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The problem 
In pract ical  stat ist ical  work one f requent ly  meets  certain prob-  

lems. For  instance, we m a y  have the following da ta  about  loss ratios 
in certain insurance companies  and corresponding numbers  of 
insurance in force: 

Loss insurance  
Company  ratio, O/oo in force, Iooo (e.g.) 

i Pl tt 
i 5 20 
2 IO 30 
3 5 80 
4 4 75 
5 40 5 
6 20 15 

225 

I assume fur ther  tha t  we have no reason to believe tha t  the comp- 
anies, their loss ratios and their  s t ruc ture  of insurances in force differ 
in any  other  way than  by  the size of companies.  The prol)lem is how 
to get quick est imates  of mean losses and their  variances in different  
companies  ? 

A s t ra i t forward  way to es t imate  the mean loss rat io would be 
to compute  the usual mean  of numbers  Pi, (xp,/6) = 14 ; its s t andard  
deviat ion is 6, 5 . As this procedure  of the "f irs t  s ta t is t ic ian"  seems to 
be too simple and naive, a "more  caut ious"  stat is t ician would 
compute  the weighted mean loss rat io 

E,t~p~ 
f i - -  Eli - -  7'1" 

The "more  caut ious"  stat ist ician would arque tha t  his result  is 
much be t te r  than  the other  result  14 . Bu t  what  would be the 
var iance of the es t imate  7,i ,  and what  is the var iance  in the dif- 
ferent  companies ? 
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The purpose of this paper 

In this paper I try to solve the problem of the two statisticians. 
Thus, I try to throw a little light on the methodology in estimation 
of means and variances in the different companies. 

In the example we had certain numbers. To begin a reasonable 
computation, one necessarily needs specific assumptions of the 
situation or process, which can lie behind the observed numbers. 
The assumptions determine the mathematical formulas to be used 
and the meaning of the computed results. 

The first statistician apparently used the assumption that the 
stochastic variables Pl were equally distributed. The other statis- 
tician did not believe in this, hence he used the weights ti. However, 
the "more cautious" statistician seems to have assumed that  the 
expectations of Pt be the same. 

In the example we have six observations of the numbers Pi, 
certain arguments according to which the expectations of Pi should 
not differ, and numbers tt which measure the "size" of the "observa- 
tions" namely the companies. To get further, one apparently needs 
assumptions of the distributions of Pi. The theory of stochastic 
processes and the theory of risk seem to give possibilities to for- 
mulate assumptions of the processes, which could generate the 
numbers Pt for the different companies. 

In stochastic processes there generally is a kernel variable x with 
a distribution f(x). The process yields from x other variables xi de- 
pending on a parameter ti. If f(x) and the process are known, one 
can compute the distribution Fl(x) of xt and thus all of its statistical 
characteristics, e.g. the moments Ar,t of Fl{x), which apparently 
depend on certain characteristics of f(x) and the parameter tl. In 
the example one can make different assumptions of the underlying 
process which yields the total loss It of the company i. The loss li 
apparently depends on the size t, of the company i. However, it 
seems reasonable to assume, that  the intensity variables 

P~ -- l~ 

have the same expectation. We see, that  the "more cautious" 
statistician can find good arguments. 
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The idea behind this paper is that  it should be possible to for- 
mulate estimators ~-r of certain characteristics of f (x) ,  using all the 
observed results li or p, and some assumptions about the under- 
lying process. If the estimators =r are known, the assumed process 
gives corresponding estimators for e.g. the means and variances of 
Pl in the different companies, naturally depending on the para- 
meter h. 

In the few examples treated later, I wiU show that  using quite 
reasonable assumptions we can get estimators 

X l~ Z P#t  

~ - -  X h E h 

and 
I tj 

0~2 = m 

,* 0 (pj 
t I - -  - -  

E tj 
1 

where n is the number of observations, i.e. the number of the com- 
panies in the example. The corresponding estinaators for the means 
and variances of the loss ratios Pi for each of the companies are 

E(p,)  m o~1 = 

eL2 
v(p,) 

h 

Naturally, the estimated variance of p is then V(p) m (~2/E h). 
The problem is by its very nature much more general than a 

problem of estimating loss ratios. In mathematical statistics one 
often meets situations where the components (here the loss ratios of 
the different companies) are differently distributed. Knowing very 
few textbooks on the subject I have a feeling that something is 
lacking: when the components are different, the armament of 
statisticians fades away. If expression (I) is right, we could further 
develop methods for testing, enlarge the analysis of variance and 
so on. The most ambitious possibility would be to abandon the 
requirement of equal components in statistical inference quite 
generally. 

The problem-solving has many influences from the theories and 
practical data which the ASTIN group has produced. Therefore I 



326 ESTIMATION OF MEANS AND VARIANCES 

dare to present  this paper  to this forum, because I believe the 
ASTIN members  need more powerful  statist ical  a rmaments .  
Because I am not very  well acquain ted  with the modern mathe-  
matical  way of expressing different  things I apologize for the possibly 
ant ique  expressions and developments  in this paper.  

The problem solving structure 

I t  is known, tha t  if s tochastic variables y~ have 

distr ibut ions F'~(y) 
equal expecta t ions  y = .f ytdF~(y) ; i = I, 2 . . . .  
variances c~ = f (y, - -  y)2 dF~(y) 

and if the variables y ,  are mutua l ly  independent ,  then the linear 
es t imate  

I 2 y  , I £ 3,, 
- - o ( 2 )  

from a random sample Y = (Y1, Y2 . . . .  ) is an unbiased least mean 
square est imate  of y. The number  k is an a rb i t r a ry  constant  ~ o. 
See, e.g. Hald,  Statist ical  Theory  with Engineering Applications, 

page 243. 
If, as in our example,  we can make assmnptions about  the process 

and its underlying characterist ics depending on a pa ramete r  h, we 
m a y  perhaps const ruct  variables 0~, which character ize  the funct ion 
f (x)  and which can be es t imated for all of the observat ions i. The  
variances of these est imators  can then be calculated, whereaf ter  (2) 
gives us the "bes t  overall  es t imate" .  

In the example  we may  assume tha t  each policy is an independent  
unit,  the behaviour  of company  i can be expressed as a h-fold 
convolut ion  of the behaviour  of one policy. Fur ther ,  we may  assume 
tha t  we know the number  h exact ly,  and tha t  the under lying basic 
probabi l i ty  of loss is a constant  (simple convolution), SC. 

Another  s i tuat ion would be, tha t  we know the numbers  of ex- 
pec ted  losses, which are then our parameters .  Natura l ly ,  this 
s i tuat ion is the same as SC, with the numbers  of SC multiplied by 
an overall  assumed loss frequency.  But  the process is different.  We 
have the case of generalized Poisson process, GPP.  
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Fur ther ,  we may  assume tha t  the process is a generalized Poisson 
process, but  tha t  the under lying probabi l i ty  of a claim varies according 
to a dis tr ibut ion S(X), which has the expecta t ion  E{X} = I and 
variance V{X} ---- B. We have the case of compound Poisson process, 
CPP. 

Thus  we have got three different  assumptions of the process which 
can lie behind the numbers  in our  example.  The essential differences 
in these cases lie in the assumptions  of the na ture  of the whole 
process. How to proceed ? 

The processes 

Above we have found three different kinds of "under ly ing"  
processes. In each of them an under lying dis tr ibut ion f(x) of a 
variable x can be assumed to exist. The processes are, correspondingly 

F(x) = f(x)  * f(x)  * . . .  f (x)  = f(x) t'*, SC (3) 

F(x)  = ~'~ e -4  t--~ f(x)  k*, G P P  (4) 
k! 

k 

k! f(x)~* dS(X)' CPP" (5) 
k 

Here  and in the sequel I have par t ia l ly  omi t t ed  the index i, which 
should be unders tood to belong to all of the notat ions  F(x) ,  Ar  etc. 

A somewhat  clearer picture of the processes can be found by  
exploring the corresponding character is t ic  funct ions and moments  
of the variables x~. The character is t ic  functions are, when the 
character is t ic  funct ion of the under lying dis tr ibut ion is q0 z, 

~F = ~P}' (SC) (6) 

q~p = e4(~- ~) (GPP) (7) 

q~v = J" etX'(~- ~) dS(X) (CPP) respectively.  (8) 

The corresponding moments  Ar of F and a~ of f are 

A~ = i -~ ~ * ) ( u  = o) (9) 

a r = i - r  ~0~ r) (U = 0). (IO) 

In  each of the different cases the character is t ic  funct ion q~F is of 
the form 

~rr = z (~s ,  4) ,  
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which gives 

A 1 = Z;(I, t,) a 1 

A~ = L'(~, t,)a~ + L(1, t,)~ 
A~ = £ ' (1 ,  b,)~ + 3£(1 ,  t , )~,~ + L(1, t,)a~ 
A~ = Z~)(~, t , )~ + 6£'(1,  t0~b~ + 4£(1 ,  t , ) ~  

+ 3£(1 ,  t,),~ + L(~,  t , )~ (11) 

In the three different cases we have, correspondingly, 

z;(I, t~) = t~ 
L'(i, t~) = t ~ -  t~ s c  
Z;"(I ,  t~.) = t~ - -  3t~ + 2t, 

lg)(l, t,) = t~ -- 6t~ + IIt~ -- 6t i (12) 

L(1, t,) = t, 

£ ( 1 ,  t,) = t~ G e e  
z;"(1, t,) = t~ 
-,(4)/I l.~) 4 

z;(1, t,) = t, 
Z~'(I, tl) = BI~ + l~ - -  t~ CPP 

. . . . . . . . . . . . . . . . .  (14) 

Together, the equations (II) . . .  (I4) determine the moments  or 
expectations of the r th power of the loss in the different cases. 

T h e  m e a n  

The problem of the mean seems to be quite simple. Following the 
thought  behind the formula (2) we must  seek expressions which 
have the mean of p~ as expectation, then find the weights I /e  2(p~) 
and use the formula (2). 

Remembering the formulas (II)-(I4) we can see, tha t  the ex- 
pectations 

E ( p , )  = E - -  t ,  - -  a i  (15) 

are the same. The corresponding weights ~,2 are, consequently 

.~ = E(#~ -- <)'- = E(p~) -- ~. 
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Using the formulas  (11)-(14) we get 

I A 2 
~, = 7~ - -  a~ = G - -  aL which gives 

l, t t 

2 tia~ + tiaa I 2 ti al 
2 - - a l  = -- -- e l =  ti 

t~a~ + t, a2 I k o 2 

tf l t 
2 2 12a2 2 Bt~a~ + ~ L - -  tial +tea2 

2 Ban + - - -  

k 
(sc) 

(GPP) 

2 
a 2 - -  a I 

(CPP) 
t, 

Thus  the first  problena is solved:  the m e a n  loss is in the cases of 
SC and  G P P  

I ~ p~ I ~ t ~ p ,  = Z t~p i .  

this  is the same as the fo rmula  of the  " m o r e  cau t ious"  s tat is t ic ian.  
In  the  case of C P P  we get 

I ~-~ tip t (i8) L 13a t, + ( a 2 -  
o 

Ba~t, + (a 2 - -a~)  

I f  B = o, this expression reduces to (17). If, on the o ther  hand,  

a 2 - -  a~  
B > > a~t----~'  the expression (18) reduces to 

I 

~ - Z Pi, (I9) 

which was the fo rmula  of our  first s ta t is t ic ian!  Here  the var iance  B 
outweighs  the o ther  pa ramete r s .  Thus  bo th  of the  s ta t is t ic ians  are 

r ight ,  under  different  assumpt ions .  
The  p rob lem of the  mean  losses li can thus  be regarded  as solved. 

The  p rob lem of var iances  still remains.  In  the sequel I shall  con- 
cen t ra te  on the p rob lem of the " m o r e  cau t ious"  s ta t i s t ic ian  only 
and  omi t  the  quest ion of the CPP.  

2I  
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The variance 

The mean of the variance 

Concentrating on the question of finding estimators of m2 which 
could generate estimators for the variances of p, we can s tudy the 
expression 

(',) 
v ( p  d = V ~ (20) 

in the cases of SC and GPP. In both of these situations we have 

V = E  - - a t  = E  - -  + ( 7 5 - - a ,  = 

E (~- -15)2  + E ( / 5 - - a l )  2 + m E  ( (~  - -  /5) (/5 - -  al)) . (21) 

By virtue of the relations (II)-(I3), the third term in the ex- 
pression (21) becomes zero. In verifying this, the m e a n  

X hPi 
15- xh 

is parti t ioned into parts 

t5 _ X hP~ - - P # l  P#~ E lL - -  l~ l~ 
E h + Z h -- Z h + Z t, 

and tile relation 

E(xy) = E(x)E(y) 

for independent variables x and y is used. The second term is 
similarly 

E(15- -m)  ~ -  Z h  E - - a l  . 

Thus 

V h = E --15 +g- v . 
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In case of SC 

v = ~ (a~ - 4 )  

and  in case of G P P  

We see, t ha t  the  expressions 

Z~ = h V = E 

I 

• h ( p *  - -  15)2 

I - -  Et~ 
(22) 

2 and in all have  the same  expecta t ion ,  which is in SC = a 2 -  a~, 

G P P  = a 2. Thus  expressions wi th  c o m m o n  means  have  been found  
and the first s tage in our search for var iance  is accomplished.  

The  weights 

In  using the  adop ted  problem solving s t ructure ,  we fu r the r  need 

the inverse weights  
k • v(&) 

as funct ions of h. Let us denote 

h 
I - -  

• g h 

h 

I 
m - -  and  

E h 

y ,  = X l j  = Z p j t j  - -  P , h .  

Then 
I 

v ( z , )  = ~ v ( p , -  ~)~ 

I 
- -  2 E ( p ,  - -  15) 4 - -  ( E ( Z , ) )  2 

nt  

I 
- n~ E ( n k -  my~) ~ - -  (E(&)) ~ 
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Since the variables l, and y ,  are independent,  we get fur ther  

I 
- -  2 2 2 .~ 2 V(Z~) = n~ [n~E(l~) - -  4n~mE(l~)E(y,) + 6nim E(l~)E(y~) 

4nw~3E(1,)E(y~) + m4E(y~)J - -  (E(Zi)) 2. 

This expression can be worked out further,  remembering tha t  
E(xr) = At. using the formulas (II)-(I3) and seeing tha t  the para- 
meters h and El - -  t, correspond to variables l, and y,  respectively. 
The computat ion can be shortened remarkably if one uses the line 
of thought  tha t  Kendall  uses in his book "The Advanced Theory 
of Statist ics",  page 256. In the case of SC the variance and higher 
central  moments  must  be independent  of the "location parameter"  
m. Thus all the expectations of odd powers of li and 3'1 can be 
neglegted as well as all terms containing a,. The computat ion 
yields in the case of simple convolution the result 

( V ( Z l ) = c ~  2 +  y2 + Z t ~ - - t ,  1~ii " (23) 

where c 2 = a2 - -  a~ is the variance of f(x) and 

I4 Z4 
Yz ---- 7~--3 -- 2 

12 M2 

is the excess off(x).  The 0~ :s are the corresponding cumulants  off(x).  
The case of CPP yields natural ly  the same result as a convolution 

process, where 

C 2 = a 2 

and 

~4 = a4. 

The variance 
According to (2) we can now write the unbiased least mean 

square es t imate  

I I ~ tt 
v(Pd ~ h i ( h )  ( p , _ f ) 2 ,  

i -  (2 + T,y2) 
2 + Ttyz Z-h (24) 
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where 
I I 3 

T~---- ~ + Z h - - h  Z h  ( > ° ) "  (25) 

The expression (24) is computable and without difficulties pro- 
grammable on computers if assumptions about excess ~'2 can be made. 
If all the parameters h are equal, (24) reduces to the classical result 

I 
E (p, - -  k) z. 

v ( P d  - n - -  I 

If the excess ¥2 = o (e.g. normal distributions), we get 

I I ~ h (p.,--/5)2. 
V(Pd ~ ~ 7~ h 

E h 

(26) 

If, on the other hand, we lety2 --+ co, the "best"  estimate becomes 

r z ~ l~ 
V(p,) (P, (27) 

E t, 

In GPP the excess 

a4 
Y 2 = - -  .~-I; 

where ¥~ = I if all the possible "claims" are equal. 

Discussion 

I. On the basis of estimation 
The whole line of thought in this paper seems to be in connection 

with the concept of infinite divisibility, as, treated e.g. by Feller 
in his book "An Introduction to Probability Theory and its Applica- 
tions, Vol. 11-1). Taking the variable h as a significant fact,)r in 
estimation, means thaf the variables Pi belong to the same "family"  
of distributions, where h or its multiples define the exact situation 
of p, in the family. 

1) I n  h i s  b o o k  Fe l l e r  u s e s  v o c a b u l a r y  d i f f e r i n g  f r o m  t h e  o n e  u s e d  he re .  
T h e  m o s t  i m p o r t a n t  d i f f e r e n c e  is b e t w e e n  G P P  a n d  C P P ;  w i t h  C P P  Fe l l e r  
m e a n s  G P P  u s e d  here .  
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If we have as in (6)-(8) 
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the cumulants  

×k = i - k  D(k) log X(u-0) (28) 

equal t, - -  times certain characterist ics of f (x) ,  

D (r) log X(~f, t,) = t l D (r) l o g Q  (q~f), (29) 

if Z is of the form 

7. = el'Q(*'), (30) 

w h e r e Q  is such a funct ion of q~l only, tha t  eQ('*~ ) is character is t ic  
funct ion of a distr ibution.  In the case of simple convolut ion we 

have Q(qp) = in m and in the case of GPP.,~(q~) = q~ - -  I. In SC the 
cumulants  correspond cumulants  of f (x) ,  in G P P  the cumulants  of 
.F(x) correspond moments  of f (x) .  

2. The variance of  V(p,)  

The  variance of (24) 

I I 
v(v(p,))- # 

v(z,) 
If y2 = o, then 

I 2c~ 
V(V(p , ) )  = ~ • - -n  (SC). 

If ¥o ~ co, V ( V ( p ~ ) )  --+ co. 

If the t e rm T,y.~ > >  2 in (24), and all of the / , :s  are small as 
compared  to Zt, ( "Lindeberg  case"),  then  

I 72 " C~ 
" 

3. The original example 

The problem was to solve the problem of the statisticians. The 
first s tat is t ician found : = 14, V(/5) = 42. We saw tha t  he used 
assumption CPP with the var ia t ion of the loss rat io outweighing 
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the influence of tt:s. The variance of p ,  should thus be 255 and 
s tandard  deviat ion 16. 

The other  stat is t ician had more difficulties. The  variance of p,  
should be (24). Making different assumptions of process and its 
parameters  he can get different  answers. Taking e.g. the G P P  and 
assuming tha t  for the smallest company  the excess ~ 3 he gets 
y2 = 15. For  the s t andard  deviat ion of the mean /5 = 7, i  (Eta) he 
gets a = 2,4. The applicat ion of (26) gives c o r r e s p o n d i n g l y .  = 2, 7 
and the applicat ion of (27) the result a = 2,0. 

The answers differ a li t t le of each other  and quite  s tr ikingly from 
the answers of the first statistician, 75 = 14, cr = 6,5. As the la t te r  
s tat is t ician was "cau t ious" ,  I would believe he would generally use 
formula  (26) in other  applications! 

4. Other applications 

As another  example  we can s tudy  the problem of smoothing:  
we have observed e.g. mor ta l i ty  da ta  in a given group where we 
have observed numbers  of dea ths  in different  age groups;  the 
observed cases in these groups na tura l ly  being different.  I t  m a y  
be difficult to arrange the s i tuat ion so tha t  the age groups were 
s tochast iqual ly  equal. How to make  sound est imates ? 

This paper  has t r ied to give f ramework and theory  for the analyses 
of those very  different problems we have in eve ryday  life. I believe 
tha t  we have very  many  problems of this kind. 


