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I. INTRODUCTION 

The s tudy and analysis of the various factors influencing in- 
surance risks constitutes an intricate and usually quite extensive 
problem. We have to consider on the one hand the nature and 
heterogeneity of the elements we have been able to measure, and 
on the other the problem of decidingmwithout knowing exact ly 
what results to expect - -on the types of analysis to carry out  and 
the form in which to present the results. 

These difficulties, essentially stemming from the fact that  we 
cannot easily define " a  priori" a measure of influence, can be 
overcome only by  using highly sophisticated mathematical models. 
The regearcher must define his objectives clearly if he is to avoid 
spending too much of his time in exploring such models. 

Either for these reasons or for lack of our experience in this 
field we were led to the s tudy of three models, presenting entirely 
different characteristics though based on the analysis and 
behaviour of mean value fluctuations, measured by  their variances 
or by  the least-squares method. 

Our first model, described in II. I, associates the notion of in- 
fluence with the notion of variance. It analyses in detail the 
alteration of the mean values variance, when what we refer to 
as a "margination" is executed in the parameter space, taking 
each of the parameters in turn. We start off by  having n distinct 
parameters, reducing them by  one with each step. 

As a complement of this method and allowing for an influence 
of residual character due to ignored or simply unknown factors, 
we tried to introduce a small correction to the usual credibility 
coefficients in order to provide for the explicit appearance of this 
residual influence. This type of influence is closely related to the 
existence of a tariff for the collective we are considering. 
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The second model, described in II. 3, is fundamentally based 
on the least-squares method, and the way in which the influences 
are constructed and determined closely relates it to credibility 
theory. 

The application of the resulting model seems simple and practical, 
although its theoretical s tudy still needs a great deal of develop- 
ment, but unfortunately we were not able to carry it out in time 
for it to be incorporated in this paper. 

The third model, briefly described in III .  2, is based on the 7. 2 
test, giving it classical characteristics which lead to a laborious 
form of analysis and the determination of innumerable distribution 
fufictions (D.F.). For this reason the only purpose it 'served was 
that  of testing the ~alues obtained ~by the other two methods. 

Finally, in III ,  we give numerical examples of the models we 
have described, comparing them and discussing their practical 
application. 

II.  DESCRIPTION OF THE ~IODELS 

I .  Var iance  m a h o d  

Consider a collective @ composed of risks 0 characterized by n 
distinct parameters corresponding to n factors, whose influence 
we wish to determine. 

For simplicity suppose that  all parameters assume positive 
integers 

01 = 1 , 2 , 3  . . . . .  k l  

02 ---- x , 2 , 3  . . . . .  ks 

0~ = 1 , 2 , 3  . . . . .  k ~  

We then have 0 = (01, 0~ . . . . .  0~). The structure function U(0) 
defined in the coUective ® represents the D.F. of the risks 0 in 
that  collective. 

Let ~,jk... and p~j~.., be respectively the mean value of the 
risk 0 (in which 0t = i, 02 = j ,  0s = k . . . .  ) and the probability 
of randomly extracting that  risk from the collective, that  is the 
probability corresponding to the D.F. U(0). 
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We should note t ha t  knowing U(0) and  0 itself does not  mean  
necessarily t ha t  0 is the real risk parameter ,  t ha t  is, 0 merely  
represents the known vector corresponding to the factors being 
considered. Obviously for each risk there will be a more general  
unknown paramete r  of which 0 is part.  Thus,  we can use for a 
certain risk the parameter  (0~r, 0a), 0T being the known par t  of 
the parameter  and On the unknown,  corresponding to the ignored 
or unknown factors. In this case, the t rue s t ructure  funct ion 
U(0~, On) will also be unknown.  Thus,  the values we will use 
correspond in a certain way  to the marginal  values U ( 0 r , . ) ,  ~ (0r , .  ) 
and  (0T,.) .  

Let  us consider the marginal  values corresponding to the mar-  
gination carried out  in the parameter  space T = { (0z, 0~ . . . .  0n)}  
when one or more of these parameters  are no longer considered. 

k I 

Z ~tj~.. .  ~ j ~ . . .  

Thus:  

kt  

~t. lk. . .  = k, ; ~b.jk... = Z Pale...  
Z P~jk... "~  

I - I  

; P . . ~ . . .  = ~ P u b . . .  ~"" ~""  = Z p~j~ . . .  ,,~ 
i ,  J 

Considering the variances of ~ (01, 0~ . . . . .  On), tz ( . ,  02 . . . . .  0n), 
~ (  . . . .  03 . . . . .  On), etc., and  their  respective differences 

V Z z .. ~2 = ~qlk.. .  ib~1~. - -  wi th  tz = E T [~(0)] 
t .  1, k . . . .  

V I Z ~ . . ,  ~z ~- = ~ 's~. . .  P.~k - -  (margining in 01) 
h k . . . .  

V2 ---- Z ~t~.e... P v k . . .  - -  ~z (margining in 0~) 
iI, k ,  , . .  

V 1 2  - ~  
Z z . . . .  p2 

• " k  . f l " k .  w 
k . . °  

Iz ---- V - - V 1 ,  I z  = V - -  V~ . . . . .  Ix*. ~ V ~  Vz2, 
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We can see tha t  the  "ope ra t ion"  of marginat ion,  as it levels 
the mean  values, near ly  a lways  causes a lowering of the  variance, 
which can be seen b y  the  following theorem. 

Theorem z 

Considering 0 = (01, 0~ . . . . .  0.) and 0' = (08 . . . . .  0.) (without  
loss of generality) the following inequal i ty  is a lways t rue:  

Var  IRA(0')] ~ Var [~(0)] 

Proof :  
For  s implici ty we will on ly  use two parameters :  01 and 08. 

Thus  
0 = (01, 08); O' = 08 

We then have 

Var  [~(0)] = X ~ : j / , , j  - -  ~8 = v 

and  
Var[vt(8')] = Z ~.=1 #.t - -  ~2 = V1 

J 

zl  = v - - v ~  = z ~ j  p,j  - x ~5 t,.j 

making tz,l = ~ . j  + 0ql we have  

which implies 

~ . t  = ~ .~  + 
P . j  

~ ,  ~ j  ~ o v j .  
l 

In this w a y  

8 z p~j - -  ~ j  p.j) = z ~ j  p,j 
j i ~ ( . . f  

Corollary z 

We see tha t  the values  of I t ,  I ,  . . . . .  I18 . . . .  defined previously  
never  have negat ive values. 

Corollary 2 

We can easily ver i fy  tha t  I1 = o if and  only if ~ j  ~_ o tha t  is 
F*J = f~-J for all j .  

. . . . . . . . .  7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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This corollary gives us a first approximation to the influence 
concept, since ~ j  = ~. j  implies that, at least considering the 
mean values, 0z has no influence. 

A second approximation to this concept will be given by  the 
following notion of independence, defined only for mean values. 

Definition of independence 

We can say that  0t and 0, have independent influences on the 
risk, if and only if the variation of ~,j with i is independent of the 
value of j .  We should note that this notion is a particular case of 
the true notion of independence, which should be set out in the 
same manner, by  using the D.F. of the total amount  of claims 
during a certain period. 

From this definition we arrive at the following theorem: 

Theorem 2 

If 01 and 02 are independent through their distribution in the 
collective ® and if they have independent influences, then 

Iz~ = 11 + Io. 

Proof: 

By the definition of independence in relation to the D.F. U(0), 
we can write the following equality: 

P . m  P~- ~z 

P * m  - P . .  ,z 

By the hypothesis of independent influences on the risk, we can 
also write 

We then have 

or taking 

~ . - j ~ z  = ~.z~k~-I'- tl 

• Jki 

X o~t~ P~k: 
t 

- ~ . , z  ( j )  P.m 
~ . . m  = ~ l m  + ~ . , ~  ( j )  
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On the other hand, we have 

and 

in which 

• -~i : FtL .~z -b 
l I  

p..,,z 

¢,.tl(j) P.s** 
i 

• • I ¢ !  

Since 

I 1 + 1 2 - - I 1 2 =  V - - V 1 - - V : +  V i a =  

tl 

and 

E alki P~ski E ~i,z P.skl Pt. kl 

a . t l ( j )  -- ' -- 
P.s*  P.s,z 

We conclude immediately that  

112 ---- Ii + I2 

o . 

/kl 

l 

• • tl 

We should note that  the inverse property of theorem of 2 is 
not always true• 

From the previous theorem we can conclude that  

I O . . . ~ V  

In summary, the values I have the following properties: 

I -- I(0) /> o 
2 - -  I(81.02) = I ( 0 0  +1(02)  if 01 and 02 

are independent, that  is, if they are uncorrelated in the ways 
described above. 

The operation 01 o 02 corresponds to the "union" of influences 
and not to its "intersection" as one could be led to believe, as it 
is a global influence of 01 and 0~. 
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By the properties I and 2 we can treat the value I(0) as the 
measure of the influence of the parameter on the risk. 

Comparing the second property with the union of events defined 
in the probability space, characterized by 

P ( A t U A ~ U . . .  U A , )  .= P(A1) + P(A2) + . . .  + P(A,~) - -  

- - P ( A l f ~ A 2 ) - - . . . - - P ( A n _ t O A , )  + . . . +  

+ ( - -  I ) " + t  P ( A x N  A ~ N  . . . h A . ) ,  

it is possible to generalize that  property giving it a similar form. 
In order to make the comparison more evident we can still write 

P ( A ,  N Aj)  = CP(A~,  Aj)  

if we consider the probability of the "intersection" of events ~ as the 
"coprobabili ty" between A, and Aj. 

Theorem 3 

Representing CIl0. . . .~ by the following expression: 

C11,,... ~: = V - -  V1 - - . , .  - -  
- -  V~ + V~, + . . .  + V k - ~  + . . . ( - -  I)~ Vi~. . .  

k being the number of the. parameters considered, we can write: 

I(01, O: . . . . .  0,~) = 11 + I~ + . . .  + I ,  - -  

- -  CI1: - - . . .  - -  C I , _  1, + • . • + ( - -  I)n +1 C I 1 2 . . . ,  

Proof: 

For simphcity, consider only three parameters: 0t, 08 and 05. 

We have, 

It  = V 

I2= V 

I3= V 

CIl~ = 

CIl~ = 

CI~3 = 

- -  V1 

- -  V2 

- -  V a  

V - -  V ~ - -  V~ + V12 

V - -  V 1 - -  V3 + Via 

V - -  V 2 - -  V3 + V2~ 

C I i ~  = V - -  V 1 - -  V ~ - -  V3 + Vl2 + V134-  V ~ 3 - -  V12~ 

Il + 12 + Is- C11,- C113- Cl2s + C112s ---- V- Vl~.3. 

As we have only three parameters, Vxa3 = o. 

T h u s  the  t h e o r e m  is pr o v ed .  
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By this theorem and comparing the coprobabilities with the C I  
we can say that  they are in a certain way the measure of the 
coinfluence. 

We could also show by  a laborious set of calculations that when 
I~, I~ . . . . .  I n  have a variance structure, Cl"t~ . . . . .  C I n - l n  have 
a generalized covariance structure. 

If we consider the following diagram: 

we can establish the following relations, easily verified by the 
previous theorems : 

I i :  = I i  + h i t  ---- I~ + Ii/~ 

In a general way I1: ~ I1 ÷ I2 the equali ty being verified if 
and only if / 2 = I 2 / 1  and I ~ = I ~ / 2  that  is, in the case of the 
factors 0~ and 0s having independent influences. 

We note that it is not easy to establish for I(0) a measure space, 
similar to the probabili ty spaces or to other spaces defined in the 
sense of measure theory. 

At this point it is important  to realize that  C I  can assume negative 
values. The measure I resembles the notion of a force not only 
in its nature but  also in its effect. 

The influence of a certain factor can be considered a type of a 
potential force which, isolated or in conjunction with others, will 
bring about  a claim. 
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Although I(O0 defines in a certain way the measure of influence 
of the parameter 0~, we are interested in a global measure rather 
than considering the influence on its own. 

Thus, we are interested in the "measure" of the effect or the 
contribution of the parameter, in conjunction with all other 
influences. In this case, we are obliged to consider the coinfluences, 
which could be as important as, or more important than, the 
influences themselves. How then should we proceed ? 

It  seems tha t  an input of the CI proportional to the influences 
of each parameter could solve the problem. However, we have to 
admit that  such a procedure involves some risks. For example, 
an isolated parameter could appear to have a weak influence and 
contribute a small value for I ,  and with its association with other 
parameters; specially for certain particular values, could have a 
very strong influence. In this case, the method we have followed 
would fail completely. We think that  common sense, aided by 
discussion with the manager responsible for the class of business 
being considered, should ensure that  no serious mistakes are made. 

2. The existence of a residual influence and its relation to the 
credibility premi,~m 

There should be a difference between the value of 1(01,0~ . . . .  ,0n) 
and the true value of Var [~z(0)~ representing the global influence 
of all factors. 

In effect, working with the marginal value (0~,,.) instead of 
(0a,, 0~) will give in the general case 1(01, 0~ . . . . .  On) < Vat [~(0)], 
a direct consequence of theorem I. 

As it is relatively simple to estimate Var [~(0)~ for the collective 
and as we calculate the value of I ,  we would be left with the 
difference I(0R) which we will call the residual influence. 

Thus, the following equality will hold 

Var [~(0)] = I(Ot, 00. . . . . .  On) + 1(OR). 

When the factors Or, 02 . . . . .  On are those considered by the 
tariff we call I(Ot, O~ . . . . .  0.) the influence of the tariff, I(0~.). 

Thus, the previous equality will be written as follows: 

Var [~t(0)] = I(0T) + I(0R) 
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We can also see that  the more factors (among those having an 
influence on the risk) that  we eliminate from the tariff, the more 
significant the residual influence will be. 

This very often leads to highly, heterogeneous classes of risks, 
and eventually an unsuitable tariff structure. Thus, in general 
the tariff premium is nothing more than an indicator of the char- 
acteristics of risks to which it is applied, so that  it is often necessary 
to readapt the risk premium by using a credibility premium. It 
can still happen that because of the choice of parameters, the 
risk is placed in a tariff class different from that in which it would 
be placed if the .intrinsic values were used. The previous consider- 
ations lead us to believe in the need to calculate the credibility 
premium, modifying it by  the value of the residual influence. 

Once again let us consider the collective, over which we suppose 
a tariff is defined by  parameters OT. Still considering a set of 
unknown parameters denoted by  OR, each risk 0 would then be 
characterized by  the pair (Or, On). 

As we stated previously, U(OT, OR) is unknown, but  we do 
know its marginal U(OT, .) characterizing the distribution of the 
risks in the collective tariff classes. 

In the same way 

~(0 r ,  OR) = f x dG {oT' o.)(x) 

is unknown. 

Nevertheless the value 

f ~(OT, OR) dU(Or, OR) 
~ ( O r , . )  = f x dG~°~"~(x) = , f dV(Or, OR) 

R 

is l~nown, G ¢°T''~(x) being the D.F. of the total amount of claims 
corresponding to the tarif class Or. 

In the same manner we have 

= E[~(0)] = I ~(0r,  0R) d U ( O r ,  OR) 
T X R  

= J" ~(OT, .) d U ( O r ,  .) 
T 

= E [ ~ ( 0 r ,  .)]. 
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Now we shall deduce certain expressions which will be needed 
in the calculation of the credibility coefficients. 

I .  

.ET.R[~(O~,, OR) x ~(0~, .)] = E~,[~,(O~,, .)], 
since 

j" ~(0~, OR) × ~(0T, .) dU(0~, OR) = 
T X R  

= f ~(0T, .) I ~(0T, OR) dU(OT, OR) = I ~2(o~,, .) dU(0T,  .) 
T R T 

2,  

where 

E s .  T.R[S X ~(0~,, OR)] = Erxa[~2(0T,  OR)] 

~__ St+S~.+'. . .+S. 
J 

n 

S~ being the global amount of the observed claims of each risk 
during the period i. 

Proof: 

Es~ r x a [S x ~(0T, 0a)] 

= I sx~(oT,  OR) dW[(S~, S~ . . . . .  S.)I(OT, 0~)] dU(OT, OR) ~) 
SXTXR 

= .[ S x  ~(OT, OR) dG (°~'' o,,)(S1) . . .  dG (°T' o~)(S,) dU(OT, OR) ~) 
8xTxR 

= f ~.(0T, 0R)[f SdG(e~'a")(S~) ,.. dG(°r e") (S,)] dU(OT, OR) 
TXR S 

= .F ~(OT, OR) E[S/(O~., 0e)] dU(OT, OR) 
T X R  

= f F~'(o~., oa) dU(OT, OR) 
T x R  

= E~,x R [ ~ ( 0 ~ ,  0a)]. 

We note that 

E[SI  (0~, OR)] = ElSe~ (0~,, OR)] = ~(0~,, 0n) 

t) The relat ion is justified by  Bayes 's  theorem and the assumed indepence 
of Sl ,  S~ . . . . .  S . .  



STUDY OF FACTORS I N F L U E N C I N G  T H E  RISK 95 

. 

. 

Es. r. R[s" x ~(0T, .)] = ~[~(o~, .)] 

From 2, we have 

Esx T.RES X ~(0~, .)] = ; ~(QT, .) X ~(6T, 0s) dU(0~, OR) 
TXa 

= Z ~(0~, .) ~ ~(0~, OR) dU(O~, OR) 
T R 

= j ~(o~., .) dU(OT, .) = E ~ [ ~ ( 0 ~ ,  .)] 
T 

Credibility Premium 

Linearisation of the expected value part. 

The fundamental  problem resides in the determination of 

ER [~(0T, OR) / S~, S~ . . . . .  S.] 
knowing the value ~(0T, .). 

We will t ry to approximate to that value by the usual method 
of minimizing the variance in the collective. Considering the 
equality 

ER [~(0T, 0s) / St, S~. . . . . .  S.] = a + b ~(0e, .) + c S 
where the constants a, b and c are determined by minimization 
of the foUowing expression 

Esx~,[{~R[~(O~, Os) /S, ,  S.. . . . . .  S,,] - - [ a + b  ~(0~,  .) + c ~} ' - ]  (A) 
We followed two criteria to determine the values of these constants. 

Following Prof. BiJhlmann we can easily see that  minimizing the 
expression (A) is equivalent to minimizing 

Esx rxn[{~(OT, OR) - - [ a  + b ~(0T, .) + c~]}2] 
= Esx f .aE{(b + c) [~(0r, 0a) - -  ~(0T,.)] + [C [Vt(0T, .) - - ~  + 
+ [(~ - -  b - -  c) ~ (0~ ,  0s )  - -  a] },] (B) 

Putting 
t ~ = E[{~(0~, 0R)--_~(0~, . )},]  

= E [{~(oT,  .) - - s } ~ ]  
I T = E [~(or ,  oa) - -  v.'(om, .)] 
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and developing (B) we obtain the following expression 

f ( b ,  c) = (b + c)a o~ + c'-'~ + (i - -  b - -  c) 2 vat  [~(0T, OR)] - -  

- - 2  (b z + c~ + 2 b e - - b )  y 

Taking the partial derivatives of the function f (b ,  c) 
and resolving the system 

I ~f. 

we obtain the following values 

Y 

- - - . - ~  a - ~ . - 0  

Y 
b ~ I - - -  

2. Starting on the L.H.S. of the expression defined in (B), 
squaring it out and taking derivatives, we have: 

I a - -  E[V.(0T, On)] + b E[~(0T, .)] + c E(S-) = o 

b E [~ (0T ,  .)] - -  E[~(0T, OR) x ~(0T, .)] + a E[~(0T, .)] + 
+ c E[~(O~, .) x S] = o 

~ E(9:)  - -  E[,~(0T, 0R) X 9] + aE (g )  + b E[~(0T, . )  X f ]  = O  

From these equations we can obtain: 

a = ( 1 - - b - - c )  v , =  o 

E [~2(0z, OR)] - -  E [~2(0T,. )] 
b = I ~  

E[{ ~(0T, .) -- ~},] 

E[~,(0~., 0.)3 -- E[~o-(0T, .)] 
C = 

El{ ~(OT,. ) - -  s }~] 

Finally we will have for the expected value part of the credibility 
premium the following linearisation 

k 

E [ ~ ( 0 T ,  OR) / S~ . . . . .  Sn] = (~ - -  c) ~ (0~ ,  .) + c 
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If  we compare this expression to tha t  normal ly  considered in 
credibil i ty theory,  t ha t  is 

E[~(O)  I S~ . . . . .  S . ]  = (~ - -  b) ,: + b S 

we note t ha t  they  are of the same form. On the other hand,  com- 
paring the credibil i ty coefficients c and b, in which 

var  Iv(Ore, OR)] - -  var [Ez(OT, .)] 
c = (1) 

var  (if) - -  var  Iv(Or, .)] 

var [~z(Or, On)] 
b = (2)  

• v a r / S l  

we can conclude tha t  the expression (2) is a par t icular  case of (I) 
if no tariff  is considered over the collective. 

We can easily see t ha t  c < b. 

x x ~ g  
Taking b = - and  c --  

y y - - z  
z < y  we have:  

c ~ b  

X ~ g  

where x, y,  z > o ,  x <  y and  

x x y - - y z  m x y  + xz  

y - - z  y y ( y - - z )  

z ( x - -  y) 
y ( y - - z )  

< o 

If  we use the value of b obta ined by  the expression (2) for all 
the collective independent ly  of the tariff  class, we verify the 
following theorem. 

Theorem 4 

If we consider the collective ® par t i t ioned into well defined 
classes of risk, the following inequal i ty  holds: 

.~[{~(0~, OR) - -  (~ - -c )  ~(OT, .) - - c  ~}'] < 
(3) 

< E [ { , ( o ~ .  oR) - -  (~ - -  b ) ,  - -  b ~ } . ]  

(4) 



9 8 STUDY OF FACTORS INFLUENCING THE RISK 

Proof :  

(4) = E [ { ( ~ ( O T ,  OR) - -  ~) + b (~ - -  ~)}~-] 

= va r  [~(O~r, OR)] + ba va r  ( ~  + 2 b ~ E[v.(OT, OR)] - -  

- - 2  b E [ ~ ( 0 T , 0 R )  × ~ - - 2 b ~ ' + 2 b ~ E ( ~  
= va r  [~(0T, OR)] + b 2 va r  (S) + 2 b ~2 _ _  

- -  2 b E [ / ~ * ( 0 T ,  OR)] - -  2 b ~ + 2 b ~- 

= v a r  [V.(Om, OR)] + 

= va t  [~(0~, OR)] x 

On the  o the r  h a n d  

var'- ~(0~,, OR) var [~(0T,  0R)] 
2 

var  (S) - -  var  (S) 

( I  - -  b ) .  

(3) = E[{ (~(0m, 0R) - -  ~ (0 r , .  )) + c (~(0r ,  .) - - S ) } , ]  

= v a r  [v.(O~r, OR)] - -  va r  [~(OT, .)] + c2 [var  (5) - -  
- -  va r  [,~(0~r, .)]] + '2 c E [ ~ o - ( 0 T ,  . )  - -  ~/fl(0T, OR) - -  

--~'-(0~, .) + ~-o(0T, .)7 

= va r  [~(0T, OR)] - -  va r  [~(0T, .)] - -  
{ va r  [~(0 T, 0a)] - -  vax [~(0 ~ , . ) ]  }2 

v a t  (7) - -  v a t  [~(0T, -)3 

= { v a t  [~ (0 , ,  OR)] - -  var  [EZ(0T,. )]} × (I - -  c) 

S u b t r a c t i n g  the  two  expressions 

va r  [~(0a,, .)] 

( 4 ) - - ( 3 )  = {va r  (S) - -  va r  [~(0~., .)]} va r  (5) x 

X { v a t  [[£(0T, OR)] - -  va r  (S)}z. 

As the  n u m e r a t o r  a n d  the d e n o m i n a t o r  a r e p o s i t i v e  we con- 
c lude t h a t  

(4) > (3) 

Credibility infhwntes method 
Le t  0x a n d  0vbe  two  p a r a m e t e r s  b y  which  we w a n t  to  d e t e r m i n e  

the  tar i f f  for  a ce r t a in  risk. We can  assume,  w i t h o u t  loss of gener-  
al i ty ,  t h a t  t~(0t, .)  < Vt(., 0,). 

W i t h  s imilar  reasoning  as used in the  cons t ruc t ion  of the  cred-  
ib i l i ty  p r e m i u m  we can  imagine  two  insurers  A and  B w i t h  t he  
fol lowing phi losophies :  
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A, the more optimist ic,  assumes tha t  0~ is the parameter  wi th  
the greater influence and  uses for the net  premium the mean 
value ~(01, .) 
B, the more pessimistic, assumes 0, to be the more influential  
parameter  and  uses ~ ( . ,  0,) as his net  premium. 

If  we imagine a fur ther  insurer C, wi thout  such ex t rame positions, 
he will a t t r ibu te  the in te rmedia te  value ~ = ~tt ~(0L, .) +- as V~(., 02) 
to the risk ~(01, 08). 

We are assuming t h a t  all of them ignore ~(01, 08). We believe 
t ha t  if no other  informat ion  is available, C will use intui t ively,  
a t  ~ -  0~2 -~- 0. 5 . 

If  he thinks t ha t  0~ has more influence than  08 he will na tu ra l l y .  
use ~1 > ~ main ta in ing  the sum ~1 + ~2 = I .  

AU in all, al and  ~2 represent the credibil i ty a t t r ibu ted  by  C 
to the factors, or be t t e r  still, to each of their  influences. 

I t  seems tha t  this phi losophy can be generalized to all factors 
in order to obtain the  desired measure of influence. 

Consider n parametr i sed  factors 01, 0~. . . . . .  0 ,  and  assume tha t  
the marginal  mean  values ~i = Vt(0~ . . . . . .  ), Vt, = V~(., 08 . . . . . .  ), 
etc. are known. The problem we wish to solve consists in approx- 
imat ing the unknown value F~(0~, 0R) by  the linear combinat ion 
~l V1 + ~,(z2 + . . .  + ~n V-n. Using the least-squares method  
normal ly  applied in credibil i ty theory  we can determine ~1, as . . . . .  ~ ,  
by  minimizing the expression 

E[{~(0T, OR) - -  (V~' ~ + ~2 ~, + . . .  + ~. ~.) }~-] (~) 
Squaring out  this expression we obta in:  

E [~(0~ ,  0R) ] + ~ E (~)  + . . .  + ~ E ( ~ )  - -  

- -  2 ~L g [ ~  x ' ~ ( 0 a . ,  OR)] - -  . . .  - -  2 = .  g [ ~ .  X ~(0T, OR)] + 
+ 2 X ~ ,~  E ( ~  x v~) (2) 

Taking derivat ives in the other 0t~, ~ . . . . .  ~,,, dividing by two 
and  equat ing t o  zero, we have:  

=1 ~ (~i) - -  g (~)  + ~ ~ (~, x v-2) + . . .  + =,  E (~1 x ~,) = o 
~ ( ~ )  - -  ~ (v-~) + =, E (~- x ~ )  + . . .  + =,  E (~: x ~ . )  = o 

I ~ . E ( ~ )  ~ ~- . . . .  
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Writing E,  t for E[~+. x t~.j] the system becomes" 

Ell  Elo_ 

E~t E ~  

• • • E l n  

• • • E z n  

- E " z  E + +  . . .  E . .  _ 

I 
+ 

a D 

E n  

E2o. 

As E<~ = E~ the matrix EEi~] is symmetric. We should note 

that  ~ x~ = I ;  so the approximation being considered is free 
I n 1  

from bias. 
It  should be easy to prove that,  if there are two or more factors 

with no influence, from the mean value point of view, this system 
will be indeterminate. In effect, its complete matrix wiU then 
have two or more rows linearly dependent. Only after extracting 
these rows will the system have a unique solution. 

Although it has not been conclusively proved we noted that  in 
a large number  of practical tests: 

I w The factors with little or no influence would systematically 
induce negative ~ values. 

2 - -  Eliminating the factors whose a values were negative gives 
results belonging to the interval [o, x 1. 

In order to s tudy the joint influence we are led to apply once 
again the previous model, taking now the mean marginal values 
for the various pairs of parameters. 

Let ~o = ~( . . . . . .  04 . . . . . . .  01 . . . . . .  ) with i ~ j  and consider 
~(0T, 6g) approximated by  the linear combination 

Taking the derivatives in order ~ t  of an expression similar t o  
(2) and taking E<j~l instead of E[p.il x ~ l ]  with i -~ j and k -~ l 
we obtain the system 
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Ei~i~ Ei213 . . .  El2.- i. 

Eml2 Ei313 - - . . E l ~ n -  I. 

_ E n - x n i 2  E ~ - l ~ i 3  . . .  E n - i n n - i n _  _ Otn- In 

m 

- E121~ 

El313 

_ E n -  l i t  it,- I n  __ 

This system is similar to the previous one, but  could have more 
equations and unknowns. 

The values obtained b y  solving the system will give us a sufficiently 
precise idea of the influences at tr ibuted to the pairs of parameters. 

Should one be interested in establishing a tariff structure, the 
s tudy of the joint influences and coinfluences seem more important 
than the actual influences considered one by  one (if these exist). 

Given the ease of generalisation, the model .we have described 
may have widespread application. We should also note that  
going from the first to the second system does not necessarily 
imply an increase in the number of unknowns and equations. 

In effect, the number of the different permutations of parameters 
in the form of combinations taken one by one, two by two, etc., 
is symmetrical, that  is, the first system (obtained by  margination 
in n-z parameters) will have as many unknowns and  equations 
as the last, obtained by  margination in a single parameter. 

I I I .  PRACTICAL APPLICATION 

i. In order to test the theoretical models described in this paper 
we constructed our data, instead of resorting to available statistical 
information. This enabled us to know the expected behaviour of 
each parameter  from the outset. 

We considered 4 parameters, each of them assuming integer 
values between I and 5, and we simulated the collective, starting 
off with mean values obtained by the following equation: 

~ I J k l  -'~ 7500 + IOOO X i @ k (200 + 500 X j) 

In keeping with this deterministic relation we will have: 
01 - -  the most influential factor 
0~ - -  less influential than 03 
0, and 08 - -  coinfluential 
04 - -  non-influential 
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It was important  to verify the "influence" of the structure 
function U(0) on the model's behaviour. To do so, we carried 
out two different sets of calculations. In one we included U(0) 
taking different values for p~jg, and in the other we maintained 
P,tk~ constant. 

a) 

RESULTS 

I.I .  Considering the structure function U(O) 

Values obtained by the variance model 

It  = 1.996; Io. --= .227; Ia = .552; 14 : o 

C I t 2  = .oo2; C I ~ 3  : .oo3; C I 1 4  = o 

C I ~ 3  = .o4I; C I 2 4  ---- o ; C I 3 4  = o 

C I ~ 3  = o ; C I 1 2 4 =  o ; C I 1 3 4 =  o ; C I ~ 3 4 =  o 

Clt:s4 = 0 

b) Values obtained by the credibility model 

N .  ~ q . c o e t .  ~t  ~ ~3 ~4 

4 I o I - I  

3 .873 --373 .5 °2 - -  

2 . 7 9 7  ~ .206 - -  

c) Values obtained by the Z ~ test applied to the distribution 
function of each parameter in comparison with the weighted 
distribution for all the collective. 

ValueP ar~m. 0 t 0-. Oa 04 

I 243 20.94 56.98 1.37 

2 79.44 I4.72 25.75 .63 

3 1.57 2.I .87 1.86 

4 54-75 7.46 x7.5 o L58  

5 253.83 21.9 63. I2  2.96 

Var i a t i on  251.43 x 9.8 62.25 2.33 

From the previous table one can see tha t  the equality of distri- 
butions is admissible for the fourth parameter only. 
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a) 

1.2. Not taking into account the structure function 

Values obtained by the variance model 

I t  = 2 ; Io.  = . 2 z ;  I 3  = - 5 4 ;  I4  = 0 

CI12  = o ; CI13  = o ; C I ~ 4 " =  o 

CI23  = .04; CI~4  = o ; C L 4  = o 

CI~23 = o ; C I l 0 . 4  = 0 ; C I 1 3 4  = o ; C I ~ 3 4  ..~ o 

C l l a s 4  = 0 

b) Values obtained by the credibility model 

N. Eq.  coef. ~l ~2 ~ ~4 

4 x r x -2  

3 .876 - .378  .504 - -  

2 . 8o~  . - -  . 2 o z  - -  

c )  Values obtained by the Z z test 

Valuelmrsm. 0t 01 01 04 

I I82.87 x2.7o 34.87 x.57 

2 46.82 6.5I  x7.76 3.24 

3 z. t 2 1.09 3.66 -3 

4 63.92 4.14 4.89 1.62 

5 14o.37 xi .32 55.I6 2.25 

Var i a t ion  180.75 x x. 6 5 I. 5 2.94 

z. 3 This set of values leads us to conclude that  the three models 
are similar. The variance method, which clearly sets out the in- 
fluences of the parameters and their respective coinfluences, is 
nevertheless more sensitive to small variations of the mean values. 
These properties are not directly found in the other two methods. 
Nevertheless, if we had applied the complete credibility model, 
that  is, considering the influences of combinations of parameters, 
we are almost certain that  the same conclusions would be reached. 

Finally we can see that  the results arrived at, on the one hand 
considering the structure function U(0) and on the other hand 
not taking it into account, are not so different as could have 
been expected. 
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'2. X 2 model  

Suppose that  we know for each risk (0~, OR) the D.F. G(OT'0R~(X), 
at least for the known component 0T of the risk, and also assume 
that we know the weighted distribution 

G(x) = S G~°~'°~(x) dU(O~,, OR) 
T ~ t R  

Intuit ively,  if a parameter has no influence, all the risks that  
differ only by  the value of that  parameter  (maintaining the values 
for the others unaltered) should have the same D.F. Thus, we think 
it is possible to obtain an idea of the parameter's influence b y  
comparing the D.F. corresponding to each of its values with the 
weighted D.F. defined over the collective. 

As the previous s tudy could lead to such an exaggerated number  
of D.F. 's  we considered it justifiable to simply it, even with loss 
of precision. In order to do this, we took into account only the 
marginal D.F. for each value of the parameter (independently of 
the other parameters). 

If we consider the marginal D.F. G ~°~ ...... )(x), G I'' 0,,. .... (x) and so 
on, we can compute the values 

( ' 4  - -  X 2 
t - - i  

corresponding to the comparison between the marginal D.F.,  with 
G(x) .  As we all know, if we have the same distribution function, 
X 2 will be a X 2 random variable with N-I  degrees of freedom; 
but  if the two distribution functions are note identical, X2 takes 
on greater values. So, if we compare the X~ where i is the para- 
meter  index and j the value of the parameter, we obtain a set of 
scaled values which in a certain way measure the influence of each 
parameter• 


