
A STOP LOSS INEQUALITY FOR COMPOUND POISSON 
PROCESSES W I T H  A UNIMODAL CLAIMSIZE 

DISTRIBUTION 

H. G. VERBEEK 

Amsterdam 

I. INTRODUCTION 

The paper considers the problem of finding an upper bound for 
the Stop loss premium. 

We will start  with a brief sketch of the practical context in which 
this problem is relevant. 

If it is reasonable to assume, tha t  the accumulated claims variable 
of the underlying risk can be represented by a Compound Poisson 
Process, the foUowing data  are needed for fixing the Stop loss 
premium: 

the claims intensity, 
the distribution of the claimsizes (jump-size variable). 

in  practical situations it is usually possible to find a reasonable 
estimate for the claims intensity (expected number of claims in a 
given period). 

Generally speaking, however, it is not so easy to get sufficient 
data  on the claimsize distribution. Ordinarily only its mean is 
kfiown. This deficiency in information can of course be offset by 
assuming the unknown distribution to be one of the familiar types, 
such as Exponential, Gamma or Pareto. 

Stop loss premiums are however very sensitive to variations in 
the type of claimsize distribution and consequently it can make a 
lot of difference in the result what  particular choice is made. 

To gain some insight into the consequences of a specific assump- 
tion, it is useful to know within what range the premium can move 
for varying distributional suppositions. This means establishing an 
upper bound and a lower bound. The lower bound is trivially 
obtained if the mass of the claimsize distribution is solely con- 
centrated at its mean. The upper bound on the other hand should 
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correspond to the "worst"  possible claimsize distribution. This 
means, that  we have to look for a distribution which maximizes 
the Stop loss premium. 

Thus posed the question could be interpreted as a problem in 
Variational Calculus. 

An actual approach to this problem by  Gagliardi/Straub El] and 
B(ihlmann [2] has been along different lines. They start with an 
assumption [3] for the maximizing distribution and subsequently 
prove the t ruth of their assumption. 

I t  is intuitively clear that  a condition for the existence of a 
maximizing distribution is, that the claimsize variable be restricted 
to a finite interval. An assumption which is consequently made in 
the papers mentioned. 

We wiU prove in this paper that  by  making the additional as- 
sumption of unimodality, a reduction of the upper bound as found 
in the cited papers can be accomplished. 

In a paper b y  Gerber [4] it is rightly argued that  unimodali ty 
can realistically be imposed on many distributions which are rel- 
evant in the insurance field. 

2. SOME DEFINITIONS 

For easy reference we cite the following: 

Definition 2.z: a realvalued function F defined on an interval I 
of the real line is convex on I if, for any two points x and y in I 
and any number  t such that o < t < I, 

F[tx + (z - -  t)y] <_ tF(x) -F (z - -  t )F(y)  (i) 

The function F is concave if the inequahty sign is reversed. 

From [5] page z55 we quote:  

Definit ion 2.2: a distribution function F is unimodal with the mode 
at the origin if the graph of F is convex in ( - -  oo, o) and concave 
in (o, oo). 

The unimodahty  requires that F ts continuous with a possible 
exception at the origin. 

Note: in what  follows we will assume that  the definition of uni- 
moral i ty  implies continuity in the entire closed interval in which 
F is defined. 
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Fur the r  we quote  from [2] the  following: 
$ 

Definition 2.3: 
Y represent ing a non-negat ive  r.v. with m a x i m u m  M and 
dfG(x); hence G( - -  o) = o and G(M) = I ;  and 
Y* a modif ied r.v. taking on only the two values o and  M with 
probabil i t ies  I -  p and  p. 

In  addi t ion it is requi red  tha t  E(Y)  ---- E(Y)* = pM. I t  is shown 
in [I] and  [2] tha t  the  S top  loss p remium based on Y* as the  claim- 
size var iable  will a lways exceed or equal the p remium based  on Y. 

3. A ~{AXIMIZING RANDOM VARIABLE FOR UNIMODAL CLAIMSIZE 
VARIABLES 

We int roduce  the following r a n d o m  variables:  

Definition, 3.I: 
- -  Z a non-negat ive r.v. wi th  m a x i m u m  M and dfG(x) supposed 

unlmodal  with the  mode at  m ( o < m < M )  and  G(o) = 0 ;  
hence G(-  o) = 0 and  G(M) = I ; and  

- -  Z* a modif ied r.v. wi th  df  

G*(x) = I - -  2p + 2px I M for all x ~ [0, iVl] (2) 

G*(x) = 0 otherwise 

We  also require p < o.5 and  E(Z) = E(Z*) = pM.  

We shall show in section 4 tha t  the variable Z* accomplishes 
an upper  bound  if replacing Z as a claimsize variable  in the  Stop 
loss premium.  We will also show, tha t  the  upper  b o u n d  produced 
b y  Z* is at  most  as high as tha t  of Y*. To prove this we shall later  
need  the  following: 

Lemma I :  if a is an a rb i t ra ry  real number  and E(Y) = E(Z) then 

E[(Z* - -  a) +] < E[(Y* - -  a) +]. (3) 

Proof: 

If a is not  in [0, 21//] the  inequal i ty  is obviously  true.  
If  a is in [0, M] we get :  

E[(Z* - -  a) +] = f P[Z* > x]dx : p ( I  - -  (a/M)) (M - -  a) (4) 
a 

E[(Y* - -  a) +] : ~ P[Y* > x]dx = p (M - -  a) (5) 
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It  follows that  o 

El(Z* - -  a) +] = (x - -  (aiM)) El(Y* - -  a) +]. 

In view of o < a < M, the lemma is true. 

(6) 

or equivalently:  

it follows that  
M M 

J" P ( Z  > x]dx > I P[Z*  > x]dx 
a o 

E(z)  > E(z*) .  (9) 

This contradicts E(Z) : E(Z*) as required in accordance with 
the definition 3.z of Z* in section 3- Therefore the assertion is true. 

Assertion 2: not more than one number satisfying (7) exists in 
[o, ra]. (By definition m denotes the mode of G). 

Proof: assume there exist two such numbers s~ and se and let s,. 
be the greater of the two. 

In the interval [o, s~] we can write G(ts~) in the foUowing manner:  

am(tsl) : (I - - t )  G*(o) 2f_ tG*(s:), for all t e[o,  t] (Io) 

4" AUXILIARY LEMMAS AND MAIN RESULT 

For the proof of the fact that Z* produces an upper bound with 
regard to Z we need the following lemmas: 

Lemma 2: there exists exactly one number  s in [o, M) for which 
holds : 

PEZ > s] = P [Z *  > s], s ~ [o, M). (7) 

Note that  we have e~<cluded the number ~ i  from [o, M] for which 
(7) is true b y  definition. 

To increase readability we subdivide the proof in 4 assertions: 

Assertion z: at  least one number satisfying (7) exists in [o, M). 

Proof: suppose that  no such number existed. In view of the continu- 
i ty of G and G* in [o, M) and the fact that  P[Z >_ o] > P[Z* ~ o], 
we must have in that  case: 

P[Z ~_ x] > P[Z* >_ x], for all x ~ [o, M) (8) 
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Since by definition G(o) = o and the unirqodMity of G implies 
convexity in (o, m) it follows (I) tha t :  

G(t$9) ~_ tG(s2) t E [o, I ] .  ( I I )  

Since for s~ ident i ty  (7) holds, we have: 

G(s,) = G*(s , ) .  (z2) 

From (IO), (II) and (I2) we derive: 

G*(~S,) ~_ G(tsz) t~[o, I ] .  (I3) 

Equal i ty  holding only for t = z, it is clearly impossible tha t  a 
number  sl ( <  s 0 exists in [o, m] for which G*(st)= G(s,). This 
contradicts our initial a~sumption and proves the assertion. 

Assertion 3: not more than  one number  satisfying (7) exists in 
Ira, M). Except  for minor  changes the proof is analogous to tha t  of 
assertion 2. 

Assertion4: there cannot  exist two numbers  one belonging to 
[o, m] and one belonging to (m, M), which both  satisfy (7). 
Proof: assume to the contrary tha t  two such numbers  s, and s~ exist. 
We then  can write: 

s~ = t im,  ' tL~[o, z] (z4) 

Si = ( I -  t2)~" + t i~I ,  tee (O, I). (I5) 

Again recalling the definition 3.1 of G*, we note tha t :  

c * ( s , )  = G * ( h ~ )  = (~ - -  t,) G*(o)  + t~G*(m) (~6) 

and 

G * ( s , )  -~  G*[ ( I  - -  t,)m ~- t 2 ~  ~- ( l  - -  t,) G*(m) ~- ~2G*(ll~) (IV) 

by assumption:  

C(sl) = G*Cs~) (~83 

G(s,) = G*(s,) (I9) 

using (18) we can write for (I6): 

G:(s~) = (~ - -  t~) G*(o) + t~G*(m) (zo) 
in the same manner,  combining (17) and (I9): 

G(s,) = (z - -  t,) G*(m) + t,G*(M). (2x) 
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On the other hand,  because of the ~ssumed unimodali ty  we have 
the two inequalities: 

G(s,) = G(hm) < ttG(m) tie [0, m] (22) 

G(so) = G [ ( I - - h ) m + h M ]  > ( I - - t o . ) G ( m )  +t2G(M) (23) 

Comparing (20) and (22) we find: 

(I - -  t,) G*(o) + tlG*(m) < t~G(m) txe [0, I]. (24) 

As by definition (2) G*(o) > o, we conclude: 

G*(m) < a(m). (25) 

' Comparing now (21) and (23) and noting tha t  G(M) = G*(M) = I 
it is seen tha t :  

( I  - -  h) G*(ra) + h > (z - -  h) G(m) + h t2e (o, I) (26) 

from (26) we derive finally: 

G*(m) > G(m). (27) 

As the inequalities (25) and (27) contradict  each other our initial 
assumption is proved untrue,  which proves the assertion. 

The 4 assertions which have been shown to be true prove the 
lemma 2. 

Lemma 3: if s is the number  satisfying (7) then the foUowing 
inequalities hold:  

PEZ >_ x] >_ P[Z* >_ x]. for all x~ [o, s] (28) 
P[Z > x] < P[Z* > x], for all x~ [s, M). (29) 

Proof: follows from lemma 2, the continui ty of G and G* and the  
fact that  P[Z > o] > P[Z* > o]. 

Lemma 4: for Z and Z* as defined and arbitrary a the following 
inequali ty holds: 

EE(Z - -  a) +] _< E E ( Z *  - -  a) +]. (3o) 
Proof: for a < o and a > ~l,I the inequality is trivially true. 

I f  aE [o, s] we write: 

E[(z - -  a) +] = j~PEZ > ~]dx 
M 

= I P[Z >_ x]dx - -  I P [ Z  > x]dx 
0 O 
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using E(2) = E(Z*) and (28) 
M a 

< J" P[Z* > x ] d x -  f P[Z* > x]dx 
o tl 

M 

= S P[Z* > x]dx = El(Z* - -  a) +]. 

If a~ (s, M) we make use of (29) and note: 
M 31 

El(Z--  a) +] = j" pEz >_ x]dx < r P[z, > x]dx 
a m 

\vhich is equivalent to (3o). 
This proves the lemma. 

In [2] it is shown that :  

EE(S. - -  A) +] < EE(S~, - -  A) ÷] 

where S~ : Y~ and S~ = X; Y~ 
l Iwt  t [ ~ i  

if Yt, Y2 . . . . . .  Yn, Y~, Y~ . . . . . .  Y~ are independently distributed 
variables conforming to definition 2.3. 

In [2] this result is obtained as an immediate consequence of the 
inequality (3o) with Z and Z* replaced by Y and Y*. Since for Z 
and Z*, acco.rding to Lemma 4, the same inequaiity holds, the 
result is also true for Z and Z*. 

Thus we have: 

Lemma 5: for Zu Z~, . . . . .  Z , ,  Z~ . . . . . .  Z~ independent, each Z~ 
distributed with unimodal d.f. and each Z~ according to (2), all 
in accordance with the definitions of Z and Z*, given in section 3 
and A an arbitrary number, we have: 

EE(S. - -  A) +] _< EE(S ~ - -  A)+] (3z) 

with 

s ,  = z, .  s ;  = z ; .  
~ - I  { - I  

Theorem: let W t be a Compound Poisson process with claimsize 
distribution G(x) and W~ a Compound Poisson process with distri- 
bution G*(x). 
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If G and G" are as defined in section 3 a n d  W: and W; have the 
same claims intensity X, then: 

.El(W, - -  A) *] _< E l ( W ; . - -  A)*]. (32) 

Proof: as observed in [2] the proof follows because (32) holds for 
each fixed number  of claims in consequence of (3z). 

The theorem proves that  replacing an unimodal claimsize variable 
Z by a modified variable Z*, both according to definition 3.1, 
results in an upper bound for the Stop loss premium, if the counting 
variable can be represented by a Poisson process. From the proof 
it is clear, that  the validity of the theorem is actually not restricted 
to Poisson counting variables, but  that  it holds for all discrete 
non-negative distributions. 

Proposition: the upper bound according to Z* as s tated in the 
RHS of (32) is smaller or at the most equal to the upper bound 
resulting from Y*. 

Proof: follows by  applying to Lemma I the argument leading to 
Lemma 5 and subsequent  use of the theorem. 

5" NUMERICAL EVALUATION OF THE UPPER BOUND 

We will now derive an expression which permits the numerical 
evaluation of the upper bound as s tated in the R HS of (32). To 
simplify the algebra we will make use of the Laplace transform 
technique. 

If g*(x) denotes the density of: 

G*(X) - - - -  I - -  2p 2 c 2px [ M for all x ~[o, M] (33) 

G*(x) = o otherwise 

we define: 

L[g*; s] = S e-z,  dG*(x) I - -  2p + 2p(I - -  e-M') [ Ms. (34) 
0 

Employing F(x) for the distribution of W; we find: 

L[(I - -  F);  s] = s-1 __ exp { - -  Xt + XtL[g* ; s] } [ s. (35) 

Substi tut ing (34) in (35) and writing ¢ = 2pxt for short, we get:  

L[(i - -  F) ; s] ~ - s - l - - e x p [ - - c + c ( z - - e  -M') [ M s ] [ s .  (36 ) 
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We now introduce the abbreviat ion:  
$ 

E" = E l ( w ;  - -  A)*]  (37) 

and take the Laplace t ransform of E* with respect to A. This gives: 

L[ .E*;  s] = ( o . s c M  - -  Z[(~ - -  F ) ;  s]} [ s (38) 

after subst i tut ion of (36) in (38) we obtain:  

LIE*;  s] = { - -  I + o.5cMs + exp [- -  c + c(I - -  e -~ , )  I Ms]} l  s*. 

(39) 

To invert  (39) we develop the RHS in powers of exp ( - -  Ms) and 
find: 

LIE  ° ; s] = - -  s-  * -4- o . scMs-  1 + 

[ c'" ] ¢-c S -z 8(c!sM ) ¢S-3 ¢(cisMI- Ms . j r _  ¢(cfsM)-~Ms - - ~  ~ - - . . .  (40) 

The RHS can be inverted into hyperbolic Bessel functions of 
ascending order, by using the following s tandard result: 

L ( ~ - - j M ) "  I.~{21/c(x_iM)÷}s =S"~(c~,~M,  (4~) 
C 

Apply ing (4 I) to the RHS of (4 o) term by term and wr i t ing 
k : A I M for short gives: 

E'IM=--k+o sc+ ~ Z ~t)n[c(k--n) '](~'l"' I , . l[2~/c(k---n)  ÷] 
m = ¢  

(42) 

In  (42) we have i n t r o d u c e d  k which is the deductible (excess 
point) of the Stop loss reinsurance expressed in the max imum of 
the single risks. If k is a positive integer we can simplify (42) as 
follows : 

E ' I M : - - k + o . s c +  [c(k---n) +](n, it=) I~+ l[2V'c(k.--n) *] 
C 

n - $  

(43) 

The finite series (43) represents the bound of the  Stop loss 
p remium expressed in the max imum M. 
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6. CONCLUDI~'~ REMARK 

With the help of standard tables for Bessel functions, for example 
in E6~ actual calculation of the bound is quite easy in practice. 

REFERENCES 

Eli GAGLIo%RDI und STRAUB (1974): Eine obere Grenze fiir Stop-Loss-  
Pr~mien, i~IVSV I974, 215-22I. 

E2] B/.JHL~t~NN (1974): Ein anderer  Beweis ftir die Stop-Loss-Ungleichung 
in der Arbei t  Gagliardi/Straub,  MVSi~'I 1974, 284-285. 

[3] BENKTANDER (X974): A [VIotor Excess Rat ing  Problem:  F l a t  Rate  with 
Refund, (ASTIN Colloquium, Turku, Finland).  

[4] GERBER (1972): Ein Satz VOrL Khintchin und die Varianz yon uni- 
modalen Verteilungen, MVSV 1972, 2z5-331. 

[5] FELLER: An Int roduct ion to Probabi l i ty  Theory and its Applicat ions,  
Vol. 2, \Viley 1966, 

[6] ~vVATsoN: Theory of Bessel functions, Cambridge U.P. 1966 (reprint)  


