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Abstract
This paper is based on a commissioned research study by the Casualty Actu-

arial Society with a focus on a theoretical framework for a liquidity risk premium
and the interaction of illiquidity with credit e¤ects on the valuation of assets
and liabilities. The problem addressed is the development of a theory of liability
valuation distinct from a theory of asset pricing or valuation. Our proposed so-
lution is to formulate a risk theory for two price economies when markets fail to
converge to the law of one price. The traditional one price economy prices the
credit, market and some components of liquidity risk using traditional methods
that include exponential tilting in the presence of constant absolute risk aversion
utilities. The two price economy on the other hand explicitly models illiquidity
issues by developing expressions for bid and ask prices that ensure the accept-
ability of residual risks. The presence of residual risk and its associated market
incompleteness is central to the market�s inability to converge to the law of one
price in two price economies. The resulting two prices are di¤erentiated from
classical linear pricing rules as they are nonlinear functions of the cash �ows
being priced. Speci�cally bid prices are concave functions of the claims being
priced while ask prices are convex functions. Asset and liability valuation then
part company as we propose to employ ask prices for evaluating liabilities while
assets are to be priced at bid. Two price economies also provide new hedging
objectives for corporations with hedging strategies being designed to economize
on the commitment of capital needed to cover residual risks. The static two
price theory is extended to its dynamic counterpart using recent developments
in the theory of non linear expectations. The dynamic model is in discrete time
with a tenor re�ecting a time horizon at which it is anticipated that genuine
counterparties normally arrive. The longer the tenor, the greater the illiquidity
and the greater is the spread between bid and ask prices. The dynamic the-
ory is illustrated on pricing a simple compound Poisson gamma insurance loss
process. In this context capital minimization as a hedging objective illustrates
the construction of optimal reinsurance points. Financial hedging using the se-
curitization of catastrophic loss exceedances and mortality contingent securities
for life risk further illustrate the construction of two prices in the context of
capital minimizing hedges. Further it is observed that bid prices are sensitive
to changes in credit risk but this is not the case for the ask or liability pricing
counterpart. A �nal empirical section addresses issues of measuring the size of
cones of acceptability using data on daily high, low and close prices of publicly
traded equity.
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1 Introduction

There is an extensive empirical literature on measuring liquidity, coupled with
a substantive theoretical literature on modeling liquidity or more exactly the
lack thereof. Broadly speaking, from the benchmark of a perfectly liquid mar-
ket, illiquidity is viewed in terms of price impact with buyers exposed to price
increases while sellers experience price reductions. In the benchmark liquid mar-
ket there is unlimited trading in both directions at the same price. There are
no price impacts associated either with the direction or the size of transactions.
Though extensions of this research could focus on size e¤ects this paper is con-
cerned only with the e¤ects of the trade direction, abstracting away size issues.
Attention is thereby focused on two prices, the one at which one is guaranteed
a purchase or the ask price and the other the one at which one is guaranteed
a sale or the bid price. In e¤ect we contemplate an economy in which most
transactions of interest are for products not traded on any exchange, for which
one may be able to observe the ask price and or the bid price, but importantly
there is no possibility of trading in both directions at any observed transaction
price. Every transaction is either near or at the ask or near or at the bid. The
economy is a two price economy with some information on the two prices and no
information on some hypothetical intermediate price that could be considered
a candidate price for the one price of an economy where the law of one price
prevails. We explicitly model the equilibrium of a two price economy and study
the pricing of risk in such a context.
We recognize that every transaction has a price and it also has a buyer and

a seller, so how does one decide whether the price observed in the transaction is
an ask price or a bid price. Is it not just the price of trading in both directions
given that both directions are taken by someone at this transaction price. One
has to know more about the transaction. In particular we see one of the two
parties as the one that needs to trade and initiates the transaction while the
other party generally dictates the terms. We see the party dictating the terms
as representing an abstract market while the party that needs to trade is an
economic agent seeking a trade with the market. In liquid markets one may
have two parties that need to trade in opposite directions and they cross at
a prevailing market price. There is a symmetry in the motivations of the two
parties. In two price markets only one of the two parties needs to trade and
initiates a transaction with the other party being induced to trade by setting
the terms of trade. Our interest is in this economic world of two price markets
with the consequent implication for marking to two price markets being that
assets are to be marked at bid while liabilities are marked at ask.
The terms at which one may liquidate or cash out a position is the real

question at issue. In this regard the position could be an asset with a claim to
future state contingent cash �ows from counterparties in the economy or it could
be a liability or promise to make such payments. For swap type contracts state
contingent cash �ows in both directions may be involved. When the market is
liquid and the law of one price prevails one may observe contracts being traded
at a su¢ ciently high frequency and it matters little whether the position is a
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claim to cash �ows or a promise to make such payments, as there is only one
price for initiating a transaction in either direction. A lack of such liquidity
arises when genuine transactions in opposite directions fail to cross. Cashing
out such claims is still possible but claims to receive cash �ows are di¤erentiated
from promises to make such payments.
The bid ask spread has been modeled in the theoretical literature in terms of

the e¤ects of informed traders on market makers (Copeland and Galai (1983),
Easley and O�Hara (1987), Glosten and Milgrom (1985)), and with regard to
incorporating the order processing and inventory costs of liquidity providers
(Ahimud and Mendelson (1980), Demsetz (1968), Ho and Stoll (1981, 1983)
and Stoll (1978)). Numerous statistical studies on the bid ask spread (Roll
(1984), Choi, Salandro and Shastri (1988), George, Kaul, and Nimalendran
(1991), and Stoll (1989), Huang and Stoll (1997)) consider decomposing the
spread into order processing, inventory and adverse selection components. The
counterparty earning the spread for a variety of reasons in these models is the
market maker whose concerns determine these spreads. We view these studies as
essentially modeling the process of price formation in liquid markets with most
of the empirical studies focused on the relatively liquid equity markets where
one observes many transactions at prices at which a reversal of trade direction
could possibly take place without a price e¤ect.
Our interest lies more speci�cally in pure two price economies trading con-

tracts that are not supported by market makers temporarily taking positions
that are ultimately reversed for the spread. The positions taken by both parties
are generally held to maturity with the interim risks being hedged as best as pos-
sible. Hence the motivations for the spread have less to do with order processing,
inventory or information asymmetry. They are related more to �nding genuine
long term counterparties prepared to transact with some commitment. The two
prices prevail in equilibrium as a convergence to one price is interrupted by
the lack of supply for demanders and or the lack of demand for suppliers. We
model the breakdown in a convergence to the law of one price as a fundamental
primitive of the two price economy. In the one price economy a slight increase
in an o¤er price unleashes a large supply just as a slight decrease elicits a large
demand.
When the law of one price prevails this price is the one at which demand

equals supply. The suppliers produce and the demanders consume, the deal
is done, and neither party is concerned about the morrow. However, when all
consumption and production is in the morrow in that what is traded are claims
and promises to state contingent future cash �ows there isn�t an equilibrium
price at which demand equals supply. There are instead two prices with supply
running out at the higher price and demand running out at the lower price.
For such a fundamentally two price economy there is an observed equilibrium
value for both prices with no observations on bidirectional prices. We therefore
study the pricing of risk in a novel two price economy equilibrium. For further
details on such equilibria we reference Madan and Schoutens (2011), where
competition is modeled by the narrowest spread of ask above bid consistent
with the aggregate market clearing. This equilibrium spread is however positive
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and a zero spread is inconsistent with market clearing for it leaves the market
holding an unacceptable set of cash �ows for the morrow.
The context of our model two price economy is better suited to the study

of risk in an insurance setting as such contracts are generally held to maturity
by both parties. The two parties do not trade on an exchange and there is
no secondary market on which to trade and discover some nonexistent two
way price. There is only a directional price. Since we have a genuine two
price economy, we essentially have a separation of an asset pricing theory in
our economy from its liability valuation counterpart. Our assets are priced in
line with the bid price while our liabilities are priced at ask. We comment
on comparing the pricing of risk in our economy with the classical one price
economy by using for a candidate single price the mid quote of our two prices.
In our two price economy we take a relatively classical view of markets

compatible with their role in traditional competitive analysis where markets
serve as counterparties to transactions allowing agents to buy or sell at the
going price. Note importantly that classically markets were not optimizing
agents endowed with a speci�c objective function to maximize. The only concern
for the Walrasian auctioneer was the clearing of markets. Under additional
assumptions on the underlying economy such a competitive equilibrium was
also Pareto optimal, though in the presence of externalities it may also not be
so. Our only point of departure in this perspective is just that the terms of trade
depend on the direction of trade, with the market buying at bid and selling at
ask. We therefore present a two price theory with separate equations for these
two prices.
In this regard consider �rst the classical market trading in both directions

at the going price. The market then accepts to sell at a higher price or buy
at a lower price and essentially takes all random cash �ows at zero cost if they
have a positive expectation under the equilibrium pricing kernel. These are
equivalently the positive alpha trades. This is indeed a very large set of risks
that are accepted by the classical market and it is unclear that any real market
would be that generous. Further we note that the law of one price when coupled
with the absence of arbitrage results in prices being linear functionals on the
space of random variables.
In reality many risks are parceled to a variety of clienteles to extract the

implicit price di¤erentiation that prevails. Under the law of one price there
is no point in slicing and dicing risks as the prices for the components always
add up to the price of the aggregate. Yet �nancial markets in the real world
are heavily engaged in creating �nancial products that precisely partition risks
recognizing that sum of the parts is not equal to the value of the aggregate. We
therefore seek and present a two price theory consistent with many observable
nonlinearities for these two prices. In the real world the terms of trade also vary
with the size of positions and prices are more complex than what is modeled
by our two price theory. We are therefore just initiating a minimal departure
from the classical one price world by only entertaining the dependence of price
on trade direction.
Our starting point is the classical theory with its equilibrium pricing kernel.
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For speci�c risks this could coincide with the physical probability measure, for
example when the risk is not priced in equilibrium. Classically the market
accepts all positive alpha trades and this is too large an acceptance set. The
economic primitive that di¤erentiates a two price economy from the classical one
price economy is the set of zero cost risks accepted by the market. Classically
it is, as already noted, a half space of random variables given by the �so-called�
positive alpha trades. We model, instead, the set of zero cost risks acceptable to
the market by a much smaller set. The modeling of this set of acceptable risks
follows Artzner, Delbaen, Eber and Heath (1999), Carr, Geman and Madan
(2001) and was further developed in Cherny and Madan (2009, 2010).
The classical perspective is appropriate for pricing state contingent cash

�ows being traded at high frequency for if a claim is o¤ered at a lower price one
buys, immediately sells and collects the di¤erence as an arbitrage pro�t. When
claims are infrequently traded or are being considered from the perspective of
being held to a natural maturity one may buy and then one has to wait till
the position is naturally resolved. A positive alpha with respect to a single risk
neutral measure is now little comfort. Of course if the cash �ow is nonnegative
then it has a positive alpha with respect to every measure and this is completely
acceptable as it is a risk free position. The reality lies in between and we model
the trades that will be done as those that have a positive alpha with respect to
a whole host of potential measures, including the equilibrium pricing kernel of
the one price market.
In this regard the economic primitive for the two price economy recognizes

that nonnegative cash �ows o¤ered at zero cost are certainly market acceptable
and they do meet trade approval. More generally we model the zero cost cash
�ows acceptable to the market as a set of random variables that is a convex
cone containing the nonnegative random variables. Equivalently one has to
specify the additional pricing kernels that are to be used to test for a positive
alpha, above and beyond the single pricing kernel associated with the one price
economy.
As promised, issues related to the size of the trade are abstracted away by

taking the set of zero cost cash �ows acceptable to the market to be a cone.
For a size impact one would replace the cone by a convex set as is done for
example in Madan (2010) when studying execution costs. In this paper we
restrict attention to two prices only and hence we model acceptability by a
convex cone as opposed to a convex set.
For a description of how such a cone is determined in a two price economic

equilibrium we cite Madan and Schoutens (2011). The essential equilibrating
principle is to let competitive pressures o¤er the largest possible cone with the
lowest ask price and the highest bid price consistent with the aggregate residual
risk held by the market being in some small prespeci�ed cone. The smaller
cone for the aggregate risk is the market clearing condition of the economy.
Since the market is the counterparty for all trades the market is left with an
aggregate residual risk given that what is being traded is state contingent cash
�ows held to a natural maturity. For the two prices to converge down to one
price it is imperative that the market as a counterparty accept all cash �ows
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with a positive expectation or alpha under a single risk neutral test measure
for acceptability. This makes the cone very large. When the market is more
conservative than this and employs more than one test measure the equilibrium
will have two prices and all that is observable are these two prices.
There is another view of the classical market that should be addressed. This

is that the market only accepts the identically zero cash �ow. Hence what it
promises to deliver must be received from elsewhere and the only possibility
is a complete clearing of cash �ows. Now a little re�ection would show that
receipts dominating payments would be acceptable and this leads us to the cone
of nonnegative cash �ows being acceptable that �nally results in ask and bid
prices being related to super and sub replication. What we argue for is the
recognition that nonnegativity for acceptability is too strict and in practical
economies some exposure to losses is tolerated. One may envisage the �nancial
system as serving the role of the market with losses being absorbed by this
system and in the limit by the lender of last resort. These considerations lead
us to depart from the stringent view that only zero or a nonnegative cash �ow
at zero cost is market acceptable, towards the use of a proper convex cone of
random variables strictly containing the nonnegative cash �ows.
For the construction of explicit examples of such cones we follow Cherny and

Madan (2009, 2010) and employ concave distortions of an underlying risk neu-
tral distribution function for the risk. A simple model of risk acceptability by
the market as an abstract counterparty is to base the decision of acceptability
on the distribution function for the risk. One then has to decide when a risk
with a particular distribution function is acceptable. This is done by ensuring
that it has a positive expectation under a concave distortion of the distribution
function. The distortion reweights upwards the lower quantiles and discounts
the upper quantiles. Needless to say, if a cash �ow is nonnegative it will have
a positive expectation under all distortions and will therefore be highly accept-
able. The losses occur at the lower quantiles and the distorted expectation being
positive signals that gains de�ated by the distortion still compensate losses ex-
aggerated by the distortion, thereby making the proposed distribution function
market acceptable. More complex models may well be developed in subsequent
research, by incorporating for example some conditioning information, but our
choice is a practical and tractable starting point that illuminates the qualitative
issues at stake.
In the static context of a single period two date economy, our two price theory

shows how low probability events typically insured against produce mid quotes
above the probability of the event even when there is no change of probability
to a risk neutral one. In the presence of such a change we present additional
illiquidity based components for the risk premia that are additional to the risks
that are priced in the change of measure to a risk neutral one. The risk neutral
measure could account for credit, volatility and some liquidity components of
risk, to which we add an explicit illiquidity component associated with the
divergences of our two prices. We thereby develop an explicit and parametrically
separated accounting for market, credit, liquidity and illiquidity risk, where the
latter is re�ected in the residual risk charges built into the two prices of two
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price markets.
Insurance contracts typically extend over multiple periods and it is important

to analyze the two price economy over multiple periods. The two prices, bid
and ask are known to be nonlinear and we extend these pricing operators to
dynamically consistent nonlinear operators by applying the recently developed
theory of nonlinear expectations. In this regard we follow Madan and Schoutens
(2010) and apply these methods to the pricing of insurance claims modeled by
increasing compound Poisson processes. In this context we study the e¤ects of
both maturity and the tenor or interperiod length on the two prices.
Madan and Schoutens (2010) generalize the static theory of bid ask prices

developed in Cherny and Madan (2010) to building dynamically consistent se-
quences of bid ask prices in a discrete time model using the recently developed
theory of non linear expectations of Cohen and Elliott (2010). A natural ques-
tion is the choice of tenor in the discrete time model. This should basically
match the frequency at which a number of similar risks are traded in the mar-
ket. This could be a year, a quarter or as frequent as a day or intraday. What
is shown is that as the tenor decreases and the trading frequency increases the
spreads narrow and approach the liquid market price of the law of one price once
we have trading as frequent as intraday. Madan and Schoutens (2010) analyze
�xed income and option contracts that have zero spreads at maturity that rise
as we come backwards in time. We apply these methods here to insurance losses
with a potentially in�nite maturity illustrating the e¤ects of various parameters
on the resulting valuation sequences.
The hedging objectives in two price economies turn towards the minimiza-

tion of ask prices or the maximization of bid prices. Equivalently as suggested
in Carr, Madan and Vicente Alvarez (2011) one economizes on capital com-
mitments measured by the di¤erence between the ask and the bid price. We
contrast our capital minimization hedging criteria with other classical criteria
like variance minimization and or the maximization of expected utility. We
also apply these new hedging objectives to illustrate the construction of optimal
reinsurance points for contracts insuring losses.
Next we address the �nancial hedging of insurance losses via securitization.

This requires the introduction of �nancial securities that lock into the experi-
ence of realized insurance losses at a future date. We study two examples in
this connection. The �rst is a security that locks into the aggregate level of
exceedances in catastrophic losses. The second studies the management of life
insurance liabilities in a stochastic mortality setting using options on the future
mortality rate.
The use of market data to estimate the magnitude of the various constructs

introduced in the theoretical development is addressed in a separate empirical
section. We recognize that data from liquid markets where the law of one price
prevails is not the appropriate data source for studies focused on the law of two
prices. The latter however lacks published data sources. We proxy for the two
prices by taking the high and low prices over some horizon. Here we report
initially on the use of the daily high and low prices.
The outline of the rest of the paper is as follows. Section 2 presents the theory
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of risk for two price economies in a static two date one period model. Section
3 presents the parametric separation of market, credit, liquidity and illiquidity
risk. The dynamically consistent two price valuation principles are presented
and illustrated in Section 4. Section 5 contrasts our new capital minimization
criterion with the more classical objectives available in the literature. Section
6 illustrates the construction of optimal reinsurance points that economize on
capital commitments. Section 7 takes up �nancial hedging in the context of
catastrophic losses. Section 8 analyses �nancial hedging of life insurance in the
presence of stochastic mortality when options on future mortality also trade.
The empirical estimation of theoretical constructs is addressed in Section 9.
Section 10 concludes.

2 Price of risk in two price economies

This section develops the theory of risk for two price economies in the context of
a one period two date model. There are three subsections. The �rst subsection
present the results at a general and abstract level. The abstract formulation is
followed by a subsection that employs concave distortions to model the prim-
itives for a two price economy. The third subsection considers the e¤ects of
existing positions on valuations out of equilibrium.

2.1 Two Price Economy Pricing Kernels

Consider a two date one period economy trading state contingent claims paying
cash �ows at time 1 with prices determined at time 0: The claims traded are
random variables on a probability space (
;F ; P ) and we suppose that there
are some zero cost claims with payouts H 2 H that trade in a liquid market
with the same zero cost for trading in both directions. The class of risk neutral
measures is then given by

R =
�
QjQ � P and EQ [H] = 0; all H 2 H

	
:

We suppose that an equilibrium has selected a base risk neutral measure Q0 and
the set of classically acceptable risks is then given by the set of positive alpha
trades or the set of random variables

Ac =
n
XjX 2 L1 (
;F ; P ) ; EQ

0

[X] � 0
o
:

The de�nition of Ac recognizes that the classical market will accept to buy any
amount at a price below the going market price and agree to sell any amount
at a price above the price given by the risk neutral expectation. We may de�ne
by �c the change of measure density

�c =
dQ0

dP
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and equivalently write that the return RX on X with positive risk neutral price
�(X) = (1 + r)�1EQ

0

[X] > 0 for a periodic interest rate of r; de�ned by

RX =
X

�(X)
� 1

satis�es the condition that

EP [RX ]� r � �covP (�c; RX) ;

or we have a positive alpha trade.
The point of departure for two price economies from the classical model is

the recognition that the half space Ac is too large an acceptance set for realistic
economies. For two price economies the acceptance set for the market is de�ned
by a smaller convex cone containing the nonnegative random variables. It is
shown in Artzner, Delbaen, Eber and Heath (1999) that all such cones are
de�ned by requiring a positive expectation under a set of test measures Q 2M:
The set of risks accepted by the market is then

A =
�
XjX 2 L1

�

;F ; Q0

�
; EQ[X] � 0; all Q 2M

	
;

where we suppose that our base measure is Q0 2 M: Madan and Schoutens
(2011) determine the set A in equilibrium as the largest set consistent with the
aggregate risk held by the market being in a prespeci�ed small cone containing
the nonnegative random variables.
The two prices for a cash �ow X of a two price economy are derived from the

market�s acceptance cone by requiring that the price less the cash �ow for a sale
by the market or the other way around for a purchase be market acceptable.
Cherny and Madan (2010) show that the unhedged bid and ask prices, with a
periodic interest rate of r; b(X); a(X) respectively are given by

b(X) = (1 + r)�1 inf
Q2M

EQ[X]

a(X) = (1 + r)�1 sup
Q2M

EQ[X]:

Note importantly that the two prices of a two price economy are nonlinear
functions on the space of random variables with the bid price being concave
while the ask price is convex by virtue of the in�mum and supremum operations.
The market may also quote hedged prices as opposed to unhedged prices and

it is shown in Cherny and Madan (2010) that these bid and ask prices bh(X);
ah(X) respectively are

bh(X) = (1 + r)�1 inf
Q2M\R

EQ[X]

ah(X) = (1 + r)�1 sup
Q2M\R

EQ[X]:

The hedged bid is then higher than the unhedged bid while the hedged ask is
lower than its unhedged counterpart. We shall work here mainly with the un-
hedged prices, though we also illustrate with some examples the hedged prices
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after choosing a particular set of hedging instruments. Madan and Schoutens
(2011) study both types of equilibria. The hedging price is determined by maxi-
mizing the post hedge bid price or minimizing the post hedge ask price. Formally
we have (Cherny and Madan (2010)) that

bh(X) = sup
H2H

b (X �H)

ah (X) = inf
H2H

a(H �X):

We now investigate the pricing of risk in our two price economy. We may
write the bid and ask prices for X as attained at extreme points Qb;X ; Qa;X

that have densities with respect to the base measure Q0 of

�b;X =
dQb;X

dQ0

�a;X =
dQa;X

dQ0

and we then have that

b(X) = (1 + r)�1EP
�
�b;X�cX

�
a(X) = (1 + r)�1EP

�
�a;X�cX

�
If we employ a weighted average as a candidate price de�ning returns eRX

relative to this average by

eRX =
X

m(X)
� 1

m(X) = �a(X) + (1� �)b(X)

then we infer the risk pricing equation

E[ eRX ]� r = �covP ����a;X + (1� �)�b;X��c; eRX� :
Note importantly that by virtue of the nonlinearity of the pricing operators

of a two price economy the pricing kernels are no longer independent of the risk
being priced. We build on the classical measure change �c of a one price economy
an additional illiquidity based measure change given by

�
��a;X + (1� �)�b;X

�
:

The second measure change is precisely an illiquidity based measure change as
it comes into existence with a bid ask spread associated with an absence of a
convergence to a law of one price. It collapses to the classical liquid market
result when the cone of acceptable risks gets to be as large as the traditional
half space. We shall see that credit, market and some components of liquidity
risk may be classically captured in the measure change �c while illiquidity risk
is properly viewed as a nonlinear risk captured by a risk dependent measure
change.
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2.2 Acceptance Cones Modeled by Concave Distortions

The market primitive of two price economies is the set of zero cost cash �ows
accepted by the market. This set is a convex cone of random variables con-
taining the nonnegative random variables. When the acceptance decision for a
random variable X is a function solely of its distribution function FX(x) one
may evaluate acceptance as shown in Cherny and Madan (2010) by a positive
expectation under a concave distortion of the distribution function. Speci�cally
for a concave distribution function 	(u) de�ned on the unit interval and termed
the distortion the random variable X is accepted or belongs to the acceptance
cone A;just if Z 1

�1
xd	(FX(x)) � 0:

It is shown in Cherny and Madan (2010) that the set of approving measuresM
are all change of measure densities on the unit interval Z(u) withZ 1

�1
xZ(FX(x))fX(x)dx � 0

for all Z for which L � 	; where L0 = Z:
We mention here two distortions that have been used in earlier work by

Cherny and Madan (2010) among other papers and earlier work in the insurance
literature Wang (2000). These are the transforms minmaxvar; 	
 and the
Wang transform, ��. They are de�ned respectively by

	
(u) = 1�
�
1� u

1
1+


�1+

�a(u) = N

�
N�1(u) + a

�
Both these transforms have the desirable property of derivatives tending to
in�nity as u tends to zero and derivatives that tend to zero as u tends to unity.
We present in Figure 1 a graph of 	
 ; �a for 
 = 0:5 and a = 0:75: As one
can observe the two transforms are fairly close to each other. In light of this
observation we shall present results for minmaxvar that is made up of elementary
functions and combines two distortions that can be explained in simple terms.
In minmaxvar we apply two distortions in sequence that re�ect the expectation
of the minimum of 
 independent draws and the other re�ects the original
distribution being the maximum of 
 draws from the distorted distribution. In
each case the distorted distribution is an inferior one.
In terms of distortions one has exact expressions for bid and ask prices
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Figure 1: Wang Transform and Minmaxvar transform comparison

(Cherny and Madan (2010)). In this case

b(X) = (1 + r)�1
Z 1

�1
x (FX(x))fX(x)dx

a(X) = �(1 + r)�1
Z 1

�1
x (F�X(x)) f�X(x)dx

= �(1 + r)�1
Z 1

�1
x (1� FX(�x)) fX(�x)dx

= (1 + r)�1
Z 1

�1
y (1� FX(y)) fX(y)dy

So

m�(X) = (1 + r)
�1EQ

0

[(� (FX(X)) + (1� �) (1� FX(X))X]

Hence we have that

EP [X]� r = �covQ
0

(RX ; (� (FX(X)) + (1� �) (1� FX(X))))
= �covP (RX ; (� (FX(X)) + (1� �) (1� FX(X)) �c)

The kernel is then U � shaped and we graph in Figure 2 the quantile pricing
kernel for 
 = :5 and � = :5:
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Figure 2: Quantile Risk Pricing Kernel for gamma equal to 0.5

The kernel cannot be uncorrelated with X as it is a deterministic function
of X: Now if the cash �ow is �at at its upper quantiles and has risk exposure
or sensitivity at the lower quantile as measured by the derivative of the inverse
of the distribution function then the covariation with the kernel is negative and
the midquote is above the base expectation. For a cash �ow with sensitivity in
the upper quantiles the covariation is positive and the midquote is below the
base expectation. For most insurance contracts we have sensitivity in the lower
quantiles and so we expect the mid quote to rise above the base expectation as
may be observed on noting directly that the gap g(a) for a digital at quantile a
is

g(a) = 	(a) + 1�	(1� a)� 2a:

We graph in Figure 3 this digital gap.
The gap is positive at quantiles below a half and negative for quantiles above

a half. Also shown are gaps when the market is biased towards the asking price
or the bid price. The value of � when biased to ask is 0:55 and when biased to
bid it is 0:45:
We therefore observe importantly from the positive gap that for insurance

contracts like catastrophic bonds for which there may be no systematic risk
component or correlation with the risk neutral pricing kernel the mid quote will
exceed the physical probability of the event on account of a nonlinear illiquidity
based risk charge. The nonlinearity manifests itself in the direct dependence
of the illiquidity pricing kernel on the distribution function of the risk being
priced.
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Figure 3: Mid quote base expectation gap at quantiles for digitals

2.3 The impact of existing positions on bid and ask prices

Suppose an economic agent has an existing exposure given by the random vari-
able W de�ned on the probability space and one seeks to determine an agent
speci�c personalized bid and ask price for the random variable X: Classically
one would consider the determination of a reservation price p such that at the
margin the agent is just indi¤erent to purchasing or selling t units of X: The
expected utility from this transaction is

V (t) = (1 + r)�1E [U(W + tX � tp(1 + r))]

and the personalized price satis�es V 0(0) = 0 which yields the result

p = (1 + r)�1
E [U 0(W )X]

E [U 0(W )]
:

This computation suggests that one works with the risk neutral distribution
function for X given by

FX(x) =
E [U 0(W )1X�x]

E[U 0(W )]

with the bid and ask prices then obtained by applying the appropriate distorted
expectations to this risk neutral distribution. Such a construction is in keeping
with the principle of ensuring that the cone of acceptability employed contains
not only the nonnegative random variables but is also contained in the relevant
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half space of positive alpha positions. It is just that out of a full equilibrium
personalized pricing kernels vary and we work with the kernel relevant for the
agent. In general the utility function employed could allow for preferences to
re�ect the state and hence we could accommodate state preferences that depen-
dent on ! as well.

3 Synthesizing lognormal market, credit and illiq-
uidity risk

This section develops a synthesizing model combining the three risk components
at issue. Let the promised payout on a limited liability claim be given by the
strictly positive random variable X. Let � denote the risk neutral expecta-
tion while additionally b; a denote the bid and ask prices and m is a balanced
midquote. The probability density of X under the physical probability measure
we take to be pX(x); for x > 0: We model the credit event by introducing a
strictly positive probability of a default event in which case the payout is zero.
The physical probability of default we suppose is �: In general the risk neutral
probability density for X di¤ers from its physical density and we suppose it is
qX(x) while the risk neutral default probability may also be di¤erent from �
and we suppose it is �:
The change of measure density restricted to the positive outcomes of X is

given by
dQ0

dP
=
1� �
1� �

qX(x)

pX(x)

By way of a simple and relatively classical example suppose the physical
distribution is log normal with mean � and variance �2: Hence physically the
positive random variable X can be described as

X = �e�Z�
�2

2

where Z is a standard normal variate. The expected value however on incorpo-
rating the credit event is (1� �)�:
For a change of measure density with a market price for the risk of the

standard normal variate of � we de�ne

� = exp

�
�Z � �2

2

�
:

The risk neutral expectation is then given by

(1� �)�e�� = (1 + r)

or

� =
1

�
ln

�
1 + r

(1� �)�

�
:
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Risk neutrally we have that

X =
1 + r

(1� �)e
�Z��2

2 :

The risk neutral distribution function of the credit sensitive payout is then given
by

F (x) = �

+(1� �)N
�
lnx

�
+
�

2
� ln

�
1 + r

1� �

��
For a one parameter distortion 	
(u); 0 � u � 1; the bid price is then

bp(�; �; 
)

= (1 + r)�1
Z 1

0

xd	
(F (x))

= (1 + r)�1
Z 1

0

xd	

�
�+ (1� �)N

�
lnx

�
+
�

2
� ln

�
1 + r

1� �

���
:

We could integrate by parts and writeZ 1

0

xd	

�
�+ (1� �)N

�
lnx

�
+
�

2
� ln

�
1 + r

1� �

���
= x

�
	

�
�+ (1� �)N

�
lnx

�
+
�

2
� ln

�
1 + r

1� �

���
� 1
�
j10

�
Z 1

0

�
	

�
�+ (1� �)N

�
lnx

�
+
�

2
� ln

�
1 + r

1� �

���
� 1
�
dx

=

Z 1

0

�
1�	


�
�+ (1� �)N

�
lnx

�
+
�

2
� ln

�
1 + r

1� �

����
dx

In which case

bp(�; �; 
)

= (1 + r)�1
Z 1

0

�
1�	


�
�+ (1� �)N

�
lnx

�
+
�

2
� ln

�
1 + r

1� �

����
dx

=
1

1� �

Z 1

�1
(1�	
 (�+ (1� �)N(y)))�e�y��2

2 dy

=

Z 1

�1
 
 (�+ (1� �)N(y)) 1p

2�
e�

(y��)2
2 dy

= E [ 
 (�+ (1� �)N(� + Z))]

where  
 is the derivative of 	
 and Z is a standard normal variate.
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The ask price on the other hand is the negative of the distorted expectation
of �X. We may write this as

ap(�; �; 
) = �(1 + r)�1
Z 1

0

xd	
(1� F (x))

= �(1 + r)�1
Z 1

0

xd	

�
(1� �)

�
1�N

�
lnx

�
+
�

2
� ln

�
1 + r

1� �

����
= (1 + r)�1

Z 1

0

�
	

�
(1� �)

��
1�N

�
lnx

�
+
�

2
� ln

�
1 + r

1� �

������
=

1

1� �

Z 1

�1
	
 ((1� �) (1�N(y)))�e�y��2

2 dy

= E [ 
 ((1� �)(1�N(� + Z))]
The risk neutral expectation is obtained when 
 = 0 and in this case the bid

price equals the ask price and this is unity the current value of a dollar. More
generally we see that the balanced mid quote m satis�es

2m = E [ 
 (�+ (1� �)N(� + Z)) +  
 ((1� �)(1�N(� + Z))]
We may de�ne

u = �+ (1� �)N(� + Z)
and observe that

m =
1

2
E [ 
(u) +  
(1� u)]

We are interested in how the three parameters of volatility, default probabil-
ity and the distortion in�uence the gap between mid quote and the risk neutral
expectation of unity. We present a table of values for the rate of pro�t de�ned as
m� 1 as a function of �; � for two di¤erent levels of the distortion. We see that
the rate of pro�t is higher for higher volatility and lower default probability and
it rises with the level of the distortion or is higher when the cone of acceptable
risks is reduced.

TABLE 1
Pro�t Rates as a function of
Volatility and Default Probability

 = :25 Default Probability
Volatility .01 .02 .03 .04 .05
.1 -.0044 -.0071 -.0090 -.0104 .0116
.2 -.0004 -.0024 -.0038 -.0049 -.0058
.3 .0054 .0039 .0028 .0020 .0014
.4 .0129 .0118 .0111 .0106 .0103
.5 .0223 .0216 .0212 .0209 .0208

 = :5
.1 -.0159 -.0244 -.0304 -.0350 -.0387
.2 -.0014 -.0080 -.0126 -.0160 -.0187
.3 .0189 .0140 .0107 .0083 .0065
.4 .0454 .0420 .0398 .0384 .0375
.5 .0788 .0767 .0755 .0749 .0747
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4 Dynamic Two Price Economies

We consider in this section the dynamic valuation of a discrete time stochastic
claims or receipts process X = (Xt; t = 1; � � � ; T ): The valuation is as at time
t and is denoted V Bt (X); V

A
t (X) depending on whether we are constructing a

bid price or an ask price. We suppose that the length of the interperiod time
interval is h: We suppose the existence of a base risk neutral measure selected
by an equilibrium under which one may construct the risk neutral valuation
process V Rt by

V Rt =
X
j�t

B(j)

B(t)
Xj + E

Q0

24X
j>t

B(j)

B(t)
Xj

35
= def

X
j�t

B(j)

B(t)
Xj +W

R
t

where B(t) is the time zero discount curve supposed �xed in this exercise. Risk
neutral valuation is a well understood linear pricing operator and as in the
static case it constitutes our starting point. What we shall present are the
nonlinear pricing operators for the bid and ask prices. We note in this regard
the partitioning of total value into the part of that has been realized and the
part that is yet to be realized by de�ning

V At (X) = def

X
j�t

B(j)

B(t)
Xj +W

A
t (X)

V Bt (X) = def

X
j�t

B(j)

B(t)
Xj +W

B
t (X)

Such nonlinear pricing operators are given by nonlinear expectations that
are related to solutions of backward stochastic di¤erence equations. We �rst
brie�y present nonlinear expectation operators and their relationship to back-
ward stochastic di¤erence equations and then present our application for the
construction of dynamic sequences of bid and ask prices.
For a discrete time �nite state Markov chain with states ei identi�ed with the

unit vectors of RM for some large integer M; Cohen and Elliott (2010) have de-
�ned dynamically consistent translation invariant nonlinear expectation opera-
tors E(:jFt): The operators are de�ned on the family of subsets

�
Qt � L2(FT )

	
:

For completeness we recall here this de�nition of an Ft�consistent nonlinear
expectation forfQtg : This Ft�consistent nonlinear expectation forfQtg is a
system of operators

E(:jFt) : L2(FT )! L2 (Ft) ; 0 � t � T

satisfying the following properties:
1. For Q;Q0 2 Qt; if Q � Q0 P� a:s: componentwise, then

E(QjFt) � E(Q0jFt)
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P�a:s: componentwise, with for each i;

eiE(QjFt) = eiE(Q0jFt)

only if eiQ = eiQ
0 P�a:s:

2. E(QjFt) = Q P�a:s: for any Ft�measurable Q:
3. E(E(QjFt)jFs) = E(QjFs) P�a:s: for any s � t
4. For any A 2 Ft; 1AE(QjFt) = E(1AQjFt) P�a:s:
Furthermore the system of operators is dynamically translation invariant if

for any Q 2 L2 (FT ) and any q 2 L2 (Ft) ;

E(Q+ qjFt) = E(QjFt) + q:

Such dynamically consistent translation invariant nonlinear expectations
may be constructed from solutions of Backward Stochastic Di¤erence and or
Di¤erential Equations (Cohen and Elliott (2010), El Karoui and Huang (1997)).
These are equations to be solved simultaneously for processes Y; Z where Yt is
the nonlinear expectation and the pair (Y;Z) satisfy

Yt �
X

t�u<T
F (!; u; Yu; Zu) +

X
t�u<T

ZuMu+1 = Q

for a suitably chosen adapted map F : 
�f0; � � � ; Tg�RK�RK�N ! RK called
the driver and for Q an RK valued FT measurable terminal random variable.
We shall work in this paper generally with the case K = 1: For all t; (Yt; Zt) are
Ft measurable. Furthermore for a translation invariant nonlinear expectation
the driver F must be independent of Y and must satisfy the normalization
condition F (!; t; Yt; 0) = 0:
The drivers of the backward stochastic di¤erence equations for our bid and

ask prices are the risk charges at tenor h:We employ the drivers FA; FB where

F a(!; u; Yu; Zu) = h sup
Q2M

EQ [ZuMu+1] (1)

F b(!; u; Yu; Zu) = h inf
Q2M

EQ [ZuMu+1] ; (2)

and the drivers are independent of Y: The process Zt represents the residual risk
in terms of a set of spanning martingale di¤erencesMu+1 and in our applications
we solve for the nonlinear expectations Yt without in general identifying either
Zt or the set of spanning martingale di¤erences. We de�ne risk charges directly
for the risk de�ned for example as the zero mean random variable

B(t+ 1)

B(t)

�
Xt+1 +W

A(t+ 1)
�
� EQ

0

�
B(t+ 1)

B(t)

�
Xt+1 +W

A(t+ 1)
��
:
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We therefore apply the recursions

WA
t (X) = EQ

0

�
B(t+ 1)

B(t)

�
Xt+1 +W

A(t+ 1)
��

+h sup
Q2M

�
B(t+ 1)

B(t)

�
Xt+1 +W

A(t+ 1)
�
� EQ

0

�
B(t+ 1)

B(t)

�
Xt+1 +W

A(t+ 1)
���

WB
t (X) = EQ

0

�
B(t+ 1)

B(t)

�
Xt+1 +W

B(t+ 1)
��

+h inf
Q2M

�
B(t+ 1)

B(t)

�
Xt+1 +W

B(t+ 1)
�
� EQ

0

�
B(t+ 1)

B(t)

�
Xt+1 +W

B(t+ 1)
���

4.1 Drivers for nonlinear expectations based on distor-
tions

The driver for a translation invariant nonlinear expectation is basically a positive
risk charge for the ask price and a positive risk shave for a bid price applied to a
zero mean risk exposure to be held over an interim. We are then given as input
the risk exposure ideally spanned by some martingale di¤erences as ZuMu+1 or
alternatively a zero risk neutral mean random variable X with a distribution
function F (x):
We consider in the rest of the paper drivers based on the distortionminmaxvar:

In this case

FB(ZuMu+1) =

Z 1

�1
xd	
(�B(x))

FA (ZuMu+1) = �
Z 1

�1
xd	


�
1��A(�x)

�
and in particular

�B(x) = Q0
�
B(t+ 1)

B(t)

�
Xt+1 +W

B(t+ 1)
�
� EQ

0

�
B(t+ 1)

B(t)

�
Xt+1 +W

B(t+ 1)
��
� x

�
�A(x) = Q0

�
B(t+ 1)

B(t)

�
Xt+1 +W

A(t+ 1)
�
� EQ

0

�
B(t+ 1)

B(t)

�
Xt+1 +W

A(t+ 1)
��
� x

�
:

4.2 Illustrative Valuation Sequences

We wish to construct an example for the valuation of insurance losses. One
may use a compound Poisson process but this is a process on independent and
identically distributed increments and dynamic valuation procedures apply to
contracts that resolve at their maturity and there is no maturity for a compound
Poisson process. We therefore choose a maturity T and consider the valuation
of the losses in the compound Poisson process up to this maturity.
So at maturity there are no remaining losses and the bid and ask prices

equal the level of realized losses given by X(T ) the level of the compound Pois-
son process at T: We therefore have aX(T ) = bX(T ) = X(T ): We now work
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backwards at a tenor of time step h evaluating aX(T � nh); bX(T � nh) for
n = 1; � � � ; N where h = T

N : We suppose that we have a gamma compound
Poisson process with arrival rate � and loss sizes gamma distributed with pa-
rameters c; � for the gamma distribution. The characteristic function is then
given by

�X(u) = exp

�
�

��
c

c� iu

��
� 1
��

Following the equilibrium pricing model of Madan (2006) for an economy
populated with investors with exponential utility we assume that all risks are
priced by exponential tilting. If we apply an exponential tilt of � we get a risk
neutral characteristic function e�X(u) where

e�X(u) =
�X(u� i�)
�X(�i�)

= exp

�
�

�
c

c� �

����
c� �

c� � � iu

��
� 1
��

and this in the same class of processes, being a gamma compound Poisson
process with arrival rate

�

�
c

c� �

��
that has gone up and jump sizes also gamma distributed with mean

�

c� �

and variance
�

(c� �)2

so the arrival rate, mean jump size and the variance of the jump sizes have all
gone up by a factor re�ecting the market price of risk �:
To model credit e¤ects we incorporate a risk neutral default probability

that could be obtained from the CDS rate for the insurer. In this case with
probability �h losses in the time interval h are not paid while claim payments
do occur with probability (1��h): The risk neutral distribution function is over
the interval of tenor h is then

FL(x; h) = �h+ (1� �h)FX(x; h)

where the characteristic function for the distribution function FX(x; h) is

�X(u; h) = exp

�
h�

�
c

c� �

����
c� �

c� � � iu

��
� 1
��

This distribution function has incorporated the physical risk, the market
price of this risk and credit e¤ects in the construction of the local risk neutral
density for the time step h:
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The nonlinear liquidity e¤ects are now incorporated by the use of distortions
for the construction of bid and ask prices. We use minmaxvar with stress level

 and use for the bid price drivers

FB(t; Y; Z) =

Z 1

�1
cd	
(FL(c; h))

while for the ask driver we have

FA(t; Y; Z) = �
Z 1

�1
cd	
 (F�L(c; h))

= �
Z 1

�1
cd	
 (1� FL(�c; h))

=

Z 1

�1
cd	
 (1� FL(c; h))

We are now ready to illustrate the computation of dynamically consistent
bid and ask price sequences and to study the e¤ects on these of credit risk �,
the market price of risk �, the underlying physical risk �; c; �, and the e¤ects
of liquidity risk, 
; as captured by movements in the cone of locally acceptable
risks.

4.3 A Sample Computation

For a sample computation we take a maturity of T = 5 years and consider
N = 20 with h = :25 or a quarterly tenor. Suppose losses arrive at the rate of
� = 100 per year with gamma distribution for the claims. The mean claim is a
quarter of a million dollars with a standard deviation of :1875 or three quarters
of the mean. The shape parameter for the gamma distribution is � = 1:7777
and the scale parameter c = 7:1111:
We suppose that a loss of 10 million is reweighted upwards to 1:5 and this

gives a value for � = 0:0405 or exponential tilting by this � at 10 million is
e:0405�10 = 1:5: The risk neutral mean is :2514 the standard deviation is 0:1886
and the arrival rate is 101:02:We suppose the credit risk is 100 basis points and
the stress parameter for the cone of locally acceptable risks is 0:4 a typical value
we estimated from our analysis of daily stock returns using the High and Low
prices as candidates for the bid and ask prices.
The �rst step in constructing a dynamic valuation sequence for a loss process

like our gamma compound Poisson process is to construct the risk neutral grid
of potential loss states at the time points nh for n = 1; � � � ; 20: For this we take
a grid that is uniform in quantiles. We obtain for each year end the distribution
function for the risk neutral loss level by inverting the known analytical Laplace
transform for the distribution function. We then determine loss levels at the
quantiles ranging from 1% to 99% in steps of one percent. We present in Table
2 as a summary the loss levels for 10%; 25%; 50%; 75% and 90% at the �ve,
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year ends.

TABLE 2
Loss Levels at Year Ends

Year End
Quantile 1 2 3 4 5
10 21.41 45.13 69.25 93.56 118.01
25 23.22 47.74 72.46 97.29 122.19
50 25.31 50.71 76.11 101.51 126.91
75 27.48 53.76 79.84 105.81 131.71
90 29.50 56.58 83.27 109.76 136.11

We recognize that bid, ask and expected values equal the realized loss level at
the �ve year maturity as there is no remaining uncertainty. Next we determine
bid, ask and expected values on the entire grid by backward recursion. For
the backward recursion we suppose we have determined bid, ask and expected
values at time n and then for each grid point j at time n � 1 we with a loss
level at this grid point of x; we simulate M = 10000 loss levels for the next
period or quarter. We denote these loss levels by the vector L: We then have
M readings for a realized loss level at time n of x+L: These are transformed to
M bid, ask and expected values using the already computed and stored bid, ask
and expected value functions for time n on the time n grid. For the expected
value at time n � 1 we just take the mean of the time n expected values and
store it at the time n�1 grid for loss level x and grid point j: Denote this value
E(j; n� 1):
For the recursion of bid and ask we employ distorted expectations applied

to distribution function with credit risk. For the bid price we sort the one
step ahead bid values into an increasing sequence of bid values b of length M:
To incorporate credit risk we recognize that with probability �h the result is
zero and with probability (1 � �h) we have the outcome bi with probability
�h + (1 � �h)i=M: We evaluate the distortion at these probability points and
determine the time n� 1 bid value as

B(j; n� 1) = E(j; n� 1) +

h

 
MX
i=1

bi (	

 (�h+ (1� �h)i=M)�	
 (�h+ (1� �h)(i� 1)=M))� E(j; n� 1)

!
:

The treatment of the tenor is in line with equation (2).
A similar procedure is implemented for the ask recursion except this time we

sort in increasing order the negative of the forward ask values into a sequence
a of length M: We then form

A(j; n� 1) = E(j; n� 1)�

h

 
MX
i=1

ai (	

 ((1� �h)i=M)�	
 ((1� �h)(i� 1)=M))� E(j; n� 1)

!
:
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The treatment of the tenor is now in line with equation (1).
This recursion provides us with loss contingent bid and ask value tables for

the entire grid from time 1 to time N: We exhibit the bid, expected and ask
values for a subsample of the grid corresponding to Table 2 in Table 3. In general
for a contract converging to a zero spread at maturity the spreads should be
rising as we get further away from maturity. However, as the tenor decreases
there is a convergence to the risk neutral value also occurring. At the one year
tenor the spreads rise as we get further from maturity as reported in Tables 4
and 5. In Table 3 at the quarterly tenor and for the 50% quantile especially the
convergence to risk neutrality works against the increase in the spread with the
resultant spread being somewhat constant.
The initial bid, ask and expected values are respectively 125.88, 127.25 and

126.99.
In Table 4 we present the same computation now conducted at a tenor of

one year.

TABLE 4
Bid Expected and Ask Values Tenor One Year

Year End
quantile 1 2 3 4
10 93.73,123.00,129.91 98.95,121.40,126.60 104.71,120.04, 111.09,118.96,120.71
25 95.13,124.78,131.70 101.14,123.99,129.20 107.57,123.22, 114.67,122.70,124.42
50 96.82,126.92,133.84 103.64,126.93,132.11 110.88,126.93, 118.62,126.90,128.66
75 98.55,129.09,136.02 106.24,129.97,135.14 114.30,130.72, 122.69,131.18,132.90
90 100.19,131.11,138.05 108.64,132.81,138.01 117.30,134.07, 126.44,135.14,136.88

The bid and ask and expected values on a one year tenor at the initial date
are 90.56, 135.69 and 127.05. The spreads are consistently wider at the lower
tenor as a higher level of interperiod risk is being held. The bid and ask prices
will converge in the case of a perfectly liquid market with a very small tenor.
In Table 5 we keep the annual tenor of Table 4 but raise the default proba-

bility from 100 basis points to 500 basis points. We also report in this case just
the bid and ask prices.

TABLE 5
Bid and Ask Prices Annual Tenor High Credit Risk

Year End
quantile 1 2 3 4
10 57.88,129.24 68.88,125.98 82.30,123.14 98.50,120.51
25 58.75,130.95 70.43,128.60 84.59,126.37 101.62,124.26
50 59.82,133.05 72.18,131.54 87.13,129.99 105.18,128.49
75 60.86,135.16 74.01,134.56 89.77,133.67 108.74,132.68
90 61.88,137.16 75.65,137.32 92.19,137.15 112.11,136.72

The initial bid price is 49.47 while the ask is 134.70. Comparing Tables 4
and 5 we observe that the e¤ect of an increase in the credit risk has a signi�cant
e¤ect on bid prices or asset prices. The ask price or the liability valuation is
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instead relatively una¤ected. The two price economy thereby distinguishes a
theory of asset prices from the theory of liability valuation especially as far as
the e¤ects of credit risk are concerned.

5 Inhomogeneous Discounted Compound Pois-
son Insurance Losses

We consider the pricing and valuation of insurance losses given by an inhomo-
geneous compound Poisson process over the in�nite future from some time T
backwards at a �xed tenor. We value discounted losses where the discounting is
done on a yield curve �xed at the valuation date. For the actual loss distributions
contingent on a loss arrival we take three distributions the Gamma, Weibull and
Frechet distributions. For each distribution we specify the mean and variance of
the loss distribution and solve for the parameters of the distribution consistent
with these moments. For the Gamma distribution this transformation is ana-
lytical while for the Weibull and Frechet it is numerical. We allow for a credit
spread and a stress level for the distortion. We report on pricing the whole loss
and report on the dynamic structure of pricing in this case. We then �x some
aspects of the loss structure and vary in particular the time stepping tenor, the
volatility, the credit spread and the distortion stress level. For each of these
four aspects of the loss pricing process we take two settings with 16 cases in
all. For each of the three distributions we report on the pricing of a capped
and uncapped loss process in the presence of a deductible. The result is two
tables with 16 cases for each of two products for each of three underlying loss
distributions. The dynamic structure is reported for Gamma aggregate losses
with low volatility, a quarterly tenor, a credit spread of 100 basis points and
a minmaxvar stress level of 0:75 in the �rst subsection. The next subsection
reports on the e¤ects of variations in the product, the distributions, the tenor,
volatility, credit spread and stress level.

5.1 The Gamma Aggregate Loss

The inhomogeneous arrival rate of losses in all cases reported is of exponential
form with a time dependent arrival rate at time t of

�(t) =
a

�
e�

t
�

with an aggregate arrival of losses after time T of

�T;1 = a
�
1� e� t

�

�
:

For the reported results we take a = 150 and � = 10:
We evaluate bid and ask prices at a quarterly tenor with T = 5: The loss

distribution is gamma with a mean of :25 and a volatility of :75 time the mean
or � = :1875: The credit spread is 100 basis points and the stress level is 0:75:
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Figure 4: Graph of yield curve used in discounting.

Discounting is done with a Nelson Siegel yield curve with yield at maturity
t given by

y(t) = a1 + (a2 + a3t)e
�a4t

a1 = :0424

a2 = �:0367
a3 = :0034

a4 = :0686:

We present in Figure 4 a graph of the associated yield curve.
The aggregate losses are subject to a deductible of :15: All losses beyond

this level are covered and paid out. For the remaining losses after year �ve
we assume no credit spread with these losses not being subject to default. As
we have a random aggregate loss at the �nal �ve year point we have a spread
between bid and ask prices at this point.
We present tables for the loss quantiles of 10; 25; 50; 75 and 90 at �ve year

ends, along with bid prices, expected values and ask prices at these grid points
along with the spreads of ask to bid, ask to the expected value and the expected
value to the bid. These are presented in two tables, one for the grid points, one
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for all the valuations and spreads.

Table 6
Aggregate Gamma Loss Grid

Year
quantile 1 2 3 4 5
10 0.8103 1.9640 3.0987 4.1360 4.9873
25 1.1795 2.5368 3.7765 4.8892 5.5817
50 1.6536 3.2214 4.6037 5.7796 6.8332
75 2.2277 3.9914 5.4968 6.7539 7.9028
90 2.7762 4.7078 6.3509 7.7045 8.9425

The bid, expected values and ask prices along with the spreads are presented
on this grid in Table 7. The table presents for each of �ve years six rows for the
bid, expected value and ask price followed by the three spreads. Unlike the �xed
�nite maturity case when all spreads go to zero at maturity we observe quite a
substantial spread at the �ve year point accounting for the risks yet to come.
These spreads fall at �rst and then increase as we move back through time.
The spreads are also higher at the lower quantiles. The spread is asymmetric
about the expected value with the midquote lying below the expected value.
The initial bid, ask and expected values are 12:8241, 13:2889 and 13:1570.

5.2 Price Sensitivities

We freeze all but four inputs into loss pricing process. The exception are the
tenor, volatility, credit spread and the distortion spread level. For each of these
variables we take two settings that makes for 16 cases for which we solve for
the grid and the grid conditional bid, ask and expected values. We report in
Tables 8, 9 and 10 the sensitivities of the initial bid, ask and expected value to
these variations. The three tables employ three di¤erent loss distributions, the
gamma, Weibull and Frechet distributions. Each table has two subtables for
two products the loss with a deductible of :15 capped at :35 and another that
pays all losses above :35:
The tenor settings are a quarter and a half year. For volatility we take :1875

and :3125 or :75 and 1:25 times the mean. The credit spread has the levels of
100 or 500 basis points while the distortion stress level is :75 and 1:25:
We �rst observe that an increase in the stress level raises the ask and lower

the bid for the uncapped losses. However, for capped losses both the ask and
the bid are reduced. A reduction in the tenor raises ask prices and lowers bid
prices for both types of claims. An increase in volatility raises ask prices and
lower bid prices for uncapped claims but for capped claims the ask also falls.
Finally we observe that bid prices are sensitive to changes in credit risk but ask
prices are relatively insensitive to credit risk.
The low volatility Weibull prices are higher than the gamma counterpart

while the high volatility Weibull prices are lower. The Frechet prices are sub-
stantially lower than the Weibull and gamma counterparts.
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6 Hedging in Two Price Economies

The analysis and pricing examples studied so far have not explicitly addressed
any hedging possibilities or considerations. Typically even with incomplete mar-
kets attempts are made to use some hedging instruments to alter risk pro�les
and better manage the risk exposures. We now take up these issues in the con-
text of two price economies. What is critical in this context is the recognition
that replication is not possible, residual risk will have to be held and one has
to formulate a criterion guiding the hedge positions. Additionally we note that
hedge instruments should have zero means under the base probability measure
for otherwise these instruments would become vehicles for investment or spec-
ulation instead of being used as hedges. With hedges having zero means one
may take target cash �ows to be hedged to also have a zero mean and hence the
hedging criterion should be receptive of negative as well as positive cash �ows.
A classical criterion often used in studies related to hedging in incomplete

markets is variance minimization or the equivalent of quadratic hedging, given
zero means (Föllmer and Schweizer (1990), Schweizer (1992, 1995, 2001)). This
criterion has no parameter with which to re�ect some degree of aggressiveness or
otherwise in hedge design. An often studied alternative criterion, especially in
the context of indi¤erence pricing (Carmona (2009), Musiela and Zariphopolou
(2004a, 2004b)), is the maximization of expected utility.
In the context of two price markets it is noted in Carr, Madan and Vicente

Alvarez (2011) and Madan and Schoutens (2011) that competitive pressures
lead us to minimize ask prices and maximize bid prices. The maximization of
bid prices is equivalent to the minimization of their negative and this suggests
the minimization of the di¤erence between ask and bid prices. Carr, Madan
and Vicente Alvarez (2011) note that for a liability to be acceptable one must
deliver the ask price. If the liability is credited as at least being worth the bid
price then the capital required to support the exposure to residual risk is this
di¤erence between the ask and bid prices. Minimizing this di¤erence is then
tantamount to economizing on capital requirements. Given that bid and ask
prices re�ect stress parameters embedded in distortions capital minimization
becomes a hedging criterion with a parameter allowing for the expression of
di¤erent levels of aggressiveness in hedge design.
This section compares this new hedging criterion of capital minimization

with other classical criteria. For this purpose we construct a set of sample
static hedging exercises. We formulate a target cash �ow given by the random
variable Y that has to hedged with a zero mean hedging cash �ow X: The
residual cash �ow is then

R = Y � aX

for a position of a units in the hedge instrument.
One may choose a to minimize the variance of R and this results in the least

squares hedge given by the beta of Y with respect to X:
Another criterion often recommended as already noted is the maximization

of expected utility. Most popularly one uses exponential utility at some level
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of risk aversion or the related certainty equivalent. We introduce here also
the proposals to minimize ask prices, maximize bid prices or minimize capital
requirements de�ned as the di¤erence between the ask and the bid.
In the exercise to be conducted here we compare the various criteria and their

hedges. For the law of the underlying risk we take it to be an exponential of a
variance gamma variate with a negative skew and some kurtosis as is typical for
risk neutral stock price distributions (Madan and Seneta (1990), Madan, Carr
and Chang (1998)). The variance gamma law results on time changing Brownian
with drift by a gamma process with unit mean rate and volatility �: If the drift
of the Brownian motion is � and its volatility is � we get a three parameter
law for the variance gamma variate with parameters �; �; �: The parameter �
controls the skewness of the distribution while �; � control the volatility and
kurtosis.
We work with four parameter sets for �; �; � at

:25; :75;�:3
:25; :75;�:6
:25; 1:5;�:3
:25; 1:5;�:6

that re�ect varying levels of skewness and kurtosis. The target cash �ow is

Y = ��S +



2
(�S)

2

with � ranging from �1 to 1 in steps of :2 while 
 ranges from �20 to 20 in steps
of 5: There are 11 values for �i i = 1; � � � ; 11 and 8 values for 
j ; j = 1; � � � ; 8
excluding the zero gamma position. This gives us 88 possible target cash �ows.
We choose the hedge position to minimize the variance of the residual cash

�ow as one criterion. The other criteria are minimize capital using minmax-
var at stress level :75 and 1:5: We also consider minimizing the ask price and
maximizing the bid price as potential criteria. We tried unsuccessfully to allow
for maximizing expected utility but this was not possible for a �xed level of
absolute risk aversion as the relevant level of risk aversion needs to be changed
with the scale of the cash �ows. One can �x relative risk aversion as this is a
pure number but then one cannot manage negative cash �ows that must occur
given zero means. So reluctantly we gave up on expected utility as a practical
hedging criterion.
In the presence of a negative skew the presence of gamma in the target cash

�ow induces a reduction in the hedge position below the delta. We regress for
each of the four parametric contexts and for each hedge criterion the hedge
position on the delta and gamma of the target cash �ow including a constant
term. We �rst observe this result analytically for variance minimization.
The variance of the residual cash �ow is

E(R2)�(E[R])2 = (��a)2E[(�S)2]+

2

4
E
h
(�S)

4
i
�
(��a)E

h
(�S)

3
i
�


2

4

�
E
h
(�S)

2
i�2

:
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The variance minimizing hedge satis�es the equation

�2(� � a)E[(�S)2] + 
E
h
(�S)

3
i
= 0

or

a = � +
E
h
(�S)

3
i

2E[(�S)2]

 (3)

and we see that the constant term should be zero, the coe¢ cient of the delta
should be unity while that of 
 should be negative in the presence of a negative
skewness.
The variance minimization criterion has no parameter allowing one to ex-

press any preferences related to hedging. Expected utility has a risk aversion
parameter that is di¢ cult to set for exponential utility as already noted and
when it is a pure number like relative risk aversion the utility function cannot
be evaluated for negative cash �ows and this is problematic for hedging exer-
cises. The stress level of the distortions serves as a preference parameter for
capital and ask price minimization and bid price maximization. This parameter
is also a pure number. We therefore compare variance minimization with capital
and ask price minimization and bid price maximization.
We conducted hedges for 88 target cash �ows in four contexts for volatility,

skewness and kurtosis of the stock price. We then regressed the hedge position
on the target delta, gamma and a constant term. The coe¢ cient of the delta
was unity in all cases and is not reported. We report the coe¢ cients for the
constant term and the gamma in the case of variance minimization for the four
contexts. For capital, ask and bid we report the same two coe¢ cients for two
separate stress levels of :75 and 1:5: We do this in four separate tables for the
four parametric contexts.

Case 1 (� = :25; � = :75; � = �:3)
Constant Gamma

Variance 0 -.1368
Capital Low Stress 0 -.0963
Ask Low Stress -.8390 -.0807
Bid Low Stress .8383 -.0807
Capital High Stress 0 -.1111
Ask High Stress -.9975 -.0838
Bid Low Stress .9974 -.0838
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Case 2 (� = :25; � = :75; � = �:6)
Constant Gamma

Variance 0 -.2218
Capital Low Stress 0 -.1885
Ask Low Stress -1.8712 -.1753
Bid Low Stress 1.8714 -.1753
Capital High Stress 0 -.2359
Ask High Stress -1.9148 -.1605
Bid Low Stress 1.9148 -.1605

Case 3 (� = :25; � = 1:5; � = �:3)
Constant Gamma

Variance 0 -.2026
Capital Low Stress 0 -.1494
Ask Low Stress -1.3283 -.1258
Bid Low Stress 1.3280 -.1258
Capital High Stress 0 -.1787
Ask High Stress -1.5369 -.1284
Bid Low Stress 1.5374 -.1284

Case 4 (� = :25; � = 1:5; � = �:6)
Constant Gamma

Variance 0 -.2835
Capital Low Stress 0 -.2654
Ask Low Stress -2.2146 -.2102
Bid Low Stress 2.2146 -.2102
Capital High Stress 0 -.3153
Ask High Stress -2.4031 -.2018
Bid Low Stress 2.4030 -.2018

We make the following observations on these results. The coe¢ cient on Gamma
for variance minimization is always close to the theoretical value given by equa-
tion (3). It appears that variance minimization is a form of high stress hedging
with delta reductions that match capital minimization for some stress level above
unity. So it would reduce the hedge position too far in response to skewness.
Ask minimization reduces hedge positions by a constant while bid maximization
raises them by the same constant. Capital minimization is a symmetric objec-
tive that has a zero constant term like variance. The asymmetry embodied in
minimizing the ask and maximizing the bid is also present in expected utility
maximization and may not be a desirable hedging feature. The relative symme-
try of capital minimization as a hedging criterion is welcome and it provides us
with a symmetric hedging criterion with a preference parameter in the criterion
that is a pure number. The rest of the paper employs capital minimization as
the preferred criterion for the design of hedges.
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Figure 5: Reinsurance cost at the minmaxvar ask price for a variety of stress
levels.

7 Capital economizing optimal reinsurance hedges

Given the popularity of reinsurance as a hedge in the insurance industry we
now address the issue of optimally choosing the reinsurance attachment point,
that is one that minimizes the cost of provision. This cost includes the price of
reinsurance plus the capital set aside for the part of the loss that is held and
not reinsured. We illustrate here the construction of such optimal reinsurance
attachment points in the context of our inhomogeneous compound Poisson loss
process. We work in this section with an annual tenor.
The reinsurance market we suppose covers all present values in excess of the

reinsurance strike of A by paying at T the sum

(L(1)�A)+:

The reinsurer takes all losses that exceed the present value of A on the current
yield curve. We use the same yield curve as in section 5. The reinsurer prices
this contract at an ask price based on the minmaxvar distortion at the stress
level of :75: The pricing is that of a straight call on L(1) with no dynamic
recursion on a speci�ed tenor. We expect the price of this reinsurance coverage
to decrease as we raise the attachment point, a typical property of call option
prices. For the base case of section 5 we present in Figure (5) the cost of this
reinsurance as a function of the attachment point. We assume the contracts
covered all losses with a deductible of :15 and no caps.
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Figure 6: Risk Sensitive Capital Cost as a function of the reinsurance strike.

As we raise the reinsurance attachment point however we have to cover the
losses ourselves and this raises the risk exposure we hold and our associated
capital costs as measured by the di¤erence between the bid and the ask price.
We compute these prices on a �ve year annual tenor recursion. We graph in
Figure (6) this capital cost a function of the reinsurance attachment point. We
see that these costs are fairly small at the lower strikes re�ecting primarily a
spread created by the sensitivity of bid prices to the default probability. The
required reserves begin to rise signi�cantly once the attachment point rises past
10:
We present in Figure (7) the total cost as a function of the reinsurance strike

with an optimal strike at 12:

8 Financial Hedging of Catastrophic Losses

We now consider the hedging of insurance losses via securitization as opposed
to reinsurance. For this purpose we introduce a �nancial security that pays at
T the sum of loss exceedances over the level B or

H(T ) =

N(T )X
i=1

(Xi �B)+ :

Our formulation of �nancial securities re�ecting insurance losses follows the work
of Norberg (2010), Norberg and Savina (2011), though we use Lévy and di¤usion
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Figure 7: Optimal Reinsurance Strike minimizing the cost of provision de�ned
as capital cost plus the cost of reinsurance.

based risks in place of Markov chains. Such processes may be approximated by
Markov chains as is done for example in Mijtovíc and Pistorius (2009). We
suppose an inhomogeneous arrival rate in the interval (t; T ) of the form

a
�
e�

t
� � e�T

�

�
:

The jump distribution is a gamma density g(x) where

g(x) =
c
x
�1e�cx

�(
)
:

The arrival rate of jumps over the size B however are

a
�
e�

t
� � e�T

�

�Z 1

B

c
x
�1e�cx

�(
)
dx

= a
�
e�

t
� � e�T

�

�
gammainc(cB; 
;0 upper0)

and the density is
c
x
�1e�cx

gammainc(cB; 
;0 upper0)
1x>B

All a risk neutral law does to a pure jump process is to change its compensator
(Jacod and Shiryaev (1980)) from

�(dx; ds)
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to
Y (x; s)�(dx; ds)

for some positive adapted process Y (s): Let us analyze under the hypothesis
that

Y (x; s) = Ae�(x�a)

where � > 0; A > 0 are market prices of risk.
If we now change measure to

Ae�(x�B)a
�
e�

t
� � e�T

�

�
c
x
�1e�cx1x>B

We have an arrival rate of

a
�
e�

t
� � e�T

�

�
Ae�B

c


(c� �)
 (c� �)


x
�1e�(c��)x1x>B

= a
�
e�

t
� � e�T

�

�
Ae�B

c


(c� �)
 gammainc((c� �)B; 
;
0 upper0)

(c� �)
 x
�1e�(c��)x1x>B
gammainc((c� �)B; 
;0 upper0)

When we compute S(t) it is

S(t) = e�r(T�t)
N(t)X
i=1

(Xi �B)+ +

a
�
e�

t
� � e�T

�

�
Ae�B

c


(c� �)
 e
�r(T�t)

Z 1

B

(x�B) (c� �)
 x
�1e�(c��)xdx

This is

S(t) = e�r(T�t)
N(t)X
i=1

(Xi � a)+ +

a
�
e�

t
� � e�T

�

�
Ae�B

c


(c� �)
 e
�r(T�t) ��




c� � gammainc ((c� �)B; 
 + 1;
0 upper)�B gammainc ((c� �)B; 
;0 upper0)

�
Now if we model the market price of risk as stochastic following a geometric
Brownian motion process (Black and Scholes (1973), Merton (1973)) we get a
stock price of the form

S(t) = e�r(T�t)
N(t)X
i=1

(Xi �B)+ +

a
�
e�

t
� � e�T

�

�
e�B

c


(c� �)
 e
�r(T�t) ��




c� � gammainc ((c� �)B; 
 + 1;
0 upper)�B gammainc ((c� �)B; 
;0 upper0)

�
�

A(0)e�W (t)��2t
2 :
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So the stock price is adapted to a Brownian motion and the exceedances. This
gives us a speci�c jump di¤usion for the �nancial asset that is correlated with
the insurance loss process as some of the insurance losses a¤ect directly the
price of this �nancial asset. Hedging with the �nancial asset exposes us directly
to �nancial risk that we did not have and is captured by � the volatility of the
market price of risk.
We suppose that this particular �nancial asset trades in a market where the

law of one price holds but the market is open and trades occur at a regular
intervals with a time step h: The hedged loss process is then

L(mh) =

N(mh)X
i=1

Xi +

(m�1)hX
j=0

aj (S((j + 1)h)� S(jh)erh)

where the hedge position is aj at time jh: We may seek to �nd hedge functions
of the form aj(S) with the hedge adapted to the level of the �nancial asset. The
hedge is �nanced and the cash �ow to the hedge asset has a zero risk neutral
expectation. We distort the same risk neutral measure for the bid and ask prices
to determine the local capital minimizing hedge position. One would expect to
do more hedging when the market price of risk is low and less when it is high.

8.1 Details of hedge design

Suppose the �nancial security has a maturity of 10 years and we perform a
quarterly backward recursion beginning at T = 5: This computation is repeated
at each quarter end n and state i and following the recursion all the way back
to time 0 yields the optimal dynamic quarterly �nancial hedging scheme for the
insurance product under study. The exercise may then be repeated for di¤erent
settings to study the e¤ects of managing insurance losses via a securitization
regime. We shall consider minimizing here just the local risk for which the only
state variable of interest will be the level of the Brownian motion in the market
price of risk. First we consider the static case and then go on to the dynamic
case.

8.1.1 The Static Case

Consider �rst a one period situation where the loss is

N(t)X
i=N(s)

Xi
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The change in the stock price is

�S =

N(t)X
i=N(s)

(Xi � a)+ � E

24 N(t)X
i=N(s)

(Xi � a)+
35+

E

24 N(t)X
i=N(s)

(Xi � a)+
35�e�pt�sz��2(t�s)

2 � 1
�

The �rst part is the jump martingale for the e¤ects of the securitized losses
on the price of the �nancial security while the second represents the e¤ects of
changes in the market price of risk. The static hedged position with hedge
position � is

C =

N(t)X
i=N(s)

Xi + ��S

We take a risk neutral process with asymptotic arrivals a = 150: The average
arrival time is � = 12:5: The mean of the claims is :2540 with a volatility of
:3175: The exceedance level is set at :5: The volatility of the market price of risk
is 10%:
We now consider as potential hedging criteria two classical criteria like the

variance and certainty equivalents under exponential utility. In addition we
consider capital minimization de�ned as ask less bid using minmaxvar. We
consider two levels of risk aversion for the utility function, :5 and 2: We also
take two stress levels for the distortion, :75 and 1:5:
We present in Figure 8 a graph of the �ve criterion functions in our context

of inhomogeneous Poisson with compound gamma losses and a hedge position
in a �nancial security locking into cumulated exceedances over :5: We observe
that certainty equivalents are quite asymmetric in their e¤ects on the hedging
criterion. Variance as already noted is symmetric but lacks a parameter. We
shall continue with capital minimization in the dynamic exercise.
The optimal hedge positions are as follows.

Criterion Hedge
Variance -1.7
CE Low Risk Aversion -1.65
CE High Risk Aversion -1.54
Capital Low Stress -1.61
Capital High Stress -1.53

As the risk aversion or the stress level rises the hedge position is reduced in
absolute value.
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8.2 Dynamic Financial Hedging using a Securitized Loss
Process for the Hedging Asset

We determine here the hedge � to minimize the capital for the local risk in
present value terms

er(t+h)
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e�rsiXi + �
�
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So the only state variable relevant to the hedge is the level of W (t): The rest is
the risk going forward much like our static model. We span the levels of A(nh)
with A(0) = 1:5 by Ani and for each of these levels we determine �i: The hedge
is just a function of the market price of risk process. We �rst determine this
function at each quarter.
For the parameter settings speci�ed I graph in Figure 9 the hedge position

as a function of the market price of risk.

8.2.1 Dynamic Recursion for Bid and Ask using Financial Hedge
Strategy

We begin at time 5 and determine the terminal bid and ask values as a function
of loss levels to date without a hedge as usual.
We now determine matricesBMV (21; 21; 20), AMV (21; 21; 20) and EMV (21; 21; 20)

for 21 states of loss levels, 21 levels for the market price of risk and 19 quarters
as follows. At the twentieth quarter all columns are the same as we have no
hedge. Assume we have the values one time step later.
At time step n with loss level Li and market price of risk Aj we generate

the next loss present value loss as

L0 = Li+yL+�jn
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We also generate the next market price of risk as

A0 = Aje
�(W (t+h)�W (t))��2h=2:
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function of time and the market price of risk. The mean price was set at 1.5
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3 as a function of realized losses.

We use these to interpolate for V an+1; V
b
n+1 from the stored grid. We then take

expectations, residuals, distorted expectation penalties to determine V aij ; V
b
ij and

then go back down to time zero. This develops our locally �nancially hedged
dynamic recursion.
We implemented this dynamic recursion and present in Figure 10 the Bid

and Ask prices at years 1, 2 and 3 when the market price of risk is at the median.

9 Life Insurance with Stochastic Mortality

We now consider the hedging of life insurance risk via securitization in a sto-
chastic mortality context. Similar models for the evolution of mortality risk
have been employed in Dahl (2004) and Dahl and Møller (2006). The �nancial
security we introduce will be a call option on the realized mortality rate at a
speci�c future date. We model �rst the mortality rate and then a �nancial se-
curity based on this rate. We allow for jumps in the mortality rate and take
them to be exponentially distributed with mean � and arrival rate �:
The process for the mortality rate at time t; y(t) is given by a solution to
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the Ornstein-Uhlenbeck (OU) equation

dy = ��ydt+ dU(t)

where the driving process U(t) is the exponential compound Poisson process.
For the computation of survival probabilities we are interested in the law of

Y (t) =

Z t

0

y(u)du:

We therefore wish to access the joint law of Y (t); y(t) via the joint characteristic
function

�t(a; b) = E [exp (iaY (t) + iby(t))] :

We may write

U(t) = (x � �U )t

=

Z t

0

Z 1

0

x�U (dx; ds)

where �U is the integer valued random measure associated with the jumps of U:
We also have that

y(t) = y(0)e��t +

Z t

0

Z 1

0

e��(t�u)x�U (dx; du)

It follows that

Y (t) = y(0)
1� e��t

�
+

Z t

0

Z s

0

Z 1

0

e��(s�u)x�U (dx; du)ds

= y(0)
1� e��t

�
+

Z t

0

Z 1

0

1� e��(t�u)
�

x�U (dx; du)

Hence we have that

iaY (t) + iby(t) =

�
ia
1� e��t

�
+ ibe��t

�
y(0)

+

Z t

0

Z 1

0

�
ia
1� e��(t�u)

�
+ ibe��(t�u)

�
x�U (dx; du)

We then have that

�t(a; b) = exp

��
ia
1� e��t

�
+ ibe��t

�
y(0)

�
�

E

�
exp

�Z t

0

Z 1

0

�
ia
1� e��(t�u)

�
+ ibe��(t�u)

�
x�U (dx; du)

��
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Now de�ne the compensated jump martingale

n(t) =

�
exp

��
ia
1� e��(t�u)

�
+ ibe��(t�u)

�
x

�
� 1
�
�(�U (dx; du)� kU (x)dxdu)

where kU is the Lévy measure for U(t): The stochastic exponential

N = E(n)

is a martingale and

N(t) = exp

�Z t

0

Z 1

0

�
ia
1� e��(t�u)

�
+ ibe��(t�u)

�
x�U (dx; du)

�
�

exp

�
�
Z t

0

Z 1

0

�
exp

��
ia
1� e��(t�u)

�
+ ibe��(t�u)

�
x

�
� 1
�
kU (x)dx

�
= exp

�Z t

0

Z 1

0

�
ia
1� e��(t�u)

�
+ ibe��(t�u)

�
x�U (dx; du)

�
�

exp

�
�
Z t

0

 U

�
a
1� e��(t�u)

�
+ be��(t�u)

�
du

�
It follows that

�t(a; b) = exp

�Z t

0

 U

�
a
1� e��(t�u)

�
+ be��(t�u)

�
du

�
Now make the change of variable

v = e��(t�u)

dv = �vdu

and write

�t(a; b) = exp

�Z 1

e��t

 U (
a
� (1� v) + bv)

�v
dv

�
In the special case of the exponential compound Poisson we have

 U (u) = �

�
1

1� iu� � 1
�

and we wish to integrate

�

�v

 
1

1� i�
�
a
� (1� v) + bv

� � 1!

=
�i�

�
a
� (1� v) + bv

�
�v
�
1� i�( a� (1� v) + bv

�
This is of the form (a+ bx)=(dx+ ex2) andZ

a+ bx

dx+ ex2
=
1

ed
((bd� ea) log(d+ ex) + ea log(x))) :

44



Hence we have access to the joint characteristic function of Y (t) and y(t):
For our example

a =
�ai�

�
; b = �bi� � �ai�

�
d = �� ai�; e = �bi��+ ai�

We evaluate at x = 1 and x = e��t and take the di¤erence for the joint
characteristic function.

9.1 Pricing term life under this stochastic mortality model

As observed the price of term life of maturity t is given by

w(t) = �1000000�
Z t

0

e�ruS0(u)du:

= 1000000�
�
1� e�rtS(t)

�
� r

Z t

0

S(u)e�rudu

and we need to compute

S(t) = E

�
exp

�
�
Z t

0

y(s)ds

��
But this is just the characteristic function of integrated term life taken at 1i:
The continuous coupon rate is

c(t) =
rw(t)

1� exp(�rt) :

For an interest rate of 3% with a mean reversion rate of 1:5 and one arrival
of jump every 10 years with a mean of 10 basis points and an initial mortality
rate of 20 basis points the term life premiums for the �ve years are as follows.

1 1064
2 1305
3 1362
4 1377
5 1382

If the mean reversion rate is reduced to :5 the result is as follows.

1 1608
2 2575
3 3157
4 3507
5 3717
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9.2 Pricing the mortality security

The future value of the security should be a martingale and hence a conditional
expectation. We consider here an option written on the mortality rate at time
T; y(T ): This requires that we price the claim

(y(T )� a)+

This is given by

w(a) =

Z 1

a

(y � a)g(y)dy

where g is the density of y: We have in closed form

�(u) =

Z 1

0

eiuyg(y)dy:

We follow Carr and Madan (1999) and consider the Fourier transformZ 1

0

eiuaw(a)da

=

Z 1

0

eiua
Z 1

a

(y � a)g(y)dyda

=

Z 1

0

dyg(y)

Z y

0

eiua (y � a) da

=

Z 1

0

dyg(y)

�
y

iu

�
eiuy � 1

�
�
Z y

0

aeiuada

�
=

Z 1

0

dyg(y)

�
y

iu

�
eiuy � 1

�
�
�
yeiuy

iu
� 1

iu

Z y

0

eiuada

��
=

Z 1

0

dyg(y)

�
y

iu

�
eiuy � 1

�
�
�
yeiuy

iu
+
1

u2
�
eiuy � 1

���
=

Z 1

0

dyg(y)

�
1

u2
� eiuy

u2
� y

iu

�
=

1� �(u)
u2

� E[y]

iu
= 
(u)

Fourier inversion will give us the option price that we can use for hedging. We
will work with the forward price as this is equivalent to trading the futures
contract and abstract from issues related to discounting.
We know that the whole density is concentrated in the domain of basis

points. Hence we may work with

h = 10000y

with
�h(u) = E[eiuh] = �y(10000u):
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We now wish to evaluate

w(k) =
1

2�

Z 1

�1
e�ivk
(u)du

=
1

�
real

�Z 1

0

e�iuk
(u)du

�

� 1

�
real

0@ NX
j=1

e�iuj�k
(uj)

1A
where we have uj = (j � 1)�:
Now the FFT (Fast Fourier Transform) computes

w(k) =
NP
j=1

e�1i
2�
N (j�1)(k�1)x(j) for k = 1; � � � ; N

We could take
ki = �(i� 1)

so our strikes go from zero to (N � 1)�: We than have

w(ki) � 1

�
real

0@ NX
j=1

e�1iuj�ki
(uj)

1A
=

1

�
real

0@ NX
j=1

e�1i��(j�1)(i�1)
(uj)

1A
With �� = 2�

N we get

w(ki) �
1

�
real

0@ NX
j=1

e�1i
2�
N (j�1)(i�1)
(uj)

1A
So for our choice of uj and ki we apply the FFT to the sequence 
(uj) and we
obtain �w(ki) in the real part.

9.3 Other Stochastic Mortality Processes

We develop here for possible future applications the joint law of mortality and in-
tegrated mortality for some mean reverting processes driven by other processes.

9.3.1 Gamma driven mortality rate

Suppose that instead of an exponential compound Poisson driver we have for
U(t) a gamma process that has in�nite activity with many small jumps and
some bigger ones. In this case

E[exp (iuU(t))] =

�
c

c� iu

�
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and

 U (u) = 
 (ln(c)� ln(c� iu))

=

Z 1

0

�
eiux � 1

�
kU (x)dx

We need to evaluate

exp

�Z t

0

Z 1

0

�
exp

��
ia
1� e��(t�u)

�
+ ibe��(t�u)

�
x

�
� 1
�
kU (x)dxdu

�
and this is

exp

�Z t

0




�
ln(c)� ln(c� i

�
a
1� e��(t�u)

�
+ be��(t�u)

��
du

�
Now make the change of variable

v = e��(t�u)

dv = �vdu

which gives us




�

Z 1

e��t

�
ln(c)� ln(c� i( a� (1� v) + bv)

�
v

dv

We now need to integrate for the joint characteristic function this expression
which is of the form

ln(c)� ln(c+ �+ �x)
x

:

This has a solution withZ
ln(c)� ln(c+ �+ �x)

x
= Li2

�
� �x

�+ c

�
� log(x)��

(�+ �x+ c)� log
�

�x

� + c
+ 1

��
+

log(c) log(x)

Hence de�ning

� =
�ia
�
;� = i

�a
�
� b
�

we have that

�t(a; b) = exp

��
ia
1� e��t

�
+ ibe��t

�
y(0)

�
� exp

�
G(1)�G(e��t)

�
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where

G(x) =



�

0BB@
Li2

�
� �x
�+c

�
� log(x)��

(�+ �x+ c)� log
�
�x
�+c + 1

��
+

log(c) log(x)

1CCA
Hence we can accommodate gamma driven mean reverting mortality rates.
The term life premiums for at a 3% interest rate, with � = 1:5 , mean jump of

:005 a volatility of 5% and an initial mortality rate 20 basis points is as follows.

1 2493
2 3266
3 3567
4 3712
5 3793

9.3.2 Inverse Gaussian

An increasing process is given by the time taken by Brownian motion with drift
c to reach level t: This time is denoted T ct and

E[exp(iuT c)] = exp
�
�
p
c2 � 2iu+ c

�
in which case for U(t) = T ct we have that

 U (u) = c�
p
c2 � 2iu

and the function we wish to integrate is

c�
q
c2 � 2i

�
( a� (1� v) + bv)

�
�v

which is of the form
c�

p
c2 + �+ �x

x

and Z
c�

p
c2 + �+ �x

x
= �2

p
�+ �x+ c2 +

2
p
��� c2 tan�1

 p
�+ �x+ c2p
��� c2

!
+

c log(�x)

Hence we have a variety of possible mortality models based on exponential
compound Poisson (ECP), Gamma (G), Inverse Gaussian (IG) along with CIR:
We could report on the di¤erences in term life premia in these three models

and how to choose between them.
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In the IG case we have

�t(a; b) = exp

��
ia
1� e��t

�
+ ibe��t

�
y(0)

�
�

exp
�
K(1)�K(e��t)

�
K(x) =

1

�

0BB@
�2
p
�+ �x+ c2+

2
p
��� c2 tan�1

�p
�+�x+c2p
���c2

�
+

c log(�x)

1CCA
� = �2ia=�
� = 2ia=�� 2ib

We therefore have CIR, ECP, GD, IGD possibilities for the spot rate and the
mortality rate that may be calibrated to the yield curve and the term structure
of term life premia.
For a 3% interest and with � = 1:5; c = 500 and y(0) = :002 the termlife

premia are as follows.
1 1671
2 2162
3 2338
4 2416
5 2460

9.3.3 CIR case

Finally we consider the case when y(t) is just the CIR process in which case
�t(a; b) is well known (See for example (Lamberton and Lapeyre (1996)).
With an interest rate of 3%; � = 1:5; � = :003; � = :1 and y(0) = :002 the

termlife premia are as follows.

1 2475
2 2669
3 2759
4 2807
5 2835

9.3.4 Results on Exponential Compound Poisson Mortality Process

I use a CIR rates process with mean reversion 0:3712; long term rate 0:0477,
volatility 0:0599 and initial spot rate 0:0004: For the mortality process the pa-
rameters are mean reversion 1:5; with a jump arrival rate of one jump every two
years of � = :5; with a mean jump of 30 basis points and an initial mortality of
20 basis points.
The term life premiums on this mortality process with a 3% interest rate
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and �ve annual maturities are as follows.

Term Premium
1 1511
2 1936
3 2080
4 2142
5 2175

I employ an annual tenor for �ve years. We �rst construct a grid of possible
spot rates and mortality rates that may be attained in the coming �ve years. I
take 9 levels for each at the deciles of the marginal distribution for the rate and
mortality processes. I present the third, �fth and seventh deciles at the year
ends one, three and �ve for the level of the spot rate and the mortality rate.

Spot Rate Levels
Years

Deciles 1 3 5
3 1:22 2:61 3:27
5 1:46 3:11 3:90
7 1:72 3:67 4:59

Mortality Rates
Years

Deciles 1 3 5
3 9 10 10
5 14 15 15
7 24 25 25

I assume that each year we have 4000 subscribers with all deaths being
replaced by new subscribers on a million dollar 5 year term life insurance with
a premium of 2171 per policy. One is thereby collecting 8:69 million dollars in
premiums each year.
There are two hedging assets available each year and they are a constant

maturity 3 year bond and the forward price of a call option on the level of
mortality in year 10 struck at 25 basis points. At each year end working back
from year 4 down to year 1; we have 81 states represented by 9 deciles for the
spot rate and 9 deciles for the mortality rate. This gives us 324 = 81 � 4 points
of computation. At each of these points we compute the expected value, ask
price and bid price of the hedged business along with the variance minimizing
hedge positions in the constant maturity 3 year bond and the 10 year mortality
call option. We take year �ve as a terminal year with expected values equal
to bid values and ask values and all these values are zero. They represent the
present value of the business continuing past year �ve and since we terminate
in �ve years this is zero.
Beginning in year 4, for each of the 81 points on the grid we �rst compute

the mortality rate speci�c survival probability for a year. For a mortality rate
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of g this is given by

E

�
exp

�
�
Z 1

0

y(u)du

�
jy(0) = g

�
:

We then simulate 10000 readings on the possible deaths among our population
of 4000 individuals. The cash �ow for the annual period is the total premium
collected less the number of million dollar payouts N associated with each death.
For the purposes of our hedge we de�ne an aggregate cash �ow to be hedged

as the expected value of this payout plus the expected value of the business at
year end. To compute this value we simulate 10000 �nal states for the spot
rate r0 = r(t + 1) and the mortality rate y0 = y(t + 1) from the conditional
distribution for r(t + 1) given r(t) = r and y(t + 1) given y(t) = y: We then
interpolate from our stored grid of expected values one year later as a function
of �nal states the expected value V 0 = V (t+ 1) given the pair (r0; y0):
We next simulate 10000 values for

a =

Z 1

0

r(u)du; given r(t) = r; and r(t+ 1) = r0

The cash �ow to be hedged is

C = exp(�a) � (4000 � prem� 1000000 �N + V 0)

and we have 10000 readings on this cash �ow.
We now construct the cash �ows on our hedging assets. For this we have to

evaluate the price P (r; 3) of a 3 year pure discount bond when the spot rate is
r and the price P 0(r0; 2) one year later when the spot rate is r0 and the maturity
is now 2 years. The cash �ow to the bond hedge is

P (r0; 2)� P (r; 3):

Similarly we determine C(25; 10� t; y) and C(25; 10� (t+ 1); y0) the prices
for the 10 year 25 basis point strike call to get the cash �ow on the option as

C(25; 10� (t+ 1); y0)� C(25; 10� t; y):

This gives us 10000 readings on our two hedging assets that are stored in a
matrix H that is 2 by 10000:
We next determine the residual cash �ow for positions x by

R = C + x0H

and we select x to minimize the variance of R and the capital required for
holding R using minmaxvar at stress level 0:75. These are hedge positions in
the three year pure discount bond and the mortality security.
Using the capital minimizing hedge x� we de�ne the optimal residual cash

�ow
R� = C + x�0H
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and the expected value of the business at the grid point (t; r; y) is the mean of
R�: The bid and ask prices are given by

b(t; r; y) = DistortedExpectation(R�; :75)

a(t; r; y) = �DistortedExpectation(�R�; :75):

We present the bid, ask, expected values and the bond, option hedge posi-
tions at the third �fth and seventh deciles for years 1 and 3: These are presented
in �ve pairs of tables with each pair referring to years one and three.

Bid Values (millions)
Year One
Mortality Rate Decile
Decile 3 5 7
3 8:76 8:72 8:73
5 8:11 8:04 8:11
7 6:42 6:47 6:51
Year Three
3 4:33 4:33 4:29
5 3:57 3:49 3:56
7 2:30 2:31 2:34

Ask Values (millions)
Year One
Mortality Rate Decile
Decile 3 5 7
3 14:35 14:34 14:27
5 13:96 13:83 13:89
7 12:63 12:60 12:79
Year Three
3 9:72 9:76 9:95
5 9:13 9:26 9:18
7 8:37 8:23 8:33

Expected Values (millions)
Year One
Mortality Rate Decile
Decile 3 5 7
3 11:77 11:70 11:69
5 11:21 11:14 11:71
7 9:75 9:74 9:81
Year Three
3 7:09 7:07 7:11
5 6:38 6:43 6:43
7 5:40 5:37 5:42
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Bond Position (thousands)
Year One
Mortality Rate Decile
Decile 3 5 7
3 �19:43 �18:94 �19:71
5 �19:07 �18:35 �18:56
7 �17:24 �17:22 �17:10
Year 3
3 �7:48 �7:45 �7:47
5 �6:79 �6:77 �6:80
7 �5:77 �5:77 �5:80

Mortality Option Position(thousands)
Year One
Mortality Rate Decile
Decile 3 5 7
3 7:65 7:24 8:02
5 7:86 7:21 7:39
7 7:48 7:48 7:29
Year 3
3 0:39 0:38 0:36
5 0:42 0:35 0:37
7 0:38 0:41 0:39

The exercise may be repeated for gamma, inverse Gaussian and CIR driven
mortality processes.

10 Empirical Results

We wish to ascertain empirically relevant values for estimates of credit risk and
especially liquidity risk parameters like 
 introduced in our theoretical devel-
opment. Estimates for credit may to some extent be available from the market
for credit default swaps. To gain some insights into these matters we proxy
the daily high as a supremum of valuations and treat it like an ask price while
the daily low we treat like a bid price. The daily return we suppose here is
log normal with a volatility estimated from returns. We then apply our ana-
lytical procedures for bid and ask prices to infer the credit and liquidity risk
parameters.
We recognize that the prices of publicly traded assets like stocks are not

ideal candidates for data on contracts relevant to two price equilibria. More
appropriately on would seek information on divesting insurance liabilities, selling
real estate or cancelling long term contracts. However, such information is hard
to come by. One may nonetheless learn about our liquidity parameters from
data on publicly traded assets by taking as conservative readings on bid and
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ask the daily, weekly of monthly low or high price. For an initial investigation
we consider as a �rst step the daily low and high prices.
Let pt denote a price series like the closing price on a stock. We have in

addition data for bt; at for bid and ask prices that we proxy as stated by the
daily high and low price. We scale positions for to a dollar investment with the
risk of

rt+1 =
pt+1 � pt

pt
;

if we unwind next day at market close.
This risk has a volatility exposure at any time. In addition there is a credit

exposure associated with the stock going to zero and the return being �1: To
allow for both we model risk neutrally under a lognormal return model that

rt+1 =

("
�1 probability �

e�+�z�
�2

2 � 1 probability (1� �)

#
;

where z is a standard normal variate.
Exact expressions for bid and ask prices may be deduced following the meth-

ods of section 3. We now write

bit
pt

= E [ 
it (�it + (1� �it)N(�it + z))] + uit
ait
pit

= E [ 
it ((1� �it)� (1� �it)N(�it + z)))] + vit

We seek to estimate �it; 
it by minimizing

�(�it; 
it) =

r
u2it + v

2
it

2
;

with �it estimated from 21 past daily returns.
For data on 38 stocks starting in January 2007 to the end of 2010 we es-

timated �it; �it; 
it for each name and each day. We then smoothed these pa-
rameters using exponential smoothing with a 10% weight on the most recent
observation and 90% on the previous average. We also correlated a handful of
� estimates with data on the CDS for these names and observed that they cor-
relate well with the CDS. Hence the � estimates are estimates of credit. Clearly
� is volatility. The movements in the cone of acceptable risks is a measure of
our liquidity parameter.
We present in Figure 11 a graph of the parameter values averaged over the

38 names and exponentially smoothed across time.

11 Conclusion

A theory of risk for two price economies is overlaid on an underlying one price
economy. The latter economy is seen as pricing credit, market and some com-
ponents of liquidity risk using a traditional linear pricing rule that is known to
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Figure 11: Graph of average parameter values for volatility, credit and liquidity.
The parameter values have been exponentially smoothed across time and the
averaged across stocks.
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price risks using for example exponential tilting in the presence of exponential
utilities. The two price economy is concerned with the failure of markets to con-
verge to the law of one price and goes on to develop explicit equations for bid
and ask prices with a view to ensuring the acceptability of residual unhedgeable
risks in incomplete markets. The acceptability approach results in nonlinear
pricing operators that are concave for bid prices and convex for ask prices. The
former is an in�mum of test valuations while the latter is a supremum of a
similar set of valuations. Explicit closed forms for the two prices result when
the cone of acceptable risks is modeled using parametric concave distortions of
distribution functions for the residual risk. The �nal pricing theory separates
out the physical risks, the market prices for systematic risks, the e¤ects of credit
and liquidity risk and the nonlinear e¤ects of illiquidity captured by movements
in the cone of acceptable risks. With assets marked at bid and liabilities val-
ued at ask prices the theory allows a separation of liability valuation from an
associated asset pricing theory.
The static two price theory is then extended to its dynamic counterpart by

leveraging recent advances made in the theory of non linear expectations and
its association with solutions of backward stochastic di¤erence and di¤erential
equations. We introduce explicit drivers for these equations that price the local
liquidity risk nonlinearly using concave distortions after the underlying one price
economy has dealt with the market, credit and possibly some liquidity risk. The
dynamic theory is illustrated on pricing a simple insurance loss modeled as a
gamma compound Poisson process. We observe that spreads fall as the pricing
tenor is reduced. Additionally it is noted that bid prices are sensitive to changes
in credit risk but this is not the case for the ask price counterpart.
For the hedging of risks we introduce the new criterion of capital minimiza-

tion de�ned as the di¤erence between the ask and bid prices. This criterion
is contrasted variance minimization and expected utility maximization. Like
variance minimization it is relatively symmetric but additionally it incorporates
a preferential parameter that is a pure number. Expected utility maximization
on the other hand is problematic in that it is di¢ cult to deal with losses when
using relative risk aversion that is a pure number, while exponential utility that
deals with losses, has a parameter that must be changed with the scale of cash
�ows and is not a pure number.
We provide three hedging examples. The �rst addresses capital minimization

and the determination of optimal reinsurance attachment points in this context.
The other two illustrate securitization of insurance losses. We consider for this
purpose the dynamic �nancial hedging of catastrophic losses and the use of
mortality indexed securities for the hedging of life insurance risks.
A �nal empirical section addresses issues of measuring the size of cones of

acceptability using data on daily high, low and close prices. In this exercise bid
prices are proxied by the daily low while the daily high proxies for the ask. An
estimation of credit and liquidity parameters is then conducted separately for
each stock on each day with the underlying market risk being modeled as log
normal with volatility estimated from past returns.
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TABLE 7
Bid Ask Expected Values and Spreads for the 
Gamma Base Case by Quantile
Quantile

Year 10 25 50 75 90
Bid 11.90498 12.27231 12.73143 13.29975 13.83543
Expected Value 12.21273 12.58712 13.05349 13.63365 14.17865

1 Ask 12.3372 12.70822 13.17027 13.75103 14.29139
Spread AB 0.036305 0.03552 0.034469 0.033931 0.032956
Spread AE 0.010192 0.009621 0.008946 0.00861 0.007951
Spread EB 0.02585 0.025652 0.025297 0.025105 0.024807

Bid 11.52025 12.08137 12.75072 13.50975 14.21195
Expected Value 11.81326 12.3846 13.06576 13.83888 14.55467

2 Ask 11.92762 12.497 13.17364 13.94248 14.65804
Spread AB 0.035362 0.034402 0.033169 0.032031 0.031389
Spread AE 0.009681 0.009076 0.008256 0.007486 0.007102
Spread EB 0.025435 0.025099 0.024708 0.024363 0.024115

Bid 11.29471 11.96491 12.77222 13.65102 14.48782
Expected Value 11.57506 12.25795 13.07979 13.97607 14.82823

3 Ask 11.67807 12.35874 13.17489 14.07403 14.92075
Spread AB 0.033941 0.032915 0.031527 0.030987 0.029883
Spread AE 0.008899 0.008222 0.007271 0.007009 0.00624
Spread EB 0.024821 0.024492 0.024081 0.023812 0.023496

Bid 11.14011 11.88006 12.75517 13.70882 14.64695
Expected Value 11.41312 12.16693 13.05824 14.02994 14.98594
Ask 11.5085 12.26222 13.14827 14.11794 15.07066

4 Spread AB 0.033068 0.032168 0.030819 0.029844 0.028929
Spread AE 0.008357 0.007832 0.006895 0.006273 0.005654
Spread EB 0.024507 0.024147 0.023761 0.023424 0.023144

Bid 9.972634 10.86337 11.87038 12.89932 13.94159
Expected Value 11.22448 12.09447 13.09085 14.13663 15.16792

5 Ask 12.44939 13.31479 14.33001 15.34393 16.3859
Spread AB 0.248355 0.225659 0.207207 0.189515 0.175325
Spread AE 0.109129 0.100899 0.094658 0.085403 0.0803
Spread EB 0.125528 0.113326 0.102816 0.09592 0.087962



Table 8
Dynamic Two Price Constructions for Gamma Capped Losses 

Horizon Vol percent Credit Stress Bid E-Value Ask S-AB S-AE S-EB
0.25 18.75 100.00 0.75 11.1136 11.3988 11.4915 0.0340 0.0081 0.0257
0.25 18.75 100.00 1.25 10.7757 11.3999 11.4451 0.0621 0.0040 0.0579
0.25 18.75 500.00 0.75 10.8329 11.3986 11.4901 0.0607 0.0080 0.0522
0.25 18.75 500.00 1.25 10.3315 11.4051 11.4545 0.1087 0.0043 0.1039
0.25 31.25 100.00 0.75 10.2122 10.4787 10.5781 0.0358 0.0095 0.0261
0.25 31.25 100.00 1.25 9.9042 10.4836 10.5573 0.0659 0.0070 0.0585
0.25 31.25 500.00 0.75 9.9547 10.4793 10.5784 0.0627 0.0095 0.0527
0.25 31.25 500.00 1.25 9.4853 10.4749 10.5505 0.1123 0.0072 0.1043
0.50 18.75 100.00 0.75 10.2353 11.3982 11.7929 0.1522 0.0346 0.1136
0.50 18.75 100.00 1.25 9.2187 11.3973 11.6924 0.2683 0.0259 0.2363
0.50 18.75 500.00 0.75 9.2860 11.3950 11.7800 0.2686 0.0338 0.2271
0.50 18.75 500.00 1.25 8.0859 11.3971 11.6746 0.4438 0.0243 0.4095
0.50 31.25 100.00 0.75 9.3910 10.4831 10.8957 0.1602 0.0394 0.1163
0.50 31.25 100.00 1.25 8.4475 10.4697 10.8392 0.2831 0.0353 0.2394
0.50 31.25 500.00 0.75 8.5291 10.4891 10.9057 0.2786 0.0397 0.2298
0.50 31.25 500.00 1.25 7.4227 10.4806 10.8346 0.4596 0.0338 0.4120

Dynamic Two Price Constructions for Gamma Uncapped Losses

Horizon Vol percent Credit Stress Bid E-Val Ask S-AB S-AE S-EB
0.25 18.75 100.00 0.75 4.1914 4.3071 4.3918 0.0478 0.0197 0.0276
0 25 18 75 100 00 1 25 4 0580 4 2988 4 4024 0 0849 0 0241 0 05930.25 18.75 100.00 1.25 4.0580 4.2988 4.4024 0.0849 0.0241 0.0593
0.25 18.75 500.00 0.75 4.0836 4.3039 4.3893 0.0749 0.0199 0.0539
0.25 18.75 500.00 1.25 3.8919 4.3010 4.4065 0.1322 0.0245 0.1051
0.25 31.25 100.00 0.75 8.4960 8.7311 8.9124 0.0490 0.0208 0.0277
0.25 31.25 100.00 1.25 8.2326 8.7198 8.9508 0.0872 0.0265 0.0592
0.25 31.25 500.00 0.75 8.2752 8.7249 8.9049 0.0761 0.0206 0.0544
0.25 31.25 500.00 1.25 7.8942 8.7254 8.9554 0.1344 0.0264 0.1053
0.50 18.75 100.00 0.75 3.8189 4.3067 4.6608 0.2204 0.0822 0.1277
0.50 18.75 100.00 1.25 3.4475 4.3035 4.7369 0.3740 0.1007 0.2483
0.50 18.75 500.00 0.75 3.4732 4.3063 4.6447 0.3373 0.0786 0.2399
0.50 18.75 500.00 1.25 3.0296 4.3009 4.7362 0.5633 0.1012 0.4196
0.50 31.25 100.00 0.75 7.7396 8.7295 9.4567 0.2219 0.0833 0.1279
0.50 31.25 100.00 1.25 6.9920 8.7375 9.6757 0.3838 0.1074 0.2497
0.50 31.25 500.00 0.75 7.0313 8.7204 9.4510 0.3441 0.0838 0.2402
0.50 31.25 500.00 1.25 6.1428 8.7223 9.6396 0.5692 0.1052 0.4199



Table 9
Dynamic Two Price Constructions for Weibull Capped Losses

Horizon Vol percent Credit Stress Bid E-Val Ask S-AB S-AE S-EB
20.00 18.75 100.00 0.75 11.3927 11.6849 11.7797 0.0340 0.0081 0.0257
20.00 18.75 100.00 1.25 11.0449 11.6848 11.7338 0.0624 0.0042 0.0579
20.00 18.75 500.00 0.75 11.1056 11.6851 11.7774 0.0605 0.0079 0.0522
20.00 18.75 500.00 1.25 10.5860 11.6857 11.7338 0.1084 0.0041 0.1039
20.00 31.25 100.00 0.75 10.0318 10.2944 10.3931 0.0360 0.0096 0.0262
20.00 31.25 100.00 1.25 9.7278 10.2958 10.3689 0.0659 0.0071 0.0584
20.00 31.25 500.00 0.75 9.7822 10.2977 10.3947 0.0626 0.0094 0.0527
20.00 31.25 500.00 1.25 9.3233 10.2956 10.3630 0.1115 0.0066 0.1043
10.00 18.75 100.00 0.75 10.4949 11.6874 12.0820 0.1512 0.0338 0.1136
10.00 18.75 100.00 1.25 9.4488 11.6845 11.9894 0.2689 0.0261 0.2366
10.00 18.75 500.00 0.75 9.5202 11.6813 12.0735 0.2682 0.0336 0.2270
10.00 18.75 500.00 1.25 8.2870 11.6804 11.9867 0.4465 0.0262 0.4095
10.00 31.25 100.00 0.75 9.2153 10.2904 10.7057 0.1617 0.0404 0.1167
10.00 31.25 100.00 1.25 8.2993 10.2901 10.6463 0.2828 0.0346 0.2399
10.00 31.25 500.00 0.75 8.3715 10.2960 10.7035 0.2786 0.0396 0.2299
10.00 31.25 500.00 1.25 7.2850 10.2880 10.6463 0.4614 0.0348 0.4122

Dynamic Two Price Constructions for Weibull Uncapped Losses

Horizon Vol percent Credit Stress Bid E-Value Ask S-AB S-AE S-EB
0.25 18.75 100.00 0.75 4.2256 4.3419 4.4253 0.0473 0.0192 0.0275
0 25 18 75 100 00 1 25 4 0998 4 3426 4 4453 0 0843 0 0236 0 05920.25 18.75 100.00 1.25 4.0998 4.3426 4.4453 0.0843 0.0236 0.0592
0.25 18.75 500.00 0.75 4.1202 4.3428 4.4255 0.0741 0.0190 0.0540
0.25 18.75 500.00 1.25 3.9299 4.3428 4.4435 0.1307 0.0232 0.1051
0.25 31.25 100.00 0.75 8.2807 8.5107 8.7063 0.0514 0.0230 0.0278
0.25 31.25 100.00 1.25 8.0248 8.5004 8.7607 0.0917 0.0306 0.0593
0.25 31.25 500.00 0.75 8.0709 8.5091 8.7016 0.0781 0.0226 0.0543
0.25 31.25 500.00 1.25 7.6962 8.5055 8.7689 0.1394 0.0310 0.1052
0.50 18.75 100.00 0.75 3.8531 4.3439 4.6761 0.2136 0.0765 0.1274
0.50 18.75 100.00 1.25 3.4806 4.3448 4.7529 0.3656 0.0939 0.2483
0.50 18.75 500.00 0.75 3.5046 4.3432 4.6755 0.3341 0.0765 0.2393
0.50 18.75 500.00 1.25 3.0583 4.3411 4.7218 0.5439 0.0877 0.4195
0.50 31.25 100.00 0.75 7.5320 8.5030 9.2755 0.2315 0.0908 0.1289
0.50 31.25 100.00 1.25 6.8042 8.5005 9.4792 0.3931 0.1151 0.2493
0.50 31.25 500.00 0.75 6.8571 8.5073 9.2771 0.3529 0.0905 0.2407
0.50 31.25 500.00 1.25 5.9911 8.5119 9.5508 0.5942 0.1221 0.4208



Table 10
Dynamic Two Price Constructions for Frechet Capped Losses

Horizon Vol percent Credit Stress Bid E-Value Ask S-AB S-AE S-EB
0.25 18.75 100.00 0.75 9.2855 9.5220 9.5992 0.0338 0.0081 0.0255
0.25 18.75 100.00 1.25 9.0007 9.5205 9.5618 0.0623 0.0043 0.0578
0.25 18.75 500.00 0.75 9.0493 9.5202 9.5954 0.0604 0.0079 0.0520
0.25 18.75 500.00 1.25 8.6267 9.5212 9.5625 0.1085 0.0043 0.1037
0.25 31.25 100.00 0.75 8.6918 8.9164 8.9958 0.0350 0.0089 0.0258
0.25 31.25 100.00 1.25 8.4304 8.9195 8.9730 0.0644 0.0060 0.0580
0.25 31.25 500.00 0.75 8.4700 8.9134 8.9931 0.0618 0.0089 0.0524
0.25 31.25 500.00 1.25 8.0755 8.9145 8.9627 0.1099 0.0054 0.1039
0.50 18.75 100.00 0.75 8.5597 9.5230 9.8428 0.1499 0.0336 0.1125
0.50 18.75 100.00 1.25 7.7116 9.5273 9.7679 0.2667 0.0253 0.2355
0.50 18.75 500.00 0.75 7.7671 9.5247 9.8487 0.2680 0.0340 0.2263
0.50 18.75 500.00 1.25 6.7595 9.5219 9.7718 0.4456 0.0262 0.4087
0.50 31.25 100.00 0.75 7.9998 8.9179 9.2574 0.1572 0.0381 0.1148
0.50 31.25 100.00 1.25 7.2077 8.9190 9.1988 0.2762 0.0314 0.2374
0.50 31.25 500.00 0.75 7.2631 8.9187 9.2469 0.2731 0.0368 0.2279
0.50 31.25 500.00 1.25 6.3234 8.9193 9.2066 0.4559 0.0322 0.4105

Dynamic Two Price Constructions for Frechet Uncapped Losses

Horizon Vol percent Credit Stress Bid E-Value Ask S-AB S-AE S-EB
0.25 18.75 100.00 0.75 2.8798 2.9615 3.0875 0.0721 0.0425 0.0284
0 25 18 75 100 00 1 25 2 8008 2 9676 3 2059 0 1446 0 0803 0 05960.25 18.75 100.00 1.25 2.8008 2.9676 3.2059 0.1446 0.0803 0.0596
0.25 18.75 500.00 0.75 2.8061 2.9608 3.0857 0.0996 0.0422 0.0551
0.25 18.75 500.00 1.25 2.6775 2.9605 3.1987 0.1947 0.0805 0.1057
0.25 31.25 100.00 0.75 4.2115 4.3317 4.5442 0.0790 0.0491 0.0286
0.25 31.25 100.00 1.25 4.0944 4.3385 4.7514 0.1605 0.0952 0.0596
0.25 31.25 500.00 0.75 4.1039 4.3289 4.5356 0.1052 0.0478 0.0548
0.25 31.25 500.00 1.25 3.9264 4.3402 4.7399 0.2072 0.0921 0.1054
0.50 18.75 100.00 0.75 2.6126 2.9637 3.4938 0.3373 0.1789 0.1344
0.50 18.75 100.00 1.25 2.3582 2.9570 3.8876 0.6486 0.3147 0.2539
0.50 18.75 500.00 0.75 2.3766 2.9613 3.4695 0.4599 0.1716 0.2460
0.50 18.75 500.00 1.25 2.0847 2.9667 3.8768 0.8597 0.3068 0.4231
0.50 31.25 100.00 0.75 3.8158 4.3285 5.1817 0.3580 0.1971 0.1344
0.50 31.25 100.00 1.25 3.4463 4.3217 5.9877 0.7374 0.3855 0.2540
0.50 31.25 500.00 0.75 3.4622 4.3214 5.2410 0.5138 0.2128 0.2482
0.50 31.25 500.00 1.25 3.0415 4.3266 5.6815 0.8680 0.3132 0.4225


