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1
Multi-state
transition models
for actuarial applications

Actuaries regularly use probability models to analyze situations involving
risk. These models often involve some entity and the various states in
which it might be—alive or dead, intact or failed, et cetera. This chapter
introduces a general type of model that can be applied in many such
situations.

Section 1 reviews some models of this type that you’ve probably al-
ready seen and then goes on to describe some practical applications for
which those models are inadequate. Section 2 then introduces a more
general probability model appropriate for these new cases.

1.1 Introduction

What are multi-state transition models? Probability models that descrbe the
random movements of a subject among various states. Often the subject is a
person, but it could just as well be a piece of machinery or a loan contract in whose
survival or failure you are interested.

You’re probably already familiar with some special cases of such situations.

(1.1) Example (basic survival models). In a basic survival model for a status
(x)—possibly a person aged x—for which you study the failure time T (x)
or K(x), you’re considering two states: alive (or, more generally, Intact)
and dead (or Failed). Models describe the probability of moving from the
State Intact to the State Failed at various points in time.

(1.2) Example (multiple-decrement survival models). In multiple-decrement
models, you’re interested not only in the time of failure of a status (x)
as in Example 1.1 but also in which of m causes #1, #2, . . . , #m was to
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1.1 Introduction 3

blame. Models describe the probabilities of moving from the State Intact
to one of the States Failed for Cause #1 or Failed for Cause #2 or . . . or
Failed for Cause #m at various points in time.

(1.3) Example (multiple-life models). In multiple-life models you consider the
failure time of complex statuses constructed from other statuses. For ex-
ample, on a pair of statuses (x) and (y), you might be interested in the
joint status x : y that fails when the first of (x) and (y) fails or in the last-
survivor status x : y that fails when the last of (x) and (y) fails. [More
complicated statuses include 1x :y that fails at the failure of (x) provided
that (x) fails before (y), but these will not be treated here.] Our subject
is the pair of statuses, and the possible states are: 1) both are intact, 2)
(x) is intact but (y) has failed, 3) (y) is intact but (x) has failed, and 4)
both have failed. Models describe the probabilities of moving among these
states at various points in time.

All three preceding multi-state transition models share a common character-
istic: once the subject leaves a state it cannot return to that state. For instance,
in Example 1.1 once the state is Failed it stays Failed forever. But there are im-
portant applications in which subjects move back and forth among states, possibly
returning to states they have previously left.

(1.4) Example (disability). In modeling workers’ eligibility for various employee
benefits, you might want to consider such states as Active, Temporarily
Disabled, Permanently Disabled, and Inactive (which might include re-
tirement, death, and withdrawal—although these could also be used as
distinct states). Models describe the probabilities of moving among these
various states, including the possibility of moving back and forth between
Active and Temporarily Disabled several times.

(1.5) Example (driver ratings). In modeling insured automobile drivers’ ratings
by the insurer, you might want to consider states such as Preferred, Stan-
dard, and Substandard. Models describe the probabilities of moving back
and forth among these states. [You might also include a state Gone for
those no longer insured.]

(1.6) Example (Continuing Care Retirement Communities—or CCRC’s). In a
Continuing Care Retirement Community (CCRC), residents may move
among various states such as Independent Living, Temporarily in the
Health Center, Permanently in the Health Center, and Gone. Models
describe the probabilities of moving among these states at various points
in time.
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To deal with the sort of applications in these last three examples, actuaries need
models that allow for moving back and forth among states. Section 1.2 presents
one approach to such models.

1.2 Non-homogeneous Markov Chains

In defining models that allow the subject to move back and forth among various
states, I’m going to make some simplifying restrictions and consider only models
with:
1) discrete time (meaning that the states are described at times 0, 1, 2, . . . );
2) a finite number of states in which the subject may be; and
3) history independence (meaning that the probability distribution of the state of

the subject at time n + 1 may depend on the time n and on the state at time
n but does not depend on the states at times prior to n).
Such a model is called a non-homogeneous Markov Chain, although the

general non-homogeneous Markov Chain does not require restrictions 1) and 2)
above. When the probability distribution in 3) does not depend on the time n, the
model is called a homogeneous Markov Chain or often simply a Markov Chain.
The following definition makes this more precise:

(1.7) Definition (non-homogeneous Markov Chain). M is a non-homogeneous
Markov Chain when M is an infinite sequence of random variables
M0,M1, · · · with the following properties.
1) Mn denotes the state number of a subject at time n.
2) Each Mn is a discrete-type random variable over r values (usually

1, 2, · · · , r but sometimes 0, 1, · · · ,m with r = m + 1).
3) The transition probabilities

Q(i,j)
n = Pr[Mn+1 = j

∣∣ Mn = i and various other previous values of Mk]
= Pr[Mn+1 = j

∣∣ Mn = i]

are history independent.
If the transition probabilities Q(i,j)

n —pronounced “q-sub-n i-to-j”—
do not in fact depend on n, then they are denoted by Q(i,j) and the Chain
is a homogeneous Markov Chain.

Note that history independence implies the important and useful fact that the
probability of moving from State #i to #j and then to #k is simply the product of
the probability of moving from #i to #j with the probability of moving from #j
to #k—that is, successive transitions are independent events.

At this point you should re-examine the Examples in Section 1.1 to see how
they can be formulated as non-homogeneous Markov Chains. Here’s what you’ll
find.
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(1.8) Example (basic survival models as in Example 1.1). Let State #0 be that
(x) is Intact and State #1 be that (x) is Failed. [The numbering was
chosen so that this single-decrement case is consistent with the multiple-
decrement case in the next Example.] You should check that the transition
probabilities are Q(0,0)

n = px+n, Q(0,1)
n = qx+n, Q(1,0)

n = 0, and Q(1,1)
n = 1.

(1.9) Example (multiple-decrement survival models as in Example 1.2). Let
State #0 be that (x) is Intact, and State #j be that (x) has Failed for
Cause #j, for j = 1, 2, . . . ,m. You should check that the transition prob-
abilities are Q(0,0)

n = p(τ)
x+n, Q(0,j)

n = q(j)
x+n for j = 1, 2, . . . ,m, Q(j,j)

n = 1 for
j = 1, 2, . . . ,m, and Q(i,j)

n = 0 for all other values of i and j.

(1.10) Example (multiple-life models as in Example 1.3). Let State #1 be that
both (x) and (y) are intact, #2 that (x) is intact but (y) has failed, #3 that
(y) is intact but (x) has failed, and #4 that both have failed. Assuming
for simplicity that (x) and (y) are independent lives, you should check that
the transition probabilities are Q(1,1)

n = px+n:y+n = px+npy+n, Q(1,2)
n =

px+nqy+n, Q(1,3)
n = py+nqx+n, and Q(1,4)

n = qx+n:y+n = qx+nqy+n; also
Q(2,2)

n = px+n and Q(2,4)
n = qx+n and similarly for Q(3,3)

n and Q(3,4)
n ;

Q(4,4)
n = 1; and all other Q(i,j)

n = 0.

(1.11) Example (disability as in Example 1.4). Let State #1 stand for the em-
ployee’s being Active, #2 for Temporarily Disabled, #3 for Permanently
Disabled, and #4 for Inactive. Clearly we must have Q(3,1)

n = Q(3,2)
n = 0

since #3 denotes permanent disability. Unless we wish to model situations
allowing a return from the Inactive status, Q(4,4)

n = 1 and Q(4,j)
n = 0 for

j = 1, 2, 3. The other transition probabilities would be chosen to reflect
observations.

(1.12) Example (driver ratings as in Example 1.5). Let State #1 stand for the
driver’s being classified as Preferred, #2 for Standard, and #3 for Sub-
standard. All the transition probabilities would be chosen to reflect obser-
vations, and presumably all could be positive.

(1.13) Example (Continuing Care Retirement Communities as in Example 1.6).
Let State #1 stand for the resident’s being in Independent Living, State #2
for Temporarily in the Health Center, #3 for Permanently in the Health
Center, and #4 for Gone. Clearly we must have Q(3,1)

n = Q(3,2)
n = 0 since

#3 denotes being Permanently in the Health Center. Unless we wish to
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model situations allowing a return from the Gone status, Q(4,4)
n = 1 and

Q(4,j)
n = 0 for j = 1, 2, 3. The other transition probabilities would be

chosen to reflect observations.

More probabilities

Actuarial notation often uses q to denote failure probabilities [such as moving
from State #0 (Intact) to the different State #1 (Failed) in the basic survival model]
and p to denote success probabilities [remaining in State #0 in the basic survival
model]. Analogously, it is sometimes convenient to use:

(1.14) Notation. P (i)
n = Q(i,i)

n is the “success probability” of remaining in State
#i at the next time step.

Even more convenient is to place the probabilities Q(i,j)
n in a matrix:

(1.15) Definition (transition probability matrix). The transition probability
matrix Qn is the r-by-r matrix whose entry in row i and column j—the
(i,j)-entry—is the transition probability Q(i,j)

n .

Using this notation, the probabilities in Example 1.8, for instance, on the basic
survival model could have been written as

Qn =
[

px+n qx+n

0 1

]
The transition probabilities Q(i,j)

n and the transition probability matrix Qn only
provide information about the probability distribution of the state one time step
in the future. In practice it is often important to know about longer periods of
time—witness the importance of kpx+n versus just px+n in basic survival models.
For non-homogeneous Markov Chains, the corresponding notation is:

(1.16) Notation. kQ(i,j)
n = Pr[Mn+k = j

∣∣ Mn = i], with kQn used for the r-by-r
matrix whose (i, j)-entry is kQ(i,j)

n .

For basic survival models, of course, kpx+n can be computed from the one-year
probabilities as kpx+n = px+npx+n+1 · · · px+n+k−1. The same approach works in
our more complicated setting.

(1.17) Example (longer-term probabilities). Consider a simple example of a ho-
mogeneous Markov Chain with r = 2 states #1 and #2 and with transition
probability matrix

Q =
[

0.4 0.6
0.8 0.2

]
.
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Suppose that you want to compute 2Q(1,2), the probability that the sub-
ject, now in State #1, will be in State #2 after two time periods. The
subject can be in State #2 after two transitions in either of two ways—by
moving #1→ #1→ #2 or by moving #1→ #2→ #2. So the probability
is the sum of those two probabilities. Thanks to history independence, the
events #1 → #1 and #1 → #2 are independent, and so Pr[#1 → #1 →
#2] = Pr[#1 → #1] Pr[#1 → #2] = Q(1,1) Q(1,2) = 0.4 × 0.6. Similarly
Pr[#1 → #2 → #2] = 0.6 × 0.2. Thus 2Q(1,2) = 0.4 × 0.6 + 0.6 × 0.2.
But—and here is the important observation, so check it—this is the same
as the (1,2)-entry of the matrix Q × Q. A similar argument shows that
2Q(i,j) is in general the (i,j)-entry of the matrix Q×Q. That is, 2Q = Q2.

The argument used in Example 1.17 extends easily to the general case of longer-
term probabilities for non-homogeneous Markov Chains, resulting in

(1.18) Theorem (longer-term probabilities). In non-homogeneous Markov Chains
the longer-term probability kQ(i,j)

n can be computed as the (i,j)-entry of
the matrix Qn ×Qn+1 × · · · ×Qn+k−1—that is,

kQn = Qn ×Qn+1 × · · · ×Qn+k−1.

For a homogeneous Markov Chain, this matrix is just Qk.

Calculation by hand of matrix products can be tedious, even in the Examples
below. Fortunately, spreadsheet programs and other mathematical software can
perform these calculations easily.

Warning on interpretation: Note that kQ(i,j)
n gives the probability of the sub-

ject’s being in State #j after k time periods, not the probability of arriving there
exactly k steps in the future. The subject might have reached State #j previously,
left it, returned, et cetera. This is of course also true for the special case i = j,
that is, kQ(i,i)

n . The event for which this is the probability allows the subject to
have drifted away from State #i, so long as the subject is back again after k time
periods—thus, kQ(i,i)

n is not analogous to the smaller “survival” probability of re-
maining in State #i throughout the k steps. For that, using Notation 1.14 we easily
get (check this):

(1.19) Theorem. The probability that a subject in State #i at time n remains
in that state through time n + k is

kP (i)
n = Pr[Mn+1 = Mn+2 = · · · = Mn+k = i

∣∣ Mn = i]

= P (i)
n P (i)

n+1 · · · P (i)
n+k−1

(1.20) Example. For the homogeneous Markov Chain defined in Example 1.17,
let’s compute both 2Q

(1,1)
n and 2P

(1)
n . According to Theorem 1.18 on



8 Chapter 1 — Multi-state transition models for actuarial applications

longer-term probabilities, 2Q
(1,1)
n is the (1,1)-entry of

QnQn+1 = Q2 =
[

0.4 0.6
0.8 0.2

] [
0.4 0.6
0.8 0.2

]
=

[
0.64 0.36
0.48 0.52

]
,

and so 2Q
(1,1)
n = 0.64. From Theorem 1.19 and Notation 1.14, 2P

(1)
n =

P (1)
n P (1)

n+1 = Q(1,1)
n Q(1,1)

n+1 = [Q(1,1)]2 = (0.4)2 = 0.16.

(1.21) Example. Consider a Continuing Care Retirement Community (CCRC)
with four states: Independent Living, Temporarily in the Health Center,
Permanently in the Health Center, and Gone, with the states numbered
1, 2, 3, 4, respectively. Suppose that the transition-probability matrices
for a new entrant (at time 0) are as given in the Illustrative Matrices in
Section 3.1. Given that this entrant is in Independent Living at time 2,
let’s find the probability of being there at time 5 and also the probability
of remaining there from time 2 through time 5.

The first probability is 3Q
(1,1)
2 , which is the (1,1)-entry of Q2Q3Q4 =

[note that I only write the entries in the matrices that I actually need in
the calculation, writing “−” elsewhere] 0.60 0.15 0.15 0.10
− − − −
− − − −
− − − −


 0.50 0.20 0.20 0.10

0.20 0.30 0.35 0.15
0 0 0.50 0.50
0 0 0 1


 0.40 − − −

0.10 − − −
0 − − −
0 − − −



=

 0.60 0.15 0.15 0.10
− − − −
− − − −
− − − −


 0.22 − − −

0.11 − − −
0 − − −
0 − − −

 =

 0.1485 − − −
− − − −
− − − −
− − − −


and so the probability 3Q

(1,1)
2 is 0.1485.

The second probability is 3P
(1)
2 = P (1)

2 P (1)
3 P (1)

4 = Q(1,1)
2 Q(1,1)

3 Q(1,1)
3 =

(0.60)(0.50)(0.40) = 0.12.

(1.22) Example. Consider a driver-ratings model in which drivers move among
the two classifications Preferred and Standard at the end of each year.
Each year: 60% of Preferred are reclassified as Preferred and 40% as Stan-
dard; and 70% of Standard are reclassified as Standard and 30% as Pre-
ferred. Let’s find the probability that a drtiver, known to be classified as
Standard at the start of the first year, will be classified as Standard at the
start of the fourth year.

Let Preferred be State #1 and Standard be State #2. Then the
transition-probability matrix Q for this homogeneous Markov Chain is[

0.6 0.4
0.3 0.7

]
.
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We seek 3Q
(2,2)
0 , which is the (2, 2)-entry of Q3. Rather than proceeding

as in the preceding Example, consider the following approach. Note that
if ej denotes an n × 1 column matrix with 1 as its jth entry and 0 as its
other entries, then for any k × n matrix M the product Mej is just the
jth column of M. Therefore the desired 3Q

(2,2)
0 , which is the (2, 2)-entry

of Q3, is just the bottom entry of

Q3e2 = Q2(Qe2) =
[

0.6 0.4
0.3 0.7

] [
0.6 0.4
0.3 0.7

] [
0.4
0.7

]
=

[
0.6 0.4
0.3 0.7

] [
0.52
0.61

]
=

[
0.556
0.583

]
,

giving 0.583 for the answer.

There’s another probability that will prove central to computations in Section
2.2: for a subject in State #s at time n, the probability of making the transition
from State #i at time n+k to State #j at time n+k+1. In order to possibly make
this transition, the subject first must be in State #i at time n+k. Since the subject
is now in State #s at time n, the probability of this is kQ(s,i)

n . The probability of
the transition then from State #i to State #j is Q(i,j)

n+k. The product kQ(s,i)
n Q(i,j)

n+k
of these two probabilities gives the probability of the transition in question. That
is,

(1.23) Theorem (future transition probabilities). Given that a subject is in State
#s at time n, the probability of making the transition from State #i at
time n + k to State #j at time n + k + 1 is given by kQ(s,i)

n Q(i,j)
n+k.

Problems

1. A basic aggregate survival model as in Example 1.1 follows the DeMoivre Law
with ultimate age ω = 100. As in Example 1.8, find the matrix Q30 for a
person aged x = 60.
[Answer: the first row contains 0.9 and 0.1, the second 0 and 1.]

2. Consider a multiple-life model as in Example 1.10 for independent lives aged
x = 60 and y = 75 subject to a DeMoivre Law with ω = 100. As in Example
1.10, find Q(1,2)

10 .
[Answer: 29

450 .]
3. For the model in Example 1.17, find 3Q(2,1).

[Answer: 0.608.]
4. As in Example 1.5, consider a driver-ratings model in which drivers move among

the classifications Preferred, Standard, and Substandard at the end of each
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year. Each year: 60% of Preferreds are reclassified as Preferred, 30% as Stan-
dard, and 10% as substandard; 50% of Standards are reclassified as Standard,
30% as Preferred, and 20% as Substandard; and 60% of Substandards are re-
classified as Substandard, 40% as Standard, and 0% as Preferred. Find the
probability that a driver, classified as Standard at the start of the first year,
will be classified as Standard at the start of the fourth year.
[Answer: 0.409.]

5. Consider the situation in Problem 4 again. Find the probability that a driver,
classified as Standard at the start of the first year, will be classified as Standard
at the start of each of the first four years.
[Answer: 0.125.]

6. Consider the CCRC model in Example 1.21. Find the probability that a resi-
dent, in Independent Living at time 1, will not be Gone at time 3.
[Answer: 0.8175.]

7. Consider a disability model with four states, numbered in order: Active, Tem-
porarily Disabled, Permanently Disabled, and Inactive. Suppose that the
transition-probability matrices for a new employee (at time 0) are as given
in the Illustrative Matrices in Section 3.1. For an Active employee at time 1,
find the probability the employee is Inactive at time 4.
[Answer: 0.3535.]

8. Consider a four-state non-homogeneous Markov Chain with transition proba-
bility matrices given by the Illustrative Matrices in Section 3.1. For a subject
in State #2 at time 3, find the probability that the subject transitions from
State #1 at time 5 to State #3 at time 6.
[Answer; 0.033.]

9. (Theory.) Extend Example 1.17 in general for homogeneous Markov Chains
with two states to prove that 2Q = Q2.

10. (Theory.) Extend Problem 9 to non-homogeneous Markov Chains with r states
to prove that 2Qn = QnQn+1.

11. (Theory.) Extend Problem 10 to prove Theorem 1.18 on longer-term probabil-
ities.



2
Cash flows and their
actuarial present values

Actuaries usually aren’t interested in a probability model for its own sake. Rather,
they want to use the model to analyze the financial impact of the events being
modeled. Section 1 gives some simple examples of financial consequences (cash
flows) associated with some introductory examples from Section 1.1. Section 2
specializes to cash flows associated with transitions between states, while Section
3 treats cash flows that occur while the subject is in a particular state; both
Sections examine computing the actuarial present value of cash flows. Finally,
Section 4 introduces benefit premiums and benefit reserves in the context of the
general non-homogeneous Markov Chain.

2.1 Introduction

Actuaries are not simply interested in modeling the future states of a subject. They
also need to model cash flows associated with future states.

(2.1) Example (insurances and annuities). In the basic survival models, multiple-
decrement models, and multiple-life models of Examples 1.1, 1.2, and 1.3, actuar-
ies are concerned about insurances—payments made upon failure of a status—and
about annuities—payments made while a status is intact. [An annuity of course
either could represent payments made by an annuity company to an annuitant,
or could represent payments (premiums) paid to an insurer by an insured.] In our
non-homogeneous Markov Chain models, insurance payments correspond to pay-
ments made upon transition from one state to another, while annuities represent
payments made while the subject is in a particular state.

(2.2) Example (disability). In the disability model of Example 1.4, actuaries may be
concerned about payments made to an employee while Temporarily or Perma-
nently Disabled, and about administrative costs (possibly minor) associated with
a change of status. In our non-homogeneous Markov Chain models, these corre-
spond to cash flows while the subject is in a particular state or upon transition
from one state to another.

11
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(2.3) Example (driver ratings). In the driver-ratings model of Example 1.5, actuaries
may be concerned about expected claims payable and premiums collected while
a driver is in a particular classification, or about administrative costs (possi-
bly minor except when a significant change occurs—a Driving While Intoxicated
conviction, for example—that requires special underwriting) associated with a
change of classification. In our non-homogeneous Markov Chain models, these
correspond to cash flows while the subject is in a particular state or upon tran-
sition from one state to another.

(2.4) Example (CCRC’s). In the CCRC models of Example 1.6, actuaries may be
concerned about expenses to be paid and payments collected while a resident is in
a particular classification, or about costs associated with a change of classification
(such as moving a resident or cleaning an apartment). In our non-homogeneous
Markov Chain models, these correspond to cash flows while the subject is in a
particular state or upon transition from one state to another.

These examples make it clear that actuaries are concerned with cash flows while
the subject is in a particular state or upon transition from one state to another in non-
homogeneous Markov Chains.

2.2 Cash flows upon transitions

I could easily let C(i,j) denote a cash flow—either positive or negative—that occurs
when a subject transitions from State #i to State #j (including the possibility that i = j).
But that does not account for the possibility of the amount depending on the time at which
it occurs.

Since actuaries usually account for the time value of money, I also need to make an
assumption about when the transition from the State M" at time " to the State M"+1 at
time " + 1 occurs. By analogy with discrete insurances whose benefits are paid at the end
of the year of death, I’ll here assume that the cash flow occurs at time "+1, although other
assumptions (such as at mid-year) are certainly possible. This leads to the following

(2.5) Notation (cash flows at transitions). "+1C(i,j) denotes the cash flow at time "+1
if the subject is in State #i at time " and State #j at time " + 1.

Now, how to account for the time value of money? To be general, I’ll use the following

(2.6) Notation (discounting). kvn denotes the value at time n of one unit certain to
be paid k periods in the future at time n + k.

In the case of compound interest at rate i, of course, kvn = vk, where v = 1
1+i is the

one-period discount factor. I’m using the more general notation to allow for computations
with varying, or even random, interest rates each period.
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Actuarial present values

We now have the tools to calculate actuarial present values—the expected value of
the present value of cash flows. How? By the usual “triple-product summation” approach
(the “3πΣ” approach):

Sum up, over all times at which a cash flow might occur, the product of three terms:
the probability that the cash flow occurs then;
the amount of the cash flow; and
the discounting from the time of the cash flow back to the present time (n).

[It’s also possible to compute the variance of the present value of cash flows, but I’ll
not address that here.]

We have at hand all the ingredients to compute the actuarial present value of the cash
flows, upon transitions, in Notation 2.5 for a subject now in State #s at time n:

the times at which the flows can occur are times n + k + 1 for k ≥ 0;
the amount of the cash flow at that time is denoted by n+k+1C(i,j);
the discounting from time n + k + 1 to the present time n is k+1vn; and
the probability of making the transition from State #i at time n + k to State #j

at time n + k + 1 is, by Theorem 1.23, kQ(s,i)
n Q(i,j)

n+k.

(2.7) Theorem (actuarial present value of cash flows at transitions). As in Notation
2.5, let "+1C(i,j) denote the cash flow at time "+1 if the subject is in State #i at
time " and State #j at time " + 1. Suppose that the subject is now in State #s
at time n. Then the actuarial present value, as seen from time n, of these cash
flows is given by the triple-product summation (3πΣ)

APVs@n(C(i,j)) =
∞∑

k=0

[kQ(s,i)
n Q(i,j)

n+k] [n+k+1C
(i,j)] [k+1vn].

The general formula above is a mess. Spreadsheet software can easily perform such
summations, however, and in simple illustrative cases the computations are fairly straight-
forward.

(2.8) Example. Consider the simple example of a homogeneous Markov Chain in Ex-
ample 1.17, with states numbered 1 and 2 and with

Q =
[

0.4 0.6
0.8 0.2

]
.

Suppose that the subject is now in State #1 and that there is a cash flow of 1 for
a transition from State #2 to State #1 any time in the next 3 periods. [Recall
that this Markov Chain is homogeneous and so probabilities do not depend on
time—so we can treat “now” as, say, time 0.] Finally, suppose that interest is
constant at 25%, so that v=0.8 and kvn = (0.8)k.

Note that a transition from State #2 to State #1 is impossible the first year
since the subject is in State #1, not State #2. That means that there are only
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two possible transitions—in the second year from time 1 to time 2 or in the third
year from time 2 to time 3.

To compute the actuarial present value of these cash flows (as seen from now
at time 0), we need the probabilities of being in State #2 at times 1 or 2 and
the probability Q(2,1) = 0.8 of then having a transition from State #2 to State
#1. The first probability is the (1, 2)-entry of Q, which is just 0.6. The second
probability is the (1, 2)-entry of Q2, which you can easily compute to be 0.36
(check this). The actuarial present value from the 3πΣ is then

[(0.6)(0.8)](1)(v2) + [(0.36)(0.8)](1)(v3) = 0.45456.

Since this is a homogeneous Markov Chain, the value of course does not actually
depend on the time n.

(2.9) Example. Consider the preceding Example 2.8 again, but this time suppose that
the interest rate is varying: 10% in the first year from time n to time n + 1, 15%
the second year, and 20% the third year. Then discounting is accomplished by
1vn = 1

1.1 = 0.90909, 2vn = 1vn
1

1.15 = 0.79051, and 3vn = 2vn
1

1.20 = 0.65876.
The actuarial present value from the 3πΣ is then

[(0.6)(0.8)](1)(2vn) + [(0.36)(0.8)](1)(3vn) = 0.56917.

(2.10) Example. Consider a CCRC with the usual four States as in Example 1.13.
Suppose that the transition-probability matrices for a new entrant are as given
in Section 3.1, and suppose that the cash flows upon transitions are as given in
Section 3.2. Suppose that a resident is in Independent Living at time 5. Let’s
compute the actuarial present value (as seen from now at time 5) of the cash
flows upon transition from Independent Living (State #1) either to Permanently
in the Health Center (State #3) or to Gone (State #4), using a constant interest
rate of 25%. Clearly, the actuarial present value of the cash flows from these two
types of transitions is the sum of the actuarial present values for each type.

Consider the first type of transition—from State #1 to State #3. Such a
transition can only occur from time 5 to time 6, from time 6 to time 7, or from
time 7 to time 8. (Why? Look at Q8, for example.) The probabilities of the
resident being in State #1 at the start of those years are: 1; Q(1,1)

5 = 0.3; and
2Q

(1,1)
5 , which is the (1,1)-entry of Q5Q6 and is easily computed to be 0.08 (check

this).
The probabilities of the first type of transition in each of those years, once the

resident has reached State #1, are Q(1,3)
5 = 0.3, Q(1,3)

6 = 0.3, and Q(1,3)
7 = 0.3.

The cash flows in each year are 53, 63, and 73 (check this). The 3πΣ then
computes the actuarial present value for the first type of transition as

[(1)(0.3)](53)v + [(0.3)(0.3)](63)v2 + [(0.08)(0.3)](73)v3 = 17.246.
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Now consider the second type of transition—from State #1 to State #4. Such a
transition can only occur from time 5 to time 6, from time 6 to time 7, from time
7 to time 8, or from time 8 to time 9. (Why?) The probabilities of the resident
being in State #1 at the start of the first three of those years are again: 1; 0.3;
and 0.08. For the fourth year, it is 3Q

(1,1)
5 , which can be computed to be 0.012

(check this).
The probabilities of the second type of transition in each of those years, once

the resident has reached State #1, are Q(1,4)
5 = 0.2, Q(1,4)

6 = 0.3, Q(1,4)
7 = 0.5, and

Q(1,4)
8 = 1. The cash flows in each year are 54, 64, 74, and 81 (check this). The

3πΣ then computes the actuarial present value for the second type of transition
as

[(1)(0.2)](54)v + [(0.3)(0.3)](64)v2 + [(0.08)(0.5)](74)v3 + [(0.012)(1)]81v4 = 14.201.

The combined actuarial present value for the two types of transitions together is
17.426 + 14.201 = 31.447.

Problems

1. Consider a CCRC model with cash flows from the Illustrative Cash Flows in Section
3.2 as in Example 2.10. Suppose that a subject is in Independent Living (State #1)
at time 4 and then in States #2, #2, #1, #3, and #4 at times 5, 6, 7, 8, and 9,
respectively. Using 5% interest, find the present value of the cash flows for these
transitions. [Note that no probability is involved here.]
[Answer: 272.03.]

2. Consider a homogeneous Markov Chain with two states and transition probability
matrix as in Example 1.17. The subject is now in State #2 at time 3. There are
possible cash flows of " + 1 for transition from State #2 at time " to State #1 at
time " + 1, for " ≤ 5. Find the actuarial present value of these cash flows using 25%
interest.
[Answer: 4.3500.]

3. Solve Problem 2 again, but this time assume that the interest rates for the three future
years are, in order, 10%, 15%, and 20%.
[Answer: 5.1858.]

4. Consider a CCRC model with transition probabilities from the Illustrative Matrices in
Section 3.1 and cash flows from the Illustrative Cash Flows in Section 3.2, exactly as
in Example 2.10. The subject is in Independent Living at time 5. Find the actuarial
present value of the cash flows resulting from future transitions from Temporarily in
the Health Center to Permanently in the Health Center, using 25% interest.
[Answer: 4.3766.]

5. Solve Problem 4 again, but this time assume that the interest rate from time n to
time n + 1 is 0.05|n− 4|.
[Answer: 6.0320.]
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2.3 Cash flows while in states

The first thing that you should notice about this Section is that it looks a great deal
like the preceding Section 2.2. The only change is that the cash flows now occur while the
subject is in a state rather than upon transition between states. In computing actuarial
present values using the “triple-product summation” approach (the “3πΣ” approach), the
main difference lies in the probability that the cash flow occurs.

I again need to make an assumption about when the cash flow for being in State #i
at time " occurs. By analogy with annuities-due whose payments fall at the start of each
period, I’ll here assume that the cash flow occurs at time ", although other assumptions
(such as at mid-year) are certainly possible. This leads to the following

(2.11) Notation (cash flows while in states). "C(i) denotes the cash flow at time " if the
subject is in State #i at time ".

Actuarial present values

We again now have the tools to calculate actuarial present values by the 3πΣ approach:
Sum up, over all times at which a cash flow might occur, the product of three terms:

the probability that the cash flow occurs then;
the amount of the cash flow; and
the discounting from the time of the cash flow back to the present time (n).

[It’s also possible to compute the variance of the present value of cash flows, but I’ll
not address that here.]

We have at hand all the ingredients to compute the actuarial present value of the cash
flows, for being in a state, in Notation 2.11 for a subject now in State #s at time n:

the times at which the flow can occur are times n + k for k ≥ 0;
the probability of being in State #i at that time is kQ(s,i)

n ;
the amount of the cash flow at that time is denoted by n+kC(i); and
the discounting from time n + k to time n is kvn.

The computation is straightforward:

(2.12) Theorem (actuarial present value of cash flows while in states). As in Notation
2.11, let "C(i) denote the cash flow at time " if the subject is in State #i at time
". Suppose that the subject is now in State #s at time n. Then the actuarial
present value, as seen from time n, of these cash flows is given by the triple-
product summation (3πΣ)

APVs@n(C(i)) =
∞∑

k=0

[kQ(s,i)
n ] [n+kC(i)] [kvn].

The general formula above is again a mess. Spreadsheet software can easily perform
such summations, however, and in simple illustrative cases the computations are fairly
straightforward.
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(2.13) Example. Consider the simple example of the homogeneous Markov Chain in
Example 1.17, with States numbered 1 and 2 and with

Q =
[

0.4 0.6
0.8 0.2

]
.

Suppose that the subject is now (time n) in State #1 and that there is a cash
flow of 1 for being in State #1 now or the next two times (n+1 or n+2). Finally,
suppose that interest is constant at 25%, so that v=0.8 and kvn = (0.8)k.

Note that the cash flow at time n is certain. The probability of the cash flow
at time n + 1 is Q(1,1)

n = Q(1,1) = 0.4. The probability of the cash flow at time
n + 2 is 2Q

(1,1)
n which is just the (1,1)-entry of Q2 and is easily found to be 0.64

(check this).
The actuarial present value (as seen from now at time n) by the 3πΣ is then

(1)(1)(v0) + (0.4)(1)(v1) + (0.64)(1)(v2) = 1.7296.

Since this is a homogeneous Markov Chain, the value of course does not actually
depend on the time n.

(2.14) Example. Consider the preceding Example 2.13 again, but this time suppose
that the interest rate is varying: 10% in the first year from time n to time
n + 1 and 15% the second year. Then discounting is accomplished by 0vn = 1,
1vn = 1

1.1 = 0.90909 and 2vn = 1vn
1

1.15 = 0.79051. The actuarial present value
from the 3πΣ is then

(1)(1)(0vn) + (0.4)(1)(1vn) + (0.64)(1)(2vn) = 1.8696.

(2.15) Example. Consider a CCRC with the usual four states as in Example 1.13.
Suppose that the transition-probability matrices for a new entrant are as given in
Section 3.1, and suppose that the only cash flow is 1 for a resident in Independent
Living (State #1). Suppose that a resident is in Independent Living at time 5.
Let’s compute the actuarial present value of the cash flows using a constant
interest rate of 25%.

The cash flows can only occur at times 5 (which is certain), 6, 7, and 8.
(Why?) The probabilities of the resident being in State #1 at the start of those
years are: 1; Q(1,1)

5 = 0.3; 2Q
(1,1)
5 , which is the (1,1)-entry of Q5Q6 and is easily

computed to be 0.08 (check this); and 3Q
(1,1)
5 , which is the (1,1)-entry of Q5Q6Q7

and is somewhat-less-easily computed to be 0.012 (check this).
The 3πΣ then computes the actuarial present value (as seen from now at

time 5) as

(1)(1)v0 + (0.3)(1)v1 + (0.08)(1)v2 + (0.012)(1)v3 = 1.2973.
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(2.16) Example. Consider a driver-ratings model in which drivers move among the
two classifications Preferred and Standard at the end of each year. Each year:
60% of Preferred are reclassified as Preferred and 40% as Standard; and 70% of
Standard are reclassified as Standard and 30% as Preferred. Suppose that the
insurer decides to provide a refund of $100 now at the start of the year to each
Preferred driver and to continue to do so at the start of each year so long as the
driver continually remains classified as Preferred; let’s find the actuarial present
value of the current and future payments using 25% interest for one currently
Preferred driver.

Let Preferred be State #1 and Standard be State #2. Then the transition-
probability matrix Q for this homogeneous Markov Chain is[

0.6 0.4
0.3 0.7

]
.

The 3πΣ gives the desired actuarial present value as 100
∑∞

k=0 kP (1)
0 vk, since

kP (1)
0 denotes the probability of remaining in State #1 from time 0 through time

k. But by Theorem 1.19 and Notation 1.14, kP (1)
0 = (Q(1,1))k = (0.6)k. Thus the

actuarial present value is

100
∞∑

k=0

(0.6)k(
1

1.25
)k = 100

∞∑
k=0

(0.48)k =
100

1− 0.48
= $192.31.

Problems

1. Consider a CCRC as in Example 2.15. Suppose that a subject is in Independent
Living (State #1) at time 4 and then in States #2, #2, #1, #3, and #4 at times 5,
6, 7, 8, and 9, respectively. Using 5% interest, find the present value of cash flows of
10 for any time the subject is in State #1 and 30 for any time the subject is in State
#3. [Note that no probability is involved here.]
[Answer: 43.319.]

2. Consider a homogeneous Markov Chain with two states and transition probability
matrix as in Example 2.13. The subject is now in State #2 at time 3. There are
possible cash flows of 1 for being in State #2 at times 3, 4, or 5. Find the actuarial
present value of these cash flows using 25% interest.
[Answer: 1.4928.]

3. Solve Problem 2 again, but this time assume that the interest rates for the three future
years are, in order, 10%, 15%, and 20%.
[Answer: 1.5929.]

4. Consider a CCRC model with transition probabilities from the Illustrative Matrices
in Section 3.1 as in Example 2.15. The subject is in Independent Living at time 5.
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There is a possible cash flow of 1 at the start of each future period the resident is
Temporarily in the Health Center. Find the actuarial present value of these cash flows,
using 25% interest.
[Answer: 0.21734.]

5. Solve Problem 4 again, but this time assume that the interest rate from time n to
time n + 1 is 0.05|n− 4|.
[Answer: 0.26877.]

6. As in Example 1.5, consider a driver-ratings model in which drivers move among
the classifications Preferred, Standard, and Substandard at the end of each year. As
in Problem 4 of Section 1.2, each year: 60% of Preferreds are reclassified as Pre-
ferred, 30% as Standard, and 10% as substandard; 50% of Standards are reclassified
as Standard, 30% as Preferred, and 20% as Substandard; and 60% of Substandards
are reclassified as Substandard, 40% as Standard, and 0% as Preferred. A driver now
Preferred at the start of the year will receive a premium refund of 100 now and at
the start of each year so long as the driver remains continuously in the Preferred
classification. Find the actuarial present value of these refunds, using 25% interest.
[Answer: 192.31.]

2.4 Benefit premiums and reserves

You’re probably already familiar with benefit premiums for insurance or annuity
policies—premiums determined by the Equivalence Principle that, at the time of issue
of the policy, the actuarial present value of the premiums should equal the actuarial present
value of the benefits. This principle can be applied in the context of multi-state transition
models.

(2.17) Example (benefit premiums). Consider a CCRC with the usual four states as
in Example 1.13, with the transition-probability matrices as given in Section 3.1
and the cash flows at transitions as given in Section 3.2. Suppose that a resident
is in Independent Living (State #1) at time 5. Using 25% interest, let’s compute
the benefit premium to be paid at the start of each period in which the resident
is in Independent Living in order to finance the future cash flows at transition
from Independent Living to Permanently in the Health Center.

Example 2.10 computed the actuarial present value, for a resident in Inde-
pendent Living at time 5, of the cash flows at transition from Independent Living
to Permanently in the Health Center, using 25% interest. The result was 17.246.

Example 2.15 computed the actuarial present value, for a resident in Indepen-
dent Living at time 5, of a cash flow of 1 whenever the resident is in Independent
Living, using 25% interest. The result was 1.2973. If a premium P is paid instead
of the cash flow of 1, the actuarial present value will be 1.2973P .

To determine the benefit premium, we use the Equivalence Principle and
require 1.2973P = 17.246, yielding P = 13.294 for the benefit premium.
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Benefit reserves

You’re also probably already familiar with benefit reserves: the actuarial present
value—at the time the policy was issued or at some later time for a person still insured—of
the present value of the future loss (benefits out minus benefit premiums in). The same
concept is relevant in the context of multi-state transition models.

(2.18) Example (benefit reserves). Consider the preceding Example 2.17 again, with the
same assumptions. Suppose that at time 6 the resident is in Temporarily in the
Health Center (State #2). Let’s calculate the benefit reserve at this point.

First we need the actuarial present value, as seen from time 6 with the
subject in State #2, of the future cash flows for transition from State #1 to
State #3. This can only happen (why?) if the resident is in State #1 at time 7
(with probability Q(2,1)

6 = 0.1) and then transitions to State #3 (with probability
Q(1,3)

7 = 0.3) at time 8. Since the cash flow for that transition is 8C(1,3) = 73,
the actuarial present value is [(0.1)(0.3)](73)v2 = 1.4016.

Next we need the actuarial present value, as seen from time 6 with the subject
in State #2, of the future cash flows of the benefit premium 13.294 for being in
State #1. The subject can only be in State #1 at times 7 and 8, with respective
probabilities Q(2,1)

6 = 0.1 and 2Q
(2,1)
6 = 0.015 (check these). So the actuarial

present value of the premiums is (0.1)(13.294)v + (0.015)(13.294)v2 = 1.1911.
This makes the benefit reserve (as seen from time 6 with the resident in

Temporarily in the Health Center) equal 1.4016− 1.1911 = 0.2105.

Problems

1. Consider a homogeneous Markov Chain with two states and transition probability
matrix as in Example 2.13. The subject is now in State #2 at time 3. As in Problem
2 of Section 2.2, there are possible cash flows of " + 1 for transition from State #2 at
time " to State #1 at time " + 1, for " ≤ 5. A benefit premium P will be paid at each
of the times 3, 4, and 5, provided that the subject is in State #2 at that time (see
Problem 2 of Section 2.3). Find P using 25% interest.
[Answer: 2.9140.]

2. Solve Problem 1 again, but this time assume that the interest rates for the three future
years are, in order, 10%, 15%, and 20%.
[Answer: 3.2556.]

3. Consider a CCRC model with transition probabilities given by the Illustrative Matrices
in Section 3.1. As in Problem 4 of Section 2.2, a resident is in Independent Living at
time 5, and is subject to cash flows resulting from future transitions from Temporarily
in the Health Center to Permanently in the Health Center, with the values given by
the Illustrative Cash Flows in Section 3.2. A benefit premium P will be paid at the
start of each future period in which the resident is Temporarily in the Health Center
(see Problem 4 of Section 2.3). Find P using 25% interest.
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[Answer: 20.137.]
4. Solve Problem 3 again, but this time assume that the interest rate from time n to

time n + 1 is 0.05|n− 4|.
[Answer: 22.443.]

5. Consider again the situation in Problem 1. Given that the subject is in State #2 at
time 4, find the benefit reserve.
[Answer: 0.43416.]

6. Consider again the situation in Problem 3. Given that the resident is in Independent
Living at time 6, find the benefit reserve.
[Answer: −0.6518.]



3
An illustrative
non-homogeneous
Markov Chain

This chapter presents a set of illustrative transition-probability matrices and cash
flows for use in examples and problems.

3.1 Illustrative transition-probability matrices

Consider a non-homogeneous Markov Chain with four states numbered 1, 2, 3, 4.
The transition-probability matrices given below have 0 or 1 in certain positions so that
the models make sense for disability models as in Example 1.11 and Continuing Care
Retirement Community models as in Example 1.13. The other probabilities have been
chosen arbitrarily and of course are unlikely to be appropriate for real-life situations.

Transition-probability matrices are given at times 0, 1, 2, 3, 4, 5, 6, and 7, with the
same matrix for all times n ≥ 8; this final matrix is chosen so that the subject is certain
to reach State #4 by time 9 and then remain there forever.

Q0 =

 0.80 0.10 0.05 0.05
0.20 0.60 0.10 0.10
0 0 0.80 0.20
0 0 0 1

 , Q1 =

 0.70 0.15 0.10 0.05
0.20 0.50 0.20 0.10
0 0 0.70 0.30
0 0 0 1

 ,

Q2 =

 0.60 0.15 0.15 0.10
0.20 0.40 0.25 0.15
0 0 0.60 0.40
0 0 0 1

 , Q3 =

 0.50 0.20 0.20 0.10
0.20 0.30 0.35 0.15
0 0 0.50 0.50
0 0 0 1

 ,

Q4 =

 0.40 0.20 0.20 0.20
0.10 0.30 0.30 0.30
0 0 0.40 0.60
0 0 0 1

 , Q5 =

 0.30 0.20 0.30 0.20
0.10 0.20 0.40 0.30
0 0 0.30 0.70
0 0 0 1

 ,

22
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Q6 =

 0.20 0.20 0.30 0.30
0.10 0.10 0.40 0.40
0 0 0.20 0.80
0 0 0 1

 , Q7 =

 0.10 0.10 0.30 0.50
0.05 0.05 0.30 0.60
0 0 0.10 0.90
0 0 0 1

 ,

and, for n ≥ 8, Qn =

 0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 .

3.2 Illustrative cash flows upon transitions

This section presents some illustrative cash flows upon transitions between states in
the non-homogeneous Markov Chain described in Section 3.1. The particular values for
the cash flows are not intended to be meaningful—rather they were chosen to be easily
distinguishable from one another so that you can see from where values come in Examples.

For convenience in displaying the values, I’ve entered the cash flow "+1C(i,j) that
occurs at time " + 1 as the (i,j)-entry of a matrix "+1C.

1C =

 1 2 3 4
5 6 7 8
0 0 9 10
0 0 0 0

 , 2C =

 11 12 13 14
15 16 17 18
0 0 19 20
0 0 0 0

 ,

3C =

 21 22 23 24
25 26 27 28
0 0 29 30
0 0 0 0

 , 4C =

 31 32 33 34
35 36 37 38
0 0 39 40
0 0 0 0

 ,

5C =

 41 42 43 44
45 46 47 48
0 0 49 50
0 0 0 0

 , 6C =

 51 52 53 54
55 56 57 58
0 0 59 60
0 0 0 0

 ,

7C =

 61 62 63 64
65 66 67 68
0 0 69 70
0 0 0 0

 , 8C =

 71 72 73 74
75 76 77 78
0 0 79 80
0 0 0 0

 ,

and, for " ≥ 8, "+1C =

 0 0 0 81
0 0 0 82
0 0 0 83
0 0 0 0

 .


