ill not be 

accomplished ~ 
5) Hov, v, ould look like the v, orst-case scenario.'? 

2.2. Valuation Modeling (Actuarial / Financial Part) 

Based on the set of  strategic assumptions, the actuaries and financial anal)sts must construct 
the appropriate ,.aluation model That v, ill- be based on the EVA-based valuation approach in 
the scope as discussed in the paper We assume the fol lowing lechmcal restrictions: 

I ) Task. to determine the ",alue as ofthe end o f  2001 
21 Deterministic modeling 
3) We model the product mix as one ponfolio (product) 
4) We do not consider an.', reinsurance (gross = net,) 
5) Explicitly projected period o f  15 )ears 12002 - 2016) 
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6) Currency" in Mio of local currency 
7) We concentrate exclusively on the economic approach to ~.aluation (for simplicity no 

reserves discounting) 

We deal with the following valuation steps in order to provide management with the sufficient 
support for the negotiations. 

l ) Construction of the base case scenario 
2) Determination of NAV 
3) Cash flow projection 
4) Identification of key value drivers (senslti,.'lLv anal~.sis ~) 
5) Applications of other valuation methods (relative valuation) 
6) Construction of the worst-case scenario 
7) Summar). 

2.2,1. Base Case Scenario 

Under the base case scenario we understand the combination o f  the most probable valuation 
inputs concerning expectations about the future development It serves as an oulgoing base 
for sensitivity testing. Fol lowing equation (5.9), sve begin with the determination o f  NAV.  
After that, we discuss cash f low projection. 

2.2.1.1. Determination of NAV 

Let us assume the opening balance sheet according to CAS as of the end of 2001. as 
illustrated on Figure 10. Our task is to make the appropriate adjustments 2"~ to get the amount 
of NAV according to the economic approach. 

Balance sheet 2001 

Assets 

1 Intangible (ix Goodwill) 
2 Goodwill 
3 Investments 

3,1 Real estate 
3,2 Investment in aff Enterpnses 
3,3 Investments held to maturity 
3 4 Investments available for sales 
3.5 Investments tradable 
3.(~ Others 

4 Receivables 
4.1 on direct insurance 
4.,~ on reinsurance business 
4,2 Olhers 

Economic 
CAS Adjustments approach 

50 
150 

6 213 
246 

0 
3 494 
1 842 

631 
0 

692 
650 

2 
40 

0 5( 
-150 

93 6 30( 
-57 18 c. 

0 
100 3 59z 
50 1 89; 

(] 63 ~ 
(3 

-250 44; 
-25G 40( 

G 
(] 4( 

:: The here presented o'.er,.'ie,.,, can be understood as a rcpresentali'.e sample of adjustmenls the anal)sts can face 
v, ah ',,,hen ',alumg a P'C Insurance compan) from the CEE region In no case. =t co',ers a comprehenslse listing 
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E) AC -10( 298 
6 :)ther assets 14E -5( 98 
7 Deferred tax assets C 20~ 204 

rotal 7 64~ -25." 7 395 

Liabilities 

1 Met asset value (Equity} 1 877 
1.1 Paid in Capital 1 00C 
1.2 ~etained earmngs 73C 
1.3 LJnappropriated profit/accumulated losses 
1.4 Profit / loss of the current year 147 

2+3÷4 Liabilities 5 771 
2 Technical provisions 5 10-" 

2 1 Llneamed premiums reserves 2 18 ¢ . 
2.2 Claim reserves 2 71" 
2 3 Equalisalion reserve 20( 
2.4 Bonus Reserve 
2.5 Other underwdtm,q fund and prowsions 

3 Other provlsions/llability 66[ 
4 Deferred tax l iabil i t ies 

Total 7 64 

-45." 1 424 
1 00C 

-45" 277 
C 

147 
20( 5 971 
20( 5 303 
10( 2 28 c . 
30( 3 014 

-20( C 
£ 

0 66E 
0 

-253 7 39. = 

Figure i0: Determination of NAV - from s ta tutory accounting to economic approach 

Explanation to adjustments 

Assets: 
Row 2: Elimination of goody, ill (goodwill will be considered as a part of MVA within cash 

flow projection). 
Row 3. I : Real estate uas  overestimated according to statuto D' accounting (best estimate). 
Row 3.3: Since fixed income was carried at purchase '~alues net of unrealized losses, we 

proceed the re',aluation following market prices (hidden rese~es). 
Row 3.4: Since fixed income gas  carried at purchase ~alues net of unrealized losses, we 

proceed the revaluation following market prices (hidden rese~'es) 
Row 4. I: The company holds a large amount of outstanding recei,, ables from direct insurance. 

Whereby the anal',sts are convinced (based on the credit risk analysis) that the 
created accounting adjustments to receivables are substantially underestimated. This 
adjustment decreases net amount of receivables. 

Ro'.~, 5: The company capitalized some items of marketing expenses in the past. Since no 
substantial impact on future business has been proved, we exclude these items from 
DAC and charge them directl.', against NAV. 

Roy, 6: This adjustment corresponds to the balance sheet cleaning (deferrals etc.). 

Liabilities: 
Roy, 2.1" Reflection of premium deficiencies. There are still man.,, unprofitable policies in 

the compan) portfolio as a result of the former strateg2, pushing the business volume 
al the expense of profltabilit.',. 

Ros~ 2.2: Best estimate of claims reserves (for the sake of simplicity no reserves discounting). 
The analysis of claims rese~'es adequacy has revealed some deficiencies. 
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Rov, 2.3: Elimination of equalization reserve [according to economic approach does not 
represent a particular liability). 

Tax effects: 
Row 7" Tax impacts from all above listed adjustments (statutory tax rate of 31% is applied). 

NAV change: 
Row 1.4" If ,xe sum all the adjustments including the tax impacts, then v,e get the amount of 

change in NAV. 

Conclusion: 
Following the economic approach, ~,.e determined the amount of NAV at I 424 Mio as of the 
end of 200l. What ~s important, this amount is sufficiently above statutor? solvenc,, 
requirements (above 30% of v.ritten premium as compared with statutory requirement of 
approx. 22%) and in line '.,.ith risk capital concept [additional assumption). Therefore, no 
capital injection is necessar3.'. Although we ',',ere "~ery conservative concerning some items 
(e.g. deferrals, cleaning of balance sheet, premium deficiencies), there is still some amount of 
uncertainty left: 

• The appropriateness of adjustments to receivables (no data for a reliable analysis 
a,.ailable) 

• Claims reserves adequacy (too short time series in order to proceed a more reliable 
analysis ofclatms reserves adequacv') 

If we considered these uncertainties, than the worst case scenario ,.,.ould drop the estimated 
NAV b) additional cca. 300 mio. 

2.2.1.2. Cash Flow Modeling 

Based on the set of strategic assumptions, we can summarize the following inputs to cash 
flow modeling, ~,.hich determine the base case scenario. 

A. Macroeconomic faclors 
Since the gi,.en econom) has reached the stabd~t,, in all relevant economtc ~.ariables recentl', 
(inflation rate, interest rates and so on), we do not expect an',' dramatic movements m this 
respect. That is the reason. ,.,.hy we suppose key macroeconomic ,~ariables to be stable in the 
long term, as Follov, s: 
Real growth oFGDP 3,50%. 
Inflation rate 3,00%. 
Risk free rate 4.00%. 

B. Induslr~'-specific factors 
The projected grov, th of the insurance penetration (market premium as a % of GDP) is 
supposed to reach the current level of the EU of 3% in the long term (in 15 .~ ears). Whereb', 
the spread over time is assumed to be linear. In addition, we expect the continuing trends 
tov, ards the higher industr3, eFficienc~ (decreasing e\pense ratios, increasing claims ratios). 

C. Company-specific inputs 
Analyzing all the company-specific factors, we determine the Follov, ing trends in kerr 
variables. 
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C.1. Premium module 
Key Inputs 2002 2003 2004 2005 2006 
Growth rate of Nr of New business 12,0% 20,0% 16.0% 12.8% 10.2% 

Commentary: Slarl=ng with 2003. we expect a subslanl=al increase of Nr of New business with a 
declin=ng tendency. From 2007. we suppose slable growth of 7.5% 

Key outputs 
Growth rate of premium 9.5% 11.5% 13.2% 13.8% 13.4% 
Market share 8,8% 9.0% 9.4% 9.9% 10.4% 

Commentary: From 2007. we expect the decreasing growth rate (=decreasing gap between market 
and company growth rate). The market share is developm 9 accord~nC..lly 

C.2. Expenses module 
Key inputs 2002 2003 2004 2005 2006 
Commission rate as % of premium 13.0% 12.7% 12.4% 12.0% 11.7% 
Other acqu=s~tion expenses as % of premium 7.0% 6.8% 6.7% 6.5% 6.3% 
rmprovemenls in operational efficaency (costs savings in 
~io) -14 -32 -32 -9 -~ 

Operational expenses -vanable part (in 2001. 252 m=o) grow in 5ne w=th premium 

Operational expanses - fixed part (in 2001 : 342 mlo) grow in I=ne w~th inflation rate + 1,5% 

r'-ommentary: Higher transparency in commission schemes should push down the overall acquisition 
costs ratio 1o 18% in the long run. Furthermore. we suppose substantial cosls savings in overheads 
',as compared wdh the outgoing base of 2001 ) due to =mproved operational effic=ency dunng the first 5 
ears. 

[ey output 
Expense ratio 33,3% 32,0% 30.6% 29.6% 28.6% 

Commentary: The prolected expense ratio is expected to dramatically decrease at the beginning of 
Lhe projected penod because of both costs sawngs and the effects of economy of scale. The 
:levelopment a=ms at reaching the strategic target of 25% in the long term. 

~ module / 
- -  2002 2003 2004 2005 2006] 
r cla=ms ratio 70.0% 70.0% 70.0% 70.0% 70.0°.t 

/ 
: Since the insurance market is not sl=ll efficient enough, we find projected claims rat=o of I 
as conservahve estimation. From 2007. we expect gradual increase up to 77% in the J 

J!ong term. Furlhermore, we assume the shifts in payoff pattern (longer brae delay) because of i 
lincreasin 9 portion of liability coverage | 

.4. Investments module 
ey inputs 
=sk free rate 
eta 

! 
2002 2003 2004 2005 2001~ 
4.7% 4.8% 4.5% 4.0% 4.0°~ 

I 

100.0% 100.0%o 100.0% 100.0% 100.0%1 
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Market risk premium 5.5% 5.5% 5.5% 5.5% 5.5°~ 
CoC 10,2% 10,3% 10,0% 9,5% 9,5'/, 
Investment yield 6.8% 6.9% 6.6% 6.1% 6.1°/, 

Commentary: Concerning the determlnal=on of CoC, =ts first component - risk free rate is determined 
by YTM on government bond with 10y matuniy. The risk free rate =nclucles country risk S~nce there =s 
no rehable market tnformatLon (from stock market) for determination of nsk premium, we must rely on 
the analysis' assumpt=ons (derived from standard marl(ets) The total =nvestment yield =s determined 
as the weighted average of portfolio structure and the corresponding y~elds on different asset classes 
(derived from nsk free rate + appropriate risk and term prem=ums). From 2007. we keep the same 
assumphons as in 2006. 

Figure I I: Overview of company-specific inputs 

2.2.1.3. Valuation Outputs 

Incorporating all these inputs into the ",aluation model, we get the P&L statement over the 
projected period (see Figure 12). You can see the profitabilit.', de',elopment al the bottom of 
the table, as measured by the gap between ROE and CoC. At the first glance, the 
development seems to be reasonable• The increasing profitabilit', o',er the first 5 years 
corresponds to both successful restructuring steps (cost cunings etc.) and effects of economy 
of scale• The rest of explicitl.s projected period *s affected be the tightening insurance market 
0ncreasing claims ratio), pushing do',~ n ROE shghtl) abo'.'e the rate of CoC in the long term. 
That is in line ~,.*th the management's assumption that the compan,, cannot beat the market 
continuousl) in the long run lefficient market hypothesis) Following this thesis, the 
determination oftenninal  value in the base case scenario go out from the assumption ROE = 
CoC, ','.'hat imphes terminal value to be zero. 
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Figure  12: C a s h  f low projec t ion  - P & L  

A good insight into the value adequacy can provide the value decomposit=on mlo its p.',o main 
components' N A V  and M V A  (see Figure 13) 
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Value decomposition 

t ; 
_1 

1 2 3 • 5 6 7 8 9 10 11 12 13 14 15 

F igu re  13: Va lue  decompos i t i on  

The share of MVA on' the total value accounts for less than 50%. That is based on the 
assumption [hat terminal ~,alue equals zero (ROE = CoC). What happens if ,,,,e relax this 
assumption illustrates Figure 14 (sensitivit', of terminal value on the gap between ROE and 
CoC). 

Valu-e--- 2 N-AV :t.=MVA- . . . . . . . . . .  -2-5~ 2-672;;-8-16 
% change in Value 0.0~ 5.7% t l,4~ 

Net Asset  Value (NAV) t 40E 1 406 1 40( 
Market Value Added  (MVA) 1 121 1 265 1 41t 

;; change I .  MVA 0.0~ 12,9% 25,8',: 
- expl ic i t  cash f lows model l ing (2002.2016) 1 121 1 121 t 121 
- terminal  va lue t 145 2~. 

- * ROE g.5', lo.o~ to.5~ 
- - C o C  g,,5.o 9.5',.[ g.s .', 

- - ~lap ROE vs. CoC o.0~ 0.s'~[ t,o~ 

F igu re  14: Terminal  value determinat ion 

2-9611 31()51-3-25ol 
17.2%1 2Z.g%t 28.6%1 
1 40GI t 4061 1 406! 
1 5541, 1 G991 1 8¢1' 
38,7%1 51.G%1 64.5% 
1 121] 1 1211 1 121 

I '"1 5,,, o 3  
11.0% 11.5%1 12,0'/, 

"~'1 9.5%1 9.5',; 
1.5%t 2.0%1 2.5% | 

The ROE exceeding CoC by I% leads to an increase of MVA by more than 25% (2% would 
lead to an increase of above 50%). Therefore, the procedure how the terminal ~alue is 
determined critically influences the estima.ted value. 

To complete our analysis of base case scenario, it is also useful to deal with key variables and 
ratios, as presented on Figure 15. 

615 



O v e r v l e w o f - k e y  va r l a l ) l es  and - ra t ios  - -  " I " , " + " , - ~ 1 ] 

- - - ~  -- - - - - - -  --+ - ~ - - -  " - ' - - -  - : - ~ - - - -  . . . . . . .  ~1-- ! . . . .  : - - - [  i 

m 

I-~'oozl 20031 zoo41 20011 200~1 200rl aooel 200~1 20101 zolfl 201z I 20,z I z0141 20151 2016[ 
) p lemiunrn  . . . . . . . . . .  , : . . . . . .  [ I - .. ~ . i 

ll- 
[ G r ~ r E l l o r p ~ | ~  ~'l~% tlJS% I$*  ~/. l$lle~ 134% 13.t% 1 2 ~  12.6q~ 124~/i 1|.2% 121% 120% ~ t ~  I 
r 

Mmk;sa-ha~'| - -  " e~% - b ~ - .  --94% 9~% 104% iOJ~; 113% 11rB'% 12.3% 12J~" 1 | ' l ~  137% 14.2% 14"/~. 1&.~% 

MmkM Oro~4h rMi ~t~v~ 92*~ 91% OOe~e 8 GeV,, LOe, b 8,'~% 8.0~. 80~6 I I1~ 8 0 %  8 0 %  9Ge~e 8G'% 8 J~e,v 

IS) E x p e n s  o_s . " _ _ " I . . . . . .  : - 1 

TetldelpenlelatlO[blcLDAC)al%ofl ')3..,~,, 32.0% ~G*F* 2f~6% 29~'% ~ 1 %  Z',r7% 27,3'% ~ ~ 11~%m1% I1~:% ~ 01~ - -  r ~ ' l ~  . . . . . . . .  " ~ ? ~  

. . . .  . . . . . . .  1.17~ t 11o% t~]zO~t l l ,~_ t .1_ lOqb ,Grovolhri~ioftQfl i l | tpefl | | l  _63*4 e 4 %  7;~% g ~ ,  ~1~  t1,1% 11,4% 11~,f, 

70.0% 100% 700% "J'OO'A, "tOO,r, 707'% 71.4"% T21% ~'g~Y" I00r3% IC01'% I011%101(~%liD:tt% I ~. al~nder v~m (l~dmS r t~o  ~ '  I)% 

c ~ , ~ , d , ~ e e  IOl)*,* tO'2LVV, IOO~% s96"~ ~6"/*  , 

m V J l ~ l ~  ~1~ . §J~'% 6.~,b 6G~.~ (1% 6.1% ~1% 61% 6.1% 61% 61% 61% 61% e 1 %  e1% 6N% 

A i i i t l l v l r l~4 )  1 ~ 8 ~  I ~ / ~ *  I~r97'~4 1414% I&.tb~e 148A'% 552,~% IS~.B*~ 1§11% 1(ss4% I~L9S% 1735% 17"74% 181.1% 18d.l~v 

11o% 1314 1S(% 111% 16.3% 154% 146"~ 139% 1).2'*& 127~b 121% 116% 10.3% ImOE 

Figure 15: Overview of  key variables and ratios 

The ratios are divided into the same subcategories as valuation inputs. For instance, we can 
test the adequacy of  premium gro',~,th as a difference between market and compan.~ growth 
rates. The peak is reached in 2005 and after that we follow the steady decline leading to a 
stabilization of  market share in the long run. Concerning the ratios related to expenses, v,'e 
emphasize, besides expense ratio (the strategic target of  25%), the difference ratio bel~,een 
grov~th rate of  premium and growth rate of  total expenses. It can be easil,, interpreted as the 
contribution of  econom.', of  scale. Combined ratio is over the whole projected period around 
100%. Its development is determined by steadily decreasing expense ratio and by increasing 
(from 2007) claims ratio up to 77% in the long run. The changing product mix is patti) 
considered in the increasing asset leverage (because of  increasing reserves ratio}. It leads to 
an increasing tmportance of investmem result as measured as % of  earned premium. The 
profitability de,.elopmem has been already discussed above. 

2.2.1.4. Sensilivily Analysis 

To identify key value drc,,ers, it is worth preceding sensitiv,y anal,,sis "~ith respect to most 
important underlying valuatmn assumptions. 

I. Premium growth rate (economy of scale) 
The expected growth was deduced from both the expected gro',,.ah of  the whole insurance 
market (top-do'.,,n approach) and the compan', gro,.,,th above market level. The magnitude of  
growth has a substantial effect on the achie~,ed econom) of  scale (through the connection to 
the fixed part of  operational expenses). 
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.~hange In Premium growth rate 
Change Value Change In % MVA Change In % 

0.0% 2 527 0.0% 1 121 0.O*/ 
1,0% 2 756 9,0% 1 349 20,4°/ 
2.0% 2 995 18,5% 1 588 41,7"/ 
3.0% 3 245 28,4% 1 839 64,1"1 
4.0% 3 507 38,8% 2 101 87.4°t 
5.0% 3 781 49,6% 2 375 111,9"/ 

-1.0% 2 309 -8,6% 902 -19.5°/ 
-2.0% 2 100 -16,9% 694 -38,10/ 
-3.0% 1 901 -24,8% 494 -55,9*/, 
-4.0% 1 710 -32,3% 304 -72,9*/ 
-5.0% 1 529 -39,5% 122 -89,1'/ 

The interpretation of resuhs is straightfo~ard: 
• If the annual grov, th were by 2% higher over the ",,,hole projected period, the estimated 

MVA would be higher b2r 41.7%. 
• Or alternatively, the less realistic assumption of higher annual premium growth by 5°'o, 

corresponding to market share abo,,e 25% in 2016, v, ould imply the value larger by 
50%. 

• On the other hand, if we supposed the stable market share (= the annual growth Iov, er 
by 4%), the MVA would drop by approximately ~ (compare v, ith the ',~orst case 
scenario 2.2.2). 

The projected premium growth and the le',,el of achieved econom~ of scale substantially, 
impact the estimated value. Hov,'ever, the performed analysis is based on the assumption 
other things being equal. It means that ~,.e neglect some interdependencies (e.g. higher 
growth would probable imply more aggressive acquisition and unde~'.'riting policy). 

Now, we explore tv.o vartable components of combined ratio: claims ratio, and commission 
and other acquisition expenses moo. As previously, v,e suppose no effects on other 
parameters (other things being equal). 

2. Claims ratio 

Change in Claims ratio 
Change Value Change in % MVA Change in % 

0.0% 2 527 0,0% 1 121 0.0% 
0.5% 2 388 -5,5% 981 -12,4°/ 
1.0% 2 248 -11,0% 842 -24,9°/ 
1.5% 2 109 -16,6% 702 -37,3°/ 
2.0% 1 969 -22,1% 563 -49,8°/ 

-0.5% 2 666 5.5% 1 260 12,4°/ 
-1.0% 2 806 11,0% 1 400 24,9*/, 
-1.5% 2 945 16,6% 1 539 37,3°/ 
-2.0% 3 085 22,1% 1 679 49,8*/, 

3. Commission and other acquisilion expenses ratio 
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Ohange in Commission and other acquisition expenses ratio 
Change Value Change In % 

0.0% 2 527 0.0% 
0.5% 2 376 -6,0% 
1.0% 2 224 -12,0% 
1.5% 2 073 -18,0% 
2.0% 1 922 -24,0% 

-0.5% 2 678 6,0% 
.1.0% 2 830 12,0% 
-1.5% 2 981 18,0% 
-2,0% 3 132 24.0% 

MVA Change in % 
1 121 0,0 "/, 

969 -13,5°/` 
818 -27,0°/` 
667 -40,5°/` 
515 -54,0°/, 

1 272 13,5°/, 
1 423 27,0°/, 
1 575 40,5°/, 
1 726 54p0~ 

h is clear that the valuation outputs are critically sensitive on the variable components of 
combined ratio. If v,e compare the sensitivity of both claims and commission and other 
acquisition expenses ratio, changes in claims ratio have smaller impacts due to compensation 
on the investments side (higher claims ratio increases rescues and thus investments income). 

4. Costs of capital  
The determination of an appropriate discount rate is of the central importance in any DCF 
(EVA) based valuation approach. Mainl) in the developing economies we can face wilh the 
problem that there is a large amount of uncertainty, concerning the specification of an 
adequate risk premium. That is the reason, why we explore the sensitivity on CoC (more 
specifically: risk premium), without taking into account other interdependences (e.g. 
investment yield etc.). 

.~hange in Cost of CapItat 
Change Value Change in % MVA Change in % 

0.0% 2 527 0,0% 1 121 0,0°/, 
0,5% 2 344 -7,3% 937 -16,4% 
1,0% 2 173 -14,0% 767 -31,6°/` 
1.5% 2 015 -20,3% 609 -45,7a/` 
2.0% 1 868 -26,1% 462 -58,8% 

-0,5% 2 724 7,8% 1 318 17,6°/, 
-I .0% 2 937 16,2% 1 531 36,6% 
.1,5% 3 167 25,3% 1 760 57,1°A 
-2.0% 3 414 35,1% 2 007 79,1°/` 

We supposed that the whole amount of country risk premium is already included in the risk 
flee rate. Next, the risk premium was set in a standard way. What happens, i f ~ e  assume that 
risk free rate cannot embrace the total countn risk premium, shov, s the table above. For 
instance, the I% increase in risk premium culs the estimated MVA b.', one third. 

5. Risk free ra te  
The change in risk free rate affects in our contemplation both CoC and investments yield. 
The positive effect on investment income is compensated by the opposite effect resulling from 
costs of holding capital and discounting. 

~hange in Risk free rate I 
| Change Value Change in % MVA Change in % 
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0.0% 2 527 0,0% 1 121 0,0% 
0,5% 2 509 -0,7% 1 102 -1,6% 
1,0% 2 483 -1,7% 1 077 -3,9% 
1,5% 2 452 -3,0% 1 046 -6,7% 
2.0% 2 415 -4,4% 1 009 -10,0% 

-0,5% 2 537 0,4% 1 130 0,9% 
-1.0% 2 536 0,4% 1 130 0,8% 
-1,5% 2 525 -0,1% 1 1t8 -0,2% 
-2,0% 2 500 -1,1% 1 093 -2,4% 

You can see that the effect of changed risk 
negligible. Ho',,.ever, v.e completel) overlook 
reserves payoff. 

free rate is due to mentioned compensation 
the relationship with inflation rate and claims 

6. Inveslrnent yield 
Last but not least, we explore the sensitivit3 on investment yield. We suppose changes in 
investment yield without an)' interrelationships and dependencies with other ',ariables (e.g 
risk free rate. respecti,.ely CoC). 

~-hange In Investment yield 
Change Value Change In % MVA Change in % 

0,0% 2 527 0,0% 1 121 0,0% 
0,5% 2 703 7,0% 1 297 15,7% 
1.0% 2 879 13,9% 1 473 31,4% 
1.5% 3 055 20,9% 1 649 47,1% 
2,0% 3 231 27,9% 1 825 62,9% 

-0,5% 2 351 -7,0% 945 -15,7% 
-1,0% 2 175 -13,9% 768 -31,4% 
-1,5% 1 999 -20,9% 592 -47,1% 
-2,0% 1 822 -27,9% 416 -62.9% 

Conclusion: 
We find the mainly growth rates of premium together '.,.ith the achieved level ol'eeonomy 
of scale as the key factors substantially influencing the estimated ~,alue. Furthermore. the 
discount rate (CuC) is of  a key imparlance here. The components of profit margin, as 
represented here by the variable components of combined ratio and the investment yield l no 
dependenoes with CoC assumed), are also very rele~,ant Factors. But we dare to believe that 
under the standard market environment lhe.', tend to be more or less determined b) the 
industD' environment in the middle term. 

2.2.1,5. Application of Relative Valuation (Decomposition of V/P Ratio) 

~e  appl.v the relatb, e valuation uldizing thf analysls or VIP ratio, as d~scussed in Section 
4.4.2, in order to check the reasonabilib and correctness of  the results given b.', the EVA- 
based valuation approach. We proceed in the Following '.,.ay. First, we substitute the inputs 
ulihzed by the EVA-based ',aluation approach into the decomposed relative measure (V'P 
ratio). Next, ,~.e compare the resulting decomposed V,'p ratio ',~ ~th the EVA-based ',aluation. 
We go out From the thesis that if the valuation assuntptions are roughly the same, both 
methods should bring similar results. I f  it is not the case. there must be some discrepancies in 
the ,, alualion assumptions. 
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A) Relative valuation 
Follo'.vmg equation (4.7) and incorporating tax rate, ~e  obtain: 

V,'P = (I / CoC) " [( I - combined ratio) + AL*IY)] ° (I - tax rate). 

The weighted averages over the 15-)ear horizon o f  explicit cash tier, modeling are utilized as 
the respective inputs. 

vg combined ralJo 100.9%] 
vg. IY 6.2%o I 
vg. AL 165.9% I 
vg CoC 9,5~ 

• tax rate 31,0%[ 
- - -A 

IVIP ra-'~o ~ to relative valuation 67~4%~ 

B) EVA-based valuation 
In this case. we relate the eshmated value to the expected premium in t = I. 

[Prem,um <expeme+ ,r, t [] 11 5 O; 1] 

~VIP ~ ~ based valuation ~,4% I 

While the esumated value according to the EVA-based valuation approach corresponds to 
V,,P ratio o f  50,4%, utilizing decomposition we get V/P rat~o of  67.4%. Where does the 
difference come from? 

Obviously, there is a difference m the considered time horizon While the decomposition 
impliotly assumes the infinite horizon (for details see Section 4.4.2), the EVA-based 
' .aluation takes into account the onl) first 15 )ears  o f  e.xplicit cash flov, modeling (terminal 
,.alue is given at zero). To reach the comparabflit.', of  both approaches, '.~e must appl) the 
same assumption concerning the infinite horizon• In our case. it means to calculate the 
terminal value in the EVA-based valuation approach by projecting ROE and CoC into infinite 
tthe average values from cash flo,x modeling are to be applied). 

vg. Diff. raho: ROE vs COC 3.3% 1 
erminal value 959 I 

by terminal value 3486~ 

r~o ~ f  EVA based valuation 69r6°/~ 

Conclusion: 
The V,'P rauo according to relative valuauon yields 67.4%. The corresponding value from the 
EVA-based ',aluation approach extended over the infinite horizon tto insure the consistenc)) 
gi,.es the ',er). similar result el" 69.6%. The comparability o f  both results confirms that the 
,,aluation assumptions ',,.ere applied in the correct ",~a) and there are no logical 
inconsistencies. 
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2.2.2. Worst Case Scenario 

Although the assumptions in the base case scenario, in the mainly underv,'riting part, ~,.ere 
conservati,~e and realistic enough, the sensitivit} anal}sis has disclosed high dependence on 
the premium growth rate and the achieved economy of scale (quite strong assumptions about 
market and company gro~,.th). That is the reason, why management puts the question. '.,.'hat 
happens if  the expected gro,.~,th perspectives will not be accomphshed. 

To anal)ze this issue, we construct the so-called ,',,'orsl-casc scenario. It represents the 
combination of several ad,,erse but still reasonable assumptions, but in no case it represents a 
catastrophic scenario (the emphasis on reasonabilit.,, is here of a key importance). 

2.2.2.1. Delerminalion of NAV 

Recalling Section 2.2 I. I, there are two main uncertain areas in the determination of NAV: 
adjustments to receivables and claims rese~'es adequacy. In the v.orst case. they could reduce 
NAV by 300 mio. Thus, NAV is estimated at I 106 mio,  according to the worst case 
scenario. 

2.2.2.2. Cash Flow Modeling 

We belie'~e that the worst-case scenario should be primarib investigated with regard to the 
strategic assumptions. We ,.,.'ill consider the following adverse development: 

• Lower growth of the insurance market 
Within the projected period the insurance market ,.viii grov. at Iov.er rates. 

• The company's gro,",th in line with the market  
Fast no increase of the market share is expected. We assume very moderate gro,.~ th of 
No. of Ne~, business. 

• Portfolio structure 
The share of hability products ,.,,ill grow more moderately, h imphes the shorter 
pa}off pattern and consequeml) the lower asset leverage as compared vdth the base 
case scenar io.  

• Costs savings 
The space for costs savings through the improved operational efficiency will not be 
achieved to such a large extent as initiall), expected. 

• Economy of scale 
The above aspects imply that the large expectations concerning econom~ of scale ,,,.'ill 
not be fully realized. 

• Olher underwriting and investments assumptions 
All other unde~vriting and investments (including CoC) assumption ,,','ill be Ibr the 
sake of simplicity kept just the same. 

To sum up, the presented worst-case scenario focuses primarily on the ad~,erse development 
on the production and operational side (economy of scale). The other underwriting and 
investments parameters follow the assumptions from the base scenario. Explanation: 

• Just the production and operational expenses (economy of scale) parameters represent 
key strategic inputs, v.hich determine the main objective behind the given acquisition 
strategb' and therefore should be criticall.,, tested under the adverse development 

• On the other hand, underwriting and investments parameters are to a large extent 
determined externall) (b~ insurance markets - hard ~s. soft market, competition, and 
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by financial markets) and are therefore onl) partly influenceable by management. 
Thus. the', are of  a less importance here. To investigate the magnitude of  
underwrmng and investments parameters, we refer to sensiw, it) anal:, sis (2.2.1.4). 

2.2.2.3. Valuation Oulpuls  

'P&L S ~  o r n e r ~  
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Figure 16: P&L - the ,,,orsl case scenario 

According to the worst case scenario, MVA drops by more than 2i3 to 351 mm, as compared 
with the base case scenano. That is explained by lower premium gro',,,lh than would be 
otherv.'ise necessar:' to spread fix costs and to achieve positive contributions of  economy of 
scale. The estimated value of  1457 mio can be understood as the Io'.,.er boundaD for 
negotiations 

2.2.3. S u m m a r y  

Based on the performed valuation analysis, ,,'.'e can come back to the issues arisen by 
management and t,r) to gi',e the appropriate recommendation and conclusions. 
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The base case scenario represents the outgoing base for acquisition negotialions. We do not 
recommend going too much abo~,e this estimated amount. Nevertheless, if v,e considered 
some more optimistic assumptions, for instance concerning the determination of terminal 
~.alue as illustrated on Figure 14, ',,,e could arrive at the upper boundar) .  The Iov, er bounda~'  
is determined by the v,'orst case scenario. 

The key value drivers :  
• Economy of  scale 

o Premium growth 
• Growth o f the  ~.hole insurance market 
• Company grov, th 

o Improvements in the operational efficiency 
• Discount rate as embodied in the assumption about the stable economic and legal 

environment 

This list of  value drivers  corresponds to the main uncertainties inherent in the 
valuation: 

• The stable economic environment, grov, th of  GDP 
• The growth o f  the insurance market 
• The standardization and competiti~.eness of  insurance market 
• The uncertainties inherent in the determined NAV 
• Company grov,'th perspectives 
• Cost cuttings 
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