
THE SURPLUS PROCESS AS A FAIR 
G A M E - - U T I L I T Y W I S E  

HANS U. GERBER 

I .  INTRODUCTION AND SUMMARY 

The concept of utility is twofold. One may think of utility: 

I) as a tool to describe a "fair game" 
2) as a quanti ty that ought to be maximized. 

The first line of thought was initiated by Daniel Bernoulli in con- 
nection with the St. Petersburg Paradox. In recent decades, ac- 
tuaries, economists, operations researchers and statisticians (this 
order is alphabetical) have been concerned mostly with optimization 
problems, which belong to the second category. Most of the actuarial 
models can be found in a paper by Botch [4] as well as in the texts 
by Beard, Pesonen and Pentikainen [3], Bi.ihlmann [6], Seal [I5], 
and Wolff [17]. 

We shall adopt the first variant and stipulate the existence of a 
utility function such that the surplus process of an insurance 
company is a fair game in terms of utility. This condition is naturally 
satisfied under the following procedure: a) a utility function is 
selected, possibly resulting from a compromise between an insurance 
company and supervising authorities, b) whenever the company 
makes a decision that affects the surplus, it should not affect the 
expected utility of the surplus. 

Mathematically, this simply means that the utility of the surplus 
is a martingale. Therefore martingale theory (that was initiated by 
Doob) is the natural framework in which we shall s tudy the model. 
We shall utilize one of the most powerful tools provided by this 
theory, the Martingale Convergence Theorem. 

Section 2 is devoted to the relationship between the probability 
of ultimate ruin and the utility function that underlies the surplus 
process. Theorems I and 2 are in the spirit of and extend results by 
DeFinetti, see [7] P. 58-68 and Dubourdieu, see [8] p. 163-174 and 
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p. 258-26o. These authors  have used mart ingale  techniques wi thout  
using mart ingale  language. Theorems I and 2 show us tha t  (under 

mild restrictions for the surplus process) the probabi l i ty  of ruin is 
less than one if and only if the under lying ut i l i ty  function is bounded  
from above. Apar t  from the fair game hypothesis ,  no restrictions 
(such as s ta t ionar i ty  or Markov proper ty)  are made  about  the 
surplus process. 

In section 3 we i l lustrate the general theory  in three special 
models. For  example,  Theorems I and 2 enable us to show tha t  
Ot taviani ' s  conjecture  is true. The ambit ious reader  should look at 
the end of subsection 3.1, where he will find an unsolved problem. 

2. THE GENERAL THEORY 

While the ideas do not  depend on the model  chosen (discrete or 
cont inuous time), the cont inuous t ime model involves considerably 
more technicalit ies.  In order  to p revent  the la t ter  from obscuring 
the ideas, we present  the general theory  in the discrete t ime model. 

2.I.  Def ini t ions  and interpretations 

What  follows is based on a fixed probabi l i ty  space, i.e. a triple 
(f~, A, P). Here  f2 denotes the sample space, A is the e-algebra of 
all events,  and P is the probabi l i ty  measure defined on it. Fur the r -  
more, we are given a sequence Ai ,  A2, Aa . . . .  of , - subalgebras  of 
A satisfying 

A1 c A2 c A3 c . . .  (I) 

In tu i t ive ly ,  An is the informat ion available at  t ime n, or more 
precisely, the set of all events  whose occurrence (or non-noccurrence) 
is known at  t ime n. We s tar t  at  t ime zero, and therefore assume 
tha t  A o consists only of ~ and its complement  (the impossible 
event).  We are in teres ted in a sequence of random variables 
X1, X2, X3 . . .  such tha t  X~z = Xn(co), co ~ f2, is measurable with 
respect to A~. We in terpre t  X n  as the surplus of an insurance 
company,  measured in index adjusted mone ta ry  units. Let  Xo = x 
be the initial surplus. The distr ibution of the X~'s depends on m a n y  
factors, such as claims, premiums,  dividends, inves tment  re turn,  
inflation, taxes, expenses. Therefore,  under  realistic assumptions 
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An will be much larger than  the a-algebra generated by (Xj, X2, 
. . . .  Xn): Even if the ac tuary  is primarily interested in the surplus 
of his company at  various times, he cannot  afford to ignore the 
information tha t  can be obtained from the outside world. 

The time of ruin T is defined as 

T = Minimum {n [ Yn < o} (2) 

with the unders tanding tha t  T = co if Xn > o for all n. Thus 
IT < col is the event tha t  ruin will u l t imate ly  occur. Let  

q~(x) = P[T < co] (3) 

denote its probabili ty.  Here the a rgument  x is just a reminder tha t  
this is our initial surplus ; it will not be varied in the following. 

If we stop the surplus process {Xn} at t ime T, we obtain a new 

process {~Yn} where 

~r.  = t X , , i f  T > n  (4) 
XT if T _< n 

Of course ~Y~ is also measurable with respect to A~. 

Finally,  we shall use the following definition: The process {~k~n} 
is said to be asymptotically fluctuating, if the probabil i ty tha t  

.7" = oo and {~'~,~} converges to a finite limit is zero. In most ap- 
plications it is easy to check the val idi ty of this property.  

2.2. The fair game hypothesis 

Mathematical ly this crucial assumption is as follows: There 
exists a str ict ly increasing, continuous function u(s), - -oo  < s 
< co, such tha t  {u(Xn)} is a martingale with respect to {A,,}. This 
means tha t  

E[u(X,+t )  IA , ]  = u(,Y,,) a.s. (5) 

or equivalently,  tha t  

E[u(..Yn+~)lAn] = u(,{',,) a.s. (6) 

for n = o , I , 2  . . . .  and k =  1,2 . . .  

Intui t ively,  u(s) is the insurance company ' s  utility for a surplus of 
s. The interpretat ion of conditions (5) and (6) is: At  an 3, time, and 
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under all circumstances, the company plays a fair game, not in 
terms of monetary units but in terms of utilily. Thus, for given 
utility function, the fair game assumption sets a boundary con- 
dition to the company's decisions. 

Remarks. I) The fair game hypothesis is the dynamic extension 
of the principle of zero utility, see p. 86 in [6]. In a special case it has 
been introduced by Ferra, see p. 63-67 in [Io]. 

2) Since the surplus is measured in indexed monetary units, i t  
is not too unreasonable to assume time independence of the utility 
function. 

3) It is customary to assume that u(s) is risk averse, i.e. concave 
from below. However, the general theory does not depend on this 
assumption. 

4) Sometimes it is easier to verify that {Xn} is a martingale with 

respect to {an}. This condition implies that {.,~n} is a martingale, 
because stopping does not affect the martingale property. 

2.3. The ruin probabilily in lhe case of bounded utility 

The monotonicity of u(s) implies that u(oo) = lim u(s), s + oo, 
is well defined (possibly infinite). In this subsection we study the 
case of bounded (from above) utility, u(oo) < 00. Let us introduce 
the function v(y) ,--oo < y < oo, that originates from u(y) by 
the following linear transformation: 

u ( ~ )  - -  u ( y )  

v ( y )  - 9 , (00)  - -  , 4 0 )  (7) 

Thus v(y) is a decreasing function with v(o) = I and vanishing 
at infinity. The importance of this function becomes evident in the 
following Theorem. 

Theorem I. If the fair game hypothesis is valid, then 

v(.) 
'F(x) < E[v(XT) [ T < 0o] 

with equality holding if and only if the process (~¢fn} is asymp- 
totically fluctuating. 

Proof. A linear transformation of a martingale is again a mar- 

tingale. Thus {v(-'Yr~)} is a positive martingale with respect to {A n}. 
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Therefore,  the Martingale Convergence Theorem (see for example  
[2], p. 275, [5] P. 63, or [I21 p. 89) is applicable. I t  tells us tha t  there 
is a random variable, say V, such tha t  

v(Xn) --+ V for n ~ co, a.s. (8) 

On the set [~ [ T(oo) < col, i.e. in the event  t ha t  ruin occurs, this 
convergence is of course trivial:  there  V coincides with v(XT).  

We can decompose V into a sum, 

V = 1V + 2V (9) 

where the auxil iary random variables ,V are defined by  the fol- 
lowing table. 

1V = 2 V  = 

v(XT) o 

o V 

if T <  co 

if T =  co 

Similarly, we can write 

V(Xrn) = IVn  "4- 2Vn (Io) 

where the auxil iary random variables ~Vn are given by the table 

1Vn = 2Vn = 

v(XT)  o if T < n 

o v(Xn) if T > n 

S ta t ement  (8) implies tha t  for i = I, 2 

,Vn  ~ ,V  for n ~ co, a.s. ( I i )  

Moreover, convergence of the expected values takes place: 

E[,Vn] ~ E [ t V ]  for n ~ co (12) 

For  i = I this follows from the Monotone Convergence Theorem 
(the sequence {1Vn} is increasing) and for i = 2 it is a consequence 
of the Domina ted  Convergence Theorem (observe tha t  0 < 2V~ 
< i). 
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From the mart ingale  proper ty ,  and from formulas (IO) and (12) 
we get 

v(x) = E[v()£n)J = E[tVn] + E[o~Vn] 

--~ E[tV] + E[2V] for n --~ coo (13) 

Thus 

Since 

V(X) -~ E[1VJ + EI2V ] (14) 

EE V7 = EEv(XT) I T < oo] 'F(x) (x5) 
we get the inequal i ty  of Theorem I by  omi t t ing  the last te rm in 
formula  (14). Fur thermore ,  equal i ty  holds iff E[2VJ = o, i.e. iff 
2Vn ~ o for n ~ oo. Since we know tha t  {~Vn} converges with 
probabi l i ty  one, the last condit ion is equivalent  to the condit ion 

tha t  {~'~n} is asymptot ica l ly  f luctuating,  q.e.d 

Remark. Since v(y) >_ I for y _< o, we get as a corollary from 
Theorem I tha t  ~'(x) < v(x). This inequal i ty  is due to Dubourdieu  

(see E8J, Theorem F '  on p. 262). 

2. 4 . Bounded versus unbounded utility functions 

We just  saw tha t  u(oo) < oo implies tha t  qe(x) < I (if x > o). 
In  m a n y  cases the converse is also t rue:  

Theorem 2. Suppose tha t  a) {3(n~ } is asymptot ica l ly  f luctuat-  
ing, and b) tha t  supremum E[u(Xn) - - ]  < oo. 
Then u(oo) = oo implies tha t  ~F(x) ---- I. 

Proof. Condition b) assures us tha t  the Martingale Convergence 

Theorem is applicable. Thus,  with probabi l i ty  one, {u(Xn)} con- 

verges as n ~ oo. If  T = oo, convergence of {u(~Yn)) implies con- 

vergence of {Xn}, because u(oo) = oo. But  condition a) makes this 
impossible, therefore PIT = oo] = o. q.e.d. 

Remark. The above result cer ta inly  speaks for bounded  (from 
above) ut i l i ty  functions. However  the argument  loses some of its 
weight,  because in m a n y  cases where ruin is certain,  the expected  
t ime of its occurrence is infinite! 



T H E  SURPLUS PROCESS 313 

2.5. The surplus process as a favorable game 

As far as inequalities are concerned, the results of subsection 2.3 
carry through to the more general s i tuat ion where the surplus 
process is a favorable game, at  any  time and under all circumstances, 

in terms of uti l i ty.  Mathematical ly,  this means tha t  {u(Xn)} is a 

submartingale,  or equivalently,  tha t  {v(~Yn)} is a super-martingale 
with respect to {An). The lat ter  condition means tha t  

E[v(~Yn+~) [An] _< v(A%) a.s. (16) 

for n = o, I, 2 . . .  and k = I, 2 . . . .  Actually,  all t ha t  is needed is 
tha t  these inequalities hold for n = o. From this we get, s tar t ing 
with the right side, 

v(x) >_ 
= E[tVx] + E[o.Vz~] > E[~Ve] 

By the lX{onotone Convergence Theorem the last term converges 
to E[~V] for n ~ co. Therefore, 

v(x) > E[~V] = E[v(Xf)  ] r < co] tie(x) (18) 

which is the inequal i ty  contained in Theorem I. 

Remark. The assumption tha t  the surplus process is a favorable 
game (utilitywise) makes a lot of sense from the insurance company 's  
point of view. However the consumer, perhaps represented by an 
insurance commissioner, is likely to insist tha t  the favorable game 
be extreme, i.e. fair. 

3" ILLUSTRATIONS AND A P P L I C A T I O N S  

Tile general theory was developed for an arbi t rary  surplus process 
satisfying the fair game hypothesis. In view of this, the following 
examples m a y  appear rather  restrictive. 

3.I. The classical claims--premium model 

Ignoring factors such as interest,  inflation and expenses, we set 

X ~ , = x + P 1 - - S i +  . . .  + P n - - S n  (I9) 

Here $1, $2 . . . .  are independent  and identically dis tr ibuted 
random variables (the claims in subsequent periods). We wish to 

20 
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determine the premiums P1, P2 . . . .  such tha t  the fair game 
hypothesis holds. Having chosen an appropriate ut i l i ty function, 
P~ is obtained as the solution of the equation 

E[~L(X~- I  + Pf/ - -  S,l)] m '~ (~ '~- I )  (20) 

Thus Pn  = Pn(Xn-1) is a function of Xn-1; observe tha t  this 
quan t i ty  is known at the time when the premium Pn is due. 

In the special case of an exponential utility function 

u ( s )  = I / R  ( I  - -  e -  ~s) 

v(s) -~ e-aS, R > 0 (21) 

the premiums are independent  of the surplus 

Pn = I/R in E[e ns.] (22) 

Since the surplus is asymptot ical ly  fluctuating,  we get from 
Theorem I tha t  

e -  R x  

gY(x) = E[e-RX~ [ T < oo] (23) 

which appears as formula (12.14) in [3], P. 143. The parameter  R is 
sometimes called the adjustment coefficient. 

In this model we can vary  the initial surplus, which we did not 
do in the general model. The famous asymptot ic  result of Lundberg- 
Cramer refers to the special case of exponential  ut i l i ty  and is: There 
is a constant  C such tha t  

~F(x) e nz ~ C  for x ~ o o  (24) 

The question remains whether a more general s ta tement  of the 
following kind is true : Given a bounded uti l i ty function, and certain 
regulari ty conditions, there is a constant  D such tha t  

'V (x) 
v(x) ~ D  for x ~  oo (25) 

Note tha t  this is equivalent to convergence of the denominator  
in Theorem I. The author  has not found the mathemat ical  tools yet  
to prove this conjecture (which is believed to be true under  mild 
regulari ty conditions for the distribution of the claims). 
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3.2. The diffusion model 

In this and the following subsections the t ime pa ramete r  will be 
continuous,  t > o. Wi thou t  m a n y  scruples we will adopt  the results 
of the general discrete t ime model to these two cont inuous t ime 
models. 

We assume tha t  the surplus process {Xt} is a diffusion process 
(see [9] section lO. 4 , or [5] section 16.2) with 

infinitesimal drift  V-(Y) 
infinitesimal variance a2(y) (26) 

depending on location (read surplus). I t  is assumed tha t  they  are 
cont inuous functions of y and tha t  a2(y) >_ C > o. The last con- 
dition excludes complicat ions and guarantees  us tha t  the surplus 

process is asymptot ica l ly  f luctuating.  
Le t  us now look at the mart ingale  condition.  If u(s) is a twice 

differentiable function,  then {u(Xt)} is also a diffusion process, 
namely with infinitesimal drif t  

~'(S) ~(S) + ~ (S) ~ ( s )  (27) 

and infinitesimal variance 
u'~(s) .~(s) (28) 

(see [5] P- 386 for example).  But  a diffusion process is a mart ingale  
iff its drift  vanishes. Therefore  the fair game condit ion becomes the 
following differential  equa t ion '  

u'(s) ~(s) + ½u"(s) ,2(s) = o (29) 

Thus the drift is proportional to the product of variance and risk 
aversion. The initial condit ions can be chosen arbi t rar i ly .  If  we set 
u(o) = o, u ' (o)  = I, and solve the differential  equation,  we get 

• 2 ~ ( s )  - ~  
u(y)  = J e dz (3o) 

0 

which is of p r imary  interest  for y > o. Since the samplepaths  are 
continuous,  the surplus at  the t ime of ruin is necessarily zero. Thus  
if u(oo) < oo, the denomina tor  in Theorem i is one, and we obtain 

u(oo) - -  u(x) 
+(x) = v(x) - u(oo) , x >_ o (3I) 

If on the other  hand u(oo) = oo, Theorem 2 shows tha t  +(x) = i.  
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Example i .  If ~ ( y ) = ~  > o ,  a 2 ( y ) =  ~2, formula (30) shows 
tha t  the ut i l i ty function is exponential,  see formulas (2I), with 

R -  a~ (32) 

This leads to tF(x) = e - n , ,  x > o. 

Example 2. I f  V-(Y) = V. + 8Y (8 > o), aO(y) = ~2, we get from 
formulas (30) and (31 ) tha t  

I - - O ( a x  + b) 
bY(x) = , x > o (33)  

- -  o ( b )  

where 

V~  2v, 
a - b -- (34) 

and @(.) denotes the s tandard  normal distribution. Note tha t  ~ can 
be interpreted as a force of interest. 

Remarks. I) Probabilists call u(y) the scale function, and the 
process {u(Xt)} is said to be on its natural scale. 

2) If u,(oo) < oo, there is a possibility tha t  u(~t)  = u(oo) for a 
finite t with positive probabil i ty (which means tha t  the surplus 
drifts to infini ty in a finite t ime span). From proposition I6.43 in 
[5] we gather  tha t  this is the case, iff 

fu(oo) ds < oo (35)  
~I,(S) 

~,'(s) ~°-(s) 
o 

This condition is not satisfied in the examples above. In the first 
example this is easily verified. In the second it requires some 
calculations tha t  are left to the reader..  

3.3. The Compound Poisson model 

Ill this context  it is natura l  to assume a differentiable ut i l i ty  
function. The surplus changes in t ime for two reasons: a) because 
of the claims to be paid and b) because of the premiums received. 
Suppose tha t  the claim number  process is Poisson (with parameter  
a), and tha t  the individual claim amounts  are independent  and 
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identically distr ibuted random variables with distr ibution iF(y), 
- -  co < y < co. The premiums are received continuously, say at 
a rate c(s) if the surplus equals s. The fair game condition becomes 

= - -  I - -  y )  d E ( y ) )  (36) 

Tiffs is best seen by interpretat ion:  The left side is the gain of 
ut i l i ty per unit  t ime due to the premiums received (assuming a 
surplus of s). And this should be offset by the expected loss of 
ut i l i ty  per unit  t ime due to the possible occurrence of a claim. 
(Obviously some regulari ty assumptions about  the claim amount  
distr ibution have to be made to make formula (36 ) meaningful.) 

Clearly, the surplus process is asymptot ical ly  f luctuating.  Let  us 
now consider a bounded ut i l i ty  function and assume tha t  the 
premium density is determined from (36). In two cases Theorem I 
leads to explicit expressions. 

I) Only Negative "Claims". Suppose F ( o ) =  I, which implies 
negative "premiums" .  The surplus at  the time of ruin is necessarily 
zero, and therefore ~F(x) = v(x) as in (3I). 

2) Exponential Claim Amounts. Suppose tha t  with probabil i ty 
p (0 < p _< I) a claim is positive, in which case it follows an ex- 
ponential  distr ibution : 

F ( y ) = I - - p e - v ,  y > o  (37) 

The claim amount  distribution for y < o is arbi t rary  but  we 
assume tha t  c(o) > o. Thus if ruin occurs, it is caused by a pos- 
itive claim. Since the exponential  distribution has a "lack of 
memory" ,  the conditional distribution of X f  (given T < co) has to 
be exponential.  Hence we can evaluate the denominator  in Theorem 
I and get 

v(x) 
, v ( x )  = o ( 3 s )  

I v ( - -  y) e-V dy 
0 

The case p = i wilt be discussed more in detail in the following 
subsection. 



318 THE SURPLUS PROCESS 

Remarks .  I) If the utility function is exponential,  see formulas 
(2I), c(s) = c is constant. Equation (36) now reduces to the familiar 
formula 

J" e r r  dF(y)  = I + R(c/o~) (39) 

If the utility function is quadratic with level of saturation L > o, 

L -(L - s)2. s < L 
~t(S) (4o) 

i L2 " s > L 

and if F(o) = o (only positive claims), equation (36) leads to 

co 

2(L ~-  s) y2dF(y) (41) 
0 o 

for s < L. Thus the loading is proportional to the infinitesimal 
variance of the claims process, where the proportionality factor is 
an increasing function of the surplus, exploding at s = L: If the 
surplus reaches the level of saturation, the company could only lose 
utility by  continuing business! (This curiousity is due to the fact 
that, contrary to our assumption, the utility function is not strictly 
increasing). 

2) It is possible that the surplus drifts to infinity in a finite time 
interval (see Remark 2 in subsection 3.2.). If F(o) = o, this happens 
with positive probability, if for some So > 0 (therefore for all 
So > o) 

c ~  < oo (4 2) 

#o 

Reason: This integral is the time it takes the surplus to get from 
$o to infinity in the absence of claims. 

3) The model can be generalized such that the premium density 
at time t, the claim frequency at time t and the claim amount 
distribution at time t depend on At( t  > 0) .  For example, if the claim 
number process is a renewal process, (see [I]) the claim frequency 
(and therefore the premium density) at any time depends on the 
time that has elapsed since the last claim occurred. 
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3.4. O t t a v i a n i ' s  p rob lem 

As indicated,  we cont inue the discussion of exponent ia l  claim 
amounts  (example 2 of the preceding subsection with p = I), 
F ( y )  = I - - e - V  for y > o. Le t  us assume x = I (operational  
time). 

Given is a positive and Continuous premium densi ty  c(y), y > o. 

In  [13] Ot taviani  raised the quest ion about  necessary and suf- 
ficient condit ions for the funct ion c(y) tha t  imply a probabi l i ty  of 
ruin less than  one. Since Theorems I and 2 enable us to answer this 
quest ion in terms of tile ut i l i ty  function,  we simply have to con- 
s t ruct  such a ut i l i ty  function.  Set t ing z = s - -  y in formula (36) we 
get 

c(s) u ' ( s )  = u(s)  - -  f u(z)  e -  (s- z) dz  (43) 
- m  

valid for s > o, as a necessary condition. Temporar i ly  we assume 
tha t  c(s) is differentiable.  Taking the der ivat ive  leads to 

i 

c(s) u"(s)  + c ' (s)  u ' ( s )  = u ' ( s )  - -  u(s)  + J" u(z)  e -  (s- z) dz (44) 
- m  

B y adding the last two equat ions  we eliminate the integral  and 
get the differential  equat ion 

cu" + (c' + c - -  I) u '  = o (45) 

valid for s > o. We solve it, se t t ing {for example) u(o)  = o u ' ( o )  = 

= i ,  and get 

_ ~ C ' + C - I o ~  8 
z n C 

u(x)  = J" c d y  (46) 
o 

and frorn this 
z 

f u(x)  = c(o) c ~  e ° * d y  (47) 

o 

Let  this be the definit ion of our funct ion u(x) for x > o. For  
x < o let u(x) be any  differentiable increasing funct ion such tha t  
u(o) = o, u ' (o)  = I and equat ion (43) is satisfied for s = o, 

o 

c(o) = - J" u(z)  e z dz. (48) 
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The verification tha t  this function u(x), - - co  < x < co, satisfies 
the fair game condition (43) is left to the reader. 

F rom Theorems I and 2 we gather:  For  any  x >_ o, q~'(x) < I iff 
u(co) < co. Moreover, qF(x) is given by formula (38). Making use of 
formulas (7), (47), and (48) this can be s tated in terms of the 
premium density function as follows: 

Theorem. For any  x > o, ~F(x) < I iff 

I _ ~c-t  ds 
c 

- -  e o d y  < co (49) 

o 

Furthermore ,  
formula 

if this condition holds, W(x) is given by the 

c ~  e dy 

- f c - ld8  
I + e ~ dy 

o 

(50) 

Examples.  I) For constant  premiums, c ( y ) =  c, condition (49) 
holds iff c > I (positive security loading). In this case fornmla (5o) 
reduces to the well known expression 

I c - 1  - - - X  

'V(x) = - e  c , x > o  (5I)  
C 

2) if c(y) ---- c + ~y, where c > o, ~ > o, condition (49) is satisfied 
and formula (50) reduces to an expression tha t  is best wri t ten 
in terms of the Gamma function, see [I6], p. 28S. 

Remarks. I) If we replace 

I c(y) -- I 

c(y) by I c(y) (52) 

and perform the obvious integration,  formulas (49) and (5 o) can be 
writ ten in a different form. Formula  (5 o) becomes Ottaviani 's  
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formula (IO') see [13] p. 65. In the case of nonnegative security 
loadings, c(y) >_ I, condition (49) becomes equivalent to 

_ f e - l c t  s 
a~ 0 C 

J" e d y <  oo 
o 

(53) 

Therefore Ottaviani's conjecture, see p. 66 in [13], which was 
formulated for this case, turns out to be true. 

2) As a further illustration to the Theorem above, the reader may 
verify that  the validity of condition (42) implies that  condition (49) 
holds. By way of interpretation this is clear: If the surplus becomes 
infinite in a finite time span (with a positive probability), the 
probability of ruin has to be less than one! 
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