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We will in this paper consider the risk process from the point of 
view of random walk in one dimension. The particle starts out at 
the origin. Each claim is equivalent to a step ill the random walk. 
The length of the step is equal to the amount of the claim minus 
the amount of the premium which has been obtained since the 
preceding claim. If the difference is positive the particle advances 
to the right and if the difference is negative to the left. At distance 
U to the right from the origin there is a barrier. The problem is to 
find the distribution function of X, the time it takes the particle to 
cross the barrier for the first time. 

In most practical applications of risk theory U is large in com- 
parison to the individual steps of the particle. We will in this paper 
assume that  U is large in comparison to the individual steps and 
draw certain conclusions about the risk processes from this 
assumption. 

The individual steps of the particle have a certain distribution. 
The corresponding characteristic function is 6. For reasons which 
will be seen later we will consider d 2 to be a function of it = 0 
instead of t. This means that  

+ o o  

(o) = S dF(x) 
- 0 0  

The mean value and the standard deviation of each step is equal 
to m and . respectively. We now write 

,~(0) = exp{K(O) } = exp mO + - - ~ - +  " " t  

We now define two random variables X and Y. 

X = time to cross the barrier for the first time 
Y = X ~ / U  2. 
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If U is large in comparison to the individual steps we can apply 
Wald's approximation to get the characteristic function of the 
random variable Y. This characteristic function is found to be 

e - 0(t) 

where O(t) is a root of the equation 

K ( O / U )  = - -  i t ~2/U2 

The reader is referred to E1 p. 17-2o] or [2 p. 568]. 
We will now make use of our assumption that  U is large. More 

precisely we will assume that  

U/ ,  tends to infinity 
m U/a s remains finite. 

The last assumption corresponds to the fact that  the security 
loading rn is small in comparison to U. We denote 

We now let U tend to infinity and then get the following equation 
for 0 

0 + 03/2 = - - i t  

This equation has two roots. For t = o these two roots become 
equal to o and - -  2x. For our purpose we have to choose the root 
which for t ~- o is equal to the larger of the said two values. This 
means that  

0 = - - ~  + V ~  2 - -  2 i t  

where the square root is taken with positive real part .  We have 
now found the characteristic function of Y, namely 

e x p { ~  - -  f ~  2 - -  2 it} 

This is a characteristic function which is well-known from the 
theory of Wiener processes. The corresponding distribution function 
is equal to 

(I - ~ )  

I g -  813 2Z P(Y < ~) = o(~, ~) = . ~  ~ - -  dz 

e 
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We are now ready to introduce the standard notation qb (U, T) 
for ruin probability, equal to tile probability that  the particle 
crosses the barrier before time T. It follows that  we get 

+(U, T) = G (~, T,zlU 2) 

For ~ = o, corresponding to the case that  the security loading of 
the process is zero, the values of G (o, x) are easily obtained from 
a table of the normal distribution. For ~ different from zero the 
values of G (z, X) have to be calculated numerically. 

From the expression for the characteristic function we find the 
values of the probability of ultimate ruin 

t b ( U , o 9 ) = I  i f m l > o  
(U, Go)= e~ i f m < o  

Example I" A company has IO,OOO claims per year. The mean 
claim amount is equal to I,ooo monetary units. The standard 
deviation is equal to IO,OOO monetary units. The security loading 
m is equal to zero. The company wants to safeguard with probability 
0.99 that  ruin will not occur during the first 25 years of operation. 
We then have 

Cr -~- IO,OOO 

m - ~ O  

T = 25o,ooo 
+ (U, T) = o.oi 
Ta~/U ~ = o.r51 

It  follows that  U must be equal to 13 million monetary units. 
As the yearly net premium income is equal to IO million monetary 
units we find that  a risk reserve equal to 13o % of the yearly net 
premium income is necessary to safeguard survival of the company 
during the first 25 years of operation with 99 % probability. 

Example 2: The same assumptions are made as in example I 
except that  the size of the company is assumed to be ten times 
larger. This means that  the company has IOO,OOO claims per year 
and that  the yearly net premium income is equal to IOO million 
monetary units. In this case we filld that  U has to be 41 million 
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m o n e t a r y  units  meaning  tha t  U has to be 4 1 %  of the year ly  net  
p remium income. 
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