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SUMMARY 

Models for the risk business of an insurance company are often 
constructed by weighting pure Poisson models. In this paper it is 
verified that  it is possible to calculate the probability of ruirL in 
such weighted models by weighting ruin probabilities of pure 
Poisson models. 

I. INTRODUCTION 

In this paper we are going to study a model for the risk business 
of an irLsurance company where the claims are located according 
to a stochastic process {N(t); o ~ t < oo} subordinated to the 
Poisson process with a directing process {A(t); o ~ t < o~}. This 
terminology follows Feller [3]. The directing process A(t) will be a 
real-valued and non-decreasing process such that  P(A(o) ---- o) = I. 
We will later assume that  A(t) has stationary, and independent 
increments. Let {M(t); o .~ t < ~} be a Poisson process with 
intensity I, i.e. 

t ~ 
P ( M ( t )  = k) ~- ~/  e-t, k = o, I ,  2 . . . . .  

The process N(t )  is then defined by N( t )  = M(A(t)). 
For each claim the company has to pay a certain amount counted 

with its proper sign. As usually in the theory of risk these amounts 
are assumed to be described by a sequence {Xn}~ of independent 
random variables, each having the distribution function V(x ) .  

These variables are further assumed to be independent of the 
process N (t). 

The stochastic process 
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N (t) 
X(t) = ~ X k  (X(t) = o if N(t) = o) 

k = l  

will thus serve as a model for the total amount of claims paid by  
the company up to time t. 

Looking a bit more formally upon this definition we let the 
stochastic vector process {(A(t), M(s),  X~); 0 < t, s < ~ ,  k : 
: I, 2 . . . .  ) be defined on (~, ~ ,  II~) where ~ is a sample space, 

the a-algebra of subsets of ~ generated by  the process and II~ a 
probability measure on 3L Let further ~, ~ ,  ~ and ~ be the sub- 
a-algebras of ~ generated by {A(t); 0 < t < o0}, {M(t); 0 ~ t < o0} 
{Xk; k : I, 2 . . . .  } and {(A(t), M(s)); 0 < t, s < o0} respectively 
and H~, IH~, I I~ and II~ the corresponding marginal measures. 

For every L e g ,  M , ~  and V s ~  we have I I ~ ( L N  M) : 
= Ills(L). I I ~ ( m )  and II~(L f'l M rl V) : II~t(L 0 M)" II~(V) 
because of the independence assumptions. 

We will always consider only the separable version of the processes 
and further all measures will be assumed to be complete. 

Let ~o and 3~o be the a-algebras generated by  the above defined 
processes {N(t); o ~ t < oo} and {X(t); o < t < oo} respectively. 
Let S be a countable but  dense set in Eo, oo). Because of the separa- 
bility assumption {N(t) = k}=sv{U(s ) ~- k, A(t) = s}. Thus ~oC~.  
In the same way it is shown that ~oC~. 

2. THE CASE OF A DIRECTING PROCESS WITH STATIONARY AND 

I N D E P E N D E N T  INCREMENTS 

It  is shown in Feller I3~ that for every non-decreasing process 
A(t) with stationary and independent increments (s.i.i. process) 

E #uA(O = eta(u) 

where 
® e ~ux- I 

= .f - -   (dx) + i bu  
O+ X 

(ax) 
where b > /o  and o + i + x  < ° 0  

The behaviour of the sample functions of non-decreasing s.i.i. 
processes is investigated by  Walldin I5]. 

Since M(t) is a s.i.i, process it follows from Feller [3] that  also 
N(t) is a s.i.i, process. 
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F o r  N(t )  we thus  have  

l o g E # u N ( 0  = t .  ~ (e * u k - I )  c~ 
/e-X 

where c ,  ~ o for all k and  Z c ~ <  oo. 
k - 1  

N(t )  is thus  a bunch  Poisson (Poisson par  grappes) process. The  
bunches are located  according to a Poisson process wi th  in tens i ty  

o0 
c = Z c~ and  the dis t r ibut ion of the  size of the  bunches  is given 

b y  c ,  for k = i ,  2, 3 . . . . .  
C 

Theorem 

The  relat ion between the measure  ~ and the  sequence {ck}~ is 
given by  

° x~ ~(dx) 
ck = I k7 e-~ + ~,~ b 

o+ X 

where 
[ i i f k  = I 

~ ,1  = t o i f k - ~ I  

P r o o f  

We have  E e x p { i u N ( O  } = E exp{A(t) (e*U - -  I}). 
Since Re(e  *u - -  I) • o we have  

O+ X /c-1 

Thus  the  theorem holds since 

i)b+ a(ax} _ _  e - Q a  _ _  

k -o  o+ k !  x 
co 

= ( e "  - -  I) b + I (e~" - -  e~) e'~ ~(dx) _ 
o +  X 

= (e { r e - I )  b + S eZ(e~t'-- l).n ( d x )  

o+ x 

because of domina ted  convergence since e x - -  I is in tegrable  wi th  

respect  to e x ~ ( d x )  
X 
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E x a m p l e  

P u t  ~(dx)  = ~e-~Xdx and b ~ o. 
We have 

e * x u -  I e -~x dx = :c l o g ( I  i~) ~ ( u )  . . . . . . . . .  ~ - -  - -  

o X 

and thus 

E e ~uA(t) = ( I  - - i u ~  -~t 

A(t) is then  F-d is t r ibu ted  with the f requency  funct ion given by  

~ t  x(~vl) e -~x for x ~ o 
F(~t) 

By direct  calculations we get 

E e*UN(O = S eX(e*u-1) x(~,t-1) e_~X dx = (-~ ~ e,U) ~ 
o P(od) + I -  

from which it follows tha t  

(;)(&) P(N( t )  = k) ~- ~,t f o r k - ~  1 , 2  . . . . .  

F r o m  the theorem it follows tha t  

0C 
c ~ - -  f o r k ~  1 ,2  . . . . .  

k(~ + ~)* 
Now the probabi l i ty  of ruin m a y  be calculated in the  following 

manner .  Assume tha t  E A(t) -~ t which implies tha t  E N(t)  = I 
and tha t  vl = E Xk exists. The  probabi l i ty  of ruin +(yo) is t hen  the 
probabi l i ty  tha t  yo + (v~ + ×) t - -  X( t )  falls below zero at  any  t ime 
t ~ o where yo is the  initial value of the  risk reserve and × the  safe ty  
loading E21. 

The  bunches  of claims will occur according to  a Poisson process 
wi th  in tens i ty  c and the amounts  to be paid  for each bunch  will 
form a sequence of independent  r andom variables  each having the  
dis t r ibut ion funct ion 

L~v~ * (x) 
k=l C 

where V k* (x) is the k-fold convolut ion  of V(x)  with  itself. Define 
×0 by  
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( v l + × ) t  = ( × o +  E --C~ k vl) ct 
k = l C  

from which it follows tha t  

v ~ + × - - v l  ~ ck k 
/¢-1 

X0 
C 

Under  the  addit ional  assumpt ion  tha t  

c~ i eax V~* (dx) < co for some a > o 
k = l  0 

d~(yo) m a y  be calculated according to the der ivat ion in Cram~r [23 
where ct plays the  role of the operat ional  time, ×o of the safe ty  

loading and N c~ Vk , ( x )o f  the dis t r ibut ion of the amoun t  of 
k - l C  

each claim. 

3. THE CASE OF A DIRECTING PROCESS WITH INTERCHANGEABLE 

INCREMENTS 

The directing process {A(t); o -~ t < ~ }  is said to have inter- 
changeable increments  if for all n = 2, 3 . . . .  and all finite T 
(o, oo) it holds tha t  

P I N 1  { A ( ~ ) - - A ( ( k - n I ) T )  ~ x ~ } ]  = 

for all n! permuta t ions  (il . . . . .  in) of (I . . . . .  n) and for all (xl . . . . .  
Xn). 

Bfihlmann [11 has shown tha t  for a process with interchangeable  
increments  there exists a nontr ivial  sub-a-algebra ~ of ~ such tha t  
A(t) is a s.i.i, process relat ive to ~3. Fur the r  there  exists a measure  
II~3 on ~ such tha t  for every o ~ s < t < oo we have  

where 

o+ X 

is D-measurab le  in ¢o. 
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Denote by I I ~  the measure on ~ relative to ~ and by I I ~  the 
measure on ~ relative to ~3. Due to the theorem of Kolmogorov 
l I I~  and thus lII~gt are determined. 

Since A(t) is a s.i.i, process relative to ~ also N(t) is a.s i.i. process 
relative to ~ .  Define 

~" x~ ta(dx, oo) 
c~(~o) = J" ~ e-~ + ~k,~ b(oo) 

1+ X 

The sequence {c~(co)}~=l is thus a sequence of D-measurable 
functions. From the theorem of Kolmogorov and from the theorem 
in section 2 it follows that  the restriction III~3~to of I I ~  to 3o may 
be expressed in terms of the sequence {ck(oo)} k : l .  

Assume that  E A(t) = t. Define the D-measurable functions 

c(~)  = x ck(,~) 

v(~,  ~ ) =  ~ ~*( '~)v~* (~) 
/¢-1 ~ -  

and 

vl(~o) + × -  vl X c , ( o ) ,  k 
×o(~) = *-~ 

c(~o) 
If for almost every m with respect to IIo 

S e'~ V(dx, co) < oo for some . > o 
0 

the probability of ruin +~(yo) relative to ~3 may be calculated. 
Because of the assumption of separability the function 

I i f y o  + ( v l + × ) t - - X ( t )  < o f o r s o m e t  ~ o  I(,o) = 
o elsewhere 

is ~0-measurable and thus furthermore R-measurable. 
Since 

t~3(yo) = E (I (co) [~3) 

+a3(yo) is ~3-measurable and qb(yo) is given by 

+(yo) = J" +~(yo) a r id  
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Remark 
If  A(t) = X. t where X is a P-d is t r ibuted  r andom variable  N(t) 

is a Polya-process.  In  Segerdahl E4~ the ruin probabi l i ty  is calculated 
b y  a weighting procedure.  If  ~(dx, o~) = o almost  surely with respect  
to I I~  and  if X(o~) = b(o~) our result  reduces to the  result  due to 
Segerdahl. 

Thus  

4. A NUMERICAL ILLUSTRATION 

Consider the  case where  N(t) is a Polya-process  and where  

V(x) = I z - - e  - ~ f o r x / > o  
o for x < o. 

In our notat ions  this implies tha t  if X is a r andom variable  defined 
on (~, ~ ,  II) where 

yh-1 h h 

F(h) o 

then A(t) = k .  t a lmost  surely with respect  to I I ~ .  
In Cram6r [2] it is shown tha t  for this choice of V(x) the  ruin 

probabi l i ty  +(yo) is in the  Poisson case (with intensi ty  I) given b y  

l I . yo× for × > o 

+(yo)=  ez+ 

I for x ~ o 

Since in the  Po lya  case vt(co) = I, c(co) = k(o~) and ck(co) = o 
for k = 2, 3 . . . .  a lmost  surely wi th  respect  to III~ it follows tha t  

= 

X(o~) I + × -  X(co) y0 for k(oo) < I + × 
e I --~- x 

I + x  

I 

Define the  function 

r(x,  ~, ~) = ~ y~-Z ~ e.~V dy. 
o-rE7 

I t  then follows tha t  

for X(co) /> i + × 
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+(yo) = I - - r ( I  + × , h , h )  + 

h ) h + I  eUo P ( I + × , h + I , h  Y0 ). 

h Y0 I + ×  I + ×  
~ + ×  

In tables i . . . . .  4 this function is calculated for × = o.o, o.I,  
0.2 and 0.3 and for h = I, 2, 5, IO, 25, 50 and  IOO. These values 
are fur ther  compared with the ruin probabilities in the Poisson case 
which is indicated by h = oo. 

T a b l e  z 

×= o q~(y°) 

Y0 h =  I h =  2 h =  5 h =  IO h = 2 5  h = 5 o  h = I o o  h = 

o o.6321 0.7293 0.8245 0.8749 0.9205 0.9437 o.96Ol I.OOOO 
IO 0.4o42 0.4589 0.5236 o.5717 0.6380 o.69o 5 o.7429 ' I.OOOO 
20 0.3862 o.4329 0.4838 o.5189 o.5671 0.6o79 0.6533 I.OOOO 
3 ° o.38Ol o.424o 0.4696 o.4992 0.5379 o.57o 3 0.6o77 I.OOOO 
4 ° o.3771 o.4195 0.4624 o.489o 0.5223 0.5495 o.5809 I.OOOO 
5 ° o.3752 o.4168 0.4580 o.4829 o.5128 0.5364 0.5635 I.OOOO 
60 0.3740 o.415o o.4551 0.4787 0.5063 o.5275 o.5514 I.OOOO 
7 ° o.3731 o.4137 0.4530 0.4758 o.5ol  7 o.521o 0.5425 I.OOOO 
8o 0.3725 o.4128 o.4515 0.4735 0.4982 o.5161 0.5358 I.OOOO 
9o 0.3720 o.412o 0.45o2 o.4718 0.4954 o.5123 0.5305 I.OOOO 

IOO o.3716 o.4114 o.4493 0.4704 0.4932 0.5092 0.5262 I.OOOO 

~c 0.3679 0.4060 o.4405 0.4579 0.4734 o.4812 o.4867 I.OOOO 

T a b l e  2 

x =  

0.I  +(Y0) 

Y0 h =  I 

o o.6o65 
IO 0.3694 
20 o.3512 
3 ° o.3451 
4 ° 0.342o 
5 ° o.34o2 
60 o.339o 
7 ° o.3381 
80 0.3375 
9o 0.3369 

IOO 0.3365 

~ 0.3329 

h = 2  

0.6976 
0.4080 
o.3815 
0.3725 
0.3680 
0.3653 
0.3635 
0.3623 
o.3613 
o.36o5 
0.3599 

0.3546 

h = 5 

0.7858 
0.4425 
0.4009 
0.3864 
o.3791 
0.3748 
o.3719 
0.3698 
0.3683 
o.3671 
o.3661 

0.3575 

h =  io  h = 2 5  

o.8315 o.8713 
o.4588 0.4686 
o.4o16 0.3847 
o.3812 0.3533 
0.3709 0.3373 
0.3648 0.3278 
0.3607 o.3215 
o.3578 o.3171 
o.3556 o.3137 
0.3539 o.3112 
o.3526 o.3o91 

0.3405 o.291o 

h = 5 ° 

0.8897 
0.4663 
0.3578 
o.3151 
o.2934 
o.28o6 
o.2721 
o.2661 
o.2617 
0.2583 
0.2556 

0.2322 

h = I o o  h = 

0.9o08 0.9o91 
o.4545 o.3663 
o.3186 o.1476 
0.2626 0.0595 
0.234 ° 0.024 ° 
o.2172 0.0097 
0.2o64 0.0039 
o.1988 o.oo16 
o.1933 0.o006 
o.189o 0.o003 
o.1857 o .oooi  

o.1584 o.oooo 



Table 3 

0 .2  

Y0 

O 

IO 

2 0  

30 
4 ° 
5 ° 
60 
7 ° 
80 
90 

IOO 

----> oo 

o.5823 
o.3376 
o.3194 
o.3133 
o.31o3 
o.3o84 
o.3o72 
0.3064 
o.3o57 
o.3o52 
0.3048 

o.3o12 

+(y0) 

h ~ oo h = 2 h = 5 h =  IO h = 2 5  h = 5 o  h = I o o  

0.667o o.747o o.7864 o.8169 0.8280 o.8323 
o.3615 0.3686 0.3564 o.318o 0.2755 o.23o 5 
o.335 o 0.3267 0.2988 0.2344 o.17o9 O.lO88 
o.3261 o.3126 o.2793 0.2064 o.1368 o.o717 
o.3216 0.3o56 0.2698 o.193 o o.1213 o.o564 
o.319o o.3ol 4 o.2641 o.1853 o.1127 o.o486 
o.3172 0.2987 0.2604 o.18o 3 O. lO73 o.o44o 
o.3159 0.2967 0.2578 o.1768 O.lO36 o.o411 
o.315o o.2952 0.2558 o.1742 O.lOO9 o.o39o 
o.3143 0.2941 0.2543 o.1722 0.0989 o.o375 
o.3137 o.2932 o .2531  o.17o 7 0.0973 o.o363 

o.3084 o .2851  0.2424 o.1573 0.0844 0.0280 

o.8333 
o.1574 
o.o297 
o.oo56 
o .ool i  
0 . 0 0 0 2  

o.OOOO 

o.OOOO 
o.OOOO 

o.OOOO 

o.OOOO 

0 . 0 0 0 0  

Table 4 

0.3 

Y0 

O 

IO 

2o 
30 
4 ° 
5 ° 
60 
7 ° 
8o 
9o 

IOO 

oo 

h = I  

0.5596 
0.3086 
0.2905 
0.2844 
o.2815 
0.2797 
0.2785 
0.2776 
0.277o 
0.2765 
o.2761 

0.2725 

+(y0) 

O0 h ~ 2  

0.6378 
o.3194 
0.2931 
0.2844 
o.28Ol 
0.2775 
0.2758 
0.2766 
0.2737 
0.273 ° 
o.2724 

o.2674 

h = 5 

0.7090 
0.3032 
0.2624 
0.2490 
0.2425 
0.2386 
o.2361 
o.2343 
0.2329 
o.2319 
o.2311 

0.2237 

h ~  i o  h = 2 5  

o.7414 0.7628 
o.2691 o.2o26 
o.2146 o.1297 
o.1972 O.lO83 
o.1889 0.o987 
o.184o o.o934 
o.18o8 0.0900 
o.1786 0.o877 
o.177 ° o.o86o 
o.1757 0.o848 
o.1747 0.o837 

o.1658 o.o754 

h = 5  ° h =  lOO h = 

o.7681 0.7692 0.7692 
o.15o2 o.1122 0.0765 
0.0686 o.o3o 4 0.0076 
0.0477 o.o138 0.00o8 
0.0395 0.0088 o.oooi 
0.0353 0.0067 o.oooo 
0.0329 0.o056 o.oooo 
o . o 3 1 2  0 . 0 0 5 0  0 . o 0 o 0  

o.o3ol 0.0046 o.oooo 
0.0292 0.0043 o.oooo 
0.0286 o.oo41 o.oooo 

o.o236 o.oo28 o.oooo 
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