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ABSTRACT 

The  problem of the  bes t  f i t  to se t  ideal  va lues  under  general  i n e q u a l i t y  
order res tr ic t ions  is e x a m i n e d  for a s y m m e t r i c ,  quadrat ic ,  absolute ,  and  
C h e b y s h e v  norms.  Special  so lut ion  procedures  are g iven  in t e r m s  of n e t w o r k  
f low a lgor i thms  ove r  a ne twork  assoc ia ted  w i t h  the  g iven  i sotonic  order 
re lat ions ,  and the  nature  of the  op t ima l  so lut ions  is character ized  for t he  
di f ferent  norms.  

The  mode l  is f ormula ted  in t erms  of f inding an op t i ma l  insurance  r a t e  
s tructure  over  g iven  risk c lasses  for w h i c h  a desired pat tern  of tariffs  can be 
specif ied,  The  su i tab i l i ty  of d i f ferent  norms  is cons idered  in the  c o n t e x t  of 
corporate  prof i tab i l i ty ,  and the  re la t ionsh ip  to  a Mmp]e r a t e  re lat iv i t ies  
mode l  is descr ibed.  

K e y w o r d s :  I so ton ic  Regress ion,  Linear P r o g r a n m l i n g ,  Quad-  
r a t i c  P r o g r a m m i n g  N e t w o r k  F lows  A p p r o x i m a t i o n  
T h e o r y  Insurance  l ( a t e m a k i n g  

I .  INTRODUCTION 

There are many different problems associated with the deter- 
mination of rate structures in the insurance industry: the search 
for patterns in the data; development of underlying causal factors 
and analysis of their importance; subdivision of a group of existing 
risk classes into new tariff categories; fitting of experience data to 
standard formulae or rating bureau schedules; consideration of 
reserve liquidity, competitive, or legislative factors, and so on. 

In this paper we shall examine the problem of determining the 
best set of premium rates over a finite set of premium classes, where 
the desired structure of tariffs is not given by a precise causal model, 
but can be specified in terms of inequality constraints between tariffs 
in different classes which reflect desirable "patterns" or "profiles". 
This approach allows the decision-maker a great deal of flexibility 
in specifying the acceptable set of solutions, and to some extent 
diminishes the need to determine causal factors, since rate struc- 
tures seem more often to reflect "reasonable" relationships, parallels 
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with existing rate patterns, or competitive factors, than they do 
some underlying physical law. 

The simplest such rate relationship is a partial order between the 
tariffs; we shall see that  this leads to a model in which the feasible 
solutions can be described in terms of a network optimization 
problem, similar to a critical path schedule. The optimal solution, 
or "best f i t" ,  of course depends upon the norm chosen, and the 
ideal solution without structure constraints; we shall examine the 
appropriateness of three major objective forms in a later section. 

The advantage of network formulation for this problem lies in the 
fact that  the structure constraints can be easily visualized, and 
modified if necessary. For small problems, the computations can be 
easily carried out "on the network", and are much more revealing 
than table or tableau formats; for larger problems, efficient com- 
puter codes of the network flow optimization type are available. 

The mathematical ideas on which this approach is based are not 
new, having appeared in the literature with the names isotonic 
regression [2], isotonic optimization [23], or majorized network f lows 
[24]. However the original papers are somewhat obscure, and 
consider more general and abstract formulations than are needed 
here. We shall emphasize the algorithmic approach, along the lines 
of previous programming approaches to approximation theory [81, 
[18], [14], [I0], [25], [26], [22], [16], [19], [5], [4]. 

2. THE MODEL 

Suppose we wish to determine a premium structure y --  {yl, y2, 
. . . .  Yn} for n well-defined risk classes. Assume that  from some other 
model (of profitability, competitive factors, group experience rating, 
etc.), a set of idealpremium rates, f ~- {fi, f~ . . . . .  fn}, has been deter- 
mined, and a norm, E(y)  = II Y - - f  II , has been specified to reflect 
the undesirability, cost, or error in picking y different from f. 

Three objective functions will be considered in the sequel: 
n 

E(y )  = (I/2) E w , ( y , - - f , ) 2  (I) 
l - 1  

n 

E(y )  = E w, l y f - - f ,  I (2) 

E(y )  = max w, l yi  - -  f ,  [ (3) 
f - 1 , 2 p  . . .  n 
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where the {w,} are given positive weights associated with each class. 
The first is the classical regression, least-squares or L2 norm; the 
second is the weighted absolute or L1 norm ; the last is called variously 
the weighted Chebyshev, uniform, or Loo norm Ei9J. Actually, we 
shall allow unsymmetric generalizations of these norms [IOl; 
motivations will be discussed in a later section. 

3- ISOTONIC CONSTRAINTS AND THE ASSOCIATED GRAPH 

The concept of structure or pattern implies a certain relationship 
between premiums in different classes; this is why the ideal solution 
is not y = f. In some situations (such as the determination of clas- 
sification relativities [I3], [I]), one may postulate a certain mathe- 
matical form of relationship, and then approximate that  form 
through adjustment of parameters. 

In our model, we assume only that  a certain natural ordering 
between tariffs is specified by external considerations, for instance 
that 

YJ >-- Y~ (4) 

between two classes i and j. An example of this might be in auto- 
mobile insurance, where one reasonably expects that  the categories: 
"for pleasure only", "less than Io miles to place of work", "greater 
than Io miles to place of work", and "used for business purposes", 
reflect increased hazard, and therefore should have monotonic 
rates. Or perhaps competitive factors influence the relationship 
between different premiums, or there is a concern that  an un- 
natural pattern will induce "moral hazard" on the part of the 
policyholder. 

Of course, if the ideal rates also reflect this ordering, then there is 
no problem; y = f will be the optimum choice with any norm. 
However, the {fi} may be determined by small sample data, or by 
profitability considerations and hence may be contradictory to 
(4); therein lies the problem of determining the best tariff pat tern 
within feasible structures. 

If (4) holds for j = i + I (i = I, 2 . . . . .  n - -  I), after possible 
relabelling, then we speak of a complete ordering of the risk classes. 
This can be visualized as the sequence of directed arcs, called a 
path, shown in Figure Ia;  each of the n - - I  arcs represents an 
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inequa l i ty  const ra int  (4) be tween two of the n tariffs represented  
by  the nodes. 

In the more  general  case, (4) will hold only  between cer ta in  given 
pairs of indices, and we speak of apartial ordering between risk classes. 
The relat ionships (4) can be represented  as a d i rected graph G -~ 
{n; A}, with the set of nodes ,n = {I, 2 . . . . .  n} represent ing the 

(o) COMPLETE ORDERING 

(b) PARTIAL ORDERING 

lqg. i. G r a p h s  Assoc ia ted  \Vi th  I so ton ic  Order ing .  

risk classes, and the set of directed arcs A represent ing each ordered 
set of indices (i,j) in an isotonic relat ionship (4). 

We will assume tha t  the graph G is connected; otherwise there  is no 
s t ruc tura l  relat ionship between cer ta in  sets of classes, and the 
problem falls apar t  into two or more separate  ones. Also, tile fact  
tha t  we have a part ial  order  means  there  are no direcli'd cycles 
(loops of arcs all in the same ork 'ntat ion)  within G; (4) would then 
imply that  all the  3,~ were equal for classes corresponding to nodes in 
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the cycle, and  in more general models below might  lead to contradic- 
tions. I t  is also well-known tha t  for a part ial  order, we can arrange 
the indexing so tha t  i < j across every arc in A. 

Figure Ib  shows the graph of the part ial  order: 

Yl ~ Y2 --< Y3 --< Y6 --< Y0 ; Y~ --< Y5 --< Y7 --< Ylo ; 

Y4 ~ Y.~ --< Y8; Ylo -~ Y6" 

Even this G m a y  not  indicate the general i ty  of the model, as it  is 
planar. In  a realistic problem, one m a y  have m a n y  more arcs, with 
complicated "connec t iv i ty" .  

I t  turns  out  to be possible to generalize the s tructure constraints  
somewhat,  and s tay  within the network formulation.  Accordingly 
we shall allow more general forms of (4) 

Ys - -  Y* >-- R*J, ( i , j ) ¢ A  (5) 

and/or 

y j  - -  y~ < S,j (6) 

for given constants  R, t ~ S, f. (4) corresponds to R,  / = o, S, t = oo ; 
set t ing R, t = St1 clearly specifies an exact  tariff  differential. 

Finally,  we admit  absolute bounds A, _< B, on the individual  
tariffs : 

A ~ < y ~  < B ~ ,  i ~ n  (7) 

to reflect legislative, competit ive,  or profi tabi l i ty  constraints.  We 
assume A, <_fi _< B,. Sett ing A, = B, uniquely "anchors"  a tariff.  

4- NETWORK OPTIMIZATION 

Ins tead of the tariffs {y,}, we shall work with a set of unrestr icted 
error variables 

v~ = y ,  - - f ~ ,  i ~ n (8) 

v, unrestr icted 

and, further,  will split the error v, into its positive and  negat ive 
parts.  

v, = u ; - - u  i ,  i ~ n  

u i > o u i > o, (9) 
so tha t  assymmetr ic  norms can be considered. 
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The assymetric least-squares isotonic optimization (regression) 
problem, corresponding to norm (I), (5), (6), (7), then becomes: 

MinE ---- (1/2) X Ewe(u;) 2 + wi(u~) 2] (IO) 

subject to (9) and: 

R,j + ft - - f~  _< v~ _< S, I + fi - - f j  (i, j) ~ A (II) 

A, - - f ,  < v, < B, - - f , .  i ,  n (12) 

Here we have generalized the quadratic weights w, to assymetric 
quadratic weights {w; ; w~ }. 

The assymetric absolute isotonic optimization problem, correspond- 
ing to norm (2), is: 

M i n E = -  X ~w;u; + w[ ui~ (I3) 
i g n  

subject to (9), (II), and (12). 

Finally, the assymmetric Chebyshev isotonic optimization problem, 
corresponding to norm (3), can be expressed in terms of a new 
(nonnegative) variable e: 

Min E ---- e (14) 

e - -  w ; u ;  _> o 

i ,  n (15) 
e - -  w ~ u [  ~ o 

In principle, the mathematical  problem is solved at this poinlc. 
The least-squares optimization is a quadratic programming problem 
E2ol, [I2], [I5], E6], while the other two norms are linear programs 
[2I~, and any general-purpose computer code could be used for 
numerical solutions. 

But there is independent interest in seeing what characteristics 
the special structure inequalities (II) bring to the solution, and how 
one may solve small problems by hand. The mathematical dual 
programs will turn out to have an independent network flow inter- 
pretation EII~, and from duality theory we can better understand 
the economic price we pay for structural consistency. 

The interpretation of ~enelal isotonic re~ression as a network 
problem has been made by Veinott E24~ and others. However, 
anyone who has worked with critical path scheduling will recognize 
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(II) as scheduling constraints ,  and realize tha t  the dual  is a flow 
problem over the associated precedence network.  Apparen t ly  no one 
has previously invest igated the actual  algori thmic features in this 
formulat ion.  

5. ABSOLUTE ISOTONIC OPTIMIZATION 

Basic Network Model 

We consider the absolute norm first, since it is most  closely 
related to network flow theory,  and its dual  most  easily inter- 
preted. We concentrate  first on expressing (I3), (9), (II),  (12) as 
the dual  to an opt imal  capaci ta ted flow problem [2I], [111. 

Henceforth,  let 

r, l = R O - -  (fj - - f , ) ;  rj, = (fj - - f z )  - -  S,j, (i, j) ¢ A. (16) 

(Note reversal of indices and signs.) If the ideal tariffs, f ,  and  fj ,  
sat isfy the isotonic constraints  (5) and  (6) strictly,  then  the cor- 
responding r,j and rj, are negative; if f ,  andfy  violate eithei (5) or (6), 
this is a conflict of interest,  and  the corresponding rij (or rjl, bu t  not  
both) is positive. 

Ignore, temporari ly,  the individual  constraints  (7)- Define a 
reference variable Vo : o, and henceforth write:  

u;  =U,o>_O; u f  = U o , > O  i c n .  (17) 

The absolute isotonic optimization problem can then  be wri t ten:  

M i n E =  G [ o - v , + w [ u , 0 + W ~ U o , l  
{¢n 

v~ - -  v, > r,~ (i, j) ¢ A 

- -  ( v j  - -  v , )  >_  r j ,  

v, - -  v0 + uo, > o 

v o - -  v, + u,o > o i ,  n 

V o : O  

vt unrestr ic ted 

U~O, Uot ~ O. 

(18) 

(We have used the fact  tha t  not  both  v,o and voi will be positive in a 
basic solution.) 
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The  reader  should have no t rouble  ill ver i fying tha t  the mathe- 
matical dual to (19) is the optimal capacitated.flow problem: 

M a x D  = Z Z rtjx~ 1 
(~,~) C A  ° 

X (x~j - -  xj~) = o j ~ nO (r9) 
,,,o 

o < x f ~  < m ,  s ( i , j ) ¢ A o  

for an enlarged network G O = {n°; Ao}, cons t ruc ted  f rom G in the 
following fashion : 

(i) A node o, corresponding to vo, is added ;  n o = n + {o}; 
(ii) Two new feeder arcs, (i, o) and  (o, i) are added  for eve ry  i ¢ n ; 

(iii) Fo r  eve ry  (i, j )  ¢ A, add the reverse arc (j, i) (if S,j finite). 

Thus ,  if there  were a original arcs in A, there  are 2(a + n) arcs in 
A o. This ne twork  is said to be in circulation form because there  are no 
externa l  flow requirements .  If there  are any  profi ts  to be made,  t h ey  
mus t  be f rom loop flows, passing over  arcs with posi t ive r,j. 

The  uni t f low profits, r,j, are given b y  (16) for the  original arcs and 
the  reversed arcs; bu t  rto = to, = o for the feeder arcs. Conversely,  
the  f low capacities, mtj, are:  

= w;  ) 
' i ~ n (20 )  

mot w~ 
/ 

r e , j =  0o i, j c n 

Figure  2 illt lstrates the  conversion of a por t ion  of the graph of 
Figure  i(b) to ne twork  flow form. 

Nature of  Dual Flow Solution. 

Clearly, the  op t imal  flow pa t t e rn  x * =  {x[j; ( i , j ) c A  °} always 
exists, since x --  o is always feasible. I t  is a lways finite, since the  
capacit ies  on the feeder  arcs are posi t ive (weights), and the condi- 
t ion  R O < St t guarantees  r,j + r~, < o, i.e. no profi t  can be got ten  
f rom a "whi r lpool"  be tween i and j.  

Thus,  to make  D increase, flow mus t  pass f rom node o th rough  
arc (o, s) to  some starting node, s, thence  along a series of (forward or 
reverse) arcs, the sum of whose r, s must be positive, to some terminal 
node t, and  thence  back to node o via (t, o). The increase in D being 
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p r o p o r t i o n a l  to  t h e  s u m  of  r~ 1 a l o n g  t h i s  (s, t)-path a n d  t o  t h e  c o m -  

m o n  f low ¢ a r o u n d  t h i s  dementary loop, i t  fo l lows  t h a t  w e  w a n t  t o  

i n c r e a s e  ¢ = x 0 s  = xt0 . . . .  as  m u c h  as  pos s ib l e ,  u n t i l  i t  is l i m i t e d  

b y  Min  (w;, w[). 

r21 

12C " 

Fig. 2. Conversion of Graph G to Flow Network G 0. 

gi (Yi )  

I 

I V ' I ~ 
Ai f i  Bi Yi 

Fig. 3. Piecewise Linear  Convex Norm. 

~ r ~  2. _ B - fi ) ol ~=0 rio- ( i 
= • m i o -  i 

Fig. 4. Feeder  Arc Configuration for Piecewise Linear  Convex Norm. 

X2 
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Thus, the desirable flow paths include arcs for which r,j > o, i.e. 
isotonic relationships unsatisfied by the ideal f ,  andfp  In the simplest 
case, these positive profit arcs are nonadjacent, and have neighbor- 
ing arcs which have large negative r,j (well satisfied f,, f i  relation- 
ships), so that  combined flows are unprofitable; in other words, 
infeasible f,, f j  relationships are local and weak. Then it is clear that  
the optimal x* consists of the union of several disjoint loop flows 
over one regular and two feeder arcs. 

We can understand the nature of the general solution better  if we 
imagine that  the set P of all s, t paths, Pa,  for which 

R(s,t) = E r,j > o  (21) 
Llcpet 

has been enumerated;  this is a combinatorial task for large G o but  
quite reasonable for small problems. Let ~st be the elementary loop 
flow along (o, s) + p,t + (t, o). Then it can be shown that  (19) is 
equivalent to : 

Max D = E R**¢,t 
PatEP 
X ¢,t --< w;  s, t • n (22) 
t 

E ¢ , t  --< w[ P,t ¢ P 
z 

~st ~ O. 

In other words, in the general case (large, complex violations of 
structure by  f) ,  the profitable elementary loop flows are competing 
for entry and exit capacity. Rather  larger sequences ("blocks", in 
[3]) of arcs, some possibly with negative r,j, are included in order to 
use up adjacent capacity. 

This approach can be made the  basis of a good feasible starting 
solution x 0 to (19); one merely begins allocating loop flows in a 
myopic way, starting with an R,t-ordered list of paths. When 
capacity runs out, one skips the associated paths. Clearly D(x o) = 
D O < D *  = D(x*) .  

Turning now to the relationship between the dual (i9), and the 
primal (18) (A,, B, still neglected), we see that  it is trivial to get a 
feasible set of potentials {v~}. Assume the indices have been chosen 
so i < j for all (i, j) ¢ A. 
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0 of lowest index equal  to zero; (i) Set the v, 

(ii) Go through the indices in increasing order, and for index j 

v~ = MAX {v~ + Rij + f , - - J ~ }  
t 

(i, ])cA ° 

(iii) Repea t  (ii) until  all v ° defined. 

The v~ can then be ad jus ted  on an ad hoc basis to reduce the value of 
E{v °} = E o. 

Network  algori thms can be based on s tar t ing with ei ther a 
feasible primal, v o, with a feasible dual  x o, or with both .  The 
advan tage  to having bo th  is tha t  the  opt imal  value of the total  
norm can be bounded  via the dua l i ty  theorem [21]: 

D O < D* = E* ~ Eo: (23) 

then, fur ther  improvement  to v ° m a y  be judged  unnecessary.  
Fur the r  descriptions of algori thms can be found for example  in 
references [2I 1 and [ iI] .  

There are impor tan t  relat ionships be tween  optimal flows x* and 
optimal potentials v* given b y  the complementary slackness principle 
[2i]: 

(i) If  x0t < w~ and x,0 < w ; ,  then v, = o (y;  = f , ) :  

(ii) If  v, > o  (y, > f , ) ,  then x,0 , ,  or if v, < o  (y;  < f , ) ,  
* W{'" then Xof ---- 

(iii) If x,~ > o [xj~ > o] for (i, j) ¢ A, then vj - -  v, = r,j, Y7 - -  Y* 
= R,j [rj, or S,j, respectively].  

(iv) If v j -  v~ > r,j, y j -  y,  > Re, then x 0 -=  o ;  s i m i l a r l y  for 

Finally,  we note the  sensi t ivi ty analysis results, val id  in general:  

(i) If  y ;  = f , ,  x;, Ix**0] is the  level to which w~'[w~] mus t  decrease 
before y ;  becomes < f ,  [ 2> f,] ; 

(ii) x~j > o [xj, > 0] for (i, j ) ¢  A is the  marginal  ra te  at  which 
D* = E*  will increase, if R,j  is increased [S O is decreased]. 

These are valuable  in re-examining the formulat ion,  once the first 
solution has been obtained.  
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Nature of the opt imal  Solution 

The  na tu re  of the opt imal  solut ion to (29) is well-known E2i I. In 
addi t ion  to the  complemen ta ry  relat ions be tween  pr imal  and dual  
variables,  a key concept  is t ha t  of the  optimal basis for the opt imal  
ex t remal  solution. For  a ne twork  of A arcs and N nodes, the basis 
is a spanning tree of N - -  I a r c s - - a  connec ted  conf igurat ion with no 
loops. On this tree,  the  Ev~ can be calculated uniquely  from t ight  
isotonic relat ionships v ~ . -  v, = r,j, and v o ~ o, and  the x,j can 
have  a ny  feasible value o < x 0 < m,j. The remaining A - -  N + I 
arcs are called the co-tree; for these arcs, e i ther  x,j o (v~ - -  v t _ 
r,j), or x~j = m O (v; - -  v; > r,j). CIf the problem paramete r s  are 
pe r t u r bed  sl ightly to el iminate t ieing solutions, the above inequali-  
ties can be changed to str ict  inequalities.) Clearly, not  bo th  (i, j)  
and  (j, i) can be t ree  arcs. 

In  t e rms  of our  original problem,  this means  t h a t  in the opt imal  
solut ion the  n classes represented  by  the nodes n are partitioned into 
some number  I < r < n of solution blocks n = {B1, B~, . . . .  Br), 
each block conta in ing  a variable number  of nodes. A singlet block 
of only  one node k means  tha t  e i ther  (o, k) or (k, o) can be placed in 
the  op t imal  tree,  bu t  no o ther  (i, k) or (k, i);  x~k = xk0 = o, and 
v~ = o (y~ = fk)" Conversely,  if there  is on ly  one solut ion block B1, 
then  a tree of n - -  I relat ionships (i, j)  mus t  be t ight  (v~ - -  v~. = 
r,j) among the  nodes n, and  this is augmen ted  b y  one feeder  arc 
(o, s) [or (t, o)] to  make  a spanning t ree  for  GO; v~ Eor v~l = o, and  
this defines the  potent ia ls  un ique ly  over  the block. Dual  flows mus t  be 
zero or s a tu ra t ed  on all o ther  feeder arcs, and  zero on co-tree arcs in B~. 

In  the  general  case of several  blocks of differing sizes : 

(i) If  block k contains  N~ nodes, there  is a shrub (small tree) of 
N~ - -  I arcs within the  block, over  which the  isotonic relat ions 
are t ight  (v~ - -  v~ = r~l; i, j ¢ Bk) ; 

(ii) Each  block k has a reference node, s~Eor tk], for which v;, Ev;~ = 
o, which then  de termines  the  potent ia ls  un ique ly ;  

(iii) The  union of the r shrubs and the  feeder arcs (o, sk) [or (tk, .o)~ 
gives the n arcs corresponding to the  opt imal  t ree  for  G °. 

(iv) Cotree arcs within blocks, or be tween  blocks (but  not  feeder 
* • 

arcs) mus t  have  x~! = o, and  v I - -  v, > r,1; 
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* = w (  if  * < o ,  or (v) Feeder  arcs not  in the tree mus t  have xot vt 
* i f  * > o .  X;0 ~ -  Ze) t V t 

Other characteristics which come out  upon closer examinat ion are: 

(a) Some arcs wi th  r 0 < o m a y  have, but  not  every arc wi th  rtl 3> o 
need have,  x 0 > o; 

(b) Nonunique values of {v;} and {y;} m a y  result  if opposing 
weights [w~] are balanced within a block; 

(c) Nonunique values of {x~/} m a y  result  if the constants  {rtj } are 
conservative around a loop, thus  making  v I - - v  t = r, 1 on an 
interblock cotree arc. 

Individual Constraints, Piecewise Linear Norms 

We now re turn  to the problem of individual  class constraints ,  A,  
and  Bt, in a roundabout  manner  tha t  will provide addi t ional  
generali ty.  Suppose tha t  the norm (2) is replaced by  the sum of n 
piecewise-linear convex norms, for each class, as follows: 

n 

E(y) = Z gt(Yt) 

l w~-( f~--  At) + w~-(A - - y t )  Yt --< A, 

g*(Yt) = w~- ( f t - -Y t )  At ~ Y~ -< ft  (24) 
w~ (Yt--ft) ft -< Yt -< Bt 
wl+(Bt-- f t )  + w~÷(y , - -B t )  Yt >_ Bt 

x+ > O; A typical  gt(Yt) is shown in Figure 3. To be convex, w~ + > w t _ 
1 - > O "  ~ -  _> ~ _ 

A s t ra ightforward application of dua l i ty  shows tha t  in this case 
each feeder arc in G o is replaced by  two feeder arcs; (i, o) becomes 
(i, o) 1 and  (i, 0) 2, etc., the new parameters  are: 

° ~ ° ~ 1 _  1 1 1 . .  
r t = o ;  m t = zat  ; r t o  ~ o ;  i n t o  ~ w t , 

r~t (ft At)" m~t w~-" r~o (B t __f~).m~ ° z÷ = - -  - -  , = , = - -  , = w t  . ( 2 5 )  

In this way, the problem remains a network flow problem, wi th  a 
new configurat ion as shown in Figure 4. 

Loosely speaking, the new arcs permit  dual  flow in the feeder arcs 
1 + and  w~- by  imposing a positive uni t  cost, above the values w t 

+ ( f t -  At) or + ( B , - - f t ) .  The interested reader  can easily work 
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out the other details of duality, or extend the curve to several 
linear segments. 

Finally, to impose strict limits of the type A, < y, < Bi, we let 
the {w~ + } and {w~- } increase without limit. If there is any elementary 

2 2 loop using path P, t  for which ros + Rst + r t o  > o, then the optimal 
dual flow will increase without limit, which means that the con 
straints As and B, on classes s and t have rendered the original 
isotonic problem primally infeasible. Network computer codes 
would check this possibility automatically. 

6. CHEVYSHEV ISOTONIC OPTIMIZATION PROBLEM 

As a preliminary to consideration of norm (14), suppose we have 
a two-variable Chevyshev isotonic problem ys _< Yt, but  rst > o. 
Then clearly Ys = Y~, and from (I5), we find, in the new notation" 

- - v ; = u o , -  w~ r't; vt = u t ° -  w; r ,  

where 

w ; w ;  
~" = • E *  e* w; + w[ ' - . . . .  $*rsv (26) 

Thus the basic property of this norm is that (at least) two opposing 
errors of class s and t are equalized. 

If we take the dual of (I4), (9), (i i) ,  (i2), (I5), we obtain an 
opti.mal flow problem with variable capacities on the feeder arcs: 

M a x D =  Z Z r,jx,j 
(~,0 * ae 

( x , j  - -  xj~)  = o j ~ nO 

o < x 0 ~ _ < w / " z 0 ~ _ > o  i c n  (27) 

o _< xo~ _< w~.zo~ > o 

X (Zo, + Z,o) _< I. 
~ t t  

The last inequality is effectively an equality when e* > o, and 
provides for a weighted allocation of dual flow capacity only to 
those feeder arcs (o, s) and (t, o) which correspond to equalized 
weighted errors in the sense of (26). 



ISOTONIC OPTIMIZATION 189 

One can easily develop an algorithm to work directly with (14), 
(15) and (27) along the lines of other Chebyshev approximation 
algorithms [5], [IO], [I4], [I7], [18], [22], [23], [25], and [26]. 

Loosely speaking, it would proceed as follows: 

(i) Start with a feasible tariff structure {v~}, say the optimal solu- 
tion to the absolute isotonic problem with the same weights, 
and w i t h x  0 = z  o = o ;  

(ii) Identify the current largest weighted error, e °, say w;(V0°s) 
[or w + 0 t (Uto)] and allow the capacity on this arc to increase from 
zero; 

(iii) Increase v°8 decrease v~, and all potentials linked together 
( v ~ -  v~ = r~j) in the same block, by an amount  0. The de- 
crease e o - -  0 will be limited by: 

(a) an increase in weighted error of another node t[s] in the 
same block to the same value; 

(b) the at tainment  of a tight constraint v~ - -  v~ = r,j at  some 
extremity of the block with a new node k not in the block; 
or 

(c) the decrease of e ° - -  0 to the fixed maximal weighted error 
of some node s' or t' in a different block; 

(Note that  when a potential changes sign, a different weight 
must be used.) 

(iv) In case (a), the optimal solution is attained, with the new node 
t[s] being the exit [entry] point for dual flow. Equations (26) 
are satisfied, with 4" being the optimal dual flow around the 
elementary loop, D* = E*, and Z~s, z~ adjusted to suit. 

(v) In case (b), the structure constraints merge node k (and other 
nodes in its block) into the current block. One continues as in 
Step (iii) with the enlarged block; 

(vi) In case (c), weighted error equality is between two candidate 
nodes (s or t) and (s' or t') not in the same block, and further 
decreases of both errors is necessary to determine which block 
contains the limiting equality pair. A generalized Step (iii) is 
now performed except that  0 and 0' must  be in the ratio 
w~,O' = w~ O, etc., to keep the weighted maximal errors in the 
different blocks identical. If further steps (iiic) are reached, one 
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may be working on many different blocks at the same time. 
However, except in tieing cases (which can be easily perturbed), 
the optimal solution is still a balance between some s and some 
t in the same block. 

In general, the Chebyshev norm is characterized by  a great deal 
more freedom than the absolute norm, since only one block defines 
the two matched maximal weighted errors e*, and other blocks are 
free to have their potential shifted up and down within the limits 
imposed by  e* and the slack between blocks. The advantage to 
starting with the optimal solution to the absolute norm problem 
with the same weights is that,  when the optimal Chebyshev solution 
is obtained, a particular solution within the freedom just described 
is found which minimizes the absolute norm of classes outside the 
limiting block. 

The classical approach described above suffices for small prob- 
lems solved manually. For large problems, a more convenient for- 
mulation is gotten by  pricing in the extra constraints in (27). After 
some simplification because of the nature of the optimal solution, 
we find a new optimal f low problem with parametric costs: 

M a x F  = 1~ X r,tx, ~ 
(~,~) , a  o 

X ( x ,  - -  xj~) = o j ( no 

x O > o ( i , j )  ¢ A ° 

with new feeder arc unit profits: 

X X 

(2s )  

- -  - -  m . 

r,o = - -  w ,  ' ro, w ~  i ¢ n (29) 

This corresponds to a restatement of the original problem as: 

Find feasible {v,) such that  

vj - -  v,  > r o  (i, j )  ~ A o 

- - X  X 
< v,  < - -  i c n  (30) 

w i  - - w ; "  

Here X is a Lagrange Multiplier which is increased slowly from zero 
to the first value X* at which (30) is feasible, at which point X* =e* ,  
and F*  ~ o. 
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In this formulation, (28) is an ordinary optimal profit flow 
problem, except that  there are parametric costs (29) on the feeder 
arcs, which increase from zero, until F* = o. (Thus, these dual 
flows are not those of (27).) The most convenient way to solve the 
problem is then:  

(i) Add, temporarily, the constraints (2o), and solve the corre- 
sponding absolute norm problem for {v 0} and {xO}; 

(ii) Decrease the unit profits on the feeder arcs according to (29) by 
increasing ~, and resolving (28), "extinguishing" the flows in the 
various blocks until x ° just reaches zero. 

There are network flow algorithms available to do this parametric 
variation directly, or it may be carried out through man-machine 
interaction with any computer code. A computational advantage is 
that  one need not keep separate track of all the weighted errors, 
and that  the final {v~} will be automatically adjusted to their final 
values, in the sense described above of the best absolute error 
particular solution within the optimal Chebyshev solution. The last 
(s, t) flow path to be extinguished gives the limiting pair of maximal 
weighted errors. 

7. ISOTONIC REGRESSION PROBLEM 

The symmetric least-squares norm (I) has been extensively 
studied in the statistical literature; see in particular Reference [21 
and the bibliography therein. 

We describe first the elegant algorithm for the simple isotonic 
regression problem (4) over a complete order, with no side constraints, 
due to Reid-Brunk-Grenander [2]: 

(a) Compute cumulative weighted ideals and cumulative weights: 

V j - -  X wif , ;  Wj  = X w, ( j  = i,  2 . . . . .  n). (31 ) 
~ = 1  i - I  

(b) Plot the points Pj  --  (Wj;  F~) in the Cartesian plane, connected 
by straight lines, and stretch a string, at tached at Po = (o, o) 
and Pn, from below until it is taut. (This is the Newton- 
Puiseux polygon, or greatest convex minorant of the graph 
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(c) If, for any j, the string is below Pj, then y ;  = y ; .  1, and so on, 
until a point j +  I, or j +  2, or . . .  k is reached where the 
string reaches a support Pk. 

(d) This partitions the m classes into I < r < m solution blocks, 
{B1; B2 . . .  Br} over which the optimal solution is constant. By  
direct calculation: 

y;  = ( Z w, f ,  / Z w,) j c Bk  (32) 

which is also the slope of the taut  string from j - -  I to j. 

(e) If the string follows the segment (P;-1, P;), then P j  is in a 
solution block of one member, y~ = fj, and y;  > y;_ 1. 

Other "pooling" algorithms for this case are given in Reference [2]. 
This approach is easily extended to the case where the graph G of 

the partial order is an arborescence. The algorithms proposed for an 
arbitrary G are more complicated to understand as are the modifica- 
tions imposed by  constraints (6) and (7). (See the algorithms of 
Thompson, Kruskal, Alexander, and van Eeden in Chapters I and 2 
of [2].) We shall follow instead the remark of Veinott [241 (in a more 
general context), that  general isotonic regression problem "is a 
separable quadratic network flow problem for which special al- 
gorithms are available." 

Suppose that  the constraints are expressed as in (18), but  with 
the unsymmetric quadratic norm: 

Min E = I/2 X w~(u~0) 2 + w~ (u0t) 2. (33) 

Then the Dorn dual [3J becomes: 

M a x D  = Z Z r,jx, 1 - I / 2  E (U~oX, o+Uo,Xo~) 
(~,t) ¢a t e n  

X (x,j  - -  xj ,)  = o j ~ no 
~ n  o 

x,j > o (i, j) cA o (34) 

X~o _< w l  U~o = m~o(U,o) 

Xo, < w~'uo, = mo~(Uo,) 

Notice the presence of the primal variables in the dual functional 
and in the (varying) capacities of the feeder arcs. Using comple- 



ISOTONIC OPTIMIZATION 193 

mentary slackness and the fact that  the weights are positive, we 
infer that  in the optimal solution: 

X;0 ~ + * * w, u,o = w; [max v,, o] 

" ol (3s)  • - * -~ w~" max [--  v,, X0~ = W, t Uo i 

and re-express the dual as: 

rCx,o   l 
M a x D  = ~ . A  r , , x , , - - I /2  ~ w----~- + w[ J 

Z (x , / - -  xl, ) = o j * n o (30) 
l t n  o 

x, 1 > o  (i,j) cA°.  

which is essentially the Dennis dual [8]. In this form, we have an 
optimal flow problem with quadratic costs .in the feeder arcs. 

The structure of the optimal flow solution is aS discussed earlier: 
the nodes are separated into solution blocks, which, together with 
their linking arcs, form shrubs of I, 2 . . . . .  or up to n nodes, over 
which tight primal relationships (5) or (6) obtain. Thus, the relative 
values of the v~ and y~ within a solution block Bk are completely 
defined by a set of simple equality relations. 

If one finds a certain relative solution {v~; i ¢ B~} for a block k, 
then by (35), the exogenous flows {x,o; x0,} into and out of the block 
are completely defined; if these flows balance over Bk, then the 
current solution is optimal. (An isolated node k can then only have 
v~ = x ~  = X~o = o.) Contrarywise, an excess [deficit] of flow in 
B~ indicates that  potentials v~ should be raised [lowered] by an 
amount 0. The adjustment of exogenous flows at node i will be 
± [T] wl0 by (35), and thus a choice of the correct 0 to achieve 
Kirchoff's conservative law will also determine the correct absolute 
value of the tariffs in that  solution block. The result will be the 
appropriate generalization of (32). 

Thus, the key problem is that  of separating the nodes into solu- 
tion blocks, rather than finding the best regression within the block. 
For small problems, a manual solution can proceed as follows: 

(I) Establish a tentative partition of n into blocks {B1, B2 . . . .  , Br}, 
by linking together nodes for which r,j or rj, > o with arcs of 
correct orientation, v~ = o is thus initially feasible for inter- 
bloc arcs. 
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(2) Select a block Be not previously examined, and pick a set of 
relative potentials satisfying v~ - -  v~ = r,j (i, j ¢ B~) and cal- 
culate exogenous flows from (35): 

(a) If the flows balance, the current solution is (locally) opti- 
mal; pick another block; 

(b) If there is excess [deficit I flow, all v~(i eBb) must be 
increased [decreased] by an amount 0 until the flows from 
(35) balance, or until; 

(i) If a v~ changes sign, the computation should stop, and 
recommence with new asymmetric weight; 

0 decreases to zero, the computation (ii) If an arc flow x~l 
stops, and the block is split between i and j ;  

liii) If the final solution violates v ~ -  v~ ~ r,1 for one or 
more arcs between blocks, then merge the current block 
with that  block for which the discrepancy is greatest, 
and repeat (2) for the enlarged block j. 

(3) The above process of merging and dissolving blocks, and 
floating potentials is repeated until: 

(a) Flows balance within blocks; 
(b) v ~ -  v~ = tel within blocks; 
(c) v ~ -  v~ > r,t and x~l = o across blocks. 

These values are then optimal. 

As a final check, the weighted mean-square error E* should be 
$ . computed and checked with R* = Z Z rOx,l, the result should be 

E* = I/2 R'.  This is related to well-known theorem about power 
dissipation in electrical engineering [8]! 

If bounds (7) are added, this places flow capacities of 

m~o = w~(B~--f~); mot = w~(f~-- A~) (36) 

on the feeder arcs, and complicates the procedure somewhat. 

Unfortunately, there do not seem to be any quadratic network 
computer codes available for large problems. One possibility is to 
use a general quadratic linear programming code (see, e.g. [I2], 
[I5], [16]). However, because of the efficiency of ordinary linear 
network algorithms, my  personal suggestion for a large problem 
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would be to approximate the quadratic {or other convex) norms by  
a simple piecewise linear convex function, in a manner similar to 
Figures (3) and (4), over some reasonable ranges. Then, when the 
initial solution values {u~o; Uo°,} were known, one could redefine 
current feeder arc parameters as: 

0 ~ W+~0 . m,o , ,o, r~o = - - 1 / 2  u~o, 

m~, = w~uo°,; ro °, = - -  1/2 uo°,. (37) 

(thus effectively having only one feeder arc), and then re-iterate. 
In most problems, the solution should stabilize quickly into solution 
blocks; side calculations could then replace the within-block 
convergence to v~. An out-of-kilter code E2I 1, EII~ would be ideal for 
this interaction. 

8. SOLUTION E X A M P L E S  

To illustrate these ideas, the isotonic ordering of Figure Ib  and 
the ideal values and weights shown in Table I, were used to find 
optimal solutions for the three different assymetric norms, referred 
to below as LL L~, and L~. (A missing weight indicates it is not 
influential in the final solution.) 

Figure 5 shows the ideal values f ,  on each node, and the derived 
r,j; the example is probably atypical, in that  six out of ten isotonic 
relationships are violated. The optimal solution to the L~ norm is 
shown in Figure 6a; v~ are shown on the nodes, x,j > o (solution 
blocks) on solid arcs, and x0, or x,o > o as numbers on feeder ar- 
rows. Figure 6b show the L~ with the v~ which also make L~ as small 
as possible; more general ranges for y~ a n d y ;  are possible, as shown 
in Table I. The last flow to be extinguished is that  from node I to 
node IO over the solid arcs; the final value of the LaGrange multi- 
plier in (30) and the weighted errors at nodes I and IO is X* = e* = 
18.75. The final solution for the L~ norm, as shown in Figure 6b, 
also has two solution blocks, node 4 as a singlet and all others linked 
together; notice the complexity of the flow, and the uniqueness of 
v4* and vT.* The x,j* are not unique, however, since the r,j were 
chosen to be conservative around the two paths from node 2 to 
node IO; this means that  arc (5, 7) (shown dotted) is actually priced 
in, and up to 5 I/3 units of dual flow could be rerouted via the lower 
path. 
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(c) L~ NORM. 

TABLE I 

Data and Solution for Example. 

C l a s s  i i 2 3 4 5 6 7 8 i o  

w~+ - - 8 5 4 2 - 6 
W e i g h t s  

wi- 3 i 8 3 i - 6 - 

I d e a l  V a l u e s  f t  i o  5 3 2 3 o 4 I 

%. L t  * N o r m  2 2 3 2 2 3 4 2 3 4 

~ ( -4 .25 ,  (3.75, (3.75, 
~ L® ~ N o r m  ~ 3.75 --~ 3.75) ~-- 3 .75 ~ 4 . i 2 5 )  5 .6875  ) 3 .75  

© ~  L * * N o r m  ~-- 2 2/3 --~ 2 , 2 2 / 3  , 

T A B L E  2 

Relative Value of All Norms for Different Optimal Solutions 

S o l u t i o n  N o r m  R e l a t i v e  V a l u e  of  A l l  N o r m s  

a n d  O p t i m a l  V a l u e  E fo r  L i *  E for  L** E fo r  L s  * 

L1 i E *  ~ 68 I.OOO 1.239 1 .o39 

L~* E *  = 18 3/4 1.28o I.OOO 1.173 

L3 * E *  = 128 1.258 1.172 I.OOO 
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Although the different optimal norms are not, strictly speaking, 
comparable, Table II may be of interest in showing the relative 
trade-offs. (For the L~ norm, the best L~ solution was assumed.) 

9. NATURE OF SOLUTIONS 

Let us summarize briefly the nature of the optimal solutions for 
the three norms applied to the simple isotonic problem (4) with 
arbitrary G 0. In general (although not necessarily for a single 
problem): 

0 (i) The L~ norm gives the greatest freedom in the {y,}, followed 
by  the L~ and L~ solutions, which are almost always unique; 

(ii) L~ tends to have fewer and larger solution blocks than L~ for 
the same problem; 

(iii) In the constrained block, the L~ solution is usually related to a 
harmonic mean (26) of the weights of two classes, and the 
values in other blocks can be conveniently adjusted to mini- 
mize the local value of L~; 

(iv) In the L~ optimal solution, the "weight of evidence" within a 
block sets all y,  to the same reference ideal f ,  or ft ;  

(v) In the L~ optimal solution, a complicated weighted consensus 
(32) is used for the values of y~ within the same block. 

Further  characterizations are possible for special G O , as in the 
complete ordering E2~. 

I 0 .  MODELS FOR NORMS AND IDEAL VALUES 

Let us now consider various models which might be appropriate 
in an insurance context for picking a norm and ideal tariffs for the 
different risk classes. 

In the classical statistical formulation, one assumes a set of n, 
independent measurements {x,t, t = I ,  2 . . . . .  n,} for each tariff 
class i, and minimizes the sum of squared errors of each measure- 
ment, weighted equally. This is equivalent to using the sample 
mean as ideal, fi  = xt = (~ x,dn,), and L2 symmetric weights 

t 

proportional to observations, w, = n,. Or, one may start  with a 
normality assumption and known variances, ~ ,  for each class, and 
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obtain a maximum likelihood estimate over all observations, with 
f~ = ~ and w~ = nd~ ~. 

Statistical arguments for the absolute norm [7] usually emphasize 
the difficulty with outliers, and the relative "freedom" of a norm 
E = X n, l y , - - f , [  (with f ,  as the sample median or sample 
average), even though it has no direct statistical interpretation. 

In my opinion, greater emphasis should be placed upon economic, 
rather than statistical models of rate-making. To illustrate this, let 
us first suppose that  the premium volume in class i is N,, and that  
it is relatively insensitive to the premium level y,  over the range of 
interest. Then the net profit  in class i is: 

P,(y,)  = N , ( y ,  - -  k,) (38) 

where k, is the (known) expense-loaded fa i r  premium.  Clearly 
At = k, in (7) if the company is unwilling to lose money on any 
tariff class; or, it could be set at At = o.95 k,, etc. To maximize 
total profit as an objective, one would then set f ,  = B, and use an 
L~ norm, with only one weight w~ = N,;  clearly the result depends 
upon how greedy the company is (for one class within each solution 
block) in this perfectly inelastic market! Perhaps the B, are fixed 
by  the insurance commissioner, or some rate-of-return rule, or can 
be determined as a level at which the (high) tariffs become too 
visible to customers and competitors. 

A more realistic model would assume, for instance, that  the 
market  was slightly elastic with price, say: 

X,(y , )  = N~  - -  o~,(y, - -  k,), (39) 

where N~ is a reference volume at the breakeven level, and ~, a 
known elasticity coefficient. Then (38) above leads to a quadratic 
profit function, in which penalties will occur for variation about  the 
point of maximal profit, y ,  = f,. In terms of the above: 

f ,  = k, + (N~/2~,) (4 o) 

and the maximal profit is: 

P,(f , )  = (N~)*/4oq. (41) 

The symmetric L,  norm would be used with f ,  given by  (4 o) and 

w~ = 2~, .  (42) 

x3 
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Of course, a linear approximation could be made to the above 
norm, as discussed previously, especially if f ,  turned out to be 
outside the range (A~, B,) allowed by competitive or other factors. 
The piecewise linear norm is, strictly speaking, only exact in the 
above model when there are discontinuous steps in N,(y,), as when 
we automatically lose a certain fraction of business when we go one 
cent over a competitor's rates. 

I t  seems quite difficult to justify the L~ norm in the insurance 
context, unless one assumes that  competitors, customers, or the 
insurance commissioner are looking for rates or profits that  are 
excessively "out  of line". Perhaps the norm would be appropriate 
if the classes were poorly defined or monitored, or the insuree were 
self-rated, and there was a certain moral hazard of shifting to 
nearby categories. This would seem, however, to be better handled 
by using (6) to avoid large neighboring class discontinuities. 

Finally, the complete rate-making process involves a complex 
series qf interactions between different parties of interest, and it may 
be that  the actuary-operations researcher will prefer one norm over 
another solely in terms of the nature of the solutions it gives, its 
ease of computation, or its defensability to management or regulato- 
ry agencies. Even the specification of the desired structure between 
tariffs involves a certain element of judgement, and, in the real 
world, would involve continued iterations between solution and 
formulation. 

I I .  LIMITATIONS 

To conclude, we consider the ways in which this model could be 
extended, but which would lead outside the network flow formula- 
tion. 

First, we must realize that  our model is essentially an approxi- 
mation theory for a single function for each class. For example, if we 
were trying to approximate a given function {g~} as closely as pos- 
sible by another function {h, + ~}, ~ unknown, we could force this 
problem into our model by setting f ,  = g , -  h,, and then force 
y l  = y2 . . . .  Yn = ~ by using a complete order G wi th  R,j = 
S,j ---- o. Alternatively, if we had a free multiplication parameter 
choice, ~, in an approximand {cth,}, we could use our model with 
f~ = gdh~, and new weights w~/h~ for the L~, L~ norms, or w~/(h~) ~ 



ISOTONIC OPTIMIZATION 201 

for the L~ norm, again using a complete order to force Yl = Yl = 

But ,  a two-dimensional  approx imand  {ath, + ~} is a l ready outside 
the realm of our model, since by  set t ing y ,  = ~h, + ~ or y ,  = a + 
(~/h,) one can get rid of either a or ~, bu t  not  both,  th rough  the dif- 
ference Y S -  Y*. For  this and  higher-dimensional  approximat ion  
theory,  wi th  or wi thout  order resti ict ions on the coefficients, one 
needs more general methods  of linear or quadra t ic  p rogramming 
[8], [18], [12], [22], [16], [19], [5], [4]. 

12. RATE RELATIVITIES 

Interest ingly,  a double-classification, addit ive problem in rate 
relativities [I3], [I], can be formula ted  as a network model, wi th  
arb i t ra ry  norm, and  solved by  the methods  here. Let  - - y ,  (i = i ,  
2 . . . . .  p) be the relativities for the first classification factor,  + Yl 
(j  = p + I, p + 2, . . . ,  p + q) the relativities for the second, and  
f,1 the observed risk variable for joint  class (i, j).  The problem can be 
s ta ted  as the problem of determining the best-fit  relativit ies {y = 
yl ,  y~ . . . .  , y~ +q} in the sense of minimizing the norm ] I Yl - - Y ~  = 
f i t  [ ] over all joint  classes. 

When  the details are carried through,  one finds t ha t  the  ne twork 
G is of the transportation t ype  [2I], wi th  p "p l an t s "  and  q "cus- 
tomers" ,  and  uni t  profits r,t = f,1 on every arc (i, j) f rom plant  to 
customer. 

The flow dual  depends upon the norm chosen ~ in the  L~ case, the 
exogenous "supplies"  and  " d e m a n d s "  are zero, bu t  the flows can be 
negative, - -  w ; / <  x,j _< x~. In  the L~ case, the capacities are 

+ + < < and  so on. --w~ju~j x~j w~ju~j, 
Supplementary  part ial  ordering among the y ,  can be forced by  

adding addit ional  arcs between appropriate  nodes, while absolute 
bounds can be imposed by  feeder arcs connecting a reference node o, 
etc. Fur the r  details are left to the reader. 
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